]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
mm/slab: factor out kmem_cache_node initialization code
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static int slab_early_init = 1;
217
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
227 parent->colour_next = 0;
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231 }
232
233 #define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
237 } while (0)
238
239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
245
246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
247 #define CFLGS_OFF_SLAB (0x80000000UL)
248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251 #define BATCHREFILL_LIMIT 16
252 /*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
255 *
256 * OTOH the cpuarrays can contain lots of objects,
257 * which could lock up otherwise freeable slabs.
258 */
259 #define REAPTIMEOUT_AC (2*HZ)
260 #define REAPTIMEOUT_NODE (4*HZ)
261
262 #if STATS
263 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266 #define STATS_INC_GROWN(x) ((x)->grown++)
267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
268 #define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
273 #define STATS_INC_ERR(x) ((x)->errors++)
274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
277 #define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286 #else
287 #define STATS_INC_ACTIVE(x) do { } while (0)
288 #define STATS_DEC_ACTIVE(x) do { } while (0)
289 #define STATS_INC_ALLOCED(x) do { } while (0)
290 #define STATS_INC_GROWN(x) do { } while (0)
291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
292 #define STATS_SET_HIGH(x) do { } while (0)
293 #define STATS_INC_ERR(x) do { } while (0)
294 #define STATS_INC_NODEALLOCS(x) do { } while (0)
295 #define STATS_INC_NODEFREES(x) do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
297 #define STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x) do { } while (0)
299 #define STATS_INC_ALLOCMISS(x) do { } while (0)
300 #define STATS_INC_FREEHIT(x) do { } while (0)
301 #define STATS_INC_FREEMISS(x) do { } while (0)
302 #endif
303
304 #if DEBUG
305
306 /*
307 * memory layout of objects:
308 * 0 : objp
309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313 * redzone word.
314 * cachep->obj_offset: The real object.
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
317 * [BYTES_PER_WORD long]
318 */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 return cachep->obj_offset;
322 }
323
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
329 }
330
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
335 return (unsigned long long *)(objp + cachep->size -
336 sizeof(unsigned long long) -
337 REDZONE_ALIGN);
338 return (unsigned long long *) (objp + cachep->size -
339 sizeof(unsigned long long));
340 }
341
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347
348 #else
349
350 #define obj_offset(x) 0
351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355 #endif
356
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 return atomic_read(&cachep->store_user_clean) == 1;
362 }
363
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 atomic_set(&cachep->store_user_clean, 1);
367 }
368
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
373 }
374
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377
378 #endif
379
380 /*
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
383 */
384 #define SLAB_MAX_ORDER_HI 1
385 #define SLAB_MAX_ORDER_LO 0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 struct page *page = virt_to_head_page(obj);
392 return page->slab_cache;
393 }
394
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 unsigned int idx)
397 {
398 return page->s_mem + cache->size * idx;
399 }
400
401 /*
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 const struct page *page, void *obj)
409 {
410 u32 offset = (obj - page->s_mem);
411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413
414 #define BOOT_CPUCACHE_ENTRIES 1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
422 };
423
424 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
425
426 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
427 {
428 return this_cpu_ptr(cachep->cpu_cache);
429 }
430
431 /*
432 * Calculate the number of objects and left-over bytes for a given buffer size.
433 */
434 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
435 unsigned long flags, size_t *left_over)
436 {
437 unsigned int num;
438 size_t slab_size = PAGE_SIZE << gfporder;
439
440 /*
441 * The slab management structure can be either off the slab or
442 * on it. For the latter case, the memory allocated for a
443 * slab is used for:
444 *
445 * - @buffer_size bytes for each object
446 * - One freelist_idx_t for each object
447 *
448 * We don't need to consider alignment of freelist because
449 * freelist will be at the end of slab page. The objects will be
450 * at the correct alignment.
451 *
452 * If the slab management structure is off the slab, then the
453 * alignment will already be calculated into the size. Because
454 * the slabs are all pages aligned, the objects will be at the
455 * correct alignment when allocated.
456 */
457 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
458 num = slab_size / buffer_size;
459 *left_over = slab_size % buffer_size;
460 } else {
461 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
462 *left_over = slab_size %
463 (buffer_size + sizeof(freelist_idx_t));
464 }
465
466 return num;
467 }
468
469 #if DEBUG
470 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
471
472 static void __slab_error(const char *function, struct kmem_cache *cachep,
473 char *msg)
474 {
475 pr_err("slab error in %s(): cache `%s': %s\n",
476 function, cachep->name, msg);
477 dump_stack();
478 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
479 }
480 #endif
481
482 /*
483 * By default on NUMA we use alien caches to stage the freeing of
484 * objects allocated from other nodes. This causes massive memory
485 * inefficiencies when using fake NUMA setup to split memory into a
486 * large number of small nodes, so it can be disabled on the command
487 * line
488 */
489
490 static int use_alien_caches __read_mostly = 1;
491 static int __init noaliencache_setup(char *s)
492 {
493 use_alien_caches = 0;
494 return 1;
495 }
496 __setup("noaliencache", noaliencache_setup);
497
498 static int __init slab_max_order_setup(char *str)
499 {
500 get_option(&str, &slab_max_order);
501 slab_max_order = slab_max_order < 0 ? 0 :
502 min(slab_max_order, MAX_ORDER - 1);
503 slab_max_order_set = true;
504
505 return 1;
506 }
507 __setup("slab_max_order=", slab_max_order_setup);
508
509 #ifdef CONFIG_NUMA
510 /*
511 * Special reaping functions for NUMA systems called from cache_reap().
512 * These take care of doing round robin flushing of alien caches (containing
513 * objects freed on different nodes from which they were allocated) and the
514 * flushing of remote pcps by calling drain_node_pages.
515 */
516 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
517
518 static void init_reap_node(int cpu)
519 {
520 int node;
521
522 node = next_node(cpu_to_mem(cpu), node_online_map);
523 if (node == MAX_NUMNODES)
524 node = first_node(node_online_map);
525
526 per_cpu(slab_reap_node, cpu) = node;
527 }
528
529 static void next_reap_node(void)
530 {
531 int node = __this_cpu_read(slab_reap_node);
532
533 node = next_node(node, node_online_map);
534 if (unlikely(node >= MAX_NUMNODES))
535 node = first_node(node_online_map);
536 __this_cpu_write(slab_reap_node, node);
537 }
538
539 #else
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
542 #endif
543
544 /*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
551 static void start_cpu_timer(int cpu)
552 {
553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
560 if (keventd_up() && reap_work->work.func == NULL) {
561 init_reap_node(cpu);
562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
565 }
566 }
567
568 static void init_arraycache(struct array_cache *ac, int limit, int batch)
569 {
570 /*
571 * The array_cache structures contain pointers to free object.
572 * However, when such objects are allocated or transferred to another
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
583 }
584 }
585
586 static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588 {
589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
595 }
596
597 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
599 {
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
603
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
606
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
610
611 slabs_destroy(cachep, &list);
612 }
613
614 /*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620 static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622 {
623 /* Figure out how many entries to transfer */
624 int nr = min3(from->avail, max, to->limit - to->avail);
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
634 return nr;
635 }
636
637 #ifndef CONFIG_NUMA
638
639 #define drain_alien_cache(cachep, alien) do { } while (0)
640 #define reap_alien(cachep, n) do { } while (0)
641
642 static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
644 {
645 return NULL;
646 }
647
648 static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 {
650 }
651
652 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653 {
654 return 0;
655 }
656
657 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659 {
660 return NULL;
661 }
662
663 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664 gfp_t flags, int nodeid)
665 {
666 return NULL;
667 }
668
669 static inline gfp_t gfp_exact_node(gfp_t flags)
670 {
671 return flags & ~__GFP_NOFAIL;
672 }
673
674 #else /* CONFIG_NUMA */
675
676 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678
679 static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681 {
682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
687 spin_lock_init(&alc->lock);
688 return alc;
689 }
690
691 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692 {
693 struct alien_cache **alc_ptr;
694 size_t memsize = sizeof(void *) * nr_node_ids;
695 int i;
696
697 if (limit > 1)
698 limit = 12;
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
712 }
713 }
714 return alc_ptr;
715 }
716
717 static void free_alien_cache(struct alien_cache **alc_ptr)
718 {
719 int i;
720
721 if (!alc_ptr)
722 return;
723 for_each_node(i)
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
726 }
727
728 static void __drain_alien_cache(struct kmem_cache *cachep,
729 struct array_cache *ac, int node,
730 struct list_head *list)
731 {
732 struct kmem_cache_node *n = get_node(cachep, node);
733
734 if (ac->avail) {
735 spin_lock(&n->list_lock);
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
743
744 free_block(cachep, ac->entry, ac->avail, node, list);
745 ac->avail = 0;
746 spin_unlock(&n->list_lock);
747 }
748 }
749
750 /*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
753 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754 {
755 int node = __this_cpu_read(slab_reap_node);
756
757 if (n->alien) {
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
767 spin_unlock_irq(&alc->lock);
768 slabs_destroy(cachep, &list);
769 }
770 }
771 }
772 }
773
774 static void drain_alien_cache(struct kmem_cache *cachep,
775 struct alien_cache **alien)
776 {
777 int i = 0;
778 struct alien_cache *alc;
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
783 alc = alien[i];
784 if (alc) {
785 LIST_HEAD(list);
786
787 ac = &alc->ac;
788 spin_lock_irqsave(&alc->lock, flags);
789 __drain_alien_cache(cachep, ac, i, &list);
790 spin_unlock_irqrestore(&alc->lock, flags);
791 slabs_destroy(cachep, &list);
792 }
793 }
794 }
795
796 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
798 {
799 struct kmem_cache_node *n;
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
802 LIST_HEAD(list);
803
804 n = get_node(cachep, node);
805 STATS_INC_NODEFREES(cachep);
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
808 ac = &alien->ac;
809 spin_lock(&alien->lock);
810 if (unlikely(ac->avail == ac->limit)) {
811 STATS_INC_ACOVERFLOW(cachep);
812 __drain_alien_cache(cachep, ac, page_node, &list);
813 }
814 ac->entry[ac->avail++] = objp;
815 spin_unlock(&alien->lock);
816 slabs_destroy(cachep, &list);
817 } else {
818 n = get_node(cachep, page_node);
819 spin_lock(&n->list_lock);
820 free_block(cachep, &objp, 1, page_node, &list);
821 spin_unlock(&n->list_lock);
822 slabs_destroy(cachep, &list);
823 }
824 return 1;
825 }
826
827 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828 {
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839 }
840
841 /*
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
844 */
845 static inline gfp_t gfp_exact_node(gfp_t flags)
846 {
847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
848 }
849 #endif
850
851 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
852 {
853 struct kmem_cache_node *n;
854
855 /*
856 * Set up the kmem_cache_node for cpu before we can
857 * begin anything. Make sure some other cpu on this
858 * node has not already allocated this
859 */
860 n = get_node(cachep, node);
861 if (n) {
862 spin_lock_irq(&n->list_lock);
863 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
864 cachep->num;
865 spin_unlock_irq(&n->list_lock);
866
867 return 0;
868 }
869
870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
871 if (!n)
872 return -ENOMEM;
873
874 kmem_cache_node_init(n);
875 n->next_reap = jiffies + REAPTIMEOUT_NODE +
876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
877
878 n->free_limit =
879 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
880
881 /*
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
884 * protection here.
885 */
886 cachep->node[node] = n;
887
888 return 0;
889 }
890
891 /*
892 * Allocates and initializes node for a node on each slab cache, used for
893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
894 * will be allocated off-node since memory is not yet online for the new node.
895 * When hotplugging memory or a cpu, existing node are not replaced if
896 * already in use.
897 *
898 * Must hold slab_mutex.
899 */
900 static int init_cache_node_node(int node)
901 {
902 int ret;
903 struct kmem_cache *cachep;
904
905 list_for_each_entry(cachep, &slab_caches, list) {
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
909 }
910
911 return 0;
912 }
913
914 static void cpuup_canceled(long cpu)
915 {
916 struct kmem_cache *cachep;
917 struct kmem_cache_node *n = NULL;
918 int node = cpu_to_mem(cpu);
919 const struct cpumask *mask = cpumask_of_node(node);
920
921 list_for_each_entry(cachep, &slab_caches, list) {
922 struct array_cache *nc;
923 struct array_cache *shared;
924 struct alien_cache **alien;
925 LIST_HEAD(list);
926
927 n = get_node(cachep, node);
928 if (!n)
929 continue;
930
931 spin_lock_irq(&n->list_lock);
932
933 /* Free limit for this kmem_cache_node */
934 n->free_limit -= cachep->batchcount;
935
936 /* cpu is dead; no one can alloc from it. */
937 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
938 if (nc) {
939 free_block(cachep, nc->entry, nc->avail, node, &list);
940 nc->avail = 0;
941 }
942
943 if (!cpumask_empty(mask)) {
944 spin_unlock_irq(&n->list_lock);
945 goto free_slab;
946 }
947
948 shared = n->shared;
949 if (shared) {
950 free_block(cachep, shared->entry,
951 shared->avail, node, &list);
952 n->shared = NULL;
953 }
954
955 alien = n->alien;
956 n->alien = NULL;
957
958 spin_unlock_irq(&n->list_lock);
959
960 kfree(shared);
961 if (alien) {
962 drain_alien_cache(cachep, alien);
963 free_alien_cache(alien);
964 }
965
966 free_slab:
967 slabs_destroy(cachep, &list);
968 }
969 /*
970 * In the previous loop, all the objects were freed to
971 * the respective cache's slabs, now we can go ahead and
972 * shrink each nodelist to its limit.
973 */
974 list_for_each_entry(cachep, &slab_caches, list) {
975 n = get_node(cachep, node);
976 if (!n)
977 continue;
978 drain_freelist(cachep, n, INT_MAX);
979 }
980 }
981
982 static int cpuup_prepare(long cpu)
983 {
984 struct kmem_cache *cachep;
985 struct kmem_cache_node *n = NULL;
986 int node = cpu_to_mem(cpu);
987 int err;
988
989 /*
990 * We need to do this right in the beginning since
991 * alloc_arraycache's are going to use this list.
