]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
slab: Ignore internal flags in cache creation
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 /*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
150
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
158
159 /*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163 static bool pfmemalloc_active __read_mostly;
164
165 /*
166 * kmem_bufctl_t:
167 *
168 * Bufctl's are used for linking objs within a slab
169 * linked offsets.
170 *
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
182 */
183
184 typedef unsigned int kmem_bufctl_t;
185 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
187 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
189
190 /*
191 * struct slab_rcu
192 *
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
200 *
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
203 */
204 struct slab_rcu {
205 struct rcu_head head;
206 struct kmem_cache *cachep;
207 void *addr;
208 };
209
210 /*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217 struct slab {
218 union {
219 struct {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
226 };
227 struct slab_rcu __slab_cover_slab_rcu;
228 };
229 };
230
231 /*
232 * struct array_cache
233 *
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
238 *
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
241 *
242 */
243 struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
248 spinlock_t lock;
249 void *entry[]; /*
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
253 *
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
257 */
258 };
259
260 #define SLAB_OBJ_PFMEMALLOC 1
261 static inline bool is_obj_pfmemalloc(void *objp)
262 {
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
264 }
265
266 static inline void set_obj_pfmemalloc(void **objp)
267 {
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
269 return;
270 }
271
272 static inline void clear_obj_pfmemalloc(void **objp)
273 {
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
275 }
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include <linux/kmalloc_sizes.h>
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 #define CFLGS_OFF_SLAB (0x80000000UL)
376 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
377
378 #define BATCHREFILL_LIMIT 16
379 /*
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
382 *
383 * OTOH the cpuarrays can contain lots of objects,
384 * which could lock up otherwise freeable slabs.
385 */
386 #define REAPTIMEOUT_CPUC (2*HZ)
387 #define REAPTIMEOUT_LIST3 (4*HZ)
388
389 #if STATS
390 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
391 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393 #define STATS_INC_GROWN(x) ((x)->grown++)
394 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
395 #define STATS_SET_HIGH(x) \
396 do { \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
399 } while (0)
400 #define STATS_INC_ERR(x) ((x)->errors++)
401 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
402 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
403 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
404 #define STATS_SET_FREEABLE(x, i) \
405 do { \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
408 } while (0)
409 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
413 #else
414 #define STATS_INC_ACTIVE(x) do { } while (0)
415 #define STATS_DEC_ACTIVE(x) do { } while (0)
416 #define STATS_INC_ALLOCED(x) do { } while (0)
417 #define STATS_INC_GROWN(x) do { } while (0)
418 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
419 #define STATS_SET_HIGH(x) do { } while (0)
420 #define STATS_INC_ERR(x) do { } while (0)
421 #define STATS_INC_NODEALLOCS(x) do { } while (0)
422 #define STATS_INC_NODEFREES(x) do { } while (0)
423 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
424 #define STATS_SET_FREEABLE(x, i) do { } while (0)
425 #define STATS_INC_ALLOCHIT(x) do { } while (0)
426 #define STATS_INC_ALLOCMISS(x) do { } while (0)
427 #define STATS_INC_FREEHIT(x) do { } while (0)
428 #define STATS_INC_FREEMISS(x) do { } while (0)
429 #endif
430
431 #if DEBUG
432
433 /*
434 * memory layout of objects:
435 * 0 : objp
436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
440 * redzone word.
441 * cachep->obj_offset: The real object.
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
444 * [BYTES_PER_WORD long]
445 */
446 static int obj_offset(struct kmem_cache *cachep)
447 {
448 return cachep->obj_offset;
449 }
450
451 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
452 {
453 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
454 return (unsigned long long*) (objp + obj_offset(cachep) -
455 sizeof(unsigned long long));
456 }
457
458 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
459 {
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
461 if (cachep->flags & SLAB_STORE_USER)
462 return (unsigned long long *)(objp + cachep->size -
463 sizeof(unsigned long long) -
464 REDZONE_ALIGN);
465 return (unsigned long long *) (objp + cachep->size -
466 sizeof(unsigned long long));
467 }
468
469 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
470 {
471 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
472 return (void **)(objp + cachep->size - BYTES_PER_WORD);
473 }
474
475 #else
476
477 #define obj_offset(x) 0
478 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
481
482 #endif
483
484 /*
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
487 */
488 #define SLAB_MAX_ORDER_HI 1
489 #define SLAB_MAX_ORDER_LO 0
490 static int slab_max_order = SLAB_MAX_ORDER_LO;
491 static bool slab_max_order_set __initdata;
492
493 static inline struct kmem_cache *virt_to_cache(const void *obj)
494 {
495 struct page *page = virt_to_head_page(obj);
496 return page->slab_cache;
497 }
498
499 static inline struct slab *virt_to_slab(const void *obj)
500 {
501 struct page *page = virt_to_head_page(obj);
502
503 VM_BUG_ON(!PageSlab(page));
504 return page->slab_page;
505 }
506
507 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
508 unsigned int idx)
509 {
510 return slab->s_mem + cache->size * idx;
511 }
512
513 /*
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
518 */
519 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
520 const struct slab *slab, void *obj)
521 {
522 u32 offset = (obj - slab->s_mem);
523 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
524 }
525
526 /*
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
528 */
529 struct cache_sizes malloc_sizes[] = {
530 #define CACHE(x) { .cs_size = (x) },
531 #include <linux/kmalloc_sizes.h>
532 CACHE(ULONG_MAX)
533 #undef CACHE
534 };
535 EXPORT_SYMBOL(malloc_sizes);
536
537 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
538 struct cache_names {
539 char *name;
540 char *name_dma;
541 };
542
543 static struct cache_names __initdata cache_names[] = {
544 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545 #include <linux/kmalloc_sizes.h>
546 {NULL,}
547 #undef CACHE
548 };
549
550 static struct arraycache_init initarray_cache __initdata =
551 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
552 static struct arraycache_init initarray_generic =
553 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
554
555 /* internal cache of cache description objs */
556 static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
557 static struct kmem_cache kmem_cache_boot = {
558 .nodelists = kmem_cache_nodelists,
559 .batchcount = 1,
560 .limit = BOOT_CPUCACHE_ENTRIES,
561 .shared = 1,
562 .size = sizeof(struct kmem_cache),
563 .name = "kmem_cache",
564 };
565
566 #define BAD_ALIEN_MAGIC 0x01020304ul
567
568 #ifdef CONFIG_LOCKDEP
569
570 /*
571 * Slab sometimes uses the kmalloc slabs to store the slab headers
572 * for other slabs "off slab".
573 * The locking for this is tricky in that it nests within the locks
574 * of all other slabs in a few places; to deal with this special
575 * locking we put on-slab caches into a separate lock-class.
576 *
577 * We set lock class for alien array caches which are up during init.
578 * The lock annotation will be lost if all cpus of a node goes down and
579 * then comes back up during hotplug
580 */
581 static struct lock_class_key on_slab_l3_key;
582 static struct lock_class_key on_slab_alc_key;
583
584 static struct lock_class_key debugobj_l3_key;
585 static struct lock_class_key debugobj_alc_key;
586
587 static void slab_set_lock_classes(struct kmem_cache *cachep,
588 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
589 int q)
590 {
591 struct array_cache **alc;
592 struct kmem_list3 *l3;
593 int r;
594
595 l3 = cachep->nodelists[q];
596 if (!l3)
597 return;
598
599 lockdep_set_class(&l3->list_lock, l3_key);
600 alc = l3->alien;
601 /*
602 * FIXME: This check for BAD_ALIEN_MAGIC
603 * should go away when common slab code is taught to
604 * work even without alien caches.
605 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
606 * for alloc_alien_cache,
607 */
608 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
609 return;
610 for_each_node(r) {
611 if (alc[r])
612 lockdep_set_class(&alc[r]->lock, alc_key);
613 }
614 }
615
616 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
617 {
618 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
619 }
620
621 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
622 {
623 int node;
624
625 for_each_online_node(node)
626 slab_set_debugobj_lock_classes_node(cachep, node);
627 }
628
629 static void init_node_lock_keys(int q)
630 {
631 struct cache_sizes *s = malloc_sizes;
632
633 if (slab_state < UP)
634 return;
635
636 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
637 struct kmem_list3 *l3;
638
639 l3 = s->cs_cachep->nodelists[q];
640 if (!l3 || OFF_SLAB(s->cs_cachep))
641 continue;
642
643 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
644 &on_slab_alc_key, q);
645 }
646 }
647
648 static inline void init_lock_keys(void)
649 {
650 int node;
651
652 for_each_node(node)
653 init_node_lock_keys(node);
654 }
655 #else
656 static void init_node_lock_keys(int q)
657 {
658 }
659
660 static inline void init_lock_keys(void)
661 {
662 }
663
664 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
665 {
666 }
667
668 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
669 {
670 }
671 #endif
672
673 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
674
675 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
676 {
677 return cachep->array[smp_processor_id()];
678 }
679
680 static inline struct kmem_cache *__find_general_cachep(size_t size,
681 gfp_t gfpflags)
682 {
683 struct cache_sizes *csizep = malloc_sizes;
684
685 #if DEBUG
686 /* This happens if someone tries to call
687 * kmem_cache_create(), or __kmalloc(), before
688 * the generic caches are initialized.
689 */
690 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
691 #endif
692 if (!size)
693 return ZERO_SIZE_PTR;
694
695 while (size > csizep->cs_size)
696 csizep++;
697
698 /*
699 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
700 * has cs_{dma,}cachep==NULL. Thus no special case
701 * for large kmalloc calls required.
702 */
703 #ifdef CONFIG_ZONE_DMA
704 if (unlikely(gfpflags & GFP_DMA))
705 return csizep->cs_dmacachep;
706 #endif
707 return csizep->cs_cachep;
708 }
709
710 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
711 {
712 return __find_general_cachep(size, gfpflags);
713 }
714
715 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
716 {
717 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
718 }
719
720 /*
721 * Calculate the number of objects and left-over bytes for a given buffer size.
722 */
723 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
724 size_t align, int flags, size_t *left_over,
725 unsigned int *num)
726 {
727 int nr_objs;
728 size_t mgmt_size;
729 size_t slab_size = PAGE_SIZE << gfporder;
730
731 /*
732 * The slab management structure can be either off the slab or
733 * on it. For the latter case, the memory allocated for a
734 * slab is used for:
735 *
736 * - The struct slab
737 * - One kmem_bufctl_t for each object
738 * - Padding to respect alignment of @align
739 * - @buffer_size bytes for each object
740 *
741 * If the slab management structure is off the slab, then the
742 * alignment will already be calculated into the size. Because
743 * the slabs are all pages aligned, the objects will be at the
744 * correct alignment when allocated.
745 */
746 if (flags & CFLGS_OFF_SLAB) {
747 mgmt_size = 0;
748 nr_objs = slab_size / buffer_size;
749
750 if (nr_objs > SLAB_LIMIT)
751 nr_objs = SLAB_LIMIT;
752 } else {
753 /*
754 * Ignore padding for the initial guess. The padding
755 * is at most @align-1 bytes, and @buffer_size is at
756 * least @align. In the worst case, this result will
757 * be one greater than the number of objects that fit
758 * into the memory allocation when taking the padding
759 * into account.
760 */
761 nr_objs = (slab_size - sizeof(struct slab)) /
762 (buffer_size + sizeof(kmem_bufctl_t));
763
764 /*
765 * This calculated number will be either the right
766 * amount, or one greater than what we want.
767 */
768 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
769 > slab_size)
770 nr_objs--;
771
772 if (nr_objs > SLAB_LIMIT)
773 nr_objs = SLAB_LIMIT;
774
775 mgmt_size = slab_mgmt_size(nr_objs, align);
776 }
777 *num = nr_objs;
778 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
779 }
780
781 #if DEBUG
782 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
783
784 static void __slab_error(const char *function, struct kmem_cache *cachep,
785 char *msg)
786 {
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
788 function, cachep->name, msg);
789 dump_stack();
790 add_taint(TAINT_BAD_PAGE);
791 }
792 #endif
793
794 /*
795 * By default on NUMA we use alien caches to stage the freeing of
796 * objects allocated from other nodes. This causes massive memory
797 * inefficiencies when using fake NUMA setup to split memory into a
798 * large number of small nodes, so it can be disabled on the command
799 * line
800 */
801
802 static int use_alien_caches __read_mostly = 1;
803 static int __init noaliencache_setup(char *s)
804 {
805 use_alien_caches = 0;
806 return 1;
807 }
808 __setup("noaliencache", noaliencache_setup);
809
810 static int __init slab_max_order_setup(char *str)
811 {
812 get_option(&str, &slab_max_order);
813 slab_max_order = slab_max_order < 0 ? 0 :
814 min(slab_max_order, MAX_ORDER - 1);
815 slab_max_order_set = true;
816
817 return 1;
818 }
819 __setup("slab_max_order=", slab_max_order_setup);
820
821 #ifdef CONFIG_NUMA
822 /*
823 * Special reaping functions for NUMA systems called from cache_reap().
824 * These take care of doing round robin flushing of alien caches (containing
825 * objects freed on different nodes from which they were allocated) and the
826 * flushing of remote pcps by calling drain_node_pages.
827 */
828 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
829
830 static void init_reap_node(int cpu)
831 {
832 int node;
833
834 node = next_node(cpu_to_mem(cpu), node_online_map);
835 if (node == MAX_NUMNODES)
836 node = first_node(node_online_map);
837
838 per_cpu(slab_reap_node, cpu) = node;
839 }
840
841 static void next_reap_node(void)
842 {
843 int node = __this_cpu_read(slab_reap_node);
844
845 node = next_node(node, node_online_map);
846 if (unlikely(node >= MAX_NUMNODES))
847 node = first_node(node_online_map);
848 __this_cpu_write(slab_reap_node, node);
849 }
850
851 #else
852 #define init_reap_node(cpu) do { } while (0)
853 #define next_reap_node(void) do { } while (0)
854 #endif
855
856 /*
857 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
858 * via the workqueue/eventd.
859 * Add the CPU number into the expiration time to minimize the possibility of
860 * the CPUs getting into lockstep and contending for the global cache chain
861 * lock.
862 */
863 static void __cpuinit start_cpu_timer(int cpu)
864 {
865 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
866
867 /*
868 * When this gets called from do_initcalls via cpucache_init(),
869 * init_workqueues() has already run, so keventd will be setup
870 * at that time.
871 */
872 if (keventd_up() && reap_work->work.func == NULL) {
873 init_reap_node(cpu);
874 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
875 schedule_delayed_work_on(cpu, reap_work,
876 __round_jiffies_relative(HZ, cpu));
877 }
878 }
879
880 static struct array_cache *alloc_arraycache(int node, int entries,
881 int batchcount, gfp_t gfp)
882 {
883 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
884 struct array_cache *nc = NULL;
885
886 nc = kmalloc_node(memsize, gfp, node);
887 /*
888 * The array_cache structures contain pointers to free object.
889 * However, when such objects are allocated or transferred to another
890 * cache the pointers are not cleared and they could be counted as
891 * valid references during a kmemleak scan. Therefore, kmemleak must
892 * not scan such objects.
