]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slab.h
KVM: x86/xen: Remove extra unlock in kvm_xen_hvm_set_attr()
[mirror_ubuntu-jammy-kernel.git] / mm / slab.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5 * Internal slab definitions
6 */
7
8 #ifdef CONFIG_SLOB
9 /*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20 struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31 };
32
33 #endif /* CONFIG_SLOB */
34
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49
50 /*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58 enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64 };
65
66 extern enum slab_state slab_state;
67
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 const char *name[NR_KMALLOC_TYPES];
80 unsigned int size;
81 } kmalloc_info[];
82
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96
97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 slab_flags_t flags, unsigned int useroffset,
99 unsigned int usersize);
100 extern void create_boot_cache(struct kmem_cache *, const char *name,
101 unsigned int size, slab_flags_t flags,
102 unsigned int useroffset, unsigned int usersize);
103
104 int slab_unmergeable(struct kmem_cache *s);
105 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106 slab_flags_t flags, const char *name, void (*ctor)(void *));
107 #ifndef CONFIG_SLOB
108 struct kmem_cache *
109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110 slab_flags_t flags, void (*ctor)(void *));
111
112 slab_flags_t kmem_cache_flags(unsigned int object_size,
113 slab_flags_t flags, const char *name,
114 void (*ctor)(void *));
115 #else
116 static inline struct kmem_cache *
117 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
118 slab_flags_t flags, void (*ctor)(void *))
119 { return NULL; }
120
121 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
122 slab_flags_t flags, const char *name,
123 void (*ctor)(void *))
124 {
125 return flags;
126 }
127 #endif
128
129
130 /* Legal flag mask for kmem_cache_create(), for various configurations */
131 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 SLAB_CACHE_DMA32 | SLAB_PANIC | \
133 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
134
135 #if defined(CONFIG_DEBUG_SLAB)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137 #elif defined(CONFIG_SLUB_DEBUG)
138 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
139 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
140 #else
141 #define SLAB_DEBUG_FLAGS (0)
142 #endif
143
144 #if defined(CONFIG_SLAB)
145 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
146 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
147 SLAB_ACCOUNT)
148 #elif defined(CONFIG_SLUB)
149 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_TEMPORARY | SLAB_ACCOUNT)
151 #else
152 #define SLAB_CACHE_FLAGS (0)
153 #endif
154
155 /* Common flags available with current configuration */
156 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157
158 /* Common flags permitted for kmem_cache_create */
159 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 SLAB_RED_ZONE | \
161 SLAB_POISON | \
162 SLAB_STORE_USER | \
163 SLAB_TRACE | \
164 SLAB_CONSISTENCY_CHECKS | \
165 SLAB_MEM_SPREAD | \
166 SLAB_NOLEAKTRACE | \
167 SLAB_RECLAIM_ACCOUNT | \
168 SLAB_TEMPORARY | \
169 SLAB_ACCOUNT)
170
171 bool __kmem_cache_empty(struct kmem_cache *);
172 int __kmem_cache_shutdown(struct kmem_cache *);
173 void __kmem_cache_release(struct kmem_cache *);
174 int __kmem_cache_shrink(struct kmem_cache *);
175 void slab_kmem_cache_release(struct kmem_cache *);
176
177 struct seq_file;
178 struct file;
179
180 struct slabinfo {
181 unsigned long active_objs;
182 unsigned long num_objs;
183 unsigned long active_slabs;
184 unsigned long num_slabs;
185 unsigned long shared_avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int shared;
189 unsigned int objects_per_slab;
190 unsigned int cache_order;
191 };
192
193 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
195 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 size_t count, loff_t *ppos);
197
198 /*
199 * Generic implementation of bulk operations
200 * These are useful for situations in which the allocator cannot
201 * perform optimizations. In that case segments of the object listed
202 * may be allocated or freed using these operations.
203 */
204 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
205 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
206
207 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
208 {
209 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
210 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
211 }
212
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 extern void print_tracking(struct kmem_cache *s, void *object);
220 #else
221 static inline void print_tracking(struct kmem_cache *s, void *object)
222 {
223 }
224 #endif
225
226 /*
227 * Returns true if any of the specified slub_debug flags is enabled for the
228 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229 * the static key.
230 */
231 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232 {
233 #ifdef CONFIG_SLUB_DEBUG
234 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 if (static_branch_unlikely(&slub_debug_enabled))
236 return s->flags & flags;
237 #endif
238 return false;
239 }
240
241 #ifdef CONFIG_MEMCG_KMEM
242 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
243 gfp_t gfp);
244
245 static inline void memcg_free_page_obj_cgroups(struct page *page)
246 {
247 kfree(page_objcgs(page));
248 page->memcg_data = 0;
249 }
250
251 static inline size_t obj_full_size(struct kmem_cache *s)
252 {
253 /*
254 * For each accounted object there is an extra space which is used
255 * to store obj_cgroup membership. Charge it too.