992 * kmalloc_node allows us to add the slab to the right
993 * kmem_cache_node and not this cpu's kmem_cache_node
994 */
995 err = init_cache_node_node(node);
996 if (err < 0)
997 goto bad;
998
999 /*
1000 * Now we can go ahead with allocating the shared arrays and
1001 * array caches
1002 */
1003 list_for_each_entry(cachep, &slab_caches, list) {
1004 struct array_cache *shared = NULL;
1005 struct alien_cache **alien = NULL;
1006
1007 if (cachep->shared) {
1008 shared = alloc_arraycache(node,
1009 cachep->shared * cachep->batchcount,
1010 0xbaadf00d, GFP_KERNEL);
1011 if (!shared)
1012 goto bad;
1013 }
1014 if (use_alien_caches) {
1015 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1016 if (!alien) {
1017 kfree(shared);
1018 goto bad;
1019 }
1020 }
1021 n = get_node(cachep, node);
1022 BUG_ON(!n);
1023
1024 spin_lock_irq(&n->list_lock);
1025 if (!n->shared) {
1026 /*
1027 * We are serialised from CPU_DEAD or
1028 * CPU_UP_CANCELLED by the cpucontrol lock
1029 */
1030 n->shared = shared;
1031 shared = NULL;
1032 }
1033 #ifdef CONFIG_NUMA
1034 if (!n->alien) {
1035 n->alien = alien;
1036 alien = NULL;
1037 }
1038 #endif
1039 spin_unlock_irq(&n->list_lock);
1040 kfree(shared);
1041 free_alien_cache(alien);
1042 }
1043
1044 return 0;
1045 bad:
1046 cpuup_canceled(cpu);
1047 return -ENOMEM;
1048 }
1049
1050 static int cpuup_callback(struct notifier_block *nfb,
1051 unsigned long action, void *hcpu)
1052 {
1053 long cpu = (long)hcpu;
1054 int err = 0;
1055
1056 switch (action) {
1057 case CPU_UP_PREPARE:
1058 case CPU_UP_PREPARE_FROZEN:
1059 mutex_lock(&slab_mutex);
1060 err = cpuup_prepare(cpu);
1061 mutex_unlock(&slab_mutex);
1062 break;
1063 case CPU_ONLINE:
1064 case CPU_ONLINE_FROZEN:
1065 start_cpu_timer(cpu);
1066 break;
1067 #ifdef CONFIG_HOTPLUG_CPU
1068 case CPU_DOWN_PREPARE:
1069 case CPU_DOWN_PREPARE_FROZEN:
1070 /*
1071 * Shutdown cache reaper. Note that the slab_mutex is
1072 * held so that if cache_reap() is invoked it cannot do
1073 * anything expensive but will only modify reap_work
1074 * and reschedule the timer.
1075 */
1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1077 /* Now the cache_reaper is guaranteed to be not running. */
1078 per_cpu(slab_reap_work, cpu).work.func = NULL;
1079 break;
1080 case CPU_DOWN_FAILED:
1081 case CPU_DOWN_FAILED_FROZEN:
1082 start_cpu_timer(cpu);
1083 break;
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
1086 /*
1087 * Even if all the cpus of a node are down, we don't free the
1088 * kmem_cache_node of any cache. This to avoid a race between
1089 * cpu_down, and a kmalloc allocation from another cpu for
1090 * memory from the node of the cpu going down. The node
1091 * structure is usually allocated from kmem_cache_create() and
1092 * gets destroyed at kmem_cache_destroy().
1093 */
1094 /* fall through */
1095 #endif
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 mutex_lock(&slab_mutex);
1099 cpuup_canceled(cpu);
1100 mutex_unlock(&slab_mutex);
1101 break;
1102 }
1103 return notifier_from_errno(err);
1104 }
1105
1106 static struct notifier_block cpucache_notifier = {
1107 &cpuup_callback, NULL, 0
1108 };
1109
1110 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1111 /*
1112 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1113 * Returns -EBUSY if all objects cannot be drained so that the node is not
1114 * removed.
1115 *
1116 * Must hold slab_mutex.
1117 */
1118 static int __meminit drain_cache_node_node(int node)
1119 {
1120 struct kmem_cache *cachep;
1121 int ret = 0;
1122
1123 list_for_each_entry(cachep, &slab_caches, list) {
1124 struct kmem_cache_node *n;
1125
1126 n = get_node(cachep, node);
1127 if (!n)
1128 continue;
1129
1130 drain_freelist(cachep, n, INT_MAX);
1131
1132 if (!list_empty(&n->slabs_full) ||
1133 !list_empty(&n->slabs_partial)) {
1134 ret = -EBUSY;
1135 break;
1136 }
1137 }
1138 return ret;
1139 }
1140
1141 static int __meminit slab_memory_callback(struct notifier_block *self,
1142 unsigned long action, void *arg)
1143 {
1144 struct memory_notify *mnb = arg;
1145 int ret = 0;
1146 int nid;
1147
1148 nid = mnb->status_change_nid;
1149 if (nid < 0)
1150 goto out;
1151
1152 switch (action) {
1153 case MEM_GOING_ONLINE:
1154 mutex_lock(&slab_mutex);
1155 ret = init_cache_node_node(nid);
1156 mutex_unlock(&slab_mutex);
1157 break;
1158 case MEM_GOING_OFFLINE:
1159 mutex_lock(&slab_mutex);
1160 ret = drain_cache_node_node(nid);
1161 mutex_unlock(&slab_mutex);
1162 break;
1163 case MEM_ONLINE:
1164 case MEM_OFFLINE:
1165 case MEM_CANCEL_ONLINE:
1166 case MEM_CANCEL_OFFLINE:
1167 break;
1168 }
1169 out:
1170 return notifier_from_errno(ret);
1171 }
1172 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1173
1174 /*
1175 * swap the static kmem_cache_node with kmalloced memory
1176 */
1177 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1178 int nodeid)
1179 {
1180 struct kmem_cache_node *ptr;
1181
1182 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1183 BUG_ON(!ptr);
1184
1185 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1186 /*
1187 * Do not assume that spinlocks can be initialized via memcpy:
1188 */
1189 spin_lock_init(&ptr->list_lock);
1190
1191 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1192 cachep->node[nodeid] = ptr;
1193 }
1194
1195 /*
1196 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1197 * size of kmem_cache_node.
1198 */
1199 static void __init set_up_node(struct kmem_cache *cachep, int index)
1200 {
1201 int node;
1202
1203 for_each_online_node(node) {
1204 cachep->node[node] = &init_kmem_cache_node[index + node];
1205 cachep->node[node]->next_reap = jiffies +
1206 REAPTIMEOUT_NODE +
1207 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1208 }
1209 }
1210
1211 /*
1212 * Initialisation. Called after the page allocator have been initialised and
1213 * before smp_init().
1214 */
1215 void __init kmem_cache_init(void)
1216 {
1217 int i;
1218
1219 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1220 sizeof(struct rcu_head));
1221 kmem_cache = &kmem_cache_boot;
1222
1223 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1224 use_alien_caches = 0;
1225
1226 for (i = 0; i < NUM_INIT_LISTS; i++)
1227 kmem_cache_node_init(&init_kmem_cache_node[i]);
1228
1229 /*
1230 * Fragmentation resistance on low memory - only use bigger
1231 * page orders on machines with more than 32MB of memory if
1232 * not overridden on the command line.
1233 */
1234 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1235 slab_max_order = SLAB_MAX_ORDER_HI;
1236
1237 /* Bootstrap is tricky, because several objects are allocated
1238 * from caches that do not exist yet:
1239 * 1) initialize the kmem_cache cache: it contains the struct
1240 * kmem_cache structures of all caches, except kmem_cache itself:
1241 * kmem_cache is statically allocated.
1242 * Initially an __init data area is used for the head array and the
1243 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1244 * array at the end of the bootstrap.
1245 * 2) Create the first kmalloc cache.
1246 * The struct kmem_cache for the new cache is allocated normally.
1247 * An __init data area is used for the head array.
1248 * 3) Create the remaining kmalloc caches, with minimally sized
1249 * head arrays.
1250 * 4) Replace the __init data head arrays for kmem_cache and the first
1251 * kmalloc cache with kmalloc allocated arrays.
1252 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1253 * the other cache's with kmalloc allocated memory.
1254 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1255 */
1256
1257 /* 1) create the kmem_cache */
1258
1259 /*
1260 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1261 */
1262 create_boot_cache(kmem_cache, "kmem_cache",
1263 offsetof(struct kmem_cache, node) +
1264 nr_node_ids * sizeof(struct kmem_cache_node *),
1265 SLAB_HWCACHE_ALIGN);
1266 list_add(&kmem_cache->list, &slab_caches);
1267 slab_state = PARTIAL;
1268
1269 /*
1270 * Initialize the caches that provide memory for the kmem_cache_node
1271 * structures first. Without this, further allocations will bug.
1272 */
1273 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1274 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1275 slab_state = PARTIAL_NODE;
1276 setup_kmalloc_cache_index_table();
1277
1278 slab_early_init = 0;
1279
1280 /* 5) Replace the bootstrap kmem_cache_node */
1281 {
1282 int nid;
1283
1284 for_each_online_node(nid) {
1285 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1286
1287 init_list(kmalloc_caches[INDEX_NODE],
1288 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1289 }
1290 }
1291
1292 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1293 }
1294
1295 void __init kmem_cache_init_late(void)
1296 {
1297 struct kmem_cache *cachep;
1298
1299 slab_state = UP;
1300
1301 /* 6) resize the head arrays to their final sizes */
1302 mutex_lock(&slab_mutex);
1303 list_for_each_entry(cachep, &slab_caches, list)
1304 if (enable_cpucache(cachep, GFP_NOWAIT))
1305 BUG();
1306 mutex_unlock(&slab_mutex);
1307
1308 /* Done! */
1309 slab_state = FULL;
1310
1311 /*
1312 * Register a cpu startup notifier callback that initializes
1313 * cpu_cache_get for all new cpus
1314 */
1315 register_cpu_notifier(&cpucache_notifier);
1316
1317 #ifdef CONFIG_NUMA
1318 /*
1319 * Register a memory hotplug callback that initializes and frees
1320 * node.
1321 */
1322 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1323 #endif
1324
1325 /*
1326 * The reap timers are started later, with a module init call: That part
1327 * of the kernel is not yet operational.
1328 */
1329 }
1330
1331 static int __init cpucache_init(void)
1332 {
1333 int cpu;
1334
1335 /*
1336 * Register the timers that return unneeded pages to the page allocator
1337 */
1338 for_each_online_cpu(cpu)
1339 start_cpu_timer(cpu);
1340
1341 /* Done! */
1342 slab_state = FULL;
1343 return 0;
1344 }
1345 __initcall(cpucache_init);
1346
1347 static noinline void
1348 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1349 {
1350 #if DEBUG
1351 struct kmem_cache_node *n;
1352 struct page *page;
1353 unsigned long flags;
1354 int node;
1355 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1356 DEFAULT_RATELIMIT_BURST);
1357
1358 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1359 return;
1360
1361 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1362 nodeid, gfpflags, &gfpflags);
1363 pr_warn(" cache: %s, object size: %d, order: %d\n",
1364 cachep->name, cachep->size, cachep->gfporder);
1365
1366 for_each_kmem_cache_node(cachep, node, n) {
1367 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1368 unsigned long active_slabs = 0, num_slabs = 0;
1369
1370 spin_lock_irqsave(&n->list_lock, flags);
1371 list_for_each_entry(page, &n->slabs_full, lru) {
1372 active_objs += cachep->num;
1373 active_slabs++;
1374 }
1375 list_for_each_entry(page, &n->slabs_partial, lru) {
1376 active_objs += page->active;
1377 active_slabs++;
1378 }
1379 list_for_each_entry(page, &n->slabs_free, lru)
1380 num_slabs++;
1381
1382 free_objects += n->free_objects;
1383 spin_unlock_irqrestore(&n->list_lock, flags);
1384
1385 num_slabs += active_slabs;
1386 num_objs = num_slabs * cachep->num;
1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1388 node, active_slabs, num_slabs, active_objs, num_objs,
1389 free_objects);
1390 }
1391 #endif
1392 }
1393
1394 /*
1395 * Interface to system's page allocator. No need to hold the
1396 * kmem_cache_node ->list_lock.
1397 *
1398 * If we requested dmaable memory, we will get it. Even if we
1399 * did not request dmaable memory, we might get it, but that
1400 * would be relatively rare and ignorable.
1401 */
1402 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1403 int nodeid)
1404 {
1405 struct page *page;
1406 int nr_pages;
1407
1408 flags |= cachep->allocflags;
1409 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1410 flags |= __GFP_RECLAIMABLE;
1411
1412 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1413 if (!page) {
1414 slab_out_of_memory(cachep, flags, nodeid);
1415 return NULL;
1416 }
1417
1418 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1419 __free_pages(page, cachep->gfporder);
1420 return NULL;
1421 }
1422
1423 nr_pages = (1 << cachep->gfporder);
1424 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1425 add_zone_page_state(page_zone(page),
1426 NR_SLAB_RECLAIMABLE, nr_pages);
1427 else
1428 add_zone_page_state(page_zone(page),
1429 NR_SLAB_UNRECLAIMABLE, nr_pages);
1430
1431 __SetPageSlab(page);
1432 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1433 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1434 SetPageSlabPfmemalloc(page);
1435
1436 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1437 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1438
1439 if (cachep->ctor)
1440 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1441 else
1442 kmemcheck_mark_unallocated_pages(page, nr_pages);
1443 }
1444
1445 return page;
1446 }
1447
1448 /*
1449 * Interface to system's page release.
