]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
137
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
144
145 #ifndef ARCH_KMALLOC_MINALIGN
146 /*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
395
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
399
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
402
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
408
409 /* constructor func */
410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411
412 /* 5) cache creation/removal */
413 const char *name;
414 struct list_head next;
415
416 /* 6) statistics */
417 #if STATS
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
427 unsigned long node_overflow;
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
432 #endif
433 #if DEBUG
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
442 #endif
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
454 };
455
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459 #define BATCHREFILL_LIMIT 16
460 /*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
463 *
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
466 */
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
469
470 #if STATS
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494 #else
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
510 #endif
511
512 #if DEBUG
513
514 /*
515 * memory layout of objects:
516 * 0 : objp
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * redzone word.
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
526 */
527 static int obj_offset(struct kmem_cache *cachep)
528 {
529 return cachep->obj_offset;
530 }
531
532 static int obj_size(struct kmem_cache *cachep)
533 {
534 return cachep->obj_size;
535 }
536
537 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
538 {
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
542 }
543
544 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
545 {
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
553 }
554
555 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
556 {
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
559 }
560
561 #else
562
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569 #endif
570
571 /*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
578 /*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
582 */
583 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584 {
585 page->lru.next = (struct list_head *)cache;
586 }
587
588 static inline struct kmem_cache *page_get_cache(struct page *page)
589 {
590 page = compound_head(page);
591 BUG_ON(!PageSlab(page));
592 return (struct kmem_cache *)page->lru.next;
593 }
594
595 static inline void page_set_slab(struct page *page, struct slab *slab)
596 {
597 page->lru.prev = (struct list_head *)slab;
598 }
599
600 static inline struct slab *page_get_slab(struct page *page)
601 {
602 BUG_ON(!PageSlab(page));
603 return (struct slab *)page->lru.prev;
604 }
605
606 static inline struct kmem_cache *virt_to_cache(const void *obj)
607 {
608 struct page *page = virt_to_head_page(obj);
609 return page_get_cache(page);
610 }
611
612 static inline struct slab *virt_to_slab(const void *obj)
613 {
614 struct page *page = virt_to_head_page(obj);
615 return page_get_slab(page);
616 }
617
618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620 {
621 return slab->s_mem + cache->buffer_size * idx;
622 }
623
624 /*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
632 {
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635 }
636
637 /*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
640 struct cache_sizes malloc_sizes[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644 #undef CACHE
645 };
646 EXPORT_SYMBOL(malloc_sizes);
647
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
649 struct cache_names {
650 char *name;
651 char *name_dma;
652 };
653
654 static struct cache_names __initdata cache_names[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
657 {NULL,}
658 #undef CACHE
659 };
660
661 static struct arraycache_init initarray_cache __initdata =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663 static struct arraycache_init initarray_generic =
664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache = {
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
671 .buffer_size = sizeof(struct kmem_cache),
672 .name = "kmem_cache",
673 };
674
675 #define BAD_ALIEN_MAGIC 0x01020304ul
676
677 #ifdef CONFIG_LOCKDEP
678
679 /*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
689 */
690 static struct lock_class_key on_slab_l3_key;
691 static struct lock_class_key on_slab_alc_key;
692
693 static inline void init_lock_keys(void)
694
695 {
696 int q;
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
724 }
725 }
726 #else
727 static inline void init_lock_keys(void)
728 {
729 }
730 #endif
731
732 /*
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
735 */
736 static DEFINE_MUTEX(cache_chain_mutex);
737 static struct list_head cache_chain;
738
739 /*
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
742 */
743 static enum {
744 NONE,
745 PARTIAL_AC,
746 PARTIAL_L3,
747 FULL
748 } g_cpucache_up;
749
750 /*
751 * used by boot code to determine if it can use slab based allocator
752 */
753 int slab_is_available(void)
754 {
755 return g_cpucache_up == FULL;
756 }
757
758 static DEFINE_PER_CPU(struct delayed_work, reap_work);
759
760 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
761 {
762 return cachep->array[smp_processor_id()];
763 }
764
765 static inline struct kmem_cache *__find_general_cachep(size_t size,
766 gfp_t gfpflags)
767 {
768 struct cache_sizes *csizep = malloc_sizes;
769
770 #if DEBUG
771 /* This happens if someone tries to call
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
774 */
775 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
776 #endif
777 while (size > csizep->cs_size)
778 csizep++;
779
780 /*
781 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
782 * has cs_{dma,}cachep==NULL. Thus no special case
783 * for large kmalloc calls required.
784 */
785 #ifdef CONFIG_ZONE_DMA
786 if (unlikely(gfpflags & GFP_DMA))
787 return csizep->cs_dmacachep;
788 #endif
789 return csizep->cs_cachep;
790 }
791
792 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
793 {
794 return __find_general_cachep(size, gfpflags);
795 }
796
797 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
798 {
799 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
800 }
801
802 /*
803 * Calculate the number of objects and left-over bytes for a given buffer size.
804 */
805 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
806 size_t align, int flags, size_t *left_over,
807 unsigned int *num)
808 {
809 int nr_objs;
810 size_t mgmt_size;
811 size_t slab_size = PAGE_SIZE << gfporder;
812
813 /*
814 * The slab management structure can be either off the slab or
815 * on it. For the latter case, the memory allocated for a
816 * slab is used for:
817 *
818 * - The struct slab
819 * - One kmem_bufctl_t for each object
820 * - Padding to respect alignment of @align
821 * - @buffer_size bytes for each object
822 *
823 * If the slab management structure is off the slab, then the
824 * alignment will already be calculated into the size. Because
825 * the slabs are all pages aligned, the objects will be at the
826 * correct alignment when allocated.
827 */
828 if (flags & CFLGS_OFF_SLAB) {
829 mgmt_size = 0;
830 nr_objs = slab_size / buffer_size;
831
832 if (nr_objs > SLAB_LIMIT)
833 nr_objs = SLAB_LIMIT;
834 } else {
835 /*
836 * Ignore padding for the initial guess. The padding
837 * is at most @align-1 bytes, and @buffer_size is at
838 * least @align. In the worst case, this result will
839 * be one greater than the number of objects that fit
840 * into the memory allocation when taking the padding
841 * into account.
842 */
843 nr_objs = (slab_size - sizeof(struct slab)) /
844 (buffer_size + sizeof(kmem_bufctl_t));
845
846 /*
847 * This calculated number will be either the right
848 * amount, or one greater than what we want.
849 */
850 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
851 > slab_size)
852 nr_objs--;
853
854 if (nr_objs > SLAB_LIMIT)
855 nr_objs = SLAB_LIMIT;
856
857 mgmt_size = slab_mgmt_size(nr_objs, align);
858 }
859 *num = nr_objs;
860 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
861 }
862
863 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
864
865 static void __slab_error(const char *function, struct kmem_cache *cachep,
866 char *msg)
867 {
868 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
869 function, cachep->name, msg);
870 dump_stack();
871 }
872
873 /*
874 * By default on NUMA we use alien caches to stage the freeing of
875 * objects allocated from other nodes. This causes massive memory
876 * inefficiencies when using fake NUMA setup to split memory into a
877 * large number of small nodes, so it can be disabled on the command
878 * line
879 */
880
881 static int use_alien_caches __read_mostly = 1;
882 static int __init noaliencache_setup(char *s)
883 {
884 use_alien_caches = 0;
885 return 1;
886 }
887 __setup("noaliencache", noaliencache_setup);
888
889 #ifdef CONFIG_NUMA
890 /*
891 * Special reaping functions for NUMA systems called from cache_reap().
892 * These take care of doing round robin flushing of alien caches (containing
893 * objects freed on different nodes from which they were allocated) and the
894 * flushing of remote pcps by calling drain_node_pages.
895 */
896 static DEFINE_PER_CPU(unsigned long, reap_node);
897
898 static void init_reap_node(int cpu)
899 {
900 int node;
901
902 node = next_node(cpu_to_node(cpu), node_online_map);
903 if (node == MAX_NUMNODES)
904 node = first_node(node_online_map);
905
906 per_cpu(reap_node, cpu) = node;
907 }
908
909 static void next_reap_node(void)
910 {
911 int node = __get_cpu_var(reap_node);
912
913 node = next_node(node, node_online_map);
914 if (unlikely(node >= MAX_NUMNODES))
915 node = first_node(node_online_map);
916 __get_cpu_var(reap_node) = node;
917 }
918
919 #else
920 #define init_reap_node(cpu) do { } while (0)
921 #define next_reap_node(void) do { } while (0)
922 #endif
923
924 /*
925 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
926 * via the workqueue/eventd.
927 * Add the CPU number into the expiration time to minimize the possibility of
928 * the CPUs getting into lockstep and contending for the global cache chain
929 * lock.
930 */
931 static void __devinit start_cpu_timer(int cpu)
932 {
933 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
934
935 /*
936 * When this gets called from do_initcalls via cpucache_init(),
937 * init_workqueues() has already run, so keventd will be setup
938 * at that time.
939 */
940 if (keventd_up() && reap_work->work.func == NULL) {
941 init_reap_node(cpu);
942 INIT_DELAYED_WORK(reap_work, cache_reap);
943 schedule_delayed_work_on(cpu, reap_work,
944 __round_jiffies_relative(HZ, cpu));
945 }
946 }
947
948 static struct array_cache *alloc_arraycache(int node, int entries,
949 int batchcount)
950 {
951 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
952 struct array_cache *nc = NULL;
953
954 nc = kmalloc_node(memsize, GFP_KERNEL, node);
955 if (nc) {
956 nc->avail = 0;
957 nc->limit = entries;
958 nc->batchcount = batchcount;
959 nc->touched = 0;
960 spin_lock_init(&nc->lock);
961 }
962 return nc;
963 }
964
965 /*
966 * Transfer objects in one arraycache to another.
967 * Locking must be handled by the caller.
968 *
969 * Return the number of entries transferred.
970 */
971 static int transfer_objects(struct array_cache *to,
972 struct array_cache *from, unsigned int max)
973 {
974 /* Figure out how many entries to transfer */
975 int nr = min(min(from->avail, max), to->limit - to->avail);
976
977 if (!nr)
978 return 0;
979
980 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
981 sizeof(void *) *nr);
982
983 from->avail -= nr;
984 to->avail += nr;
985 to->touched = 1;
986 return nr;
987 }
988
989 #ifndef CONFIG_NUMA
990
991 #define drain_alien_cache(cachep, alien) do { } while (0)
992 #define reap_alien(cachep, l3) do { } while (0)
993
994 static inline struct array_cache **alloc_alien_cache(int node, int limit)
995 {
996 return (struct array_cache **)BAD_ALIEN_MAGIC;
997 }
998
999 static inline void free_alien_cache(struct array_cache **ac_ptr)
1000 {
1001 }
1002
1003 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1004 {
1005 return 0;
1006 }
1007
1008 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1009 gfp_t flags)
1010 {
1011 return NULL;
1012 }
1013
1014 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1015 gfp_t flags, int nodeid)
1016 {
1017 return NULL;
1018 }
1019
1020 #else /* CONFIG_NUMA */
1021
1022 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1023 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1024
1025 static struct array_cache **alloc_alien_cache(int node, int limit)
1026 {
1027 struct array_cache **ac_ptr;
1028 int memsize = sizeof(void *) * nr_node_ids;
1029 int i;
1030
1031 if (limit > 1)
1032 limit = 12;
1033 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1034 if (ac_ptr) {
1035 for_each_node(i) {
1036 if (i == node || !node_online(i)) {
1037 ac_ptr[i] = NULL;
1038 continue;
1039 }
1040 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1041 if (!ac_ptr[i]) {
1042 for (i--; i <= 0; i--)
1043 kfree(ac_ptr[i]);
1044 kfree(ac_ptr);
1045 return NULL;
1046 }
1047 }
1048 }
1049 return ac_ptr;
1050 }
1051
1052 static void free_alien_cache(struct array_cache **ac_ptr)
1053 {
1054 int i;
1055
1056 if (!ac_ptr)
1057 return;
1058 for_each_node(i)
1059 kfree(ac_ptr[i]);
1060 kfree(ac_ptr);
1061 }
1062
1063 static void __drain_alien_cache(struct kmem_cache *cachep,
1064 struct array_cache *ac, int node)
1065 {
1066 struct kmem_list3 *rl3 = cachep->nodelists[node];
1067
1068 if (ac->avail) {
1069 spin_lock(&rl3->list_lock);
1070 /*
1071 * Stuff objects into the remote nodes shared array first.
1072 * That way we could avoid the overhead of putting the objects
1073 * into the free lists and getting them back later.
1074 */
1075 if (rl3->shared)
1076 transfer_objects(rl3->shared, ac, ac->limit);
1077
1078 free_block(cachep, ac->entry, ac->avail, node);
1079 ac->avail = 0;
1080 spin_unlock(&rl3->list_lock);
1081 }
1082 }
1083
1084 /*
1085 * Called from cache_reap() to regularly drain alien caches round robin.
1086 */
1087 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1088 {
1089 int node = __get_cpu_var(reap_node);
1090
1091 if (l3->alien) {
1092 struct array_cache *ac = l3->alien[node];
1093
1094 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1095 __drain_alien_cache(cachep, ac, node);
1096 spin_unlock_irq(&ac->lock);
1097 }
1098 }
1099 }
1100
1101 static void drain_alien_cache(struct kmem_cache *cachep,
1102 struct array_cache **alien)
1103 {
1104 int i = 0;
1105 struct array_cache *ac;
1106 unsigned long flags;
1107
1108 for_each_online_node(i) {
1109 ac = alien[i];
1110 if (ac) {
1111 spin_lock_irqsave(&ac->lock, flags);
1112 __drain_alien_cache(cachep, ac, i);
1113 spin_unlock_irqrestore(&ac->lock, flags);
1114 }
1115 }
1116 }
1117
1118 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1119 {
1120 struct slab *slabp = virt_to_slab(objp);
1121 int nodeid = slabp->nodeid;
1122 struct kmem_list3 *l3;
1123 struct array_cache *alien = NULL;
1124 int node;
1125
1126 node = numa_node_id();
1127
1128 /*
1129 * Make sure we are not freeing a object from another node to the array
1130 * cache on this cpu.