893 */
894 kmemleak_no_scan(nc);
895 if (nc) {
896 nc->avail = 0;
897 nc->limit = entries;
898 nc->batchcount = batchcount;
899 nc->touched = 0;
900 spin_lock_init(&nc->lock);
901 }
902 return nc;
903 }
904
905 static inline bool is_slab_pfmemalloc(struct slab *slabp)
906 {
907 struct page *page = virt_to_page(slabp->s_mem);
908
909 return PageSlabPfmemalloc(page);
910 }
911
912 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
913 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
914 struct array_cache *ac)
915 {
916 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
917 struct slab *slabp;
918 unsigned long flags;
919
920 if (!pfmemalloc_active)
921 return;
922
923 spin_lock_irqsave(&l3->list_lock, flags);
924 list_for_each_entry(slabp, &l3->slabs_full, list)
925 if (is_slab_pfmemalloc(slabp))
926 goto out;
927
928 list_for_each_entry(slabp, &l3->slabs_partial, list)
929 if (is_slab_pfmemalloc(slabp))
930 goto out;
931
932 list_for_each_entry(slabp, &l3->slabs_free, list)
933 if (is_slab_pfmemalloc(slabp))
934 goto out;
935
936 pfmemalloc_active = false;
937 out:
938 spin_unlock_irqrestore(&l3->list_lock, flags);
939 }
940
941 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 gfp_t flags, bool force_refill)
943 {
944 int i;
945 void *objp = ac->entry[--ac->avail];
946
947 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
948 if (unlikely(is_obj_pfmemalloc(objp))) {
949 struct kmem_list3 *l3;
950
951 if (gfp_pfmemalloc_allowed(flags)) {
952 clear_obj_pfmemalloc(&objp);
953 return objp;
954 }
955
956 /* The caller cannot use PFMEMALLOC objects, find another one */
957 for (i = 0; i < ac->avail; i++) {
958 /* If a !PFMEMALLOC object is found, swap them */
959 if (!is_obj_pfmemalloc(ac->entry[i])) {
960 objp = ac->entry[i];
961 ac->entry[i] = ac->entry[ac->avail];
962 ac->entry[ac->avail] = objp;
963 return objp;
964 }
965 }
966
967 /*
968 * If there are empty slabs on the slabs_free list and we are
969 * being forced to refill the cache, mark this one !pfmemalloc.
970 */
971 l3 = cachep->nodelists[numa_mem_id()];
972 if (!list_empty(&l3->slabs_free) && force_refill) {
973 struct slab *slabp = virt_to_slab(objp);
974 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
975 clear_obj_pfmemalloc(&objp);
976 recheck_pfmemalloc_active(cachep, ac);
977 return objp;
978 }
979
980 /* No !PFMEMALLOC objects available */
981 ac->avail++;
982 objp = NULL;
983 }
984
985 return objp;
986 }
987
988 static inline void *ac_get_obj(struct kmem_cache *cachep,
989 struct array_cache *ac, gfp_t flags, bool force_refill)
990 {
991 void *objp;
992
993 if (unlikely(sk_memalloc_socks()))
994 objp = __ac_get_obj(cachep, ac, flags, force_refill);
995 else
996 objp = ac->entry[--ac->avail];
997
998 return objp;
999 }
1000
1001 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1002 void *objp)
1003 {
1004 if (unlikely(pfmemalloc_active)) {
1005 /* Some pfmemalloc slabs exist, check if this is one */
1006 struct page *page = virt_to_head_page(objp);
1007 if (PageSlabPfmemalloc(page))
1008 set_obj_pfmemalloc(&objp);
1009 }
1010
1011 return objp;
1012 }
1013
1014 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1015 void *objp)
1016 {
1017 if (unlikely(sk_memalloc_socks()))
1018 objp = __ac_put_obj(cachep, ac, objp);
1019
1020 ac->entry[ac->avail++] = objp;
1021 }
1022
1023 /*
1024 * Transfer objects in one arraycache to another.
1025 * Locking must be handled by the caller.
1026 *
1027 * Return the number of entries transferred.
1028 */
1029 static int transfer_objects(struct array_cache *to,
1030 struct array_cache *from, unsigned int max)
1031 {
1032 /* Figure out how many entries to transfer */
1033 int nr = min3(from->avail, max, to->limit - to->avail);
1034
1035 if (!nr)
1036 return 0;
1037
1038 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1039 sizeof(void *) *nr);
1040
1041 from->avail -= nr;
1042 to->avail += nr;
1043 return nr;
1044 }
1045
1046 #ifndef CONFIG_NUMA
1047
1048 #define drain_alien_cache(cachep, alien) do { } while (0)
1049 #define reap_alien(cachep, l3) do { } while (0)
1050
1051 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1052 {
1053 return (struct array_cache **)BAD_ALIEN_MAGIC;
1054 }
1055
1056 static inline void free_alien_cache(struct array_cache **ac_ptr)
1057 {
1058 }
1059
1060 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1061 {
1062 return 0;
1063 }
1064
1065 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1066 gfp_t flags)
1067 {
1068 return NULL;
1069 }
1070
1071 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1072 gfp_t flags, int nodeid)
1073 {
1074 return NULL;
1075 }
1076
1077 #else /* CONFIG_NUMA */
1078
1079 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1080 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1081
1082 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1083 {
1084 struct array_cache **ac_ptr;
1085 int memsize = sizeof(void *) * nr_node_ids;
1086 int i;
1087
1088 if (limit > 1)
1089 limit = 12;
1090 ac_ptr = kzalloc_node(memsize, gfp, node);
1091 if (ac_ptr) {
1092 for_each_node(i) {
1093 if (i == node || !node_online(i))
1094 continue;
1095 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1096 if (!ac_ptr[i]) {
1097 for (i--; i >= 0; i--)
1098 kfree(ac_ptr[i]);
1099 kfree(ac_ptr);
1100 return NULL;
1101 }
1102 }
1103 }
1104 return ac_ptr;
1105 }
1106
1107 static void free_alien_cache(struct array_cache **ac_ptr)
1108 {
1109 int i;
1110
1111 if (!ac_ptr)
1112 return;
1113 for_each_node(i)
1114 kfree(ac_ptr[i]);
1115 kfree(ac_ptr);
1116 }
1117
1118 static void __drain_alien_cache(struct kmem_cache *cachep,
1119 struct array_cache *ac, int node)
1120 {
1121 struct kmem_list3 *rl3 = cachep->nodelists[node];
1122
1123 if (ac->avail) {
1124 spin_lock(&rl3->list_lock);
1125 /*
1126 * Stuff objects into the remote nodes shared array first.
1127 * That way we could avoid the overhead of putting the objects
1128 * into the free lists and getting them back later.
1129 */
1130 if (rl3->shared)
1131 transfer_objects(rl3->shared, ac, ac->limit);
1132
1133 free_block(cachep, ac->entry, ac->avail, node);
1134 ac->avail = 0;
1135 spin_unlock(&rl3->list_lock);
1136 }
1137 }
1138
1139 /*
1140 * Called from cache_reap() to regularly drain alien caches round robin.
1141 */
1142 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1143 {
1144 int node = __this_cpu_read(slab_reap_node);
1145
1146 if (l3->alien) {
1147 struct array_cache *ac = l3->alien[node];
1148
1149 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1150 __drain_alien_cache(cachep, ac, node);
1151 spin_unlock_irq(&ac->lock);
1152 }
1153 }
1154 }
1155
1156 static void drain_alien_cache(struct kmem_cache *cachep,
1157 struct array_cache **alien)
1158 {
1159 int i = 0;
1160 struct array_cache *ac;
1161 unsigned long flags;
1162
1163 for_each_online_node(i) {
1164 ac = alien[i];
1165 if (ac) {
1166 spin_lock_irqsave(&ac->lock, flags);
1167 __drain_alien_cache(cachep, ac, i);
1168 spin_unlock_irqrestore(&ac->lock, flags);
1169 }
1170 }
1171 }
1172
1173 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1174 {
1175 struct slab *slabp = virt_to_slab(objp);
1176 int nodeid = slabp->nodeid;
1177 struct kmem_list3 *l3;
1178 struct array_cache *alien = NULL;
1179 int node;
1180
1181 node = numa_mem_id();
1182
1183 /*
1184 * Make sure we are not freeing a object from another node to the array
1185 * cache on this cpu.
1186 */
1187 if (likely(slabp->nodeid == node))
1188 return 0;
1189
1190 l3 = cachep->nodelists[node];
1191 STATS_INC_NODEFREES(cachep);
1192 if (l3->alien && l3->alien[nodeid]) {
1193 alien = l3->alien[nodeid];
1194 spin_lock(&alien->lock);
1195 if (unlikely(alien->avail == alien->limit)) {
1196 STATS_INC_ACOVERFLOW(cachep);
1197 __drain_alien_cache(cachep, alien, nodeid);
1198 }
1199 ac_put_obj(cachep, alien, objp);
1200 spin_unlock(&alien->lock);
1201 } else {
1202 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1203 free_block(cachep, &objp, 1, nodeid);
1204 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1205 }
1206 return 1;
1207 }
1208 #endif
1209
1210 /*
1211 * Allocates and initializes nodelists for a node on each slab cache, used for
1212 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1213 * will be allocated off-node since memory is not yet online for the new node.
1214 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1215 * already in use.
1216 *
1217 * Must hold slab_mutex.
1218 */
1219 static int init_cache_nodelists_node(int node)
1220 {
1221 struct kmem_cache *cachep;
1222 struct kmem_list3 *l3;
1223 const int memsize = sizeof(struct kmem_list3);
1224
1225 list_for_each_entry(cachep, &slab_caches, list) {
1226 /*
1227 * Set up the size64 kmemlist for cpu before we can
1228 * begin anything. Make sure some other cpu on this
1229 * node has not already allocated this
1230 */
1231 if (!cachep->nodelists[node]) {
1232 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1233 if (!l3)
1234 return -ENOMEM;
1235 kmem_list3_init(l3);
1236 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1237 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1238
1239 /*
1240 * The l3s don't come and go as CPUs come and
1241 * go. slab_mutex is sufficient
1242 * protection here.
1243 */
1244 cachep->nodelists[node] = l3;
1245 }
1246
1247 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1248 cachep->nodelists[node]->free_limit =
1249 (1 + nr_cpus_node(node)) *
1250 cachep->batchcount + cachep->num;
1251 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1252 }
1253 return 0;
1254 }
1255
1256 static void __cpuinit cpuup_canceled(long cpu)
1257 {
1258 struct kmem_cache *cachep;
1259 struct kmem_list3 *l3 = NULL;
1260 int node = cpu_to_mem(cpu);
1261 const struct cpumask *mask = cpumask_of_node(node);
1262
1263 list_for_each_entry(cachep, &slab_caches, list) {
1264 struct array_cache *nc;
1265 struct array_cache *shared;
1266 struct array_cache **alien;
1267
1268 /* cpu is dead; no one can alloc from it. */
1269 nc = cachep->array[cpu];
1270 cachep->array[cpu] = NULL;
1271 l3 = cachep->nodelists[node];
1272
1273 if (!l3)
1274 goto free_array_cache;
1275
1276 spin_lock_irq(&l3->list_lock);
1277
1278 /* Free limit for this kmem_list3 */
1279 l3->free_limit -= cachep->batchcount;
1280 if (nc)
1281 free_block(cachep, nc->entry, nc->avail, node);
1282
1283 if (!cpumask_empty(mask)) {
1284 spin_unlock_irq(&l3->list_lock);
1285 goto free_array_cache;
1286 }
1287
1288 shared = l3->shared;
1289 if (shared) {
1290 free_block(cachep, shared->entry,
1291 shared->avail, node);
1292 l3->shared = NULL;
1293 }
1294
1295 alien = l3->alien;
1296 l3->alien = NULL;
1297
1298 spin_unlock_irq(&l3->list_lock);
1299
1300 kfree(shared);
1301 if (alien) {
1302 drain_alien_cache(cachep, alien);
1303 free_alien_cache(alien);
1304 }
1305 free_array_cache:
1306 kfree(nc);
1307 }
1308 /*
1309 * In the previous loop, all the objects were freed to
1310 * the respective cache's slabs, now we can go ahead and
1311 * shrink each nodelist to its limit.
1312 */
1313 list_for_each_entry(cachep, &slab_caches, list) {
1314 l3 = cachep->nodelists[node];
1315 if (!l3)
1316 continue;
1317 drain_freelist(cachep, l3, l3->free_objects);
1318 }
1319 }
1320
1321 static int __cpuinit cpuup_prepare(long cpu)
1322 {
1323 struct kmem_cache *cachep;
1324 struct kmem_list3 *l3 = NULL;
1325 int node = cpu_to_mem(cpu);
1326 int err;
1327
1328 /*
1329 * We need to do this right in the beginning since
1330 * alloc_arraycache's are going to use this list.
1331 * kmalloc_node allows us to add the slab to the right
1332 * kmem_list3 and not this cpu's kmem_list3
1333 */
1334 err = init_cache_nodelists_node(node);
1335 if (err < 0)
1336 goto bad;
1337
1338 /*
1339 * Now we can go ahead with allocating the shared arrays and
1340 * array caches
1341 */
1342 list_for_each_entry(cachep, &slab_caches, list) {
1343 struct array_cache *nc;
1344 struct array_cache *shared = NULL;
1345 struct array_cache **alien = NULL;
1346
1347 nc = alloc_arraycache(node, cachep->limit,
1348 cachep->batchcount, GFP_KERNEL);
1349 if (!nc)
1350 goto bad;
1351 if (cachep->shared) {
1352 shared = alloc_arraycache(node,
1353 cachep->shared * cachep->batchcount,
1354 0xbaadf00d, GFP_KERNEL);
1355 if (!shared) {
1356 kfree(nc);
1357 goto bad;
1358 }
1359 }
1360 if (use_alien_caches) {
1361 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1362 if (!alien) {
1363 kfree(shared);
1364 kfree(nc);
1365 goto bad;
1366 }
1367 }
1368 cachep->array[cpu] = nc;
1369 l3 = cachep->nodelists[node];
1370 BUG_ON(!l3);
1371
1372 spin_lock_irq(&l3->list_lock);
1373 if (!l3->shared) {
1374 /*
1375 * We are serialised from CPU_DEAD or
1376 * CPU_UP_CANCELLED by the cpucontrol lock
1377 */
1378 l3->shared = shared;
1379 shared = NULL;
1380 }
1381 #ifdef CONFIG_NUMA
1382 if (!l3->alien) {
1383 l3->alien = alien;
1384 alien = NULL;
1385 }
1386 #endif
1387 spin_unlock_irq(&l3->list_lock);
1388 kfree(shared);
1389 free_alien_cache(alien);
1390 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1391 slab_set_debugobj_lock_classes_node(cachep, node);
1392 }
1393 init_node_lock_keys(node);
1394
1395 return 0;
1396 bad:
1397 cpuup_canceled(cpu);
1398 return -ENOMEM;
1399 }
1400
1401 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1402 unsigned long action, void *hcpu)
1403 {
1404 long cpu = (long)hcpu;
1405 int err = 0;
1406
1407 switch (action) {
1408 case CPU_UP_PREPARE:
1409 case CPU_UP_PREPARE_FROZEN:
1410 mutex_lock(&slab_mutex);
1411 err = cpuup_prepare(cpu);
1412 mutex_unlock(&slab_mutex);
1413 break;
1414 case CPU_ONLINE:
1415 case CPU_ONLINE_FROZEN:
1416 start_cpu_timer(cpu);
1417 break;
1418 #ifdef CONFIG_HOTPLUG_CPU
1419 case CPU_DOWN_PREPARE:
1420 case CPU_DOWN_PREPARE_FROZEN:
1421 /*
1422 * Shutdown cache reaper. Note that the slab_mutex is
1423 * held so that if cache_reap() is invoked it cannot do
1424 * anything expensive but will only modify reap_work
1425 * and reschedule the timer.
1426 */
1427 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1428 /* Now the cache_reaper is guaranteed to be not running. */
1429 per_cpu(slab_reap_work, cpu).work.func = NULL;
1430 break;
1431 case CPU_DOWN_FAILED:
1432 case CPU_DOWN_FAILED_FROZEN:
1433 start_cpu_timer(cpu);
1434 break;
1435 case CPU_DEAD:
1436 case CPU_DEAD_FROZEN:
1437 /*
1438 * Even if all the cpus of a node are down, we don't free the
1439 * kmem_list3 of any cache. This to avoid a race between
1440 * cpu_down, and a kmalloc allocation from another cpu for
1441 * memory from the node of the cpu going down. The list3
1442 * structure is usually allocated from kmem_cache_create() and
1443 * gets destroyed at kmem_cache_destroy().