1450 */
1451 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1452 {
1453 int order = cachep->gfporder;
1454 unsigned long nr_freed = (1 << order);
1455
1456 kmemcheck_free_shadow(page, order);
1457
1458 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1459 sub_zone_page_state(page_zone(page),
1460 NR_SLAB_RECLAIMABLE, nr_freed);
1461 else
1462 sub_zone_page_state(page_zone(page),
1463 NR_SLAB_UNRECLAIMABLE, nr_freed);
1464
1465 BUG_ON(!PageSlab(page));
1466 __ClearPageSlabPfmemalloc(page);
1467 __ClearPageSlab(page);
1468 page_mapcount_reset(page);
1469 page->mapping = NULL;
1470
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += nr_freed;
1473 memcg_uncharge_slab(page, order, cachep);
1474 __free_pages(page, order);
1475 }
1476
1477 static void kmem_rcu_free(struct rcu_head *head)
1478 {
1479 struct kmem_cache *cachep;
1480 struct page *page;
1481
1482 page = container_of(head, struct page, rcu_head);
1483 cachep = page->slab_cache;
1484
1485 kmem_freepages(cachep, page);
1486 }
1487
1488 #if DEBUG
1489 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1490 {
1491 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1492 (cachep->size % PAGE_SIZE) == 0)
1493 return true;
1494
1495 return false;
1496 }
1497
1498 #ifdef CONFIG_DEBUG_PAGEALLOC
1499 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1500 unsigned long caller)
1501 {
1502 int size = cachep->object_size;
1503
1504 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1505
1506 if (size < 5 * sizeof(unsigned long))
1507 return;
1508
1509 *addr++ = 0x12345678;
1510 *addr++ = caller;
1511 *addr++ = smp_processor_id();
1512 size -= 3 * sizeof(unsigned long);
1513 {
1514 unsigned long *sptr = &caller;
1515 unsigned long svalue;
1516
1517 while (!kstack_end(sptr)) {
1518 svalue = *sptr++;
1519 if (kernel_text_address(svalue)) {
1520 *addr++ = svalue;
1521 size -= sizeof(unsigned long);
1522 if (size <= sizeof(unsigned long))
1523 break;
1524 }
1525 }
1526
1527 }
1528 *addr++ = 0x87654321;
1529 }
1530
1531 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532 int map, unsigned long caller)
1533 {
1534 if (!is_debug_pagealloc_cache(cachep))
1535 return;
1536
1537 if (caller)
1538 store_stackinfo(cachep, objp, caller);
1539
1540 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1541 }
1542
1543 #else
1544 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1545 int map, unsigned long caller) {}
1546
1547 #endif
1548
1549 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1550 {
1551 int size = cachep->object_size;
1552 addr = &((char *)addr)[obj_offset(cachep)];
1553
1554 memset(addr, val, size);
1555 *(unsigned char *)(addr + size - 1) = POISON_END;
1556 }
1557
1558 static void dump_line(char *data, int offset, int limit)
1559 {
1560 int i;
1561 unsigned char error = 0;
1562 int bad_count = 0;
1563
1564 pr_err("%03x: ", offset);
1565 for (i = 0; i < limit; i++) {
1566 if (data[offset + i] != POISON_FREE) {
1567 error = data[offset + i];
1568 bad_count++;
1569 }
1570 }
1571 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1572 &data[offset], limit, 1);
1573
1574 if (bad_count == 1) {
1575 error ^= POISON_FREE;
1576 if (!(error & (error - 1))) {
1577 pr_err("Single bit error detected. Probably bad RAM.\n");
1578 #ifdef CONFIG_X86
1579 pr_err("Run memtest86+ or a similar memory test tool.\n");
1580 #else
1581 pr_err("Run a memory test tool.\n");
1582 #endif
1583 }
1584 }
1585 }
1586 #endif
1587
1588 #if DEBUG
1589
1590 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1591 {
1592 int i, size;
1593 char *realobj;
1594
1595 if (cachep->flags & SLAB_RED_ZONE) {
1596 pr_err("Redzone: 0x%llx/0x%llx\n",
1597 *dbg_redzone1(cachep, objp),
1598 *dbg_redzone2(cachep, objp));
1599 }
1600
1601 if (cachep->flags & SLAB_STORE_USER) {
1602 pr_err("Last user: [<%p>](%pSR)\n",
1603 *dbg_userword(cachep, objp),
1604 *dbg_userword(cachep, objp));
1605 }
1606 realobj = (char *)objp + obj_offset(cachep);
1607 size = cachep->object_size;
1608 for (i = 0; i < size && lines; i += 16, lines--) {
1609 int limit;
1610 limit = 16;
1611 if (i + limit > size)
1612 limit = size - i;
1613 dump_line(realobj, i, limit);
1614 }
1615 }
1616
1617 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1618 {
1619 char *realobj;
1620 int size, i;
1621 int lines = 0;
1622
1623 if (is_debug_pagealloc_cache(cachep))
1624 return;
1625
1626 realobj = (char *)objp + obj_offset(cachep);
1627 size = cachep->object_size;
1628
1629 for (i = 0; i < size; i++) {
1630 char exp = POISON_FREE;
1631 if (i == size - 1)
1632 exp = POISON_END;
1633 if (realobj[i] != exp) {
1634 int limit;
1635 /* Mismatch ! */
1636 /* Print header */
1637 if (lines == 0) {
1638 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1639 print_tainted(), cachep->name,
1640 realobj, size);
1641 print_objinfo(cachep, objp, 0);
1642 }
1643 /* Hexdump the affected line */
1644 i = (i / 16) * 16;
1645 limit = 16;
1646 if (i + limit > size)
1647 limit = size - i;
1648 dump_line(realobj, i, limit);
1649 i += 16;
1650 lines++;
1651 /* Limit to 5 lines */
1652 if (lines > 5)
1653 break;
1654 }
1655 }
1656 if (lines != 0) {
1657 /* Print some data about the neighboring objects, if they
1658 * exist:
1659 */
1660 struct page *page = virt_to_head_page(objp);
1661 unsigned int objnr;
1662
1663 objnr = obj_to_index(cachep, page, objp);
1664 if (objnr) {
1665 objp = index_to_obj(cachep, page, objnr - 1);
1666 realobj = (char *)objp + obj_offset(cachep);
1667 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1668 print_objinfo(cachep, objp, 2);
1669 }
1670 if (objnr + 1 < cachep->num) {
1671 objp = index_to_obj(cachep, page, objnr + 1);
1672 realobj = (char *)objp + obj_offset(cachep);
1673 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1674 print_objinfo(cachep, objp, 2);
1675 }
1676 }
1677 }
1678 #endif
1679
1680 #if DEBUG
1681 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682 struct page *page)
1683 {
1684 int i;
1685
1686 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1687 poison_obj(cachep, page->freelist - obj_offset(cachep),
1688 POISON_FREE);
1689 }
1690
1691 for (i = 0; i < cachep->num; i++) {
1692 void *objp = index_to_obj(cachep, page, i);
1693
1694 if (cachep->flags & SLAB_POISON) {
1695 check_poison_obj(cachep, objp);
1696 slab_kernel_map(cachep, objp, 1, 0);
1697 }
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1700 slab_error(cachep, "start of a freed object was overwritten");
1701 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1702 slab_error(cachep, "end of a freed object was overwritten");
1703 }
1704 }
1705 }
1706 #else
1707 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708 struct page *page)
1709 {
1710 }
1711 #endif
1712
1713 /**
1714 * slab_destroy - destroy and release all objects in a slab
1715 * @cachep: cache pointer being destroyed
1716 * @page: page pointer being destroyed
1717 *
1718 * Destroy all the objs in a slab page, and release the mem back to the system.
1719 * Before calling the slab page must have been unlinked from the cache. The
1720 * kmem_cache_node ->list_lock is not held/needed.
1721 */
1722 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1723 {
1724 void *freelist;
1725
1726 freelist = page->freelist;
1727 slab_destroy_debugcheck(cachep, page);
1728 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1729 call_rcu(&page->rcu_head, kmem_rcu_free);
1730 else
1731 kmem_freepages(cachep, page);
1732
1733 /*
1734 * From now on, we don't use freelist
1735 * although actual page can be freed in rcu context
1736 */
1737 if (OFF_SLAB(cachep))
1738 kmem_cache_free(cachep->freelist_cache, freelist);
1739 }
1740
1741 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1742 {
1743 struct page *page, *n;
1744
1745 list_for_each_entry_safe(page, n, list, lru) {
1746 list_del(&page->lru);
1747 slab_destroy(cachep, page);
1748 }
1749 }
1750
1751 /**
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
1755 * @flags: slab allocation flags
1756 *
1757 * Also calculates the number of objects per slab.
1758 *
1759 * This could be made much more intelligent. For now, try to avoid using
1760 * high order pages for slabs. When the gfp() functions are more friendly
1761 * towards high-order requests, this should be changed.
1762 */
1763 static size_t calculate_slab_order(struct kmem_cache *cachep,
1764 size_t size, unsigned long flags)
1765 {
1766 size_t left_over = 0;
1767 int gfporder;
1768
1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1770 unsigned int num;
1771 size_t remainder;
1772
1773 num = cache_estimate(gfporder, size, flags, &remainder);
1774 if (!num)
1775 continue;
1776
1777 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1778 if (num > SLAB_OBJ_MAX_NUM)
1779 break;
1780
1781 if (flags & CFLGS_OFF_SLAB) {
1782 struct kmem_cache *freelist_cache;
1783 size_t freelist_size;
1784
1785 freelist_size = num * sizeof(freelist_idx_t);
1786 freelist_cache = kmalloc_slab(freelist_size, 0u);
1787 if (!freelist_cache)
1788 continue;
1789
1790 /*
1791 * Needed to avoid possible looping condition
1792 * in cache_grow()
1793 */
1794 if (OFF_SLAB(freelist_cache))
1795 continue;
1796
1797 /* check if off slab has enough benefit */
1798 if (freelist_cache->size > cachep->size / 2)
1799 continue;
1800 }
1801
1802 /* Found something acceptable - save it away */
1803 cachep->num = num;
1804 cachep->gfporder = gfporder;
1805 left_over = remainder;
1806
1807 /*
1808 * A VFS-reclaimable slab tends to have most allocations
1809 * as GFP_NOFS and we really don't want to have to be allocating
1810 * higher-order pages when we are unable to shrink dcache.
1811 */
1812 if (flags & SLAB_RECLAIM_ACCOUNT)
1813 break;
1814
1815 /*
1816 * Large number of objects is good, but very large slabs are
1817 * currently bad for the gfp()s.
1818 */
1819 if (gfporder >= slab_max_order)
1820 break;
1821
1822 /*
1823 * Acceptable internal fragmentation?
1824 */
1825 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1826 break;
1827 }
1828 return left_over;
1829 }
1830
1831 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832 struct kmem_cache *cachep, int entries, int batchcount)
1833 {
1834 int cpu;
1835 size_t size;
1836 struct array_cache __percpu *cpu_cache;
1837
1838 size = sizeof(void *) * entries + sizeof(struct array_cache);
1839 cpu_cache = __alloc_percpu(size, sizeof(void *));
1840
1841 if (!cpu_cache)
1842 return NULL;
1843
1844 for_each_possible_cpu(cpu) {
1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846 entries, batchcount);
1847 }
1848
1849 return cpu_cache;
1850 }
1851
1852 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1853 {
1854 if (slab_state >= FULL)
1855 return enable_cpucache(cachep, gfp);
1856
1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858 if (!cachep->cpu_cache)
1859 return 1;
1860
1861 if (slab_state == DOWN) {
1862 /* Creation of first cache (kmem_cache). */
1863 set_up_node(kmem_cache, CACHE_CACHE);
1864 } else if (slab_state == PARTIAL) {
1865 /* For kmem_cache_node */
1866 set_up_node(cachep, SIZE_NODE);
1867 } else {
1868 int node;
1869
1870 for_each_online_node(node) {
1871 cachep->node[node] = kmalloc_node(
1872 sizeof(struct kmem_cache_node), gfp, node);
1873 BUG_ON(!cachep->node[node]);
1874 kmem_cache_node_init(cachep->node[node]);
1875 }
1876 }
1877
1878 cachep->node[numa_mem_id()]->next_reap =
1879 jiffies + REAPTIMEOUT_NODE +
1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1881
1882 cpu_cache_get(cachep)->avail = 0;
1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884 cpu_cache_get(cachep)->batchcount = 1;
1885 cpu_cache_get(cachep)->touched = 0;
1886 cachep->batchcount = 1;
1887 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1888 return 0;
1889 }
1890
1891 unsigned long kmem_cache_flags(unsigned long object_size,
1892 unsigned long flags, const char *name,
1893 void (*ctor)(void *))
1894 {
1895 return flags;
1896 }
1897
1898 struct kmem_cache *
1899 __kmem_cache_alias(const char *name, size_t size, size_t align,
1900 unsigned long flags, void (*ctor)(void *))
1901 {
1902 struct kmem_cache *cachep;
1903
1904 cachep = find_mergeable(size, align, flags, name, ctor);
1905 if (cachep) {
1906 cachep->refcount++;
1907
1908 /*
1909 * Adjust the object sizes so that we clear
1910 * the complete object on kzalloc.
1911 */
1912 cachep->object_size = max_t(int, cachep->object_size, size);
1913 }
1914 return cachep;
1915 }
1916
1917 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918 size_t size, unsigned long flags)
1919 {
1920 size_t left;
1921
1922 cachep->num = 0;
1923
1924 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1925 return false;
1926
1927 left = calculate_slab_order(cachep, size,
1928 flags | CFLGS_OBJFREELIST_SLAB);
1929 if (!cachep->num)
1930 return false;
1931
1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1933 return false;
1934
1935 cachep->colour = left / cachep->colour_off;
1936
1937 return true;
1938 }
1939
1940 static bool set_off_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1942 {
1943 size_t left;
1944
1945 cachep->num = 0;
1946
1947 /*
1948 * Always use on-slab management when SLAB_NOLEAKTRACE
1949 * to avoid recursive calls into kmemleak.
1950 */
1951 if (flags & SLAB_NOLEAKTRACE)
1952 return false;
1953
1954 /*
1955 * Size is large, assume best to place the slab management obj
1956 * off-slab (should allow better packing of objs).
1957 */
1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1959 if (!cachep->num)
1960 return false;
1961
1962 /*
1963 * If the slab has been placed off-slab, and we have enough space then
1964 * move it on-slab. This is at the expense of any extra colouring.
