]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slab.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 /*
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
368 */
369 #define SLAB_MAX_ORDER_HI 1
370 #define SLAB_MAX_ORDER_LO 0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373
374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 unsigned int idx)
376 {
377 return page->s_mem + cache->size * idx;
378 }
379
380 #define BOOT_CPUCACHE_ENTRIES 1
381 /* internal cache of cache description objs */
382 static struct kmem_cache kmem_cache_boot = {
383 .batchcount = 1,
384 .limit = BOOT_CPUCACHE_ENTRIES,
385 .shared = 1,
386 .size = sizeof(struct kmem_cache),
387 .name = "kmem_cache",
388 };
389
390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
391
392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
393 {
394 return this_cpu_ptr(cachep->cpu_cache);
395 }
396
397 /*
398 * Calculate the number of objects and left-over bytes for a given buffer size.
399 */
400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401 slab_flags_t flags, size_t *left_over)
402 {
403 unsigned int num;
404 size_t slab_size = PAGE_SIZE << gfporder;
405
406 /*
407 * The slab management structure can be either off the slab or
408 * on it. For the latter case, the memory allocated for a
409 * slab is used for:
410 *
411 * - @buffer_size bytes for each object
412 * - One freelist_idx_t for each object
413 *
414 * We don't need to consider alignment of freelist because
415 * freelist will be at the end of slab page. The objects will be
416 * at the correct alignment.
417 *
418 * If the slab management structure is off the slab, then the
419 * alignment will already be calculated into the size. Because
420 * the slabs are all pages aligned, the objects will be at the
421 * correct alignment when allocated.
422 */
423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424 num = slab_size / buffer_size;
425 *left_over = slab_size % buffer_size;
426 } else {
427 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 *left_over = slab_size %
429 (buffer_size + sizeof(freelist_idx_t));
430 }
431
432 return num;
433 }
434
435 #if DEBUG
436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
437
438 static void __slab_error(const char *function, struct kmem_cache *cachep,
439 char *msg)
440 {
441 pr_err("slab error in %s(): cache `%s': %s\n",
442 function, cachep->name, msg);
443 dump_stack();
444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
445 }
446 #endif
447
448 /*
449 * By default on NUMA we use alien caches to stage the freeing of
450 * objects allocated from other nodes. This causes massive memory
451 * inefficiencies when using fake NUMA setup to split memory into a
452 * large number of small nodes, so it can be disabled on the command
453 * line
454 */
455
456 static int use_alien_caches __read_mostly = 1;
457 static int __init noaliencache_setup(char *s)
458 {
459 use_alien_caches = 0;
460 return 1;
461 }
462 __setup("noaliencache", noaliencache_setup);
463
464 static int __init slab_max_order_setup(char *str)
465 {
466 get_option(&str, &slab_max_order);
467 slab_max_order = slab_max_order < 0 ? 0 :
468 min(slab_max_order, MAX_ORDER - 1);
469 slab_max_order_set = true;
470
471 return 1;
472 }
473 __setup("slab_max_order=", slab_max_order_setup);
474
475 #ifdef CONFIG_NUMA
476 /*
477 * Special reaping functions for NUMA systems called from cache_reap().
478 * These take care of doing round robin flushing of alien caches (containing
479 * objects freed on different nodes from which they were allocated) and the
480 * flushing of remote pcps by calling drain_node_pages.
481 */
482 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483
484 static void init_reap_node(int cpu)
485 {
486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 node_online_map);
488 }
489
490 static void next_reap_node(void)
491 {
492 int node = __this_cpu_read(slab_reap_node);
493
494 node = next_node_in(node, node_online_map);
495 __this_cpu_write(slab_reap_node, node);
496 }
497
498 #else
499 #define init_reap_node(cpu) do { } while (0)
500 #define next_reap_node(void) do { } while (0)
501 #endif
502
503 /*
504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
505 * via the workqueue/eventd.
506 * Add the CPU number into the expiration time to minimize the possibility of
507 * the CPUs getting into lockstep and contending for the global cache chain
508 * lock.
509 */
510 static void start_cpu_timer(int cpu)
511 {
512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
513
514 if (reap_work->work.func == NULL) {
515 init_reap_node(cpu);
516 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 schedule_delayed_work_on(cpu, reap_work,
518 __round_jiffies_relative(HZ, cpu));
519 }
520 }
521
522 static void init_arraycache(struct array_cache *ac, int limit, int batch)
523 {
524 if (ac) {
525 ac->avail = 0;
526 ac->limit = limit;
527 ac->batchcount = batch;
528 ac->touched = 0;
529 }
530 }
531
532 static struct array_cache *alloc_arraycache(int node, int entries,
533 int batchcount, gfp_t gfp)
534 {
535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 struct array_cache *ac = NULL;
537
538 ac = kmalloc_node(memsize, gfp, node);
539 /*
540 * The array_cache structures contain pointers to free object.
541 * However, when such objects are allocated or transferred to another
542 * cache the pointers are not cleared and they could be counted as
543 * valid references during a kmemleak scan. Therefore, kmemleak must
544 * not scan such objects.
545 */
546 kmemleak_no_scan(ac);
547 init_arraycache(ac, entries, batchcount);
548 return ac;
549 }
550
551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 struct page *page, void *objp)
553 {
554 struct kmem_cache_node *n;
555 int page_node;
556 LIST_HEAD(list);
557
558 page_node = page_to_nid(page);
559 n = get_node(cachep, page_node);
560
561 spin_lock(&n->list_lock);
562 free_block(cachep, &objp, 1, page_node, &list);
563 spin_unlock(&n->list_lock);
564
565 slabs_destroy(cachep, &list);
566 }
567
568 /*
569 * Transfer objects in one arraycache to another.
570 * Locking must be handled by the caller.
571 *
572 * Return the number of entries transferred.
573 */
574 static int transfer_objects(struct array_cache *to,
575 struct array_cache *from, unsigned int max)
576 {
577 /* Figure out how many entries to transfer */
578 int nr = min3(from->avail, max, to->limit - to->avail);
579
580 if (!nr)
581 return 0;
582
583 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 sizeof(void *) *nr);
585
586 from->avail -= nr;
587 to->avail += nr;
588 return nr;
589 }
590
591 /* &alien->lock must be held by alien callers. */
592 static __always_inline void __free_one(struct array_cache *ac, void *objp)
593 {
594 /* Avoid trivial double-free. */
595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
597 return;
598 ac->entry[ac->avail++] = objp;
599 }
600
601 #ifndef CONFIG_NUMA
602
603 #define drain_alien_cache(cachep, alien) do { } while (0)
604 #define reap_alien(cachep, n) do { } while (0)
605
606 static inline struct alien_cache **alloc_alien_cache(int node,
607 int limit, gfp_t gfp)
608 {
609 return NULL;
610 }
611
612 static inline void free_alien_cache(struct alien_cache **ac_ptr)
613 {
614 }
615
616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
617 {
618 return 0;
619 }
620
621 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
622 gfp_t flags)
623 {
624 return NULL;
625 }
626
627 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
628 gfp_t flags, int nodeid)
629 {
630 return NULL;
631 }
632
633 static inline gfp_t gfp_exact_node(gfp_t flags)
634 {
635 return flags & ~__GFP_NOFAIL;
636 }
637
638 #else /* CONFIG_NUMA */
639
640 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
641 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
642
643 static struct alien_cache *__alloc_alien_cache(int node, int entries,
644 int batch, gfp_t gfp)
645 {
646 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
647 struct alien_cache *alc = NULL;
648
649 alc = kmalloc_node(memsize, gfp, node);
650 if (alc) {
651 kmemleak_no_scan(alc);
652 init_arraycache(&alc->ac, entries, batch);
653 spin_lock_init(&alc->lock);
654 }
655 return alc;
656 }
657
658 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
659 {
660 struct alien_cache **alc_ptr;
661 int i;
662
663 if (limit > 1)
664 limit = 12;
665 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
666 if (!alc_ptr)
667 return NULL;
668
669 for_each_node(i) {
670 if (i == node || !node_online(i))
671 continue;
672 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
673 if (!alc_ptr[i]) {
674 for (i--; i >= 0; i--)
675 kfree(alc_ptr[i]);
676 kfree(alc_ptr);
677 return NULL;
678 }
679 }
680 return alc_ptr;
681 }
682
683 static void free_alien_cache(struct alien_cache **alc_ptr)
684 {
685 int i;
686
687 if (!alc_ptr)
688 return;
689 for_each_node(i)
690 kfree(alc_ptr[i]);
691 kfree(alc_ptr);
692 }
693
694 static void __drain_alien_cache(struct kmem_cache *cachep,
695 struct array_cache *ac, int node,
696 struct list_head *list)
697 {
698 struct kmem_cache_node *n = get_node(cachep, node);
699
700 if (ac->avail) {
701 spin_lock(&n->list_lock);
702 /*
703 * Stuff objects into the remote nodes shared array first.
704 * That way we could avoid the overhead of putting the objects
705 * into the free lists and getting them back later.
706 */
707 if (n->shared)
708 transfer_objects(n->shared, ac, ac->limit);
709
710 free_block(cachep, ac->entry, ac->avail, node, list);
711 ac->avail = 0;
712 spin_unlock(&n->list_lock);
713 }
714 }
715
716 /*
717 * Called from cache_reap() to regularly drain alien caches round robin.
718 */
719 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
720 {
721 int node = __this_cpu_read(slab_reap_node);
722
723 if (n->alien) {
724 struct alien_cache *alc = n->alien[node];
725 struct array_cache *ac;
726
727 if (alc) {
728 ac = &alc->ac;
729 if (ac->avail && spin_trylock_irq(&alc->lock)) {
730 LIST_HEAD(list);
731
732 __drain_alien_cache(cachep, ac, node, &list);
733 spin_unlock_irq(&alc->lock);
734 slabs_destroy(cachep, &list);
735 }
736 }
737 }
738 }
739
740 static void drain_alien_cache(struct kmem_cache *cachep,
741 struct alien_cache **alien)
742 {
743 int i = 0;
744 struct alien_cache *alc;
745 struct array_cache *ac;
746 unsigned long flags;
747
748 for_each_online_node(i) {
749 alc = alien[i];
750 if (alc) {
751 LIST_HEAD(list);
752
753 ac = &alc->ac;
754 spin_lock_irqsave(&alc->lock, flags);
755 __drain_alien_cache(cachep, ac, i, &list);
756 spin_unlock_irqrestore(&alc->lock, flags);
757 slabs_destroy(cachep, &list);
758 }
759 }
760 }
761
762 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
763 int node, int page_node)
764 {
765 struct kmem_cache_node *n;
766 struct alien_cache *alien = NULL;
767 struct array_cache *ac;
768 LIST_HEAD(list);
769
770 n = get_node(cachep, node);
771 STATS_INC_NODEFREES(cachep);
772 if (n->alien && n->alien[page_node]) {
773 alien = n->alien[page_node];
774 ac = &alien->ac;
775 spin_lock(&alien->lock);
776 if (unlikely(ac->avail == ac->limit)) {
777 STATS_INC_ACOVERFLOW(cachep);
778 __drain_alien_cache(cachep, ac, page_node, &list);
779 }
780 __free_one(ac, objp);
781 spin_unlock(&alien->lock);
782 slabs_destroy(cachep, &list);
783 } else {
784 n = get_node(cachep, page_node);
785 spin_lock(&n->list_lock);
786 free_block(cachep, &objp, 1, page_node, &list);
787 spin_unlock(&n->list_lock);
788 slabs_destroy(cachep, &list);
789 }
790 return 1;
791 }
792
793 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
794 {
795 int page_node = page_to_nid(virt_to_page(objp));
796 int node = numa_mem_id();
797 /*
798 * Make sure we are not freeing a object from another node to the array
799 * cache on this cpu.
800 */
801 if (likely(node == page_node))
802 return 0;
803
804 return __cache_free_alien(cachep, objp, node, page_node);
805 }
806
807 /*
808 * Construct gfp mask to allocate from a specific node but do not reclaim or
809 * warn about failures.
810 */
811 static inline gfp_t gfp_exact_node(gfp_t flags)
812 {
813 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
814 }
815 #endif
816
817 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
818 {
819 struct kmem_cache_node *n;
820
821 /*
822 * Set up the kmem_cache_node for cpu before we can
823 * begin anything. Make sure some other cpu on this
824 * node has not already allocated this
825 */
826 n = get_node(cachep, node);
827 if (n) {
828 spin_lock_irq(&n->list_lock);
829 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
830 cachep->num;
831 spin_unlock_irq(&n->list_lock);
832
833 return 0;
834 }
835
836 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
837 if (!n)
838 return -ENOMEM;
839
840 kmem_cache_node_init(n);
841 n->next_reap = jiffies + REAPTIMEOUT_NODE +
842 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
843
844 n->free_limit =
845 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
846
847 /*
848 * The kmem_cache_nodes don't come and go as CPUs
849 * come and go. slab_mutex is sufficient
850 * protection here.
851 */
852 cachep->node[node] = n;
853
854 return 0;
855 }
856
857 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
858 /*
859 * Allocates and initializes node for a node on each slab cache, used for
860 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
861 * will be allocated off-node since memory is not yet online for the new node.
862 * When hotplugging memory or a cpu, existing node are not replaced if
863 * already in use.
864 *
865 * Must hold slab_mutex.