1444 */
1445 /* fall through */
1446 #endif
1447 case CPU_UP_CANCELED:
1448 case CPU_UP_CANCELED_FROZEN:
1449 mutex_lock(&slab_mutex);
1450 cpuup_canceled(cpu);
1451 mutex_unlock(&slab_mutex);
1452 break;
1453 }
1454 return notifier_from_errno(err);
1455 }
1456
1457 static struct notifier_block __cpuinitdata cpucache_notifier = {
1458 &cpuup_callback, NULL, 0
1459 };
1460
1461 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1462 /*
1463 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1464 * Returns -EBUSY if all objects cannot be drained so that the node is not
1465 * removed.
1466 *
1467 * Must hold slab_mutex.
1468 */
1469 static int __meminit drain_cache_nodelists_node(int node)
1470 {
1471 struct kmem_cache *cachep;
1472 int ret = 0;
1473
1474 list_for_each_entry(cachep, &slab_caches, list) {
1475 struct kmem_list3 *l3;
1476
1477 l3 = cachep->nodelists[node];
1478 if (!l3)
1479 continue;
1480
1481 drain_freelist(cachep, l3, l3->free_objects);
1482
1483 if (!list_empty(&l3->slabs_full) ||
1484 !list_empty(&l3->slabs_partial)) {
1485 ret = -EBUSY;
1486 break;
1487 }
1488 }
1489 return ret;
1490 }
1491
1492 static int __meminit slab_memory_callback(struct notifier_block *self,
1493 unsigned long action, void *arg)
1494 {
1495 struct memory_notify *mnb = arg;
1496 int ret = 0;
1497 int nid;
1498
1499 nid = mnb->status_change_nid;
1500 if (nid < 0)
1501 goto out;
1502
1503 switch (action) {
1504 case MEM_GOING_ONLINE:
1505 mutex_lock(&slab_mutex);
1506 ret = init_cache_nodelists_node(nid);
1507 mutex_unlock(&slab_mutex);
1508 break;
1509 case MEM_GOING_OFFLINE:
1510 mutex_lock(&slab_mutex);
1511 ret = drain_cache_nodelists_node(nid);
1512 mutex_unlock(&slab_mutex);
1513 break;
1514 case MEM_ONLINE:
1515 case MEM_OFFLINE:
1516 case MEM_CANCEL_ONLINE:
1517 case MEM_CANCEL_OFFLINE:
1518 break;
1519 }
1520 out:
1521 return notifier_from_errno(ret);
1522 }
1523 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1524
1525 /*
1526 * swap the static kmem_list3 with kmalloced memory
1527 */
1528 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1529 int nodeid)
1530 {
1531 struct kmem_list3 *ptr;
1532
1533 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1534 BUG_ON(!ptr);
1535
1536 memcpy(ptr, list, sizeof(struct kmem_list3));
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->list_lock);
1541
1542 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1543 cachep->nodelists[nodeid] = ptr;
1544 }
1545
1546 /*
1547 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1548 * size of kmem_list3.
1549 */
1550 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1551 {
1552 int node;
1553
1554 for_each_online_node(node) {
1555 cachep->nodelists[node] = &initkmem_list3[index + node];
1556 cachep->nodelists[node]->next_reap = jiffies +
1557 REAPTIMEOUT_LIST3 +
1558 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1559 }
1560 }
1561
1562 /*
1563 * Initialisation. Called after the page allocator have been initialised and
1564 * before smp_init().
1565 */
1566 void __init kmem_cache_init(void)
1567 {
1568 size_t left_over;
1569 struct cache_sizes *sizes;
1570 struct cache_names *names;
1571 int i;
1572 int order;
1573 int node;
1574
1575 kmem_cache = &kmem_cache_boot;
1576
1577 if (num_possible_nodes() == 1)
1578 use_alien_caches = 0;
1579
1580 for (i = 0; i < NUM_INIT_LISTS; i++) {
1581 kmem_list3_init(&initkmem_list3[i]);
1582 if (i < MAX_NUMNODES)
1583 kmem_cache->nodelists[i] = NULL;
1584 }
1585 set_up_list3s(kmem_cache, CACHE_CACHE);
1586
1587 /*
1588 * Fragmentation resistance on low memory - only use bigger
1589 * page orders on machines with more than 32MB of memory if
1590 * not overridden on the command line.
1591 */
1592 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1593 slab_max_order = SLAB_MAX_ORDER_HI;
1594
1595 /* Bootstrap is tricky, because several objects are allocated
1596 * from caches that do not exist yet:
1597 * 1) initialize the kmem_cache cache: it contains the struct
1598 * kmem_cache structures of all caches, except kmem_cache itself:
1599 * kmem_cache is statically allocated.
1600 * Initially an __init data area is used for the head array and the
1601 * kmem_list3 structures, it's replaced with a kmalloc allocated
1602 * array at the end of the bootstrap.
1603 * 2) Create the first kmalloc cache.
1604 * The struct kmem_cache for the new cache is allocated normally.
1605 * An __init data area is used for the head array.
1606 * 3) Create the remaining kmalloc caches, with minimally sized
1607 * head arrays.
1608 * 4) Replace the __init data head arrays for kmem_cache and the first
1609 * kmalloc cache with kmalloc allocated arrays.
1610 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1611 * the other cache's with kmalloc allocated memory.
1612 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1613 */
1614
1615 node = numa_mem_id();
1616
1617 /* 1) create the kmem_cache */
1618 INIT_LIST_HEAD(&slab_caches);
1619 list_add(&kmem_cache->list, &slab_caches);
1620 kmem_cache->colour_off = cache_line_size();
1621 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1622 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1623
1624 /*
1625 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1626 */
1627 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1628 nr_node_ids * sizeof(struct kmem_list3 *);
1629 kmem_cache->object_size = kmem_cache->size;
1630 kmem_cache->size = ALIGN(kmem_cache->object_size,
1631 cache_line_size());
1632 kmem_cache->reciprocal_buffer_size =
1633 reciprocal_value(kmem_cache->size);
1634
1635 for (order = 0; order < MAX_ORDER; order++) {
1636 cache_estimate(order, kmem_cache->size,
1637 cache_line_size(), 0, &left_over, &kmem_cache->num);
1638 if (kmem_cache->num)
1639 break;
1640 }
1641 BUG_ON(!kmem_cache->num);
1642 kmem_cache->gfporder = order;
1643 kmem_cache->colour = left_over / kmem_cache->colour_off;
1644 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
1645 sizeof(struct slab), cache_line_size());
1646
1647 /* 2+3) create the kmalloc caches */
1648 sizes = malloc_sizes;
1649 names = cache_names;
1650
1651 /*
1652 * Initialize the caches that provide memory for the array cache and the
1653 * kmem_list3 structures first. Without this, further allocations will
1654 * bug.
1655 */
1656
1657 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1658 sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
1659 sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
1660 sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
1661 sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1662 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1663 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1664
1665 if (INDEX_AC != INDEX_L3) {
1666 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1667 sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
1668 sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
1669 sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
1670 sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1671 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1672 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
1673 }
1674
1675 slab_early_init = 0;
1676
1677 while (sizes->cs_size != ULONG_MAX) {
1678 /*
1679 * For performance, all the general caches are L1 aligned.
1680 * This should be particularly beneficial on SMP boxes, as it
1681 * eliminates "false sharing".
1682 * Note for systems short on memory removing the alignment will
1683 * allow tighter packing of the smaller caches.
1684 */
1685 if (!sizes->cs_cachep) {
1686 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1687 sizes->cs_cachep->name = names->name;
1688 sizes->cs_cachep->size = sizes->cs_size;
1689 sizes->cs_cachep->object_size = sizes->cs_size;
1690 sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1691 __kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1692 list_add(&sizes->cs_cachep->list, &slab_caches);
1693 }
1694 #ifdef CONFIG_ZONE_DMA
1695 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1696 sizes->cs_dmacachep->name = names->name_dma;
1697 sizes->cs_dmacachep->size = sizes->cs_size;
1698 sizes->cs_dmacachep->object_size = sizes->cs_size;
1699 sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
1700 __kmem_cache_create(sizes->cs_dmacachep,
1701 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
1702 list_add(&sizes->cs_dmacachep->list, &slab_caches);
1703 #endif
1704 sizes++;
1705 names++;
1706 }
1707 /* 4) Replace the bootstrap head arrays */
1708 {
1709 struct array_cache *ptr;
1710
1711 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1712
1713 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1714 memcpy(ptr, cpu_cache_get(kmem_cache),
1715 sizeof(struct arraycache_init));
1716 /*
1717 * Do not assume that spinlocks can be initialized via memcpy:
1718 */
1719 spin_lock_init(&ptr->lock);
1720
1721 kmem_cache->array[smp_processor_id()] = ptr;
1722
1723 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1724
1725 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1726 != &initarray_generic.cache);
1727 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1728 sizeof(struct arraycache_init));
1729 /*
1730 * Do not assume that spinlocks can be initialized via memcpy:
1731 */
1732 spin_lock_init(&ptr->lock);
1733
1734 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1735 ptr;
1736 }
1737 /* 5) Replace the bootstrap kmem_list3's */
1738 {
1739 int nid;
1740
1741 for_each_online_node(nid) {
1742 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1743
1744 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1745 &initkmem_list3[SIZE_AC + nid], nid);
1746
1747 if (INDEX_AC != INDEX_L3) {
1748 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1749 &initkmem_list3[SIZE_L3 + nid], nid);
1750 }
1751 }
1752 }
1753
1754 slab_state = UP;
1755 }
1756
1757 void __init kmem_cache_init_late(void)
1758 {
1759 struct kmem_cache *cachep;
1760
1761 slab_state = UP;
1762
1763 /* 6) resize the head arrays to their final sizes */
1764 mutex_lock(&slab_mutex);
1765 list_for_each_entry(cachep, &slab_caches, list)
1766 if (enable_cpucache(cachep, GFP_NOWAIT))
1767 BUG();
1768 mutex_unlock(&slab_mutex);
1769
1770 /* Annotate slab for lockdep -- annotate the malloc caches */
1771 init_lock_keys();
1772
1773 /* Done! */
1774 slab_state = FULL;
1775
1776 /*
1777 * Register a cpu startup notifier callback that initializes
1778 * cpu_cache_get for all new cpus
1779 */
1780 register_cpu_notifier(&cpucache_notifier);
1781
1782 #ifdef CONFIG_NUMA
1783 /*
1784 * Register a memory hotplug callback that initializes and frees
1785 * nodelists.
1786 */
1787 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1788 #endif
1789
1790 /*
1791 * The reap timers are started later, with a module init call: That part
1792 * of the kernel is not yet operational.
1793 */
1794 }
1795
1796 static int __init cpucache_init(void)
1797 {
1798 int cpu;
1799
1800 /*
1801 * Register the timers that return unneeded pages to the page allocator
1802 */
1803 for_each_online_cpu(cpu)
1804 start_cpu_timer(cpu);
1805
1806 /* Done! */
1807 slab_state = FULL;
1808 return 0;
1809 }
1810 __initcall(cpucache_init);
1811
1812 static noinline void
1813 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1814 {
1815 struct kmem_list3 *l3;
1816 struct slab *slabp;
1817 unsigned long flags;
1818 int node;
1819
1820 printk(KERN_WARNING
1821 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1822 nodeid, gfpflags);
1823 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1824 cachep->name, cachep->size, cachep->gfporder);
1825
1826 for_each_online_node(node) {
1827 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1828 unsigned long active_slabs = 0, num_slabs = 0;
1829
1830 l3 = cachep->nodelists[node];
1831 if (!l3)
1832 continue;
1833
1834 spin_lock_irqsave(&l3->list_lock, flags);
1835 list_for_each_entry(slabp, &l3->slabs_full, list) {
1836 active_objs += cachep->num;
1837 active_slabs++;
1838 }
1839 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1840 active_objs += slabp->inuse;
1841 active_slabs++;
1842 }
1843 list_for_each_entry(slabp, &l3->slabs_free, list)
1844 num_slabs++;
1845
1846 free_objects += l3->free_objects;
1847 spin_unlock_irqrestore(&l3->list_lock, flags);
1848
1849 num_slabs += active_slabs;
1850 num_objs = num_slabs * cachep->num;
1851 printk(KERN_WARNING
1852 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1853 node, active_slabs, num_slabs, active_objs, num_objs,
1854 free_objects);
1855 }
1856 }
1857
1858 /*
1859 * Interface to system's page allocator. No need to hold the cache-lock.
1860 *
1861 * If we requested dmaable memory, we will get it. Even if we
1862 * did not request dmaable memory, we might get it, but that
1863 * would be relatively rare and ignorable.
1864 */
1865 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1866 {
1867 struct page *page;
1868 int nr_pages;
1869 int i;
1870
1871 #ifndef CONFIG_MMU
1872 /*
1873 * Nommu uses slab's for process anonymous memory allocations, and thus
1874 * requires __GFP_COMP to properly refcount higher order allocations
1875 */
1876 flags |= __GFP_COMP;
1877 #endif
1878
1879 flags |= cachep->allocflags;
1880 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1881 flags |= __GFP_RECLAIMABLE;
1882
1883 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1884 if (!page) {
1885 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1886 slab_out_of_memory(cachep, flags, nodeid);
1887 return NULL;
1888 }
1889
1890 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1891 if (unlikely(page->pfmemalloc))
1892 pfmemalloc_active = true;
1893
1894 nr_pages = (1 << cachep->gfporder);
1895 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1896 add_zone_page_state(page_zone(page),
1897 NR_SLAB_RECLAIMABLE, nr_pages);
1898 else
1899 add_zone_page_state(page_zone(page),
1900 NR_SLAB_UNRECLAIMABLE, nr_pages);
1901 for (i = 0; i < nr_pages; i++) {
1902 __SetPageSlab(page + i);
1903
1904 if (page->pfmemalloc)
1905 SetPageSlabPfmemalloc(page + i);
1906 }
1907
1908 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1909 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1910
1911 if (cachep->ctor)
1912 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1913 else
1914 kmemcheck_mark_unallocated_pages(page, nr_pages);
1915 }
1916
1917 return page_address(page);
1918 }
1919
1920 /*
1921 * Interface to system's page release.
