]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 if (ac) {
567 ac->avail = 0;
568 ac->limit = limit;
569 ac->batchcount = batch;
570 ac->touched = 0;
571 }
572 }
573
574 static struct array_cache *alloc_arraycache(int node, int entries,
575 int batchcount, gfp_t gfp)
576 {
577 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
578 struct array_cache *ac = NULL;
579
580 ac = kmalloc_node(memsize, gfp, node);
581 /*
582 * The array_cache structures contain pointers to free object.
583 * However, when such objects are allocated or transferred to another
584 * cache the pointers are not cleared and they could be counted as
585 * valid references during a kmemleak scan. Therefore, kmemleak must
586 * not scan such objects.
587 */
588 kmemleak_no_scan(ac);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 if (alc) {
683 kmemleak_no_scan(alc);
684 init_arraycache(&alc->ac, entries, batch);
685 spin_lock_init(&alc->lock);
686 }
687 return alc;
688 }
689
690 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
691 {
692 struct alien_cache **alc_ptr;
693 size_t memsize = sizeof(void *) * nr_node_ids;
694 int i;
695
696 if (limit > 1)
697 limit = 12;
698 alc_ptr = kzalloc_node(memsize, gfp, node);
699 if (!alc_ptr)
700 return NULL;
701
702 for_each_node(i) {
703 if (i == node || !node_online(i))
704 continue;
705 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
706 if (!alc_ptr[i]) {
707 for (i--; i >= 0; i--)
708 kfree(alc_ptr[i]);
709 kfree(alc_ptr);
710 return NULL;
711 }
712 }
713 return alc_ptr;
714 }
715
716 static void free_alien_cache(struct alien_cache **alc_ptr)
717 {
718 int i;
719
720 if (!alc_ptr)
721 return;
722 for_each_node(i)
723 kfree(alc_ptr[i]);
724 kfree(alc_ptr);
725 }
726
727 static void __drain_alien_cache(struct kmem_cache *cachep,
728 struct array_cache *ac, int node,
729 struct list_head *list)
730 {
731 struct kmem_cache_node *n = get_node(cachep, node);
732
733 if (ac->avail) {
734 spin_lock(&n->list_lock);
735 /*
736 * Stuff objects into the remote nodes shared array first.
737 * That way we could avoid the overhead of putting the objects
738 * into the free lists and getting them back later.
739 */
740 if (n->shared)
741 transfer_objects(n->shared, ac, ac->limit);
742
743 free_block(cachep, ac->entry, ac->avail, node, list);
744 ac->avail = 0;
745 spin_unlock(&n->list_lock);
746 }
747 }
748
749 /*
750 * Called from cache_reap() to regularly drain alien caches round robin.
751 */
752 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
753 {
754 int node = __this_cpu_read(slab_reap_node);
755
756 if (n->alien) {
757 struct alien_cache *alc = n->alien[node];
758 struct array_cache *ac;
759
760 if (alc) {
761 ac = &alc->ac;
762 if (ac->avail && spin_trylock_irq(&alc->lock)) {
763 LIST_HEAD(list);
764
765 __drain_alien_cache(cachep, ac, node, &list);
766 spin_unlock_irq(&alc->lock);
767 slabs_destroy(cachep, &list);
768 }
769 }
770 }
771 }
772
773 static void drain_alien_cache(struct kmem_cache *cachep,
774 struct alien_cache **alien)
775 {
776 int i = 0;
777 struct alien_cache *alc;
778 struct array_cache *ac;
779 unsigned long flags;
780
781 for_each_online_node(i) {
782 alc = alien[i];
783 if (alc) {
784 LIST_HEAD(list);
785
786 ac = &alc->ac;
787 spin_lock_irqsave(&alc->lock, flags);
788 __drain_alien_cache(cachep, ac, i, &list);
789 spin_unlock_irqrestore(&alc->lock, flags);
790 slabs_destroy(cachep, &list);
791 }
792 }
793 }
794
795 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
796 int node, int page_node)
797 {
798 struct kmem_cache_node *n;
799 struct alien_cache *alien = NULL;
800 struct array_cache *ac;
801 LIST_HEAD(list);
802
803 n = get_node(cachep, node);
804 STATS_INC_NODEFREES(cachep);
805 if (n->alien && n->alien[page_node]) {
806 alien = n->alien[page_node];
807 ac = &alien->ac;
808 spin_lock(&alien->lock);
809 if (unlikely(ac->avail == ac->limit)) {
810 STATS_INC_ACOVERFLOW(cachep);
811 __drain_alien_cache(cachep, ac, page_node, &list);
812 }
813 ac->entry[ac->avail++] = objp;
814 spin_unlock(&alien->lock);
815 slabs_destroy(cachep, &list);
816 } else {
817 n = get_node(cachep, page_node);
818 spin_lock(&n->list_lock);
819 free_block(cachep, &objp, 1, page_node, &list);
820 spin_unlock(&n->list_lock);
821 slabs_destroy(cachep, &list);
822 }
823 return 1;
824 }
825
826 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
827 {
828 int page_node = page_to_nid(virt_to_page(objp));
829 int node = numa_mem_id();
830 /*
831 * Make sure we are not freeing a object from another node to the array
832 * cache on this cpu.
833 */
834 if (likely(node == page_node))
835 return 0;
836
837 return __cache_free_alien(cachep, objp, node, page_node);
838 }
839
840 /*
841 * Construct gfp mask to allocate from a specific node but do not reclaim or
842 * warn about failures.
843 */
844 static inline gfp_t gfp_exact_node(gfp_t flags)
845 {
846 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
847 }
848 #endif
849
850 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
851 {
852 struct kmem_cache_node *n;
853
854 /*
855 * Set up the kmem_cache_node for cpu before we can
856 * begin anything. Make sure some other cpu on this
857 * node has not already allocated this
858 */
859 n = get_node(cachep, node);
860 if (n) {
861 spin_lock_irq(&n->list_lock);
862 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
863 cachep->num;
864 spin_unlock_irq(&n->list_lock);
865
866 return 0;
867 }
868
869 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
870 if (!n)
871 return -ENOMEM;
872
873 kmem_cache_node_init(n);
874 n->next_reap = jiffies + REAPTIMEOUT_NODE +
875 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
876
877 n->free_limit =
878 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
879
880 /*
881 * The kmem_cache_nodes don't come and go as CPUs
882 * come and go. slab_mutex is sufficient
883 * protection here.
884 */
885 cachep->node[node] = n;
886
887 return 0;
888 }
889
890 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
891 /*
892 * Allocates and initializes node for a node on each slab cache, used for
893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
894 * will be allocated off-node since memory is not yet online for the new node.
895 * When hotplugging memory or a cpu, existing node are not replaced if
896 * already in use.
897 *
898 * Must hold slab_mutex.
899 */
900 static int init_cache_node_node(int node)
901 {
902 int ret;
903 struct kmem_cache *cachep;
904
905 list_for_each_entry(cachep, &slab_caches, list) {
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
909 }
910
911 return 0;
912 }
913 #endif
914
915 static int setup_kmem_cache_node(struct kmem_cache *cachep,
916 int node, gfp_t gfp, bool force_change)
917 {
918 int ret = -ENOMEM;
919 struct kmem_cache_node *n;
920 struct array_cache *old_shared = NULL;
921 struct array_cache *new_shared = NULL;
922 struct alien_cache **new_alien = NULL;
923 LIST_HEAD(list);
924
925 if (use_alien_caches) {
926 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
927 if (!new_alien)
928 goto fail;
929 }
930
931 if (cachep->shared) {
932 new_shared = alloc_arraycache(node,
933 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
934 if (!new_shared)
935 goto fail;
936 }
937
938 ret = init_cache_node(cachep, node, gfp);
939 if (ret)
940 goto fail;
941
942 n = get_node(cachep, node);
943 spin_lock_irq(&n->list_lock);
944 if (n->shared && force_change) {
945 free_block(cachep, n->shared->entry,
946 n->shared->avail, node, &list);
947 n->shared->avail = 0;
948 }
949
950 if (!n->shared || force_change) {
951 old_shared = n->shared;
952 n->shared = new_shared;
953 new_shared = NULL;
954 }
955
956 if (!n->alien) {
957 n->alien = new_alien;
958 new_alien = NULL;
959 }
960
961 spin_unlock_irq(&n->list_lock);
962 slabs_destroy(cachep, &list);
963
964 /*
965 * To protect lockless access to n->shared during irq disabled context.
966 * If n->shared isn't NULL in irq disabled context, accessing to it is
967 * guaranteed to be valid until irq is re-enabled, because it will be
968 * freed after synchronize_sched().
969 */
970 if (old_shared && force_change)
971 synchronize_sched();
972
973 fail:
974 kfree(old_shared);
975 kfree(new_shared);
976 free_alien_cache(new_alien);
977
978 return ret;
979 }
980
981 #ifdef CONFIG_SMP
982
983 static void cpuup_canceled(long cpu)
984 {
985 struct kmem_cache *cachep;
986 struct kmem_cache_node *n = NULL;
987 int node = cpu_to_mem(cpu);
988 const struct cpumask *mask = cpumask_of_node(node);
989
990 list_for_each_entry(cachep, &slab_caches, list) {
991 struct array_cache *nc;
992 struct array_cache *shared;
993 struct alien_cache **alien;
994 LIST_HEAD(list);
995
996 n = get_node(cachep, node);
997 if (!n)
998 continue;
999
1000 spin_lock_irq(&n->list_lock);
1001
1002 /* Free limit for this kmem_cache_node */
1003 n->free_limit -= cachep->batchcount;
1004
1005 /* cpu is dead; no one can alloc from it. */
1006 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1007 if (nc) {
1008 free_block(cachep, nc->entry, nc->avail, node, &list);
1009 nc->avail = 0;
1010 }
1011
1012 if (!cpumask_empty(mask)) {
1013 spin_unlock_irq(&n->list_lock);
1014 goto free_slab;
1015 }
1016
1017 shared = n->shared;
1018 if (shared) {
1019 free_block(cachep, shared->entry,
1020 shared->avail, node, &list);
1021 n->shared = NULL;
1022 }
1023
1024 alien = n->alien;
1025 n->alien = NULL;
1026
1027 spin_unlock_irq(&n->list_lock);
1028
1029 kfree(shared);
1030 if (alien) {
1031 drain_alien_cache(cachep, alien);
1032 free_alien_cache(alien);
1033 }
1034
1035 free_slab:
1036 slabs_destroy(cachep, &list);
1037 }
1038 /*
1039 * In the previous loop, all the objects were freed to
1040 * the respective cache's slabs, now we can go ahead and
1041 * shrink each nodelist to its limit.
1042 */
1043 list_for_each_entry(cachep, &slab_caches, list) {
1044 n = get_node(cachep, node);
1045 if (!n)
1046 continue;
1047 drain_freelist(cachep, n, INT_MAX);
1048 }
1049 }
1050
1051 static int cpuup_prepare(long cpu)
1052 {
1053 struct kmem_cache *cachep;
1054 int node = cpu_to_mem(cpu);
1055 int err;
1056
1057 /*
1058 * We need to do this right in the beginning since
1059 * alloc_arraycache's are going to use this list.
1060 * kmalloc_node allows us to add the slab to the right
1061 * kmem_cache_node and not this cpu's kmem_cache_node
1062 */
1063 err = init_cache_node_node(node);
1064 if (err < 0)
1065 goto bad;
1066
1067 /*
1068 * Now we can go ahead with allocating the shared arrays and
1069 * array caches
1070 */
1071 list_for_each_entry(cachep, &slab_caches, list) {
1072 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1073 if (err)
1074 goto bad;
1075 }
1076
1077 return 0;
1078 bad:
1079 cpuup_canceled(cpu);
1080 return -ENOMEM;
1081 }
1082
1083 int slab_prepare_cpu(unsigned int cpu)
1084 {
1085 int err;
1086
1087 mutex_lock(&slab_mutex);
1088 err = cpuup_prepare(cpu);
1089 mutex_unlock(&slab_mutex);
1090 return err;
1091 }
1092
1093 /*
1094 * This is called for a failed online attempt and for a successful
1095 * offline.
1096 *
1097 * Even if all the cpus of a node are down, we don't free the
1098 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1099 * a kmalloc allocation from another cpu for memory from the node of
1100 * the cpu going down. The list3 structure is usually allocated from
1101 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1102 */
1103 int slab_dead_cpu(unsigned int cpu)
1104 {
1105 mutex_lock(&slab_mutex);
1106 cpuup_canceled(cpu);
1107 mutex_unlock(&slab_mutex);
1108 return 0;
1109 }
1110 #endif
1111
1112 static int slab_online_cpu(unsigned int cpu)
1113 {
1114 start_cpu_timer(cpu);
1115 return 0;
1116 }
1117
1118 static int slab_offline_cpu(unsigned int cpu)
1119 {
1120 /*
1121 * Shutdown cache reaper. Note that the slab_mutex is held so
1122 * that if cache_reap() is invoked it cannot do anything
1123 * expensive but will only modify reap_work and reschedule the
1124 * timer.
1125 */
1126 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1127 /* Now the cache_reaper is guaranteed to be not running. */
1128 per_cpu(slab_reap_work, cpu).work.func = NULL;
1129 return 0;
1130 }
1131
1132 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1133 /*
1134 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1135 * Returns -EBUSY if all objects cannot be drained so that the node is not
1136 * removed.
1137 *
1138 * Must hold slab_mutex.