866 */
867 static int init_cache_node_node(int node)
868 {
869 int ret;
870 struct kmem_cache *cachep;
871
872 list_for_each_entry(cachep, &slab_caches, list) {
873 ret = init_cache_node(cachep, node, GFP_KERNEL);
874 if (ret)
875 return ret;
876 }
877
878 return 0;
879 }
880 #endif
881
882 static int setup_kmem_cache_node(struct kmem_cache *cachep,
883 int node, gfp_t gfp, bool force_change)
884 {
885 int ret = -ENOMEM;
886 struct kmem_cache_node *n;
887 struct array_cache *old_shared = NULL;
888 struct array_cache *new_shared = NULL;
889 struct alien_cache **new_alien = NULL;
890 LIST_HEAD(list);
891
892 if (use_alien_caches) {
893 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
894 if (!new_alien)
895 goto fail;
896 }
897
898 if (cachep->shared) {
899 new_shared = alloc_arraycache(node,
900 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
901 if (!new_shared)
902 goto fail;
903 }
904
905 ret = init_cache_node(cachep, node, gfp);
906 if (ret)
907 goto fail;
908
909 n = get_node(cachep, node);
910 spin_lock_irq(&n->list_lock);
911 if (n->shared && force_change) {
912 free_block(cachep, n->shared->entry,
913 n->shared->avail, node, &list);
914 n->shared->avail = 0;
915 }
916
917 if (!n->shared || force_change) {
918 old_shared = n->shared;
919 n->shared = new_shared;
920 new_shared = NULL;
921 }
922
923 if (!n->alien) {
924 n->alien = new_alien;
925 new_alien = NULL;
926 }
927
928 spin_unlock_irq(&n->list_lock);
929 slabs_destroy(cachep, &list);
930
931 /*
932 * To protect lockless access to n->shared during irq disabled context.
933 * If n->shared isn't NULL in irq disabled context, accessing to it is
934 * guaranteed to be valid until irq is re-enabled, because it will be
935 * freed after synchronize_rcu().
936 */
937 if (old_shared && force_change)
938 synchronize_rcu();
939
940 fail:
941 kfree(old_shared);
942 kfree(new_shared);
943 free_alien_cache(new_alien);
944
945 return ret;
946 }
947
948 #ifdef CONFIG_SMP
949
950 static void cpuup_canceled(long cpu)
951 {
952 struct kmem_cache *cachep;
953 struct kmem_cache_node *n = NULL;
954 int node = cpu_to_mem(cpu);
955 const struct cpumask *mask = cpumask_of_node(node);
956
957 list_for_each_entry(cachep, &slab_caches, list) {
958 struct array_cache *nc;
959 struct array_cache *shared;
960 struct alien_cache **alien;
961 LIST_HEAD(list);
962
963 n = get_node(cachep, node);
964 if (!n)
965 continue;
966
967 spin_lock_irq(&n->list_lock);
968
969 /* Free limit for this kmem_cache_node */
970 n->free_limit -= cachep->batchcount;
971
972 /* cpu is dead; no one can alloc from it. */
973 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
974 free_block(cachep, nc->entry, nc->avail, node, &list);
975 nc->avail = 0;
976
977 if (!cpumask_empty(mask)) {
978 spin_unlock_irq(&n->list_lock);
979 goto free_slab;
980 }
981
982 shared = n->shared;
983 if (shared) {
984 free_block(cachep, shared->entry,
985 shared->avail, node, &list);
986 n->shared = NULL;
987 }
988
989 alien = n->alien;
990 n->alien = NULL;
991
992 spin_unlock_irq(&n->list_lock);
993
994 kfree(shared);
995 if (alien) {
996 drain_alien_cache(cachep, alien);
997 free_alien_cache(alien);
998 }
999
1000 free_slab:
1001 slabs_destroy(cachep, &list);
1002 }
1003 /*
1004 * In the previous loop, all the objects were freed to
1005 * the respective cache's slabs, now we can go ahead and
1006 * shrink each nodelist to its limit.
1007 */
1008 list_for_each_entry(cachep, &slab_caches, list) {
1009 n = get_node(cachep, node);
1010 if (!n)
1011 continue;
1012 drain_freelist(cachep, n, INT_MAX);
1013 }
1014 }
1015
1016 static int cpuup_prepare(long cpu)
1017 {
1018 struct kmem_cache *cachep;
1019 int node = cpu_to_mem(cpu);
1020 int err;
1021
1022 /*
1023 * We need to do this right in the beginning since
1024 * alloc_arraycache's are going to use this list.
1025 * kmalloc_node allows us to add the slab to the right
1026 * kmem_cache_node and not this cpu's kmem_cache_node
1027 */
1028 err = init_cache_node_node(node);
1029 if (err < 0)
1030 goto bad;
1031
1032 /*
1033 * Now we can go ahead with allocating the shared arrays and
1034 * array caches
1035 */
1036 list_for_each_entry(cachep, &slab_caches, list) {
1037 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1038 if (err)
1039 goto bad;
1040 }
1041
1042 return 0;
1043 bad:
1044 cpuup_canceled(cpu);
1045 return -ENOMEM;
1046 }
1047
1048 int slab_prepare_cpu(unsigned int cpu)
1049 {
1050 int err;
1051
1052 mutex_lock(&slab_mutex);
1053 err = cpuup_prepare(cpu);
1054 mutex_unlock(&slab_mutex);
1055 return err;
1056 }
1057
1058 /*
1059 * This is called for a failed online attempt and for a successful
1060 * offline.
1061 *
1062 * Even if all the cpus of a node are down, we don't free the
1063 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1064 * a kmalloc allocation from another cpu for memory from the node of
1065 * the cpu going down. The kmem_cache_node structure is usually allocated from
1066 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1067 */
1068 int slab_dead_cpu(unsigned int cpu)
1069 {
1070 mutex_lock(&slab_mutex);
1071 cpuup_canceled(cpu);
1072 mutex_unlock(&slab_mutex);
1073 return 0;
1074 }
1075 #endif
1076
1077 static int slab_online_cpu(unsigned int cpu)
1078 {
1079 start_cpu_timer(cpu);
1080 return 0;
1081 }
1082
1083 static int slab_offline_cpu(unsigned int cpu)
1084 {
1085 /*
1086 * Shutdown cache reaper. Note that the slab_mutex is held so
1087 * that if cache_reap() is invoked it cannot do anything
1088 * expensive but will only modify reap_work and reschedule the
1089 * timer.
1090 */
1091 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1092 /* Now the cache_reaper is guaranteed to be not running. */
1093 per_cpu(slab_reap_work, cpu).work.func = NULL;
1094 return 0;
1095 }
1096
1097 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1098 /*
1099 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1100 * Returns -EBUSY if all objects cannot be drained so that the node is not
1101 * removed.
1102 *
1103 * Must hold slab_mutex.
1104 */
1105 static int __meminit drain_cache_node_node(int node)
1106 {
1107 struct kmem_cache *cachep;
1108 int ret = 0;
1109
1110 list_for_each_entry(cachep, &slab_caches, list) {
1111 struct kmem_cache_node *n;
1112
1113 n = get_node(cachep, node);
1114 if (!n)
1115 continue;
1116
1117 drain_freelist(cachep, n, INT_MAX);
1118
1119 if (!list_empty(&n->slabs_full) ||
1120 !list_empty(&n->slabs_partial)) {
1121 ret = -EBUSY;
1122 break;
1123 }
1124 }
1125 return ret;
1126 }
1127
1128 static int __meminit slab_memory_callback(struct notifier_block *self,
1129 unsigned long action, void *arg)
1130 {
1131 struct memory_notify *mnb = arg;
1132 int ret = 0;
1133 int nid;
1134
1135 nid = mnb->status_change_nid;
1136 if (nid < 0)
1137 goto out;
1138
1139 switch (action) {
1140 case MEM_GOING_ONLINE:
1141 mutex_lock(&slab_mutex);
1142 ret = init_cache_node_node(nid);
1143 mutex_unlock(&slab_mutex);
1144 break;
1145 case MEM_GOING_OFFLINE:
1146 mutex_lock(&slab_mutex);
1147 ret = drain_cache_node_node(nid);
1148 mutex_unlock(&slab_mutex);
1149 break;
1150 case MEM_ONLINE:
1151 case MEM_OFFLINE:
1152 case MEM_CANCEL_ONLINE:
1153 case MEM_CANCEL_OFFLINE:
1154 break;
1155 }
1156 out:
1157 return notifier_from_errno(ret);
1158 }
1159 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1160
1161 /*
1162 * swap the static kmem_cache_node with kmalloced memory
1163 */
1164 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1165 int nodeid)
1166 {
1167 struct kmem_cache_node *ptr;
1168
1169 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1170 BUG_ON(!ptr);
1171
1172 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1173 /*
1174 * Do not assume that spinlocks can be initialized via memcpy:
1175 */
1176 spin_lock_init(&ptr->list_lock);
1177
1178 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1179 cachep->node[nodeid] = ptr;
1180 }
1181
1182 /*
1183 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1184 * size of kmem_cache_node.
1185 */
1186 static void __init set_up_node(struct kmem_cache *cachep, int index)
1187 {
1188 int node;
1189
1190 for_each_online_node(node) {
1191 cachep->node[node] = &init_kmem_cache_node[index + node];
1192 cachep->node[node]->next_reap = jiffies +
1193 REAPTIMEOUT_NODE +
1194 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1195 }
1196 }
1197
1198 /*
1199 * Initialisation. Called after the page allocator have been initialised and
1200 * before smp_init().
1201 */
1202 void __init kmem_cache_init(void)
1203 {
1204 int i;
1205
1206 kmem_cache = &kmem_cache_boot;
1207
1208 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1209 use_alien_caches = 0;
1210
1211 for (i = 0; i < NUM_INIT_LISTS; i++)
1212 kmem_cache_node_init(&init_kmem_cache_node[i]);
1213
1214 /*
1215 * Fragmentation resistance on low memory - only use bigger
1216 * page orders on machines with more than 32MB of memory if
1217 * not overridden on the command line.
1218 */
1219 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1220 slab_max_order = SLAB_MAX_ORDER_HI;
1221
1222 /* Bootstrap is tricky, because several objects are allocated
1223 * from caches that do not exist yet:
1224 * 1) initialize the kmem_cache cache: it contains the struct
1225 * kmem_cache structures of all caches, except kmem_cache itself:
1226 * kmem_cache is statically allocated.
1227 * Initially an __init data area is used for the head array and the
1228 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1229 * array at the end of the bootstrap.
1230 * 2) Create the first kmalloc cache.
1231 * The struct kmem_cache for the new cache is allocated normally.
1232 * An __init data area is used for the head array.
1233 * 3) Create the remaining kmalloc caches, with minimally sized
1234 * head arrays.
1235 * 4) Replace the __init data head arrays for kmem_cache and the first
1236 * kmalloc cache with kmalloc allocated arrays.
1237 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1238 * the other cache's with kmalloc allocated memory.
1239 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1240 */
1241
1242 /* 1) create the kmem_cache */
1243
1244 /*
1245 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1246 */
1247 create_boot_cache(kmem_cache, "kmem_cache",
1248 offsetof(struct kmem_cache, node) +
1249 nr_node_ids * sizeof(struct kmem_cache_node *),
1250 SLAB_HWCACHE_ALIGN, 0, 0);
1251 list_add(&kmem_cache->list, &slab_caches);
1252 slab_state = PARTIAL;
1253
1254 /*
1255 * Initialize the caches that provide memory for the kmem_cache_node
1256 * structures first. Without this, further allocations will bug.
1257 */
1258 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1259 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1260 kmalloc_info[INDEX_NODE].size,
1261 ARCH_KMALLOC_FLAGS, 0,
1262 kmalloc_info[INDEX_NODE].size);
1263 slab_state = PARTIAL_NODE;
1264 setup_kmalloc_cache_index_table();
1265
1266 slab_early_init = 0;
1267
1268 /* 5) Replace the bootstrap kmem_cache_node */
1269 {
1270 int nid;
1271
1272 for_each_online_node(nid) {
1273 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1274
1275 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1276 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1277 }
1278 }
1279
1280 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1281 }
1282
1283 void __init kmem_cache_init_late(void)
1284 {
1285 struct kmem_cache *cachep;
1286
1287 /* 6) resize the head arrays to their final sizes */
1288 mutex_lock(&slab_mutex);
1289 list_for_each_entry(cachep, &slab_caches, list)
1290 if (enable_cpucache(cachep, GFP_NOWAIT))
1291 BUG();
1292 mutex_unlock(&slab_mutex);
1293
1294 /* Done! */
1295 slab_state = FULL;
1296
1297 #ifdef CONFIG_NUMA
1298 /*
1299 * Register a memory hotplug callback that initializes and frees
1300 * node.
1301 */
1302 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1303 #endif
1304
1305 /*
1306 * The reap timers are started later, with a module init call: That part
1307 * of the kernel is not yet operational.
1308 */
1309 }
1310
1311 static int __init cpucache_init(void)
1312 {
1313 int ret;
1314
1315 /*
1316 * Register the timers that return unneeded pages to the page allocator
1317 */
1318 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1319 slab_online_cpu, slab_offline_cpu);
1320 WARN_ON(ret < 0);
1321
1322 return 0;
1323 }
1324 __initcall(cpucache_init);
1325
1326 static noinline void
1327 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1328 {
1329 #if DEBUG
1330 struct kmem_cache_node *n;
1331 unsigned long flags;
1332 int node;
1333 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1334 DEFAULT_RATELIMIT_BURST);
1335
1336 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1337 return;
1338
1339 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1340 nodeid, gfpflags, &gfpflags);
1341 pr_warn(" cache: %s, object size: %d, order: %d\n",
1342 cachep->name, cachep->size, cachep->gfporder);
1343
1344 for_each_kmem_cache_node(cachep, node, n) {
1345 unsigned long total_slabs, free_slabs, free_objs;
1346
1347 spin_lock_irqsave(&n->list_lock, flags);
1348 total_slabs = n->total_slabs;
1349 free_slabs = n->free_slabs;
1350 free_objs = n->free_objects;
1351 spin_unlock_irqrestore(&n->list_lock, flags);
1352
1353 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1354 node, total_slabs - free_slabs, total_slabs,
1355 (total_slabs * cachep->num) - free_objs,
1356 total_slabs * cachep->num);
1357 }
1358 #endif
1359 }
1360
1361 /*
1362 * Interface to system's page allocator. No need to hold the
1363 * kmem_cache_node ->list_lock.