1922 */
1923 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1924 {
1925 unsigned long i = (1 << cachep->gfporder);
1926 struct page *page = virt_to_page(addr);
1927 const unsigned long nr_freed = i;
1928
1929 kmemcheck_free_shadow(page, cachep->gfporder);
1930
1931 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1932 sub_zone_page_state(page_zone(page),
1933 NR_SLAB_RECLAIMABLE, nr_freed);
1934 else
1935 sub_zone_page_state(page_zone(page),
1936 NR_SLAB_UNRECLAIMABLE, nr_freed);
1937 while (i--) {
1938 BUG_ON(!PageSlab(page));
1939 __ClearPageSlabPfmemalloc(page);
1940 __ClearPageSlab(page);
1941 page++;
1942 }
1943 if (current->reclaim_state)
1944 current->reclaim_state->reclaimed_slab += nr_freed;
1945 free_pages((unsigned long)addr, cachep->gfporder);
1946 }
1947
1948 static void kmem_rcu_free(struct rcu_head *head)
1949 {
1950 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1951 struct kmem_cache *cachep = slab_rcu->cachep;
1952
1953 kmem_freepages(cachep, slab_rcu->addr);
1954 if (OFF_SLAB(cachep))
1955 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1956 }
1957
1958 #if DEBUG
1959
1960 #ifdef CONFIG_DEBUG_PAGEALLOC
1961 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1962 unsigned long caller)
1963 {
1964 int size = cachep->object_size;
1965
1966 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1967
1968 if (size < 5 * sizeof(unsigned long))
1969 return;
1970
1971 *addr++ = 0x12345678;
1972 *addr++ = caller;
1973 *addr++ = smp_processor_id();
1974 size -= 3 * sizeof(unsigned long);
1975 {
1976 unsigned long *sptr = &caller;
1977 unsigned long svalue;
1978
1979 while (!kstack_end(sptr)) {
1980 svalue = *sptr++;
1981 if (kernel_text_address(svalue)) {
1982 *addr++ = svalue;
1983 size -= sizeof(unsigned long);
1984 if (size <= sizeof(unsigned long))
1985 break;
1986 }
1987 }
1988
1989 }
1990 *addr++ = 0x87654321;
1991 }
1992 #endif
1993
1994 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1995 {
1996 int size = cachep->object_size;
1997 addr = &((char *)addr)[obj_offset(cachep)];
1998
1999 memset(addr, val, size);
2000 *(unsigned char *)(addr + size - 1) = POISON_END;
2001 }
2002
2003 static void dump_line(char *data, int offset, int limit)
2004 {
2005 int i;
2006 unsigned char error = 0;
2007 int bad_count = 0;
2008
2009 printk(KERN_ERR "%03x: ", offset);
2010 for (i = 0; i < limit; i++) {
2011 if (data[offset + i] != POISON_FREE) {
2012 error = data[offset + i];
2013 bad_count++;
2014 }
2015 }
2016 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2017 &data[offset], limit, 1);
2018
2019 if (bad_count == 1) {
2020 error ^= POISON_FREE;
2021 if (!(error & (error - 1))) {
2022 printk(KERN_ERR "Single bit error detected. Probably "
2023 "bad RAM.\n");
2024 #ifdef CONFIG_X86
2025 printk(KERN_ERR "Run memtest86+ or a similar memory "
2026 "test tool.\n");
2027 #else
2028 printk(KERN_ERR "Run a memory test tool.\n");
2029 #endif
2030 }
2031 }
2032 }
2033 #endif
2034
2035 #if DEBUG
2036
2037 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2038 {
2039 int i, size;
2040 char *realobj;
2041
2042 if (cachep->flags & SLAB_RED_ZONE) {
2043 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2044 *dbg_redzone1(cachep, objp),
2045 *dbg_redzone2(cachep, objp));
2046 }
2047
2048 if (cachep->flags & SLAB_STORE_USER) {
2049 printk(KERN_ERR "Last user: [<%p>]",
2050 *dbg_userword(cachep, objp));
2051 print_symbol("(%s)",
2052 (unsigned long)*dbg_userword(cachep, objp));
2053 printk("\n");
2054 }
2055 realobj = (char *)objp + obj_offset(cachep);
2056 size = cachep->object_size;
2057 for (i = 0; i < size && lines; i += 16, lines--) {
2058 int limit;
2059 limit = 16;
2060 if (i + limit > size)
2061 limit = size - i;
2062 dump_line(realobj, i, limit);
2063 }
2064 }
2065
2066 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2067 {
2068 char *realobj;
2069 int size, i;
2070 int lines = 0;
2071
2072 realobj = (char *)objp + obj_offset(cachep);
2073 size = cachep->object_size;
2074
2075 for (i = 0; i < size; i++) {
2076 char exp = POISON_FREE;
2077 if (i == size - 1)
2078 exp = POISON_END;
2079 if (realobj[i] != exp) {
2080 int limit;
2081 /* Mismatch ! */
2082 /* Print header */
2083 if (lines == 0) {
2084 printk(KERN_ERR
2085 "Slab corruption (%s): %s start=%p, len=%d\n",
2086 print_tainted(), cachep->name, realobj, size);
2087 print_objinfo(cachep, objp, 0);
2088 }
2089 /* Hexdump the affected line */
2090 i = (i / 16) * 16;
2091 limit = 16;
2092 if (i + limit > size)
2093 limit = size - i;
2094 dump_line(realobj, i, limit);
2095 i += 16;
2096 lines++;
2097 /* Limit to 5 lines */
2098 if (lines > 5)
2099 break;
2100 }
2101 }
2102 if (lines != 0) {
2103 /* Print some data about the neighboring objects, if they
2104 * exist:
2105 */
2106 struct slab *slabp = virt_to_slab(objp);
2107 unsigned int objnr;
2108
2109 objnr = obj_to_index(cachep, slabp, objp);
2110 if (objnr) {
2111 objp = index_to_obj(cachep, slabp, objnr - 1);
2112 realobj = (char *)objp + obj_offset(cachep);
2113 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2114 realobj, size);
2115 print_objinfo(cachep, objp, 2);
2116 }
2117 if (objnr + 1 < cachep->num) {
2118 objp = index_to_obj(cachep, slabp, objnr + 1);
2119 realobj = (char *)objp + obj_offset(cachep);
2120 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2121 realobj, size);
2122 print_objinfo(cachep, objp, 2);
2123 }
2124 }
2125 }
2126 #endif
2127
2128 #if DEBUG
2129 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2130 {
2131 int i;
2132 for (i = 0; i < cachep->num; i++) {
2133 void *objp = index_to_obj(cachep, slabp, i);
2134
2135 if (cachep->flags & SLAB_POISON) {
2136 #ifdef CONFIG_DEBUG_PAGEALLOC
2137 if (cachep->size % PAGE_SIZE == 0 &&
2138 OFF_SLAB(cachep))
2139 kernel_map_pages(virt_to_page(objp),
2140 cachep->size / PAGE_SIZE, 1);
2141 else
2142 check_poison_obj(cachep, objp);
2143 #else
2144 check_poison_obj(cachep, objp);
2145 #endif
2146 }
2147 if (cachep->flags & SLAB_RED_ZONE) {
2148 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2149 slab_error(cachep, "start of a freed object "
2150 "was overwritten");
2151 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2152 slab_error(cachep, "end of a freed object "
2153 "was overwritten");
2154 }
2155 }
2156 }
2157 #else
2158 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2159 {
2160 }
2161 #endif
2162
2163 /**
2164 * slab_destroy - destroy and release all objects in a slab
2165 * @cachep: cache pointer being destroyed
2166 * @slabp: slab pointer being destroyed
2167 *
2168 * Destroy all the objs in a slab, and release the mem back to the system.
2169 * Before calling the slab must have been unlinked from the cache. The
2170 * cache-lock is not held/needed.
2171 */
2172 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2173 {
2174 void *addr = slabp->s_mem - slabp->colouroff;
2175
2176 slab_destroy_debugcheck(cachep, slabp);
2177 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2178 struct slab_rcu *slab_rcu;
2179
2180 slab_rcu = (struct slab_rcu *)slabp;
2181 slab_rcu->cachep = cachep;
2182 slab_rcu->addr = addr;
2183 call_rcu(&slab_rcu->head, kmem_rcu_free);
2184 } else {
2185 kmem_freepages(cachep, addr);
2186 if (OFF_SLAB(cachep))
2187 kmem_cache_free(cachep->slabp_cache, slabp);
2188 }
2189 }
2190
2191 /**
2192 * calculate_slab_order - calculate size (page order) of slabs
2193 * @cachep: pointer to the cache that is being created
2194 * @size: size of objects to be created in this cache.
2195 * @align: required alignment for the objects.
2196 * @flags: slab allocation flags
2197 *
2198 * Also calculates the number of objects per slab.
2199 *
2200 * This could be made much more intelligent. For now, try to avoid using
2201 * high order pages for slabs. When the gfp() functions are more friendly
2202 * towards high-order requests, this should be changed.
2203 */
2204 static size_t calculate_slab_order(struct kmem_cache *cachep,
2205 size_t size, size_t align, unsigned long flags)
2206 {
2207 unsigned long offslab_limit;
2208 size_t left_over = 0;
2209 int gfporder;
2210
2211 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2212 unsigned int num;
2213 size_t remainder;
2214
2215 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2216 if (!num)
2217 continue;
2218
2219 if (flags & CFLGS_OFF_SLAB) {
2220 /*
2221 * Max number of objs-per-slab for caches which
2222 * use off-slab slabs. Needed to avoid a possible
2223 * looping condition in cache_grow().
2224 */
2225 offslab_limit = size - sizeof(struct slab);
2226 offslab_limit /= sizeof(kmem_bufctl_t);
2227
2228 if (num > offslab_limit)
2229 break;
2230 }
2231
2232 /* Found something acceptable - save it away */
2233 cachep->num = num;
2234 cachep->gfporder = gfporder;
2235 left_over = remainder;
2236
2237 /*
2238 * A VFS-reclaimable slab tends to have most allocations
2239 * as GFP_NOFS and we really don't want to have to be allocating
2240 * higher-order pages when we are unable to shrink dcache.
2241 */
2242 if (flags & SLAB_RECLAIM_ACCOUNT)
2243 break;
2244
2245 /*
2246 * Large number of objects is good, but very large slabs are
2247 * currently bad for the gfp()s.
2248 */
2249 if (gfporder >= slab_max_order)
2250 break;
2251
2252 /*
2253 * Acceptable internal fragmentation?
2254 */
2255 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2256 break;
2257 }
2258 return left_over;
2259 }
2260
2261 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2262 {
2263 if (slab_state >= FULL)
2264 return enable_cpucache(cachep, gfp);
2265
2266 if (slab_state == DOWN) {
2267 /*
2268 * Note: the first kmem_cache_create must create the cache
2269 * that's used by kmalloc(24), otherwise the creation of
2270 * further caches will BUG().
2271 */
2272 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2273
2274 /*
2275 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2276 * the first cache, then we need to set up all its list3s,
2277 * otherwise the creation of further caches will BUG().
2278 */
2279 set_up_list3s(cachep, SIZE_AC);
2280 if (INDEX_AC == INDEX_L3)
2281 slab_state = PARTIAL_L3;
2282 else
2283 slab_state = PARTIAL_ARRAYCACHE;
2284 } else {
2285 cachep->array[smp_processor_id()] =
2286 kmalloc(sizeof(struct arraycache_init), gfp);
2287
2288 if (slab_state == PARTIAL_ARRAYCACHE) {
2289 set_up_list3s(cachep, SIZE_L3);
2290 slab_state = PARTIAL_L3;
2291 } else {
2292 int node;
2293 for_each_online_node(node) {
2294 cachep->nodelists[node] =
2295 kmalloc_node(sizeof(struct kmem_list3),
2296 gfp, node);
2297 BUG_ON(!cachep->nodelists[node]);
2298 kmem_list3_init(cachep->nodelists[node]);
2299 }
2300 }
2301 }
2302 cachep->nodelists[numa_mem_id()]->next_reap =
2303 jiffies + REAPTIMEOUT_LIST3 +
2304 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2305
2306 cpu_cache_get(cachep)->avail = 0;
2307 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2308 cpu_cache_get(cachep)->batchcount = 1;
2309 cpu_cache_get(cachep)->touched = 0;
2310 cachep->batchcount = 1;
2311 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2312 return 0;
2313 }
2314
2315 /**
2316 * __kmem_cache_create - Create a cache.
2317 * @name: A string which is used in /proc/slabinfo to identify this cache.
2318 * @size: The size of objects to be created in this cache.
2319 * @align: The required alignment for the objects.
2320 * @flags: SLAB flags
2321 * @ctor: A constructor for the objects.
2322 *
2323 * Returns a ptr to the cache on success, NULL on failure.
2324 * Cannot be called within a int, but can be interrupted.
2325 * The @ctor is run when new pages are allocated by the cache.
2326 *
2327 * The flags are
2328 *
2329 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2330 * to catch references to uninitialised memory.
2331 *
2332 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2333 * for buffer overruns.
2334 *
2335 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2336 * cacheline. This can be beneficial if you're counting cycles as closely
2337 * as davem.
2338 */
2339 int
2340 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2341 {
2342 size_t left_over, slab_size, ralign;
2343 gfp_t gfp;
2344 int err;
2345 size_t size = cachep->size;
2346
2347 #if DEBUG
2348 #if FORCED_DEBUG
2349 /*
2350 * Enable redzoning and last user accounting, except for caches with
2351 * large objects, if the increased size would increase the object size
2352 * above the next power of two: caches with object sizes just above a
2353 * power of two have a significant amount of internal fragmentation.
2354 */
2355 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2356 2 * sizeof(unsigned long long)))
2357 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2358 if (!(flags & SLAB_DESTROY_BY_RCU))
2359 flags |= SLAB_POISON;
2360 #endif
2361 if (flags & SLAB_DESTROY_BY_RCU)
2362 BUG_ON(flags & SLAB_POISON);
2363 #endif
2364
2365 /*
2366 * Check that size is in terms of words. This is needed to avoid
2367 * unaligned accesses for some archs when redzoning is used, and makes
2368 * sure any on-slab bufctl's are also correctly aligned.
2369 */
2370 if (size & (BYTES_PER_WORD - 1)) {
2371 size += (BYTES_PER_WORD - 1);
2372 size &= ~(BYTES_PER_WORD - 1);
2373 }
2374
2375 /* calculate the final buffer alignment: */
2376
2377 /* 1) arch recommendation: can be overridden for debug */
2378 if (flags & SLAB_HWCACHE_ALIGN) {
2379 /*
2380 * Default alignment: as specified by the arch code. Except if
2381 * an object is really small, then squeeze multiple objects into
2382 * one cacheline.
2383 */
2384 ralign = cache_line_size();
2385 while (size <= ralign / 2)
2386 ralign /= 2;
2387 } else {
2388 ralign = BYTES_PER_WORD;
2389 }
2390
2391 /*
2392 * Redzoning and user store require word alignment or possibly larger.
2393 * Note this will be overridden by architecture or caller mandated
2394 * alignment if either is greater than BYTES_PER_WORD.
2395 */
2396 if (flags & SLAB_STORE_USER)
2397 ralign = BYTES_PER_WORD;
2398
2399 if (flags & SLAB_RED_ZONE) {
2400 ralign = REDZONE_ALIGN;
2401 /* If redzoning, ensure that the second redzone is suitably
2402 * aligned, by adjusting the object size accordingly. */
2403 size += REDZONE_ALIGN - 1;
2404 size &= ~(REDZONE_ALIGN - 1);
2405 }
2406
2407 /* 2) arch mandated alignment */
2408 if (ralign < ARCH_SLAB_MINALIGN) {
2409 ralign = ARCH_SLAB_MINALIGN;
2410 }
2411 /* 3) caller mandated alignment */
2412 if (ralign < cachep->align) {
2413 ralign = cachep->align;
2414 }
2415 /* disable debug if necessary */
2416 if (ralign > __alignof__(unsigned long long))
2417 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2418 /*
2419 * 4) Store it.
2420 */
2421 cachep->align = ralign;
2422
2423 if (slab_is_available())
2424 gfp = GFP_KERNEL;
2425 else
2426 gfp = GFP_NOWAIT;
2427
2428 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2429 #if DEBUG
2430
2431 /*
2432 * Both debugging options require word-alignment which is calculated
2433 * into align above.
2434 */
2435 if (flags & SLAB_RED_ZONE) {
2436 /* add space for red zone words */
2437 cachep->obj_offset += sizeof(unsigned long long);
2438 size += 2 * sizeof(unsigned long long);
2439 }
2440 if (flags & SLAB_STORE_USER) {
2441 /* user store requires one word storage behind the end of
2442 * the real object. But if the second red zone needs to be
2443 * aligned to 64 bits, we must allow that much space.
2444 */
2445 if (flags & SLAB_RED_ZONE)
2446 size += REDZONE_ALIGN;
2447 else
2448 size += BYTES_PER_WORD;
2449 }
2450 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2451 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2452 && cachep->object_size > cache_line_size()
2453 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2454 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2455 size = PAGE_SIZE;
2456 }
2457 #endif
2458 #endif
2459
2460 /*
2461 * Determine if the slab management is 'on' or 'off' slab.