1131 */
1132 if (likely(slabp->nodeid == node))
1133 return 0;
1134
1135 l3 = cachep->nodelists[node];
1136 STATS_INC_NODEFREES(cachep);
1137 if (l3->alien && l3->alien[nodeid]) {
1138 alien = l3->alien[nodeid];
1139 spin_lock(&alien->lock);
1140 if (unlikely(alien->avail == alien->limit)) {
1141 STATS_INC_ACOVERFLOW(cachep);
1142 __drain_alien_cache(cachep, alien, nodeid);
1143 }
1144 alien->entry[alien->avail++] = objp;
1145 spin_unlock(&alien->lock);
1146 } else {
1147 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1148 free_block(cachep, &objp, 1, nodeid);
1149 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1150 }
1151 return 1;
1152 }
1153 #endif
1154
1155 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1156 unsigned long action, void *hcpu)
1157 {
1158 long cpu = (long)hcpu;
1159 struct kmem_cache *cachep;
1160 struct kmem_list3 *l3 = NULL;
1161 int node = cpu_to_node(cpu);
1162 int memsize = sizeof(struct kmem_list3);
1163
1164 switch (action) {
1165 case CPU_LOCK_ACQUIRE:
1166 mutex_lock(&cache_chain_mutex);
1167 break;
1168 case CPU_UP_PREPARE:
1169 case CPU_UP_PREPARE_FROZEN:
1170 /*
1171 * We need to do this right in the beginning since
1172 * alloc_arraycache's are going to use this list.
1173 * kmalloc_node allows us to add the slab to the right
1174 * kmem_list3 and not this cpu's kmem_list3
1175 */
1176
1177 list_for_each_entry(cachep, &cache_chain, next) {
1178 /*
1179 * Set up the size64 kmemlist for cpu before we can
1180 * begin anything. Make sure some other cpu on this
1181 * node has not already allocated this
1182 */
1183 if (!cachep->nodelists[node]) {
1184 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1185 if (!l3)
1186 goto bad;
1187 kmem_list3_init(l3);
1188 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1189 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1190
1191 /*
1192 * The l3s don't come and go as CPUs come and
1193 * go. cache_chain_mutex is sufficient
1194 * protection here.
1195 */
1196 cachep->nodelists[node] = l3;
1197 }
1198
1199 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1200 cachep->nodelists[node]->free_limit =
1201 (1 + nr_cpus_node(node)) *
1202 cachep->batchcount + cachep->num;
1203 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1204 }
1205
1206 /*
1207 * Now we can go ahead with allocating the shared arrays and
1208 * array caches
1209 */
1210 list_for_each_entry(cachep, &cache_chain, next) {
1211 struct array_cache *nc;
1212 struct array_cache *shared = NULL;
1213 struct array_cache **alien = NULL;
1214
1215 nc = alloc_arraycache(node, cachep->limit,
1216 cachep->batchcount);
1217 if (!nc)
1218 goto bad;
1219 if (cachep->shared) {
1220 shared = alloc_arraycache(node,
1221 cachep->shared * cachep->batchcount,
1222 0xbaadf00d);
1223 if (!shared)
1224 goto bad;
1225 }
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit);
1228 if (!alien)
1229 goto bad;
1230 }
1231 cachep->array[cpu] = nc;
1232 l3 = cachep->nodelists[node];
1233 BUG_ON(!l3);
1234
1235 spin_lock_irq(&l3->list_lock);
1236 if (!l3->shared) {
1237 /*
1238 * We are serialised from CPU_DEAD or
1239 * CPU_UP_CANCELLED by the cpucontrol lock
1240 */
1241 l3->shared = shared;
1242 shared = NULL;
1243 }
1244 #ifdef CONFIG_NUMA
1245 if (!l3->alien) {
1246 l3->alien = alien;
1247 alien = NULL;
1248 }
1249 #endif
1250 spin_unlock_irq(&l3->list_lock);
1251 kfree(shared);
1252 free_alien_cache(alien);
1253 }
1254 break;
1255 case CPU_ONLINE:
1256 case CPU_ONLINE_FROZEN:
1257 start_cpu_timer(cpu);
1258 break;
1259 #ifdef CONFIG_HOTPLUG_CPU
1260 case CPU_DOWN_PREPARE:
1261 case CPU_DOWN_PREPARE_FROZEN:
1262 /*
1263 * Shutdown cache reaper. Note that the cache_chain_mutex is
1264 * held so that if cache_reap() is invoked it cannot do
1265 * anything expensive but will only modify reap_work
1266 * and reschedule the timer.
1267 */
1268 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1269 /* Now the cache_reaper is guaranteed to be not running. */
1270 per_cpu(reap_work, cpu).work.func = NULL;
1271 break;
1272 case CPU_DOWN_FAILED:
1273 case CPU_DOWN_FAILED_FROZEN:
1274 start_cpu_timer(cpu);
1275 break;
1276 case CPU_DEAD:
1277 case CPU_DEAD_FROZEN:
1278 /*
1279 * Even if all the cpus of a node are down, we don't free the
1280 * kmem_list3 of any cache. This to avoid a race between
1281 * cpu_down, and a kmalloc allocation from another cpu for
1282 * memory from the node of the cpu going down. The list3
1283 * structure is usually allocated from kmem_cache_create() and
1284 * gets destroyed at kmem_cache_destroy().
1285 */
1286 /* fall thru */
1287 #endif
1288 case CPU_UP_CANCELED:
1289 case CPU_UP_CANCELED_FROZEN:
1290 list_for_each_entry(cachep, &cache_chain, next) {
1291 struct array_cache *nc;
1292 struct array_cache *shared;
1293 struct array_cache **alien;
1294 cpumask_t mask;
1295
1296 mask = node_to_cpumask(node);
1297 /* cpu is dead; no one can alloc from it. */
1298 nc = cachep->array[cpu];
1299 cachep->array[cpu] = NULL;
1300 l3 = cachep->nodelists[node];
1301
1302 if (!l3)
1303 goto free_array_cache;
1304
1305 spin_lock_irq(&l3->list_lock);
1306
1307 /* Free limit for this kmem_list3 */
1308 l3->free_limit -= cachep->batchcount;
1309 if (nc)
1310 free_block(cachep, nc->entry, nc->avail, node);
1311
1312 if (!cpus_empty(mask)) {
1313 spin_unlock_irq(&l3->list_lock);
1314 goto free_array_cache;
1315 }
1316
1317 shared = l3->shared;
1318 if (shared) {
1319 free_block(cachep, shared->entry,
1320 shared->avail, node);
1321 l3->shared = NULL;
1322 }
1323
1324 alien = l3->alien;
1325 l3->alien = NULL;
1326
1327 spin_unlock_irq(&l3->list_lock);
1328
1329 kfree(shared);
1330 if (alien) {
1331 drain_alien_cache(cachep, alien);
1332 free_alien_cache(alien);
1333 }
1334 free_array_cache:
1335 kfree(nc);
1336 }
1337 /*
1338 * In the previous loop, all the objects were freed to
1339 * the respective cache's slabs, now we can go ahead and
1340 * shrink each nodelist to its limit.
1341 */
1342 list_for_each_entry(cachep, &cache_chain, next) {
1343 l3 = cachep->nodelists[node];
1344 if (!l3)
1345 continue;
1346 drain_freelist(cachep, l3, l3->free_objects);
1347 }
1348 break;
1349 case CPU_LOCK_RELEASE:
1350 mutex_unlock(&cache_chain_mutex);
1351 break;
1352 }
1353 return NOTIFY_OK;
1354 bad:
1355 return NOTIFY_BAD;
1356 }
1357
1358 static struct notifier_block __cpuinitdata cpucache_notifier = {
1359 &cpuup_callback, NULL, 0
1360 };
1361
1362 /*
1363 * swap the static kmem_list3 with kmalloced memory
1364 */
1365 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1366 int nodeid)
1367 {
1368 struct kmem_list3 *ptr;
1369
1370 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1371 BUG_ON(!ptr);
1372
1373 local_irq_disable();
1374 memcpy(ptr, list, sizeof(struct kmem_list3));
1375 /*
1376 * Do not assume that spinlocks can be initialized via memcpy:
1377 */
1378 spin_lock_init(&ptr->list_lock);
1379
1380 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1381 cachep->nodelists[nodeid] = ptr;
1382 local_irq_enable();
1383 }
1384
1385 /*
1386 * Initialisation. Called after the page allocator have been initialised and
1387 * before smp_init().
1388 */
1389 void __init kmem_cache_init(void)
1390 {
1391 size_t left_over;
1392 struct cache_sizes *sizes;
1393 struct cache_names *names;
1394 int i;
1395 int order;
1396 int node;
1397
1398 if (num_possible_nodes() == 1)
1399 use_alien_caches = 0;
1400
1401 for (i = 0; i < NUM_INIT_LISTS; i++) {
1402 kmem_list3_init(&initkmem_list3[i]);
1403 if (i < MAX_NUMNODES)
1404 cache_cache.nodelists[i] = NULL;
1405 }
1406
1407 /*
1408 * Fragmentation resistance on low memory - only use bigger
1409 * page orders on machines with more than 32MB of memory.
1410 */
1411 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1412 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1413
1414 /* Bootstrap is tricky, because several objects are allocated
1415 * from caches that do not exist yet:
1416 * 1) initialize the cache_cache cache: it contains the struct
1417 * kmem_cache structures of all caches, except cache_cache itself:
1418 * cache_cache is statically allocated.
1419 * Initially an __init data area is used for the head array and the
1420 * kmem_list3 structures, it's replaced with a kmalloc allocated
1421 * array at the end of the bootstrap.
1422 * 2) Create the first kmalloc cache.
1423 * The struct kmem_cache for the new cache is allocated normally.
1424 * An __init data area is used for the head array.
1425 * 3) Create the remaining kmalloc caches, with minimally sized
1426 * head arrays.
1427 * 4) Replace the __init data head arrays for cache_cache and the first
1428 * kmalloc cache with kmalloc allocated arrays.
1429 * 5) Replace the __init data for kmem_list3 for cache_cache and
1430 * the other cache's with kmalloc allocated memory.
1431 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1432 */
1433
1434 node = numa_node_id();
1435
1436 /* 1) create the cache_cache */
1437 INIT_LIST_HEAD(&cache_chain);
1438 list_add(&cache_cache.next, &cache_chain);
1439 cache_cache.colour_off = cache_line_size();
1440 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1441 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1442
1443 /*
1444 * struct kmem_cache size depends on nr_node_ids, which
1445 * can be less than MAX_NUMNODES.
1446 */
1447 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1448 nr_node_ids * sizeof(struct kmem_list3 *);
1449 #if DEBUG
1450 cache_cache.obj_size = cache_cache.buffer_size;
1451 #endif
1452 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1453 cache_line_size());
1454 cache_cache.reciprocal_buffer_size =
1455 reciprocal_value(cache_cache.buffer_size);
1456
1457 for (order = 0; order < MAX_ORDER; order++) {
1458 cache_estimate(order, cache_cache.buffer_size,
1459 cache_line_size(), 0, &left_over, &cache_cache.num);
1460 if (cache_cache.num)
1461 break;
1462 }
1463 BUG_ON(!cache_cache.num);
1464 cache_cache.gfporder = order;
1465 cache_cache.colour = left_over / cache_cache.colour_off;
1466 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1467 sizeof(struct slab), cache_line_size());
1468
1469 /* 2+3) create the kmalloc caches */
1470 sizes = malloc_sizes;
1471 names = cache_names;
1472
1473 /*
1474 * Initialize the caches that provide memory for the array cache and the
1475 * kmem_list3 structures first. Without this, further allocations will
1476 * bug.
1477 */
1478
1479 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1480 sizes[INDEX_AC].cs_size,
1481 ARCH_KMALLOC_MINALIGN,
1482 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1483 NULL, NULL);
1484
1485 if (INDEX_AC != INDEX_L3) {
1486 sizes[INDEX_L3].cs_cachep =
1487 kmem_cache_create(names[INDEX_L3].name,
1488 sizes[INDEX_L3].cs_size,
1489 ARCH_KMALLOC_MINALIGN,
1490 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1491 NULL, NULL);
1492 }
1493
1494 slab_early_init = 0;
1495
1496 while (sizes->cs_size != ULONG_MAX) {
1497 /*
1498 * For performance, all the general caches are L1 aligned.
1499 * This should be particularly beneficial on SMP boxes, as it
1500 * eliminates "false sharing".
1501 * Note for systems short on memory removing the alignment will
1502 * allow tighter packing of the smaller caches.
1503 */
1504 if (!sizes->cs_cachep) {
1505 sizes->cs_cachep = kmem_cache_create(names->name,
1506 sizes->cs_size,
1507 ARCH_KMALLOC_MINALIGN,
1508 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1509 NULL, NULL);
1510 }
1511 #ifdef CONFIG_ZONE_DMA
1512 sizes->cs_dmacachep = kmem_cache_create(
1513 names->name_dma,
1514 sizes->cs_size,
1515 ARCH_KMALLOC_MINALIGN,
1516 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1517 SLAB_PANIC,
1518 NULL, NULL);
1519 #endif
1520 sizes++;
1521 names++;
1522 }
1523 /* 4) Replace the bootstrap head arrays */
1524 {
1525 struct array_cache *ptr;
1526
1527 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1528
1529 local_irq_disable();
1530 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1531 memcpy(ptr, cpu_cache_get(&cache_cache),
1532 sizeof(struct arraycache_init));
1533 /*
1534 * Do not assume that spinlocks can be initialized via memcpy:
1535 */
1536 spin_lock_init(&ptr->lock);
1537
1538 cache_cache.array[smp_processor_id()] = ptr;
1539 local_irq_enable();
1540
1541 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1542
1543 local_irq_disable();
1544 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1545 != &initarray_generic.cache);
1546 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1547 sizeof(struct arraycache_init));
1548 /*
1549 * Do not assume that spinlocks can be initialized via memcpy:
1550 */
1551 spin_lock_init(&ptr->lock);
1552
1553 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1554 ptr;
1555 local_irq_enable();
1556 }
1557 /* 5) Replace the bootstrap kmem_list3's */
1558 {
1559 int nid;
1560
1561 /* Replace the static kmem_list3 structures for the boot cpu */
1562 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1563
1564 for_each_online_node(nid) {
1565 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1566 &initkmem_list3[SIZE_AC + nid], nid);
1567
1568 if (INDEX_AC != INDEX_L3) {
1569 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1570 &initkmem_list3[SIZE_L3 + nid], nid);
1571 }
1572 }
1573 }
1574
1575 /* 6) resize the head arrays to their final sizes */
1576 {
1577 struct kmem_cache *cachep;
1578 mutex_lock(&cache_chain_mutex);
1579 list_for_each_entry(cachep, &cache_chain, next)
1580 if (enable_cpucache(cachep))
1581 BUG();
1582 mutex_unlock(&cache_chain_mutex);
1583 }
1584
1585 /* Annotate slab for lockdep -- annotate the malloc caches */
1586 init_lock_keys();
1587
1588
1589 /* Done! */
1590 g_cpucache_up = FULL;
1591
1592 /*
1593 * Register a cpu startup notifier callback that initializes
1594 * cpu_cache_get for all new cpus
1595 */
1596 register_cpu_notifier(&cpucache_notifier);
1597
1598 /*
1599 * The reap timers are started later, with a module init call: That part
1600 * of the kernel is not yet operational.