1139 */
1140 static int __meminit drain_cache_node_node(int node)
1141 {
1142 struct kmem_cache *cachep;
1143 int ret = 0;
1144
1145 list_for_each_entry(cachep, &slab_caches, list) {
1146 struct kmem_cache_node *n;
1147
1148 n = get_node(cachep, node);
1149 if (!n)
1150 continue;
1151
1152 drain_freelist(cachep, n, INT_MAX);
1153
1154 if (!list_empty(&n->slabs_full) ||
1155 !list_empty(&n->slabs_partial)) {
1156 ret = -EBUSY;
1157 break;
1158 }
1159 }
1160 return ret;
1161 }
1162
1163 static int __meminit slab_memory_callback(struct notifier_block *self,
1164 unsigned long action, void *arg)
1165 {
1166 struct memory_notify *mnb = arg;
1167 int ret = 0;
1168 int nid;
1169
1170 nid = mnb->status_change_nid;
1171 if (nid < 0)
1172 goto out;
1173
1174 switch (action) {
1175 case MEM_GOING_ONLINE:
1176 mutex_lock(&slab_mutex);
1177 ret = init_cache_node_node(nid);
1178 mutex_unlock(&slab_mutex);
1179 break;
1180 case MEM_GOING_OFFLINE:
1181 mutex_lock(&slab_mutex);
1182 ret = drain_cache_node_node(nid);
1183 mutex_unlock(&slab_mutex);
1184 break;
1185 case MEM_ONLINE:
1186 case MEM_OFFLINE:
1187 case MEM_CANCEL_ONLINE:
1188 case MEM_CANCEL_OFFLINE:
1189 break;
1190 }
1191 out:
1192 return notifier_from_errno(ret);
1193 }
1194 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1195
1196 /*
1197 * swap the static kmem_cache_node with kmalloced memory
1198 */
1199 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1200 int nodeid)
1201 {
1202 struct kmem_cache_node *ptr;
1203
1204 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1205 BUG_ON(!ptr);
1206
1207 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1208 /*
1209 * Do not assume that spinlocks can be initialized via memcpy:
1210 */
1211 spin_lock_init(&ptr->list_lock);
1212
1213 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1214 cachep->node[nodeid] = ptr;
1215 }
1216
1217 /*
1218 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1219 * size of kmem_cache_node.
1220 */
1221 static void __init set_up_node(struct kmem_cache *cachep, int index)
1222 {
1223 int node;
1224
1225 for_each_online_node(node) {
1226 cachep->node[node] = &init_kmem_cache_node[index + node];
1227 cachep->node[node]->next_reap = jiffies +
1228 REAPTIMEOUT_NODE +
1229 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1230 }
1231 }
1232
1233 /*
1234 * Initialisation. Called after the page allocator have been initialised and
1235 * before smp_init().
1236 */
1237 void __init kmem_cache_init(void)
1238 {
1239 int i;
1240
1241 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1242 sizeof(struct rcu_head));
1243 kmem_cache = &kmem_cache_boot;
1244
1245 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1246 use_alien_caches = 0;
1247
1248 for (i = 0; i < NUM_INIT_LISTS; i++)
1249 kmem_cache_node_init(&init_kmem_cache_node[i]);
1250
1251 /*
1252 * Fragmentation resistance on low memory - only use bigger
1253 * page orders on machines with more than 32MB of memory if
1254 * not overridden on the command line.
1255 */
1256 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1257 slab_max_order = SLAB_MAX_ORDER_HI;
1258
1259 /* Bootstrap is tricky, because several objects are allocated
1260 * from caches that do not exist yet:
1261 * 1) initialize the kmem_cache cache: it contains the struct
1262 * kmem_cache structures of all caches, except kmem_cache itself:
1263 * kmem_cache is statically allocated.
1264 * Initially an __init data area is used for the head array and the
1265 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1266 * array at the end of the bootstrap.
1267 * 2) Create the first kmalloc cache.
1268 * The struct kmem_cache for the new cache is allocated normally.
1269 * An __init data area is used for the head array.
1270 * 3) Create the remaining kmalloc caches, with minimally sized
1271 * head arrays.
1272 * 4) Replace the __init data head arrays for kmem_cache and the first
1273 * kmalloc cache with kmalloc allocated arrays.
1274 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1275 * the other cache's with kmalloc allocated memory.
1276 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1277 */
1278
1279 /* 1) create the kmem_cache */
1280
1281 /*
1282 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1283 */
1284 create_boot_cache(kmem_cache, "kmem_cache",
1285 offsetof(struct kmem_cache, node) +
1286 nr_node_ids * sizeof(struct kmem_cache_node *),
1287 SLAB_HWCACHE_ALIGN);
1288 list_add(&kmem_cache->list, &slab_caches);
1289 memcg_link_cache(kmem_cache);
1290 slab_state = PARTIAL;
1291
1292 /*
1293 * Initialize the caches that provide memory for the kmem_cache_node
1294 * structures first. Without this, further allocations will bug.
1295 */
1296 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1297 kmalloc_info[INDEX_NODE].name,
1298 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1299 slab_state = PARTIAL_NODE;
1300 setup_kmalloc_cache_index_table();
1301
1302 slab_early_init = 0;
1303
1304 /* 5) Replace the bootstrap kmem_cache_node */
1305 {
1306 int nid;
1307
1308 for_each_online_node(nid) {
1309 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1310
1311 init_list(kmalloc_caches[INDEX_NODE],
1312 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1313 }
1314 }
1315
1316 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1317 }
1318
1319 void __init kmem_cache_init_late(void)
1320 {
1321 struct kmem_cache *cachep;
1322
1323 slab_state = UP;
1324
1325 /* 6) resize the head arrays to their final sizes */
1326 mutex_lock(&slab_mutex);
1327 list_for_each_entry(cachep, &slab_caches, list)
1328 if (enable_cpucache(cachep, GFP_NOWAIT))
1329 BUG();
1330 mutex_unlock(&slab_mutex);
1331
1332 /* Done! */
1333 slab_state = FULL;
1334
1335 #ifdef CONFIG_NUMA
1336 /*
1337 * Register a memory hotplug callback that initializes and frees
1338 * node.
1339 */
1340 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1341 #endif
1342
1343 /*
1344 * The reap timers are started later, with a module init call: That part
1345 * of the kernel is not yet operational.
1346 */
1347 }
1348
1349 static int __init cpucache_init(void)
1350 {
1351 int ret;
1352
1353 /*
1354 * Register the timers that return unneeded pages to the page allocator
1355 */
1356 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1357 slab_online_cpu, slab_offline_cpu);
1358 WARN_ON(ret < 0);
1359
1360 /* Done! */
1361 slab_state = FULL;
1362 return 0;
1363 }
1364 __initcall(cpucache_init);
1365
1366 static noinline void
1367 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1368 {
1369 #if DEBUG
1370 struct kmem_cache_node *n;
1371 unsigned long flags;
1372 int node;
1373 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1374 DEFAULT_RATELIMIT_BURST);
1375
1376 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1377 return;
1378
1379 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1380 nodeid, gfpflags, &gfpflags);
1381 pr_warn(" cache: %s, object size: %d, order: %d\n",
1382 cachep->name, cachep->size, cachep->gfporder);
1383
1384 for_each_kmem_cache_node(cachep, node, n) {
1385 unsigned long total_slabs, free_slabs, free_objs;
1386
1387 spin_lock_irqsave(&n->list_lock, flags);
1388 total_slabs = n->total_slabs;
1389 free_slabs = n->free_slabs;
1390 free_objs = n->free_objects;
1391 spin_unlock_irqrestore(&n->list_lock, flags);
1392
1393 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1394 node, total_slabs - free_slabs, total_slabs,
1395 (total_slabs * cachep->num) - free_objs,
1396 total_slabs * cachep->num);
1397 }
1398 #endif
1399 }
1400
1401 /*
1402 * Interface to system's page allocator. No need to hold the
1403 * kmem_cache_node ->list_lock.
1404 *
1405 * If we requested dmaable memory, we will get it. Even if we
1406 * did not request dmaable memory, we might get it, but that
1407 * would be relatively rare and ignorable.
1408 */
1409 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1410 int nodeid)
1411 {
1412 struct page *page;
1413 int nr_pages;
1414
1415 flags |= cachep->allocflags;
1416
1417 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1418 if (!page) {
1419 slab_out_of_memory(cachep, flags, nodeid);
1420 return NULL;
1421 }
1422
1423 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1424 __free_pages(page, cachep->gfporder);
1425 return NULL;
1426 }
1427
1428 nr_pages = (1 << cachep->gfporder);
1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1430 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1431 else
1432 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1433
1434 __SetPageSlab(page);
1435 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1436 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1437 SetPageSlabPfmemalloc(page);
1438
1439 return page;
1440 }
1441
1442 /*
1443 * Interface to system's page release.
1444 */
1445 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1446 {
1447 int order = cachep->gfporder;
1448 unsigned long nr_freed = (1 << order);
1449
1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1452 else
1453 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1454
1455 BUG_ON(!PageSlab(page));
1456 __ClearPageSlabPfmemalloc(page);
1457 __ClearPageSlab(page);
1458 page_mapcount_reset(page);
1459 page->mapping = NULL;
1460
1461 if (current->reclaim_state)
1462 current->reclaim_state->reclaimed_slab += nr_freed;
1463 memcg_uncharge_slab(page, order, cachep);
1464 __free_pages(page, order);
1465 }
1466
1467 static void kmem_rcu_free(struct rcu_head *head)
1468 {
1469 struct kmem_cache *cachep;
1470 struct page *page;
1471
1472 page = container_of(head, struct page, rcu_head);
1473 cachep = page->slab_cache;
1474
1475 kmem_freepages(cachep, page);
1476 }
1477
1478 #if DEBUG
1479 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1480 {
1481 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1482 (cachep->size % PAGE_SIZE) == 0)
1483 return true;
1484
1485 return false;
1486 }
1487
1488 #ifdef CONFIG_DEBUG_PAGEALLOC
1489 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1490 unsigned long caller)
1491 {
1492 int size = cachep->object_size;
1493
1494 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1495
1496 if (size < 5 * sizeof(unsigned long))
1497 return;
1498
1499 *addr++ = 0x12345678;
1500 *addr++ = caller;
1501 *addr++ = smp_processor_id();
1502 size -= 3 * sizeof(unsigned long);
1503 {
1504 unsigned long *sptr = &caller;
1505 unsigned long svalue;
1506
1507 while (!kstack_end(sptr)) {
1508 svalue = *sptr++;
1509 if (kernel_text_address(svalue)) {
1510 *addr++ = svalue;
1511 size -= sizeof(unsigned long);
1512 if (size <= sizeof(unsigned long))
1513 break;
1514 }
1515 }
1516
1517 }
1518 *addr++ = 0x87654321;
1519 }
1520
1521 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1522 int map, unsigned long caller)
1523 {
1524 if (!is_debug_pagealloc_cache(cachep))
1525 return;
1526
1527 if (caller)
1528 store_stackinfo(cachep, objp, caller);
1529
1530 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1531 }
1532
1533 #else
1534 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 int map, unsigned long caller) {}
1536
1537 #endif
1538
1539 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1540 {
1541 int size = cachep->object_size;
1542 addr = &((char *)addr)[obj_offset(cachep)];
1543
1544 memset(addr, val, size);
1545 *(unsigned char *)(addr + size - 1) = POISON_END;
1546 }
1547
1548 static void dump_line(char *data, int offset, int limit)
1549 {
1550 int i;
1551 unsigned char error = 0;
1552 int bad_count = 0;
1553
1554 pr_err("%03x: ", offset);
1555 for (i = 0; i < limit; i++) {
1556 if (data[offset + i] != POISON_FREE) {
1557 error = data[offset + i];
1558 bad_count++;
1559 }
1560 }
1561 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1562 &data[offset], limit, 1);
1563
1564 if (bad_count == 1) {
1565 error ^= POISON_FREE;
1566 if (!(error & (error - 1))) {
1567 pr_err("Single bit error detected. Probably bad RAM.\n");
1568 #ifdef CONFIG_X86
1569 pr_err("Run memtest86+ or a similar memory test tool.\n");
1570 #else
1571 pr_err("Run a memory test tool.\n");
1572 #endif
1573 }
1574 }
1575 }
1576 #endif
1577
1578 #if DEBUG
1579
1580 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1581 {
1582 int i, size;
1583 char *realobj;
1584
1585 if (cachep->flags & SLAB_RED_ZONE) {
1586 pr_err("Redzone: 0x%llx/0x%llx\n",
1587 *dbg_redzone1(cachep, objp),
1588 *dbg_redzone2(cachep, objp));
1589 }
1590
1591 if (cachep->flags & SLAB_STORE_USER)
1592 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1593 realobj = (char *)objp + obj_offset(cachep);
1594 size = cachep->object_size;
1595 for (i = 0; i < size && lines; i += 16, lines--) {
1596 int limit;
1597 limit = 16;
1598 if (i + limit > size)
1599 limit = size - i;
1600 dump_line(realobj, i, limit);
1601 }
1602 }
1603
1604 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1605 {
1606 char *realobj;
1607 int size, i;
1608 int lines = 0;
1609
1610 if (is_debug_pagealloc_cache(cachep))
1611 return;
1612
1613 realobj = (char *)objp + obj_offset(cachep);
1614 size = cachep->object_size;
1615
1616 for (i = 0; i < size; i++) {
1617 char exp = POISON_FREE;
1618 if (i == size - 1)
1619 exp = POISON_END;
1620 if (realobj[i] != exp) {
1621 int limit;
1622 /* Mismatch ! */
1623 /* Print header */
1624 if (lines == 0) {
1625 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1626 print_tainted(), cachep->name,
1627 realobj, size);
1628 print_objinfo(cachep, objp, 0);
1629 }
1630 /* Hexdump the affected line */
1631 i = (i / 16) * 16;
1632 limit = 16;
1633 if (i + limit > size)
1634 limit = size - i;
1635 dump_line(realobj, i, limit);
1636 i += 16;
1637 lines++;
1638 /* Limit to 5 lines */
1639 if (lines > 5)
1640 break;
1641 }
1642 }
1643 if (lines != 0) {
1644 /* Print some data about the neighboring objects, if they
1645 * exist:
1646 */
1647 struct page *page = virt_to_head_page(objp);
1648 unsigned int objnr;
1649
1650 objnr = obj_to_index(cachep, page, objp);
1651 if (objnr) {
1652 objp = index_to_obj(cachep, page, objnr - 1);
1653 realobj = (char *)objp + obj_offset(cachep);
1654 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1655 print_objinfo(cachep, objp, 2);
1656 }
1657 if (objnr + 1 < cachep->num) {
1658 objp = index_to_obj(cachep, page, objnr + 1);
1659 realobj = (char *)objp + obj_offset(cachep);
1660 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1661 print_objinfo(cachep, objp, 2);
1662 }
1663 }
1664 }
1665 #endif
1666
1667 #if DEBUG
1668 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1669 struct page *page)
1670 {
1671 int i;
1672
1673 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1674 poison_obj(cachep, page->freelist - obj_offset(cachep),
1675 POISON_FREE);
1676 }
1677
1678 for (i = 0; i < cachep->num; i++) {
1679 void *objp = index_to_obj(cachep, page, i);
1680
1681 if (cachep->flags & SLAB_POISON) {
1682 check_poison_obj(cachep, objp);
1683 slab_kernel_map(cachep, objp, 1, 0);
1684 }
1685 if (cachep->flags & SLAB_RED_ZONE) {
1686 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1687 slab_error(cachep, "start of a freed object was overwritten");
1688 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1689 slab_error(cachep, "end of a freed object was overwritten");
1690 }
1691 }
1692 }
1693 #else
1694 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1695 struct page *page)
1696 {
1697 }
1698 #endif
1699
1700 /**
1701 * slab_destroy - destroy and release all objects in a slab
1702 * @cachep: cache pointer being destroyed
1703 * @page: page pointer being destroyed
1704 *
1705 * Destroy all the objs in a slab page, and release the mem back to the system.