1364 *
1365 * If we requested dmaable memory, we will get it. Even if we
1366 * did not request dmaable memory, we might get it, but that
1367 * would be relatively rare and ignorable.
1368 */
1369 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1370 int nodeid)
1371 {
1372 struct page *page;
1373
1374 flags |= cachep->allocflags;
1375
1376 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1377 if (!page) {
1378 slab_out_of_memory(cachep, flags, nodeid);
1379 return NULL;
1380 }
1381
1382 account_slab_page(page, cachep->gfporder, cachep);
1383 __SetPageSlab(page);
1384 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1385 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1386 SetPageSlabPfmemalloc(page);
1387
1388 return page;
1389 }
1390
1391 /*
1392 * Interface to system's page release.
1393 */
1394 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1395 {
1396 int order = cachep->gfporder;
1397
1398 BUG_ON(!PageSlab(page));
1399 __ClearPageSlabPfmemalloc(page);
1400 __ClearPageSlab(page);
1401 page_mapcount_reset(page);
1402 /* In union with page->mapping where page allocator expects NULL */
1403 page->slab_cache = NULL;
1404
1405 if (current->reclaim_state)
1406 current->reclaim_state->reclaimed_slab += 1 << order;
1407 unaccount_slab_page(page, order, cachep);
1408 __free_pages(page, order);
1409 }
1410
1411 static void kmem_rcu_free(struct rcu_head *head)
1412 {
1413 struct kmem_cache *cachep;
1414 struct page *page;
1415
1416 page = container_of(head, struct page, rcu_head);
1417 cachep = page->slab_cache;
1418
1419 kmem_freepages(cachep, page);
1420 }
1421
1422 #if DEBUG
1423 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1424 {
1425 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1426 (cachep->size % PAGE_SIZE) == 0)
1427 return true;
1428
1429 return false;
1430 }
1431
1432 #ifdef CONFIG_DEBUG_PAGEALLOC
1433 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1434 {
1435 if (!is_debug_pagealloc_cache(cachep))
1436 return;
1437
1438 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1439 }
1440
1441 #else
1442 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1443 int map) {}
1444
1445 #endif
1446
1447 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1448 {
1449 int size = cachep->object_size;
1450 addr = &((char *)addr)[obj_offset(cachep)];
1451
1452 memset(addr, val, size);
1453 *(unsigned char *)(addr + size - 1) = POISON_END;
1454 }
1455
1456 static void dump_line(char *data, int offset, int limit)
1457 {
1458 int i;
1459 unsigned char error = 0;
1460 int bad_count = 0;
1461
1462 pr_err("%03x: ", offset);
1463 for (i = 0; i < limit; i++) {
1464 if (data[offset + i] != POISON_FREE) {
1465 error = data[offset + i];
1466 bad_count++;
1467 }
1468 }
1469 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1470 &data[offset], limit, 1);
1471
1472 if (bad_count == 1) {
1473 error ^= POISON_FREE;
1474 if (!(error & (error - 1))) {
1475 pr_err("Single bit error detected. Probably bad RAM.\n");
1476 #ifdef CONFIG_X86
1477 pr_err("Run memtest86+ or a similar memory test tool.\n");
1478 #else
1479 pr_err("Run a memory test tool.\n");
1480 #endif
1481 }
1482 }
1483 }
1484 #endif
1485
1486 #if DEBUG
1487
1488 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1489 {
1490 int i, size;
1491 char *realobj;
1492
1493 if (cachep->flags & SLAB_RED_ZONE) {
1494 pr_err("Redzone: 0x%llx/0x%llx\n",
1495 *dbg_redzone1(cachep, objp),
1496 *dbg_redzone2(cachep, objp));
1497 }
1498
1499 if (cachep->flags & SLAB_STORE_USER)
1500 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1501 realobj = (char *)objp + obj_offset(cachep);
1502 size = cachep->object_size;
1503 for (i = 0; i < size && lines; i += 16, lines--) {
1504 int limit;
1505 limit = 16;
1506 if (i + limit > size)
1507 limit = size - i;
1508 dump_line(realobj, i, limit);
1509 }
1510 }
1511
1512 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1513 {
1514 char *realobj;
1515 int size, i;
1516 int lines = 0;
1517
1518 if (is_debug_pagealloc_cache(cachep))
1519 return;
1520
1521 realobj = (char *)objp + obj_offset(cachep);
1522 size = cachep->object_size;
1523
1524 for (i = 0; i < size; i++) {
1525 char exp = POISON_FREE;
1526 if (i == size - 1)
1527 exp = POISON_END;
1528 if (realobj[i] != exp) {
1529 int limit;
1530 /* Mismatch ! */
1531 /* Print header */
1532 if (lines == 0) {
1533 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1534 print_tainted(), cachep->name,
1535 realobj, size);
1536 print_objinfo(cachep, objp, 0);
1537 }
1538 /* Hexdump the affected line */
1539 i = (i / 16) * 16;
1540 limit = 16;
1541 if (i + limit > size)
1542 limit = size - i;
1543 dump_line(realobj, i, limit);
1544 i += 16;
1545 lines++;
1546 /* Limit to 5 lines */
1547 if (lines > 5)
1548 break;
1549 }
1550 }
1551 if (lines != 0) {
1552 /* Print some data about the neighboring objects, if they
1553 * exist:
1554 */
1555 struct page *page = virt_to_head_page(objp);
1556 unsigned int objnr;
1557
1558 objnr = obj_to_index(cachep, page, objp);
1559 if (objnr) {
1560 objp = index_to_obj(cachep, page, objnr - 1);
1561 realobj = (char *)objp + obj_offset(cachep);
1562 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1563 print_objinfo(cachep, objp, 2);
1564 }
1565 if (objnr + 1 < cachep->num) {
1566 objp = index_to_obj(cachep, page, objnr + 1);
1567 realobj = (char *)objp + obj_offset(cachep);
1568 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1569 print_objinfo(cachep, objp, 2);
1570 }
1571 }
1572 }
1573 #endif
1574
1575 #if DEBUG
1576 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1577 struct page *page)
1578 {
1579 int i;
1580
1581 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1582 poison_obj(cachep, page->freelist - obj_offset(cachep),
1583 POISON_FREE);
1584 }
1585
1586 for (i = 0; i < cachep->num; i++) {
1587 void *objp = index_to_obj(cachep, page, i);
1588
1589 if (cachep->flags & SLAB_POISON) {
1590 check_poison_obj(cachep, objp);
1591 slab_kernel_map(cachep, objp, 1);
1592 }
1593 if (cachep->flags & SLAB_RED_ZONE) {
1594 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1595 slab_error(cachep, "start of a freed object was overwritten");
1596 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1597 slab_error(cachep, "end of a freed object was overwritten");
1598 }
1599 }
1600 }
1601 #else
1602 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1603 struct page *page)
1604 {
1605 }
1606 #endif
1607
1608 /**
1609 * slab_destroy - destroy and release all objects in a slab
1610 * @cachep: cache pointer being destroyed
1611 * @page: page pointer being destroyed
1612 *
1613 * Destroy all the objs in a slab page, and release the mem back to the system.
1614 * Before calling the slab page must have been unlinked from the cache. The
1615 * kmem_cache_node ->list_lock is not held/needed.
1616 */
1617 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1618 {
1619 void *freelist;
1620
1621 freelist = page->freelist;
1622 slab_destroy_debugcheck(cachep, page);
1623 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1624 call_rcu(&page->rcu_head, kmem_rcu_free);
1625 else
1626 kmem_freepages(cachep, page);
1627
1628 /*
1629 * From now on, we don't use freelist
1630 * although actual page can be freed in rcu context
1631 */
1632 if (OFF_SLAB(cachep))
1633 kmem_cache_free(cachep->freelist_cache, freelist);
1634 }
1635
1636 /*
1637 * Update the size of the caches before calling slabs_destroy as it may
1638 * recursively call kfree.
1639 */
1640 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1641 {
1642 struct page *page, *n;
1643
1644 list_for_each_entry_safe(page, n, list, slab_list) {
1645 list_del(&page->slab_list);
1646 slab_destroy(cachep, page);
1647 }
1648 }
1649
1650 /**
1651 * calculate_slab_order - calculate size (page order) of slabs
1652 * @cachep: pointer to the cache that is being created
1653 * @size: size of objects to be created in this cache.
1654 * @flags: slab allocation flags
1655 *
1656 * Also calculates the number of objects per slab.
1657 *
1658 * This could be made much more intelligent. For now, try to avoid using
1659 * high order pages for slabs. When the gfp() functions are more friendly
1660 * towards high-order requests, this should be changed.
1661 *
1662 * Return: number of left-over bytes in a slab
1663 */
1664 static size_t calculate_slab_order(struct kmem_cache *cachep,
1665 size_t size, slab_flags_t flags)
1666 {
1667 size_t left_over = 0;
1668 int gfporder;
1669
1670 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1671 unsigned int num;
1672 size_t remainder;
1673
1674 num = cache_estimate(gfporder, size, flags, &remainder);
1675 if (!num)
1676 continue;
1677
1678 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1679 if (num > SLAB_OBJ_MAX_NUM)
1680 break;
1681
1682 if (flags & CFLGS_OFF_SLAB) {
1683 struct kmem_cache *freelist_cache;
1684 size_t freelist_size;
1685
1686 freelist_size = num * sizeof(freelist_idx_t);
1687 freelist_cache = kmalloc_slab(freelist_size, 0u);
1688 if (!freelist_cache)
1689 continue;
1690
1691 /*
1692 * Needed to avoid possible looping condition
1693 * in cache_grow_begin()
1694 */
1695 if (OFF_SLAB(freelist_cache))
1696 continue;
1697
1698 /* check if off slab has enough benefit */
1699 if (freelist_cache->size > cachep->size / 2)
1700 continue;
1701 }
1702
1703 /* Found something acceptable - save it away */
1704 cachep->num = num;
1705 cachep->gfporder = gfporder;
1706 left_over = remainder;
1707
1708 /*
1709 * A VFS-reclaimable slab tends to have most allocations
1710 * as GFP_NOFS and we really don't want to have to be allocating
1711 * higher-order pages when we are unable to shrink dcache.
1712 */
1713 if (flags & SLAB_RECLAIM_ACCOUNT)
1714 break;
1715
1716 /*
1717 * Large number of objects is good, but very large slabs are
1718 * currently bad for the gfp()s.
1719 */
1720 if (gfporder >= slab_max_order)
1721 break;
1722
1723 /*
1724 * Acceptable internal fragmentation?
1725 */
1726 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1727 break;
1728 }
1729 return left_over;
1730 }
1731
1732 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1733 struct kmem_cache *cachep, int entries, int batchcount)
1734 {
1735 int cpu;
1736 size_t size;
1737 struct array_cache __percpu *cpu_cache;
1738
1739 size = sizeof(void *) * entries + sizeof(struct array_cache);
1740 cpu_cache = __alloc_percpu(size, sizeof(void *));
1741
1742 if (!cpu_cache)
1743 return NULL;
1744
1745 for_each_possible_cpu(cpu) {
1746 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1747 entries, batchcount);
1748 }
1749
1750 return cpu_cache;
1751 }
1752
1753 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1754 {
1755 if (slab_state >= FULL)
1756 return enable_cpucache(cachep, gfp);
1757
1758 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1759 if (!cachep->cpu_cache)
1760 return 1;
1761
1762 if (slab_state == DOWN) {
1763 /* Creation of first cache (kmem_cache). */
1764 set_up_node(kmem_cache, CACHE_CACHE);
1765 } else if (slab_state == PARTIAL) {
1766 /* For kmem_cache_node */
1767 set_up_node(cachep, SIZE_NODE);
1768 } else {
1769 int node;
1770
1771 for_each_online_node(node) {
1772 cachep->node[node] = kmalloc_node(
1773 sizeof(struct kmem_cache_node), gfp, node);
1774 BUG_ON(!cachep->node[node]);
1775 kmem_cache_node_init(cachep->node[node]);
1776 }
1777 }
1778
1779 cachep->node[numa_mem_id()]->next_reap =
1780 jiffies + REAPTIMEOUT_NODE +
1781 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1782
1783 cpu_cache_get(cachep)->avail = 0;
1784 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1785 cpu_cache_get(cachep)->batchcount = 1;
1786 cpu_cache_get(cachep)->touched = 0;
1787 cachep->batchcount = 1;
1788 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1789 return 0;
1790 }
1791
1792 slab_flags_t kmem_cache_flags(unsigned int object_size,
1793 slab_flags_t flags, const char *name)
1794 {
1795 return flags;
1796 }
1797
1798 struct kmem_cache *
1799 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1800 slab_flags_t flags, void (*ctor)(void *))
1801 {
1802 struct kmem_cache *cachep;
1803
1804 cachep = find_mergeable(size, align, flags, name, ctor);
1805 if (cachep) {
1806 cachep->refcount++;
1807
1808 /*
1809 * Adjust the object sizes so that we clear
1810 * the complete object on kzalloc.
1811 */
1812 cachep->object_size = max_t(int, cachep->object_size, size);
1813 }
1814 return cachep;
1815 }
1816
1817 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1818 size_t size, slab_flags_t flags)
1819 {
1820 size_t left;
1821
1822 cachep->num = 0;
1823
1824 /*
1825 * If slab auto-initialization on free is enabled, store the freelist
1826 * off-slab, so that its contents don't end up in one of the allocated
1827 * objects.
1828 */
1829 if (unlikely(slab_want_init_on_free(cachep)))
1830 return false;
1831
1832 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1833 return false;
1834
1835 left = calculate_slab_order(cachep, size,
1836 flags | CFLGS_OBJFREELIST_SLAB);
1837 if (!cachep->num)
1838 return false;
1839
1840 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1841 return false;
1842
1843 cachep->colour = left / cachep->colour_off;
1844
1845 return true;
1846 }
1847
1848 static bool set_off_slab_cache(struct kmem_cache *cachep,
1849 size_t size, slab_flags_t flags)
1850 {
1851 size_t left;
1852
1853 cachep->num = 0;
1854
1855 /*
1856 * Always use on-slab management when SLAB_NOLEAKTRACE
1857 * to avoid recursive calls into kmemleak.