2462 * (bootstrapping cannot cope with offslab caches so don't do
2463 * it too early on. Always use on-slab management when
2464 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2465 */
2466 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2467 !(flags & SLAB_NOLEAKTRACE))
2468 /*
2469 * Size is large, assume best to place the slab management obj
2470 * off-slab (should allow better packing of objs).
2471 */
2472 flags |= CFLGS_OFF_SLAB;
2473
2474 size = ALIGN(size, cachep->align);
2475
2476 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2477
2478 if (!cachep->num)
2479 return -E2BIG;
2480
2481 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2482 + sizeof(struct slab), cachep->align);
2483
2484 /*
2485 * If the slab has been placed off-slab, and we have enough space then
2486 * move it on-slab. This is at the expense of any extra colouring.
2487 */
2488 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2489 flags &= ~CFLGS_OFF_SLAB;
2490 left_over -= slab_size;
2491 }
2492
2493 if (flags & CFLGS_OFF_SLAB) {
2494 /* really off slab. No need for manual alignment */
2495 slab_size =
2496 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2497
2498 #ifdef CONFIG_PAGE_POISONING
2499 /* If we're going to use the generic kernel_map_pages()
2500 * poisoning, then it's going to smash the contents of
2501 * the redzone and userword anyhow, so switch them off.
2502 */
2503 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2504 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2505 #endif
2506 }
2507
2508 cachep->colour_off = cache_line_size();
2509 /* Offset must be a multiple of the alignment. */
2510 if (cachep->colour_off < cachep->align)
2511 cachep->colour_off = cachep->align;
2512 cachep->colour = left_over / cachep->colour_off;
2513 cachep->slab_size = slab_size;
2514 cachep->flags = flags;
2515 cachep->allocflags = 0;
2516 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2517 cachep->allocflags |= GFP_DMA;
2518 cachep->size = size;
2519 cachep->reciprocal_buffer_size = reciprocal_value(size);
2520
2521 if (flags & CFLGS_OFF_SLAB) {
2522 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2523 /*
2524 * This is a possibility for one of the malloc_sizes caches.
2525 * But since we go off slab only for object size greater than
2526 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2527 * this should not happen at all.
2528 * But leave a BUG_ON for some lucky dude.
2529 */
2530 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2531 }
2532
2533 err = setup_cpu_cache(cachep, gfp);
2534 if (err) {
2535 __kmem_cache_shutdown(cachep);
2536 return err;
2537 }
2538
2539 if (flags & SLAB_DEBUG_OBJECTS) {
2540 /*
2541 * Would deadlock through slab_destroy()->call_rcu()->
2542 * debug_object_activate()->kmem_cache_alloc().
2543 */
2544 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2545
2546 slab_set_debugobj_lock_classes(cachep);
2547 }
2548
2549 return 0;
2550 }
2551
2552 #if DEBUG
2553 static void check_irq_off(void)
2554 {
2555 BUG_ON(!irqs_disabled());
2556 }
2557
2558 static void check_irq_on(void)
2559 {
2560 BUG_ON(irqs_disabled());
2561 }
2562
2563 static void check_spinlock_acquired(struct kmem_cache *cachep)
2564 {
2565 #ifdef CONFIG_SMP
2566 check_irq_off();
2567 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2568 #endif
2569 }
2570
2571 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2572 {
2573 #ifdef CONFIG_SMP
2574 check_irq_off();
2575 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2576 #endif
2577 }
2578
2579 #else
2580 #define check_irq_off() do { } while(0)
2581 #define check_irq_on() do { } while(0)
2582 #define check_spinlock_acquired(x) do { } while(0)
2583 #define check_spinlock_acquired_node(x, y) do { } while(0)
2584 #endif
2585
2586 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2587 struct array_cache *ac,
2588 int force, int node);
2589
2590 static void do_drain(void *arg)
2591 {
2592 struct kmem_cache *cachep = arg;
2593 struct array_cache *ac;
2594 int node = numa_mem_id();
2595
2596 check_irq_off();
2597 ac = cpu_cache_get(cachep);
2598 spin_lock(&cachep->nodelists[node]->list_lock);
2599 free_block(cachep, ac->entry, ac->avail, node);
2600 spin_unlock(&cachep->nodelists[node]->list_lock);
2601 ac->avail = 0;
2602 }
2603
2604 static void drain_cpu_caches(struct kmem_cache *cachep)
2605 {
2606 struct kmem_list3 *l3;
2607 int node;
2608
2609 on_each_cpu(do_drain, cachep, 1);
2610 check_irq_on();
2611 for_each_online_node(node) {
2612 l3 = cachep->nodelists[node];
2613 if (l3 && l3->alien)
2614 drain_alien_cache(cachep, l3->alien);
2615 }
2616
2617 for_each_online_node(node) {
2618 l3 = cachep->nodelists[node];
2619 if (l3)
2620 drain_array(cachep, l3, l3->shared, 1, node);
2621 }
2622 }
2623
2624 /*
2625 * Remove slabs from the list of free slabs.
2626 * Specify the number of slabs to drain in tofree.
2627 *
2628 * Returns the actual number of slabs released.
2629 */
2630 static int drain_freelist(struct kmem_cache *cache,
2631 struct kmem_list3 *l3, int tofree)
2632 {
2633 struct list_head *p;
2634 int nr_freed;
2635 struct slab *slabp;
2636
2637 nr_freed = 0;
2638 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2639
2640 spin_lock_irq(&l3->list_lock);
2641 p = l3->slabs_free.prev;
2642 if (p == &l3->slabs_free) {
2643 spin_unlock_irq(&l3->list_lock);
2644 goto out;
2645 }
2646
2647 slabp = list_entry(p, struct slab, list);
2648 #if DEBUG
2649 BUG_ON(slabp->inuse);
2650 #endif
2651 list_del(&slabp->list);
2652 /*
2653 * Safe to drop the lock. The slab is no longer linked
2654 * to the cache.
2655 */
2656 l3->free_objects -= cache->num;
2657 spin_unlock_irq(&l3->list_lock);
2658 slab_destroy(cache, slabp);
2659 nr_freed++;
2660 }
2661 out:
2662 return nr_freed;
2663 }
2664
2665 /* Called with slab_mutex held to protect against cpu hotplug */
2666 static int __cache_shrink(struct kmem_cache *cachep)
2667 {
2668 int ret = 0, i = 0;
2669 struct kmem_list3 *l3;
2670
2671 drain_cpu_caches(cachep);
2672
2673 check_irq_on();
2674 for_each_online_node(i) {
2675 l3 = cachep->nodelists[i];
2676 if (!l3)
2677 continue;
2678
2679 drain_freelist(cachep, l3, l3->free_objects);
2680
2681 ret += !list_empty(&l3->slabs_full) ||
2682 !list_empty(&l3->slabs_partial);
2683 }
2684 return (ret ? 1 : 0);
2685 }
2686
2687 /**
2688 * kmem_cache_shrink - Shrink a cache.
2689 * @cachep: The cache to shrink.
2690 *
2691 * Releases as many slabs as possible for a cache.
2692 * To help debugging, a zero exit status indicates all slabs were released.
2693 */
2694 int kmem_cache_shrink(struct kmem_cache *cachep)
2695 {
2696 int ret;
2697 BUG_ON(!cachep || in_interrupt());
2698
2699 get_online_cpus();
2700 mutex_lock(&slab_mutex);
2701 ret = __cache_shrink(cachep);
2702 mutex_unlock(&slab_mutex);
2703 put_online_cpus();
2704 return ret;
2705 }
2706 EXPORT_SYMBOL(kmem_cache_shrink);
2707
2708 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2709 {
2710 int i;
2711 struct kmem_list3 *l3;
2712 int rc = __cache_shrink(cachep);
2713
2714 if (rc)
2715 return rc;
2716
2717 for_each_online_cpu(i)
2718 kfree(cachep->array[i]);
2719
2720 /* NUMA: free the list3 structures */
2721 for_each_online_node(i) {
2722 l3 = cachep->nodelists[i];
2723 if (l3) {
2724 kfree(l3->shared);
2725 free_alien_cache(l3->alien);
2726 kfree(l3);
2727 }
2728 }
2729 return 0;
2730 }
2731
2732 /*
2733 * Get the memory for a slab management obj.
2734 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2735 * always come from malloc_sizes caches. The slab descriptor cannot
2736 * come from the same cache which is getting created because,
2737 * when we are searching for an appropriate cache for these
2738 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2739 * If we are creating a malloc_sizes cache here it would not be visible to
2740 * kmem_find_general_cachep till the initialization is complete.
2741 * Hence we cannot have slabp_cache same as the original cache.
2742 */
2743 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2744 int colour_off, gfp_t local_flags,
2745 int nodeid)
2746 {
2747 struct slab *slabp;
2748
2749 if (OFF_SLAB(cachep)) {
2750 /* Slab management obj is off-slab. */
2751 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2752 local_flags, nodeid);
2753 /*
2754 * If the first object in the slab is leaked (it's allocated
2755 * but no one has a reference to it), we want to make sure
2756 * kmemleak does not treat the ->s_mem pointer as a reference
2757 * to the object. Otherwise we will not report the leak.
2758 */
2759 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2760 local_flags);
2761 if (!slabp)
2762 return NULL;
2763 } else {
2764 slabp = objp + colour_off;
2765 colour_off += cachep->slab_size;
2766 }
2767 slabp->inuse = 0;
2768 slabp->colouroff = colour_off;
2769 slabp->s_mem = objp + colour_off;
2770 slabp->nodeid = nodeid;
2771 slabp->free = 0;
2772 return slabp;
2773 }
2774
2775 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2776 {
2777 return (kmem_bufctl_t *) (slabp + 1);
2778 }
2779
2780 static void cache_init_objs(struct kmem_cache *cachep,
2781 struct slab *slabp)
2782 {
2783 int i;
2784
2785 for (i = 0; i < cachep->num; i++) {
2786 void *objp = index_to_obj(cachep, slabp, i);
2787 #if DEBUG
2788 /* need to poison the objs? */
2789 if (cachep->flags & SLAB_POISON)
2790 poison_obj(cachep, objp, POISON_FREE);
2791 if (cachep->flags & SLAB_STORE_USER)
2792 *dbg_userword(cachep, objp) = NULL;
2793
2794 if (cachep->flags & SLAB_RED_ZONE) {
2795 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2796 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2797 }
2798 /*
2799 * Constructors are not allowed to allocate memory from the same
2800 * cache which they are a constructor for. Otherwise, deadlock.
2801 * They must also be threaded.
2802 */
2803 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2804 cachep->ctor(objp + obj_offset(cachep));
2805
2806 if (cachep->flags & SLAB_RED_ZONE) {
2807 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2808 slab_error(cachep, "constructor overwrote the"
2809 " end of an object");
2810 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2811 slab_error(cachep, "constructor overwrote the"
2812 " start of an object");
2813 }
2814 if ((cachep->size % PAGE_SIZE) == 0 &&
2815 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2816 kernel_map_pages(virt_to_page(objp),
2817 cachep->size / PAGE_SIZE, 0);
2818 #else
2819 if (cachep->ctor)
2820 cachep->ctor(objp);
2821 #endif
2822 slab_bufctl(slabp)[i] = i + 1;
2823 }
2824 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2825 }
2826
2827 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2828 {
2829 if (CONFIG_ZONE_DMA_FLAG) {
2830 if (flags & GFP_DMA)
2831 BUG_ON(!(cachep->allocflags & GFP_DMA));
2832 else
2833 BUG_ON(cachep->allocflags & GFP_DMA);
2834 }
2835 }
2836
2837 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2838 int nodeid)
2839 {
2840 void *objp = index_to_obj(cachep, slabp, slabp->free);
2841 kmem_bufctl_t next;
2842
2843 slabp->inuse++;
2844 next = slab_bufctl(slabp)[slabp->free];
2845 #if DEBUG
2846 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2847 WARN_ON(slabp->nodeid != nodeid);
2848 #endif
2849 slabp->free = next;
2850
2851 return objp;
2852 }
2853
2854 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2855 void *objp, int nodeid)
2856 {
2857 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2858
2859 #if DEBUG
2860 /* Verify that the slab belongs to the intended node */
2861 WARN_ON(slabp->nodeid != nodeid);
2862
2863 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2864 printk(KERN_ERR "slab: double free detected in cache "
2865 "'%s', objp %p\n", cachep->name, objp);
2866 BUG();
2867 }
2868 #endif
2869 slab_bufctl(slabp)[objnr] = slabp->free;
2870 slabp->free = objnr;
2871 slabp->inuse--;
2872 }
2873
2874 /*
2875 * Map pages beginning at addr to the given cache and slab. This is required
2876 * for the slab allocator to be able to lookup the cache and slab of a
2877 * virtual address for kfree, ksize, and slab debugging.
2878 */
2879 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2880 void *addr)
2881 {
2882 int nr_pages;
2883 struct page *page;
2884
2885 page = virt_to_page(addr);
2886
2887 nr_pages = 1;
2888 if (likely(!PageCompound(page)))
2889 nr_pages <<= cache->gfporder;
2890
2891 do {
2892 page->slab_cache = cache;
2893 page->slab_page = slab;
2894 page++;
2895 } while (--nr_pages);
2896 }
2897
2898 /*
2899 * Grow (by 1) the number of slabs within a cache. This is called by
2900 * kmem_cache_alloc() when there are no active objs left in a cache.
2901 */
2902 static int cache_grow(struct kmem_cache *cachep,
2903 gfp_t flags, int nodeid, void *objp)
2904 {
2905 struct slab *slabp;
2906 size_t offset;
2907 gfp_t local_flags;
2908 struct kmem_list3 *l3;
2909
2910 /*
2911 * Be lazy and only check for valid flags here, keeping it out of the
2912 * critical path in kmem_cache_alloc().
2913 */
2914 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2915 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2916
2917 /* Take the l3 list lock to change the colour_next on this node */
2918 check_irq_off();
2919 l3 = cachep->nodelists[nodeid];
2920 spin_lock(&l3->list_lock);
2921
2922 /* Get colour for the slab, and cal the next value. */
2923 offset = l3->colour_next;
2924 l3->colour_next++;
2925 if (l3->colour_next >= cachep->colour)
2926 l3->colour_next = 0;
2927 spin_unlock(&l3->list_lock);
2928
2929 offset *= cachep->colour_off;
2930
2931 if (local_flags & __GFP_WAIT)
2932 local_irq_enable();
2933
2934 /*
2935 * The test for missing atomic flag is performed here, rather than
2936 * the more obvious place, simply to reduce the critical path length
2937 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2938 * will eventually be caught here (where it matters).
2939 */
2940 kmem_flagcheck(cachep, flags);
2941
2942 /*
2943 * Get mem for the objs. Attempt to allocate a physical page from
2944 * 'nodeid'.
2945 */
2946 if (!objp)
2947 objp = kmem_getpages(cachep, local_flags, nodeid);
2948 if (!objp)
2949 goto failed;
2950
2951 /* Get slab management. */
2952 slabp = alloc_slabmgmt(cachep, objp, offset,
2953 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2954 if (!slabp)
2955 goto opps1;
2956
2957 slab_map_pages(cachep, slabp, objp);
2958
2959 cache_init_objs(cachep, slabp);
2960
2961 if (local_flags & __GFP_WAIT)
2962 local_irq_disable();
2963 check_irq_off();
2964 spin_lock(&l3->list_lock);
2965
2966 /* Make slab active. */
2967 list_add_tail(&slabp->list, &(l3->slabs_free));
2968 STATS_INC_GROWN(cachep);
2969 l3->free_objects += cachep->num;
2970 spin_unlock(&l3->list_lock);
2971 return 1;
2972 opps1:
2973 kmem_freepages(cachep, objp);
2974 failed:
2975 if (local_flags & __GFP_WAIT)
2976 local_irq_disable();
2977 return 0;
2978 }
2979
2980 #if DEBUG
2981
2982 /*
2983 * Perform extra freeing checks:
2984 * - detect bad pointers.