1706 * Before calling the slab page must have been unlinked from the cache. The
1707 * kmem_cache_node ->list_lock is not held/needed.
1708 */
1709 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1710 {
1711 void *freelist;
1712
1713 freelist = page->freelist;
1714 slab_destroy_debugcheck(cachep, page);
1715 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1716 call_rcu(&page->rcu_head, kmem_rcu_free);
1717 else
1718 kmem_freepages(cachep, page);
1719
1720 /*
1721 * From now on, we don't use freelist
1722 * although actual page can be freed in rcu context
1723 */
1724 if (OFF_SLAB(cachep))
1725 kmem_cache_free(cachep->freelist_cache, freelist);
1726 }
1727
1728 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1729 {
1730 struct page *page, *n;
1731
1732 list_for_each_entry_safe(page, n, list, lru) {
1733 list_del(&page->lru);
1734 slab_destroy(cachep, page);
1735 }
1736 }
1737
1738 /**
1739 * calculate_slab_order - calculate size (page order) of slabs
1740 * @cachep: pointer to the cache that is being created
1741 * @size: size of objects to be created in this cache.
1742 * @flags: slab allocation flags
1743 *
1744 * Also calculates the number of objects per slab.
1745 *
1746 * This could be made much more intelligent. For now, try to avoid using
1747 * high order pages for slabs. When the gfp() functions are more friendly
1748 * towards high-order requests, this should be changed.
1749 */
1750 static size_t calculate_slab_order(struct kmem_cache *cachep,
1751 size_t size, slab_flags_t flags)
1752 {
1753 size_t left_over = 0;
1754 int gfporder;
1755
1756 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1757 unsigned int num;
1758 size_t remainder;
1759
1760 num = cache_estimate(gfporder, size, flags, &remainder);
1761 if (!num)
1762 continue;
1763
1764 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1765 if (num > SLAB_OBJ_MAX_NUM)
1766 break;
1767
1768 if (flags & CFLGS_OFF_SLAB) {
1769 struct kmem_cache *freelist_cache;
1770 size_t freelist_size;
1771
1772 freelist_size = num * sizeof(freelist_idx_t);
1773 freelist_cache = kmalloc_slab(freelist_size, 0u);
1774 if (!freelist_cache)
1775 continue;
1776
1777 /*
1778 * Needed to avoid possible looping condition
1779 * in cache_grow_begin()
1780 */
1781 if (OFF_SLAB(freelist_cache))
1782 continue;
1783
1784 /* check if off slab has enough benefit */
1785 if (freelist_cache->size > cachep->size / 2)
1786 continue;
1787 }
1788
1789 /* Found something acceptable - save it away */
1790 cachep->num = num;
1791 cachep->gfporder = gfporder;
1792 left_over = remainder;
1793
1794 /*
1795 * A VFS-reclaimable slab tends to have most allocations
1796 * as GFP_NOFS and we really don't want to have to be allocating
1797 * higher-order pages when we are unable to shrink dcache.
1798 */
1799 if (flags & SLAB_RECLAIM_ACCOUNT)
1800 break;
1801
1802 /*
1803 * Large number of objects is good, but very large slabs are
1804 * currently bad for the gfp()s.
1805 */
1806 if (gfporder >= slab_max_order)
1807 break;
1808
1809 /*
1810 * Acceptable internal fragmentation?
1811 */
1812 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1813 break;
1814 }
1815 return left_over;
1816 }
1817
1818 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1819 struct kmem_cache *cachep, int entries, int batchcount)
1820 {
1821 int cpu;
1822 size_t size;
1823 struct array_cache __percpu *cpu_cache;
1824
1825 size = sizeof(void *) * entries + sizeof(struct array_cache);
1826 cpu_cache = __alloc_percpu(size, sizeof(void *));
1827
1828 if (!cpu_cache)
1829 return NULL;
1830
1831 for_each_possible_cpu(cpu) {
1832 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1833 entries, batchcount);
1834 }
1835
1836 return cpu_cache;
1837 }
1838
1839 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1840 {
1841 if (slab_state >= FULL)
1842 return enable_cpucache(cachep, gfp);
1843
1844 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1845 if (!cachep->cpu_cache)
1846 return 1;
1847
1848 if (slab_state == DOWN) {
1849 /* Creation of first cache (kmem_cache). */
1850 set_up_node(kmem_cache, CACHE_CACHE);
1851 } else if (slab_state == PARTIAL) {
1852 /* For kmem_cache_node */
1853 set_up_node(cachep, SIZE_NODE);
1854 } else {
1855 int node;
1856
1857 for_each_online_node(node) {
1858 cachep->node[node] = kmalloc_node(
1859 sizeof(struct kmem_cache_node), gfp, node);
1860 BUG_ON(!cachep->node[node]);
1861 kmem_cache_node_init(cachep->node[node]);
1862 }
1863 }
1864
1865 cachep->node[numa_mem_id()]->next_reap =
1866 jiffies + REAPTIMEOUT_NODE +
1867 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1868
1869 cpu_cache_get(cachep)->avail = 0;
1870 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1871 cpu_cache_get(cachep)->batchcount = 1;
1872 cpu_cache_get(cachep)->touched = 0;
1873 cachep->batchcount = 1;
1874 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1875 return 0;
1876 }
1877
1878 slab_flags_t kmem_cache_flags(unsigned long object_size,
1879 slab_flags_t flags, const char *name,
1880 void (*ctor)(void *))
1881 {
1882 return flags;
1883 }
1884
1885 struct kmem_cache *
1886 __kmem_cache_alias(const char *name, size_t size, size_t align,
1887 slab_flags_t flags, void (*ctor)(void *))
1888 {
1889 struct kmem_cache *cachep;
1890
1891 cachep = find_mergeable(size, align, flags, name, ctor);
1892 if (cachep) {
1893 cachep->refcount++;
1894
1895 /*
1896 * Adjust the object sizes so that we clear
1897 * the complete object on kzalloc.
1898 */
1899 cachep->object_size = max_t(int, cachep->object_size, size);
1900 }
1901 return cachep;
1902 }
1903
1904 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1905 size_t size, slab_flags_t flags)
1906 {
1907 size_t left;
1908
1909 cachep->num = 0;
1910
1911 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1912 return false;
1913
1914 left = calculate_slab_order(cachep, size,
1915 flags | CFLGS_OBJFREELIST_SLAB);
1916 if (!cachep->num)
1917 return false;
1918
1919 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1920 return false;
1921
1922 cachep->colour = left / cachep->colour_off;
1923
1924 return true;
1925 }
1926
1927 static bool set_off_slab_cache(struct kmem_cache *cachep,
1928 size_t size, slab_flags_t flags)
1929 {
1930 size_t left;
1931
1932 cachep->num = 0;
1933
1934 /*
1935 * Always use on-slab management when SLAB_NOLEAKTRACE
1936 * to avoid recursive calls into kmemleak.
1937 */
1938 if (flags & SLAB_NOLEAKTRACE)
1939 return false;
1940
1941 /*
1942 * Size is large, assume best to place the slab management obj
1943 * off-slab (should allow better packing of objs).
1944 */
1945 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1946 if (!cachep->num)
1947 return false;
1948
1949 /*
1950 * If the slab has been placed off-slab, and we have enough space then
1951 * move it on-slab. This is at the expense of any extra colouring.
1952 */
1953 if (left >= cachep->num * sizeof(freelist_idx_t))
1954 return false;
1955
1956 cachep->colour = left / cachep->colour_off;
1957
1958 return true;
1959 }
1960
1961 static bool set_on_slab_cache(struct kmem_cache *cachep,
1962 size_t size, slab_flags_t flags)
1963 {
1964 size_t left;
1965
1966 cachep->num = 0;
1967
1968 left = calculate_slab_order(cachep, size, flags);
1969 if (!cachep->num)
1970 return false;
1971
1972 cachep->colour = left / cachep->colour_off;
1973
1974 return true;
1975 }
1976
1977 /**
1978 * __kmem_cache_create - Create a cache.
1979 * @cachep: cache management descriptor
1980 * @flags: SLAB flags
1981 *
1982 * Returns a ptr to the cache on success, NULL on failure.
1983 * Cannot be called within a int, but can be interrupted.
1984 * The @ctor is run when new pages are allocated by the cache.
1985 *
1986 * The flags are
1987 *
1988 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1989 * to catch references to uninitialised memory.
1990 *
1991 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1992 * for buffer overruns.
1993 *
1994 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1995 * cacheline. This can be beneficial if you're counting cycles as closely
1996 * as davem.
1997 */
1998 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1999 {
2000 size_t ralign = BYTES_PER_WORD;
2001 gfp_t gfp;
2002 int err;
2003 size_t size = cachep->size;
2004
2005 #if DEBUG
2006 #if FORCED_DEBUG
2007 /*
2008 * Enable redzoning and last user accounting, except for caches with
2009 * large objects, if the increased size would increase the object size
2010 * above the next power of two: caches with object sizes just above a
2011 * power of two have a significant amount of internal fragmentation.
2012 */
2013 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2014 2 * sizeof(unsigned long long)))
2015 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2016 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2017 flags |= SLAB_POISON;
2018 #endif
2019 #endif
2020
2021 /*
2022 * Check that size is in terms of words. This is needed to avoid
2023 * unaligned accesses for some archs when redzoning is used, and makes
2024 * sure any on-slab bufctl's are also correctly aligned.
2025 */
2026 size = ALIGN(size, BYTES_PER_WORD);
2027
2028 if (flags & SLAB_RED_ZONE) {
2029 ralign = REDZONE_ALIGN;
2030 /* If redzoning, ensure that the second redzone is suitably
2031 * aligned, by adjusting the object size accordingly. */
2032 size = ALIGN(size, REDZONE_ALIGN);
2033 }
2034
2035 /* 3) caller mandated alignment */
2036 if (ralign < cachep->align) {
2037 ralign = cachep->align;
2038 }
2039 /* disable debug if necessary */
2040 if (ralign > __alignof__(unsigned long long))
2041 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2042 /*
2043 * 4) Store it.
2044 */
2045 cachep->align = ralign;
2046 cachep->colour_off = cache_line_size();
2047 /* Offset must be a multiple of the alignment. */
2048 if (cachep->colour_off < cachep->align)
2049 cachep->colour_off = cachep->align;
2050
2051 if (slab_is_available())
2052 gfp = GFP_KERNEL;
2053 else
2054 gfp = GFP_NOWAIT;
2055
2056 #if DEBUG
2057
2058 /*
2059 * Both debugging options require word-alignment which is calculated
2060 * into align above.
2061 */
2062 if (flags & SLAB_RED_ZONE) {
2063 /* add space for red zone words */
2064 cachep->obj_offset += sizeof(unsigned long long);
2065 size += 2 * sizeof(unsigned long long);
2066 }
2067 if (flags & SLAB_STORE_USER) {
2068 /* user store requires one word storage behind the end of
2069 * the real object. But if the second red zone needs to be
2070 * aligned to 64 bits, we must allow that much space.
2071 */
2072 if (flags & SLAB_RED_ZONE)
2073 size += REDZONE_ALIGN;
2074 else
2075 size += BYTES_PER_WORD;
2076 }
2077 #endif
2078
2079 kasan_cache_create(cachep, &size, &flags);
2080
2081 size = ALIGN(size, cachep->align);
2082 /*
2083 * We should restrict the number of objects in a slab to implement
2084 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2085 */
2086 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2087 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2088
2089 #if DEBUG
2090 /*
2091 * To activate debug pagealloc, off-slab management is necessary
2092 * requirement. In early phase of initialization, small sized slab
2093 * doesn't get initialized so it would not be possible. So, we need
2094 * to check size >= 256. It guarantees that all necessary small
2095 * sized slab is initialized in current slab initialization sequence.