1858 */
1859 if (flags & SLAB_NOLEAKTRACE)
1860 return false;
1861
1862 /*
1863 * Size is large, assume best to place the slab management obj
1864 * off-slab (should allow better packing of objs).
1865 */
1866 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1867 if (!cachep->num)
1868 return false;
1869
1870 /*
1871 * If the slab has been placed off-slab, and we have enough space then
1872 * move it on-slab. This is at the expense of any extra colouring.
1873 */
1874 if (left >= cachep->num * sizeof(freelist_idx_t))
1875 return false;
1876
1877 cachep->colour = left / cachep->colour_off;
1878
1879 return true;
1880 }
1881
1882 static bool set_on_slab_cache(struct kmem_cache *cachep,
1883 size_t size, slab_flags_t flags)
1884 {
1885 size_t left;
1886
1887 cachep->num = 0;
1888
1889 left = calculate_slab_order(cachep, size, flags);
1890 if (!cachep->num)
1891 return false;
1892
1893 cachep->colour = left / cachep->colour_off;
1894
1895 return true;
1896 }
1897
1898 /**
1899 * __kmem_cache_create - Create a cache.
1900 * @cachep: cache management descriptor
1901 * @flags: SLAB flags
1902 *
1903 * Returns a ptr to the cache on success, NULL on failure.
1904 * Cannot be called within a int, but can be interrupted.
1905 * The @ctor is run when new pages are allocated by the cache.
1906 *
1907 * The flags are
1908 *
1909 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1910 * to catch references to uninitialised memory.
1911 *
1912 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1913 * for buffer overruns.
1914 *
1915 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1916 * cacheline. This can be beneficial if you're counting cycles as closely
1917 * as davem.
1918 *
1919 * Return: a pointer to the created cache or %NULL in case of error
1920 */
1921 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1922 {
1923 size_t ralign = BYTES_PER_WORD;
1924 gfp_t gfp;
1925 int err;
1926 unsigned int size = cachep->size;
1927
1928 #if DEBUG
1929 #if FORCED_DEBUG
1930 /*
1931 * Enable redzoning and last user accounting, except for caches with
1932 * large objects, if the increased size would increase the object size
1933 * above the next power of two: caches with object sizes just above a
1934 * power of two have a significant amount of internal fragmentation.
1935 */
1936 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1937 2 * sizeof(unsigned long long)))
1938 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1939 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1940 flags |= SLAB_POISON;
1941 #endif
1942 #endif
1943
1944 /*
1945 * Check that size is in terms of words. This is needed to avoid
1946 * unaligned accesses for some archs when redzoning is used, and makes
1947 * sure any on-slab bufctl's are also correctly aligned.
1948 */
1949 size = ALIGN(size, BYTES_PER_WORD);
1950
1951 if (flags & SLAB_RED_ZONE) {
1952 ralign = REDZONE_ALIGN;
1953 /* If redzoning, ensure that the second redzone is suitably
1954 * aligned, by adjusting the object size accordingly. */
1955 size = ALIGN(size, REDZONE_ALIGN);
1956 }
1957
1958 /* 3) caller mandated alignment */
1959 if (ralign < cachep->align) {
1960 ralign = cachep->align;
1961 }
1962 /* disable debug if necessary */
1963 if (ralign > __alignof__(unsigned long long))
1964 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1965 /*
1966 * 4) Store it.
1967 */
1968 cachep->align = ralign;
1969 cachep->colour_off = cache_line_size();
1970 /* Offset must be a multiple of the alignment. */
1971 if (cachep->colour_off < cachep->align)
1972 cachep->colour_off = cachep->align;
1973
1974 if (slab_is_available())
1975 gfp = GFP_KERNEL;
1976 else
1977 gfp = GFP_NOWAIT;
1978
1979 #if DEBUG
1980
1981 /*
1982 * Both debugging options require word-alignment which is calculated
1983 * into align above.
1984 */
1985 if (flags & SLAB_RED_ZONE) {
1986 /* add space for red zone words */
1987 cachep->obj_offset += sizeof(unsigned long long);
1988 size += 2 * sizeof(unsigned long long);
1989 }
1990 if (flags & SLAB_STORE_USER) {
1991 /* user store requires one word storage behind the end of
1992 * the real object. But if the second red zone needs to be
1993 * aligned to 64 bits, we must allow that much space.
1994 */
1995 if (flags & SLAB_RED_ZONE)
1996 size += REDZONE_ALIGN;
1997 else
1998 size += BYTES_PER_WORD;
1999 }
2000 #endif
2001
2002 kasan_cache_create(cachep, &size, &flags);
2003
2004 size = ALIGN(size, cachep->align);
2005 /*
2006 * We should restrict the number of objects in a slab to implement
2007 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2008 */
2009 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2010 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2011
2012 #if DEBUG
2013 /*
2014 * To activate debug pagealloc, off-slab management is necessary
2015 * requirement. In early phase of initialization, small sized slab
2016 * doesn't get initialized so it would not be possible. So, we need
2017 * to check size >= 256. It guarantees that all necessary small
2018 * sized slab is initialized in current slab initialization sequence.
2019 */
2020 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2021 size >= 256 && cachep->object_size > cache_line_size()) {
2022 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2023 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2024
2025 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2026 flags |= CFLGS_OFF_SLAB;
2027 cachep->obj_offset += tmp_size - size;
2028 size = tmp_size;
2029 goto done;
2030 }
2031 }
2032 }
2033 #endif
2034
2035 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2036 flags |= CFLGS_OBJFREELIST_SLAB;
2037 goto done;
2038 }
2039
2040 if (set_off_slab_cache(cachep, size, flags)) {
2041 flags |= CFLGS_OFF_SLAB;
2042 goto done;
2043 }
2044
2045 if (set_on_slab_cache(cachep, size, flags))
2046 goto done;
2047
2048 return -E2BIG;
2049
2050 done:
2051 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2052 cachep->flags = flags;
2053 cachep->allocflags = __GFP_COMP;
2054 if (flags & SLAB_CACHE_DMA)
2055 cachep->allocflags |= GFP_DMA;
2056 if (flags & SLAB_CACHE_DMA32)
2057 cachep->allocflags |= GFP_DMA32;
2058 if (flags & SLAB_RECLAIM_ACCOUNT)
2059 cachep->allocflags |= __GFP_RECLAIMABLE;
2060 cachep->size = size;
2061 cachep->reciprocal_buffer_size = reciprocal_value(size);
2062
2063 #if DEBUG
2064 /*
2065 * If we're going to use the generic kernel_map_pages()
2066 * poisoning, then it's going to smash the contents of
2067 * the redzone and userword anyhow, so switch them off.
2068 */
2069 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2070 (cachep->flags & SLAB_POISON) &&
2071 is_debug_pagealloc_cache(cachep))
2072 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2073 #endif
2074
2075 if (OFF_SLAB(cachep)) {
2076 cachep->freelist_cache =
2077 kmalloc_slab(cachep->freelist_size, 0u);
2078 }
2079
2080 err = setup_cpu_cache(cachep, gfp);
2081 if (err) {
2082 __kmem_cache_release(cachep);
2083 return err;
2084 }
2085
2086 return 0;
2087 }
2088
2089 #if DEBUG
2090 static void check_irq_off(void)
2091 {
2092 BUG_ON(!irqs_disabled());
2093 }
2094
2095 static void check_irq_on(void)
2096 {
2097 BUG_ON(irqs_disabled());
2098 }
2099
2100 static void check_mutex_acquired(void)
2101 {
2102 BUG_ON(!mutex_is_locked(&slab_mutex));
2103 }
2104
2105 static void check_spinlock_acquired(struct kmem_cache *cachep)
2106 {
2107 #ifdef CONFIG_SMP
2108 check_irq_off();
2109 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2110 #endif
2111 }
2112
2113 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2114 {
2115 #ifdef CONFIG_SMP
2116 check_irq_off();
2117 assert_spin_locked(&get_node(cachep, node)->list_lock);
2118 #endif
2119 }
2120
2121 #else
2122 #define check_irq_off() do { } while(0)
2123 #define check_irq_on() do { } while(0)
2124 #define check_mutex_acquired() do { } while(0)
2125 #define check_spinlock_acquired(x) do { } while(0)
2126 #define check_spinlock_acquired_node(x, y) do { } while(0)
2127 #endif
2128
2129 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2130 int node, bool free_all, struct list_head *list)
2131 {
2132 int tofree;
2133
2134 if (!ac || !ac->avail)
2135 return;
2136
2137 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2138 if (tofree > ac->avail)
2139 tofree = (ac->avail + 1) / 2;
2140
2141 free_block(cachep, ac->entry, tofree, node, list);
2142 ac->avail -= tofree;
2143 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2144 }
2145
2146 static void do_drain(void *arg)
2147 {
2148 struct kmem_cache *cachep = arg;
2149 struct array_cache *ac;
2150 int node = numa_mem_id();
2151 struct kmem_cache_node *n;
2152 LIST_HEAD(list);
2153
2154 check_irq_off();
2155 ac = cpu_cache_get(cachep);
2156 n = get_node(cachep, node);
2157 spin_lock(&n->list_lock);
2158 free_block(cachep, ac->entry, ac->avail, node, &list);
2159 spin_unlock(&n->list_lock);
2160 ac->avail = 0;
2161 slabs_destroy(cachep, &list);
2162 }
2163
2164 static void drain_cpu_caches(struct kmem_cache *cachep)
2165 {
2166 struct kmem_cache_node *n;
2167 int node;
2168 LIST_HEAD(list);
2169
2170 on_each_cpu(do_drain, cachep, 1);
2171 check_irq_on();
2172 for_each_kmem_cache_node(cachep, node, n)
2173 if (n->alien)
2174 drain_alien_cache(cachep, n->alien);
2175
2176 for_each_kmem_cache_node(cachep, node, n) {
2177 spin_lock_irq(&n->list_lock);
2178 drain_array_locked(cachep, n->shared, node, true, &list);
2179 spin_unlock_irq(&n->list_lock);
2180
2181 slabs_destroy(cachep, &list);
2182 }
2183 }
2184
2185 /*
2186 * Remove slabs from the list of free slabs.
2187 * Specify the number of slabs to drain in tofree.
2188 *
2189 * Returns the actual number of slabs released.
2190 */
2191 static int drain_freelist(struct kmem_cache *cache,
2192 struct kmem_cache_node *n, int tofree)
2193 {
2194 struct list_head *p;
2195 int nr_freed;
2196 struct page *page;
2197
2198 nr_freed = 0;
2199 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2200
2201 spin_lock_irq(&n->list_lock);
2202 p = n->slabs_free.prev;
2203 if (p == &n->slabs_free) {
2204 spin_unlock_irq(&n->list_lock);
2205 goto out;
2206 }
2207
2208 page = list_entry(p, struct page, slab_list);
2209 list_del(&page->slab_list);
2210 n->free_slabs--;
2211 n->total_slabs--;
2212 /*
2213 * Safe to drop the lock. The slab is no longer linked
2214 * to the cache.
2215 */
2216 n->free_objects -= cache->num;
2217 spin_unlock_irq(&n->list_lock);
2218 slab_destroy(cache, page);
2219 nr_freed++;
2220 }
2221 out:
2222 return nr_freed;
2223 }
2224
2225 bool __kmem_cache_empty(struct kmem_cache *s)
2226 {
2227 int node;
2228 struct kmem_cache_node *n;
2229
2230 for_each_kmem_cache_node(s, node, n)
2231 if (!list_empty(&n->slabs_full) ||
2232 !list_empty(&n->slabs_partial))
2233 return false;
2234 return true;
2235 }
2236
2237 int __kmem_cache_shrink(struct kmem_cache *cachep)
2238 {
2239 int ret = 0;
2240 int node;
2241 struct kmem_cache_node *n;
2242
2243 drain_cpu_caches(cachep);
2244
2245 check_irq_on();
2246 for_each_kmem_cache_node(cachep, node, n) {
2247 drain_freelist(cachep, n, INT_MAX);
2248
2249 ret += !list_empty(&n->slabs_full) ||
2250 !list_empty(&n->slabs_partial);
2251 }
2252 return (ret ? 1 : 0);
2253 }
2254
2255 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2256 {
2257 return __kmem_cache_shrink(cachep);
2258 }
2259
2260 void __kmem_cache_release(struct kmem_cache *cachep)
2261 {
2262 int i;
2263 struct kmem_cache_node *n;
2264
2265 cache_random_seq_destroy(cachep);
2266
2267 free_percpu(cachep->cpu_cache);
2268
2269 /* NUMA: free the node structures */
2270 for_each_kmem_cache_node(cachep, i, n) {
2271 kfree(n->shared);
2272 free_alien_cache(n->alien);
2273 kfree(n);
2274 cachep->node[i] = NULL;
2275 }
2276 }
2277
2278 /*
2279 * Get the memory for a slab management obj.
2280 *
2281 * For a slab cache when the slab descriptor is off-slab, the
2282 * slab descriptor can't come from the same cache which is being created,
2283 * Because if it is the case, that means we defer the creation of
2284 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2285 * And we eventually call down to __kmem_cache_create(), which
2286 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2287 * This is a "chicken-and-egg" problem.
2288 *
2289 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2290 * which are all initialized during kmem_cache_init().