256 */
257 return s->size + sizeof(struct obj_cgroup *);
258 }
259
260 /*
261 * Returns false if the allocation should fail.
262 */
263 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
264 struct obj_cgroup **objcgp,
265 size_t objects, gfp_t flags)
266 {
267 struct obj_cgroup *objcg;
268
269 if (!memcg_kmem_enabled())
270 return true;
271
272 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
273 return true;
274
275 objcg = get_obj_cgroup_from_current();
276 if (!objcg)
277 return true;
278
279 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
280 obj_cgroup_put(objcg);
281 return false;
282 }
283
284 *objcgp = objcg;
285 return true;
286 }
287
288 static inline void mod_objcg_state(struct obj_cgroup *objcg,
289 struct pglist_data *pgdat,
290 enum node_stat_item idx, int nr)
291 {
292 struct mem_cgroup *memcg;
293 struct lruvec *lruvec;
294
295 rcu_read_lock();
296 memcg = obj_cgroup_memcg(objcg);
297 lruvec = mem_cgroup_lruvec(memcg, pgdat);
298 mod_memcg_lruvec_state(lruvec, idx, nr);
299 rcu_read_unlock();
300 }
301
302 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
303 struct obj_cgroup *objcg,
304 gfp_t flags, size_t size,
305 void **p)
306 {
307 struct page *page;
308 unsigned long off;
309 size_t i;
310
311 if (!memcg_kmem_enabled() || !objcg)
312 return;
313
314 flags &= ~__GFP_ACCOUNT;
315 for (i = 0; i < size; i++) {
316 if (likely(p[i])) {
317 page = virt_to_head_page(p[i]);
318
319 if (!page_objcgs(page) &&
320 memcg_alloc_page_obj_cgroups(page, s, flags)) {
321 obj_cgroup_uncharge(objcg, obj_full_size(s));
322 continue;
323 }
324
325 off = obj_to_index(s, page, p[i]);
326 obj_cgroup_get(objcg);
327 page_objcgs(page)[off] = objcg;
328 mod_objcg_state(objcg, page_pgdat(page),
329 cache_vmstat_idx(s), obj_full_size(s));
330 } else {
331 obj_cgroup_uncharge(objcg, obj_full_size(s));
332 }
333 }
334 obj_cgroup_put(objcg);
335 }
336
337 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
338 void **p, int objects)
339 {
340 struct kmem_cache *s;
341 struct obj_cgroup **objcgs;
342 struct obj_cgroup *objcg;
343 struct page *page;
344 unsigned int off;
345 int i;
346
347 if (!memcg_kmem_enabled())
348 return;
349
350 for (i = 0; i < objects; i++) {
351 if (unlikely(!p[i]))
352 continue;
353
354 page = virt_to_head_page(p[i]);
355 objcgs = page_objcgs(page);
356 if (!objcgs)
357 continue;
358
359 if (!s_orig)
360 s = page->slab_cache;
361 else
362 s = s_orig;
363
364 off = obj_to_index(s, page, p[i]);
365 objcg = objcgs[off];
366 if (!objcg)
367 continue;
368
369 objcgs[off] = NULL;
370 obj_cgroup_uncharge(objcg, obj_full_size(s));
371 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
372 -obj_full_size(s));
373 obj_cgroup_put(objcg);
374 }
375 }
376
377 #else /* CONFIG_MEMCG_KMEM */
378 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
379 {
380 return NULL;
381 }
382
383 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
384 struct kmem_cache *s, gfp_t gfp)
385 {
386 return 0;
387 }
388
389 static inline void memcg_free_page_obj_cgroups(struct page *page)
390 {
391 }
392
393 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
394 struct obj_cgroup **objcgp,
395 size_t objects, gfp_t flags)
396 {
397 return true;
398 }
399
400 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
401 struct obj_cgroup *objcg,
402 gfp_t flags, size_t size,
403 void **p)
404 {
405 }
406
407 static inline void memcg_slab_free_hook(struct kmem_cache *s,
408 void **p, int objects)
409 {
410 }
411 #endif /* CONFIG_MEMCG_KMEM */
412
413 static inline struct kmem_cache *virt_to_cache(const void *obj)
414 {
415 struct page *page;
416
417 page = virt_to_head_page(obj);
418 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
419 __func__))
420 return NULL;
421 return page->slab_cache;
422 }
423
424 static __always_inline void account_slab_page(struct page *page, int order,
425 struct kmem_cache *s)
426 {
427 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
428 PAGE_SIZE << order);
429 }
430
431 static __always_inline void unaccount_slab_page(struct page *page, int order,
432 struct kmem_cache *s)
433 {
434 if (memcg_kmem_enabled())
435 memcg_free_page_obj_cgroups(page);
436
437 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
438 -(PAGE_SIZE << order));
439 }
440
441 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
442 {
443 struct kmem_cache *cachep;
444
445 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
446 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
447 return s;
448
449 cachep = virt_to_cache(x);
450 if (WARN(cachep && cachep != s,
451 "%s: Wrong slab cache. %s but object is from %s\n",
452 __func__, s->name, cachep->name))
453 print_tracking(cachep, x);
454 return cachep;
455 }
456
457 static inline size_t slab_ksize(const struct kmem_cache *s)
458 {
459 #ifndef CONFIG_SLUB
460 return s->object_size;
461
462 #else /* CONFIG_SLUB */
463 # ifdef CONFIG_SLUB_DEBUG
464 /*
465 * Debugging requires use of the padding between object
466 * and whatever may come after it.