2096 */
2097 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2098 size >= 256 && cachep->object_size > cache_line_size()) {
2099 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2100 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2101
2102 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2103 flags |= CFLGS_OFF_SLAB;
2104 cachep->obj_offset += tmp_size - size;
2105 size = tmp_size;
2106 goto done;
2107 }
2108 }
2109 }
2110 #endif
2111
2112 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2113 flags |= CFLGS_OBJFREELIST_SLAB;
2114 goto done;
2115 }
2116
2117 if (set_off_slab_cache(cachep, size, flags)) {
2118 flags |= CFLGS_OFF_SLAB;
2119 goto done;
2120 }
2121
2122 if (set_on_slab_cache(cachep, size, flags))
2123 goto done;
2124
2125 return -E2BIG;
2126
2127 done:
2128 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2129 cachep->flags = flags;
2130 cachep->allocflags = __GFP_COMP;
2131 if (flags & SLAB_CACHE_DMA)
2132 cachep->allocflags |= GFP_DMA;
2133 if (flags & SLAB_CACHE_DMA32)
2134 cachep->allocflags |= GFP_DMA32;
2135 if (flags & SLAB_RECLAIM_ACCOUNT)
2136 cachep->allocflags |= __GFP_RECLAIMABLE;
2137 cachep->size = size;
2138 cachep->reciprocal_buffer_size = reciprocal_value(size);
2139
2140 #if DEBUG
2141 /*
2142 * If we're going to use the generic kernel_map_pages()
2143 * poisoning, then it's going to smash the contents of
2144 * the redzone and userword anyhow, so switch them off.
2145 */
2146 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2147 (cachep->flags & SLAB_POISON) &&
2148 is_debug_pagealloc_cache(cachep))
2149 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2150 #endif
2151
2152 if (OFF_SLAB(cachep)) {
2153 cachep->freelist_cache =
2154 kmalloc_slab(cachep->freelist_size, 0u);
2155 }
2156
2157 err = setup_cpu_cache(cachep, gfp);
2158 if (err) {
2159 __kmem_cache_release(cachep);
2160 return err;
2161 }
2162
2163 return 0;
2164 }
2165
2166 #if DEBUG
2167 static void check_irq_off(void)
2168 {
2169 BUG_ON(!irqs_disabled());
2170 }
2171
2172 static void check_irq_on(void)
2173 {
2174 BUG_ON(irqs_disabled());
2175 }
2176
2177 static void check_mutex_acquired(void)
2178 {
2179 BUG_ON(!mutex_is_locked(&slab_mutex));
2180 }
2181
2182 static void check_spinlock_acquired(struct kmem_cache *cachep)
2183 {
2184 #ifdef CONFIG_SMP
2185 check_irq_off();
2186 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2187 #endif
2188 }
2189
2190 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2191 {
2192 #ifdef CONFIG_SMP
2193 check_irq_off();
2194 assert_spin_locked(&get_node(cachep, node)->list_lock);
2195 #endif
2196 }
2197
2198 #else
2199 #define check_irq_off() do { } while(0)
2200 #define check_irq_on() do { } while(0)
2201 #define check_mutex_acquired() do { } while(0)
2202 #define check_spinlock_acquired(x) do { } while(0)
2203 #define check_spinlock_acquired_node(x, y) do { } while(0)
2204 #endif
2205
2206 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2207 int node, bool free_all, struct list_head *list)
2208 {
2209 int tofree;
2210
2211 if (!ac || !ac->avail)
2212 return;
2213
2214 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2215 if (tofree > ac->avail)
2216 tofree = (ac->avail + 1) / 2;
2217
2218 free_block(cachep, ac->entry, tofree, node, list);
2219 ac->avail -= tofree;
2220 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2221 }
2222
2223 static void do_drain(void *arg)
2224 {
2225 struct kmem_cache *cachep = arg;
2226 struct array_cache *ac;
2227 int node = numa_mem_id();
2228 struct kmem_cache_node *n;
2229 LIST_HEAD(list);
2230
2231 check_irq_off();
2232 ac = cpu_cache_get(cachep);
2233 n = get_node(cachep, node);
2234 spin_lock(&n->list_lock);
2235 free_block(cachep, ac->entry, ac->avail, node, &list);
2236 spin_unlock(&n->list_lock);
2237 slabs_destroy(cachep, &list);
2238 ac->avail = 0;
2239 }
2240
2241 static void drain_cpu_caches(struct kmem_cache *cachep)
2242 {
2243 struct kmem_cache_node *n;
2244 int node;
2245 LIST_HEAD(list);
2246
2247 on_each_cpu(do_drain, cachep, 1);
2248 check_irq_on();
2249 for_each_kmem_cache_node(cachep, node, n)
2250 if (n->alien)
2251 drain_alien_cache(cachep, n->alien);
2252
2253 for_each_kmem_cache_node(cachep, node, n) {
2254 spin_lock_irq(&n->list_lock);
2255 drain_array_locked(cachep, n->shared, node, true, &list);
2256 spin_unlock_irq(&n->list_lock);
2257
2258 slabs_destroy(cachep, &list);
2259 }
2260 }
2261
2262 /*
2263 * Remove slabs from the list of free slabs.
2264 * Specify the number of slabs to drain in tofree.
2265 *
2266 * Returns the actual number of slabs released.
2267 */
2268 static int drain_freelist(struct kmem_cache *cache,
2269 struct kmem_cache_node *n, int tofree)
2270 {
2271 struct list_head *p;
2272 int nr_freed;
2273 struct page *page;
2274
2275 nr_freed = 0;
2276 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2277
2278 spin_lock_irq(&n->list_lock);
2279 p = n->slabs_free.prev;
2280 if (p == &n->slabs_free) {
2281 spin_unlock_irq(&n->list_lock);
2282 goto out;
2283 }
2284
2285 page = list_entry(p, struct page, lru);
2286 list_del(&page->lru);
2287 n->free_slabs--;
2288 n->total_slabs--;
2289 /*
2290 * Safe to drop the lock. The slab is no longer linked
2291 * to the cache.
2292 */
2293 n->free_objects -= cache->num;
2294 spin_unlock_irq(&n->list_lock);
2295 slab_destroy(cache, page);
2296 nr_freed++;
2297 }
2298 out:
2299 return nr_freed;
2300 }
2301
2302 int __kmem_cache_shrink(struct kmem_cache *cachep)
2303 {
2304 int ret = 0;
2305 int node;
2306 struct kmem_cache_node *n;
2307
2308 drain_cpu_caches(cachep);
2309
2310 check_irq_on();
2311 for_each_kmem_cache_node(cachep, node, n) {
2312 drain_freelist(cachep, n, INT_MAX);
2313
2314 ret += !list_empty(&n->slabs_full) ||
2315 !list_empty(&n->slabs_partial);
2316 }
2317 return (ret ? 1 : 0);
2318 }
2319
2320 #ifdef CONFIG_MEMCG
2321 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2322 {
2323 __kmem_cache_shrink(cachep);
2324 }
2325 #endif
2326
2327 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2328 {
2329 return __kmem_cache_shrink(cachep);
2330 }
2331
2332 void __kmem_cache_release(struct kmem_cache *cachep)
2333 {
2334 int i;
2335 struct kmem_cache_node *n;
2336
2337 cache_random_seq_destroy(cachep);
2338
2339 free_percpu(cachep->cpu_cache);
2340
2341 /* NUMA: free the node structures */
2342 for_each_kmem_cache_node(cachep, i, n) {
2343 kfree(n->shared);
2344 free_alien_cache(n->alien);
2345 kfree(n);
2346 cachep->node[i] = NULL;
2347 }
2348 }
2349
2350 /*
2351 * Get the memory for a slab management obj.
2352 *
2353 * For a slab cache when the slab descriptor is off-slab, the
2354 * slab descriptor can't come from the same cache which is being created,
2355 * Because if it is the case, that means we defer the creation of
2356 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2357 * And we eventually call down to __kmem_cache_create(), which
2358 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2359 * This is a "chicken-and-egg" problem.
2360 *
2361 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2362 * which are all initialized during kmem_cache_init().
2363 */
2364 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2365 struct page *page, int colour_off,
2366 gfp_t local_flags, int nodeid)
2367 {
2368 void *freelist;
2369 void *addr = page_address(page);
2370
2371 page->s_mem = addr + colour_off;
2372 page->active = 0;
2373
2374 if (OBJFREELIST_SLAB(cachep))
2375 freelist = NULL;
2376 else if (OFF_SLAB(cachep)) {
2377 /* Slab management obj is off-slab. */
2378 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2379 local_flags, nodeid);
2380 if (!freelist)
2381 return NULL;
2382 } else {
2383 /* We will use last bytes at the slab for freelist */
2384 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2385 cachep->freelist_size;
2386 }
2387
2388 return freelist;
2389 }
2390
2391 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2392 {
2393 return ((freelist_idx_t *)page->freelist)[idx];
2394 }
2395
2396 static inline void set_free_obj(struct page *page,
2397 unsigned int idx, freelist_idx_t val)
2398 {
2399 ((freelist_idx_t *)(page->freelist))[idx] = val;
2400 }
2401
2402 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2403 {
2404 #if DEBUG
2405 int i;
2406
2407 for (i = 0; i < cachep->num; i++) {
2408 void *objp = index_to_obj(cachep, page, i);
2409
2410 if (cachep->flags & SLAB_STORE_USER)
2411 *dbg_userword(cachep, objp) = NULL;
2412
2413 if (cachep->flags & SLAB_RED_ZONE) {
2414 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2415 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2416 }
2417 /*
2418 * Constructors are not allowed to allocate memory from the same
2419 * cache which they are a constructor for. Otherwise, deadlock.
2420 * They must also be threaded.
2421 */
2422 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2423 kasan_unpoison_object_data(cachep,
2424 objp + obj_offset(cachep));
2425 cachep->ctor(objp + obj_offset(cachep));
2426 kasan_poison_object_data(
2427 cachep, objp + obj_offset(cachep));
2428 }
2429
2430 if (cachep->flags & SLAB_RED_ZONE) {
2431 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2432 slab_error(cachep, "constructor overwrote the end of an object");
2433 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2434 slab_error(cachep, "constructor overwrote the start of an object");
2435 }
2436 /* need to poison the objs? */
2437 if (cachep->flags & SLAB_POISON) {
2438 poison_obj(cachep, objp, POISON_FREE);
2439 slab_kernel_map(cachep, objp, 0, 0);
2440 }
2441 }
2442 #endif
2443 }
2444
2445 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2446 /* Hold information during a freelist initialization */
2447 union freelist_init_state {
2448 struct {
2449 unsigned int pos;
2450 unsigned int *list;
2451 unsigned int count;
2452 };
2453 struct rnd_state rnd_state;
2454 };
2455
2456 /*
2457 * Initialize the state based on the randomization methode available.
2458 * return true if the pre-computed list is available, false otherwize.
2459 */
2460 static bool freelist_state_initialize(union freelist_init_state *state,
2461 struct kmem_cache *cachep,
2462 unsigned int count)
2463 {
2464 bool ret;
2465 unsigned int rand;
2466
2467 /* Use best entropy available to define a random shift */
2468 rand = get_random_int();
2469
2470 /* Use a random state if the pre-computed list is not available */
2471 if (!cachep->random_seq) {
2472 prandom_seed_state(&state->rnd_state, rand);
2473 ret = false;
2474 } else {
2475 state->list = cachep->random_seq;
2476 state->count = count;
2477 state->pos = rand % count;
2478 ret = true;
2479 }
2480 return ret;
2481 }
2482
2483 /* Get the next entry on the list and randomize it using a random shift */
2484 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2485 {
2486 if (state->pos >= state->count)
2487 state->pos = 0;
2488 return state->list[state->pos++];
2489 }
2490
2491 /* Swap two freelist entries */
2492 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2493 {
2494 swap(((freelist_idx_t *)page->freelist)[a],
2495 ((freelist_idx_t *)page->freelist)[b]);
2496 }
2497
2498 /*
2499 * Shuffle the freelist initialization state based on pre-computed lists.
2500 * return true if the list was successfully shuffled, false otherwise.
2501 */
2502 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2503 {
2504 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2505 union freelist_init_state state;
2506 bool precomputed;
2507
2508 if (count < 2)
2509 return false;
2510
2511 precomputed = freelist_state_initialize(&state, cachep, count);
2512
2513 /* Take a random entry as the objfreelist */
2514 if (OBJFREELIST_SLAB(cachep)) {
2515 if (!precomputed)
2516 objfreelist = count - 1;
2517 else
2518 objfreelist = next_random_slot(&state);
2519 page->freelist = index_to_obj(cachep, page, objfreelist) +
2520 obj_offset(cachep);
2521 count--;
2522 }
2523
2524 /*
2525 * On early boot, generate the list dynamically.
2526 * Later use a pre-computed list for speed.