2291 */
2292 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2293 struct page *page, int colour_off,
2294 gfp_t local_flags, int nodeid)
2295 {
2296 void *freelist;
2297 void *addr = page_address(page);
2298
2299 page->s_mem = addr + colour_off;
2300 page->active = 0;
2301
2302 if (OBJFREELIST_SLAB(cachep))
2303 freelist = NULL;
2304 else if (OFF_SLAB(cachep)) {
2305 /* Slab management obj is off-slab. */
2306 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2307 local_flags, nodeid);
2308 } else {
2309 /* We will use last bytes at the slab for freelist */
2310 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2311 cachep->freelist_size;
2312 }
2313
2314 return freelist;
2315 }
2316
2317 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2318 {
2319 return ((freelist_idx_t *)page->freelist)[idx];
2320 }
2321
2322 static inline void set_free_obj(struct page *page,
2323 unsigned int idx, freelist_idx_t val)
2324 {
2325 ((freelist_idx_t *)(page->freelist))[idx] = val;
2326 }
2327
2328 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2329 {
2330 #if DEBUG
2331 int i;
2332
2333 for (i = 0; i < cachep->num; i++) {
2334 void *objp = index_to_obj(cachep, page, i);
2335
2336 if (cachep->flags & SLAB_STORE_USER)
2337 *dbg_userword(cachep, objp) = NULL;
2338
2339 if (cachep->flags & SLAB_RED_ZONE) {
2340 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2341 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2342 }
2343 /*
2344 * Constructors are not allowed to allocate memory from the same
2345 * cache which they are a constructor for. Otherwise, deadlock.
2346 * They must also be threaded.
2347 */
2348 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2349 kasan_unpoison_object_data(cachep,
2350 objp + obj_offset(cachep));
2351 cachep->ctor(objp + obj_offset(cachep));
2352 kasan_poison_object_data(
2353 cachep, objp + obj_offset(cachep));
2354 }
2355
2356 if (cachep->flags & SLAB_RED_ZONE) {
2357 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2358 slab_error(cachep, "constructor overwrote the end of an object");
2359 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2360 slab_error(cachep, "constructor overwrote the start of an object");
2361 }
2362 /* need to poison the objs? */
2363 if (cachep->flags & SLAB_POISON) {
2364 poison_obj(cachep, objp, POISON_FREE);
2365 slab_kernel_map(cachep, objp, 0);
2366 }
2367 }
2368 #endif
2369 }
2370
2371 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2372 /* Hold information during a freelist initialization */
2373 union freelist_init_state {
2374 struct {
2375 unsigned int pos;
2376 unsigned int *list;
2377 unsigned int count;
2378 };
2379 struct rnd_state rnd_state;
2380 };
2381
2382 /*
2383 * Initialize the state based on the randomization methode available.
2384 * return true if the pre-computed list is available, false otherwize.
2385 */
2386 static bool freelist_state_initialize(union freelist_init_state *state,
2387 struct kmem_cache *cachep,
2388 unsigned int count)
2389 {
2390 bool ret;
2391 unsigned int rand;
2392
2393 /* Use best entropy available to define a random shift */
2394 rand = get_random_int();
2395
2396 /* Use a random state if the pre-computed list is not available */
2397 if (!cachep->random_seq) {
2398 prandom_seed_state(&state->rnd_state, rand);
2399 ret = false;
2400 } else {
2401 state->list = cachep->random_seq;
2402 state->count = count;
2403 state->pos = rand % count;
2404 ret = true;
2405 }
2406 return ret;
2407 }
2408
2409 /* Get the next entry on the list and randomize it using a random shift */
2410 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2411 {
2412 if (state->pos >= state->count)
2413 state->pos = 0;
2414 return state->list[state->pos++];
2415 }
2416
2417 /* Swap two freelist entries */
2418 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2419 {
2420 swap(((freelist_idx_t *)page->freelist)[a],
2421 ((freelist_idx_t *)page->freelist)[b]);
2422 }
2423
2424 /*
2425 * Shuffle the freelist initialization state based on pre-computed lists.
2426 * return true if the list was successfully shuffled, false otherwise.
2427 */
2428 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2429 {
2430 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2431 union freelist_init_state state;
2432 bool precomputed;
2433
2434 if (count < 2)
2435 return false;
2436
2437 precomputed = freelist_state_initialize(&state, cachep, count);
2438
2439 /* Take a random entry as the objfreelist */
2440 if (OBJFREELIST_SLAB(cachep)) {
2441 if (!precomputed)
2442 objfreelist = count - 1;
2443 else
2444 objfreelist = next_random_slot(&state);
2445 page->freelist = index_to_obj(cachep, page, objfreelist) +
2446 obj_offset(cachep);
2447 count--;
2448 }
2449
2450 /*
2451 * On early boot, generate the list dynamically.
2452 * Later use a pre-computed list for speed.
2453 */
2454 if (!precomputed) {
2455 for (i = 0; i < count; i++)
2456 set_free_obj(page, i, i);
2457
2458 /* Fisher-Yates shuffle */
2459 for (i = count - 1; i > 0; i--) {
2460 rand = prandom_u32_state(&state.rnd_state);
2461 rand %= (i + 1);
2462 swap_free_obj(page, i, rand);
2463 }
2464 } else {
2465 for (i = 0; i < count; i++)
2466 set_free_obj(page, i, next_random_slot(&state));
2467 }
2468
2469 if (OBJFREELIST_SLAB(cachep))
2470 set_free_obj(page, cachep->num - 1, objfreelist);
2471
2472 return true;
2473 }
2474 #else
2475 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2476 struct page *page)
2477 {
2478 return false;
2479 }
2480 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2481
2482 static void cache_init_objs(struct kmem_cache *cachep,
2483 struct page *page)
2484 {
2485 int i;
2486 void *objp;
2487 bool shuffled;
2488
2489 cache_init_objs_debug(cachep, page);
2490
2491 /* Try to randomize the freelist if enabled */
2492 shuffled = shuffle_freelist(cachep, page);
2493
2494 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2495 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2496 obj_offset(cachep);
2497 }
2498
2499 for (i = 0; i < cachep->num; i++) {
2500 objp = index_to_obj(cachep, page, i);
2501 objp = kasan_init_slab_obj(cachep, objp);
2502
2503 /* constructor could break poison info */
2504 if (DEBUG == 0 && cachep->ctor) {
2505 kasan_unpoison_object_data(cachep, objp);
2506 cachep->ctor(objp);
2507 kasan_poison_object_data(cachep, objp);
2508 }
2509
2510 if (!shuffled)
2511 set_free_obj(page, i, i);
2512 }
2513 }
2514
2515 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2516 {
2517 void *objp;
2518
2519 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2520 page->active++;
2521
2522 return objp;
2523 }
2524
2525 static void slab_put_obj(struct kmem_cache *cachep,
2526 struct page *page, void *objp)
2527 {
2528 unsigned int objnr = obj_to_index(cachep, page, objp);
2529 #if DEBUG
2530 unsigned int i;
2531
2532 /* Verify double free bug */
2533 for (i = page->active; i < cachep->num; i++) {
2534 if (get_free_obj(page, i) == objnr) {
2535 pr_err("slab: double free detected in cache '%s', objp %px\n",
2536 cachep->name, objp);
2537 BUG();
2538 }
2539 }
2540 #endif
2541 page->active--;
2542 if (!page->freelist)
2543 page->freelist = objp + obj_offset(cachep);
2544
2545 set_free_obj(page, page->active, objnr);
2546 }
2547
2548 /*
2549 * Map pages beginning at addr to the given cache and slab. This is required
2550 * for the slab allocator to be able to lookup the cache and slab of a
2551 * virtual address for kfree, ksize, and slab debugging.
2552 */
2553 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2554 void *freelist)
2555 {
2556 page->slab_cache = cache;
2557 page->freelist = freelist;
2558 }
2559
2560 /*
2561 * Grow (by 1) the number of slabs within a cache. This is called by
2562 * kmem_cache_alloc() when there are no active objs left in a cache.
2563 */
2564 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2565 gfp_t flags, int nodeid)
2566 {
2567 void *freelist;
2568 size_t offset;
2569 gfp_t local_flags;
2570 int page_node;
2571 struct kmem_cache_node *n;
2572 struct page *page;
2573
2574 /*
2575 * Be lazy and only check for valid flags here, keeping it out of the
2576 * critical path in kmem_cache_alloc().
2577 */
2578 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2579 flags = kmalloc_fix_flags(flags);
2580
2581 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2582 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2583
2584 check_irq_off();
2585 if (gfpflags_allow_blocking(local_flags))
2586 local_irq_enable();
2587
2588 /*
2589 * Get mem for the objs. Attempt to allocate a physical page from
2590 * 'nodeid'.
2591 */
2592 page = kmem_getpages(cachep, local_flags, nodeid);
2593 if (!page)
2594 goto failed;
2595
2596 page_node = page_to_nid(page);
2597 n = get_node(cachep, page_node);
2598
2599 /* Get colour for the slab, and cal the next value. */
2600 n->colour_next++;
2601 if (n->colour_next >= cachep->colour)
2602 n->colour_next = 0;
2603
2604 offset = n->colour_next;
2605 if (offset >= cachep->colour)
2606 offset = 0;
2607
2608 offset *= cachep->colour_off;
2609
2610 /*
2611 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2612 * page_address() in the latter returns a non-tagged pointer,
2613 * as it should be for slab pages.
2614 */
2615 kasan_poison_slab(page);
2616
2617 /* Get slab management. */
2618 freelist = alloc_slabmgmt(cachep, page, offset,
2619 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2620 if (OFF_SLAB(cachep) && !freelist)
2621 goto opps1;
2622
2623 slab_map_pages(cachep, page, freelist);
2624
2625 cache_init_objs(cachep, page);
2626
2627 if (gfpflags_allow_blocking(local_flags))
2628 local_irq_disable();
2629
2630 return page;
2631
2632 opps1:
2633 kmem_freepages(cachep, page);
2634 failed:
2635 if (gfpflags_allow_blocking(local_flags))
2636 local_irq_disable();
2637 return NULL;
2638 }
2639
2640 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2641 {
2642 struct kmem_cache_node *n;
2643 void *list = NULL;
2644
2645 check_irq_off();
2646
2647 if (!page)
2648 return;
2649
2650 INIT_LIST_HEAD(&page->slab_list);
2651 n = get_node(cachep, page_to_nid(page));
2652
2653 spin_lock(&n->list_lock);
2654 n->total_slabs++;
2655 if (!page->active) {
2656 list_add_tail(&page->slab_list, &n->slabs_free);
2657 n->free_slabs++;
2658 } else
2659 fixup_slab_list(cachep, n, page, &list);
2660
2661 STATS_INC_GROWN(cachep);
2662 n->free_objects += cachep->num - page->active;
2663 spin_unlock(&n->list_lock);
2664
2665 fixup_objfreelist_debug(cachep, &list);
2666 }
2667
2668 #if DEBUG
2669
2670 /*
2671 * Perform extra freeing checks:
2672 * - detect bad pointers.
2673 * - POISON/RED_ZONE checking
2674 */
2675 static void kfree_debugcheck(const void *objp)
2676 {
2677 if (!virt_addr_valid(objp)) {
2678 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2679 (unsigned long)objp);
2680 BUG();
2681 }
2682 }
2683
2684 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2685 {
2686 unsigned long long redzone1, redzone2;
2687
2688 redzone1 = *dbg_redzone1(cache, obj);
2689 redzone2 = *dbg_redzone2(cache, obj);
2690
2691 /*
2692 * Redzone is ok.
2693 */
2694 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2695 return;
2696
2697 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2698 slab_error(cache, "double free detected");
2699 else
2700 slab_error(cache, "memory outside object was overwritten");
2701
2702 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2703 obj, redzone1, redzone2);
2704 }
2705
2706 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2707 unsigned long caller)
2708 {
2709 unsigned int objnr;
2710 struct page *page;
2711
2712 BUG_ON(virt_to_cache(objp) != cachep);
2713
2714 objp -= obj_offset(cachep);
2715 kfree_debugcheck(objp);
2716 page = virt_to_head_page(objp);
2717
2718 if (cachep->flags & SLAB_RED_ZONE) {
2719 verify_redzone_free(cachep, objp);
2720 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2721 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2722 }
2723 if (cachep->flags & SLAB_STORE_USER)
2724 *dbg_userword(cachep, objp) = (void *)caller;
2725
2726 objnr = obj_to_index(cachep, page, objp);
2727
2728 BUG_ON(objnr >= cachep->num);
2729 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2730
2731 if (cachep->flags & SLAB_POISON) {
2732 poison_obj(cachep, objp, POISON_FREE);
2733 slab_kernel_map(cachep, objp, 0);
2734 }
2735 return objp;
2736 }
2737
2738 #else
2739 #define kfree_debugcheck(x) do { } while(0)
2740 #define cache_free_debugcheck(x,objp,z) (objp)
2741 #endif
2742
2743 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2744 void **list)
2745 {
2746 #if DEBUG
2747 void *next = *list;
2748 void *objp;
2749
2750 while (next) {
2751 objp = next - obj_offset(cachep);
2752 next = *(void **)next;
2753 poison_obj(cachep, objp, POISON_FREE);
2754 }
2755 #endif
2756 }
2757
2758 static inline void fixup_slab_list(struct kmem_cache *cachep,
2759 struct kmem_cache_node *n, struct page *page,
2760 void **list)
2761 {
2762 /* move slabp to correct slabp list: */
2763 list_del(&page->slab_list);
2764 if (page->active == cachep->num) {
2765 list_add(&page->slab_list, &n->slabs_full);
2766 if (OBJFREELIST_SLAB(cachep)) {
2767 #if DEBUG
2768 /* Poisoning will be done without holding the lock */
2769 if (cachep->flags & SLAB_POISON) {
2770 void **objp = page->freelist;
2771
2772 *objp = *list;
2773 *list = objp;
2774 }
2775 #endif
2776 page->freelist = NULL;
2777 }
2778 } else
2779 list_add(&page->slab_list, &n->slabs_partial);
2780 }
2781
2782 /* Try to find non-pfmemalloc slab if needed */
2783 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2784 struct page *page, bool pfmemalloc)
2785 {
2786 if (!page)
2787 return NULL;
2788
2789 if (pfmemalloc)
2790 return page;
2791
2792 if (!PageSlabPfmemalloc(page))
2793 return page;
2794
2795 /* No need to keep pfmemalloc slab if we have enough free objects */
2796 if (n->free_objects > n->free_limit) {
2797 ClearPageSlabPfmemalloc(page);
2798 return page;
2799 }
2800
2801 /* Move pfmemalloc slab to the end of list to speed up next search */
2802 list_del(&page->slab_list);
2803 if (!page->active) {
2804 list_add_tail(&page->slab_list, &n->slabs_free);
2805 n->free_slabs++;
2806 } else
2807 list_add_tail(&page->slab_list, &n->slabs_partial);
2808
2809 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2810 if (!PageSlabPfmemalloc(page))
2811 return page;
2812 }
2813
2814 n->free_touched = 1;
2815 list_for_each_entry(page, &n->slabs_free, slab_list) {
2816 if (!PageSlabPfmemalloc(page)) {
2817 n->free_slabs--;
2818 return page;
2819 }
2820 }
2821
2822 return NULL;
2823 }
2824
2825 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2826 {
2827 struct page *page;
2828
2829 assert_spin_locked(&n->list_lock);
2830 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2831 slab_list);
2832 if (!page) {
2833 n->free_touched = 1;
2834 page = list_first_entry_or_null(&n->slabs_free, struct page,
2835 slab_list);
2836 if (page)
2837 n->free_slabs--;
2838 }
2839
2840 if (sk_memalloc_socks())
2841 page = get_valid_first_slab(n, page, pfmemalloc);
2842
2843 return page;
2844 }
2845
2846 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2847 struct kmem_cache_node *n, gfp_t flags)
2848 {
2849 struct page *page;
2850 void *obj;
2851 void *list = NULL;
2852
2853 if (!gfp_pfmemalloc_allowed(flags))
2854 return NULL;
2855
2856 spin_lock(&n->list_lock);
2857 page = get_first_slab(n, true);
2858 if (!page) {
2859 spin_unlock(&n->list_lock);
2860 return NULL;
2861 }
2862
2863 obj = slab_get_obj(cachep, page);
2864 n->free_objects--;
2865
2866 fixup_slab_list(cachep, n, page, &list);
2867
2868 spin_unlock(&n->list_lock);
2869 fixup_objfreelist_debug(cachep, &list);
2870
2871 return obj;
2872 }
2873
2874 /*
2875 * Slab list should be fixed up by fixup_slab_list() for existing slab
2876 * or cache_grow_end() for new slab
2877 */
2878 static __always_inline int alloc_block(struct kmem_cache *cachep,
2879 struct array_cache *ac, struct page *page, int batchcount)
2880 {
2881 /*
2882 * There must be at least one object available for
2883 * allocation.