1601 */
1602 }
1603
1604 static int __init cpucache_init(void)
1605 {
1606 int cpu;
1607
1608 /*
1609 * Register the timers that return unneeded pages to the page allocator
1610 */
1611 for_each_online_cpu(cpu)
1612 start_cpu_timer(cpu);
1613 return 0;
1614 }
1615 __initcall(cpucache_init);
1616
1617 /*
1618 * Interface to system's page allocator. No need to hold the cache-lock.
1619 *
1620 * If we requested dmaable memory, we will get it. Even if we
1621 * did not request dmaable memory, we might get it, but that
1622 * would be relatively rare and ignorable.
1623 */
1624 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1625 {
1626 struct page *page;
1627 int nr_pages;
1628 int i;
1629
1630 #ifndef CONFIG_MMU
1631 /*
1632 * Nommu uses slab's for process anonymous memory allocations, and thus
1633 * requires __GFP_COMP to properly refcount higher order allocations
1634 */
1635 flags |= __GFP_COMP;
1636 #endif
1637
1638 flags |= cachep->gfpflags;
1639
1640 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1641 if (!page)
1642 return NULL;
1643
1644 nr_pages = (1 << cachep->gfporder);
1645 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1646 add_zone_page_state(page_zone(page),
1647 NR_SLAB_RECLAIMABLE, nr_pages);
1648 else
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_UNRECLAIMABLE, nr_pages);
1651 for (i = 0; i < nr_pages; i++)
1652 __SetPageSlab(page + i);
1653 return page_address(page);
1654 }
1655
1656 /*
1657 * Interface to system's page release.
1658 */
1659 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1660 {
1661 unsigned long i = (1 << cachep->gfporder);
1662 struct page *page = virt_to_page(addr);
1663 const unsigned long nr_freed = i;
1664
1665 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1666 sub_zone_page_state(page_zone(page),
1667 NR_SLAB_RECLAIMABLE, nr_freed);
1668 else
1669 sub_zone_page_state(page_zone(page),
1670 NR_SLAB_UNRECLAIMABLE, nr_freed);
1671 while (i--) {
1672 BUG_ON(!PageSlab(page));
1673 __ClearPageSlab(page);
1674 page++;
1675 }
1676 if (current->reclaim_state)
1677 current->reclaim_state->reclaimed_slab += nr_freed;
1678 free_pages((unsigned long)addr, cachep->gfporder);
1679 }
1680
1681 static void kmem_rcu_free(struct rcu_head *head)
1682 {
1683 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1684 struct kmem_cache *cachep = slab_rcu->cachep;
1685
1686 kmem_freepages(cachep, slab_rcu->addr);
1687 if (OFF_SLAB(cachep))
1688 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1689 }
1690
1691 #if DEBUG
1692
1693 #ifdef CONFIG_DEBUG_PAGEALLOC
1694 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1695 unsigned long caller)
1696 {
1697 int size = obj_size(cachep);
1698
1699 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1700
1701 if (size < 5 * sizeof(unsigned long))
1702 return;
1703
1704 *addr++ = 0x12345678;
1705 *addr++ = caller;
1706 *addr++ = smp_processor_id();
1707 size -= 3 * sizeof(unsigned long);
1708 {
1709 unsigned long *sptr = &caller;
1710 unsigned long svalue;
1711
1712 while (!kstack_end(sptr)) {
1713 svalue = *sptr++;
1714 if (kernel_text_address(svalue)) {
1715 *addr++ = svalue;
1716 size -= sizeof(unsigned long);
1717 if (size <= sizeof(unsigned long))
1718 break;
1719 }
1720 }
1721
1722 }
1723 *addr++ = 0x87654321;
1724 }
1725 #endif
1726
1727 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1728 {
1729 int size = obj_size(cachep);
1730 addr = &((char *)addr)[obj_offset(cachep)];
1731
1732 memset(addr, val, size);
1733 *(unsigned char *)(addr + size - 1) = POISON_END;
1734 }
1735
1736 static void dump_line(char *data, int offset, int limit)
1737 {
1738 int i;
1739 unsigned char error = 0;
1740 int bad_count = 0;
1741
1742 printk(KERN_ERR "%03x:", offset);
1743 for (i = 0; i < limit; i++) {
1744 if (data[offset + i] != POISON_FREE) {
1745 error = data[offset + i];
1746 bad_count++;
1747 }
1748 printk(" %02x", (unsigned char)data[offset + i]);
1749 }
1750 printk("\n");
1751
1752 if (bad_count == 1) {
1753 error ^= POISON_FREE;
1754 if (!(error & (error - 1))) {
1755 printk(KERN_ERR "Single bit error detected. Probably "
1756 "bad RAM.\n");
1757 #ifdef CONFIG_X86
1758 printk(KERN_ERR "Run memtest86+ or a similar memory "
1759 "test tool.\n");
1760 #else
1761 printk(KERN_ERR "Run a memory test tool.\n");
1762 #endif
1763 }
1764 }
1765 }
1766 #endif
1767
1768 #if DEBUG
1769
1770 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1771 {
1772 int i, size;
1773 char *realobj;
1774
1775 if (cachep->flags & SLAB_RED_ZONE) {
1776 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1777 *dbg_redzone1(cachep, objp),
1778 *dbg_redzone2(cachep, objp));
1779 }
1780
1781 if (cachep->flags & SLAB_STORE_USER) {
1782 printk(KERN_ERR "Last user: [<%p>]",
1783 *dbg_userword(cachep, objp));
1784 print_symbol("(%s)",
1785 (unsigned long)*dbg_userword(cachep, objp));
1786 printk("\n");
1787 }
1788 realobj = (char *)objp + obj_offset(cachep);
1789 size = obj_size(cachep);
1790 for (i = 0; i < size && lines; i += 16, lines--) {
1791 int limit;
1792 limit = 16;
1793 if (i + limit > size)
1794 limit = size - i;
1795 dump_line(realobj, i, limit);
1796 }
1797 }
1798
1799 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1800 {
1801 char *realobj;
1802 int size, i;
1803 int lines = 0;
1804
1805 realobj = (char *)objp + obj_offset(cachep);
1806 size = obj_size(cachep);
1807
1808 for (i = 0; i < size; i++) {
1809 char exp = POISON_FREE;
1810 if (i == size - 1)
1811 exp = POISON_END;
1812 if (realobj[i] != exp) {
1813 int limit;
1814 /* Mismatch ! */
1815 /* Print header */
1816 if (lines == 0) {
1817 printk(KERN_ERR
1818 "Slab corruption: %s start=%p, len=%d\n",
1819 cachep->name, realobj, size);
1820 print_objinfo(cachep, objp, 0);
1821 }
1822 /* Hexdump the affected line */
1823 i = (i / 16) * 16;
1824 limit = 16;
1825 if (i + limit > size)
1826 limit = size - i;
1827 dump_line(realobj, i, limit);
1828 i += 16;
1829 lines++;
1830 /* Limit to 5 lines */
1831 if (lines > 5)
1832 break;
1833 }
1834 }
1835 if (lines != 0) {
1836 /* Print some data about the neighboring objects, if they
1837 * exist:
1838 */
1839 struct slab *slabp = virt_to_slab(objp);
1840 unsigned int objnr;
1841
1842 objnr = obj_to_index(cachep, slabp, objp);
1843 if (objnr) {
1844 objp = index_to_obj(cachep, slabp, objnr - 1);
1845 realobj = (char *)objp + obj_offset(cachep);
1846 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1847 realobj, size);
1848 print_objinfo(cachep, objp, 2);
1849 }
1850 if (objnr + 1 < cachep->num) {
1851 objp = index_to_obj(cachep, slabp, objnr + 1);
1852 realobj = (char *)objp + obj_offset(cachep);
1853 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1854 realobj, size);
1855 print_objinfo(cachep, objp, 2);
1856 }
1857 }
1858 }
1859 #endif
1860
1861 #if DEBUG
1862 /**
1863 * slab_destroy_objs - destroy a slab and its objects
1864 * @cachep: cache pointer being destroyed
1865 * @slabp: slab pointer being destroyed
1866 *
1867 * Call the registered destructor for each object in a slab that is being
1868 * destroyed.
1869 */
1870 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1871 {
1872 int i;
1873 for (i = 0; i < cachep->num; i++) {
1874 void *objp = index_to_obj(cachep, slabp, i);
1875
1876 if (cachep->flags & SLAB_POISON) {
1877 #ifdef CONFIG_DEBUG_PAGEALLOC
1878 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1879 OFF_SLAB(cachep))
1880 kernel_map_pages(virt_to_page(objp),
1881 cachep->buffer_size / PAGE_SIZE, 1);
1882 else
1883 check_poison_obj(cachep, objp);
1884 #else
1885 check_poison_obj(cachep, objp);
1886 #endif
1887 }
1888 if (cachep->flags & SLAB_RED_ZONE) {
1889 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1890 slab_error(cachep, "start of a freed object "
1891 "was overwritten");
1892 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1893 slab_error(cachep, "end of a freed object "
1894 "was overwritten");
1895 }
1896 }
1897 }
1898 #else
1899 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1900 {
1901 }
1902 #endif
1903
1904 /**
1905 * slab_destroy - destroy and release all objects in a slab
1906 * @cachep: cache pointer being destroyed
1907 * @slabp: slab pointer being destroyed
1908 *
1909 * Destroy all the objs in a slab, and release the mem back to the system.
1910 * Before calling the slab must have been unlinked from the cache. The
1911 * cache-lock is not held/needed.
1912 */
1913 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1914 {
1915 void *addr = slabp->s_mem - slabp->colouroff;
1916
1917 slab_destroy_objs(cachep, slabp);
1918 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1919 struct slab_rcu *slab_rcu;
1920
1921 slab_rcu = (struct slab_rcu *)slabp;
1922 slab_rcu->cachep = cachep;
1923 slab_rcu->addr = addr;
1924 call_rcu(&slab_rcu->head, kmem_rcu_free);
1925 } else {
1926 kmem_freepages(cachep, addr);
1927 if (OFF_SLAB(cachep))
1928 kmem_cache_free(cachep->slabp_cache, slabp);
1929 }
1930 }
1931
1932 /*
1933 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1934 * size of kmem_list3.
1935 */
1936 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1937 {
1938 int node;
1939
1940 for_each_online_node(node) {
1941 cachep->nodelists[node] = &initkmem_list3[index + node];
1942 cachep->nodelists[node]->next_reap = jiffies +
1943 REAPTIMEOUT_LIST3 +
1944 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1945 }
1946 }
1947
1948 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1949 {
1950 int i;
1951 struct kmem_list3 *l3;
1952
1953 for_each_online_cpu(i)
1954 kfree(cachep->array[i]);
1955
1956 /* NUMA: free the list3 structures */
1957 for_each_online_node(i) {
1958 l3 = cachep->nodelists[i];
1959 if (l3) {
1960 kfree(l3->shared);
1961 free_alien_cache(l3->alien);
1962 kfree(l3);
1963 }
1964 }
1965 kmem_cache_free(&cache_cache, cachep);
1966 }
1967
1968
1969 /**
1970 * calculate_slab_order - calculate size (page order) of slabs
1971 * @cachep: pointer to the cache that is being created
1972 * @size: size of objects to be created in this cache.
1973 * @align: required alignment for the objects.
1974 * @flags: slab allocation flags
1975 *
1976 * Also calculates the number of objects per slab.
1977 *
1978 * This could be made much more intelligent. For now, try to avoid using
1979 * high order pages for slabs. When the gfp() functions are more friendly
1980 * towards high-order requests, this should be changed.
1981 */
1982 static size_t calculate_slab_order(struct kmem_cache *cachep,
1983 size_t size, size_t align, unsigned long flags)
1984 {
1985 unsigned long offslab_limit;
1986 size_t left_over = 0;
1987 int gfporder;
1988
1989 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1990 unsigned int num;
1991 size_t remainder;
1992
1993 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1994 if (!num)
1995 continue;
1996
1997 if (flags & CFLGS_OFF_SLAB) {
1998 /*
1999 * Max number of objs-per-slab for caches which
2000 * use off-slab slabs. Needed to avoid a possible
2001 * looping condition in cache_grow().
2002 */
2003 offslab_limit = size - sizeof(struct slab);
2004 offslab_limit /= sizeof(kmem_bufctl_t);
2005
2006 if (num > offslab_limit)
2007 break;
2008 }
2009
2010 /* Found something acceptable - save it away */
2011 cachep->num = num;
2012 cachep->gfporder = gfporder;
2013 left_over = remainder;
2014
2015 /*
2016 * A VFS-reclaimable slab tends to have most allocations
2017 * as GFP_NOFS and we really don't want to have to be allocating
2018 * higher-order pages when we are unable to shrink dcache.
2019 */
2020 if (flags & SLAB_RECLAIM_ACCOUNT)
2021 break;
2022
2023 /*
2024 * Large number of objects is good, but very large slabs are
2025 * currently bad for the gfp()s.
2026 */
2027 if (gfporder >= slab_break_gfp_order)
2028 break;
2029
2030 /*
2031 * Acceptable internal fragmentation?
2032 */
2033 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2034 break;
2035 }
2036 return left_over;
2037 }
2038
2039 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2040 {
2041 if (g_cpucache_up == FULL)
2042 return enable_cpucache(cachep);
2043
2044 if (g_cpucache_up == NONE) {
2045 /*
2046 * Note: the first kmem_cache_create must create the cache
2047 * that's used by kmalloc(24), otherwise the creation of
2048 * further caches will BUG().
2049 */
2050 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2051
2052 /*
2053 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2054 * the first cache, then we need to set up all its list3s,
2055 * otherwise the creation of further caches will BUG().
2056 */
2057 set_up_list3s(cachep, SIZE_AC);
2058 if (INDEX_AC == INDEX_L3)
2059 g_cpucache_up = PARTIAL_L3;
2060 else
2061 g_cpucache_up = PARTIAL_AC;
2062 } else {
2063 cachep->array[smp_processor_id()] =
2064 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2065
2066 if (g_cpucache_up == PARTIAL_AC) {
2067 set_up_list3s(cachep, SIZE_L3);
2068 g_cpucache_up = PARTIAL_L3;
2069 } else {
2070 int node;
2071 for_each_online_node(node) {
2072 cachep->nodelists[node] =
2073 kmalloc_node(sizeof(struct kmem_list3),
2074 GFP_KERNEL, node);
2075 BUG_ON(!cachep->nodelists[node]);
2076 kmem_list3_init(cachep->nodelists[node]);
2077 }
2078 }
2079 }
2080 cachep->nodelists[numa_node_id()]->next_reap =
2081 jiffies + REAPTIMEOUT_LIST3 +
2082 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2083
2084 cpu_cache_get(cachep)->avail = 0;
2085 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2086 cpu_cache_get(cachep)->batchcount = 1;
2087 cpu_cache_get(cachep)->touched = 0;
2088 cachep->batchcount = 1;
2089 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2090 return 0;
2091 }
2092
2093 /**
2094 * kmem_cache_create - Create a cache.