2527 */
2528 if (!precomputed) {
2529 for (i = 0; i < count; i++)
2530 set_free_obj(page, i, i);
2531
2532 /* Fisher-Yates shuffle */
2533 for (i = count - 1; i > 0; i--) {
2534 rand = prandom_u32_state(&state.rnd_state);
2535 rand %= (i + 1);
2536 swap_free_obj(page, i, rand);
2537 }
2538 } else {
2539 for (i = 0; i < count; i++)
2540 set_free_obj(page, i, next_random_slot(&state));
2541 }
2542
2543 if (OBJFREELIST_SLAB(cachep))
2544 set_free_obj(page, cachep->num - 1, objfreelist);
2545
2546 return true;
2547 }
2548 #else
2549 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2550 struct page *page)
2551 {
2552 return false;
2553 }
2554 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2555
2556 static void cache_init_objs(struct kmem_cache *cachep,
2557 struct page *page)
2558 {
2559 int i;
2560 void *objp;
2561 bool shuffled;
2562
2563 cache_init_objs_debug(cachep, page);
2564
2565 /* Try to randomize the freelist if enabled */
2566 shuffled = shuffle_freelist(cachep, page);
2567
2568 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2569 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2570 obj_offset(cachep);
2571 }
2572
2573 for (i = 0; i < cachep->num; i++) {
2574 objp = index_to_obj(cachep, page, i);
2575 kasan_init_slab_obj(cachep, objp);
2576
2577 /* constructor could break poison info */
2578 if (DEBUG == 0 && cachep->ctor) {
2579 kasan_unpoison_object_data(cachep, objp);
2580 cachep->ctor(objp);
2581 kasan_poison_object_data(cachep, objp);
2582 }
2583
2584 if (!shuffled)
2585 set_free_obj(page, i, i);
2586 }
2587 }
2588
2589 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2590 {
2591 void *objp;
2592
2593 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2594 page->active++;
2595
2596 #if DEBUG
2597 if (cachep->flags & SLAB_STORE_USER)
2598 set_store_user_dirty(cachep);
2599 #endif
2600
2601 return objp;
2602 }
2603
2604 static void slab_put_obj(struct kmem_cache *cachep,
2605 struct page *page, void *objp)
2606 {
2607 unsigned int objnr = obj_to_index(cachep, page, objp);
2608 #if DEBUG
2609 unsigned int i;
2610
2611 /* Verify double free bug */
2612 for (i = page->active; i < cachep->num; i++) {
2613 if (get_free_obj(page, i) == objnr) {
2614 pr_err("slab: double free detected in cache '%s', objp %px\n",
2615 cachep->name, objp);
2616 BUG();
2617 }
2618 }
2619 #endif
2620 page->active--;
2621 if (!page->freelist)
2622 page->freelist = objp + obj_offset(cachep);
2623
2624 set_free_obj(page, page->active, objnr);
2625 }
2626
2627 /*
2628 * Map pages beginning at addr to the given cache and slab. This is required
2629 * for the slab allocator to be able to lookup the cache and slab of a
2630 * virtual address for kfree, ksize, and slab debugging.
2631 */
2632 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2633 void *freelist)
2634 {
2635 page->slab_cache = cache;
2636 page->freelist = freelist;
2637 }
2638
2639 /*
2640 * Grow (by 1) the number of slabs within a cache. This is called by
2641 * kmem_cache_alloc() when there are no active objs left in a cache.
2642 */
2643 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2644 gfp_t flags, int nodeid)
2645 {
2646 void *freelist;
2647 size_t offset;
2648 gfp_t local_flags;
2649 int page_node;
2650 struct kmem_cache_node *n;
2651 struct page *page;
2652
2653 /*
2654 * Be lazy and only check for valid flags here, keeping it out of the
2655 * critical path in kmem_cache_alloc().
2656 */
2657 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2658 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2659 flags &= ~GFP_SLAB_BUG_MASK;
2660 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2661 invalid_mask, &invalid_mask, flags, &flags);
2662 dump_stack();
2663 }
2664 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2665
2666 check_irq_off();
2667 if (gfpflags_allow_blocking(local_flags))
2668 local_irq_enable();
2669
2670 /*
2671 * Get mem for the objs. Attempt to allocate a physical page from
2672 * 'nodeid'.
2673 */
2674 page = kmem_getpages(cachep, local_flags, nodeid);
2675 if (!page)
2676 goto failed;
2677
2678 page_node = page_to_nid(page);
2679 n = get_node(cachep, page_node);
2680
2681 /* Get colour for the slab, and cal the next value. */
2682 n->colour_next++;
2683 if (n->colour_next >= cachep->colour)
2684 n->colour_next = 0;
2685
2686 offset = n->colour_next;
2687 if (offset >= cachep->colour)
2688 offset = 0;
2689
2690 offset *= cachep->colour_off;
2691
2692 /* Get slab management. */
2693 freelist = alloc_slabmgmt(cachep, page, offset,
2694 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2695 if (OFF_SLAB(cachep) && !freelist)
2696 goto opps1;
2697
2698 slab_map_pages(cachep, page, freelist);
2699
2700 kasan_poison_slab(page);
2701 cache_init_objs(cachep, page);
2702
2703 if (gfpflags_allow_blocking(local_flags))
2704 local_irq_disable();
2705
2706 return page;
2707
2708 opps1:
2709 kmem_freepages(cachep, page);
2710 failed:
2711 if (gfpflags_allow_blocking(local_flags))
2712 local_irq_disable();
2713 return NULL;
2714 }
2715
2716 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2717 {
2718 struct kmem_cache_node *n;
2719 void *list = NULL;
2720
2721 check_irq_off();
2722
2723 if (!page)
2724 return;
2725
2726 INIT_LIST_HEAD(&page->lru);
2727 n = get_node(cachep, page_to_nid(page));
2728
2729 spin_lock(&n->list_lock);
2730 n->total_slabs++;
2731 if (!page->active) {
2732 list_add_tail(&page->lru, &(n->slabs_free));
2733 n->free_slabs++;
2734 } else
2735 fixup_slab_list(cachep, n, page, &list);
2736
2737 STATS_INC_GROWN(cachep);
2738 n->free_objects += cachep->num - page->active;
2739 spin_unlock(&n->list_lock);
2740
2741 fixup_objfreelist_debug(cachep, &list);
2742 }
2743
2744 #if DEBUG
2745
2746 /*
2747 * Perform extra freeing checks:
2748 * - detect bad pointers.
2749 * - POISON/RED_ZONE checking
2750 */
2751 static void kfree_debugcheck(const void *objp)
2752 {
2753 if (!virt_addr_valid(objp)) {
2754 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2755 (unsigned long)objp);
2756 BUG();
2757 }
2758 }
2759
2760 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2761 {
2762 unsigned long long redzone1, redzone2;
2763
2764 redzone1 = *dbg_redzone1(cache, obj);
2765 redzone2 = *dbg_redzone2(cache, obj);
2766
2767 /*
2768 * Redzone is ok.
2769 */
2770 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2771 return;
2772
2773 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2774 slab_error(cache, "double free detected");
2775 else
2776 slab_error(cache, "memory outside object was overwritten");
2777
2778 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2779 obj, redzone1, redzone2);
2780 }
2781
2782 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2783 unsigned long caller)
2784 {
2785 unsigned int objnr;
2786 struct page *page;
2787
2788 BUG_ON(virt_to_cache(objp) != cachep);
2789
2790 objp -= obj_offset(cachep);
2791 kfree_debugcheck(objp);
2792 page = virt_to_head_page(objp);
2793
2794 if (cachep->flags & SLAB_RED_ZONE) {
2795 verify_redzone_free(cachep, objp);
2796 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2797 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2798 }
2799 if (cachep->flags & SLAB_STORE_USER) {
2800 set_store_user_dirty(cachep);
2801 *dbg_userword(cachep, objp) = (void *)caller;
2802 }
2803
2804 objnr = obj_to_index(cachep, page, objp);
2805
2806 BUG_ON(objnr >= cachep->num);
2807 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2808
2809 if (cachep->flags & SLAB_POISON) {
2810 poison_obj(cachep, objp, POISON_FREE);
2811 slab_kernel_map(cachep, objp, 0, caller);
2812 }
2813 return objp;
2814 }
2815
2816 #else
2817 #define kfree_debugcheck(x) do { } while(0)
2818 #define cache_free_debugcheck(x,objp,z) (objp)
2819 #endif
2820
2821 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2822 void **list)
2823 {
2824 #if DEBUG
2825 void *next = *list;
2826 void *objp;
2827
2828 while (next) {
2829 objp = next - obj_offset(cachep);
2830 next = *(void **)next;
2831 poison_obj(cachep, objp, POISON_FREE);
2832 }
2833 #endif
2834 }
2835
2836 static inline void fixup_slab_list(struct kmem_cache *cachep,
2837 struct kmem_cache_node *n, struct page *page,
2838 void **list)
2839 {
2840 /* move slabp to correct slabp list: */
2841 list_del(&page->lru);
2842 if (page->active == cachep->num) {
2843 list_add(&page->lru, &n->slabs_full);
2844 if (OBJFREELIST_SLAB(cachep)) {
2845 #if DEBUG
2846 /* Poisoning will be done without holding the lock */
2847 if (cachep->flags & SLAB_POISON) {
2848 void **objp = page->freelist;
2849
2850 *objp = *list;
2851 *list = objp;
2852 }
2853 #endif
2854 page->freelist = NULL;
2855 }
2856 } else
2857 list_add(&page->lru, &n->slabs_partial);
2858 }
2859
2860 /* Try to find non-pfmemalloc slab if needed */
2861 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2862 struct page *page, bool pfmemalloc)
2863 {
2864 if (!page)
2865 return NULL;
2866
2867 if (pfmemalloc)
2868 return page;
2869
2870 if (!PageSlabPfmemalloc(page))
2871 return page;
2872
2873 /* No need to keep pfmemalloc slab if we have enough free objects */
2874 if (n->free_objects > n->free_limit) {
2875 ClearPageSlabPfmemalloc(page);
2876 return page;
2877 }
2878
2879 /* Move pfmemalloc slab to the end of list to speed up next search */
2880 list_del(&page->lru);
2881 if (!page->active) {
2882 list_add_tail(&page->lru, &n->slabs_free);
2883 n->free_slabs++;
2884 } else
2885 list_add_tail(&page->lru, &n->slabs_partial);
2886
2887 list_for_each_entry(page, &n->slabs_partial, lru) {
2888 if (!PageSlabPfmemalloc(page))
2889 return page;
2890 }
2891
2892 n->free_touched = 1;
2893 list_for_each_entry(page, &n->slabs_free, lru) {
2894 if (!PageSlabPfmemalloc(page)) {
2895 n->free_slabs--;
2896 return page;
2897 }
2898 }
2899
2900 return NULL;
2901 }
2902
2903 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2904 {
2905 struct page *page;
2906
2907 assert_spin_locked(&n->list_lock);
2908 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2909 if (!page) {
2910 n->free_touched = 1;
2911 page = list_first_entry_or_null(&n->slabs_free, struct page,
2912 lru);
2913 if (page)
2914 n->free_slabs--;
2915 }
2916
2917 if (sk_memalloc_socks())
2918 page = get_valid_first_slab(n, page, pfmemalloc);
2919
2920 return page;
2921 }
2922
2923 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2924 struct kmem_cache_node *n, gfp_t flags)
2925 {
2926 struct page *page;
2927 void *obj;
2928 void *list = NULL;
2929
2930 if (!gfp_pfmemalloc_allowed(flags))
2931 return NULL;
2932
2933 spin_lock(&n->list_lock);
2934 page = get_first_slab(n, true);
2935 if (!page) {
2936 spin_unlock(&n->list_lock);
2937 return NULL;
2938 }
2939
2940 obj = slab_get_obj(cachep, page);
2941 n->free_objects--;
2942
2943 fixup_slab_list(cachep, n, page, &list);
2944
2945 spin_unlock(&n->list_lock);
2946 fixup_objfreelist_debug(cachep, &list);
2947
2948 return obj;
2949 }
2950
2951 /*
2952 * Slab list should be fixed up by fixup_slab_list() for existing slab
2953 * or cache_grow_end() for new slab
2954 */
2955 static __always_inline int alloc_block(struct kmem_cache *cachep,
2956 struct array_cache *ac, struct page *page, int batchcount)
2957 {
2958 /*
2959 * There must be at least one object available for
2960 * allocation.
2961 */
2962 BUG_ON(page->active >= cachep->num);
2963
2964 while (page->active < cachep->num && batchcount--) {
2965 STATS_INC_ALLOCED(cachep);
2966 STATS_INC_ACTIVE(cachep);
2967 STATS_SET_HIGH(cachep);
2968
2969 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2970 }
2971
2972 return batchcount;
2973 }
2974
2975 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2976 {
2977 int batchcount;
2978 struct kmem_cache_node *n;
2979 struct array_cache *ac, *shared;
2980 int node;
2981 void *list = NULL;
2982 struct page *page;
2983
2984 check_irq_off();
2985 node = numa_mem_id();
2986
2987 ac = cpu_cache_get(cachep);
2988 batchcount = ac->batchcount;
2989 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2990 /*
2991 * If there was little recent activity on this cache, then
2992 * perform only a partial refill. Otherwise we could generate
2993 * refill bouncing.
2994 */
2995 batchcount = BATCHREFILL_LIMIT;
2996 }
2997 n = get_node(cachep, node);
2998
2999 BUG_ON(ac->avail > 0 || !n);
3000 shared = READ_ONCE(n->shared);
3001 if (!n->free_objects && (!shared || !shared->avail))
3002 goto direct_grow;
3003
3004 spin_lock(&n->list_lock);
3005 shared = READ_ONCE(n->shared);
3006
3007 /* See if we can refill from the shared array */
3008 if (shared && transfer_objects(ac, shared, batchcount)) {
3009 shared->touched = 1;
3010 goto alloc_done;
3011 }
3012
3013 while (batchcount > 0) {
3014 /* Get slab alloc is to come from. */
3015 page = get_first_slab(n, false);
3016 if (!page)
3017 goto must_grow;
3018
3019 check_spinlock_acquired(cachep);
3020
3021 batchcount = alloc_block(cachep, ac, page, batchcount);
3022 fixup_slab_list(cachep, n, page, &list);
3023 }
3024
3025 must_grow:
3026 n->free_objects -= ac->avail;
3027 alloc_done:
3028 spin_unlock(&n->list_lock);
3029 fixup_objfreelist_debug(cachep, &list);
3030
3031 direct_grow:
3032 if (unlikely(!ac->avail)) {
3033 /* Check if we can use obj in pfmemalloc slab */
3034 if (sk_memalloc_socks()) {
3035 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3036
3037 if (obj)
3038 return obj;
3039 }
3040
3041 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3042
3043 /*
3044 * cache_grow_begin() can reenable interrupts,
3045 * then ac could change.