2985 * - POISON/RED_ZONE checking
2986 */
2987 static void kfree_debugcheck(const void *objp)
2988 {
2989 if (!virt_addr_valid(objp)) {
2990 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2991 (unsigned long)objp);
2992 BUG();
2993 }
2994 }
2995
2996 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2997 {
2998 unsigned long long redzone1, redzone2;
2999
3000 redzone1 = *dbg_redzone1(cache, obj);
3001 redzone2 = *dbg_redzone2(cache, obj);
3002
3003 /*
3004 * Redzone is ok.
3005 */
3006 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3007 return;
3008
3009 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3010 slab_error(cache, "double free detected");
3011 else
3012 slab_error(cache, "memory outside object was overwritten");
3013
3014 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3015 obj, redzone1, redzone2);
3016 }
3017
3018 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3019 unsigned long caller)
3020 {
3021 struct page *page;
3022 unsigned int objnr;
3023 struct slab *slabp;
3024
3025 BUG_ON(virt_to_cache(objp) != cachep);
3026
3027 objp -= obj_offset(cachep);
3028 kfree_debugcheck(objp);
3029 page = virt_to_head_page(objp);
3030
3031 slabp = page->slab_page;
3032
3033 if (cachep->flags & SLAB_RED_ZONE) {
3034 verify_redzone_free(cachep, objp);
3035 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3036 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3037 }
3038 if (cachep->flags & SLAB_STORE_USER)
3039 *dbg_userword(cachep, objp) = (void *)caller;
3040
3041 objnr = obj_to_index(cachep, slabp, objp);
3042
3043 BUG_ON(objnr >= cachep->num);
3044 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3045
3046 #ifdef CONFIG_DEBUG_SLAB_LEAK
3047 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3048 #endif
3049 if (cachep->flags & SLAB_POISON) {
3050 #ifdef CONFIG_DEBUG_PAGEALLOC
3051 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3052 store_stackinfo(cachep, objp, caller);
3053 kernel_map_pages(virt_to_page(objp),
3054 cachep->size / PAGE_SIZE, 0);
3055 } else {
3056 poison_obj(cachep, objp, POISON_FREE);
3057 }
3058 #else
3059 poison_obj(cachep, objp, POISON_FREE);
3060 #endif
3061 }
3062 return objp;
3063 }
3064
3065 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3066 {
3067 kmem_bufctl_t i;
3068 int entries = 0;
3069
3070 /* Check slab's freelist to see if this obj is there. */
3071 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3072 entries++;
3073 if (entries > cachep->num || i >= cachep->num)
3074 goto bad;
3075 }
3076 if (entries != cachep->num - slabp->inuse) {
3077 bad:
3078 printk(KERN_ERR "slab: Internal list corruption detected in "
3079 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3080 cachep->name, cachep->num, slabp, slabp->inuse,
3081 print_tainted());
3082 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3083 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3084 1);
3085 BUG();
3086 }
3087 }
3088 #else
3089 #define kfree_debugcheck(x) do { } while(0)
3090 #define cache_free_debugcheck(x,objp,z) (objp)
3091 #define check_slabp(x,y) do { } while(0)
3092 #endif
3093
3094 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3095 bool force_refill)
3096 {
3097 int batchcount;
3098 struct kmem_list3 *l3;
3099 struct array_cache *ac;
3100 int node;
3101
3102 check_irq_off();
3103 node = numa_mem_id();
3104 if (unlikely(force_refill))
3105 goto force_grow;
3106 retry:
3107 ac = cpu_cache_get(cachep);
3108 batchcount = ac->batchcount;
3109 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3110 /*
3111 * If there was little recent activity on this cache, then
3112 * perform only a partial refill. Otherwise we could generate
3113 * refill bouncing.
3114 */
3115 batchcount = BATCHREFILL_LIMIT;
3116 }
3117 l3 = cachep->nodelists[node];
3118
3119 BUG_ON(ac->avail > 0 || !l3);
3120 spin_lock(&l3->list_lock);
3121
3122 /* See if we can refill from the shared array */
3123 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3124 l3->shared->touched = 1;
3125 goto alloc_done;
3126 }
3127
3128 while (batchcount > 0) {
3129 struct list_head *entry;
3130 struct slab *slabp;
3131 /* Get slab alloc is to come from. */
3132 entry = l3->slabs_partial.next;
3133 if (entry == &l3->slabs_partial) {
3134 l3->free_touched = 1;
3135 entry = l3->slabs_free.next;
3136 if (entry == &l3->slabs_free)
3137 goto must_grow;
3138 }
3139
3140 slabp = list_entry(entry, struct slab, list);
3141 check_slabp(cachep, slabp);
3142 check_spinlock_acquired(cachep);
3143
3144 /*
3145 * The slab was either on partial or free list so
3146 * there must be at least one object available for
3147 * allocation.
3148 */
3149 BUG_ON(slabp->inuse >= cachep->num);
3150
3151 while (slabp->inuse < cachep->num && batchcount--) {
3152 STATS_INC_ALLOCED(cachep);
3153 STATS_INC_ACTIVE(cachep);
3154 STATS_SET_HIGH(cachep);
3155
3156 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3157 node));
3158 }
3159 check_slabp(cachep, slabp);
3160
3161 /* move slabp to correct slabp list: */
3162 list_del(&slabp->list);
3163 if (slabp->free == BUFCTL_END)
3164 list_add(&slabp->list, &l3->slabs_full);
3165 else
3166 list_add(&slabp->list, &l3->slabs_partial);
3167 }
3168
3169 must_grow:
3170 l3->free_objects -= ac->avail;
3171 alloc_done:
3172 spin_unlock(&l3->list_lock);
3173
3174 if (unlikely(!ac->avail)) {
3175 int x;
3176 force_grow:
3177 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3178
3179 /* cache_grow can reenable interrupts, then ac could change. */
3180 ac = cpu_cache_get(cachep);
3181 node = numa_mem_id();
3182
3183 /* no objects in sight? abort */
3184 if (!x && (ac->avail == 0 || force_refill))
3185 return NULL;
3186
3187 if (!ac->avail) /* objects refilled by interrupt? */
3188 goto retry;
3189 }
3190 ac->touched = 1;
3191
3192 return ac_get_obj(cachep, ac, flags, force_refill);
3193 }
3194
3195 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3196 gfp_t flags)
3197 {
3198 might_sleep_if(flags & __GFP_WAIT);
3199 #if DEBUG
3200 kmem_flagcheck(cachep, flags);
3201 #endif
3202 }
3203
3204 #if DEBUG
3205 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3206 gfp_t flags, void *objp, unsigned long caller)
3207 {
3208 if (!objp)
3209 return objp;
3210 if (cachep->flags & SLAB_POISON) {
3211 #ifdef CONFIG_DEBUG_PAGEALLOC
3212 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3213 kernel_map_pages(virt_to_page(objp),
3214 cachep->size / PAGE_SIZE, 1);
3215 else
3216 check_poison_obj(cachep, objp);
3217 #else
3218 check_poison_obj(cachep, objp);
3219 #endif
3220 poison_obj(cachep, objp, POISON_INUSE);
3221 }
3222 if (cachep->flags & SLAB_STORE_USER)
3223 *dbg_userword(cachep, objp) = (void *)caller;
3224
3225 if (cachep->flags & SLAB_RED_ZONE) {
3226 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3227 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3228 slab_error(cachep, "double free, or memory outside"
3229 " object was overwritten");
3230 printk(KERN_ERR
3231 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3232 objp, *dbg_redzone1(cachep, objp),
3233 *dbg_redzone2(cachep, objp));
3234 }
3235 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3236 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3237 }
3238 #ifdef CONFIG_DEBUG_SLAB_LEAK
3239 {
3240 struct slab *slabp;
3241 unsigned objnr;
3242
3243 slabp = virt_to_head_page(objp)->slab_page;
3244 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3245 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3246 }
3247 #endif
3248 objp += obj_offset(cachep);
3249 if (cachep->ctor && cachep->flags & SLAB_POISON)
3250 cachep->ctor(objp);
3251 if (ARCH_SLAB_MINALIGN &&
3252 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3253 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3254 objp, (int)ARCH_SLAB_MINALIGN);
3255 }
3256 return objp;
3257 }
3258 #else
3259 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3260 #endif
3261
3262 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3263 {
3264 if (cachep == kmem_cache)
3265 return false;
3266
3267 return should_failslab(cachep->object_size, flags, cachep->flags);
3268 }
3269
3270 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3271 {
3272 void *objp;
3273 struct array_cache *ac;
3274 bool force_refill = false;
3275
3276 check_irq_off();
3277
3278 ac = cpu_cache_get(cachep);
3279 if (likely(ac->avail)) {
3280 ac->touched = 1;
3281 objp = ac_get_obj(cachep, ac, flags, false);
3282
3283 /*
3284 * Allow for the possibility all avail objects are not allowed
3285 * by the current flags
3286 */
3287 if (objp) {
3288 STATS_INC_ALLOCHIT(cachep);
3289 goto out;
3290 }
3291 force_refill = true;
3292 }
3293
3294 STATS_INC_ALLOCMISS(cachep);
3295 objp = cache_alloc_refill(cachep, flags, force_refill);
3296 /*
3297 * the 'ac' may be updated by cache_alloc_refill(),
3298 * and kmemleak_erase() requires its correct value.
3299 */
3300 ac = cpu_cache_get(cachep);
3301
3302 out:
3303 /*
3304 * To avoid a false negative, if an object that is in one of the
3305 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3306 * treat the array pointers as a reference to the object.
3307 */
3308 if (objp)
3309 kmemleak_erase(&ac->entry[ac->avail]);
3310 return objp;
3311 }
3312
3313 #ifdef CONFIG_NUMA
3314 /*
3315 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3316 *
3317 * If we are in_interrupt, then process context, including cpusets and
3318 * mempolicy, may not apply and should not be used for allocation policy.
3319 */
3320 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3321 {
3322 int nid_alloc, nid_here;
3323
3324 if (in_interrupt() || (flags & __GFP_THISNODE))
3325 return NULL;
3326 nid_alloc = nid_here = numa_mem_id();
3327 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3328 nid_alloc = cpuset_slab_spread_node();
3329 else if (current->mempolicy)
3330 nid_alloc = slab_node();
3331 if (nid_alloc != nid_here)
3332 return ____cache_alloc_node(cachep, flags, nid_alloc);
3333 return NULL;
3334 }
3335
3336 /*
3337 * Fallback function if there was no memory available and no objects on a
3338 * certain node and fall back is permitted. First we scan all the
3339 * available nodelists for available objects. If that fails then we
3340 * perform an allocation without specifying a node. This allows the page
3341 * allocator to do its reclaim / fallback magic. We then insert the
3342 * slab into the proper nodelist and then allocate from it.
3343 */
3344 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3345 {
3346 struct zonelist *zonelist;
3347 gfp_t local_flags;
3348 struct zoneref *z;
3349 struct zone *zone;
3350 enum zone_type high_zoneidx = gfp_zone(flags);
3351 void *obj = NULL;
3352 int nid;
3353 unsigned int cpuset_mems_cookie;
3354
3355 if (flags & __GFP_THISNODE)
3356 return NULL;
3357
3358 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3359
3360 retry_cpuset:
3361 cpuset_mems_cookie = get_mems_allowed();
3362 zonelist = node_zonelist(slab_node(), flags);
3363
3364 retry:
3365 /*
3366 * Look through allowed nodes for objects available
3367 * from existing per node queues.
3368 */
3369 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3370 nid = zone_to_nid(zone);
3371
3372 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3373 cache->nodelists[nid] &&
3374 cache->nodelists[nid]->free_objects) {
3375 obj = ____cache_alloc_node(cache,
3376 flags | GFP_THISNODE, nid);
3377 if (obj)
3378 break;
3379 }
3380 }
3381
3382 if (!obj) {
3383 /*
3384 * This allocation will be performed within the constraints
3385 * of the current cpuset / memory policy requirements.
3386 * We may trigger various forms of reclaim on the allowed
3387 * set and go into memory reserves if necessary.
3388 */
3389 if (local_flags & __GFP_WAIT)
3390 local_irq_enable();
3391 kmem_flagcheck(cache, flags);
3392 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3393 if (local_flags & __GFP_WAIT)
3394 local_irq_disable();
3395 if (obj) {
3396 /*
3397 * Insert into the appropriate per node queues
3398 */
3399 nid = page_to_nid(virt_to_page(obj));
3400 if (cache_grow(cache, flags, nid, obj)) {
3401 obj = ____cache_alloc_node(cache,
3402 flags | GFP_THISNODE, nid);
3403 if (!obj)
3404 /*
3405 * Another processor may allocate the
3406 * objects in the slab since we are
3407 * not holding any locks.
3408 */
3409 goto retry;
3410 } else {
3411 /* cache_grow already freed obj */
3412 obj = NULL;
3413 }
3414 }
3415 }
3416
3417 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3418 goto retry_cpuset;
3419 return obj;
3420 }
3421
3422 /*
3423 * A interface to enable slab creation on nodeid
3424 */
3425 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3426 int nodeid)
3427 {
3428 struct list_head *entry;
3429 struct slab *slabp;
3430 struct kmem_list3 *l3;
3431 void *obj;
3432 int x;
3433
3434 l3 = cachep->nodelists[nodeid];
3435 BUG_ON(!l3);
3436
3437 retry:
3438 check_irq_off();
3439 spin_lock(&l3->list_lock);
3440 entry = l3->slabs_partial.next;
3441 if (entry == &l3->slabs_partial) {
3442 l3->free_touched = 1;
3443 entry = l3->slabs_free.next;
3444 if (entry == &l3->slabs_free)
3445 goto must_grow;
3446 }
3447
3448 slabp = list_entry(entry, struct slab, list);
3449 check_spinlock_acquired_node(cachep, nodeid);
3450 check_slabp(cachep, slabp);
3451
3452 STATS_INC_NODEALLOCS(cachep);
3453 STATS_INC_ACTIVE(cachep);
3454 STATS_SET_HIGH(cachep);
3455
3456 BUG_ON(slabp->inuse == cachep->num);
3457
3458 obj = slab_get_obj(cachep, slabp, nodeid);
3459 check_slabp(cachep, slabp);
3460 l3->free_objects--;
3461 /* move slabp to correct slabp list: */
3462 list_del(&slabp->list);
3463
3464 if (slabp->free == BUFCTL_END)
3465 list_add(&slabp->list, &l3->slabs_full);
3466 else
3467 list_add(&slabp->list, &l3->slabs_partial);
3468
3469 spin_unlock(&l3->list_lock);
3470 goto done;
3471
3472 must_grow:
3473 spin_unlock(&l3->list_lock);
3474 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3475 if (x)
3476 goto retry;
3477
3478 return fallback_alloc(cachep, flags);
3479
3480 done:
3481 return obj;
3482 }
3483
3484 /**
3485 * kmem_cache_alloc_node - Allocate an object on the specified node
3486 * @cachep: The cache to allocate from.
3487 * @flags: See kmalloc().
3488 * @nodeid: node number of the target node.
3489 * @caller: return address of caller, used for debug information
3490 *
3491 * Identical to kmem_cache_alloc but it will allocate memory on the given
3492 * node, which can improve the performance for cpu bound structures.
3493 *
3494 * Fallback to other node is possible if __GFP_THISNODE is not set.
3495 */
3496 static __always_inline void *
3497 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3498 unsigned long caller)
3499 {
3500 unsigned long save_flags;
3501 void *ptr;
3502 int slab_node = numa_mem_id();
3503
3504 flags &= gfp_allowed_mask;
3505
3506 lockdep_trace_alloc(flags);
3507
3508 if (slab_should_failslab(cachep, flags))
3509 return NULL;
3510
3511 cache_alloc_debugcheck_before(cachep, flags);
3512 local_irq_save(save_flags);
3513
3514 if (nodeid == NUMA_NO_NODE)
3515 nodeid = slab_node;
3516
3517 if (unlikely(!cachep->nodelists[nodeid])) {
3518 /* Node not bootstrapped yet */
3519 ptr = fallback_alloc(cachep, flags);
3520 goto out;
3521 }
3522
3523 if (nodeid == slab_node) {
3524 /*
3525 * Use the locally cached objects if possible.