1965 */
1966 if (left >= cachep->num * sizeof(freelist_idx_t))
1967 return false;
1968
1969 cachep->colour = left / cachep->colour_off;
1970
1971 return true;
1972 }
1973
1974 static bool set_on_slab_cache(struct kmem_cache *cachep,
1975 size_t size, unsigned long flags)
1976 {
1977 size_t left;
1978
1979 cachep->num = 0;
1980
1981 left = calculate_slab_order(cachep, size, flags);
1982 if (!cachep->num)
1983 return false;
1984
1985 cachep->colour = left / cachep->colour_off;
1986
1987 return true;
1988 }
1989
1990 /**
1991 * __kmem_cache_create - Create a cache.
1992 * @cachep: cache management descriptor
1993 * @flags: SLAB flags
1994 *
1995 * Returns a ptr to the cache on success, NULL on failure.
1996 * Cannot be called within a int, but can be interrupted.
1997 * The @ctor is run when new pages are allocated by the cache.
1998 *
1999 * The flags are
2000 *
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2003 *
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2006 *
2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline. This can be beneficial if you're counting cycles as closely
2009 * as davem.
2010 */
2011 int
2012 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2013 {
2014 size_t ralign = BYTES_PER_WORD;
2015 gfp_t gfp;
2016 int err;
2017 size_t size = cachep->size;
2018
2019 #if DEBUG
2020 #if FORCED_DEBUG
2021 /*
2022 * Enable redzoning and last user accounting, except for caches with
2023 * large objects, if the increased size would increase the object size
2024 * above the next power of two: caches with object sizes just above a
2025 * power of two have a significant amount of internal fragmentation.
2026 */
2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028 2 * sizeof(unsigned long long)))
2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2030 if (!(flags & SLAB_DESTROY_BY_RCU))
2031 flags |= SLAB_POISON;
2032 #endif
2033 #endif
2034
2035 /*
2036 * Check that size is in terms of words. This is needed to avoid
2037 * unaligned accesses for some archs when redzoning is used, and makes
2038 * sure any on-slab bufctl's are also correctly aligned.
2039 */
2040 if (size & (BYTES_PER_WORD - 1)) {
2041 size += (BYTES_PER_WORD - 1);
2042 size &= ~(BYTES_PER_WORD - 1);
2043 }
2044
2045 if (flags & SLAB_RED_ZONE) {
2046 ralign = REDZONE_ALIGN;
2047 /* If redzoning, ensure that the second redzone is suitably
2048 * aligned, by adjusting the object size accordingly. */
2049 size += REDZONE_ALIGN - 1;
2050 size &= ~(REDZONE_ALIGN - 1);
2051 }
2052
2053 /* 3) caller mandated alignment */
2054 if (ralign < cachep->align) {
2055 ralign = cachep->align;
2056 }
2057 /* disable debug if necessary */
2058 if (ralign > __alignof__(unsigned long long))
2059 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2060 /*
2061 * 4) Store it.
2062 */
2063 cachep->align = ralign;
2064 cachep->colour_off = cache_line_size();
2065 /* Offset must be a multiple of the alignment. */
2066 if (cachep->colour_off < cachep->align)
2067 cachep->colour_off = cachep->align;
2068
2069 if (slab_is_available())
2070 gfp = GFP_KERNEL;
2071 else
2072 gfp = GFP_NOWAIT;
2073
2074 #if DEBUG
2075
2076 /*
2077 * Both debugging options require word-alignment which is calculated
2078 * into align above.
2079 */
2080 if (flags & SLAB_RED_ZONE) {
2081 /* add space for red zone words */
2082 cachep->obj_offset += sizeof(unsigned long long);
2083 size += 2 * sizeof(unsigned long long);
2084 }
2085 if (flags & SLAB_STORE_USER) {
2086 /* user store requires one word storage behind the end of
2087 * the real object. But if the second red zone needs to be
2088 * aligned to 64 bits, we must allow that much space.
2089 */
2090 if (flags & SLAB_RED_ZONE)
2091 size += REDZONE_ALIGN;
2092 else
2093 size += BYTES_PER_WORD;
2094 }
2095 #endif
2096
2097 kasan_cache_create(cachep, &size, &flags);
2098
2099 size = ALIGN(size, cachep->align);
2100 /*
2101 * We should restrict the number of objects in a slab to implement
2102 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2103 */
2104 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2105 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2106
2107 #if DEBUG
2108 /*
2109 * To activate debug pagealloc, off-slab management is necessary
2110 * requirement. In early phase of initialization, small sized slab
2111 * doesn't get initialized so it would not be possible. So, we need
2112 * to check size >= 256. It guarantees that all necessary small
2113 * sized slab is initialized in current slab initialization sequence.
2114 */
2115 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2116 size >= 256 && cachep->object_size > cache_line_size()) {
2117 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2118 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2119
2120 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2121 flags |= CFLGS_OFF_SLAB;
2122 cachep->obj_offset += tmp_size - size;
2123 size = tmp_size;
2124 goto done;
2125 }
2126 }
2127 }
2128 #endif
2129
2130 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2131 flags |= CFLGS_OBJFREELIST_SLAB;
2132 goto done;
2133 }
2134
2135 if (set_off_slab_cache(cachep, size, flags)) {
2136 flags |= CFLGS_OFF_SLAB;
2137 goto done;
2138 }
2139
2140 if (set_on_slab_cache(cachep, size, flags))
2141 goto done;
2142
2143 return -E2BIG;
2144
2145 done:
2146 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2147 cachep->flags = flags;
2148 cachep->allocflags = __GFP_COMP;
2149 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2150 cachep->allocflags |= GFP_DMA;
2151 cachep->size = size;
2152 cachep->reciprocal_buffer_size = reciprocal_value(size);
2153
2154 #if DEBUG
2155 /*
2156 * If we're going to use the generic kernel_map_pages()
2157 * poisoning, then it's going to smash the contents of
2158 * the redzone and userword anyhow, so switch them off.
2159 */
2160 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2161 (cachep->flags & SLAB_POISON) &&
2162 is_debug_pagealloc_cache(cachep))
2163 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2164 #endif
2165
2166 if (OFF_SLAB(cachep)) {
2167 cachep->freelist_cache =
2168 kmalloc_slab(cachep->freelist_size, 0u);
2169 }
2170
2171 err = setup_cpu_cache(cachep, gfp);
2172 if (err) {
2173 __kmem_cache_release(cachep);
2174 return err;
2175 }
2176
2177 return 0;
2178 }
2179
2180 #if DEBUG
2181 static void check_irq_off(void)
2182 {
2183 BUG_ON(!irqs_disabled());
2184 }
2185
2186 static void check_irq_on(void)
2187 {
2188 BUG_ON(irqs_disabled());
2189 }
2190
2191 static void check_mutex_acquired(void)
2192 {
2193 BUG_ON(!mutex_is_locked(&slab_mutex));
2194 }
2195
2196 static void check_spinlock_acquired(struct kmem_cache *cachep)
2197 {
2198 #ifdef CONFIG_SMP
2199 check_irq_off();
2200 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2201 #endif
2202 }
2203
2204 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2205 {
2206 #ifdef CONFIG_SMP
2207 check_irq_off();
2208 assert_spin_locked(&get_node(cachep, node)->list_lock);
2209 #endif
2210 }
2211
2212 #else
2213 #define check_irq_off() do { } while(0)
2214 #define check_irq_on() do { } while(0)
2215 #define check_mutex_acquired() do { } while(0)
2216 #define check_spinlock_acquired(x) do { } while(0)
2217 #define check_spinlock_acquired_node(x, y) do { } while(0)
2218 #endif
2219
2220 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2221 int node, bool free_all, struct list_head *list)
2222 {
2223 int tofree;
2224
2225 if (!ac || !ac->avail)
2226 return;
2227
2228 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2229 if (tofree > ac->avail)
2230 tofree = (ac->avail + 1) / 2;
2231
2232 free_block(cachep, ac->entry, tofree, node, list);
2233 ac->avail -= tofree;
2234 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2235 }
2236
2237 static void do_drain(void *arg)
2238 {
2239 struct kmem_cache *cachep = arg;
2240 struct array_cache *ac;
2241 int node = numa_mem_id();
2242 struct kmem_cache_node *n;
2243 LIST_HEAD(list);
2244
2245 check_irq_off();
2246 ac = cpu_cache_get(cachep);
2247 n = get_node(cachep, node);
2248 spin_lock(&n->list_lock);
2249 free_block(cachep, ac->entry, ac->avail, node, &list);
2250 spin_unlock(&n->list_lock);
2251 slabs_destroy(cachep, &list);
2252 ac->avail = 0;
2253 }
2254
2255 static void drain_cpu_caches(struct kmem_cache *cachep)
2256 {
2257 struct kmem_cache_node *n;
2258 int node;
2259 LIST_HEAD(list);
2260
2261 on_each_cpu(do_drain, cachep, 1);
2262 check_irq_on();
2263 for_each_kmem_cache_node(cachep, node, n)
2264 if (n->alien)
2265 drain_alien_cache(cachep, n->alien);
2266
2267 for_each_kmem_cache_node(cachep, node, n) {
2268 spin_lock_irq(&n->list_lock);
2269 drain_array_locked(cachep, n->shared, node, true, &list);
2270 spin_unlock_irq(&n->list_lock);
2271
2272 slabs_destroy(cachep, &list);
2273 }
2274 }
2275
2276 /*
2277 * Remove slabs from the list of free slabs.
2278 * Specify the number of slabs to drain in tofree.
2279 *
2280 * Returns the actual number of slabs released.
2281 */
2282 static int drain_freelist(struct kmem_cache *cache,
2283 struct kmem_cache_node *n, int tofree)
2284 {
2285 struct list_head *p;
2286 int nr_freed;
2287 struct page *page;
2288
2289 nr_freed = 0;
2290 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2291
2292 spin_lock_irq(&n->list_lock);
2293 p = n->slabs_free.prev;
2294 if (p == &n->slabs_free) {
2295 spin_unlock_irq(&n->list_lock);
2296 goto out;
2297 }
2298
2299 page = list_entry(p, struct page, lru);
2300 list_del(&page->lru);
2301 /*
2302 * Safe to drop the lock. The slab is no longer linked
2303 * to the cache.
2304 */
2305 n->free_objects -= cache->num;
2306 spin_unlock_irq(&n->list_lock);
2307 slab_destroy(cache, page);
2308 nr_freed++;
2309 }
2310 out:
2311 return nr_freed;
2312 }
2313
2314 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2315 {
2316 int ret = 0;
2317 int node;
2318 struct kmem_cache_node *n;
2319
2320 drain_cpu_caches(cachep);
2321
2322 check_irq_on();
2323 for_each_kmem_cache_node(cachep, node, n) {
2324 drain_freelist(cachep, n, INT_MAX);
2325
2326 ret += !list_empty(&n->slabs_full) ||
2327 !list_empty(&n->slabs_partial);
2328 }
2329 return (ret ? 1 : 0);
2330 }
2331
2332 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2333 {
2334 return __kmem_cache_shrink(cachep, false);
2335 }
2336
2337 void __kmem_cache_release(struct kmem_cache *cachep)
2338 {
2339 int i;
2340 struct kmem_cache_node *n;
2341
2342 free_percpu(cachep->cpu_cache);
2343
2344 /* NUMA: free the node structures */
2345 for_each_kmem_cache_node(cachep, i, n) {
2346 kfree(n->shared);
2347 free_alien_cache(n->alien);
2348 kfree(n);
2349 cachep->node[i] = NULL;
2350 }
2351 }
2352
2353 /*
2354 * Get the memory for a slab management obj.
2355 *
2356 * For a slab cache when the slab descriptor is off-slab, the
2357 * slab descriptor can't come from the same cache which is being created,
2358 * Because if it is the case, that means we defer the creation of
2359 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2360 * And we eventually call down to __kmem_cache_create(), which
2361 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2362 * This is a "chicken-and-egg" problem.
2363 *
2364 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2365 * which are all initialized during kmem_cache_init().
2366 */
2367 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2368 struct page *page, int colour_off,
2369 gfp_t local_flags, int nodeid)
2370 {
2371 void *freelist;
2372 void *addr = page_address(page);
2373
2374 page->s_mem = addr + colour_off;
2375 page->active = 0;
2376
2377 if (OBJFREELIST_SLAB(cachep))
2378 freelist = NULL;
2379 else if (OFF_SLAB(cachep)) {
2380 /* Slab management obj is off-slab. */
2381 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2382 local_flags, nodeid);
2383 if (!freelist)
2384 return NULL;
2385 } else {
2386 /* We will use last bytes at the slab for freelist */
2387 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2388 cachep->freelist_size;
2389 }
2390
2391 return freelist;
2392 }
2393
2394 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2395 {
2396 return ((freelist_idx_t *)page->freelist)[idx];
2397 }
2398
2399 static inline void set_free_obj(struct page *page,
2400 unsigned int idx, freelist_idx_t val)
2401 {
2402 ((freelist_idx_t *)(page->freelist))[idx] = val;
2403 }
2404
2405 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2406 {
2407 #if DEBUG
2408 int i;
2409
2410 for (i = 0; i < cachep->num; i++) {
2411 void *objp = index_to_obj(cachep, page, i);
2412
2413 if (cachep->flags & SLAB_STORE_USER)
2414 *dbg_userword(cachep, objp) = NULL;
2415
2416 if (cachep->flags & SLAB_RED_ZONE) {
2417 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2418 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2419 }
2420 /*
2421 * Constructors are not allowed to allocate memory from the same
2422 * cache which they are a constructor for. Otherwise, deadlock.
2423 * They must also be threaded.