3046 */
3047 ac = cpu_cache_get(cachep);
3048 if (!ac->avail && page)
3049 alloc_block(cachep, ac, page, batchcount);
3050 cache_grow_end(cachep, page);
3051
3052 if (!ac->avail)
3053 return NULL;
3054 }
3055 ac->touched = 1;
3056
3057 return ac->entry[--ac->avail];
3058 }
3059
3060 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3061 gfp_t flags)
3062 {
3063 might_sleep_if(gfpflags_allow_blocking(flags));
3064 }
3065
3066 #if DEBUG
3067 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3068 gfp_t flags, void *objp, unsigned long caller)
3069 {
3070 if (!objp)
3071 return objp;
3072 if (cachep->flags & SLAB_POISON) {
3073 check_poison_obj(cachep, objp);
3074 slab_kernel_map(cachep, objp, 1, 0);
3075 poison_obj(cachep, objp, POISON_INUSE);
3076 }
3077 if (cachep->flags & SLAB_STORE_USER)
3078 *dbg_userword(cachep, objp) = (void *)caller;
3079
3080 if (cachep->flags & SLAB_RED_ZONE) {
3081 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3082 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3083 slab_error(cachep, "double free, or memory outside object was overwritten");
3084 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3085 objp, *dbg_redzone1(cachep, objp),
3086 *dbg_redzone2(cachep, objp));
3087 }
3088 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3089 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3090 }
3091
3092 objp += obj_offset(cachep);
3093 if (cachep->ctor && cachep->flags & SLAB_POISON)
3094 cachep->ctor(objp);
3095 if (ARCH_SLAB_MINALIGN &&
3096 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3097 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3098 objp, (int)ARCH_SLAB_MINALIGN);
3099 }
3100 return objp;
3101 }
3102 #else
3103 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3104 #endif
3105
3106 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3107 {
3108 void *objp;
3109 struct array_cache *ac;
3110
3111 check_irq_off();
3112
3113 ac = cpu_cache_get(cachep);
3114 if (likely(ac->avail)) {
3115 ac->touched = 1;
3116 objp = ac->entry[--ac->avail];
3117
3118 STATS_INC_ALLOCHIT(cachep);
3119 goto out;
3120 }
3121
3122 STATS_INC_ALLOCMISS(cachep);
3123 objp = cache_alloc_refill(cachep, flags);
3124 /*
3125 * the 'ac' may be updated by cache_alloc_refill(),
3126 * and kmemleak_erase() requires its correct value.
3127 */
3128 ac = cpu_cache_get(cachep);
3129
3130 out:
3131 /*
3132 * To avoid a false negative, if an object that is in one of the
3133 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3134 * treat the array pointers as a reference to the object.
3135 */
3136 if (objp)
3137 kmemleak_erase(&ac->entry[ac->avail]);
3138 return objp;
3139 }
3140
3141 #ifdef CONFIG_NUMA
3142 /*
3143 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3144 *
3145 * If we are in_interrupt, then process context, including cpusets and
3146 * mempolicy, may not apply and should not be used for allocation policy.
3147 */
3148 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3149 {
3150 int nid_alloc, nid_here;
3151
3152 if (in_interrupt() || (flags & __GFP_THISNODE))
3153 return NULL;
3154 nid_alloc = nid_here = numa_mem_id();
3155 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3156 nid_alloc = cpuset_slab_spread_node();
3157 else if (current->mempolicy)
3158 nid_alloc = mempolicy_slab_node();
3159 if (nid_alloc != nid_here)
3160 return ____cache_alloc_node(cachep, flags, nid_alloc);
3161 return NULL;
3162 }
3163
3164 /*
3165 * Fallback function if there was no memory available and no objects on a
3166 * certain node and fall back is permitted. First we scan all the
3167 * available node for available objects. If that fails then we
3168 * perform an allocation without specifying a node. This allows the page
3169 * allocator to do its reclaim / fallback magic. We then insert the
3170 * slab into the proper nodelist and then allocate from it.
3171 */
3172 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3173 {
3174 struct zonelist *zonelist;
3175 struct zoneref *z;
3176 struct zone *zone;
3177 enum zone_type high_zoneidx = gfp_zone(flags);
3178 void *obj = NULL;
3179 struct page *page;
3180 int nid;
3181 unsigned int cpuset_mems_cookie;
3182
3183 if (flags & __GFP_THISNODE)
3184 return NULL;
3185
3186 retry_cpuset:
3187 cpuset_mems_cookie = read_mems_allowed_begin();
3188 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3189
3190 retry:
3191 /*
3192 * Look through allowed nodes for objects available
3193 * from existing per node queues.
3194 */
3195 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3196 nid = zone_to_nid(zone);
3197
3198 if (cpuset_zone_allowed(zone, flags) &&
3199 get_node(cache, nid) &&
3200 get_node(cache, nid)->free_objects) {
3201 obj = ____cache_alloc_node(cache,
3202 gfp_exact_node(flags), nid);
3203 if (obj)
3204 break;
3205 }
3206 }
3207
3208 if (!obj) {
3209 /*
3210 * This allocation will be performed within the constraints
3211 * of the current cpuset / memory policy requirements.
3212 * We may trigger various forms of reclaim on the allowed
3213 * set and go into memory reserves if necessary.
3214 */
3215 page = cache_grow_begin(cache, flags, numa_mem_id());
3216 cache_grow_end(cache, page);
3217 if (page) {
3218 nid = page_to_nid(page);
3219 obj = ____cache_alloc_node(cache,
3220 gfp_exact_node(flags), nid);
3221
3222 /*
3223 * Another processor may allocate the objects in
3224 * the slab since we are not holding any locks.
3225 */
3226 if (!obj)
3227 goto retry;
3228 }
3229 }
3230
3231 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3232 goto retry_cpuset;
3233 return obj;
3234 }
3235
3236 /*
3237 * A interface to enable slab creation on nodeid
3238 */
3239 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3240 int nodeid)
3241 {
3242 struct page *page;
3243 struct kmem_cache_node *n;
3244 void *obj = NULL;
3245 void *list = NULL;
3246
3247 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3248 n = get_node(cachep, nodeid);
3249 BUG_ON(!n);
3250
3251 check_irq_off();
3252 spin_lock(&n->list_lock);
3253 page = get_first_slab(n, false);
3254 if (!page)
3255 goto must_grow;
3256
3257 check_spinlock_acquired_node(cachep, nodeid);
3258
3259 STATS_INC_NODEALLOCS(cachep);
3260 STATS_INC_ACTIVE(cachep);
3261 STATS_SET_HIGH(cachep);
3262
3263 BUG_ON(page->active == cachep->num);
3264
3265 obj = slab_get_obj(cachep, page);
3266 n->free_objects--;
3267
3268 fixup_slab_list(cachep, n, page, &list);
3269
3270 spin_unlock(&n->list_lock);
3271 fixup_objfreelist_debug(cachep, &list);
3272 return obj;
3273
3274 must_grow:
3275 spin_unlock(&n->list_lock);
3276 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3277 if (page) {
3278 /* This slab isn't counted yet so don't update free_objects */
3279 obj = slab_get_obj(cachep, page);
3280 }
3281 cache_grow_end(cachep, page);
3282
3283 return obj ? obj : fallback_alloc(cachep, flags);
3284 }
3285
3286 static __always_inline void *
3287 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3288 unsigned long caller)
3289 {
3290 unsigned long save_flags;
3291 void *ptr;
3292 int slab_node = numa_mem_id();
3293
3294 flags &= gfp_allowed_mask;
3295 cachep = slab_pre_alloc_hook(cachep, flags);
3296 if (unlikely(!cachep))
3297 return NULL;
3298
3299 cache_alloc_debugcheck_before(cachep, flags);
3300 local_irq_save(save_flags);
3301
3302 if (nodeid == NUMA_NO_NODE)
3303 nodeid = slab_node;
3304
3305 if (unlikely(!get_node(cachep, nodeid))) {
3306 /* Node not bootstrapped yet */
3307 ptr = fallback_alloc(cachep, flags);
3308 goto out;
3309 }
3310
3311 if (nodeid == slab_node) {
3312 /*
3313 * Use the locally cached objects if possible.
3314 * However ____cache_alloc does not allow fallback
3315 * to other nodes. It may fail while we still have
3316 * objects on other nodes available.
3317 */
3318 ptr = ____cache_alloc(cachep, flags);
3319 if (ptr)
3320 goto out;
3321 }
3322 /* ___cache_alloc_node can fall back to other nodes */
3323 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3324 out:
3325 local_irq_restore(save_flags);
3326 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3327
3328 if (unlikely(flags & __GFP_ZERO) && ptr)
3329 memset(ptr, 0, cachep->object_size);
3330
3331 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3332 return ptr;
3333 }
3334
3335 static __always_inline void *
3336 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3337 {
3338 void *objp;
3339
3340 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3341 objp = alternate_node_alloc(cache, flags);
3342 if (objp)
3343 goto out;
3344 }
3345 objp = ____cache_alloc(cache, flags);
3346
3347 /*
3348 * We may just have run out of memory on the local node.
3349 * ____cache_alloc_node() knows how to locate memory on other nodes
3350 */
3351 if (!objp)
3352 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3353
3354 out:
3355 return objp;
3356 }
3357 #else
3358
3359 static __always_inline void *
3360 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3361 {
3362 return ____cache_alloc(cachep, flags);
3363 }
3364
3365 #endif /* CONFIG_NUMA */
3366
3367 static __always_inline void *
3368 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3369 {
3370 unsigned long save_flags;
3371 void *objp;
3372
3373 flags &= gfp_allowed_mask;
3374 cachep = slab_pre_alloc_hook(cachep, flags);
3375 if (unlikely(!cachep))
3376 return NULL;
3377
3378 cache_alloc_debugcheck_before(cachep, flags);
3379 local_irq_save(save_flags);
3380 objp = __do_cache_alloc(cachep, flags);
3381 local_irq_restore(save_flags);
3382 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3383 prefetchw(objp);
3384
3385 if (unlikely(flags & __GFP_ZERO) && objp)
3386 memset(objp, 0, cachep->object_size);
3387
3388 slab_post_alloc_hook(cachep, flags, 1, &objp);
3389 return objp;
3390 }
3391
3392 /*
3393 * Caller needs to acquire correct kmem_cache_node's list_lock
3394 * @list: List of detached free slabs should be freed by caller
3395 */
3396 static void free_block(struct kmem_cache *cachep, void **objpp,
3397 int nr_objects, int node, struct list_head *list)
3398 {
3399 int i;
3400 struct kmem_cache_node *n = get_node(cachep, node);
3401 struct page *page;
3402
3403 n->free_objects += nr_objects;
3404
3405 for (i = 0; i < nr_objects; i++) {
3406 void *objp;
3407 struct page *page;
3408
3409 objp = objpp[i];
3410
3411 page = virt_to_head_page(objp);
3412 list_del(&page->lru);
3413 check_spinlock_acquired_node(cachep, node);
3414 slab_put_obj(cachep, page, objp);
3415 STATS_DEC_ACTIVE(cachep);
3416
3417 /* fixup slab chains */
3418 if (page->active == 0) {
3419 list_add(&page->lru, &n->slabs_free);
3420 n->free_slabs++;
3421 } else {
3422 /* Unconditionally move a slab to the end of the
3423 * partial list on free - maximum time for the
3424 * other objects to be freed, too.
3425 */
3426 list_add_tail(&page->lru, &n->slabs_partial);
3427 }
3428 }
3429
3430 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3431 n->free_objects -= cachep->num;
3432
3433 page = list_last_entry(&n->slabs_free, struct page, lru);
3434 list_move(&page->lru, list);
3435 n->free_slabs--;
3436 n->total_slabs--;
3437 }
3438 }
3439
3440 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3441 {
3442 int batchcount;
3443 struct kmem_cache_node *n;
3444 int node = numa_mem_id();
3445 LIST_HEAD(list);
3446
3447 batchcount = ac->batchcount;
3448
3449 check_irq_off();
3450 n = get_node(cachep, node);
3451 spin_lock(&n->list_lock);
3452 if (n->shared) {
3453 struct array_cache *shared_array = n->shared;
3454 int max = shared_array->limit - shared_array->avail;
3455 if (max) {
3456 if (batchcount > max)
3457 batchcount = max;
3458 memcpy(&(shared_array->entry[shared_array->avail]),
3459 ac->entry, sizeof(void *) * batchcount);
3460 shared_array->avail += batchcount;
3461 goto free_done;
3462 }
3463 }
3464
3465 free_block(cachep, ac->entry, batchcount, node, &list);
3466 free_done:
3467 #if STATS
3468 {
3469 int i = 0;
3470 struct page *page;
3471
3472 list_for_each_entry(page, &n->slabs_free, lru) {
3473 BUG_ON(page->active);
3474
3475 i++;
3476 }
3477 STATS_SET_FREEABLE(cachep, i);
3478 }
3479 #endif
3480 spin_unlock(&n->list_lock);
3481 slabs_destroy(cachep, &list);
3482 ac->avail -= batchcount;
3483 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3484 }
3485
3486 /*
3487 * Release an obj back to its cache. If the obj has a constructed state, it must
3488 * be in this state _before_ it is released. Called with disabled ints.
3489 */
3490 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3491 unsigned long caller)
3492 {
3493 /* Put the object into the quarantine, don't touch it for now. */
3494 if (kasan_slab_free(cachep, objp))
3495 return;
3496
3497 ___cache_free(cachep, objp, caller);
3498 }
3499
3500 void ___cache_free(struct kmem_cache *cachep, void *objp,
3501 unsigned long caller)
3502 {
3503 struct array_cache *ac = cpu_cache_get(cachep);
3504
3505 check_irq_off();
3506 kmemleak_free_recursive(objp, cachep->flags);
3507 objp = cache_free_debugcheck(cachep, objp, caller);
3508
3509 /*
3510 * Skip calling cache_free_alien() when the platform is not numa.