2095 * @name: A string which is used in /proc/slabinfo to identify this cache.
2096 * @size: The size of objects to be created in this cache.
2097 * @align: The required alignment for the objects.
2098 * @flags: SLAB flags
2099 * @ctor: A constructor for the objects.
2100 * @dtor: A destructor for the objects (not implemented anymore).
2101 *
2102 * Returns a ptr to the cache on success, NULL on failure.
2103 * Cannot be called within a int, but can be interrupted.
2104 * The @ctor is run when new pages are allocated by the cache
2105 * and the @dtor is run before the pages are handed back.
2106 *
2107 * @name must be valid until the cache is destroyed. This implies that
2108 * the module calling this has to destroy the cache before getting unloaded.
2109 *
2110 * The flags are
2111 *
2112 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2113 * to catch references to uninitialised memory.
2114 *
2115 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2116 * for buffer overruns.
2117 *
2118 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2119 * cacheline. This can be beneficial if you're counting cycles as closely
2120 * as davem.
2121 */
2122 struct kmem_cache *
2123 kmem_cache_create (const char *name, size_t size, size_t align,
2124 unsigned long flags,
2125 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2126 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2127 {
2128 size_t left_over, slab_size, ralign;
2129 struct kmem_cache *cachep = NULL, *pc;
2130
2131 /*
2132 * Sanity checks... these are all serious usage bugs.
2133 */
2134 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2135 size > KMALLOC_MAX_SIZE || dtor) {
2136 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2137 name);
2138 BUG();
2139 }
2140
2141 /*
2142 * We use cache_chain_mutex to ensure a consistent view of
2143 * cpu_online_map as well. Please see cpuup_callback
2144 */
2145 mutex_lock(&cache_chain_mutex);
2146
2147 list_for_each_entry(pc, &cache_chain, next) {
2148 char tmp;
2149 int res;
2150
2151 /*
2152 * This happens when the module gets unloaded and doesn't
2153 * destroy its slab cache and no-one else reuses the vmalloc
2154 * area of the module. Print a warning.
2155 */
2156 res = probe_kernel_address(pc->name, tmp);
2157 if (res) {
2158 printk(KERN_ERR
2159 "SLAB: cache with size %d has lost its name\n",
2160 pc->buffer_size);
2161 continue;
2162 }
2163
2164 if (!strcmp(pc->name, name)) {
2165 printk(KERN_ERR
2166 "kmem_cache_create: duplicate cache %s\n", name);
2167 dump_stack();
2168 goto oops;
2169 }
2170 }
2171
2172 #if DEBUG
2173 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2174 #if FORCED_DEBUG
2175 /*
2176 * Enable redzoning and last user accounting, except for caches with
2177 * large objects, if the increased size would increase the object size
2178 * above the next power of two: caches with object sizes just above a
2179 * power of two have a significant amount of internal fragmentation.
2180 */
2181 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2182 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2183 if (!(flags & SLAB_DESTROY_BY_RCU))
2184 flags |= SLAB_POISON;
2185 #endif
2186 if (flags & SLAB_DESTROY_BY_RCU)
2187 BUG_ON(flags & SLAB_POISON);
2188 #endif
2189 /*
2190 * Always checks flags, a caller might be expecting debug support which
2191 * isn't available.
2192 */
2193 BUG_ON(flags & ~CREATE_MASK);
2194
2195 /*
2196 * Check that size is in terms of words. This is needed to avoid
2197 * unaligned accesses for some archs when redzoning is used, and makes
2198 * sure any on-slab bufctl's are also correctly aligned.
2199 */
2200 if (size & (BYTES_PER_WORD - 1)) {
2201 size += (BYTES_PER_WORD - 1);
2202 size &= ~(BYTES_PER_WORD - 1);
2203 }
2204
2205 /* calculate the final buffer alignment: */
2206
2207 /* 1) arch recommendation: can be overridden for debug */
2208 if (flags & SLAB_HWCACHE_ALIGN) {
2209 /*
2210 * Default alignment: as specified by the arch code. Except if
2211 * an object is really small, then squeeze multiple objects into
2212 * one cacheline.
2213 */
2214 ralign = cache_line_size();
2215 while (size <= ralign / 2)
2216 ralign /= 2;
2217 } else {
2218 ralign = BYTES_PER_WORD;
2219 }
2220
2221 /*
2222 * Redzoning and user store require word alignment. Note this will be
2223 * overridden by architecture or caller mandated alignment if either
2224 * is greater than BYTES_PER_WORD.
2225 */
2226 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2227 ralign = __alignof__(unsigned long long);
2228
2229 /* 2) arch mandated alignment */
2230 if (ralign < ARCH_SLAB_MINALIGN) {
2231 ralign = ARCH_SLAB_MINALIGN;
2232 }
2233 /* 3) caller mandated alignment */
2234 if (ralign < align) {
2235 ralign = align;
2236 }
2237 /* disable debug if necessary */
2238 if (ralign > __alignof__(unsigned long long))
2239 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2240 /*
2241 * 4) Store it.
2242 */
2243 align = ralign;
2244
2245 /* Get cache's description obj. */
2246 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2247 if (!cachep)
2248 goto oops;
2249
2250 #if DEBUG
2251 cachep->obj_size = size;
2252
2253 /*
2254 * Both debugging options require word-alignment which is calculated
2255 * into align above.
2256 */
2257 if (flags & SLAB_RED_ZONE) {
2258 /* add space for red zone words */
2259 cachep->obj_offset += sizeof(unsigned long long);
2260 size += 2 * sizeof(unsigned long long);
2261 }
2262 if (flags & SLAB_STORE_USER) {
2263 /* user store requires one word storage behind the end of
2264 * the real object.
2265 */
2266 size += BYTES_PER_WORD;
2267 }
2268 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2269 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2270 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2271 cachep->obj_offset += PAGE_SIZE - size;
2272 size = PAGE_SIZE;
2273 }
2274 #endif
2275 #endif
2276
2277 /*
2278 * Determine if the slab management is 'on' or 'off' slab.
2279 * (bootstrapping cannot cope with offslab caches so don't do
2280 * it too early on.)
2281 */
2282 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2283 /*
2284 * Size is large, assume best to place the slab management obj
2285 * off-slab (should allow better packing of objs).
2286 */
2287 flags |= CFLGS_OFF_SLAB;
2288
2289 size = ALIGN(size, align);
2290
2291 left_over = calculate_slab_order(cachep, size, align, flags);
2292
2293 if (!cachep->num) {
2294 printk(KERN_ERR
2295 "kmem_cache_create: couldn't create cache %s.\n", name);
2296 kmem_cache_free(&cache_cache, cachep);
2297 cachep = NULL;
2298 goto oops;
2299 }
2300 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2301 + sizeof(struct slab), align);
2302
2303 /*
2304 * If the slab has been placed off-slab, and we have enough space then
2305 * move it on-slab. This is at the expense of any extra colouring.
2306 */
2307 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2308 flags &= ~CFLGS_OFF_SLAB;
2309 left_over -= slab_size;
2310 }
2311
2312 if (flags & CFLGS_OFF_SLAB) {
2313 /* really off slab. No need for manual alignment */
2314 slab_size =
2315 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2316 }
2317
2318 cachep->colour_off = cache_line_size();
2319 /* Offset must be a multiple of the alignment. */
2320 if (cachep->colour_off < align)
2321 cachep->colour_off = align;
2322 cachep->colour = left_over / cachep->colour_off;
2323 cachep->slab_size = slab_size;
2324 cachep->flags = flags;
2325 cachep->gfpflags = 0;
2326 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2327 cachep->gfpflags |= GFP_DMA;
2328 cachep->buffer_size = size;
2329 cachep->reciprocal_buffer_size = reciprocal_value(size);
2330
2331 if (flags & CFLGS_OFF_SLAB) {
2332 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2333 /*
2334 * This is a possibility for one of the malloc_sizes caches.
2335 * But since we go off slab only for object size greater than
2336 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2337 * this should not happen at all.
2338 * But leave a BUG_ON for some lucky dude.
2339 */
2340 BUG_ON(!cachep->slabp_cache);
2341 }
2342 cachep->ctor = ctor;
2343 cachep->name = name;
2344
2345 if (setup_cpu_cache(cachep)) {
2346 __kmem_cache_destroy(cachep);
2347 cachep = NULL;
2348 goto oops;
2349 }
2350
2351 /* cache setup completed, link it into the list */
2352 list_add(&cachep->next, &cache_chain);
2353 oops:
2354 if (!cachep && (flags & SLAB_PANIC))
2355 panic("kmem_cache_create(): failed to create slab `%s'\n",
2356 name);
2357 mutex_unlock(&cache_chain_mutex);
2358 return cachep;
2359 }
2360 EXPORT_SYMBOL(kmem_cache_create);
2361
2362 #if DEBUG
2363 static void check_irq_off(void)
2364 {
2365 BUG_ON(!irqs_disabled());
2366 }
2367
2368 static void check_irq_on(void)
2369 {
2370 BUG_ON(irqs_disabled());
2371 }
2372
2373 static void check_spinlock_acquired(struct kmem_cache *cachep)
2374 {
2375 #ifdef CONFIG_SMP
2376 check_irq_off();
2377 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2378 #endif
2379 }
2380
2381 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2382 {
2383 #ifdef CONFIG_SMP
2384 check_irq_off();
2385 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2386 #endif
2387 }
2388
2389 #else
2390 #define check_irq_off() do { } while(0)
2391 #define check_irq_on() do { } while(0)
2392 #define check_spinlock_acquired(x) do { } while(0)
2393 #define check_spinlock_acquired_node(x, y) do { } while(0)
2394 #endif
2395
2396 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2397 struct array_cache *ac,
2398 int force, int node);
2399
2400 static void do_drain(void *arg)
2401 {
2402 struct kmem_cache *cachep = arg;
2403 struct array_cache *ac;
2404 int node = numa_node_id();
2405
2406 check_irq_off();
2407 ac = cpu_cache_get(cachep);
2408 spin_lock(&cachep->nodelists[node]->list_lock);
2409 free_block(cachep, ac->entry, ac->avail, node);
2410 spin_unlock(&cachep->nodelists[node]->list_lock);
2411 ac->avail = 0;
2412 }
2413
2414 static void drain_cpu_caches(struct kmem_cache *cachep)
2415 {
2416 struct kmem_list3 *l3;
2417 int node;
2418
2419 on_each_cpu(do_drain, cachep, 1, 1);
2420 check_irq_on();
2421 for_each_online_node(node) {
2422 l3 = cachep->nodelists[node];
2423 if (l3 && l3->alien)
2424 drain_alien_cache(cachep, l3->alien);
2425 }
2426
2427 for_each_online_node(node) {
2428 l3 = cachep->nodelists[node];
2429 if (l3)
2430 drain_array(cachep, l3, l3->shared, 1, node);
2431 }
2432 }
2433
2434 /*
2435 * Remove slabs from the list of free slabs.
2436 * Specify the number of slabs to drain in tofree.
2437 *
2438 * Returns the actual number of slabs released.
2439 */
2440 static int drain_freelist(struct kmem_cache *cache,
2441 struct kmem_list3 *l3, int tofree)
2442 {
2443 struct list_head *p;
2444 int nr_freed;
2445 struct slab *slabp;
2446
2447 nr_freed = 0;
2448 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2449
2450 spin_lock_irq(&l3->list_lock);
2451 p = l3->slabs_free.prev;
2452 if (p == &l3->slabs_free) {
2453 spin_unlock_irq(&l3->list_lock);
2454 goto out;
2455 }
2456
2457 slabp = list_entry(p, struct slab, list);
2458 #if DEBUG
2459 BUG_ON(slabp->inuse);
2460 #endif
2461 list_del(&slabp->list);
2462 /*
2463 * Safe to drop the lock. The slab is no longer linked
2464 * to the cache.
2465 */
2466 l3->free_objects -= cache->num;
2467 spin_unlock_irq(&l3->list_lock);
2468 slab_destroy(cache, slabp);
2469 nr_freed++;
2470 }
2471 out:
2472 return nr_freed;
2473 }
2474
2475 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2476 static int __cache_shrink(struct kmem_cache *cachep)
2477 {
2478 int ret = 0, i = 0;
2479 struct kmem_list3 *l3;
2480
2481 drain_cpu_caches(cachep);
2482
2483 check_irq_on();
2484 for_each_online_node(i) {
2485 l3 = cachep->nodelists[i];
2486 if (!l3)
2487 continue;
2488
2489 drain_freelist(cachep, l3, l3->free_objects);
2490
2491 ret += !list_empty(&l3->slabs_full) ||
2492 !list_empty(&l3->slabs_partial);
2493 }
2494 return (ret ? 1 : 0);
2495 }
2496
2497 /**
2498 * kmem_cache_shrink - Shrink a cache.
2499 * @cachep: The cache to shrink.
2500 *
2501 * Releases as many slabs as possible for a cache.
2502 * To help debugging, a zero exit status indicates all slabs were released.
2503 */
2504 int kmem_cache_shrink(struct kmem_cache *cachep)
2505 {
2506 int ret;
2507 BUG_ON(!cachep || in_interrupt());
2508
2509 mutex_lock(&cache_chain_mutex);
2510 ret = __cache_shrink(cachep);
2511 mutex_unlock(&cache_chain_mutex);
2512 return ret;
2513 }
2514 EXPORT_SYMBOL(kmem_cache_shrink);
2515
2516 /**
2517 * kmem_cache_destroy - delete a cache
2518 * @cachep: the cache to destroy
2519 *
2520 * Remove a &struct kmem_cache object from the slab cache.
2521 *
2522 * It is expected this function will be called by a module when it is
2523 * unloaded. This will remove the cache completely, and avoid a duplicate
2524 * cache being allocated each time a module is loaded and unloaded, if the
2525 * module doesn't have persistent in-kernel storage across loads and unloads.
2526 *
2527 * The cache must be empty before calling this function.
2528 *
2529 * The caller must guarantee that noone will allocate memory from the cache
2530 * during the kmem_cache_destroy().