467 */
468 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
469 return s->object_size;
470 # endif
471 if (s->flags & SLAB_KASAN)
472 return s->object_size;
473 /*
474 * If we have the need to store the freelist pointer
475 * back there or track user information then we can
476 * only use the space before that information.
477 */
478 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
479 return s->inuse;
480 /*
481 * Else we can use all the padding etc for the allocation
482 */
483 return s->size;
484 #endif
485 }
486
487 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
488 struct obj_cgroup **objcgp,
489 size_t size, gfp_t flags)
490 {
491 flags &= gfp_allowed_mask;
492
493 might_alloc(flags);
494
495 if (should_failslab(s, flags))
496 return NULL;
497
498 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
499 return NULL;
500
501 return s;
502 }
503
504 static inline void slab_post_alloc_hook(struct kmem_cache *s,
505 struct obj_cgroup *objcg,
506 gfp_t flags, size_t size, void **p)
507 {
508 size_t i;
509
510 flags &= gfp_allowed_mask;
511 for (i = 0; i < size; i++) {
512 p[i] = kasan_slab_alloc(s, p[i], flags);
513 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
514 kmemleak_alloc_recursive(p[i], s->object_size, 1,
515 s->flags, flags);
516 }
517
518 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
519 }
520
521 #ifndef CONFIG_SLOB
522 /*
523 * The slab lists for all objects.
524 */
525 struct kmem_cache_node {
526 spinlock_t list_lock;
527
528 #ifdef CONFIG_SLAB
529 struct list_head slabs_partial; /* partial list first, better asm code */
530 struct list_head slabs_full;
531 struct list_head slabs_free;
532 unsigned long total_slabs; /* length of all slab lists */
533 unsigned long free_slabs; /* length of free slab list only */
534 unsigned long free_objects;
535 unsigned int free_limit;
536 unsigned int colour_next; /* Per-node cache coloring */
537 struct array_cache *shared; /* shared per node */
538 struct alien_cache **alien; /* on other nodes */
539 unsigned long next_reap; /* updated without locking */
540 int free_touched; /* updated without locking */
541 #endif
542
543 #ifdef CONFIG_SLUB
544 unsigned long nr_partial;
545 struct list_head partial;
546 #ifdef CONFIG_SLUB_DEBUG
547 atomic_long_t nr_slabs;
548 atomic_long_t total_objects;
549 struct list_head full;
550 #endif
551 #endif
552
553 };
554
555 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
556 {
557 return s->node[node];
558 }
559
560 /*
561 * Iterator over all nodes. The body will be executed for each node that has
562 * a kmem_cache_node structure allocated (which is true for all online nodes)
563 */
564 #define for_each_kmem_cache_node(__s, __node, __n) \
565 for (__node = 0; __node < nr_node_ids; __node++) \
566 if ((__n = get_node(__s, __node)))
567
568 #endif
569
570 void *slab_start(struct seq_file *m, loff_t *pos);
571 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
572 void slab_stop(struct seq_file *m, void *p);
573 int memcg_slab_show(struct seq_file *m, void *p);
574
575 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
576 void dump_unreclaimable_slab(void);
577 #else
578 static inline void dump_unreclaimable_slab(void)
579 {
580 }
581 #endif
582
583 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
584
585 #ifdef CONFIG_SLAB_FREELIST_RANDOM
586 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
587 gfp_t gfp);
588 void cache_random_seq_destroy(struct kmem_cache *cachep);
589 #else
590 static inline int cache_random_seq_create(struct kmem_cache *cachep,
591 unsigned int count, gfp_t gfp)
592 {
593 return 0;
594 }
595 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
596 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
597
598 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
599 {
600 if (static_branch_unlikely(&init_on_alloc)) {
601 if (c->ctor)
602 return false;
603 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
604 return flags & __GFP_ZERO;
605 return true;
606 }
607 return flags & __GFP_ZERO;
608 }
609
610 static inline bool slab_want_init_on_free(struct kmem_cache *c)
611 {
612 if (static_branch_unlikely(&init_on_free))
613 return !(c->ctor ||
614 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
615 return false;
616 }
617
618 #endif /* MM_SLAB_H */