3526 * However ____cache_alloc does not allow fallback
3527 * to other nodes. It may fail while we still have
3528 * objects on other nodes available.
3529 */
3530 ptr = ____cache_alloc(cachep, flags);
3531 if (ptr)
3532 goto out;
3533 }
3534 /* ___cache_alloc_node can fall back to other nodes */
3535 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3536 out:
3537 local_irq_restore(save_flags);
3538 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3539 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3540 flags);
3541
3542 if (likely(ptr))
3543 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3544
3545 if (unlikely((flags & __GFP_ZERO) && ptr))
3546 memset(ptr, 0, cachep->object_size);
3547
3548 return ptr;
3549 }
3550
3551 static __always_inline void *
3552 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3553 {
3554 void *objp;
3555
3556 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3557 objp = alternate_node_alloc(cache, flags);
3558 if (objp)
3559 goto out;
3560 }
3561 objp = ____cache_alloc(cache, flags);
3562
3563 /*
3564 * We may just have run out of memory on the local node.
3565 * ____cache_alloc_node() knows how to locate memory on other nodes
3566 */
3567 if (!objp)
3568 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3569
3570 out:
3571 return objp;
3572 }
3573 #else
3574
3575 static __always_inline void *
3576 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3577 {
3578 return ____cache_alloc(cachep, flags);
3579 }
3580
3581 #endif /* CONFIG_NUMA */
3582
3583 static __always_inline void *
3584 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3585 {
3586 unsigned long save_flags;
3587 void *objp;
3588
3589 flags &= gfp_allowed_mask;
3590
3591 lockdep_trace_alloc(flags);
3592
3593 if (slab_should_failslab(cachep, flags))
3594 return NULL;
3595
3596 cache_alloc_debugcheck_before(cachep, flags);
3597 local_irq_save(save_flags);
3598 objp = __do_cache_alloc(cachep, flags);
3599 local_irq_restore(save_flags);
3600 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3601 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3602 flags);
3603 prefetchw(objp);
3604
3605 if (likely(objp))
3606 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3607
3608 if (unlikely((flags & __GFP_ZERO) && objp))
3609 memset(objp, 0, cachep->object_size);
3610
3611 return objp;
3612 }
3613
3614 /*
3615 * Caller needs to acquire correct kmem_list's list_lock
3616 */
3617 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3618 int node)
3619 {
3620 int i;
3621 struct kmem_list3 *l3;
3622
3623 for (i = 0; i < nr_objects; i++) {
3624 void *objp;
3625 struct slab *slabp;
3626
3627 clear_obj_pfmemalloc(&objpp[i]);
3628 objp = objpp[i];
3629
3630 slabp = virt_to_slab(objp);
3631 l3 = cachep->nodelists[node];
3632 list_del(&slabp->list);
3633 check_spinlock_acquired_node(cachep, node);
3634 check_slabp(cachep, slabp);
3635 slab_put_obj(cachep, slabp, objp, node);
3636 STATS_DEC_ACTIVE(cachep);
3637 l3->free_objects++;
3638 check_slabp(cachep, slabp);
3639
3640 /* fixup slab chains */
3641 if (slabp->inuse == 0) {
3642 if (l3->free_objects > l3->free_limit) {
3643 l3->free_objects -= cachep->num;
3644 /* No need to drop any previously held
3645 * lock here, even if we have a off-slab slab
3646 * descriptor it is guaranteed to come from
3647 * a different cache, refer to comments before
3648 * alloc_slabmgmt.
3649 */
3650 slab_destroy(cachep, slabp);
3651 } else {
3652 list_add(&slabp->list, &l3->slabs_free);
3653 }
3654 } else {
3655 /* Unconditionally move a slab to the end of the
3656 * partial list on free - maximum time for the
3657 * other objects to be freed, too.
3658 */
3659 list_add_tail(&slabp->list, &l3->slabs_partial);
3660 }
3661 }
3662 }
3663
3664 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3665 {
3666 int batchcount;
3667 struct kmem_list3 *l3;
3668 int node = numa_mem_id();
3669
3670 batchcount = ac->batchcount;
3671 #if DEBUG
3672 BUG_ON(!batchcount || batchcount > ac->avail);
3673 #endif
3674 check_irq_off();
3675 l3 = cachep->nodelists[node];
3676 spin_lock(&l3->list_lock);
3677 if (l3->shared) {
3678 struct array_cache *shared_array = l3->shared;
3679 int max = shared_array->limit - shared_array->avail;
3680 if (max) {
3681 if (batchcount > max)
3682 batchcount = max;
3683 memcpy(&(shared_array->entry[shared_array->avail]),
3684 ac->entry, sizeof(void *) * batchcount);
3685 shared_array->avail += batchcount;
3686 goto free_done;
3687 }
3688 }
3689
3690 free_block(cachep, ac->entry, batchcount, node);
3691 free_done:
3692 #if STATS
3693 {
3694 int i = 0;
3695 struct list_head *p;
3696
3697 p = l3->slabs_free.next;
3698 while (p != &(l3->slabs_free)) {
3699 struct slab *slabp;
3700
3701 slabp = list_entry(p, struct slab, list);
3702 BUG_ON(slabp->inuse);
3703
3704 i++;
3705 p = p->next;
3706 }
3707 STATS_SET_FREEABLE(cachep, i);
3708 }
3709 #endif
3710 spin_unlock(&l3->list_lock);
3711 ac->avail -= batchcount;
3712 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3713 }
3714
3715 /*
3716 * Release an obj back to its cache. If the obj has a constructed state, it must
3717 * be in this state _before_ it is released. Called with disabled ints.
3718 */
3719 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3720 unsigned long caller)
3721 {
3722 struct array_cache *ac = cpu_cache_get(cachep);
3723
3724 check_irq_off();
3725 kmemleak_free_recursive(objp, cachep->flags);
3726 objp = cache_free_debugcheck(cachep, objp, caller);
3727
3728 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3729
3730 /*
3731 * Skip calling cache_free_alien() when the platform is not numa.
3732 * This will avoid cache misses that happen while accessing slabp (which
3733 * is per page memory reference) to get nodeid. Instead use a global
3734 * variable to skip the call, which is mostly likely to be present in
3735 * the cache.
3736 */
3737 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3738 return;
3739
3740 if (likely(ac->avail < ac->limit)) {
3741 STATS_INC_FREEHIT(cachep);
3742 } else {
3743 STATS_INC_FREEMISS(cachep);
3744 cache_flusharray(cachep, ac);
3745 }
3746
3747 ac_put_obj(cachep, ac, objp);
3748 }
3749
3750 /**
3751 * kmem_cache_alloc - Allocate an object
3752 * @cachep: The cache to allocate from.
3753 * @flags: See kmalloc().
3754 *
3755 * Allocate an object from this cache. The flags are only relevant
3756 * if the cache has no available objects.
3757 */
3758 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3759 {
3760 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3761
3762 trace_kmem_cache_alloc(_RET_IP_, ret,
3763 cachep->object_size, cachep->size, flags);
3764
3765 return ret;
3766 }
3767 EXPORT_SYMBOL(kmem_cache_alloc);
3768
3769 #ifdef CONFIG_TRACING
3770 void *
3771 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3772 {
3773 void *ret;
3774
3775 ret = slab_alloc(cachep, flags, _RET_IP_);
3776
3777 trace_kmalloc(_RET_IP_, ret,
3778 size, cachep->size, flags);
3779 return ret;
3780 }
3781 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3782 #endif
3783
3784 #ifdef CONFIG_NUMA
3785 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3786 {
3787 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3788
3789 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3790 cachep->object_size, cachep->size,
3791 flags, nodeid);
3792
3793 return ret;
3794 }
3795 EXPORT_SYMBOL(kmem_cache_alloc_node);
3796
3797 #ifdef CONFIG_TRACING
3798 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3799 gfp_t flags,
3800 int nodeid,
3801 size_t size)
3802 {
3803 void *ret;
3804
3805 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3806
3807 trace_kmalloc_node(_RET_IP_, ret,
3808 size, cachep->size,
3809 flags, nodeid);
3810 return ret;
3811 }
3812 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3813 #endif
3814
3815 static __always_inline void *
3816 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3817 {
3818 struct kmem_cache *cachep;
3819
3820 cachep = kmem_find_general_cachep(size, flags);
3821 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3822 return cachep;
3823 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3824 }
3825
3826 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3827 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828 {
3829 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3830 }
3831 EXPORT_SYMBOL(__kmalloc_node);
3832
3833 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3834 int node, unsigned long caller)
3835 {
3836 return __do_kmalloc_node(size, flags, node, caller);
3837 }
3838 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3839 #else
3840 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3841 {
3842 return __do_kmalloc_node(size, flags, node, 0);
3843 }
3844 EXPORT_SYMBOL(__kmalloc_node);
3845 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3846 #endif /* CONFIG_NUMA */
3847
3848 /**
3849 * __do_kmalloc - allocate memory
3850 * @size: how many bytes of memory are required.
3851 * @flags: the type of memory to allocate (see kmalloc).
3852 * @caller: function caller for debug tracking of the caller
3853 */
3854 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3855 unsigned long caller)
3856 {
3857 struct kmem_cache *cachep;
3858 void *ret;
3859
3860 /* If you want to save a few bytes .text space: replace
3861 * __ with kmem_.
3862 * Then kmalloc uses the uninlined functions instead of the inline
3863 * functions.
3864 */
3865 cachep = __find_general_cachep(size, flags);
3866 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3867 return cachep;
3868 ret = slab_alloc(cachep, flags, caller);
3869
3870 trace_kmalloc(caller, ret,
3871 size, cachep->size, flags);
3872
3873 return ret;
3874 }
3875
3876
3877 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3878 void *__kmalloc(size_t size, gfp_t flags)
3879 {
3880 return __do_kmalloc(size, flags, _RET_IP_);
3881 }
3882 EXPORT_SYMBOL(__kmalloc);
3883
3884 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3885 {
3886 return __do_kmalloc(size, flags, caller);
3887 }
3888 EXPORT_SYMBOL(__kmalloc_track_caller);
3889
3890 #else
3891 void *__kmalloc(size_t size, gfp_t flags)
3892 {
3893 return __do_kmalloc(size, flags, 0);
3894 }
3895 EXPORT_SYMBOL(__kmalloc);
3896 #endif
3897
3898 /**
3899 * kmem_cache_free - Deallocate an object
3900 * @cachep: The cache the allocation was from.
3901 * @objp: The previously allocated object.
3902 *
3903 * Free an object which was previously allocated from this
3904 * cache.
3905 */
3906 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3907 {
3908 unsigned long flags;
3909
3910 local_irq_save(flags);
3911 debug_check_no_locks_freed(objp, cachep->object_size);
3912 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3913 debug_check_no_obj_freed(objp, cachep->object_size);
3914 __cache_free(cachep, objp, _RET_IP_);
3915 local_irq_restore(flags);
3916
3917 trace_kmem_cache_free(_RET_IP_, objp);
3918 }
3919 EXPORT_SYMBOL(kmem_cache_free);
3920
3921 /**
3922 * kfree - free previously allocated memory
3923 * @objp: pointer returned by kmalloc.
3924 *
3925 * If @objp is NULL, no operation is performed.
3926 *
3927 * Don't free memory not originally allocated by kmalloc()
3928 * or you will run into trouble.
3929 */
3930 void kfree(const void *objp)
3931 {
3932 struct kmem_cache *c;
3933 unsigned long flags;
3934
3935 trace_kfree(_RET_IP_, objp);
3936
3937 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3938 return;
3939 local_irq_save(flags);
3940 kfree_debugcheck(objp);
3941 c = virt_to_cache(objp);
3942 debug_check_no_locks_freed(objp, c->object_size);
3943
3944 debug_check_no_obj_freed(objp, c->object_size);
3945 __cache_free(c, (void *)objp, _RET_IP_);
3946 local_irq_restore(flags);
3947 }
3948 EXPORT_SYMBOL(kfree);
3949
3950 /*
3951 * This initializes kmem_list3 or resizes various caches for all nodes.
3952 */
3953 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3954 {
3955 int node;
3956 struct kmem_list3 *l3;
3957 struct array_cache *new_shared;
3958 struct array_cache **new_alien = NULL;
3959
3960 for_each_online_node(node) {
3961
3962 if (use_alien_caches) {
3963 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3964 if (!new_alien)
3965 goto fail;
3966 }
3967
3968 new_shared = NULL;
3969 if (cachep->shared) {
3970 new_shared = alloc_arraycache(node,
3971 cachep->shared*cachep->batchcount,
3972 0xbaadf00d, gfp);
3973 if (!new_shared) {
3974 free_alien_cache(new_alien);
3975 goto fail;
3976 }
3977 }
3978
3979 l3 = cachep->nodelists[node];
3980 if (l3) {
3981 struct array_cache *shared = l3->shared;
3982
3983 spin_lock_irq(&l3->list_lock);
3984
3985 if (shared)
3986 free_block(cachep, shared->entry,
3987 shared->avail, node);
3988
3989 l3->shared = new_shared;
3990 if (!l3->alien) {
3991 l3->alien = new_alien;
3992 new_alien = NULL;
3993 }
3994 l3->free_limit = (1 + nr_cpus_node(node)) *
3995 cachep->batchcount + cachep->num;
3996 spin_unlock_irq(&l3->list_lock);
3997 kfree(shared);
3998 free_alien_cache(new_alien);
3999 continue;
4000 }
4001 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4002 if (!l3) {
4003 free_alien_cache(new_alien);
4004 kfree(new_shared);
4005 goto fail;
4006 }
4007
4008 kmem_list3_init(l3);
4009 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4010 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4011 l3->shared = new_shared;
4012 l3->alien = new_alien;
4013 l3->free_limit = (1 + nr_cpus_node(node)) *
4014 cachep->batchcount + cachep->num;
4015 cachep->nodelists[node] = l3;
4016 }
4017 return 0;
4018
4019 fail:
4020 if (!cachep->list.next) {
4021 /* Cache is not active yet. Roll back what we did */
4022 node--;
4023 while (node >= 0) {
4024 if (cachep->nodelists[node]) {
4025 l3 = cachep->nodelists[node];
4026
4027 kfree(l3->shared);
4028 free_alien_cache(l3->alien);
4029 kfree(l3);
4030 cachep->nodelists[node] = NULL;
4031 }
4032 node--;
4033 }
4034 }
4035 return -ENOMEM;
4036 }
4037
4038 struct ccupdate_struct {
4039 struct kmem_cache *cachep;
4040 struct array_cache *new[0];
4041 };
4042
4043 static void do_ccupdate_local(void *info)
4044 {
4045 struct ccupdate_struct *new = info;
4046 struct array_cache *old;
4047
4048 check_irq_off();
4049 old = cpu_cache_get(new->cachep);
4050
4051 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4052 new->new[smp_processor_id()] = old;
4053 }
4054
4055 /* Always called with the slab_mutex held */
4056 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4057 int batchcount, int shared, gfp_t gfp)
4058 {
4059 struct ccupdate_struct *new;
4060 int i;
4061
4062 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4063 gfp);
4064 if (!new)
4065 return -ENOMEM;
4066
4067 for_each_online_cpu(i) {
4068 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4069 batchcount, gfp);
4070 if (!new->new[i]) {
4071 for (i--; i >= 0; i--)
4072 kfree(new->new[i]);
4073 kfree(new);
4074 return -ENOMEM;
4075 }
4076 }
4077 new->cachep = cachep;
4078
4079 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4080
4081 check_irq_on();
4082 cachep->batchcount = batchcount;
4083 cachep->limit = limit;
4084 cachep->shared = shared;
4085
4086 for_each_online_cpu(i) {
4087 struct array_cache *ccold = new->new[i];
4088 if (!ccold)
4089 continue;
4090 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4091 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4092 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4093 kfree(ccold);
4094 }
4095 kfree(new);
4096 return alloc_kmemlist(cachep, gfp);
4097 }
4098
4099 /* Called with slab_mutex held always */
4100 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4101 {
4102 int err;
4103 int limit, shared;
4104
4105 /*
4106 * The head array serves three purposes:
4107 * - create a LIFO ordering, i.e. return objects that are cache-warm
4108 * - reduce the number of spinlock operations.