2531 */
2532 void kmem_cache_destroy(struct kmem_cache *cachep)
2533 {
2534 BUG_ON(!cachep || in_interrupt());
2535
2536 /* Find the cache in the chain of caches. */
2537 mutex_lock(&cache_chain_mutex);
2538 /*
2539 * the chain is never empty, cache_cache is never destroyed
2540 */
2541 list_del(&cachep->next);
2542 if (__cache_shrink(cachep)) {
2543 slab_error(cachep, "Can't free all objects");
2544 list_add(&cachep->next, &cache_chain);
2545 mutex_unlock(&cache_chain_mutex);
2546 return;
2547 }
2548
2549 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2550 synchronize_rcu();
2551
2552 __kmem_cache_destroy(cachep);
2553 mutex_unlock(&cache_chain_mutex);
2554 }
2555 EXPORT_SYMBOL(kmem_cache_destroy);
2556
2557 /*
2558 * Get the memory for a slab management obj.
2559 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2560 * always come from malloc_sizes caches. The slab descriptor cannot
2561 * come from the same cache which is getting created because,
2562 * when we are searching for an appropriate cache for these
2563 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2564 * If we are creating a malloc_sizes cache here it would not be visible to
2565 * kmem_find_general_cachep till the initialization is complete.
2566 * Hence we cannot have slabp_cache same as the original cache.
2567 */
2568 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2569 int colour_off, gfp_t local_flags,
2570 int nodeid)
2571 {
2572 struct slab *slabp;
2573
2574 if (OFF_SLAB(cachep)) {
2575 /* Slab management obj is off-slab. */
2576 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2577 local_flags & ~GFP_THISNODE, nodeid);
2578 if (!slabp)
2579 return NULL;
2580 } else {
2581 slabp = objp + colour_off;
2582 colour_off += cachep->slab_size;
2583 }
2584 slabp->inuse = 0;
2585 slabp->colouroff = colour_off;
2586 slabp->s_mem = objp + colour_off;
2587 slabp->nodeid = nodeid;
2588 return slabp;
2589 }
2590
2591 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2592 {
2593 return (kmem_bufctl_t *) (slabp + 1);
2594 }
2595
2596 static void cache_init_objs(struct kmem_cache *cachep,
2597 struct slab *slabp)
2598 {
2599 int i;
2600
2601 for (i = 0; i < cachep->num; i++) {
2602 void *objp = index_to_obj(cachep, slabp, i);
2603 #if DEBUG
2604 /* need to poison the objs? */
2605 if (cachep->flags & SLAB_POISON)
2606 poison_obj(cachep, objp, POISON_FREE);
2607 if (cachep->flags & SLAB_STORE_USER)
2608 *dbg_userword(cachep, objp) = NULL;
2609
2610 if (cachep->flags & SLAB_RED_ZONE) {
2611 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2612 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2613 }
2614 /*
2615 * Constructors are not allowed to allocate memory from the same
2616 * cache which they are a constructor for. Otherwise, deadlock.
2617 * They must also be threaded.
2618 */
2619 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2620 cachep->ctor(objp + obj_offset(cachep), cachep,
2621 0);
2622
2623 if (cachep->flags & SLAB_RED_ZONE) {
2624 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2625 slab_error(cachep, "constructor overwrote the"
2626 " end of an object");
2627 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2628 slab_error(cachep, "constructor overwrote the"
2629 " start of an object");
2630 }
2631 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2632 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2633 kernel_map_pages(virt_to_page(objp),
2634 cachep->buffer_size / PAGE_SIZE, 0);
2635 #else
2636 if (cachep->ctor)
2637 cachep->ctor(objp, cachep, 0);
2638 #endif
2639 slab_bufctl(slabp)[i] = i + 1;
2640 }
2641 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2642 slabp->free = 0;
2643 }
2644
2645 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2646 {
2647 if (CONFIG_ZONE_DMA_FLAG) {
2648 if (flags & GFP_DMA)
2649 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2650 else
2651 BUG_ON(cachep->gfpflags & GFP_DMA);
2652 }
2653 }
2654
2655 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2656 int nodeid)
2657 {
2658 void *objp = index_to_obj(cachep, slabp, slabp->free);
2659 kmem_bufctl_t next;
2660
2661 slabp->inuse++;
2662 next = slab_bufctl(slabp)[slabp->free];
2663 #if DEBUG
2664 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2665 WARN_ON(slabp->nodeid != nodeid);
2666 #endif
2667 slabp->free = next;
2668
2669 return objp;
2670 }
2671
2672 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2673 void *objp, int nodeid)
2674 {
2675 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2676
2677 #if DEBUG
2678 /* Verify that the slab belongs to the intended node */
2679 WARN_ON(slabp->nodeid != nodeid);
2680
2681 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2682 printk(KERN_ERR "slab: double free detected in cache "
2683 "'%s', objp %p\n", cachep->name, objp);
2684 BUG();
2685 }
2686 #endif
2687 slab_bufctl(slabp)[objnr] = slabp->free;
2688 slabp->free = objnr;
2689 slabp->inuse--;
2690 }
2691
2692 /*
2693 * Map pages beginning at addr to the given cache and slab. This is required
2694 * for the slab allocator to be able to lookup the cache and slab of a
2695 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2696 */
2697 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2698 void *addr)
2699 {
2700 int nr_pages;
2701 struct page *page;
2702
2703 page = virt_to_page(addr);
2704
2705 nr_pages = 1;
2706 if (likely(!PageCompound(page)))
2707 nr_pages <<= cache->gfporder;
2708
2709 do {
2710 page_set_cache(page, cache);
2711 page_set_slab(page, slab);
2712 page++;
2713 } while (--nr_pages);
2714 }
2715
2716 /*
2717 * Grow (by 1) the number of slabs within a cache. This is called by
2718 * kmem_cache_alloc() when there are no active objs left in a cache.
2719 */
2720 static int cache_grow(struct kmem_cache *cachep,
2721 gfp_t flags, int nodeid, void *objp)
2722 {
2723 struct slab *slabp;
2724 size_t offset;
2725 gfp_t local_flags;
2726 struct kmem_list3 *l3;
2727
2728 /*
2729 * Be lazy and only check for valid flags here, keeping it out of the
2730 * critical path in kmem_cache_alloc().
2731 */
2732 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2733
2734 local_flags = (flags & GFP_LEVEL_MASK);
2735 /* Take the l3 list lock to change the colour_next on this node */
2736 check_irq_off();
2737 l3 = cachep->nodelists[nodeid];
2738 spin_lock(&l3->list_lock);
2739
2740 /* Get colour for the slab, and cal the next value. */
2741 offset = l3->colour_next;
2742 l3->colour_next++;
2743 if (l3->colour_next >= cachep->colour)
2744 l3->colour_next = 0;
2745 spin_unlock(&l3->list_lock);
2746
2747 offset *= cachep->colour_off;
2748
2749 if (local_flags & __GFP_WAIT)
2750 local_irq_enable();
2751
2752 /*
2753 * The test for missing atomic flag is performed here, rather than
2754 * the more obvious place, simply to reduce the critical path length
2755 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2756 * will eventually be caught here (where it matters).
2757 */
2758 kmem_flagcheck(cachep, flags);
2759
2760 /*
2761 * Get mem for the objs. Attempt to allocate a physical page from
2762 * 'nodeid'.
2763 */
2764 if (!objp)
2765 objp = kmem_getpages(cachep, flags, nodeid);
2766 if (!objp)
2767 goto failed;
2768
2769 /* Get slab management. */
2770 slabp = alloc_slabmgmt(cachep, objp, offset,
2771 local_flags & ~GFP_THISNODE, nodeid);
2772 if (!slabp)
2773 goto opps1;
2774
2775 slabp->nodeid = nodeid;
2776 slab_map_pages(cachep, slabp, objp);
2777
2778 cache_init_objs(cachep, slabp);
2779
2780 if (local_flags & __GFP_WAIT)
2781 local_irq_disable();
2782 check_irq_off();
2783 spin_lock(&l3->list_lock);
2784
2785 /* Make slab active. */
2786 list_add_tail(&slabp->list, &(l3->slabs_free));
2787 STATS_INC_GROWN(cachep);
2788 l3->free_objects += cachep->num;
2789 spin_unlock(&l3->list_lock);
2790 return 1;
2791 opps1:
2792 kmem_freepages(cachep, objp);
2793 failed:
2794 if (local_flags & __GFP_WAIT)
2795 local_irq_disable();
2796 return 0;
2797 }
2798
2799 #if DEBUG
2800
2801 /*
2802 * Perform extra freeing checks:
2803 * - detect bad pointers.
2804 * - POISON/RED_ZONE checking
2805 */
2806 static void kfree_debugcheck(const void *objp)
2807 {
2808 if (!virt_addr_valid(objp)) {
2809 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2810 (unsigned long)objp);
2811 BUG();
2812 }
2813 }
2814
2815 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2816 {
2817 unsigned long long redzone1, redzone2;
2818
2819 redzone1 = *dbg_redzone1(cache, obj);
2820 redzone2 = *dbg_redzone2(cache, obj);
2821
2822 /*
2823 * Redzone is ok.
2824 */
2825 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2826 return;
2827
2828 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2829 slab_error(cache, "double free detected");
2830 else
2831 slab_error(cache, "memory outside object was overwritten");
2832
2833 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2834 obj, redzone1, redzone2);
2835 }
2836
2837 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2838 void *caller)
2839 {
2840 struct page *page;
2841 unsigned int objnr;
2842 struct slab *slabp;
2843
2844 objp -= obj_offset(cachep);
2845 kfree_debugcheck(objp);
2846 page = virt_to_head_page(objp);
2847
2848 slabp = page_get_slab(page);
2849
2850 if (cachep->flags & SLAB_RED_ZONE) {
2851 verify_redzone_free(cachep, objp);
2852 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2853 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2854 }
2855 if (cachep->flags & SLAB_STORE_USER)
2856 *dbg_userword(cachep, objp) = caller;
2857
2858 objnr = obj_to_index(cachep, slabp, objp);
2859
2860 BUG_ON(objnr >= cachep->num);
2861 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2862
2863 #ifdef CONFIG_DEBUG_SLAB_LEAK
2864 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2865 #endif
2866 if (cachep->flags & SLAB_POISON) {
2867 #ifdef CONFIG_DEBUG_PAGEALLOC
2868 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2869 store_stackinfo(cachep, objp, (unsigned long)caller);
2870 kernel_map_pages(virt_to_page(objp),
2871 cachep->buffer_size / PAGE_SIZE, 0);
2872 } else {
2873 poison_obj(cachep, objp, POISON_FREE);
2874 }
2875 #else
2876 poison_obj(cachep, objp, POISON_FREE);
2877 #endif
2878 }
2879 return objp;
2880 }
2881
2882 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2883 {
2884 kmem_bufctl_t i;
2885 int entries = 0;
2886
2887 /* Check slab's freelist to see if this obj is there. */
2888 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2889 entries++;
2890 if (entries > cachep->num || i >= cachep->num)
2891 goto bad;
2892 }
2893 if (entries != cachep->num - slabp->inuse) {
2894 bad:
2895 printk(KERN_ERR "slab: Internal list corruption detected in "
2896 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2897 cachep->name, cachep->num, slabp, slabp->inuse);
2898 for (i = 0;
2899 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2900 i++) {
2901 if (i % 16 == 0)
2902 printk("\n%03x:", i);
2903 printk(" %02x", ((unsigned char *)slabp)[i]);
2904 }
2905 printk("\n");
2906 BUG();
2907 }
2908 }
2909 #else
2910 #define kfree_debugcheck(x) do { } while(0)
2911 #define cache_free_debugcheck(x,objp,z) (objp)
2912 #define check_slabp(x,y) do { } while(0)
2913 #endif
2914
2915 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2916 {
2917 int batchcount;
2918 struct kmem_list3 *l3;
2919 struct array_cache *ac;
2920 int node;
2921
2922 node = numa_node_id();
2923
2924 check_irq_off();
2925 ac = cpu_cache_get(cachep);
2926 retry:
2927 batchcount = ac->batchcount;
2928 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2929 /*
2930 * If there was little recent activity on this cache, then
2931 * perform only a partial refill. Otherwise we could generate
2932 * refill bouncing.
2933 */
2934 batchcount = BATCHREFILL_LIMIT;
2935 }
2936 l3 = cachep->nodelists[node];
2937
2938 BUG_ON(ac->avail > 0 || !l3);
2939 spin_lock(&l3->list_lock);
2940
2941 /* See if we can refill from the shared array */
2942 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2943 goto alloc_done;
2944
2945 while (batchcount > 0) {
2946 struct list_head *entry;
2947 struct slab *slabp;
2948 /* Get slab alloc is to come from. */
2949 entry = l3->slabs_partial.next;
2950 if (entry == &l3->slabs_partial) {
2951 l3->free_touched = 1;
2952 entry = l3->slabs_free.next;
2953 if (entry == &l3->slabs_free)
2954 goto must_grow;
2955 }
2956
2957 slabp = list_entry(entry, struct slab, list);
2958 check_slabp(cachep, slabp);
2959 check_spinlock_acquired(cachep);
2960
2961 /*
2962 * The slab was either on partial or free list so
2963 * there must be at least one object available for
2964 * allocation.