2424 */
2425 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2426 kasan_unpoison_object_data(cachep,
2427 objp + obj_offset(cachep));
2428 cachep->ctor(objp + obj_offset(cachep));
2429 kasan_poison_object_data(
2430 cachep, objp + obj_offset(cachep));
2431 }
2432
2433 if (cachep->flags & SLAB_RED_ZONE) {
2434 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2435 slab_error(cachep, "constructor overwrote the end of an object");
2436 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2437 slab_error(cachep, "constructor overwrote the start of an object");
2438 }
2439 /* need to poison the objs? */
2440 if (cachep->flags & SLAB_POISON) {
2441 poison_obj(cachep, objp, POISON_FREE);
2442 slab_kernel_map(cachep, objp, 0, 0);
2443 }
2444 }
2445 #endif
2446 }
2447
2448 static void cache_init_objs(struct kmem_cache *cachep,
2449 struct page *page)
2450 {
2451 int i;
2452 void *objp;
2453
2454 cache_init_objs_debug(cachep, page);
2455
2456 if (OBJFREELIST_SLAB(cachep)) {
2457 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2458 obj_offset(cachep);
2459 }
2460
2461 for (i = 0; i < cachep->num; i++) {
2462 /* constructor could break poison info */
2463 if (DEBUG == 0 && cachep->ctor) {
2464 objp = index_to_obj(cachep, page, i);
2465 kasan_unpoison_object_data(cachep, objp);
2466 cachep->ctor(objp);
2467 kasan_poison_object_data(cachep, objp);
2468 }
2469
2470 set_free_obj(page, i, i);
2471 }
2472 }
2473
2474 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2475 {
2476 if (CONFIG_ZONE_DMA_FLAG) {
2477 if (flags & GFP_DMA)
2478 BUG_ON(!(cachep->allocflags & GFP_DMA));
2479 else
2480 BUG_ON(cachep->allocflags & GFP_DMA);
2481 }
2482 }
2483
2484 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2485 {
2486 void *objp;
2487
2488 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2489 page->active++;
2490
2491 #if DEBUG
2492 if (cachep->flags & SLAB_STORE_USER)
2493 set_store_user_dirty(cachep);
2494 #endif
2495
2496 return objp;
2497 }
2498
2499 static void slab_put_obj(struct kmem_cache *cachep,
2500 struct page *page, void *objp)
2501 {
2502 unsigned int objnr = obj_to_index(cachep, page, objp);
2503 #if DEBUG
2504 unsigned int i;
2505
2506 /* Verify double free bug */
2507 for (i = page->active; i < cachep->num; i++) {
2508 if (get_free_obj(page, i) == objnr) {
2509 pr_err("slab: double free detected in cache '%s', objp %p\n",
2510 cachep->name, objp);
2511 BUG();
2512 }
2513 }
2514 #endif
2515 page->active--;
2516 if (!page->freelist)
2517 page->freelist = objp + obj_offset(cachep);
2518
2519 set_free_obj(page, page->active, objnr);
2520 }
2521
2522 /*
2523 * Map pages beginning at addr to the given cache and slab. This is required
2524 * for the slab allocator to be able to lookup the cache and slab of a
2525 * virtual address for kfree, ksize, and slab debugging.
2526 */
2527 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2528 void *freelist)
2529 {
2530 page->slab_cache = cache;
2531 page->freelist = freelist;
2532 }
2533
2534 /*
2535 * Grow (by 1) the number of slabs within a cache. This is called by
2536 * kmem_cache_alloc() when there are no active objs left in a cache.
2537 */
2538 static int cache_grow(struct kmem_cache *cachep,
2539 gfp_t flags, int nodeid, struct page *page)
2540 {
2541 void *freelist;
2542 size_t offset;
2543 gfp_t local_flags;
2544 struct kmem_cache_node *n;
2545
2546 /*
2547 * Be lazy and only check for valid flags here, keeping it out of the
2548 * critical path in kmem_cache_alloc().
2549 */
2550 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2551 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2552 BUG();
2553 }
2554 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2555
2556 /* Take the node list lock to change the colour_next on this node */
2557 check_irq_off();
2558 n = get_node(cachep, nodeid);
2559 spin_lock(&n->list_lock);
2560
2561 /* Get colour for the slab, and cal the next value. */
2562 offset = n->colour_next;
2563 n->colour_next++;
2564 if (n->colour_next >= cachep->colour)
2565 n->colour_next = 0;
2566 spin_unlock(&n->list_lock);
2567
2568 offset *= cachep->colour_off;
2569
2570 if (gfpflags_allow_blocking(local_flags))
2571 local_irq_enable();
2572
2573 /*
2574 * The test for missing atomic flag is performed here, rather than
2575 * the more obvious place, simply to reduce the critical path length
2576 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2577 * will eventually be caught here (where it matters).
2578 */
2579 kmem_flagcheck(cachep, flags);
2580
2581 /*
2582 * Get mem for the objs. Attempt to allocate a physical page from
2583 * 'nodeid'.
2584 */
2585 if (!page)
2586 page = kmem_getpages(cachep, local_flags, nodeid);
2587 if (!page)
2588 goto failed;
2589
2590 /* Get slab management. */
2591 freelist = alloc_slabmgmt(cachep, page, offset,
2592 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2593 if (OFF_SLAB(cachep) && !freelist)
2594 goto opps1;
2595
2596 slab_map_pages(cachep, page, freelist);
2597
2598 kasan_poison_slab(page);
2599 cache_init_objs(cachep, page);
2600
2601 if (gfpflags_allow_blocking(local_flags))
2602 local_irq_disable();
2603 check_irq_off();
2604 spin_lock(&n->list_lock);
2605
2606 /* Make slab active. */
2607 list_add_tail(&page->lru, &(n->slabs_free));
2608 STATS_INC_GROWN(cachep);
2609 n->free_objects += cachep->num;
2610 spin_unlock(&n->list_lock);
2611 return 1;
2612 opps1:
2613 kmem_freepages(cachep, page);
2614 failed:
2615 if (gfpflags_allow_blocking(local_flags))
2616 local_irq_disable();
2617 return 0;
2618 }
2619
2620 #if DEBUG
2621
2622 /*
2623 * Perform extra freeing checks:
2624 * - detect bad pointers.
2625 * - POISON/RED_ZONE checking
2626 */
2627 static void kfree_debugcheck(const void *objp)
2628 {
2629 if (!virt_addr_valid(objp)) {
2630 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2631 (unsigned long)objp);
2632 BUG();
2633 }
2634 }
2635
2636 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2637 {
2638 unsigned long long redzone1, redzone2;
2639
2640 redzone1 = *dbg_redzone1(cache, obj);
2641 redzone2 = *dbg_redzone2(cache, obj);
2642
2643 /*
2644 * Redzone is ok.
2645 */
2646 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2647 return;
2648
2649 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2650 slab_error(cache, "double free detected");
2651 else
2652 slab_error(cache, "memory outside object was overwritten");
2653
2654 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2655 obj, redzone1, redzone2);
2656 }
2657
2658 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2659 unsigned long caller)
2660 {
2661 unsigned int objnr;
2662 struct page *page;
2663
2664 BUG_ON(virt_to_cache(objp) != cachep);
2665
2666 objp -= obj_offset(cachep);
2667 kfree_debugcheck(objp);
2668 page = virt_to_head_page(objp);
2669
2670 if (cachep->flags & SLAB_RED_ZONE) {
2671 verify_redzone_free(cachep, objp);
2672 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2673 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2674 }
2675 if (cachep->flags & SLAB_STORE_USER) {
2676 set_store_user_dirty(cachep);
2677 *dbg_userword(cachep, objp) = (void *)caller;
2678 }
2679
2680 objnr = obj_to_index(cachep, page, objp);
2681
2682 BUG_ON(objnr >= cachep->num);
2683 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2684
2685 if (cachep->flags & SLAB_POISON) {
2686 poison_obj(cachep, objp, POISON_FREE);
2687 slab_kernel_map(cachep, objp, 0, caller);
2688 }
2689 return objp;
2690 }
2691
2692 #else
2693 #define kfree_debugcheck(x) do { } while(0)
2694 #define cache_free_debugcheck(x,objp,z) (objp)
2695 #endif
2696
2697 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2698 void **list)
2699 {
2700 #if DEBUG
2701 void *next = *list;
2702 void *objp;
2703
2704 while (next) {
2705 objp = next - obj_offset(cachep);
2706 next = *(void **)next;
2707 poison_obj(cachep, objp, POISON_FREE);
2708 }
2709 #endif
2710 }
2711
2712 static inline void fixup_slab_list(struct kmem_cache *cachep,
2713 struct kmem_cache_node *n, struct page *page,
2714 void **list)
2715 {
2716 /* move slabp to correct slabp list: */
2717 list_del(&page->lru);
2718 if (page->active == cachep->num) {
2719 list_add(&page->lru, &n->slabs_full);
2720 if (OBJFREELIST_SLAB(cachep)) {
2721 #if DEBUG
2722 /* Poisoning will be done without holding the lock */
2723 if (cachep->flags & SLAB_POISON) {
2724 void **objp = page->freelist;
2725
2726 *objp = *list;
2727 *list = objp;
2728 }
2729 #endif
2730 page->freelist = NULL;
2731 }
2732 } else
2733 list_add(&page->lru, &n->slabs_partial);
2734 }
2735
2736 /* Try to find non-pfmemalloc slab if needed */
2737 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2738 struct page *page, bool pfmemalloc)
2739 {
2740 if (!page)
2741 return NULL;
2742
2743 if (pfmemalloc)
2744 return page;
2745
2746 if (!PageSlabPfmemalloc(page))
2747 return page;
2748
2749 /* No need to keep pfmemalloc slab if we have enough free objects */
2750 if (n->free_objects > n->free_limit) {
2751 ClearPageSlabPfmemalloc(page);
2752 return page;
2753 }
2754
2755 /* Move pfmemalloc slab to the end of list to speed up next search */
2756 list_del(&page->lru);
2757 if (!page->active)
2758 list_add_tail(&page->lru, &n->slabs_free);
2759 else
2760 list_add_tail(&page->lru, &n->slabs_partial);
2761
2762 list_for_each_entry(page, &n->slabs_partial, lru) {
2763 if (!PageSlabPfmemalloc(page))
2764 return page;
2765 }
2766
2767 list_for_each_entry(page, &n->slabs_free, lru) {
2768 if (!PageSlabPfmemalloc(page))
2769 return page;
2770 }
2771
2772 return NULL;
2773 }
2774
2775 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2776 {
2777 struct page *page;
2778
2779 page = list_first_entry_or_null(&n->slabs_partial,
2780 struct page, lru);
2781 if (!page) {
2782 n->free_touched = 1;
2783 page = list_first_entry_or_null(&n->slabs_free,
2784 struct page, lru);
2785 }
2786
2787 if (sk_memalloc_socks())
2788 return get_valid_first_slab(n, page, pfmemalloc);
2789
2790 return page;
2791 }
2792
2793 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2794 struct kmem_cache_node *n, gfp_t flags)
2795 {
2796 struct page *page;
2797 void *obj;
2798 void *list = NULL;
2799
2800 if (!gfp_pfmemalloc_allowed(flags))
2801 return NULL;
2802
2803 spin_lock(&n->list_lock);
2804 page = get_first_slab(n, true);
2805 if (!page) {
2806 spin_unlock(&n->list_lock);
2807 return NULL;
2808 }
2809
2810 obj = slab_get_obj(cachep, page);
2811 n->free_objects--;
2812
2813 fixup_slab_list(cachep, n, page, &list);
2814
2815 spin_unlock(&n->list_lock);
2816 fixup_objfreelist_debug(cachep, &list);
2817
2818 return obj;
2819 }
2820
2821 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2822 {
2823 int batchcount;
2824 struct kmem_cache_node *n;
2825 struct array_cache *ac;
2826 int node;
2827 void *list = NULL;
2828
2829 check_irq_off();
2830 node = numa_mem_id();
2831
2832 retry:
2833 ac = cpu_cache_get(cachep);
2834 batchcount = ac->batchcount;
2835 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2836 /*
2837 * If there was little recent activity on this cache, then
2838 * perform only a partial refill. Otherwise we could generate
2839 * refill bouncing.
2840 */
2841 batchcount = BATCHREFILL_LIMIT;
2842 }
2843 n = get_node(cachep, node);
2844
2845 BUG_ON(ac->avail > 0 || !n);
2846 spin_lock(&n->list_lock);
2847
2848 /* See if we can refill from the shared array */
2849 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2850 n->shared->touched = 1;
2851 goto alloc_done;
2852 }
2853
2854 while (batchcount > 0) {
2855 struct page *page;
2856 /* Get slab alloc is to come from. */
2857 page = get_first_slab(n, false);
2858 if (!page)
2859 goto must_grow;
2860
2861 check_spinlock_acquired(cachep);
2862
2863 /*
2864 * The slab was either on partial or free list so
2865 * there must be at least one object available for
2866 * allocation.