3511 * This will avoid cache misses that happen while accessing slabp (which
3512 * is per page memory reference) to get nodeid. Instead use a global
3513 * variable to skip the call, which is mostly likely to be present in
3514 * the cache.
3515 */
3516 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3517 return;
3518
3519 if (ac->avail < ac->limit) {
3520 STATS_INC_FREEHIT(cachep);
3521 } else {
3522 STATS_INC_FREEMISS(cachep);
3523 cache_flusharray(cachep, ac);
3524 }
3525
3526 if (sk_memalloc_socks()) {
3527 struct page *page = virt_to_head_page(objp);
3528
3529 if (unlikely(PageSlabPfmemalloc(page))) {
3530 cache_free_pfmemalloc(cachep, page, objp);
3531 return;
3532 }
3533 }
3534
3535 ac->entry[ac->avail++] = objp;
3536 }
3537
3538 /**
3539 * kmem_cache_alloc - Allocate an object
3540 * @cachep: The cache to allocate from.
3541 * @flags: See kmalloc().
3542 *
3543 * Allocate an object from this cache. The flags are only relevant
3544 * if the cache has no available objects.
3545 */
3546 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3547 {
3548 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3549
3550 kasan_slab_alloc(cachep, ret, flags);
3551 trace_kmem_cache_alloc(_RET_IP_, ret,
3552 cachep->object_size, cachep->size, flags);
3553
3554 return ret;
3555 }
3556 EXPORT_SYMBOL(kmem_cache_alloc);
3557
3558 static __always_inline void
3559 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3560 size_t size, void **p, unsigned long caller)
3561 {
3562 size_t i;
3563
3564 for (i = 0; i < size; i++)
3565 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3566 }
3567
3568 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3569 void **p)
3570 {
3571 size_t i;
3572
3573 s = slab_pre_alloc_hook(s, flags);
3574 if (!s)
3575 return 0;
3576
3577 cache_alloc_debugcheck_before(s, flags);
3578
3579 local_irq_disable();
3580 for (i = 0; i < size; i++) {
3581 void *objp = __do_cache_alloc(s, flags);
3582
3583 if (unlikely(!objp))
3584 goto error;
3585 p[i] = objp;
3586 }
3587 local_irq_enable();
3588
3589 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3590
3591 /* Clear memory outside IRQ disabled section */
3592 if (unlikely(flags & __GFP_ZERO))
3593 for (i = 0; i < size; i++)
3594 memset(p[i], 0, s->object_size);
3595
3596 slab_post_alloc_hook(s, flags, size, p);
3597 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3598 return size;
3599 error:
3600 local_irq_enable();
3601 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3602 slab_post_alloc_hook(s, flags, i, p);
3603 __kmem_cache_free_bulk(s, i, p);
3604 return 0;
3605 }
3606 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3607
3608 #ifdef CONFIG_TRACING
3609 void *
3610 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3611 {
3612 void *ret;
3613
3614 ret = slab_alloc(cachep, flags, _RET_IP_);
3615
3616 kasan_kmalloc(cachep, ret, size, flags);
3617 trace_kmalloc(_RET_IP_, ret,
3618 size, cachep->size, flags);
3619 return ret;
3620 }
3621 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3622 #endif
3623
3624 #ifdef CONFIG_NUMA
3625 /**
3626 * kmem_cache_alloc_node - Allocate an object on the specified node
3627 * @cachep: The cache to allocate from.
3628 * @flags: See kmalloc().
3629 * @nodeid: node number of the target node.
3630 *
3631 * Identical to kmem_cache_alloc but it will allocate memory on the given
3632 * node, which can improve the performance for cpu bound structures.
3633 *
3634 * Fallback to other node is possible if __GFP_THISNODE is not set.
3635 */
3636 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3637 {
3638 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3639
3640 kasan_slab_alloc(cachep, ret, flags);
3641 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3642 cachep->object_size, cachep->size,
3643 flags, nodeid);
3644
3645 return ret;
3646 }
3647 EXPORT_SYMBOL(kmem_cache_alloc_node);
3648
3649 #ifdef CONFIG_TRACING
3650 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3651 gfp_t flags,
3652 int nodeid,
3653 size_t size)
3654 {
3655 void *ret;
3656
3657 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3658
3659 kasan_kmalloc(cachep, ret, size, flags);
3660 trace_kmalloc_node(_RET_IP_, ret,
3661 size, cachep->size,
3662 flags, nodeid);
3663 return ret;
3664 }
3665 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3666 #endif
3667
3668 static __always_inline void *
3669 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3670 {
3671 struct kmem_cache *cachep;
3672 void *ret;
3673
3674 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3675 return NULL;
3676 cachep = kmalloc_slab(size, flags);
3677 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3678 return cachep;
3679 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3680 kasan_kmalloc(cachep, ret, size, flags);
3681
3682 return ret;
3683 }
3684
3685 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3686 {
3687 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3688 }
3689 EXPORT_SYMBOL(__kmalloc_node);
3690
3691 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3692 int node, unsigned long caller)
3693 {
3694 return __do_kmalloc_node(size, flags, node, caller);
3695 }
3696 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3697 #endif /* CONFIG_NUMA */
3698
3699 /**
3700 * __do_kmalloc - allocate memory
3701 * @size: how many bytes of memory are required.
3702 * @flags: the type of memory to allocate (see kmalloc).
3703 * @caller: function caller for debug tracking of the caller
3704 */
3705 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3706 unsigned long caller)
3707 {
3708 struct kmem_cache *cachep;
3709 void *ret;
3710
3711 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3712 return NULL;
3713 cachep = kmalloc_slab(size, flags);
3714 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3715 return cachep;
3716 ret = slab_alloc(cachep, flags, caller);
3717
3718 kasan_kmalloc(cachep, ret, size, flags);
3719 trace_kmalloc(caller, ret,
3720 size, cachep->size, flags);
3721
3722 return ret;
3723 }
3724
3725 void *__kmalloc(size_t size, gfp_t flags)
3726 {
3727 return __do_kmalloc(size, flags, _RET_IP_);
3728 }
3729 EXPORT_SYMBOL(__kmalloc);
3730
3731 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3732 {
3733 return __do_kmalloc(size, flags, caller);
3734 }
3735 EXPORT_SYMBOL(__kmalloc_track_caller);
3736
3737 /**
3738 * kmem_cache_free - Deallocate an object
3739 * @cachep: The cache the allocation was from.
3740 * @objp: The previously allocated object.
3741 *
3742 * Free an object which was previously allocated from this
3743 * cache.
3744 */
3745 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3746 {
3747 unsigned long flags;
3748 cachep = cache_from_obj(cachep, objp);
3749 if (!cachep)
3750 return;
3751
3752 local_irq_save(flags);
3753 debug_check_no_locks_freed(objp, cachep->object_size);
3754 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3755 debug_check_no_obj_freed(objp, cachep->object_size);
3756 __cache_free(cachep, objp, _RET_IP_);
3757 local_irq_restore(flags);
3758
3759 trace_kmem_cache_free(_RET_IP_, objp);
3760 }
3761 EXPORT_SYMBOL(kmem_cache_free);
3762
3763 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3764 {
3765 struct kmem_cache *s;
3766 size_t i;
3767
3768 local_irq_disable();
3769 for (i = 0; i < size; i++) {
3770 void *objp = p[i];
3771
3772 if (!orig_s) /* called via kfree_bulk */
3773 s = virt_to_cache(objp);
3774 else
3775 s = cache_from_obj(orig_s, objp);
3776
3777 debug_check_no_locks_freed(objp, s->object_size);
3778 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3779 debug_check_no_obj_freed(objp, s->object_size);
3780
3781 __cache_free(s, objp, _RET_IP_);
3782 }
3783 local_irq_enable();
3784
3785 /* FIXME: add tracing */
3786 }
3787 EXPORT_SYMBOL(kmem_cache_free_bulk);
3788
3789 /**
3790 * kfree - free previously allocated memory
3791 * @objp: pointer returned by kmalloc.
3792 *
3793 * If @objp is NULL, no operation is performed.
3794 *
3795 * Don't free memory not originally allocated by kmalloc()
3796 * or you will run into trouble.
3797 */
3798 void kfree(const void *objp)
3799 {
3800 struct kmem_cache *c;
3801 unsigned long flags;
3802
3803 trace_kfree(_RET_IP_, objp);
3804
3805 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3806 return;
3807 local_irq_save(flags);
3808 kfree_debugcheck(objp);
3809 c = virt_to_cache(objp);
3810 debug_check_no_locks_freed(objp, c->object_size);
3811
3812 debug_check_no_obj_freed(objp, c->object_size);
3813 __cache_free(c, (void *)objp, _RET_IP_);
3814 local_irq_restore(flags);
3815 }
3816 EXPORT_SYMBOL(kfree);
3817
3818 /*
3819 * This initializes kmem_cache_node or resizes various caches for all nodes.
3820 */
3821 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3822 {
3823 int ret;
3824 int node;
3825 struct kmem_cache_node *n;
3826
3827 for_each_online_node(node) {
3828 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3829 if (ret)
3830 goto fail;
3831
3832 }
3833
3834 return 0;
3835
3836 fail:
3837 if (!cachep->list.next) {
3838 /* Cache is not active yet. Roll back what we did */
3839 node--;
3840 while (node >= 0) {
3841 n = get_node(cachep, node);
3842 if (n) {
3843 kfree(n->shared);
3844 free_alien_cache(n->alien);
3845 kfree(n);
3846 cachep->node[node] = NULL;
3847 }
3848 node--;
3849 }
3850 }
3851 return -ENOMEM;
3852 }
3853
3854 /* Always called with the slab_mutex held */
3855 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856 int batchcount, int shared, gfp_t gfp)
3857 {
3858 struct array_cache __percpu *cpu_cache, *prev;
3859 int cpu;
3860
3861 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3862 if (!cpu_cache)
3863 return -ENOMEM;
3864
3865 prev = cachep->cpu_cache;
3866 cachep->cpu_cache = cpu_cache;
3867 /*
3868 * Without a previous cpu_cache there's no need to synchronize remote
3869 * cpus, so skip the IPIs.
3870 */
3871 if (prev)
3872 kick_all_cpus_sync();
3873
3874 check_irq_on();
3875 cachep->batchcount = batchcount;
3876 cachep->limit = limit;
3877 cachep->shared = shared;
3878
3879 if (!prev)
3880 goto setup_node;
3881
3882 for_each_online_cpu(cpu) {
3883 LIST_HEAD(list);
3884 int node;
3885 struct kmem_cache_node *n;
3886 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3887
3888 node = cpu_to_mem(cpu);
3889 n = get_node(cachep, node);
3890 spin_lock_irq(&n->list_lock);
3891 free_block(cachep, ac->entry, ac->avail, node, &list);
3892 spin_unlock_irq(&n->list_lock);
3893 slabs_destroy(cachep, &list);
3894 }
3895 free_percpu(prev);
3896
3897 setup_node:
3898 return setup_kmem_cache_nodes(cachep, gfp);
3899 }
3900
3901 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3902 int batchcount, int shared, gfp_t gfp)
3903 {
3904 int ret;
3905 struct kmem_cache *c;
3906
3907 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3908
3909 if (slab_state < FULL)
3910 return ret;
3911
3912 if ((ret < 0) || !is_root_cache(cachep))
3913 return ret;
3914
3915 lockdep_assert_held(&slab_mutex);
3916 for_each_memcg_cache(c, cachep) {
3917 /* return value determined by the root cache only */
3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919 }
3920
3921 return ret;
3922 }
3923
3924 /* Called with slab_mutex held always */
3925 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3926 {
3927 int err;
3928 int limit = 0;
3929 int shared = 0;
3930 int batchcount = 0;
3931
3932 err = cache_random_seq_create(cachep, cachep->num, gfp);
3933 if (err)
3934 goto end;
3935
3936 if (!is_root_cache(cachep)) {
3937 struct kmem_cache *root = memcg_root_cache(cachep);
3938 limit = root->limit;
3939 shared = root->shared;
3940 batchcount = root->batchcount;
3941 }
3942
3943 if (limit && shared && batchcount)
3944 goto skip_setup;
3945 /*
3946 * The head array serves three purposes:
3947 * - create a LIFO ordering, i.e. return objects that are cache-warm
3948 * - reduce the number of spinlock operations.
3949 * - reduce the number of linked list operations on the slab and
3950 * bufctl chains: array operations are cheaper.
3951 * The numbers are guessed, we should auto-tune as described by
3952 * Bonwick.
3953 */
3954 if (cachep->size > 131072)
3955 limit = 1;
3956 else if (cachep->size > PAGE_SIZE)
3957 limit = 8;
3958 else if (cachep->size > 1024)
3959 limit = 24;
3960 else if (cachep->size > 256)
3961 limit = 54;
3962 else
3963 limit = 120;
3964
3965 /*
3966 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3967 * allocation behaviour: Most allocs on one cpu, most free operations
3968 * on another cpu. For these cases, an efficient object passing between
3969 * cpus is necessary. This is provided by a shared array. The array
3970 * replaces Bonwick's magazine layer.
3971 * On uniprocessor, it's functionally equivalent (but less efficient)
3972 * to a larger limit. Thus disabled by default.