2965 */
2966 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2967
2968 while (slabp->inuse < cachep->num && batchcount--) {
2969 STATS_INC_ALLOCED(cachep);
2970 STATS_INC_ACTIVE(cachep);
2971 STATS_SET_HIGH(cachep);
2972
2973 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2974 node);
2975 }
2976 check_slabp(cachep, slabp);
2977
2978 /* move slabp to correct slabp list: */
2979 list_del(&slabp->list);
2980 if (slabp->free == BUFCTL_END)
2981 list_add(&slabp->list, &l3->slabs_full);
2982 else
2983 list_add(&slabp->list, &l3->slabs_partial);
2984 }
2985
2986 must_grow:
2987 l3->free_objects -= ac->avail;
2988 alloc_done:
2989 spin_unlock(&l3->list_lock);
2990
2991 if (unlikely(!ac->avail)) {
2992 int x;
2993 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2994
2995 /* cache_grow can reenable interrupts, then ac could change. */
2996 ac = cpu_cache_get(cachep);
2997 if (!x && ac->avail == 0) /* no objects in sight? abort */
2998 return NULL;
2999
3000 if (!ac->avail) /* objects refilled by interrupt? */
3001 goto retry;
3002 }
3003 ac->touched = 1;
3004 return ac->entry[--ac->avail];
3005 }
3006
3007 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3008 gfp_t flags)
3009 {
3010 might_sleep_if(flags & __GFP_WAIT);
3011 #if DEBUG
3012 kmem_flagcheck(cachep, flags);
3013 #endif
3014 }
3015
3016 #if DEBUG
3017 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3018 gfp_t flags, void *objp, void *caller)
3019 {
3020 if (!objp)
3021 return objp;
3022 if (cachep->flags & SLAB_POISON) {
3023 #ifdef CONFIG_DEBUG_PAGEALLOC
3024 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3025 kernel_map_pages(virt_to_page(objp),
3026 cachep->buffer_size / PAGE_SIZE, 1);
3027 else
3028 check_poison_obj(cachep, objp);
3029 #else
3030 check_poison_obj(cachep, objp);
3031 #endif
3032 poison_obj(cachep, objp, POISON_INUSE);
3033 }
3034 if (cachep->flags & SLAB_STORE_USER)
3035 *dbg_userword(cachep, objp) = caller;
3036
3037 if (cachep->flags & SLAB_RED_ZONE) {
3038 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3039 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3040 slab_error(cachep, "double free, or memory outside"
3041 " object was overwritten");
3042 printk(KERN_ERR
3043 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3044 objp, *dbg_redzone1(cachep, objp),
3045 *dbg_redzone2(cachep, objp));
3046 }
3047 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3048 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3049 }
3050 #ifdef CONFIG_DEBUG_SLAB_LEAK
3051 {
3052 struct slab *slabp;
3053 unsigned objnr;
3054
3055 slabp = page_get_slab(virt_to_head_page(objp));
3056 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3057 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3058 }
3059 #endif
3060 objp += obj_offset(cachep);
3061 if (cachep->ctor && cachep->flags & SLAB_POISON)
3062 cachep->ctor(objp, cachep, 0);
3063 #if ARCH_SLAB_MINALIGN
3064 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3065 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3066 objp, ARCH_SLAB_MINALIGN);
3067 }
3068 #endif
3069 return objp;
3070 }
3071 #else
3072 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3073 #endif
3074
3075 #ifdef CONFIG_FAILSLAB
3076
3077 static struct failslab_attr {
3078
3079 struct fault_attr attr;
3080
3081 u32 ignore_gfp_wait;
3082 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3083 struct dentry *ignore_gfp_wait_file;
3084 #endif
3085
3086 } failslab = {
3087 .attr = FAULT_ATTR_INITIALIZER,
3088 .ignore_gfp_wait = 1,
3089 };
3090
3091 static int __init setup_failslab(char *str)
3092 {
3093 return setup_fault_attr(&failslab.attr, str);
3094 }
3095 __setup("failslab=", setup_failslab);
3096
3097 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3098 {
3099 if (cachep == &cache_cache)
3100 return 0;
3101 if (flags & __GFP_NOFAIL)
3102 return 0;
3103 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3104 return 0;
3105
3106 return should_fail(&failslab.attr, obj_size(cachep));
3107 }
3108
3109 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3110
3111 static int __init failslab_debugfs(void)
3112 {
3113 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3114 struct dentry *dir;
3115 int err;
3116
3117 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3118 if (err)
3119 return err;
3120 dir = failslab.attr.dentries.dir;
3121
3122 failslab.ignore_gfp_wait_file =
3123 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3124 &failslab.ignore_gfp_wait);
3125
3126 if (!failslab.ignore_gfp_wait_file) {
3127 err = -ENOMEM;
3128 debugfs_remove(failslab.ignore_gfp_wait_file);
3129 cleanup_fault_attr_dentries(&failslab.attr);
3130 }
3131
3132 return err;
3133 }
3134
3135 late_initcall(failslab_debugfs);
3136
3137 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3138
3139 #else /* CONFIG_FAILSLAB */
3140
3141 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3142 {
3143 return 0;
3144 }
3145
3146 #endif /* CONFIG_FAILSLAB */
3147
3148 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3149 {
3150 void *objp;
3151 struct array_cache *ac;
3152
3153 check_irq_off();
3154
3155 ac = cpu_cache_get(cachep);
3156 if (likely(ac->avail)) {
3157 STATS_INC_ALLOCHIT(cachep);
3158 ac->touched = 1;
3159 objp = ac->entry[--ac->avail];
3160 } else {
3161 STATS_INC_ALLOCMISS(cachep);
3162 objp = cache_alloc_refill(cachep, flags);
3163 }
3164 return objp;
3165 }
3166
3167 #ifdef CONFIG_NUMA
3168 /*
3169 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3170 *
3171 * If we are in_interrupt, then process context, including cpusets and
3172 * mempolicy, may not apply and should not be used for allocation policy.
3173 */
3174 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3175 {
3176 int nid_alloc, nid_here;
3177
3178 if (in_interrupt() || (flags & __GFP_THISNODE))
3179 return NULL;
3180 nid_alloc = nid_here = numa_node_id();
3181 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3182 nid_alloc = cpuset_mem_spread_node();
3183 else if (current->mempolicy)
3184 nid_alloc = slab_node(current->mempolicy);
3185 if (nid_alloc != nid_here)
3186 return ____cache_alloc_node(cachep, flags, nid_alloc);
3187 return NULL;
3188 }
3189
3190 /*
3191 * Fallback function if there was no memory available and no objects on a
3192 * certain node and fall back is permitted. First we scan all the
3193 * available nodelists for available objects. If that fails then we
3194 * perform an allocation without specifying a node. This allows the page
3195 * allocator to do its reclaim / fallback magic. We then insert the
3196 * slab into the proper nodelist and then allocate from it.
3197 */
3198 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3199 {
3200 struct zonelist *zonelist;
3201 gfp_t local_flags;
3202 struct zone **z;
3203 void *obj = NULL;
3204 int nid;
3205
3206 if (flags & __GFP_THISNODE)
3207 return NULL;
3208
3209 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3210 ->node_zonelists[gfp_zone(flags)];
3211 local_flags = (flags & GFP_LEVEL_MASK);
3212
3213 retry:
3214 /*
3215 * Look through allowed nodes for objects available
3216 * from existing per node queues.
3217 */
3218 for (z = zonelist->zones; *z && !obj; z++) {
3219 nid = zone_to_nid(*z);
3220
3221 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3222 cache->nodelists[nid] &&
3223 cache->nodelists[nid]->free_objects)
3224 obj = ____cache_alloc_node(cache,
3225 flags | GFP_THISNODE, nid);
3226 }
3227
3228 if (!obj) {
3229 /*
3230 * This allocation will be performed within the constraints
3231 * of the current cpuset / memory policy requirements.
3232 * We may trigger various forms of reclaim on the allowed
3233 * set and go into memory reserves if necessary.
3234 */
3235 if (local_flags & __GFP_WAIT)
3236 local_irq_enable();
3237 kmem_flagcheck(cache, flags);
3238 obj = kmem_getpages(cache, flags, -1);
3239 if (local_flags & __GFP_WAIT)
3240 local_irq_disable();
3241 if (obj) {
3242 /*
3243 * Insert into the appropriate per node queues
3244 */
3245 nid = page_to_nid(virt_to_page(obj));
3246 if (cache_grow(cache, flags, nid, obj)) {
3247 obj = ____cache_alloc_node(cache,
3248 flags | GFP_THISNODE, nid);
3249 if (!obj)
3250 /*
3251 * Another processor may allocate the
3252 * objects in the slab since we are
3253 * not holding any locks.
3254 */
3255 goto retry;
3256 } else {
3257 /* cache_grow already freed obj */
3258 obj = NULL;
3259 }
3260 }
3261 }
3262 return obj;
3263 }
3264
3265 /*
3266 * A interface to enable slab creation on nodeid
3267 */
3268 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3269 int nodeid)
3270 {
3271 struct list_head *entry;
3272 struct slab *slabp;
3273 struct kmem_list3 *l3;
3274 void *obj;
3275 int x;
3276
3277 l3 = cachep->nodelists[nodeid];
3278 BUG_ON(!l3);
3279
3280 retry:
3281 check_irq_off();
3282 spin_lock(&l3->list_lock);
3283 entry = l3->slabs_partial.next;
3284 if (entry == &l3->slabs_partial) {
3285 l3->free_touched = 1;
3286 entry = l3->slabs_free.next;
3287 if (entry == &l3->slabs_free)
3288 goto must_grow;
3289 }
3290
3291 slabp = list_entry(entry, struct slab, list);
3292 check_spinlock_acquired_node(cachep, nodeid);
3293 check_slabp(cachep, slabp);
3294
3295 STATS_INC_NODEALLOCS(cachep);
3296 STATS_INC_ACTIVE(cachep);
3297 STATS_SET_HIGH(cachep);
3298
3299 BUG_ON(slabp->inuse == cachep->num);
3300
3301 obj = slab_get_obj(cachep, slabp, nodeid);
3302 check_slabp(cachep, slabp);
3303 l3->free_objects--;
3304 /* move slabp to correct slabp list: */
3305 list_del(&slabp->list);
3306
3307 if (slabp->free == BUFCTL_END)
3308 list_add(&slabp->list, &l3->slabs_full);
3309 else
3310 list_add(&slabp->list, &l3->slabs_partial);
3311
3312 spin_unlock(&l3->list_lock);
3313 goto done;
3314
3315 must_grow:
3316 spin_unlock(&l3->list_lock);
3317 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3318 if (x)
3319 goto retry;
3320
3321 return fallback_alloc(cachep, flags);
3322
3323 done:
3324 return obj;
3325 }
3326
3327 /**
3328 * kmem_cache_alloc_node - Allocate an object on the specified node
3329 * @cachep: The cache to allocate from.
3330 * @flags: See kmalloc().
3331 * @nodeid: node number of the target node.
3332 * @caller: return address of caller, used for debug information
3333 *
3334 * Identical to kmem_cache_alloc but it will allocate memory on the given
3335 * node, which can improve the performance for cpu bound structures.
3336 *
3337 * Fallback to other node is possible if __GFP_THISNODE is not set.
3338 */
3339 static __always_inline void *
3340 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3341 void *caller)
3342 {
3343 unsigned long save_flags;
3344 void *ptr;
3345
3346 if (should_failslab(cachep, flags))
3347 return NULL;
3348
3349 cache_alloc_debugcheck_before(cachep, flags);
3350 local_irq_save(save_flags);
3351
3352 if (unlikely(nodeid == -1))
3353 nodeid = numa_node_id();
3354
3355 if (unlikely(!cachep->nodelists[nodeid])) {
3356 /* Node not bootstrapped yet */
3357 ptr = fallback_alloc(cachep, flags);
3358 goto out;
3359 }
3360
3361 if (nodeid == numa_node_id()) {
3362 /*
3363 * Use the locally cached objects if possible.
3364 * However ____cache_alloc does not allow fallback
3365 * to other nodes. It may fail while we still have
3366 * objects on other nodes available.
3367 */
3368 ptr = ____cache_alloc(cachep, flags);
3369 if (ptr)
3370 goto out;
3371 }
3372 /* ___cache_alloc_node can fall back to other nodes */
3373 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3374 out:
3375 local_irq_restore(save_flags);
3376 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3377
3378 return ptr;
3379 }
3380
3381 static __always_inline void *
3382 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3383 {
3384 void *objp;
3385
3386 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3387 objp = alternate_node_alloc(cache, flags);
3388 if (objp)
3389 goto out;
3390 }
3391 objp = ____cache_alloc(cache, flags);
3392
3393 /*
3394 * We may just have run out of memory on the local node.
3395 * ____cache_alloc_node() knows how to locate memory on other nodes
3396 */
3397 if (!objp)
3398 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3399
3400 out:
3401 return objp;
3402 }
3403 #else
3404
3405 static __always_inline void *
3406 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3407 {
3408 return ____cache_alloc(cachep, flags);
3409 }
3410
3411 #endif /* CONFIG_NUMA */
3412
3413 static __always_inline void *
3414 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3415 {
3416 unsigned long save_flags;
3417 void *objp;
3418
3419 if (should_failslab(cachep, flags))
3420 return NULL;
3421
3422 cache_alloc_debugcheck_before(cachep, flags);
3423 local_irq_save(save_flags);
3424 objp = __do_cache_alloc(cachep, flags);
3425 local_irq_restore(save_flags);
3426 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3427 prefetchw(objp);
3428
3429 return objp;
3430 }
3431
3432 /*
3433 * Caller needs to acquire correct kmem_list's list_lock
3434 */
3435 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3436 int node)
3437 {
3438 int i;
3439 struct kmem_list3 *l3;
3440
3441 for (i = 0; i < nr_objects; i++) {
3442 void *objp = objpp[i];
3443 struct slab *slabp;
3444
3445 slabp = virt_to_slab(objp);
3446 l3 = cachep->nodelists[node];
3447 list_del(&slabp->list);
3448 check_spinlock_acquired_node(cachep, node);
3449 check_slabp(cachep, slabp);
3450 slab_put_obj(cachep, slabp, objp, node);
3451 STATS_DEC_ACTIVE(cachep);
3452 l3->free_objects++;
3453 check_slabp(cachep, slabp);
3454
3455 /* fixup slab chains */
3456 if (slabp->inuse == 0) {
3457 if (l3->free_objects > l3->free_limit) {
3458 l3->free_objects -= cachep->num;
3459 /* No need to drop any previously held
3460 * lock here, even if we have a off-slab slab
3461 * descriptor it is guaranteed to come from
3462 * a different cache, refer to comments before
3463 * alloc_slabmgmt.
3464 */
3465 slab_destroy(cachep, slabp);
3466 } else {
3467 list_add(&slabp->list, &l3->slabs_free);
3468 }
3469 } else {
3470 /* Unconditionally move a slab to the end of the
3471 * partial list on free - maximum time for the
3472 * other objects to be freed, too.
3473 */
3474 list_add_tail(&slabp->list, &l3->slabs_partial);
3475 }
3476 }
3477 }
3478
3479 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3480 {
3481 int batchcount;
3482 struct kmem_list3 *l3;
3483 int node = numa_node_id();
3484
3485 batchcount = ac->batchcount;
3486 #if DEBUG
3487 BUG_ON(!batchcount || batchcount > ac->avail);
3488 #endif
3489 check_irq_off();
3490 l3 = cachep->nodelists[node];
3491 spin_lock(&l3->list_lock);
3492 if (l3->shared) {
3493 struct array_cache *shared_array = l3->shared;
3494 int max = shared_array->limit - shared_array->avail;
3495 if (max) {
3496 if (batchcount > max)
3497 batchcount = max;
3498 memcpy(&(shared_array->entry[shared_array->avail]),
3499 ac->entry, sizeof(void *) * batchcount);
3500 shared_array->avail += batchcount;
3501 goto free_done;
3502 }
3503 }
3504
3505 free_block(cachep, ac->entry, batchcount, node);
3506 free_done:
3507 #if STATS
3508 {
3509 int i = 0;
3510 struct list_head *p;
3511
3512 p = l3->slabs_free.next;
3513 while (p != &(l3->slabs_free)) {
3514 struct slab *slabp;
3515
3516 slabp = list_entry(p, struct slab, list);
3517 BUG_ON(slabp->inuse);
3518
3519 i++;
3520 p = p->next;
3521 }
3522 STATS_SET_FREEABLE(cachep, i);
3523 }
3524 #endif
3525 spin_unlock(&l3->list_lock);
3526 ac->avail -= batchcount;
3527 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3528 }
3529
3530 /*
3531 * Release an obj back to its cache. If the obj has a constructed state, it must
3532 * be in this state _before_ it is released. Called with disabled ints.