2884 */
2885 BUG_ON(page->active >= cachep->num);
2886
2887 while (page->active < cachep->num && batchcount--) {
2888 STATS_INC_ALLOCED(cachep);
2889 STATS_INC_ACTIVE(cachep);
2890 STATS_SET_HIGH(cachep);
2891
2892 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2893 }
2894
2895 return batchcount;
2896 }
2897
2898 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2899 {
2900 int batchcount;
2901 struct kmem_cache_node *n;
2902 struct array_cache *ac, *shared;
2903 int node;
2904 void *list = NULL;
2905 struct page *page;
2906
2907 check_irq_off();
2908 node = numa_mem_id();
2909
2910 ac = cpu_cache_get(cachep);
2911 batchcount = ac->batchcount;
2912 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2913 /*
2914 * If there was little recent activity on this cache, then
2915 * perform only a partial refill. Otherwise we could generate
2916 * refill bouncing.
2917 */
2918 batchcount = BATCHREFILL_LIMIT;
2919 }
2920 n = get_node(cachep, node);
2921
2922 BUG_ON(ac->avail > 0 || !n);
2923 shared = READ_ONCE(n->shared);
2924 if (!n->free_objects && (!shared || !shared->avail))
2925 goto direct_grow;
2926
2927 spin_lock(&n->list_lock);
2928 shared = READ_ONCE(n->shared);
2929
2930 /* See if we can refill from the shared array */
2931 if (shared && transfer_objects(ac, shared, batchcount)) {
2932 shared->touched = 1;
2933 goto alloc_done;
2934 }
2935
2936 while (batchcount > 0) {
2937 /* Get slab alloc is to come from. */
2938 page = get_first_slab(n, false);
2939 if (!page)
2940 goto must_grow;
2941
2942 check_spinlock_acquired(cachep);
2943
2944 batchcount = alloc_block(cachep, ac, page, batchcount);
2945 fixup_slab_list(cachep, n, page, &list);
2946 }
2947
2948 must_grow:
2949 n->free_objects -= ac->avail;
2950 alloc_done:
2951 spin_unlock(&n->list_lock);
2952 fixup_objfreelist_debug(cachep, &list);
2953
2954 direct_grow:
2955 if (unlikely(!ac->avail)) {
2956 /* Check if we can use obj in pfmemalloc slab */
2957 if (sk_memalloc_socks()) {
2958 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2959
2960 if (obj)
2961 return obj;
2962 }
2963
2964 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2965
2966 /*
2967 * cache_grow_begin() can reenable interrupts,
2968 * then ac could change.
2969 */
2970 ac = cpu_cache_get(cachep);
2971 if (!ac->avail && page)
2972 alloc_block(cachep, ac, page, batchcount);
2973 cache_grow_end(cachep, page);
2974
2975 if (!ac->avail)
2976 return NULL;
2977 }
2978 ac->touched = 1;
2979
2980 return ac->entry[--ac->avail];
2981 }
2982
2983 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2984 gfp_t flags)
2985 {
2986 might_sleep_if(gfpflags_allow_blocking(flags));
2987 }
2988
2989 #if DEBUG
2990 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2991 gfp_t flags, void *objp, unsigned long caller)
2992 {
2993 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2994 if (!objp)
2995 return objp;
2996 if (cachep->flags & SLAB_POISON) {
2997 check_poison_obj(cachep, objp);
2998 slab_kernel_map(cachep, objp, 1);
2999 poison_obj(cachep, objp, POISON_INUSE);
3000 }
3001 if (cachep->flags & SLAB_STORE_USER)
3002 *dbg_userword(cachep, objp) = (void *)caller;
3003
3004 if (cachep->flags & SLAB_RED_ZONE) {
3005 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3006 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3007 slab_error(cachep, "double free, or memory outside object was overwritten");
3008 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3009 objp, *dbg_redzone1(cachep, objp),
3010 *dbg_redzone2(cachep, objp));
3011 }
3012 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3013 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3014 }
3015
3016 objp += obj_offset(cachep);
3017 if (cachep->ctor && cachep->flags & SLAB_POISON)
3018 cachep->ctor(objp);
3019 if (ARCH_SLAB_MINALIGN &&
3020 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3021 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3022 objp, (int)ARCH_SLAB_MINALIGN);
3023 }
3024 return objp;
3025 }
3026 #else
3027 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3028 #endif
3029
3030 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3031 {
3032 void *objp;
3033 struct array_cache *ac;
3034
3035 check_irq_off();
3036
3037 ac = cpu_cache_get(cachep);
3038 if (likely(ac->avail)) {
3039 ac->touched = 1;
3040 objp = ac->entry[--ac->avail];
3041
3042 STATS_INC_ALLOCHIT(cachep);
3043 goto out;
3044 }
3045
3046 STATS_INC_ALLOCMISS(cachep);
3047 objp = cache_alloc_refill(cachep, flags);
3048 /*
3049 * the 'ac' may be updated by cache_alloc_refill(),
3050 * and kmemleak_erase() requires its correct value.
3051 */
3052 ac = cpu_cache_get(cachep);
3053
3054 out:
3055 /*
3056 * To avoid a false negative, if an object that is in one of the
3057 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3058 * treat the array pointers as a reference to the object.
3059 */
3060 if (objp)
3061 kmemleak_erase(&ac->entry[ac->avail]);
3062 return objp;
3063 }
3064
3065 #ifdef CONFIG_NUMA
3066 /*
3067 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3068 *
3069 * If we are in_interrupt, then process context, including cpusets and
3070 * mempolicy, may not apply and should not be used for allocation policy.
3071 */
3072 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3073 {
3074 int nid_alloc, nid_here;
3075
3076 if (in_interrupt() || (flags & __GFP_THISNODE))
3077 return NULL;
3078 nid_alloc = nid_here = numa_mem_id();
3079 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3080 nid_alloc = cpuset_slab_spread_node();
3081 else if (current->mempolicy)
3082 nid_alloc = mempolicy_slab_node();
3083 if (nid_alloc != nid_here)
3084 return ____cache_alloc_node(cachep, flags, nid_alloc);
3085 return NULL;
3086 }
3087
3088 /*
3089 * Fallback function if there was no memory available and no objects on a
3090 * certain node and fall back is permitted. First we scan all the
3091 * available node for available objects. If that fails then we
3092 * perform an allocation without specifying a node. This allows the page
3093 * allocator to do its reclaim / fallback magic. We then insert the
3094 * slab into the proper nodelist and then allocate from it.
3095 */
3096 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3097 {
3098 struct zonelist *zonelist;
3099 struct zoneref *z;
3100 struct zone *zone;
3101 enum zone_type highest_zoneidx = gfp_zone(flags);
3102 void *obj = NULL;
3103 struct page *page;
3104 int nid;
3105 unsigned int cpuset_mems_cookie;
3106
3107 if (flags & __GFP_THISNODE)
3108 return NULL;
3109
3110 retry_cpuset:
3111 cpuset_mems_cookie = read_mems_allowed_begin();
3112 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3113
3114 retry:
3115 /*
3116 * Look through allowed nodes for objects available
3117 * from existing per node queues.
3118 */
3119 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3120 nid = zone_to_nid(zone);
3121
3122 if (cpuset_zone_allowed(zone, flags) &&
3123 get_node(cache, nid) &&
3124 get_node(cache, nid)->free_objects) {
3125 obj = ____cache_alloc_node(cache,
3126 gfp_exact_node(flags), nid);
3127 if (obj)
3128 break;
3129 }
3130 }
3131
3132 if (!obj) {
3133 /*
3134 * This allocation will be performed within the constraints
3135 * of the current cpuset / memory policy requirements.
3136 * We may trigger various forms of reclaim on the allowed
3137 * set and go into memory reserves if necessary.
3138 */
3139 page = cache_grow_begin(cache, flags, numa_mem_id());
3140 cache_grow_end(cache, page);
3141 if (page) {
3142 nid = page_to_nid(page);
3143 obj = ____cache_alloc_node(cache,
3144 gfp_exact_node(flags), nid);
3145
3146 /*
3147 * Another processor may allocate the objects in
3148 * the slab since we are not holding any locks.
3149 */
3150 if (!obj)
3151 goto retry;
3152 }
3153 }
3154
3155 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3156 goto retry_cpuset;
3157 return obj;
3158 }
3159
3160 /*
3161 * A interface to enable slab creation on nodeid
3162 */
3163 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3164 int nodeid)
3165 {
3166 struct page *page;
3167 struct kmem_cache_node *n;
3168 void *obj = NULL;
3169 void *list = NULL;
3170
3171 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3172 n = get_node(cachep, nodeid);
3173 BUG_ON(!n);
3174
3175 check_irq_off();
3176 spin_lock(&n->list_lock);
3177 page = get_first_slab(n, false);
3178 if (!page)
3179 goto must_grow;
3180
3181 check_spinlock_acquired_node(cachep, nodeid);
3182
3183 STATS_INC_NODEALLOCS(cachep);
3184 STATS_INC_ACTIVE(cachep);
3185 STATS_SET_HIGH(cachep);
3186
3187 BUG_ON(page->active == cachep->num);
3188
3189 obj = slab_get_obj(cachep, page);
3190 n->free_objects--;
3191
3192 fixup_slab_list(cachep, n, page, &list);
3193
3194 spin_unlock(&n->list_lock);
3195 fixup_objfreelist_debug(cachep, &list);
3196 return obj;
3197
3198 must_grow:
3199 spin_unlock(&n->list_lock);
3200 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3201 if (page) {
3202 /* This slab isn't counted yet so don't update free_objects */
3203 obj = slab_get_obj(cachep, page);
3204 }
3205 cache_grow_end(cachep, page);
3206
3207 return obj ? obj : fallback_alloc(cachep, flags);
3208 }
3209
3210 static __always_inline void *
3211 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3212 unsigned long caller)
3213 {
3214 unsigned long save_flags;
3215 void *ptr;
3216 int slab_node = numa_mem_id();
3217 struct obj_cgroup *objcg = NULL;
3218
3219 flags &= gfp_allowed_mask;
3220 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3221 if (unlikely(!cachep))
3222 return NULL;
3223
3224 cache_alloc_debugcheck_before(cachep, flags);
3225 local_irq_save(save_flags);
3226
3227 if (nodeid == NUMA_NO_NODE)
3228 nodeid = slab_node;
3229
3230 if (unlikely(!get_node(cachep, nodeid))) {
3231 /* Node not bootstrapped yet */
3232 ptr = fallback_alloc(cachep, flags);
3233 goto out;
3234 }
3235
3236 if (nodeid == slab_node) {
3237 /*
3238 * Use the locally cached objects if possible.
3239 * However ____cache_alloc does not allow fallback
3240 * to other nodes. It may fail while we still have
3241 * objects on other nodes available.
3242 */
3243 ptr = ____cache_alloc(cachep, flags);
3244 if (ptr)
3245 goto out;
3246 }
3247 /* ___cache_alloc_node can fall back to other nodes */
3248 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3249 out:
3250 local_irq_restore(save_flags);
3251 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3252
3253 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3254 memset(ptr, 0, cachep->object_size);
3255
3256 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr);
3257 return ptr;
3258 }
3259
3260 static __always_inline void *
3261 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3262 {
3263 void *objp;
3264
3265 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3266 objp = alternate_node_alloc(cache, flags);
3267 if (objp)
3268 goto out;
3269 }
3270 objp = ____cache_alloc(cache, flags);
3271
3272 /*
3273 * We may just have run out of memory on the local node.