2867 */
2868 BUG_ON(page->active >= cachep->num);
2869
2870 while (page->active < cachep->num && batchcount--) {
2871 STATS_INC_ALLOCED(cachep);
2872 STATS_INC_ACTIVE(cachep);
2873 STATS_SET_HIGH(cachep);
2874
2875 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2876 }
2877
2878 fixup_slab_list(cachep, n, page, &list);
2879 }
2880
2881 must_grow:
2882 n->free_objects -= ac->avail;
2883 alloc_done:
2884 spin_unlock(&n->list_lock);
2885 fixup_objfreelist_debug(cachep, &list);
2886
2887 if (unlikely(!ac->avail)) {
2888 int x;
2889
2890 /* Check if we can use obj in pfmemalloc slab */
2891 if (sk_memalloc_socks()) {
2892 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2893
2894 if (obj)
2895 return obj;
2896 }
2897
2898 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2899
2900 /* cache_grow can reenable interrupts, then ac could change. */
2901 ac = cpu_cache_get(cachep);
2902 node = numa_mem_id();
2903
2904 /* no objects in sight? abort */
2905 if (!x && ac->avail == 0)
2906 return NULL;
2907
2908 if (!ac->avail) /* objects refilled by interrupt? */
2909 goto retry;
2910 }
2911 ac->touched = 1;
2912
2913 return ac->entry[--ac->avail];
2914 }
2915
2916 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2917 gfp_t flags)
2918 {
2919 might_sleep_if(gfpflags_allow_blocking(flags));
2920 #if DEBUG
2921 kmem_flagcheck(cachep, flags);
2922 #endif
2923 }
2924
2925 #if DEBUG
2926 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2927 gfp_t flags, void *objp, unsigned long caller)
2928 {
2929 if (!objp)
2930 return objp;
2931 if (cachep->flags & SLAB_POISON) {
2932 check_poison_obj(cachep, objp);
2933 slab_kernel_map(cachep, objp, 1, 0);
2934 poison_obj(cachep, objp, POISON_INUSE);
2935 }
2936 if (cachep->flags & SLAB_STORE_USER)
2937 *dbg_userword(cachep, objp) = (void *)caller;
2938
2939 if (cachep->flags & SLAB_RED_ZONE) {
2940 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2941 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2942 slab_error(cachep, "double free, or memory outside object was overwritten");
2943 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2944 objp, *dbg_redzone1(cachep, objp),
2945 *dbg_redzone2(cachep, objp));
2946 }
2947 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2948 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2949 }
2950
2951 objp += obj_offset(cachep);
2952 if (cachep->ctor && cachep->flags & SLAB_POISON)
2953 cachep->ctor(objp);
2954 if (ARCH_SLAB_MINALIGN &&
2955 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2956 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2957 objp, (int)ARCH_SLAB_MINALIGN);
2958 }
2959 return objp;
2960 }
2961 #else
2962 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2963 #endif
2964
2965 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2966 {
2967 void *objp;
2968 struct array_cache *ac;
2969
2970 check_irq_off();
2971
2972 ac = cpu_cache_get(cachep);
2973 if (likely(ac->avail)) {
2974 ac->touched = 1;
2975 objp = ac->entry[--ac->avail];
2976
2977 STATS_INC_ALLOCHIT(cachep);
2978 goto out;
2979 }
2980
2981 STATS_INC_ALLOCMISS(cachep);
2982 objp = cache_alloc_refill(cachep, flags);
2983 /*
2984 * the 'ac' may be updated by cache_alloc_refill(),
2985 * and kmemleak_erase() requires its correct value.
2986 */
2987 ac = cpu_cache_get(cachep);
2988
2989 out:
2990 /*
2991 * To avoid a false negative, if an object that is in one of the
2992 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2993 * treat the array pointers as a reference to the object.
2994 */
2995 if (objp)
2996 kmemleak_erase(&ac->entry[ac->avail]);
2997 return objp;
2998 }
2999
3000 #ifdef CONFIG_NUMA
3001 /*
3002 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3003 *
3004 * If we are in_interrupt, then process context, including cpusets and
3005 * mempolicy, may not apply and should not be used for allocation policy.
3006 */
3007 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3008 {
3009 int nid_alloc, nid_here;
3010
3011 if (in_interrupt() || (flags & __GFP_THISNODE))
3012 return NULL;
3013 nid_alloc = nid_here = numa_mem_id();
3014 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3015 nid_alloc = cpuset_slab_spread_node();
3016 else if (current->mempolicy)
3017 nid_alloc = mempolicy_slab_node();
3018 if (nid_alloc != nid_here)
3019 return ____cache_alloc_node(cachep, flags, nid_alloc);
3020 return NULL;
3021 }
3022
3023 /*
3024 * Fallback function if there was no memory available and no objects on a
3025 * certain node and fall back is permitted. First we scan all the
3026 * available node for available objects. If that fails then we
3027 * perform an allocation without specifying a node. This allows the page
3028 * allocator to do its reclaim / fallback magic. We then insert the
3029 * slab into the proper nodelist and then allocate from it.
3030 */
3031 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3032 {
3033 struct zonelist *zonelist;
3034 gfp_t local_flags;
3035 struct zoneref *z;
3036 struct zone *zone;
3037 enum zone_type high_zoneidx = gfp_zone(flags);
3038 void *obj = NULL;
3039 int nid;
3040 unsigned int cpuset_mems_cookie;
3041
3042 if (flags & __GFP_THISNODE)
3043 return NULL;
3044
3045 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3046
3047 retry_cpuset:
3048 cpuset_mems_cookie = read_mems_allowed_begin();
3049 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3050
3051 retry:
3052 /*
3053 * Look through allowed nodes for objects available
3054 * from existing per node queues.
3055 */
3056 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3057 nid = zone_to_nid(zone);
3058
3059 if (cpuset_zone_allowed(zone, flags) &&
3060 get_node(cache, nid) &&
3061 get_node(cache, nid)->free_objects) {
3062 obj = ____cache_alloc_node(cache,
3063 gfp_exact_node(flags), nid);
3064 if (obj)
3065 break;
3066 }
3067 }
3068
3069 if (!obj) {
3070 /*
3071 * This allocation will be performed within the constraints
3072 * of the current cpuset / memory policy requirements.
3073 * We may trigger various forms of reclaim on the allowed
3074 * set and go into memory reserves if necessary.
3075 */
3076 struct page *page;
3077
3078 if (gfpflags_allow_blocking(local_flags))
3079 local_irq_enable();
3080 kmem_flagcheck(cache, flags);
3081 page = kmem_getpages(cache, local_flags, numa_mem_id());
3082 if (gfpflags_allow_blocking(local_flags))
3083 local_irq_disable();
3084 if (page) {
3085 /*
3086 * Insert into the appropriate per node queues
3087 */
3088 nid = page_to_nid(page);
3089 if (cache_grow(cache, flags, nid, page)) {
3090 obj = ____cache_alloc_node(cache,
3091 gfp_exact_node(flags), nid);
3092 if (!obj)
3093 /*
3094 * Another processor may allocate the
3095 * objects in the slab since we are
3096 * not holding any locks.
3097 */
3098 goto retry;
3099 } else {
3100 /* cache_grow already freed obj */
3101 obj = NULL;
3102 }
3103 }
3104 }
3105
3106 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3107 goto retry_cpuset;
3108 return obj;
3109 }
3110
3111 /*
3112 * A interface to enable slab creation on nodeid
3113 */
3114 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3115 int nodeid)
3116 {
3117 struct page *page;
3118 struct kmem_cache_node *n;
3119 void *obj;
3120 void *list = NULL;
3121 int x;
3122
3123 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3124 n = get_node(cachep, nodeid);
3125 BUG_ON(!n);
3126
3127 retry:
3128 check_irq_off();
3129 spin_lock(&n->list_lock);
3130 page = get_first_slab(n, false);
3131 if (!page)
3132 goto must_grow;
3133
3134 check_spinlock_acquired_node(cachep, nodeid);
3135
3136 STATS_INC_NODEALLOCS(cachep);
3137 STATS_INC_ACTIVE(cachep);
3138 STATS_SET_HIGH(cachep);
3139
3140 BUG_ON(page->active == cachep->num);
3141
3142 obj = slab_get_obj(cachep, page);
3143 n->free_objects--;
3144
3145 fixup_slab_list(cachep, n, page, &list);
3146
3147 spin_unlock(&n->list_lock);
3148 fixup_objfreelist_debug(cachep, &list);
3149 goto done;
3150
3151 must_grow:
3152 spin_unlock(&n->list_lock);
3153 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3154 if (x)
3155 goto retry;
3156
3157 return fallback_alloc(cachep, flags);
3158
3159 done:
3160 return obj;
3161 }
3162
3163 static __always_inline void *
3164 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3165 unsigned long caller)
3166 {
3167 unsigned long save_flags;
3168 void *ptr;
3169 int slab_node = numa_mem_id();
3170
3171 flags &= gfp_allowed_mask;
3172 cachep = slab_pre_alloc_hook(cachep, flags);
3173 if (unlikely(!cachep))
3174 return NULL;
3175
3176 cache_alloc_debugcheck_before(cachep, flags);
3177 local_irq_save(save_flags);
3178
3179 if (nodeid == NUMA_NO_NODE)
3180 nodeid = slab_node;
3181
3182 if (unlikely(!get_node(cachep, nodeid))) {
3183 /* Node not bootstrapped yet */
3184 ptr = fallback_alloc(cachep, flags);
3185 goto out;
3186 }
3187
3188 if (nodeid == slab_node) {
3189 /*
3190 * Use the locally cached objects if possible.
3191 * However ____cache_alloc does not allow fallback
3192 * to other nodes. It may fail while we still have
3193 * objects on other nodes available.
3194 */
3195 ptr = ____cache_alloc(cachep, flags);
3196 if (ptr)
3197 goto out;
3198 }
3199 /* ___cache_alloc_node can fall back to other nodes */
3200 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3201 out:
3202 local_irq_restore(save_flags);
3203 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3204
3205 if (unlikely(flags & __GFP_ZERO) && ptr)
3206 memset(ptr, 0, cachep->object_size);
3207
3208 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3209 return ptr;
3210 }
3211
3212 static __always_inline void *
3213 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3214 {
3215 void *objp;
3216
3217 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3218 objp = alternate_node_alloc(cache, flags);
3219 if (objp)
3220 goto out;
3221 }
3222 objp = ____cache_alloc(cache, flags);
3223
3224 /*
3225 * We may just have run out of memory on the local node.
3226 * ____cache_alloc_node() knows how to locate memory on other nodes
3227 */
3228 if (!objp)
3229 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3230
3231 out:
3232 return objp;
3233 }
3234 #else
3235
3236 static __always_inline void *
3237 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3238 {
3239 return ____cache_alloc(cachep, flags);
3240 }
3241
3242 #endif /* CONFIG_NUMA */
3243
3244 static __always_inline void *
3245 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3246 {
3247 unsigned long save_flags;
3248 void *objp;
3249
3250 flags &= gfp_allowed_mask;
3251 cachep = slab_pre_alloc_hook(cachep, flags);
3252 if (unlikely(!cachep))
3253 return NULL;
3254
3255 cache_alloc_debugcheck_before(cachep, flags);
3256 local_irq_save(save_flags);
3257 objp = __do_cache_alloc(cachep, flags);
3258 local_irq_restore(save_flags);
3259 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3260 prefetchw(objp);
3261
3262 if (unlikely(flags & __GFP_ZERO) && objp)
3263 memset(objp, 0, cachep->object_size);
3264
3265 slab_post_alloc_hook(cachep, flags, 1, &objp);
3266 return objp;
3267 }
3268
3269 /*
3270 * Caller needs to acquire correct kmem_cache_node's list_lock
3271 * @list: List of detached free slabs should be freed by caller
3272 */
3273 static void free_block(struct kmem_cache *cachep, void **objpp,
3274 int nr_objects, int node, struct list_head *list)
3275 {
3276 int i;
3277 struct kmem_cache_node *n = get_node(cachep, node);
3278
3279 for (i = 0; i < nr_objects; i++) {
3280 void *objp;
3281 struct page *page;
3282
3283 objp = objpp[i];
3284
3285 page = virt_to_head_page(objp);
3286 list_del(&page->lru);
3287 check_spinlock_acquired_node(cachep, node);
3288 slab_put_obj(cachep, page, objp);
3289 STATS_DEC_ACTIVE(cachep);
3290 n->free_objects++;
3291
3292 /* fixup slab chains */
3293 if (page->active == 0) {
3294 if (n->free_objects > n->free_limit) {
3295 n->free_objects -= cachep->num;
3296 list_add_tail(&page->lru, list);
3297 } else {
3298 list_add(&page->lru, &n->slabs_free);
3299 }
3300 } else {
3301 /* Unconditionally move a slab to the end of the
3302 * partial list on free - maximum time for the
3303 * other objects to be freed, too.
3304 */
3305 list_add_tail(&page->lru, &n->slabs_partial);
3306 }
3307 }
3308 }
3309
3310 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3311 {
3312 int batchcount;
3313 struct kmem_cache_node *n;
3314 int node = numa_mem_id();
3315 LIST_HEAD(list);
3316
3317 batchcount = ac->batchcount;
3318
3319 check_irq_off();
3320 n = get_node(cachep, node);
3321 spin_lock(&n->list_lock);
3322 if (n->shared) {
3323 struct array_cache *shared_array = n->shared;
3324 int max = shared_array->limit - shared_array->avail;
3325 if (max) {
3326 if (batchcount > max)
3327 batchcount = max;
3328 memcpy(&(shared_array->entry[shared_array->avail]),
3329 ac->entry, sizeof(void *) * batchcount);
3330 shared_array->avail += batchcount;
3331 goto free_done;
3332 }
3333 }
3334
3335 free_block(cachep, ac->entry, batchcount, node, &list);
3336 free_done:
3337 #if STATS
3338 {
3339 int i = 0;
3340 struct page *page;
3341
3342 list_for_each_entry(page, &n->slabs_free, lru) {
3343 BUG_ON(page->active);
3344
3345 i++;
3346 }
3347 STATS_SET_FREEABLE(cachep, i);
3348 }
3349 #endif
3350 spin_unlock(&n->list_lock);
3351 slabs_destroy(cachep, &list);
3352 ac->avail -= batchcount;
3353 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3354 }
3355
3356 /*
3357 * Release an obj back to its cache. If the obj has a constructed state, it must
3358 * be in this state _before_ it is released. Called with disabled ints.
3359 */
3360 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3361 unsigned long caller)
3362 {
3363 struct array_cache *ac = cpu_cache_get(cachep);
3364
3365 kasan_slab_free(cachep, objp);
3366
3367 check_irq_off();
3368 kmemleak_free_recursive(objp, cachep->flags);
3369 objp = cache_free_debugcheck(cachep, objp, caller);
3370
3371 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3372
3373 /*
3374 * Skip calling cache_free_alien() when the platform is not numa.
3375 * This will avoid cache misses that happen while accessing slabp (which
3376 * is per page memory reference) to get nodeid. Instead use a global
3377 * variable to skip the call, which is mostly likely to be present in
3378 * the cache.
3379 */
3380 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3381 return;
3382
3383 if (ac->avail < ac->limit) {
3384 STATS_INC_FREEHIT(cachep);
3385 } else {
3386 STATS_INC_FREEMISS(cachep);
3387 cache_flusharray(cachep, ac);
3388 }
3389
3390 if (sk_memalloc_socks()) {
3391 struct page *page = virt_to_head_page(objp);
3392
3393 if (unlikely(PageSlabPfmemalloc(page))) {
3394 cache_free_pfmemalloc(cachep, page, objp);
3395 return;
3396 }
3397 }
3398
3399 ac->entry[ac->avail++] = objp;
3400 }
3401
3402 /**
3403 * kmem_cache_alloc - Allocate an object
3404 * @cachep: The cache to allocate from.