3533 */
3534 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3535 {
3536 struct array_cache *ac = cpu_cache_get(cachep);
3537
3538 check_irq_off();
3539 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3540
3541 if (cache_free_alien(cachep, objp))
3542 return;
3543
3544 if (likely(ac->avail < ac->limit)) {
3545 STATS_INC_FREEHIT(cachep);
3546 ac->entry[ac->avail++] = objp;
3547 return;
3548 } else {
3549 STATS_INC_FREEMISS(cachep);
3550 cache_flusharray(cachep, ac);
3551 ac->entry[ac->avail++] = objp;
3552 }
3553 }
3554
3555 /**
3556 * kmem_cache_alloc - Allocate an object
3557 * @cachep: The cache to allocate from.
3558 * @flags: See kmalloc().
3559 *
3560 * Allocate an object from this cache. The flags are only relevant
3561 * if the cache has no available objects.
3562 */
3563 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3564 {
3565 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3566 }
3567 EXPORT_SYMBOL(kmem_cache_alloc);
3568
3569 /**
3570 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3571 * @cache: The cache to allocate from.
3572 * @flags: See kmalloc().
3573 *
3574 * Allocate an object from this cache and set the allocated memory to zero.
3575 * The flags are only relevant if the cache has no available objects.
3576 */
3577 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3578 {
3579 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3580 if (ret)
3581 memset(ret, 0, obj_size(cache));
3582 return ret;
3583 }
3584 EXPORT_SYMBOL(kmem_cache_zalloc);
3585
3586 /**
3587 * kmem_ptr_validate - check if an untrusted pointer might
3588 * be a slab entry.
3589 * @cachep: the cache we're checking against
3590 * @ptr: pointer to validate
3591 *
3592 * This verifies that the untrusted pointer looks sane:
3593 * it is _not_ a guarantee that the pointer is actually
3594 * part of the slab cache in question, but it at least
3595 * validates that the pointer can be dereferenced and
3596 * looks half-way sane.
3597 *
3598 * Currently only used for dentry validation.
3599 */
3600 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3601 {
3602 unsigned long addr = (unsigned long)ptr;
3603 unsigned long min_addr = PAGE_OFFSET;
3604 unsigned long align_mask = BYTES_PER_WORD - 1;
3605 unsigned long size = cachep->buffer_size;
3606 struct page *page;
3607
3608 if (unlikely(addr < min_addr))
3609 goto out;
3610 if (unlikely(addr > (unsigned long)high_memory - size))
3611 goto out;
3612 if (unlikely(addr & align_mask))
3613 goto out;
3614 if (unlikely(!kern_addr_valid(addr)))
3615 goto out;
3616 if (unlikely(!kern_addr_valid(addr + size - 1)))
3617 goto out;
3618 page = virt_to_page(ptr);
3619 if (unlikely(!PageSlab(page)))
3620 goto out;
3621 if (unlikely(page_get_cache(page) != cachep))
3622 goto out;
3623 return 1;
3624 out:
3625 return 0;
3626 }
3627
3628 #ifdef CONFIG_NUMA
3629 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3630 {
3631 return __cache_alloc_node(cachep, flags, nodeid,
3632 __builtin_return_address(0));
3633 }
3634 EXPORT_SYMBOL(kmem_cache_alloc_node);
3635
3636 static __always_inline void *
3637 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3638 {
3639 struct kmem_cache *cachep;
3640
3641 cachep = kmem_find_general_cachep(size, flags);
3642 if (unlikely(cachep == NULL))
3643 return NULL;
3644 return kmem_cache_alloc_node(cachep, flags, node);
3645 }
3646
3647 #ifdef CONFIG_DEBUG_SLAB
3648 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3649 {
3650 return __do_kmalloc_node(size, flags, node,
3651 __builtin_return_address(0));
3652 }
3653 EXPORT_SYMBOL(__kmalloc_node);
3654
3655 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3656 int node, void *caller)
3657 {
3658 return __do_kmalloc_node(size, flags, node, caller);
3659 }
3660 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3661 #else
3662 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3663 {
3664 return __do_kmalloc_node(size, flags, node, NULL);
3665 }
3666 EXPORT_SYMBOL(__kmalloc_node);
3667 #endif /* CONFIG_DEBUG_SLAB */
3668 #endif /* CONFIG_NUMA */
3669
3670 /**
3671 * __do_kmalloc - allocate memory
3672 * @size: how many bytes of memory are required.
3673 * @flags: the type of memory to allocate (see kmalloc).
3674 * @caller: function caller for debug tracking of the caller
3675 */
3676 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3677 void *caller)
3678 {
3679 struct kmem_cache *cachep;
3680
3681 /* If you want to save a few bytes .text space: replace
3682 * __ with kmem_.
3683 * Then kmalloc uses the uninlined functions instead of the inline
3684 * functions.
3685 */
3686 cachep = __find_general_cachep(size, flags);
3687 if (unlikely(cachep == NULL))
3688 return NULL;
3689 return __cache_alloc(cachep, flags, caller);
3690 }
3691
3692
3693 #ifdef CONFIG_DEBUG_SLAB
3694 void *__kmalloc(size_t size, gfp_t flags)
3695 {
3696 return __do_kmalloc(size, flags, __builtin_return_address(0));
3697 }
3698 EXPORT_SYMBOL(__kmalloc);
3699
3700 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3701 {
3702 return __do_kmalloc(size, flags, caller);
3703 }
3704 EXPORT_SYMBOL(__kmalloc_track_caller);
3705
3706 #else
3707 void *__kmalloc(size_t size, gfp_t flags)
3708 {
3709 return __do_kmalloc(size, flags, NULL);
3710 }
3711 EXPORT_SYMBOL(__kmalloc);
3712 #endif
3713
3714 /**
3715 * krealloc - reallocate memory. The contents will remain unchanged.
3716 * @p: object to reallocate memory for.
3717 * @new_size: how many bytes of memory are required.
3718 * @flags: the type of memory to allocate.
3719 *
3720 * The contents of the object pointed to are preserved up to the
3721 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3722 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3723 * %NULL pointer, the object pointed to is freed.
3724 */
3725 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3726 {
3727 struct kmem_cache *cache, *new_cache;
3728 void *ret;
3729
3730 if (unlikely(!p))
3731 return kmalloc_track_caller(new_size, flags);
3732
3733 if (unlikely(!new_size)) {
3734 kfree(p);
3735 return NULL;
3736 }
3737
3738 cache = virt_to_cache(p);
3739 new_cache = __find_general_cachep(new_size, flags);
3740
3741 /*
3742 * If new size fits in the current cache, bail out.
3743 */
3744 if (likely(cache == new_cache))
3745 return (void *)p;
3746
3747 /*
3748 * We are on the slow-path here so do not use __cache_alloc
3749 * because it bloats kernel text.
3750 */
3751 ret = kmalloc_track_caller(new_size, flags);
3752 if (ret) {
3753 memcpy(ret, p, min(new_size, ksize(p)));
3754 kfree(p);
3755 }
3756 return ret;
3757 }
3758 EXPORT_SYMBOL(krealloc);
3759
3760 /**
3761 * kmem_cache_free - Deallocate an object
3762 * @cachep: The cache the allocation was from.
3763 * @objp: The previously allocated object.
3764 *
3765 * Free an object which was previously allocated from this
3766 * cache.
3767 */
3768 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3769 {
3770 unsigned long flags;
3771
3772 BUG_ON(virt_to_cache(objp) != cachep);
3773
3774 local_irq_save(flags);
3775 debug_check_no_locks_freed(objp, obj_size(cachep));
3776 __cache_free(cachep, objp);
3777 local_irq_restore(flags);
3778 }
3779 EXPORT_SYMBOL(kmem_cache_free);
3780
3781 /**
3782 * kfree - free previously allocated memory
3783 * @objp: pointer returned by kmalloc.
3784 *
3785 * If @objp is NULL, no operation is performed.
3786 *
3787 * Don't free memory not originally allocated by kmalloc()
3788 * or you will run into trouble.
3789 */
3790 void kfree(const void *objp)
3791 {
3792 struct kmem_cache *c;
3793 unsigned long flags;
3794
3795 if (unlikely(!objp))
3796 return;
3797 local_irq_save(flags);
3798 kfree_debugcheck(objp);
3799 c = virt_to_cache(objp);
3800 debug_check_no_locks_freed(objp, obj_size(c));
3801 __cache_free(c, (void *)objp);
3802 local_irq_restore(flags);
3803 }
3804 EXPORT_SYMBOL(kfree);
3805
3806 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3807 {
3808 return obj_size(cachep);
3809 }
3810 EXPORT_SYMBOL(kmem_cache_size);
3811
3812 const char *kmem_cache_name(struct kmem_cache *cachep)
3813 {
3814 return cachep->name;
3815 }
3816 EXPORT_SYMBOL_GPL(kmem_cache_name);
3817
3818 /*
3819 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3820 */
3821 static int alloc_kmemlist(struct kmem_cache *cachep)
3822 {
3823 int node;
3824 struct kmem_list3 *l3;
3825 struct array_cache *new_shared;
3826 struct array_cache **new_alien = NULL;
3827
3828 for_each_online_node(node) {
3829
3830 if (use_alien_caches) {
3831 new_alien = alloc_alien_cache(node, cachep->limit);
3832 if (!new_alien)
3833 goto fail;
3834 }
3835
3836 new_shared = NULL;
3837 if (cachep->shared) {
3838 new_shared = alloc_arraycache(node,
3839 cachep->shared*cachep->batchcount,
3840 0xbaadf00d);
3841 if (!new_shared) {
3842 free_alien_cache(new_alien);
3843 goto fail;
3844 }
3845 }
3846
3847 l3 = cachep->nodelists[node];
3848 if (l3) {
3849 struct array_cache *shared = l3->shared;
3850
3851 spin_lock_irq(&l3->list_lock);
3852
3853 if (shared)
3854 free_block(cachep, shared->entry,
3855 shared->avail, node);
3856
3857 l3->shared = new_shared;
3858 if (!l3->alien) {
3859 l3->alien = new_alien;
3860 new_alien = NULL;
3861 }
3862 l3->free_limit = (1 + nr_cpus_node(node)) *
3863 cachep->batchcount + cachep->num;
3864 spin_unlock_irq(&l3->list_lock);
3865 kfree(shared);
3866 free_alien_cache(new_alien);
3867 continue;
3868 }
3869 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3870 if (!l3) {
3871 free_alien_cache(new_alien);
3872 kfree(new_shared);
3873 goto fail;
3874 }
3875
3876 kmem_list3_init(l3);
3877 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3878 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3879 l3->shared = new_shared;
3880 l3->alien = new_alien;
3881 l3->free_limit = (1 + nr_cpus_node(node)) *
3882 cachep->batchcount + cachep->num;
3883 cachep->nodelists[node] = l3;
3884 }
3885 return 0;
3886
3887 fail:
3888 if (!cachep->next.next) {
3889 /* Cache is not active yet. Roll back what we did */
3890 node--;
3891 while (node >= 0) {
3892 if (cachep->nodelists[node]) {
3893 l3 = cachep->nodelists[node];
3894
3895 kfree(l3->shared);
3896 free_alien_cache(l3->alien);
3897 kfree(l3);
3898 cachep->nodelists[node] = NULL;
3899 }
3900 node--;
3901 }
3902 }
3903 return -ENOMEM;
3904 }
3905
3906 struct ccupdate_struct {
3907 struct kmem_cache *cachep;
3908 struct array_cache *new[NR_CPUS];
3909 };
3910
3911 static void do_ccupdate_local(void *info)
3912 {
3913 struct ccupdate_struct *new = info;
3914 struct array_cache *old;
3915
3916 check_irq_off();
3917 old = cpu_cache_get(new->cachep);
3918
3919 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3920 new->new[smp_processor_id()] = old;
3921 }
3922
3923 /* Always called with the cache_chain_mutex held */
3924 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3925 int batchcount, int shared)
3926 {
3927 struct ccupdate_struct *new;
3928 int i;
3929
3930 new = kzalloc(sizeof(*new), GFP_KERNEL);
3931 if (!new)
3932 return -ENOMEM;
3933
3934 for_each_online_cpu(i) {
3935 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3936 batchcount);
3937 if (!new->new[i]) {
3938 for (i--; i >= 0; i--)
3939 kfree(new->new[i]);
3940 kfree(new);
3941 return -ENOMEM;
3942 }
3943 }
3944 new->cachep = cachep;
3945
3946 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3947
3948 check_irq_on();
3949 cachep->batchcount = batchcount;
3950 cachep->limit = limit;
3951 cachep->shared = shared;
3952
3953 for_each_online_cpu(i) {
3954 struct array_cache *ccold = new->new[i];
3955 if (!ccold)
3956 continue;
3957 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3958 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3959 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3960 kfree(ccold);
3961 }
3962 kfree(new);
3963 return alloc_kmemlist(cachep);
3964 }
3965
3966 /* Called with cache_chain_mutex held always */
3967 static int enable_cpucache(struct kmem_cache *cachep)
3968 {
3969 int err;
3970 int limit, shared;
3971
3972 /*
3973 * The head array serves three purposes:
3974 * - create a LIFO ordering, i.e. return objects that are cache-warm
3975 * - reduce the number of spinlock operations.
3976 * - reduce the number of linked list operations on the slab and
3977 * bufctl chains: array operations are cheaper.
3978 * The numbers are guessed, we should auto-tune as described by
3979 * Bonwick.
3980 */
3981 if (cachep->buffer_size > 131072)
3982 limit = 1;
3983 else if (cachep->buffer_size > PAGE_SIZE)
3984 limit = 8;
3985 else if (cachep->buffer_size > 1024)
3986 limit = 24;
3987 else if (cachep->buffer_size > 256)
3988 limit = 54;
3989 else
3990 limit = 120;
3991
3992 /*
3993 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3994 * allocation behaviour: Most allocs on one cpu, most free operations
3995 * on another cpu. For these cases, an efficient object passing between
3996 * cpus is necessary. This is provided by a shared array. The array
3997 * replaces Bonwick's magazine layer.
3998 * On uniprocessor, it's functionally equivalent (but less efficient)
3999 * to a larger limit. Thus disabled by default.