4109 * - reduce the number of linked list operations on the slab and
4110 * bufctl chains: array operations are cheaper.
4111 * The numbers are guessed, we should auto-tune as described by
4112 * Bonwick.
4113 */
4114 if (cachep->size > 131072)
4115 limit = 1;
4116 else if (cachep->size > PAGE_SIZE)
4117 limit = 8;
4118 else if (cachep->size > 1024)
4119 limit = 24;
4120 else if (cachep->size > 256)
4121 limit = 54;
4122 else
4123 limit = 120;
4124
4125 /*
4126 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4127 * allocation behaviour: Most allocs on one cpu, most free operations
4128 * on another cpu. For these cases, an efficient object passing between
4129 * cpus is necessary. This is provided by a shared array. The array
4130 * replaces Bonwick's magazine layer.
4131 * On uniprocessor, it's functionally equivalent (but less efficient)
4132 * to a larger limit. Thus disabled by default.
4133 */
4134 shared = 0;
4135 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4136 shared = 8;
4137
4138 #if DEBUG
4139 /*
4140 * With debugging enabled, large batchcount lead to excessively long
4141 * periods with disabled local interrupts. Limit the batchcount
4142 */
4143 if (limit > 32)
4144 limit = 32;
4145 #endif
4146 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4147 if (err)
4148 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4149 cachep->name, -err);
4150 return err;
4151 }
4152
4153 /*
4154 * Drain an array if it contains any elements taking the l3 lock only if
4155 * necessary. Note that the l3 listlock also protects the array_cache
4156 * if drain_array() is used on the shared array.
4157 */
4158 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4159 struct array_cache *ac, int force, int node)
4160 {
4161 int tofree;
4162
4163 if (!ac || !ac->avail)
4164 return;
4165 if (ac->touched && !force) {
4166 ac->touched = 0;
4167 } else {
4168 spin_lock_irq(&l3->list_lock);
4169 if (ac->avail) {
4170 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4171 if (tofree > ac->avail)
4172 tofree = (ac->avail + 1) / 2;
4173 free_block(cachep, ac->entry, tofree, node);
4174 ac->avail -= tofree;
4175 memmove(ac->entry, &(ac->entry[tofree]),
4176 sizeof(void *) * ac->avail);
4177 }
4178 spin_unlock_irq(&l3->list_lock);
4179 }
4180 }
4181
4182 /**
4183 * cache_reap - Reclaim memory from caches.
4184 * @w: work descriptor
4185 *
4186 * Called from workqueue/eventd every few seconds.
4187 * Purpose:
4188 * - clear the per-cpu caches for this CPU.
4189 * - return freeable pages to the main free memory pool.
4190 *
4191 * If we cannot acquire the cache chain mutex then just give up - we'll try
4192 * again on the next iteration.
4193 */
4194 static void cache_reap(struct work_struct *w)
4195 {
4196 struct kmem_cache *searchp;
4197 struct kmem_list3 *l3;
4198 int node = numa_mem_id();
4199 struct delayed_work *work = to_delayed_work(w);
4200
4201 if (!mutex_trylock(&slab_mutex))
4202 /* Give up. Setup the next iteration. */
4203 goto out;
4204
4205 list_for_each_entry(searchp, &slab_caches, list) {
4206 check_irq_on();
4207
4208 /*
4209 * We only take the l3 lock if absolutely necessary and we
4210 * have established with reasonable certainty that
4211 * we can do some work if the lock was obtained.
4212 */
4213 l3 = searchp->nodelists[node];
4214
4215 reap_alien(searchp, l3);
4216
4217 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4218
4219 /*
4220 * These are racy checks but it does not matter
4221 * if we skip one check or scan twice.
4222 */
4223 if (time_after(l3->next_reap, jiffies))
4224 goto next;
4225
4226 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4227
4228 drain_array(searchp, l3, l3->shared, 0, node);
4229
4230 if (l3->free_touched)
4231 l3->free_touched = 0;
4232 else {
4233 int freed;
4234
4235 freed = drain_freelist(searchp, l3, (l3->free_limit +
4236 5 * searchp->num - 1) / (5 * searchp->num));
4237 STATS_ADD_REAPED(searchp, freed);
4238 }
4239 next:
4240 cond_resched();
4241 }
4242 check_irq_on();
4243 mutex_unlock(&slab_mutex);
4244 next_reap_node();
4245 out:
4246 /* Set up the next iteration */
4247 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4248 }
4249
4250 #ifdef CONFIG_SLABINFO
4251 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4252 {
4253 struct slab *slabp;
4254 unsigned long active_objs;
4255 unsigned long num_objs;
4256 unsigned long active_slabs = 0;
4257 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4258 const char *name;
4259 char *error = NULL;
4260 int node;
4261 struct kmem_list3 *l3;
4262
4263 active_objs = 0;
4264 num_slabs = 0;
4265 for_each_online_node(node) {
4266 l3 = cachep->nodelists[node];
4267 if (!l3)
4268 continue;
4269
4270 check_irq_on();
4271 spin_lock_irq(&l3->list_lock);
4272
4273 list_for_each_entry(slabp, &l3->slabs_full, list) {
4274 if (slabp->inuse != cachep->num && !error)
4275 error = "slabs_full accounting error";
4276 active_objs += cachep->num;
4277 active_slabs++;
4278 }
4279 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4280 if (slabp->inuse == cachep->num && !error)
4281 error = "slabs_partial inuse accounting error";
4282 if (!slabp->inuse && !error)
4283 error = "slabs_partial/inuse accounting error";
4284 active_objs += slabp->inuse;
4285 active_slabs++;
4286 }
4287 list_for_each_entry(slabp, &l3->slabs_free, list) {
4288 if (slabp->inuse && !error)
4289 error = "slabs_free/inuse accounting error";
4290 num_slabs++;
4291 }
4292 free_objects += l3->free_objects;
4293 if (l3->shared)
4294 shared_avail += l3->shared->avail;
4295
4296 spin_unlock_irq(&l3->list_lock);
4297 }
4298 num_slabs += active_slabs;
4299 num_objs = num_slabs * cachep->num;
4300 if (num_objs - active_objs != free_objects && !error)
4301 error = "free_objects accounting error";
4302
4303 name = cachep->name;
4304 if (error)
4305 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4306
4307 sinfo->active_objs = active_objs;
4308 sinfo->num_objs = num_objs;
4309 sinfo->active_slabs = active_slabs;
4310 sinfo->num_slabs = num_slabs;
4311 sinfo->shared_avail = shared_avail;
4312 sinfo->limit = cachep->limit;
4313 sinfo->batchcount = cachep->batchcount;
4314 sinfo->shared = cachep->shared;
4315 sinfo->objects_per_slab = cachep->num;
4316 sinfo->cache_order = cachep->gfporder;
4317 }
4318
4319 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4320 {
4321 #if STATS
4322 { /* list3 stats */
4323 unsigned long high = cachep->high_mark;
4324 unsigned long allocs = cachep->num_allocations;
4325 unsigned long grown = cachep->grown;
4326 unsigned long reaped = cachep->reaped;
4327 unsigned long errors = cachep->errors;
4328 unsigned long max_freeable = cachep->max_freeable;
4329 unsigned long node_allocs = cachep->node_allocs;
4330 unsigned long node_frees = cachep->node_frees;
4331 unsigned long overflows = cachep->node_overflow;
4332
4333 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4334 "%4lu %4lu %4lu %4lu %4lu",
4335 allocs, high, grown,
4336 reaped, errors, max_freeable, node_allocs,
4337 node_frees, overflows);
4338 }
4339 /* cpu stats */
4340 {
4341 unsigned long allochit = atomic_read(&cachep->allochit);
4342 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4343 unsigned long freehit = atomic_read(&cachep->freehit);
4344 unsigned long freemiss = atomic_read(&cachep->freemiss);
4345
4346 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4347 allochit, allocmiss, freehit, freemiss);
4348 }
4349 #endif
4350 }
4351
4352 #define MAX_SLABINFO_WRITE 128
4353 /**
4354 * slabinfo_write - Tuning for the slab allocator
4355 * @file: unused
4356 * @buffer: user buffer
4357 * @count: data length
4358 * @ppos: unused
4359 */
4360 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4361 size_t count, loff_t *ppos)
4362 {
4363 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4364 int limit, batchcount, shared, res;
4365 struct kmem_cache *cachep;
4366
4367 if (count > MAX_SLABINFO_WRITE)
4368 return -EINVAL;
4369 if (copy_from_user(&kbuf, buffer, count))
4370 return -EFAULT;
4371 kbuf[MAX_SLABINFO_WRITE] = '\0';
4372
4373 tmp = strchr(kbuf, ' ');
4374 if (!tmp)
4375 return -EINVAL;
4376 *tmp = '\0';
4377 tmp++;
4378 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4379 return -EINVAL;
4380
4381 /* Find the cache in the chain of caches. */
4382 mutex_lock(&slab_mutex);
4383 res = -EINVAL;
4384 list_for_each_entry(cachep, &slab_caches, list) {
4385 if (!strcmp(cachep->name, kbuf)) {
4386 if (limit < 1 || batchcount < 1 ||
4387 batchcount > limit || shared < 0) {
4388 res = 0;
4389 } else {
4390 res = do_tune_cpucache(cachep, limit,
4391 batchcount, shared,
4392 GFP_KERNEL);
4393 }
4394 break;
4395 }
4396 }
4397 mutex_unlock(&slab_mutex);
4398 if (res >= 0)
4399 res = count;
4400 return res;
4401 }
4402
4403 #ifdef CONFIG_DEBUG_SLAB_LEAK
4404
4405 static void *leaks_start(struct seq_file *m, loff_t *pos)
4406 {
4407 mutex_lock(&slab_mutex);
4408 return seq_list_start(&slab_caches, *pos);
4409 }
4410
4411 static inline int add_caller(unsigned long *n, unsigned long v)
4412 {
4413 unsigned long *p;
4414 int l;
4415 if (!v)
4416 return 1;
4417 l = n[1];
4418 p = n + 2;
4419 while (l) {
4420 int i = l/2;
4421 unsigned long *q = p + 2 * i;
4422 if (*q == v) {
4423 q[1]++;
4424 return 1;
4425 }
4426 if (*q > v) {
4427 l = i;
4428 } else {
4429 p = q + 2;
4430 l -= i + 1;
4431 }
4432 }
4433 if (++n[1] == n[0])
4434 return 0;
4435 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4436 p[0] = v;
4437 p[1] = 1;
4438 return 1;
4439 }
4440
4441 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4442 {
4443 void *p;
4444 int i;
4445 if (n[0] == n[1])
4446 return;
4447 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4448 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4449 continue;
4450 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4451 return;
4452 }
4453 }
4454
4455 static void show_symbol(struct seq_file *m, unsigned long address)
4456 {
4457 #ifdef CONFIG_KALLSYMS
4458 unsigned long offset, size;
4459 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4460
4461 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4462 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4463 if (modname[0])
4464 seq_printf(m, " [%s]", modname);
4465 return;
4466 }
4467 #endif
4468 seq_printf(m, "%p", (void *)address);
4469 }
4470
4471 static int leaks_show(struct seq_file *m, void *p)
4472 {
4473 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4474 struct slab *slabp;
4475 struct kmem_list3 *l3;
4476 const char *name;
4477 unsigned long *n = m->private;
4478 int node;
4479 int i;
4480
4481 if (!(cachep->flags & SLAB_STORE_USER))
4482 return 0;
4483 if (!(cachep->flags & SLAB_RED_ZONE))
4484 return 0;
4485
4486 /* OK, we can do it */
4487
4488 n[1] = 0;
4489
4490 for_each_online_node(node) {
4491 l3 = cachep->nodelists[node];
4492 if (!l3)
4493 continue;
4494
4495 check_irq_on();
4496 spin_lock_irq(&l3->list_lock);
4497
4498 list_for_each_entry(slabp, &l3->slabs_full, list)
4499 handle_slab(n, cachep, slabp);
4500 list_for_each_entry(slabp, &l3->slabs_partial, list)
4501 handle_slab(n, cachep, slabp);
4502 spin_unlock_irq(&l3->list_lock);
4503 }
4504 name = cachep->name;
4505 if (n[0] == n[1]) {
4506 /* Increase the buffer size */
4507 mutex_unlock(&slab_mutex);
4508 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4509 if (!m->private) {
4510 /* Too bad, we are really out */
4511 m->private = n;
4512 mutex_lock(&slab_mutex);
4513 return -ENOMEM;
4514 }
4515 *(unsigned long *)m->private = n[0] * 2;
4516 kfree(n);
4517 mutex_lock(&slab_mutex);
4518 /* Now make sure this entry will be retried */
4519 m->count = m->size;
4520 return 0;
4521 }
4522 for (i = 0; i < n[1]; i++) {
4523 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4524 show_symbol(m, n[2*i+2]);
4525 seq_putc(m, '\n');
4526 }
4527
4528 return 0;
4529 }
4530
4531 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4532 {
4533 return seq_list_next(p, &slab_caches, pos);
4534 }
4535
4536 static void s_stop(struct seq_file *m, void *p)
4537 {
4538 mutex_unlock(&slab_mutex);
4539 }
4540
4541 static const struct seq_operations slabstats_op = {
4542 .start = leaks_start,
4543 .next = s_next,
4544 .stop = s_stop,
4545 .show = leaks_show,
4546 };
4547
4548 static int slabstats_open(struct inode *inode, struct file *file)
4549 {
4550 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4551 int ret = -ENOMEM;
4552 if (n) {
4553 ret = seq_open(file, &slabstats_op);
4554 if (!ret) {
4555 struct seq_file *m = file->private_data;
4556 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4557 m->private = n;
4558 n = NULL;
4559 }
4560 kfree(n);
4561 }
4562 return ret;
4563 }
4564
4565 static const struct file_operations proc_slabstats_operations = {
4566 .open = slabstats_open,
4567 .read = seq_read,
4568 .llseek = seq_lseek,
4569 .release = seq_release_private,
4570 };
4571 #endif
4572
4573 static int __init slab_proc_init(void)
4574 {
4575 #ifdef CONFIG_DEBUG_SLAB_LEAK
4576 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4577 #endif
4578 return 0;
4579 }
4580 module_init(slab_proc_init);
4581 #endif
4582
4583 /**
4584 * ksize - get the actual amount of memory allocated for a given object
4585 * @objp: Pointer to the object
4586 *
4587 * kmalloc may internally round up allocations and return more memory
4588 * than requested. ksize() can be used to determine the actual amount of
4589 * memory allocated. The caller may use this additional memory, even though
4590 * a smaller amount of memory was initially specified with the kmalloc call.
4591 * The caller must guarantee that objp points to a valid object previously
4592 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4593 * must not be freed during the duration of the call.
4594 */
4595 size_t ksize(const void *objp)
4596 {
4597 BUG_ON(!objp);
4598 if (unlikely(objp == ZERO_SIZE_PTR))
4599 return 0;
4600
4601 return virt_to_cache(objp)->object_size;
4602 }
4603 EXPORT_SYMBOL(ksize);