3274 * ____cache_alloc_node() knows how to locate memory on other nodes
3275 */
3276 if (!objp)
3277 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3278
3279 out:
3280 return objp;
3281 }
3282 #else
3283
3284 static __always_inline void *
3285 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3286 {
3287 return ____cache_alloc(cachep, flags);
3288 }
3289
3290 #endif /* CONFIG_NUMA */
3291
3292 static __always_inline void *
3293 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3294 {
3295 unsigned long save_flags;
3296 void *objp;
3297 struct obj_cgroup *objcg = NULL;
3298
3299 flags &= gfp_allowed_mask;
3300 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3301 if (unlikely(!cachep))
3302 return NULL;
3303
3304 cache_alloc_debugcheck_before(cachep, flags);
3305 local_irq_save(save_flags);
3306 objp = __do_cache_alloc(cachep, flags);
3307 local_irq_restore(save_flags);
3308 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3309 prefetchw(objp);
3310
3311 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3312 memset(objp, 0, cachep->object_size);
3313
3314 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp);
3315 return objp;
3316 }
3317
3318 /*
3319 * Caller needs to acquire correct kmem_cache_node's list_lock
3320 * @list: List of detached free slabs should be freed by caller
3321 */
3322 static void free_block(struct kmem_cache *cachep, void **objpp,
3323 int nr_objects, int node, struct list_head *list)
3324 {
3325 int i;
3326 struct kmem_cache_node *n = get_node(cachep, node);
3327 struct page *page;
3328
3329 n->free_objects += nr_objects;
3330
3331 for (i = 0; i < nr_objects; i++) {
3332 void *objp;
3333 struct page *page;
3334
3335 objp = objpp[i];
3336
3337 page = virt_to_head_page(objp);
3338 list_del(&page->slab_list);
3339 check_spinlock_acquired_node(cachep, node);
3340 slab_put_obj(cachep, page, objp);
3341 STATS_DEC_ACTIVE(cachep);
3342
3343 /* fixup slab chains */
3344 if (page->active == 0) {
3345 list_add(&page->slab_list, &n->slabs_free);
3346 n->free_slabs++;
3347 } else {
3348 /* Unconditionally move a slab to the end of the
3349 * partial list on free - maximum time for the
3350 * other objects to be freed, too.
3351 */
3352 list_add_tail(&page->slab_list, &n->slabs_partial);
3353 }
3354 }
3355
3356 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3357 n->free_objects -= cachep->num;
3358
3359 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3360 list_move(&page->slab_list, list);
3361 n->free_slabs--;
3362 n->total_slabs--;
3363 }
3364 }
3365
3366 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3367 {
3368 int batchcount;
3369 struct kmem_cache_node *n;
3370 int node = numa_mem_id();
3371 LIST_HEAD(list);
3372
3373 batchcount = ac->batchcount;
3374
3375 check_irq_off();
3376 n = get_node(cachep, node);
3377 spin_lock(&n->list_lock);
3378 if (n->shared) {
3379 struct array_cache *shared_array = n->shared;
3380 int max = shared_array->limit - shared_array->avail;
3381 if (max) {
3382 if (batchcount > max)
3383 batchcount = max;
3384 memcpy(&(shared_array->entry[shared_array->avail]),
3385 ac->entry, sizeof(void *) * batchcount);
3386 shared_array->avail += batchcount;
3387 goto free_done;
3388 }
3389 }
3390
3391 free_block(cachep, ac->entry, batchcount, node, &list);
3392 free_done:
3393 #if STATS
3394 {
3395 int i = 0;
3396 struct page *page;
3397
3398 list_for_each_entry(page, &n->slabs_free, slab_list) {
3399 BUG_ON(page->active);
3400
3401 i++;
3402 }
3403 STATS_SET_FREEABLE(cachep, i);
3404 }
3405 #endif
3406 spin_unlock(&n->list_lock);
3407 ac->avail -= batchcount;
3408 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3409 slabs_destroy(cachep, &list);
3410 }
3411
3412 /*
3413 * Release an obj back to its cache. If the obj has a constructed state, it must
3414 * be in this state _before_ it is released. Called with disabled ints.
3415 */
3416 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3417 unsigned long caller)
3418 {
3419 if (unlikely(slab_want_init_on_free(cachep)))
3420 memset(objp, 0, cachep->object_size);
3421
3422 /* Put the object into the quarantine, don't touch it for now. */
3423 if (kasan_slab_free(cachep, objp, _RET_IP_))
3424 return;
3425
3426 /* Use KCSAN to help debug racy use-after-free. */
3427 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3428 __kcsan_check_access(objp, cachep->object_size,
3429 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3430
3431 ___cache_free(cachep, objp, caller);
3432 }
3433
3434 void ___cache_free(struct kmem_cache *cachep, void *objp,
3435 unsigned long caller)
3436 {
3437 struct array_cache *ac = cpu_cache_get(cachep);
3438
3439 check_irq_off();
3440 kmemleak_free_recursive(objp, cachep->flags);
3441 objp = cache_free_debugcheck(cachep, objp, caller);
3442 memcg_slab_free_hook(cachep, &objp, 1);
3443
3444 /*
3445 * Skip calling cache_free_alien() when the platform is not numa.
3446 * This will avoid cache misses that happen while accessing slabp (which
3447 * is per page memory reference) to get nodeid. Instead use a global
3448 * variable to skip the call, which is mostly likely to be present in
3449 * the cache.
3450 */
3451 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3452 return;
3453
3454 if (ac->avail < ac->limit) {
3455 STATS_INC_FREEHIT(cachep);
3456 } else {
3457 STATS_INC_FREEMISS(cachep);
3458 cache_flusharray(cachep, ac);
3459 }
3460
3461 if (sk_memalloc_socks()) {
3462 struct page *page = virt_to_head_page(objp);
3463
3464 if (unlikely(PageSlabPfmemalloc(page))) {
3465 cache_free_pfmemalloc(cachep, page, objp);
3466 return;
3467 }
3468 }
3469
3470 __free_one(ac, objp);
3471 }
3472
3473 /**
3474 * kmem_cache_alloc - Allocate an object
3475 * @cachep: The cache to allocate from.
3476 * @flags: See kmalloc().
3477 *
3478 * Allocate an object from this cache. The flags are only relevant
3479 * if the cache has no available objects.
3480 *
3481 * Return: pointer to the new object or %NULL in case of error
3482 */
3483 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3484 {
3485 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3486
3487 trace_kmem_cache_alloc(_RET_IP_, ret,
3488 cachep->object_size, cachep->size, flags);
3489
3490 return ret;
3491 }
3492 EXPORT_SYMBOL(kmem_cache_alloc);
3493
3494 static __always_inline void
3495 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3496 size_t size, void **p, unsigned long caller)
3497 {
3498 size_t i;
3499
3500 for (i = 0; i < size; i++)
3501 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3502 }
3503
3504 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3505 void **p)
3506 {
3507 size_t i;
3508 struct obj_cgroup *objcg = NULL;
3509
3510 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3511 if (!s)
3512 return 0;
3513
3514 cache_alloc_debugcheck_before(s, flags);
3515
3516 local_irq_disable();
3517 for (i = 0; i < size; i++) {
3518 void *objp = __do_cache_alloc(s, flags);
3519
3520 if (unlikely(!objp))
3521 goto error;
3522 p[i] = objp;
3523 }
3524 local_irq_enable();
3525
3526 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3527
3528 /* Clear memory outside IRQ disabled section */
3529 if (unlikely(slab_want_init_on_alloc(flags, s)))
3530 for (i = 0; i < size; i++)
3531 memset(p[i], 0, s->object_size);
3532
3533 slab_post_alloc_hook(s, objcg, flags, size, p);
3534 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3535 return size;
3536 error:
3537 local_irq_enable();
3538 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3539 slab_post_alloc_hook(s, objcg, flags, i, p);
3540 __kmem_cache_free_bulk(s, i, p);
3541 return 0;
3542 }
3543 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3544
3545 #ifdef CONFIG_TRACING
3546 void *
3547 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3548 {
3549 void *ret;
3550
3551 ret = slab_alloc(cachep, flags, _RET_IP_);
3552
3553 ret = kasan_kmalloc(cachep, ret, size, flags);
3554 trace_kmalloc(_RET_IP_, ret,
3555 size, cachep->size, flags);
3556 return ret;
3557 }
3558 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3559 #endif
3560
3561 #ifdef CONFIG_NUMA
3562 /**
3563 * kmem_cache_alloc_node - Allocate an object on the specified node
3564 * @cachep: The cache to allocate from.
3565 * @flags: See kmalloc().
3566 * @nodeid: node number of the target node.
3567 *
3568 * Identical to kmem_cache_alloc but it will allocate memory on the given
3569 * node, which can improve the performance for cpu bound structures.
3570 *
3571 * Fallback to other node is possible if __GFP_THISNODE is not set.
3572 *
3573 * Return: pointer to the new object or %NULL in case of error
3574 */
3575 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3576 {
3577 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3578
3579 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3580 cachep->object_size, cachep->size,
3581 flags, nodeid);
3582
3583 return ret;
3584 }
3585 EXPORT_SYMBOL(kmem_cache_alloc_node);
3586
3587 #ifdef CONFIG_TRACING
3588 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3589 gfp_t flags,
3590 int nodeid,
3591 size_t size)
3592 {
3593 void *ret;
3594
3595 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3596
3597 ret = kasan_kmalloc(cachep, ret, size, flags);
3598 trace_kmalloc_node(_RET_IP_, ret,
3599 size, cachep->size,
3600 flags, nodeid);
3601 return ret;
3602 }
3603 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3604 #endif
3605
3606 static __always_inline void *
3607 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3608 {
3609 struct kmem_cache *cachep;
3610 void *ret;
3611
3612 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3613 return NULL;
3614 cachep = kmalloc_slab(size, flags);
3615 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3616 return cachep;
3617 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3618 ret = kasan_kmalloc(cachep, ret, size, flags);
3619
3620 return ret;
3621 }
3622
3623 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3624 {
3625 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3626 }
3627 EXPORT_SYMBOL(__kmalloc_node);
3628
3629 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3630 int node, unsigned long caller)
3631 {
3632 return __do_kmalloc_node(size, flags, node, caller);
3633 }
3634 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3635 #endif /* CONFIG_NUMA */
3636
3637 /**
3638 * __do_kmalloc - allocate memory
3639 * @size: how many bytes of memory are required.
3640 * @flags: the type of memory to allocate (see kmalloc).
3641 * @caller: function caller for debug tracking of the caller
3642 *
3643 * Return: pointer to the allocated memory or %NULL in case of error
3644 */
3645 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3646 unsigned long caller)
3647 {
3648 struct kmem_cache *cachep;
3649 void *ret;
3650
3651 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3652 return NULL;
3653 cachep = kmalloc_slab(size, flags);
3654 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3655 return cachep;
3656 ret = slab_alloc(cachep, flags, caller);
3657
3658 ret = kasan_kmalloc(cachep, ret, size, flags);
3659 trace_kmalloc(caller, ret,
3660 size, cachep->size, flags);
3661
3662 return ret;
3663 }
3664
3665 void *__kmalloc(size_t size, gfp_t flags)
3666 {
3667 return __do_kmalloc(size, flags, _RET_IP_);
3668 }
3669 EXPORT_SYMBOL(__kmalloc);
3670
3671 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3672 {
3673 return __do_kmalloc(size, flags, caller);
3674 }
3675 EXPORT_SYMBOL(__kmalloc_track_caller);
3676
3677 /**
3678 * kmem_cache_free - Deallocate an object
3679 * @cachep: The cache the allocation was from.
3680 * @objp: The previously allocated object.
3681 *
3682 * Free an object which was previously allocated from this
3683 * cache.
3684 */
3685 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3686 {
3687 unsigned long flags;
3688 cachep = cache_from_obj(cachep, objp);
3689 if (!cachep)
3690 return;
3691
3692 local_irq_save(flags);
3693 debug_check_no_locks_freed(objp, cachep->object_size);
3694 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3695 debug_check_no_obj_freed(objp, cachep->object_size);
3696 __cache_free(cachep, objp, _RET_IP_);
3697 local_irq_restore(flags);
3698
3699 trace_kmem_cache_free(_RET_IP_, objp);
3700 }
3701 EXPORT_SYMBOL(kmem_cache_free);
3702
3703 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3704 {
3705 struct kmem_cache *s;
3706 size_t i;
3707
3708 local_irq_disable();
3709 for (i = 0; i < size; i++) {
3710 void *objp = p[i];
3711
3712 if (!orig_s) /* called via kfree_bulk */
3713 s = virt_to_cache(objp);
3714 else
3715 s = cache_from_obj(orig_s, objp);
3716 if (!s)
3717 continue;
3718
3719 debug_check_no_locks_freed(objp, s->object_size);
3720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3721 debug_check_no_obj_freed(objp, s->object_size);
3722
3723 __cache_free(s, objp, _RET_IP_);
3724 }
3725 local_irq_enable();
3726
3727 /* FIXME: add tracing */
3728 }
3729 EXPORT_SYMBOL(kmem_cache_free_bulk);
3730
3731 /**
3732 * kfree - free previously allocated memory
3733 * @objp: pointer returned by kmalloc.
3734 *
3735 * If @objp is NULL, no operation is performed.
3736 *
3737 * Don't free memory not originally allocated by kmalloc()
3738 * or you will run into trouble.
3739 */
3740 void kfree(const void *objp)
3741 {
3742 struct kmem_cache *c;
3743 unsigned long flags;
3744
3745 trace_kfree(_RET_IP_, objp);
3746
3747 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3748 return;
3749 local_irq_save(flags);
3750 kfree_debugcheck(objp);
3751 c = virt_to_cache(objp);
3752 if (!c) {
3753 local_irq_restore(flags);
3754 return;
3755 }
3756 debug_check_no_locks_freed(objp, c->object_size);
3757
3758 debug_check_no_obj_freed(objp, c->object_size);
3759 __cache_free(c, (void *)objp, _RET_IP_);
3760 local_irq_restore(flags);
3761 }
3762 EXPORT_SYMBOL(kfree);
3763
3764 /*
3765 * This initializes kmem_cache_node or resizes various caches for all nodes.