3405 * @flags: See kmalloc().
3406 *
3407 * Allocate an object from this cache. The flags are only relevant
3408 * if the cache has no available objects.
3409 */
3410 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3411 {
3412 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3413
3414 kasan_slab_alloc(cachep, ret, flags);
3415 trace_kmem_cache_alloc(_RET_IP_, ret,
3416 cachep->object_size, cachep->size, flags);
3417
3418 return ret;
3419 }
3420 EXPORT_SYMBOL(kmem_cache_alloc);
3421
3422 static __always_inline void
3423 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3424 size_t size, void **p, unsigned long caller)
3425 {
3426 size_t i;
3427
3428 for (i = 0; i < size; i++)
3429 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3430 }
3431
3432 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3433 void **p)
3434 {
3435 size_t i;
3436
3437 s = slab_pre_alloc_hook(s, flags);
3438 if (!s)
3439 return 0;
3440
3441 cache_alloc_debugcheck_before(s, flags);
3442
3443 local_irq_disable();
3444 for (i = 0; i < size; i++) {
3445 void *objp = __do_cache_alloc(s, flags);
3446
3447 if (unlikely(!objp))
3448 goto error;
3449 p[i] = objp;
3450 }
3451 local_irq_enable();
3452
3453 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3454
3455 /* Clear memory outside IRQ disabled section */
3456 if (unlikely(flags & __GFP_ZERO))
3457 for (i = 0; i < size; i++)
3458 memset(p[i], 0, s->object_size);
3459
3460 slab_post_alloc_hook(s, flags, size, p);
3461 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3462 return size;
3463 error:
3464 local_irq_enable();
3465 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3466 slab_post_alloc_hook(s, flags, i, p);
3467 __kmem_cache_free_bulk(s, i, p);
3468 return 0;
3469 }
3470 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3471
3472 #ifdef CONFIG_TRACING
3473 void *
3474 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3475 {
3476 void *ret;
3477
3478 ret = slab_alloc(cachep, flags, _RET_IP_);
3479
3480 kasan_kmalloc(cachep, ret, size, flags);
3481 trace_kmalloc(_RET_IP_, ret,
3482 size, cachep->size, flags);
3483 return ret;
3484 }
3485 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3486 #endif
3487
3488 #ifdef CONFIG_NUMA
3489 /**
3490 * kmem_cache_alloc_node - Allocate an object on the specified node
3491 * @cachep: The cache to allocate from.
3492 * @flags: See kmalloc().
3493 * @nodeid: node number of the target node.
3494 *
3495 * Identical to kmem_cache_alloc but it will allocate memory on the given
3496 * node, which can improve the performance for cpu bound structures.
3497 *
3498 * Fallback to other node is possible if __GFP_THISNODE is not set.
3499 */
3500 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3501 {
3502 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3503
3504 kasan_slab_alloc(cachep, ret, flags);
3505 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3506 cachep->object_size, cachep->size,
3507 flags, nodeid);
3508
3509 return ret;
3510 }
3511 EXPORT_SYMBOL(kmem_cache_alloc_node);
3512
3513 #ifdef CONFIG_TRACING
3514 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3515 gfp_t flags,
3516 int nodeid,
3517 size_t size)
3518 {
3519 void *ret;
3520
3521 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3522
3523 kasan_kmalloc(cachep, ret, size, flags);
3524 trace_kmalloc_node(_RET_IP_, ret,
3525 size, cachep->size,
3526 flags, nodeid);
3527 return ret;
3528 }
3529 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3530 #endif
3531
3532 static __always_inline void *
3533 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3534 {
3535 struct kmem_cache *cachep;
3536 void *ret;
3537
3538 cachep = kmalloc_slab(size, flags);
3539 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3540 return cachep;
3541 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3542 kasan_kmalloc(cachep, ret, size, flags);
3543
3544 return ret;
3545 }
3546
3547 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3548 {
3549 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3550 }
3551 EXPORT_SYMBOL(__kmalloc_node);
3552
3553 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3554 int node, unsigned long caller)
3555 {
3556 return __do_kmalloc_node(size, flags, node, caller);
3557 }
3558 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3559 #endif /* CONFIG_NUMA */
3560
3561 /**
3562 * __do_kmalloc - allocate memory
3563 * @size: how many bytes of memory are required.
3564 * @flags: the type of memory to allocate (see kmalloc).
3565 * @caller: function caller for debug tracking of the caller
3566 */
3567 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3568 unsigned long caller)
3569 {
3570 struct kmem_cache *cachep;
3571 void *ret;
3572
3573 cachep = kmalloc_slab(size, flags);
3574 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3575 return cachep;
3576 ret = slab_alloc(cachep, flags, caller);
3577
3578 kasan_kmalloc(cachep, ret, size, flags);
3579 trace_kmalloc(caller, ret,
3580 size, cachep->size, flags);
3581
3582 return ret;
3583 }
3584
3585 void *__kmalloc(size_t size, gfp_t flags)
3586 {
3587 return __do_kmalloc(size, flags, _RET_IP_);
3588 }
3589 EXPORT_SYMBOL(__kmalloc);
3590
3591 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3592 {
3593 return __do_kmalloc(size, flags, caller);
3594 }
3595 EXPORT_SYMBOL(__kmalloc_track_caller);
3596
3597 /**
3598 * kmem_cache_free - Deallocate an object
3599 * @cachep: The cache the allocation was from.
3600 * @objp: The previously allocated object.
3601 *
3602 * Free an object which was previously allocated from this
3603 * cache.
3604 */
3605 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3606 {
3607 unsigned long flags;
3608 cachep = cache_from_obj(cachep, objp);
3609 if (!cachep)
3610 return;
3611
3612 local_irq_save(flags);
3613 debug_check_no_locks_freed(objp, cachep->object_size);
3614 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3615 debug_check_no_obj_freed(objp, cachep->object_size);
3616 __cache_free(cachep, objp, _RET_IP_);
3617 local_irq_restore(flags);
3618
3619 trace_kmem_cache_free(_RET_IP_, objp);
3620 }
3621 EXPORT_SYMBOL(kmem_cache_free);
3622
3623 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3624 {
3625 struct kmem_cache *s;
3626 size_t i;
3627
3628 local_irq_disable();
3629 for (i = 0; i < size; i++) {
3630 void *objp = p[i];
3631
3632 if (!orig_s) /* called via kfree_bulk */
3633 s = virt_to_cache(objp);
3634 else
3635 s = cache_from_obj(orig_s, objp);
3636
3637 debug_check_no_locks_freed(objp, s->object_size);
3638 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3639 debug_check_no_obj_freed(objp, s->object_size);
3640
3641 __cache_free(s, objp, _RET_IP_);
3642 }
3643 local_irq_enable();
3644
3645 /* FIXME: add tracing */
3646 }
3647 EXPORT_SYMBOL(kmem_cache_free_bulk);
3648
3649 /**
3650 * kfree - free previously allocated memory
3651 * @objp: pointer returned by kmalloc.
3652 *
3653 * If @objp is NULL, no operation is performed.
3654 *
3655 * Don't free memory not originally allocated by kmalloc()
3656 * or you will run into trouble.
3657 */
3658 void kfree(const void *objp)
3659 {
3660 struct kmem_cache *c;
3661 unsigned long flags;
3662
3663 trace_kfree(_RET_IP_, objp);
3664
3665 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3666 return;
3667 local_irq_save(flags);
3668 kfree_debugcheck(objp);
3669 c = virt_to_cache(objp);
3670 debug_check_no_locks_freed(objp, c->object_size);
3671
3672 debug_check_no_obj_freed(objp, c->object_size);
3673 __cache_free(c, (void *)objp, _RET_IP_);
3674 local_irq_restore(flags);
3675 }
3676 EXPORT_SYMBOL(kfree);
3677
3678 /*
3679 * This initializes kmem_cache_node or resizes various caches for all nodes.
3680 */
3681 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3682 {
3683 int node;
3684 struct kmem_cache_node *n;
3685 struct array_cache *new_shared;
3686 struct alien_cache **new_alien = NULL;
3687
3688 for_each_online_node(node) {
3689
3690 if (use_alien_caches) {
3691 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3692 if (!new_alien)
3693 goto fail;
3694 }
3695
3696 new_shared = NULL;
3697 if (cachep->shared) {
3698 new_shared = alloc_arraycache(node,
3699 cachep->shared*cachep->batchcount,
3700 0xbaadf00d, gfp);
3701 if (!new_shared) {
3702 free_alien_cache(new_alien);
3703 goto fail;
3704 }
3705 }
3706
3707 n = get_node(cachep, node);
3708 if (n) {
3709 struct array_cache *shared = n->shared;
3710 LIST_HEAD(list);
3711
3712 spin_lock_irq(&n->list_lock);
3713
3714 if (shared)
3715 free_block(cachep, shared->entry,
3716 shared->avail, node, &list);
3717
3718 n->shared = new_shared;
3719 if (!n->alien) {
3720 n->alien = new_alien;
3721 new_alien = NULL;
3722 }
3723 n->free_limit = (1 + nr_cpus_node(node)) *
3724 cachep->batchcount + cachep->num;
3725 spin_unlock_irq(&n->list_lock);
3726 slabs_destroy(cachep, &list);
3727 kfree(shared);
3728 free_alien_cache(new_alien);
3729 continue;
3730 }
3731 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3732 if (!n) {
3733 free_alien_cache(new_alien);
3734 kfree(new_shared);
3735 goto fail;
3736 }
3737
3738 kmem_cache_node_init(n);
3739 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3740 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3741 n->shared = new_shared;
3742 n->alien = new_alien;
3743 n->free_limit = (1 + nr_cpus_node(node)) *
3744 cachep->batchcount + cachep->num;
3745 cachep->node[node] = n;
3746 }
3747 return 0;
3748
3749 fail:
3750 if (!cachep->list.next) {
3751 /* Cache is not active yet. Roll back what we did */
3752 node--;
3753 while (node >= 0) {
3754 n = get_node(cachep, node);
3755 if (n) {
3756 kfree(n->shared);
3757 free_alien_cache(n->alien);
3758 kfree(n);
3759 cachep->node[node] = NULL;
3760 }
3761 node--;
3762 }
3763 }
3764 return -ENOMEM;
3765 }
3766
3767 /* Always called with the slab_mutex held */
3768 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3769 int batchcount, int shared, gfp_t gfp)
3770 {
3771 struct array_cache __percpu *cpu_cache, *prev;
3772 int cpu;
3773
3774 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3775 if (!cpu_cache)
3776 return -ENOMEM;
3777
3778 prev = cachep->cpu_cache;
3779 cachep->cpu_cache = cpu_cache;
3780 kick_all_cpus_sync();
3781
3782 check_irq_on();
3783 cachep->batchcount = batchcount;
3784 cachep->limit = limit;
3785 cachep->shared = shared;
3786
3787 if (!prev)
3788 goto alloc_node;
3789
3790 for_each_online_cpu(cpu) {
3791 LIST_HEAD(list);
3792 int node;
3793 struct kmem_cache_node *n;
3794 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3795
3796 node = cpu_to_mem(cpu);
3797 n = get_node(cachep, node);
3798 spin_lock_irq(&n->list_lock);
3799 free_block(cachep, ac->entry, ac->avail, node, &list);
3800 spin_unlock_irq(&n->list_lock);
3801 slabs_destroy(cachep, &list);
3802 }
3803 free_percpu(prev);
3804
3805 alloc_node:
3806 return alloc_kmem_cache_node(cachep, gfp);
3807 }
3808
3809 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3810 int batchcount, int shared, gfp_t gfp)
3811 {
3812 int ret;
3813 struct kmem_cache *c;
3814
3815 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3816
3817 if (slab_state < FULL)
3818 return ret;
3819
3820 if ((ret < 0) || !is_root_cache(cachep))
3821 return ret;
3822
3823 lockdep_assert_held(&slab_mutex);
3824 for_each_memcg_cache(c, cachep) {
3825 /* return value determined by the root cache only */
3826 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3827 }
3828
3829 return ret;
3830 }
3831
3832 /* Called with slab_mutex held always */
3833 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3834 {
3835 int err;
3836 int limit = 0;
3837 int shared = 0;
3838 int batchcount = 0;
3839
3840 if (!is_root_cache(cachep)) {
3841 struct kmem_cache *root = memcg_root_cache(cachep);
3842 limit = root->limit;
3843 shared = root->shared;
3844 batchcount = root->batchcount;
3845 }
3846
3847 if (limit && shared && batchcount)
3848 goto skip_setup;
3849 /*
3850 * The head array serves three purposes:
3851 * - create a LIFO ordering, i.e. return objects that are cache-warm
3852 * - reduce the number of spinlock operations.
3853 * - reduce the number of linked list operations on the slab and
3854 * bufctl chains: array operations are cheaper.
3855 * The numbers are guessed, we should auto-tune as described by
3856 * Bonwick.
3857 */
3858 if (cachep->size > 131072)
3859 limit = 1;
3860 else if (cachep->size > PAGE_SIZE)
3861 limit = 8;
3862 else if (cachep->size > 1024)
3863 limit = 24;
3864 else if (cachep->size > 256)
3865 limit = 54;
3866 else
3867 limit = 120;
3868
3869 /*
3870 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3871 * allocation behaviour: Most allocs on one cpu, most free operations
3872 * on another cpu. For these cases, an efficient object passing between
3873 * cpus is necessary. This is provided by a shared array. The array
3874 * replaces Bonwick's magazine layer.
3875 * On uniprocessor, it's functionally equivalent (but less efficient)
3876 * to a larger limit. Thus disabled by default.