4000 */
4001 shared = 0;
4002 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4003 shared = 8;
4004
4005 #if DEBUG
4006 /*
4007 * With debugging enabled, large batchcount lead to excessively long
4008 * periods with disabled local interrupts. Limit the batchcount
4009 */
4010 if (limit > 32)
4011 limit = 32;
4012 #endif
4013 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4014 if (err)
4015 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4016 cachep->name, -err);
4017 return err;
4018 }
4019
4020 /*
4021 * Drain an array if it contains any elements taking the l3 lock only if
4022 * necessary. Note that the l3 listlock also protects the array_cache
4023 * if drain_array() is used on the shared array.
4024 */
4025 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4026 struct array_cache *ac, int force, int node)
4027 {
4028 int tofree;
4029
4030 if (!ac || !ac->avail)
4031 return;
4032 if (ac->touched && !force) {
4033 ac->touched = 0;
4034 } else {
4035 spin_lock_irq(&l3->list_lock);
4036 if (ac->avail) {
4037 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4038 if (tofree > ac->avail)
4039 tofree = (ac->avail + 1) / 2;
4040 free_block(cachep, ac->entry, tofree, node);
4041 ac->avail -= tofree;
4042 memmove(ac->entry, &(ac->entry[tofree]),
4043 sizeof(void *) * ac->avail);
4044 }
4045 spin_unlock_irq(&l3->list_lock);
4046 }
4047 }
4048
4049 /**
4050 * cache_reap - Reclaim memory from caches.
4051 * @w: work descriptor
4052 *
4053 * Called from workqueue/eventd every few seconds.
4054 * Purpose:
4055 * - clear the per-cpu caches for this CPU.
4056 * - return freeable pages to the main free memory pool.
4057 *
4058 * If we cannot acquire the cache chain mutex then just give up - we'll try
4059 * again on the next iteration.
4060 */
4061 static void cache_reap(struct work_struct *w)
4062 {
4063 struct kmem_cache *searchp;
4064 struct kmem_list3 *l3;
4065 int node = numa_node_id();
4066 struct delayed_work *work =
4067 container_of(w, struct delayed_work, work);
4068
4069 if (!mutex_trylock(&cache_chain_mutex))
4070 /* Give up. Setup the next iteration. */
4071 goto out;
4072
4073 list_for_each_entry(searchp, &cache_chain, next) {
4074 check_irq_on();
4075
4076 /*
4077 * We only take the l3 lock if absolutely necessary and we
4078 * have established with reasonable certainty that
4079 * we can do some work if the lock was obtained.
4080 */
4081 l3 = searchp->nodelists[node];
4082
4083 reap_alien(searchp, l3);
4084
4085 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4086
4087 /*
4088 * These are racy checks but it does not matter
4089 * if we skip one check or scan twice.
4090 */
4091 if (time_after(l3->next_reap, jiffies))
4092 goto next;
4093
4094 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4095
4096 drain_array(searchp, l3, l3->shared, 0, node);
4097
4098 if (l3->free_touched)
4099 l3->free_touched = 0;
4100 else {
4101 int freed;
4102
4103 freed = drain_freelist(searchp, l3, (l3->free_limit +
4104 5 * searchp->num - 1) / (5 * searchp->num));
4105 STATS_ADD_REAPED(searchp, freed);
4106 }
4107 next:
4108 cond_resched();
4109 }
4110 check_irq_on();
4111 mutex_unlock(&cache_chain_mutex);
4112 next_reap_node();
4113 out:
4114 /* Set up the next iteration */
4115 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4116 }
4117
4118 #ifdef CONFIG_PROC_FS
4119
4120 static void print_slabinfo_header(struct seq_file *m)
4121 {
4122 /*
4123 * Output format version, so at least we can change it
4124 * without _too_ many complaints.
4125 */
4126 #if STATS
4127 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4128 #else
4129 seq_puts(m, "slabinfo - version: 2.1\n");
4130 #endif
4131 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4132 "<objperslab> <pagesperslab>");
4133 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4134 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4135 #if STATS
4136 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4137 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4138 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4139 #endif
4140 seq_putc(m, '\n');
4141 }
4142
4143 static void *s_start(struct seq_file *m, loff_t *pos)
4144 {
4145 loff_t n = *pos;
4146 struct list_head *p;
4147
4148 mutex_lock(&cache_chain_mutex);
4149 if (!n)
4150 print_slabinfo_header(m);
4151 p = cache_chain.next;
4152 while (n--) {
4153 p = p->next;
4154 if (p == &cache_chain)
4155 return NULL;
4156 }
4157 return list_entry(p, struct kmem_cache, next);
4158 }
4159
4160 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4161 {
4162 struct kmem_cache *cachep = p;
4163 ++*pos;
4164 return cachep->next.next == &cache_chain ?
4165 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4166 }
4167
4168 static void s_stop(struct seq_file *m, void *p)
4169 {
4170 mutex_unlock(&cache_chain_mutex);
4171 }
4172
4173 static int s_show(struct seq_file *m, void *p)
4174 {
4175 struct kmem_cache *cachep = p;
4176 struct slab *slabp;
4177 unsigned long active_objs;
4178 unsigned long num_objs;
4179 unsigned long active_slabs = 0;
4180 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4181 const char *name;
4182 char *error = NULL;
4183 int node;
4184 struct kmem_list3 *l3;
4185
4186 active_objs = 0;
4187 num_slabs = 0;
4188 for_each_online_node(node) {
4189 l3 = cachep->nodelists[node];
4190 if (!l3)
4191 continue;
4192
4193 check_irq_on();
4194 spin_lock_irq(&l3->list_lock);
4195
4196 list_for_each_entry(slabp, &l3->slabs_full, list) {
4197 if (slabp->inuse != cachep->num && !error)
4198 error = "slabs_full accounting error";
4199 active_objs += cachep->num;
4200 active_slabs++;
4201 }
4202 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4203 if (slabp->inuse == cachep->num && !error)
4204 error = "slabs_partial inuse accounting error";
4205 if (!slabp->inuse && !error)
4206 error = "slabs_partial/inuse accounting error";
4207 active_objs += slabp->inuse;
4208 active_slabs++;
4209 }
4210 list_for_each_entry(slabp, &l3->slabs_free, list) {
4211 if (slabp->inuse && !error)
4212 error = "slabs_free/inuse accounting error";
4213 num_slabs++;
4214 }
4215 free_objects += l3->free_objects;
4216 if (l3->shared)
4217 shared_avail += l3->shared->avail;
4218
4219 spin_unlock_irq(&l3->list_lock);
4220 }
4221 num_slabs += active_slabs;
4222 num_objs = num_slabs * cachep->num;
4223 if (num_objs - active_objs != free_objects && !error)
4224 error = "free_objects accounting error";
4225
4226 name = cachep->name;
4227 if (error)
4228 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4229
4230 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4231 name, active_objs, num_objs, cachep->buffer_size,
4232 cachep->num, (1 << cachep->gfporder));
4233 seq_printf(m, " : tunables %4u %4u %4u",
4234 cachep->limit, cachep->batchcount, cachep->shared);
4235 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4236 active_slabs, num_slabs, shared_avail);
4237 #if STATS
4238 { /* list3 stats */
4239 unsigned long high = cachep->high_mark;
4240 unsigned long allocs = cachep->num_allocations;
4241 unsigned long grown = cachep->grown;
4242 unsigned long reaped = cachep->reaped;
4243 unsigned long errors = cachep->errors;
4244 unsigned long max_freeable = cachep->max_freeable;
4245 unsigned long node_allocs = cachep->node_allocs;
4246 unsigned long node_frees = cachep->node_frees;
4247 unsigned long overflows = cachep->node_overflow;
4248
4249 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4250 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4251 reaped, errors, max_freeable, node_allocs,
4252 node_frees, overflows);
4253 }
4254 /* cpu stats */
4255 {
4256 unsigned long allochit = atomic_read(&cachep->allochit);
4257 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4258 unsigned long freehit = atomic_read(&cachep->freehit);
4259 unsigned long freemiss = atomic_read(&cachep->freemiss);
4260
4261 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4262 allochit, allocmiss, freehit, freemiss);
4263 }
4264 #endif
4265 seq_putc(m, '\n');
4266 return 0;
4267 }
4268
4269 /*
4270 * slabinfo_op - iterator that generates /proc/slabinfo
4271 *
4272 * Output layout:
4273 * cache-name
4274 * num-active-objs
4275 * total-objs
4276 * object size
4277 * num-active-slabs
4278 * total-slabs
4279 * num-pages-per-slab
4280 * + further values on SMP and with statistics enabled
4281 */
4282
4283 const struct seq_operations slabinfo_op = {
4284 .start = s_start,
4285 .next = s_next,
4286 .stop = s_stop,
4287 .show = s_show,
4288 };
4289
4290 #define MAX_SLABINFO_WRITE 128
4291 /**
4292 * slabinfo_write - Tuning for the slab allocator
4293 * @file: unused
4294 * @buffer: user buffer
4295 * @count: data length
4296 * @ppos: unused
4297 */
4298 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4299 size_t count, loff_t *ppos)
4300 {
4301 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4302 int limit, batchcount, shared, res;
4303 struct kmem_cache *cachep;
4304
4305 if (count > MAX_SLABINFO_WRITE)
4306 return -EINVAL;
4307 if (copy_from_user(&kbuf, buffer, count))
4308 return -EFAULT;
4309 kbuf[MAX_SLABINFO_WRITE] = '\0';
4310
4311 tmp = strchr(kbuf, ' ');
4312 if (!tmp)
4313 return -EINVAL;
4314 *tmp = '\0';
4315 tmp++;
4316 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4317 return -EINVAL;
4318
4319 /* Find the cache in the chain of caches. */
4320 mutex_lock(&cache_chain_mutex);
4321 res = -EINVAL;
4322 list_for_each_entry(cachep, &cache_chain, next) {
4323 if (!strcmp(cachep->name, kbuf)) {
4324 if (limit < 1 || batchcount < 1 ||
4325 batchcount > limit || shared < 0) {
4326 res = 0;
4327 } else {
4328 res = do_tune_cpucache(cachep, limit,
4329 batchcount, shared);
4330 }
4331 break;
4332 }
4333 }
4334 mutex_unlock(&cache_chain_mutex);
4335 if (res >= 0)
4336 res = count;
4337 return res;
4338 }
4339
4340 #ifdef CONFIG_DEBUG_SLAB_LEAK
4341
4342 static void *leaks_start(struct seq_file *m, loff_t *pos)
4343 {
4344 loff_t n = *pos;
4345 struct list_head *p;
4346
4347 mutex_lock(&cache_chain_mutex);
4348 p = cache_chain.next;
4349 while (n--) {
4350 p = p->next;
4351 if (p == &cache_chain)
4352 return NULL;
4353 }
4354 return list_entry(p, struct kmem_cache, next);
4355 }
4356
4357 static inline int add_caller(unsigned long *n, unsigned long v)
4358 {
4359 unsigned long *p;
4360 int l;
4361 if (!v)
4362 return 1;
4363 l = n[1];
4364 p = n + 2;
4365 while (l) {
4366 int i = l/2;
4367 unsigned long *q = p + 2 * i;
4368 if (*q == v) {
4369 q[1]++;
4370 return 1;
4371 }
4372 if (*q > v) {
4373 l = i;
4374 } else {
4375 p = q + 2;
4376 l -= i + 1;
4377 }
4378 }
4379 if (++n[1] == n[0])
4380 return 0;
4381 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4382 p[0] = v;
4383 p[1] = 1;
4384 return 1;
4385 }
4386
4387 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4388 {
4389 void *p;
4390 int i;
4391 if (n[0] == n[1])
4392 return;
4393 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4394 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4395 continue;
4396 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4397 return;
4398 }
4399 }
4400
4401 static void show_symbol(struct seq_file *m, unsigned long address)
4402 {
4403 #ifdef CONFIG_KALLSYMS
4404 unsigned long offset, size;
4405 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4406
4407 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4408 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4409 if (modname[0])
4410 seq_printf(m, " [%s]", modname);
4411 return;
4412 }
4413 #endif
4414 seq_printf(m, "%p", (void *)address);
4415 }
4416
4417 static int leaks_show(struct seq_file *m, void *p)
4418 {
4419 struct kmem_cache *cachep = p;
4420 struct slab *slabp;
4421 struct kmem_list3 *l3;
4422 const char *name;
4423 unsigned long *n = m->private;
4424 int node;
4425 int i;
4426
4427 if (!(cachep->flags & SLAB_STORE_USER))
4428 return 0;
4429 if (!(cachep->flags & SLAB_RED_ZONE))
4430 return 0;
4431
4432 /* OK, we can do it */
4433
4434 n[1] = 0;
4435
4436 for_each_online_node(node) {
4437 l3 = cachep->nodelists[node];
4438 if (!l3)
4439 continue;
4440
4441 check_irq_on();
4442 spin_lock_irq(&l3->list_lock);
4443
4444 list_for_each_entry(slabp, &l3->slabs_full, list)
4445 handle_slab(n, cachep, slabp);
4446 list_for_each_entry(slabp, &l3->slabs_partial, list)
4447 handle_slab(n, cachep, slabp);
4448 spin_unlock_irq(&l3->list_lock);
4449 }
4450 name = cachep->name;
4451 if (n[0] == n[1]) {
4452 /* Increase the buffer size */
4453 mutex_unlock(&cache_chain_mutex);
4454 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4455 if (!m->private) {
4456 /* Too bad, we are really out */
4457 m->private = n;
4458 mutex_lock(&cache_chain_mutex);
4459 return -ENOMEM;
4460 }
4461 *(unsigned long *)m->private = n[0] * 2;
4462 kfree(n);
4463 mutex_lock(&cache_chain_mutex);
4464 /* Now make sure this entry will be retried */
4465 m->count = m->size;
4466 return 0;
4467 }
4468 for (i = 0; i < n[1]; i++) {
4469 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4470 show_symbol(m, n[2*i+2]);
4471 seq_putc(m, '\n');
4472 }
4473
4474 return 0;
4475 }
4476
4477 const struct seq_operations slabstats_op = {
4478 .start = leaks_start,
4479 .next = s_next,
4480 .stop = s_stop,
4481 .show = leaks_show,
4482 };
4483 #endif
4484 #endif
4485
4486 /**
4487 * ksize - get the actual amount of memory allocated for a given object
4488 * @objp: Pointer to the object
4489 *
4490 * kmalloc may internally round up allocations and return more memory
4491 * than requested. ksize() can be used to determine the actual amount of
4492 * memory allocated. The caller may use this additional memory, even though
4493 * a smaller amount of memory was initially specified with the kmalloc call.
4494 * The caller must guarantee that objp points to a valid object previously
4495 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4496 * must not be freed during the duration of the call.
4497 */
4498 size_t ksize(const void *objp)
4499 {
4500 if (unlikely(objp == NULL))
4501 return 0;
4502
4503 return obj_size(virt_to_cache(objp));
4504 }