3766 */
3767 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3768 {
3769 int ret;
3770 int node;
3771 struct kmem_cache_node *n;
3772
3773 for_each_online_node(node) {
3774 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3775 if (ret)
3776 goto fail;
3777
3778 }
3779
3780 return 0;
3781
3782 fail:
3783 if (!cachep->list.next) {
3784 /* Cache is not active yet. Roll back what we did */
3785 node--;
3786 while (node >= 0) {
3787 n = get_node(cachep, node);
3788 if (n) {
3789 kfree(n->shared);
3790 free_alien_cache(n->alien);
3791 kfree(n);
3792 cachep->node[node] = NULL;
3793 }
3794 node--;
3795 }
3796 }
3797 return -ENOMEM;
3798 }
3799
3800 /* Always called with the slab_mutex held */
3801 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3802 int batchcount, int shared, gfp_t gfp)
3803 {
3804 struct array_cache __percpu *cpu_cache, *prev;
3805 int cpu;
3806
3807 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3808 if (!cpu_cache)
3809 return -ENOMEM;
3810
3811 prev = cachep->cpu_cache;
3812 cachep->cpu_cache = cpu_cache;
3813 /*
3814 * Without a previous cpu_cache there's no need to synchronize remote
3815 * cpus, so skip the IPIs.
3816 */
3817 if (prev)
3818 kick_all_cpus_sync();
3819
3820 check_irq_on();
3821 cachep->batchcount = batchcount;
3822 cachep->limit = limit;
3823 cachep->shared = shared;
3824
3825 if (!prev)
3826 goto setup_node;
3827
3828 for_each_online_cpu(cpu) {
3829 LIST_HEAD(list);
3830 int node;
3831 struct kmem_cache_node *n;
3832 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3833
3834 node = cpu_to_mem(cpu);
3835 n = get_node(cachep, node);
3836 spin_lock_irq(&n->list_lock);
3837 free_block(cachep, ac->entry, ac->avail, node, &list);
3838 spin_unlock_irq(&n->list_lock);
3839 slabs_destroy(cachep, &list);
3840 }
3841 free_percpu(prev);
3842
3843 setup_node:
3844 return setup_kmem_cache_nodes(cachep, gfp);
3845 }
3846
3847 /* Called with slab_mutex held always */
3848 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3849 {
3850 int err;
3851 int limit = 0;
3852 int shared = 0;
3853 int batchcount = 0;
3854
3855 err = cache_random_seq_create(cachep, cachep->num, gfp);
3856 if (err)
3857 goto end;
3858
3859 if (limit && shared && batchcount)
3860 goto skip_setup;
3861 /*
3862 * The head array serves three purposes:
3863 * - create a LIFO ordering, i.e. return objects that are cache-warm
3864 * - reduce the number of spinlock operations.
3865 * - reduce the number of linked list operations on the slab and
3866 * bufctl chains: array operations are cheaper.
3867 * The numbers are guessed, we should auto-tune as described by
3868 * Bonwick.
3869 */
3870 if (cachep->size > 131072)
3871 limit = 1;
3872 else if (cachep->size > PAGE_SIZE)
3873 limit = 8;
3874 else if (cachep->size > 1024)
3875 limit = 24;
3876 else if (cachep->size > 256)
3877 limit = 54;
3878 else
3879 limit = 120;
3880
3881 /*
3882 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3883 * allocation behaviour: Most allocs on one cpu, most free operations
3884 * on another cpu. For these cases, an efficient object passing between
3885 * cpus is necessary. This is provided by a shared array. The array
3886 * replaces Bonwick's magazine layer.
3887 * On uniprocessor, it's functionally equivalent (but less efficient)
3888 * to a larger limit. Thus disabled by default.
3889 */
3890 shared = 0;
3891 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3892 shared = 8;
3893
3894 #if DEBUG
3895 /*
3896 * With debugging enabled, large batchcount lead to excessively long
3897 * periods with disabled local interrupts. Limit the batchcount
3898 */
3899 if (limit > 32)
3900 limit = 32;
3901 #endif
3902 batchcount = (limit + 1) / 2;
3903 skip_setup:
3904 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3905 end:
3906 if (err)
3907 pr_err("enable_cpucache failed for %s, error %d\n",
3908 cachep->name, -err);
3909 return err;
3910 }
3911
3912 /*
3913 * Drain an array if it contains any elements taking the node lock only if
3914 * necessary. Note that the node listlock also protects the array_cache
3915 * if drain_array() is used on the shared array.
3916 */
3917 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3918 struct array_cache *ac, int node)
3919 {
3920 LIST_HEAD(list);
3921
3922 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3923 check_mutex_acquired();
3924
3925 if (!ac || !ac->avail)
3926 return;
3927
3928 if (ac->touched) {
3929 ac->touched = 0;
3930 return;
3931 }
3932
3933 spin_lock_irq(&n->list_lock);
3934 drain_array_locked(cachep, ac, node, false, &list);
3935 spin_unlock_irq(&n->list_lock);
3936
3937 slabs_destroy(cachep, &list);
3938 }
3939
3940 /**
3941 * cache_reap - Reclaim memory from caches.
3942 * @w: work descriptor
3943 *
3944 * Called from workqueue/eventd every few seconds.
3945 * Purpose:
3946 * - clear the per-cpu caches for this CPU.
3947 * - return freeable pages to the main free memory pool.
3948 *
3949 * If we cannot acquire the cache chain mutex then just give up - we'll try
3950 * again on the next iteration.
3951 */
3952 static void cache_reap(struct work_struct *w)
3953 {
3954 struct kmem_cache *searchp;
3955 struct kmem_cache_node *n;
3956 int node = numa_mem_id();
3957 struct delayed_work *work = to_delayed_work(w);
3958
3959 if (!mutex_trylock(&slab_mutex))
3960 /* Give up. Setup the next iteration. */
3961 goto out;
3962
3963 list_for_each_entry(searchp, &slab_caches, list) {
3964 check_irq_on();
3965
3966 /*
3967 * We only take the node lock if absolutely necessary and we
3968 * have established with reasonable certainty that
3969 * we can do some work if the lock was obtained.
3970 */
3971 n = get_node(searchp, node);
3972
3973 reap_alien(searchp, n);
3974
3975 drain_array(searchp, n, cpu_cache_get(searchp), node);
3976
3977 /*
3978 * These are racy checks but it does not matter
3979 * if we skip one check or scan twice.
3980 */
3981 if (time_after(n->next_reap, jiffies))
3982 goto next;
3983
3984 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3985
3986 drain_array(searchp, n, n->shared, node);
3987
3988 if (n->free_touched)
3989 n->free_touched = 0;
3990 else {
3991 int freed;
3992
3993 freed = drain_freelist(searchp, n, (n->free_limit +
3994 5 * searchp->num - 1) / (5 * searchp->num));
3995 STATS_ADD_REAPED(searchp, freed);
3996 }
3997 next:
3998 cond_resched();
3999 }
4000 check_irq_on();
4001 mutex_unlock(&slab_mutex);
4002 next_reap_node();
4003 out:
4004 /* Set up the next iteration */
4005 schedule_delayed_work_on(smp_processor_id(), work,
4006 round_jiffies_relative(REAPTIMEOUT_AC));
4007 }
4008
4009 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4010 {
4011 unsigned long active_objs, num_objs, active_slabs;
4012 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4013 unsigned long free_slabs = 0;
4014 int node;
4015 struct kmem_cache_node *n;
4016
4017 for_each_kmem_cache_node(cachep, node, n) {
4018 check_irq_on();
4019 spin_lock_irq(&n->list_lock);
4020
4021 total_slabs += n->total_slabs;
4022 free_slabs += n->free_slabs;
4023 free_objs += n->free_objects;
4024
4025 if (n->shared)
4026 shared_avail += n->shared->avail;
4027
4028 spin_unlock_irq(&n->list_lock);
4029 }
4030 num_objs = total_slabs * cachep->num;
4031 active_slabs = total_slabs - free_slabs;
4032 active_objs = num_objs - free_objs;
4033
4034 sinfo->active_objs = active_objs;
4035 sinfo->num_objs = num_objs;
4036 sinfo->active_slabs = active_slabs;
4037 sinfo->num_slabs = total_slabs;
4038 sinfo->shared_avail = shared_avail;
4039 sinfo->limit = cachep->limit;
4040 sinfo->batchcount = cachep->batchcount;
4041 sinfo->shared = cachep->shared;
4042 sinfo->objects_per_slab = cachep->num;
4043 sinfo->cache_order = cachep->gfporder;
4044 }
4045
4046 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4047 {
4048 #if STATS
4049 { /* node stats */
4050 unsigned long high = cachep->high_mark;
4051 unsigned long allocs = cachep->num_allocations;
4052 unsigned long grown = cachep->grown;
4053 unsigned long reaped = cachep->reaped;
4054 unsigned long errors = cachep->errors;
4055 unsigned long max_freeable = cachep->max_freeable;
4056 unsigned long node_allocs = cachep->node_allocs;
4057 unsigned long node_frees = cachep->node_frees;
4058 unsigned long overflows = cachep->node_overflow;
4059
4060 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4061 allocs, high, grown,
4062 reaped, errors, max_freeable, node_allocs,
4063 node_frees, overflows);
4064 }
4065 /* cpu stats */
4066 {
4067 unsigned long allochit = atomic_read(&cachep->allochit);
4068 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4069 unsigned long freehit = atomic_read(&cachep->freehit);
4070 unsigned long freemiss = atomic_read(&cachep->freemiss);
4071
4072 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4073 allochit, allocmiss, freehit, freemiss);
4074 }
4075 #endif
4076 }
4077
4078 #define MAX_SLABINFO_WRITE 128
4079 /**
4080 * slabinfo_write - Tuning for the slab allocator
4081 * @file: unused
4082 * @buffer: user buffer
4083 * @count: data length
4084 * @ppos: unused
4085 *
4086 * Return: %0 on success, negative error code otherwise.
4087 */
4088 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4089 size_t count, loff_t *ppos)
4090 {
4091 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4092 int limit, batchcount, shared, res;
4093 struct kmem_cache *cachep;
4094
4095 if (count > MAX_SLABINFO_WRITE)
4096 return -EINVAL;
4097 if (copy_from_user(&kbuf, buffer, count))
4098 return -EFAULT;
4099 kbuf[MAX_SLABINFO_WRITE] = '\0';
4100
4101 tmp = strchr(kbuf, ' ');
4102 if (!tmp)
4103 return -EINVAL;
4104 *tmp = '\0';
4105 tmp++;
4106 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4107 return -EINVAL;
4108
4109 /* Find the cache in the chain of caches. */
4110 mutex_lock(&slab_mutex);
4111 res = -EINVAL;
4112 list_for_each_entry(cachep, &slab_caches, list) {
4113 if (!strcmp(cachep->name, kbuf)) {
4114 if (limit < 1 || batchcount < 1 ||
4115 batchcount > limit || shared < 0) {
4116 res = 0;
4117 } else {
4118 res = do_tune_cpucache(cachep, limit,
4119 batchcount, shared,
4120 GFP_KERNEL);
4121 }
4122 break;
4123 }
4124 }
4125 mutex_unlock(&slab_mutex);
4126 if (res >= 0)
4127 res = count;
4128 return res;
4129 }
4130
4131 #ifdef CONFIG_HARDENED_USERCOPY
4132 /*
4133 * Rejects incorrectly sized objects and objects that are to be copied
4134 * to/from userspace but do not fall entirely within the containing slab
4135 * cache's usercopy region.
4136 *
4137 * Returns NULL if check passes, otherwise const char * to name of cache
4138 * to indicate an error.
4139 */
4140 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4141 bool to_user)
4142 {
4143 struct kmem_cache *cachep;
4144 unsigned int objnr;
4145 unsigned long offset;
4146
4147 ptr = kasan_reset_tag(ptr);
4148
4149 /* Find and validate object. */
4150 cachep = page->slab_cache;
4151 objnr = obj_to_index(cachep, page, (void *)ptr);
4152 BUG_ON(objnr >= cachep->num);
4153
4154 /* Find offset within object. */
4155 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4156
4157 /* Allow address range falling entirely within usercopy region. */
4158 if (offset >= cachep->useroffset &&
4159 offset - cachep->useroffset <= cachep->usersize &&
4160 n <= cachep->useroffset - offset + cachep->usersize)
4161 return;
4162
4163 /*
4164 * If the copy is still within the allocated object, produce
4165 * a warning instead of rejecting the copy. This is intended
4166 * to be a temporary method to find any missing usercopy
4167 * whitelists.
4168 */
4169 if (usercopy_fallback &&
4170 offset <= cachep->object_size &&
4171 n <= cachep->object_size - offset) {
4172 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4173 return;
4174 }
4175
4176 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4177 }
4178 #endif /* CONFIG_HARDENED_USERCOPY */
4179
4180 /**
4181 * __ksize -- Uninstrumented ksize.
4182 * @objp: pointer to the object
4183 *
4184 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4185 * safety checks as ksize() with KASAN instrumentation enabled.
4186 *
4187 * Return: size of the actual memory used by @objp in bytes
4188 */
4189 size_t __ksize(const void *objp)
4190 {
4191 struct kmem_cache *c;
4192 size_t size;
4193
4194 BUG_ON(!objp);
4195 if (unlikely(objp == ZERO_SIZE_PTR))
4196 return 0;
4197
4198 c = virt_to_cache(objp);
4199 size = c ? c->object_size : 0;
4200
4201 return size;
4202 }
4203 EXPORT_SYMBOL(__ksize);