3877 */
3878 shared = 0;
3879 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3880 shared = 8;
3881
3882 #if DEBUG
3883 /*
3884 * With debugging enabled, large batchcount lead to excessively long
3885 * periods with disabled local interrupts. Limit the batchcount
3886 */
3887 if (limit > 32)
3888 limit = 32;
3889 #endif
3890 batchcount = (limit + 1) / 2;
3891 skip_setup:
3892 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3893 if (err)
3894 pr_err("enable_cpucache failed for %s, error %d\n",
3895 cachep->name, -err);
3896 return err;
3897 }
3898
3899 /*
3900 * Drain an array if it contains any elements taking the node lock only if
3901 * necessary. Note that the node listlock also protects the array_cache
3902 * if drain_array() is used on the shared array.
3903 */
3904 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3905 struct array_cache *ac, int node)
3906 {
3907 LIST_HEAD(list);
3908
3909 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3910 check_mutex_acquired();
3911
3912 if (!ac || !ac->avail)
3913 return;
3914
3915 if (ac->touched) {
3916 ac->touched = 0;
3917 return;
3918 }
3919
3920 spin_lock_irq(&n->list_lock);
3921 drain_array_locked(cachep, ac, node, false, &list);
3922 spin_unlock_irq(&n->list_lock);
3923
3924 slabs_destroy(cachep, &list);
3925 }
3926
3927 /**
3928 * cache_reap - Reclaim memory from caches.
3929 * @w: work descriptor
3930 *
3931 * Called from workqueue/eventd every few seconds.
3932 * Purpose:
3933 * - clear the per-cpu caches for this CPU.
3934 * - return freeable pages to the main free memory pool.
3935 *
3936 * If we cannot acquire the cache chain mutex then just give up - we'll try
3937 * again on the next iteration.
3938 */
3939 static void cache_reap(struct work_struct *w)
3940 {
3941 struct kmem_cache *searchp;
3942 struct kmem_cache_node *n;
3943 int node = numa_mem_id();
3944 struct delayed_work *work = to_delayed_work(w);
3945
3946 if (!mutex_trylock(&slab_mutex))
3947 /* Give up. Setup the next iteration. */
3948 goto out;
3949
3950 list_for_each_entry(searchp, &slab_caches, list) {
3951 check_irq_on();
3952
3953 /*
3954 * We only take the node lock if absolutely necessary and we
3955 * have established with reasonable certainty that
3956 * we can do some work if the lock was obtained.
3957 */
3958 n = get_node(searchp, node);
3959
3960 reap_alien(searchp, n);
3961
3962 drain_array(searchp, n, cpu_cache_get(searchp), node);
3963
3964 /*
3965 * These are racy checks but it does not matter
3966 * if we skip one check or scan twice.
3967 */
3968 if (time_after(n->next_reap, jiffies))
3969 goto next;
3970
3971 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3972
3973 drain_array(searchp, n, n->shared, node);
3974
3975 if (n->free_touched)
3976 n->free_touched = 0;
3977 else {
3978 int freed;
3979
3980 freed = drain_freelist(searchp, n, (n->free_limit +
3981 5 * searchp->num - 1) / (5 * searchp->num));
3982 STATS_ADD_REAPED(searchp, freed);
3983 }
3984 next:
3985 cond_resched();
3986 }
3987 check_irq_on();
3988 mutex_unlock(&slab_mutex);
3989 next_reap_node();
3990 out:
3991 /* Set up the next iteration */
3992 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3993 }
3994
3995 #ifdef CONFIG_SLABINFO
3996 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3997 {
3998 struct page *page;
3999 unsigned long active_objs;
4000 unsigned long num_objs;
4001 unsigned long active_slabs = 0;
4002 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4003 const char *name;
4004 char *error = NULL;
4005 int node;
4006 struct kmem_cache_node *n;
4007
4008 active_objs = 0;
4009 num_slabs = 0;
4010 for_each_kmem_cache_node(cachep, node, n) {
4011
4012 check_irq_on();
4013 spin_lock_irq(&n->list_lock);
4014
4015 list_for_each_entry(page, &n->slabs_full, lru) {
4016 if (page->active != cachep->num && !error)
4017 error = "slabs_full accounting error";
4018 active_objs += cachep->num;
4019 active_slabs++;
4020 }
4021 list_for_each_entry(page, &n->slabs_partial, lru) {
4022 if (page->active == cachep->num && !error)
4023 error = "slabs_partial accounting error";
4024 if (!page->active && !error)
4025 error = "slabs_partial accounting error";
4026 active_objs += page->active;
4027 active_slabs++;
4028 }
4029 list_for_each_entry(page, &n->slabs_free, lru) {
4030 if (page->active && !error)
4031 error = "slabs_free accounting error";
4032 num_slabs++;
4033 }
4034 free_objects += n->free_objects;
4035 if (n->shared)
4036 shared_avail += n->shared->avail;
4037
4038 spin_unlock_irq(&n->list_lock);
4039 }
4040 num_slabs += active_slabs;
4041 num_objs = num_slabs * cachep->num;
4042 if (num_objs - active_objs != free_objects && !error)
4043 error = "free_objects accounting error";
4044
4045 name = cachep->name;
4046 if (error)
4047 pr_err("slab: cache %s error: %s\n", name, error);
4048
4049 sinfo->active_objs = active_objs;
4050 sinfo->num_objs = num_objs;
4051 sinfo->active_slabs = active_slabs;
4052 sinfo->num_slabs = num_slabs;
4053 sinfo->shared_avail = shared_avail;
4054 sinfo->limit = cachep->limit;
4055 sinfo->batchcount = cachep->batchcount;
4056 sinfo->shared = cachep->shared;
4057 sinfo->objects_per_slab = cachep->num;
4058 sinfo->cache_order = cachep->gfporder;
4059 }
4060
4061 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4062 {
4063 #if STATS
4064 { /* node stats */
4065 unsigned long high = cachep->high_mark;
4066 unsigned long allocs = cachep->num_allocations;
4067 unsigned long grown = cachep->grown;
4068 unsigned long reaped = cachep->reaped;
4069 unsigned long errors = cachep->errors;
4070 unsigned long max_freeable = cachep->max_freeable;
4071 unsigned long node_allocs = cachep->node_allocs;
4072 unsigned long node_frees = cachep->node_frees;
4073 unsigned long overflows = cachep->node_overflow;
4074
4075 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4076 allocs, high, grown,
4077 reaped, errors, max_freeable, node_allocs,
4078 node_frees, overflows);
4079 }
4080 /* cpu stats */
4081 {
4082 unsigned long allochit = atomic_read(&cachep->allochit);
4083 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4084 unsigned long freehit = atomic_read(&cachep->freehit);
4085 unsigned long freemiss = atomic_read(&cachep->freemiss);
4086
4087 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4088 allochit, allocmiss, freehit, freemiss);
4089 }
4090 #endif
4091 }
4092
4093 #define MAX_SLABINFO_WRITE 128
4094 /**
4095 * slabinfo_write - Tuning for the slab allocator
4096 * @file: unused
4097 * @buffer: user buffer
4098 * @count: data length
4099 * @ppos: unused
4100 */
4101 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4102 size_t count, loff_t *ppos)
4103 {
4104 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4105 int limit, batchcount, shared, res;
4106 struct kmem_cache *cachep;
4107
4108 if (count > MAX_SLABINFO_WRITE)
4109 return -EINVAL;
4110 if (copy_from_user(&kbuf, buffer, count))
4111 return -EFAULT;
4112 kbuf[MAX_SLABINFO_WRITE] = '\0';
4113
4114 tmp = strchr(kbuf, ' ');
4115 if (!tmp)
4116 return -EINVAL;
4117 *tmp = '\0';
4118 tmp++;
4119 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4120 return -EINVAL;
4121
4122 /* Find the cache in the chain of caches. */
4123 mutex_lock(&slab_mutex);
4124 res = -EINVAL;
4125 list_for_each_entry(cachep, &slab_caches, list) {
4126 if (!strcmp(cachep->name, kbuf)) {
4127 if (limit < 1 || batchcount < 1 ||
4128 batchcount > limit || shared < 0) {
4129 res = 0;
4130 } else {
4131 res = do_tune_cpucache(cachep, limit,
4132 batchcount, shared,
4133 GFP_KERNEL);
4134 }
4135 break;
4136 }
4137 }
4138 mutex_unlock(&slab_mutex);
4139 if (res >= 0)
4140 res = count;
4141 return res;
4142 }
4143
4144 #ifdef CONFIG_DEBUG_SLAB_LEAK
4145
4146 static inline int add_caller(unsigned long *n, unsigned long v)
4147 {
4148 unsigned long *p;
4149 int l;
4150 if (!v)
4151 return 1;
4152 l = n[1];
4153 p = n + 2;
4154 while (l) {
4155 int i = l/2;
4156 unsigned long *q = p + 2 * i;
4157 if (*q == v) {
4158 q[1]++;
4159 return 1;
4160 }
4161 if (*q > v) {
4162 l = i;
4163 } else {
4164 p = q + 2;
4165 l -= i + 1;
4166 }
4167 }
4168 if (++n[1] == n[0])
4169 return 0;
4170 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4171 p[0] = v;
4172 p[1] = 1;
4173 return 1;
4174 }
4175
4176 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4177 struct page *page)
4178 {
4179 void *p;
4180 int i, j;
4181 unsigned long v;
4182
4183 if (n[0] == n[1])
4184 return;
4185 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4186 bool active = true;
4187
4188 for (j = page->active; j < c->num; j++) {
4189 if (get_free_obj(page, j) == i) {
4190 active = false;
4191 break;
4192 }
4193 }
4194
4195 if (!active)
4196 continue;
4197
4198 /*
4199 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4200 * mapping is established when actual object allocation and
4201 * we could mistakenly access the unmapped object in the cpu
4202 * cache.
4203 */
4204 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4205 continue;
4206
4207 if (!add_caller(n, v))
4208 return;
4209 }
4210 }
4211
4212 static void show_symbol(struct seq_file *m, unsigned long address)
4213 {
4214 #ifdef CONFIG_KALLSYMS
4215 unsigned long offset, size;
4216 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4217
4218 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4219 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4220 if (modname[0])
4221 seq_printf(m, " [%s]", modname);
4222 return;
4223 }
4224 #endif
4225 seq_printf(m, "%p", (void *)address);
4226 }
4227
4228 static int leaks_show(struct seq_file *m, void *p)
4229 {
4230 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4231 struct page *page;
4232 struct kmem_cache_node *n;
4233 const char *name;
4234 unsigned long *x = m->private;
4235 int node;
4236 int i;
4237
4238 if (!(cachep->flags & SLAB_STORE_USER))
4239 return 0;
4240 if (!(cachep->flags & SLAB_RED_ZONE))
4241 return 0;
4242
4243 /*
4244 * Set store_user_clean and start to grab stored user information
4245 * for all objects on this cache. If some alloc/free requests comes
4246 * during the processing, information would be wrong so restart
4247 * whole processing.
4248 */
4249 do {
4250 set_store_user_clean(cachep);
4251 drain_cpu_caches(cachep);
4252
4253 x[1] = 0;
4254
4255 for_each_kmem_cache_node(cachep, node, n) {
4256
4257 check_irq_on();
4258 spin_lock_irq(&n->list_lock);
4259
4260 list_for_each_entry(page, &n->slabs_full, lru)
4261 handle_slab(x, cachep, page);
4262 list_for_each_entry(page, &n->slabs_partial, lru)
4263 handle_slab(x, cachep, page);
4264 spin_unlock_irq(&n->list_lock);
4265 }
4266 } while (!is_store_user_clean(cachep));
4267
4268 name = cachep->name;
4269 if (x[0] == x[1]) {
4270 /* Increase the buffer size */
4271 mutex_unlock(&slab_mutex);
4272 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4273 if (!m->private) {
4274 /* Too bad, we are really out */
4275 m->private = x;
4276 mutex_lock(&slab_mutex);
4277 return -ENOMEM;
4278 }
4279 *(unsigned long *)m->private = x[0] * 2;
4280 kfree(x);
4281 mutex_lock(&slab_mutex);
4282 /* Now make sure this entry will be retried */
4283 m->count = m->size;
4284 return 0;
4285 }
4286 for (i = 0; i < x[1]; i++) {
4287 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4288 show_symbol(m, x[2*i+2]);
4289 seq_putc(m, '\n');
4290 }
4291
4292 return 0;
4293 }
4294
4295 static const struct seq_operations slabstats_op = {
4296 .start = slab_start,
4297 .next = slab_next,
4298 .stop = slab_stop,
4299 .show = leaks_show,
4300 };
4301
4302 static int slabstats_open(struct inode *inode, struct file *file)
4303 {
4304 unsigned long *n;
4305
4306 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4307 if (!n)
4308 return -ENOMEM;
4309
4310 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4311
4312 return 0;
4313 }
4314
4315 static const struct file_operations proc_slabstats_operations = {
4316 .open = slabstats_open,
4317 .read = seq_read,
4318 .llseek = seq_lseek,
4319 .release = seq_release_private,
4320 };
4321 #endif
4322
4323 static int __init slab_proc_init(void)
4324 {
4325 #ifdef CONFIG_DEBUG_SLAB_LEAK
4326 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4327 #endif
4328 return 0;
4329 }
4330 module_init(slab_proc_init);
4331 #endif
4332
4333 /**
4334 * ksize - get the actual amount of memory allocated for a given object
4335 * @objp: Pointer to the object
4336 *
4337 * kmalloc may internally round up allocations and return more memory
4338 * than requested. ksize() can be used to determine the actual amount of
4339 * memory allocated. The caller may use this additional memory, even though
4340 * a smaller amount of memory was initially specified with the kmalloc call.
4341 * The caller must guarantee that objp points to a valid object previously
4342 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4343 * must not be freed during the duration of the call.
4344 */
4345 size_t ksize(const void *objp)
4346 {
4347 size_t size;
4348
4349 BUG_ON(!objp);
4350 if (unlikely(objp == ZERO_SIZE_PTR))
4351 return 0;
4352
4353 size = virt_to_cache(objp)->object_size;
4354 /* We assume that ksize callers could use the whole allocated area,
4355 * so we need to unpoison this area.
4356 */
4357 kasan_krealloc(objp, size, GFP_NOWAIT);
4358
4359 return size;
4360 }
4361 EXPORT_SYMBOL(ksize);