3973 */
3974 shared = 0;
3975 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3976 shared = 8;
3977
3978 #if DEBUG
3979 /*
3980 * With debugging enabled, large batchcount lead to excessively long
3981 * periods with disabled local interrupts. Limit the batchcount
3982 */
3983 if (limit > 32)
3984 limit = 32;
3985 #endif
3986 batchcount = (limit + 1) / 2;
3987 skip_setup:
3988 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3989 end:
3990 if (err)
3991 pr_err("enable_cpucache failed for %s, error %d\n",
3992 cachep->name, -err);
3993 return err;
3994 }
3995
3996 /*
3997 * Drain an array if it contains any elements taking the node lock only if
3998 * necessary. Note that the node listlock also protects the array_cache
3999 * if drain_array() is used on the shared array.
4000 */
4001 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4002 struct array_cache *ac, int node)
4003 {
4004 LIST_HEAD(list);
4005
4006 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4007 check_mutex_acquired();
4008
4009 if (!ac || !ac->avail)
4010 return;
4011
4012 if (ac->touched) {
4013 ac->touched = 0;
4014 return;
4015 }
4016
4017 spin_lock_irq(&n->list_lock);
4018 drain_array_locked(cachep, ac, node, false, &list);
4019 spin_unlock_irq(&n->list_lock);
4020
4021 slabs_destroy(cachep, &list);
4022 }
4023
4024 /**
4025 * cache_reap - Reclaim memory from caches.
4026 * @w: work descriptor
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
4035 */
4036 static void cache_reap(struct work_struct *w)
4037 {
4038 struct kmem_cache *searchp;
4039 struct kmem_cache_node *n;
4040 int node = numa_mem_id();
4041 struct delayed_work *work = to_delayed_work(w);
4042
4043 if (!mutex_trylock(&slab_mutex))
4044 /* Give up. Setup the next iteration. */
4045 goto out;
4046
4047 list_for_each_entry(searchp, &slab_caches, list) {
4048 check_irq_on();
4049
4050 /*
4051 * We only take the node lock if absolutely necessary and we
4052 * have established with reasonable certainty that
4053 * we can do some work if the lock was obtained.
4054 */
4055 n = get_node(searchp, node);
4056
4057 reap_alien(searchp, n);
4058
4059 drain_array(searchp, n, cpu_cache_get(searchp), node);
4060
4061 /*
4062 * These are racy checks but it does not matter
4063 * if we skip one check or scan twice.
4064 */
4065 if (time_after(n->next_reap, jiffies))
4066 goto next;
4067
4068 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4069
4070 drain_array(searchp, n, n->shared, node);
4071
4072 if (n->free_touched)
4073 n->free_touched = 0;
4074 else {
4075 int freed;
4076
4077 freed = drain_freelist(searchp, n, (n->free_limit +
4078 5 * searchp->num - 1) / (5 * searchp->num));
4079 STATS_ADD_REAPED(searchp, freed);
4080 }
4081 next:
4082 cond_resched();
4083 }
4084 check_irq_on();
4085 mutex_unlock(&slab_mutex);
4086 next_reap_node();
4087 out:
4088 /* Set up the next iteration */
4089 schedule_delayed_work_on(smp_processor_id(), work,
4090 round_jiffies_relative(REAPTIMEOUT_AC));
4091 }
4092
4093 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4094 {
4095 unsigned long active_objs, num_objs, active_slabs;
4096 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097 unsigned long free_slabs = 0;
4098 int node;
4099 struct kmem_cache_node *n;
4100
4101 for_each_kmem_cache_node(cachep, node, n) {
4102 check_irq_on();
4103 spin_lock_irq(&n->list_lock);
4104
4105 total_slabs += n->total_slabs;
4106 free_slabs += n->free_slabs;
4107 free_objs += n->free_objects;
4108
4109 if (n->shared)
4110 shared_avail += n->shared->avail;
4111
4112 spin_unlock_irq(&n->list_lock);
4113 }
4114 num_objs = total_slabs * cachep->num;
4115 active_slabs = total_slabs - free_slabs;
4116 active_objs = num_objs - free_objs;
4117
4118 sinfo->active_objs = active_objs;
4119 sinfo->num_objs = num_objs;
4120 sinfo->active_slabs = active_slabs;
4121 sinfo->num_slabs = total_slabs;
4122 sinfo->shared_avail = shared_avail;
4123 sinfo->limit = cachep->limit;
4124 sinfo->batchcount = cachep->batchcount;
4125 sinfo->shared = cachep->shared;
4126 sinfo->objects_per_slab = cachep->num;
4127 sinfo->cache_order = cachep->gfporder;
4128 }
4129
4130 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131 {
4132 #if STATS
4133 { /* node stats */
4134 unsigned long high = cachep->high_mark;
4135 unsigned long allocs = cachep->num_allocations;
4136 unsigned long grown = cachep->grown;
4137 unsigned long reaped = cachep->reaped;
4138 unsigned long errors = cachep->errors;
4139 unsigned long max_freeable = cachep->max_freeable;
4140 unsigned long node_allocs = cachep->node_allocs;
4141 unsigned long node_frees = cachep->node_frees;
4142 unsigned long overflows = cachep->node_overflow;
4143
4144 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4145 allocs, high, grown,
4146 reaped, errors, max_freeable, node_allocs,
4147 node_frees, overflows);
4148 }
4149 /* cpu stats */
4150 {
4151 unsigned long allochit = atomic_read(&cachep->allochit);
4152 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153 unsigned long freehit = atomic_read(&cachep->freehit);
4154 unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4157 allochit, allocmiss, freehit, freemiss);
4158 }
4159 #endif
4160 }
4161
4162 #define MAX_SLABINFO_WRITE 128
4163 /**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
4170 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4171 size_t count, loff_t *ppos)
4172 {
4173 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4174 int limit, batchcount, shared, res;
4175 struct kmem_cache *cachep;
4176
4177 if (count > MAX_SLABINFO_WRITE)
4178 return -EINVAL;
4179 if (copy_from_user(&kbuf, buffer, count))
4180 return -EFAULT;
4181 kbuf[MAX_SLABINFO_WRITE] = '\0';
4182
4183 tmp = strchr(kbuf, ' ');
4184 if (!tmp)
4185 return -EINVAL;
4186 *tmp = '\0';
4187 tmp++;
4188 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189 return -EINVAL;
4190
4191 /* Find the cache in the chain of caches. */
4192 mutex_lock(&slab_mutex);
4193 res = -EINVAL;
4194 list_for_each_entry(cachep, &slab_caches, list) {
4195 if (!strcmp(cachep->name, kbuf)) {
4196 if (limit < 1 || batchcount < 1 ||
4197 batchcount > limit || shared < 0) {
4198 res = 0;
4199 } else {
4200 res = do_tune_cpucache(cachep, limit,
4201 batchcount, shared,
4202 GFP_KERNEL);
4203 }
4204 break;
4205 }
4206 }
4207 mutex_unlock(&slab_mutex);
4208 if (res >= 0)
4209 res = count;
4210 return res;
4211 }
4212
4213 #ifdef CONFIG_DEBUG_SLAB_LEAK
4214
4215 static inline int add_caller(unsigned long *n, unsigned long v)
4216 {
4217 unsigned long *p;
4218 int l;
4219 if (!v)
4220 return 1;
4221 l = n[1];
4222 p = n + 2;
4223 while (l) {
4224 int i = l/2;
4225 unsigned long *q = p + 2 * i;
4226 if (*q == v) {
4227 q[1]++;
4228 return 1;
4229 }
4230 if (*q > v) {
4231 l = i;
4232 } else {
4233 p = q + 2;
4234 l -= i + 1;
4235 }
4236 }
4237 if (++n[1] == n[0])
4238 return 0;
4239 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240 p[0] = v;
4241 p[1] = 1;
4242 return 1;
4243 }
4244
4245 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246 struct page *page)
4247 {
4248 void *p;
4249 int i, j;
4250 unsigned long v;
4251
4252 if (n[0] == n[1])
4253 return;
4254 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255 bool active = true;
4256
4257 for (j = page->active; j < c->num; j++) {
4258 if (get_free_obj(page, j) == i) {
4259 active = false;
4260 break;
4261 }
4262 }
4263
4264 if (!active)
4265 continue;
4266
4267 /*
4268 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269 * mapping is established when actual object allocation and
4270 * we could mistakenly access the unmapped object in the cpu
4271 * cache.
4272 */
4273 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274 continue;
4275
4276 if (!add_caller(n, v))
4277 return;
4278 }
4279 }
4280
4281 static void show_symbol(struct seq_file *m, unsigned long address)
4282 {
4283 #ifdef CONFIG_KALLSYMS
4284 unsigned long offset, size;
4285 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286
4287 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289 if (modname[0])
4290 seq_printf(m, " [%s]", modname);
4291 return;
4292 }
4293 #endif
4294 seq_printf(m, "%px", (void *)address);
4295 }
4296
4297 static int leaks_show(struct seq_file *m, void *p)
4298 {
4299 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4300 root_caches_node);
4301 struct page *page;
4302 struct kmem_cache_node *n;
4303 const char *name;
4304 unsigned long *x = m->private;
4305 int node;
4306 int i;
4307
4308 if (!(cachep->flags & SLAB_STORE_USER))
4309 return 0;
4310 if (!(cachep->flags & SLAB_RED_ZONE))
4311 return 0;
4312
4313 /*
4314 * Set store_user_clean and start to grab stored user information
4315 * for all objects on this cache. If some alloc/free requests comes
4316 * during the processing, information would be wrong so restart
4317 * whole processing.
4318 */
4319 do {
4320 drain_cpu_caches(cachep);
4321 /*
4322 * drain_cpu_caches() could make kmemleak_object and
4323 * debug_objects_cache dirty, so reset afterwards.
4324 */
4325 set_store_user_clean(cachep);
4326
4327 x[1] = 0;
4328
4329 for_each_kmem_cache_node(cachep, node, n) {
4330
4331 check_irq_on();
4332 spin_lock_irq(&n->list_lock);
4333
4334 list_for_each_entry(page, &n->slabs_full, lru)
4335 handle_slab(x, cachep, page);
4336 list_for_each_entry(page, &n->slabs_partial, lru)
4337 handle_slab(x, cachep, page);
4338 spin_unlock_irq(&n->list_lock);
4339 }
4340 } while (!is_store_user_clean(cachep));
4341
4342 name = cachep->name;
4343 if (x[0] == x[1]) {
4344 /* Increase the buffer size */
4345 mutex_unlock(&slab_mutex);
4346 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4347 if (!m->private) {
4348 /* Too bad, we are really out */
4349 m->private = x;
4350 mutex_lock(&slab_mutex);
4351 return -ENOMEM;
4352 }
4353 *(unsigned long *)m->private = x[0] * 2;
4354 kfree(x);
4355 mutex_lock(&slab_mutex);
4356 /* Now make sure this entry will be retried */
4357 m->count = m->size;
4358 return 0;
4359 }
4360 for (i = 0; i < x[1]; i++) {
4361 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4362 show_symbol(m, x[2*i+2]);
4363 seq_putc(m, '\n');
4364 }
4365
4366 return 0;
4367 }
4368
4369 static const struct seq_operations slabstats_op = {
4370 .start = slab_start,
4371 .next = slab_next,
4372 .stop = slab_stop,
4373 .show = leaks_show,
4374 };
4375
4376 static int slabstats_open(struct inode *inode, struct file *file)
4377 {
4378 unsigned long *n;
4379
4380 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4381 if (!n)
4382 return -ENOMEM;
4383
4384 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4385
4386 return 0;
4387 }
4388
4389 static const struct file_operations proc_slabstats_operations = {
4390 .open = slabstats_open,
4391 .read = seq_read,
4392 .llseek = seq_lseek,
4393 .release = seq_release_private,
4394 };
4395 #endif
4396
4397 static int __init slab_proc_init(void)
4398 {
4399 #ifdef CONFIG_DEBUG_SLAB_LEAK
4400 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4401 #endif
4402 return 0;
4403 }
4404 module_init(slab_proc_init);
4405
4406 #ifdef CONFIG_HARDENED_USERCOPY
4407 /*
4408 * Rejects objects that are incorrectly sized.
4409 *
4410 * Returns NULL if check passes, otherwise const char * to name of cache
4411 * to indicate an error.
4412 */
4413 const char *__check_heap_object(const void *ptr, unsigned long n,
4414 struct page *page)
4415 {
4416 struct kmem_cache *cachep;
4417 unsigned int objnr;
4418 unsigned long offset;
4419
4420 /* Find and validate object. */
4421 cachep = page->slab_cache;
4422 objnr = obj_to_index(cachep, page, (void *)ptr);
4423 BUG_ON(objnr >= cachep->num);
4424
4425 /* Find offset within object. */
4426 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4427
4428 /* Allow address range falling entirely within object size. */
4429 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4430 return NULL;
4431
4432 return cachep->name;
4433 }
4434 #endif /* CONFIG_HARDENED_USERCOPY */
4435
4436 /**
4437 * ksize - get the actual amount of memory allocated for a given object
4438 * @objp: Pointer to the object
4439 *
4440 * kmalloc may internally round up allocations and return more memory
4441 * than requested. ksize() can be used to determine the actual amount of
4442 * memory allocated. The caller may use this additional memory, even though
4443 * a smaller amount of memory was initially specified with the kmalloc call.
4444 * The caller must guarantee that objp points to a valid object previously
4445 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4446 * must not be freed during the duration of the call.
4447 */
4448 size_t ksize(const void *objp)
4449 {
4450 size_t size;
4451
4452 BUG_ON(!objp);
4453 if (unlikely(objp == ZERO_SIZE_PTR))
4454 return 0;
4455
4456 size = virt_to_cache(objp)->object_size;
4457 /* We assume that ksize callers could use the whole allocated area,
4458 * so we need to unpoison this area.
4459 */
4460 kasan_unpoison_shadow(objp, size);
4461
4462 return size;
4463 }
4464 EXPORT_SYMBOL(ksize);