]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.h
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
[mirror_ubuntu-artful-kernel.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41
42 /*
43 * State of the slab allocator.
44 *
45 * This is used to describe the states of the allocator during bootup.
46 * Allocators use this to gradually bootstrap themselves. Most allocators
47 * have the problem that the structures used for managing slab caches are
48 * allocated from slab caches themselves.
49 */
50 enum slab_state {
51 DOWN, /* No slab functionality yet */
52 PARTIAL, /* SLUB: kmem_cache_node available */
53 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
54 UP, /* Slab caches usable but not all extras yet */
55 FULL /* Everything is working */
56 };
57
58 extern enum slab_state slab_state;
59
60 /* The slab cache mutex protects the management structures during changes */
61 extern struct mutex slab_mutex;
62
63 /* The list of all slab caches on the system */
64 extern struct list_head slab_caches;
65
66 /* The slab cache that manages slab cache information */
67 extern struct kmem_cache *kmem_cache;
68
69 unsigned long calculate_alignment(unsigned long flags,
70 unsigned long align, unsigned long size);
71
72 #ifndef CONFIG_SLOB
73 /* Kmalloc array related functions */
74 void create_kmalloc_caches(unsigned long);
75
76 /* Find the kmalloc slab corresponding for a certain size */
77 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
78 #endif
79
80
81 /* Functions provided by the slab allocators */
82 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
83
84 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
85 unsigned long flags);
86 extern void create_boot_cache(struct kmem_cache *, const char *name,
87 size_t size, unsigned long flags);
88
89 int slab_unmergeable(struct kmem_cache *s);
90 struct kmem_cache *find_mergeable(size_t size, size_t align,
91 unsigned long flags, const char *name, void (*ctor)(void *));
92 #ifndef CONFIG_SLOB
93 struct kmem_cache *
94 __kmem_cache_alias(const char *name, size_t size, size_t align,
95 unsigned long flags, void (*ctor)(void *));
96
97 unsigned long kmem_cache_flags(unsigned long object_size,
98 unsigned long flags, const char *name,
99 void (*ctor)(void *));
100 #else
101 static inline struct kmem_cache *
102 __kmem_cache_alias(const char *name, size_t size, size_t align,
103 unsigned long flags, void (*ctor)(void *))
104 { return NULL; }
105
106 static inline unsigned long kmem_cache_flags(unsigned long object_size,
107 unsigned long flags, const char *name,
108 void (*ctor)(void *))
109 {
110 return flags;
111 }
112 #endif
113
114
115 /* Legal flag mask for kmem_cache_create(), for various configurations */
116 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
117 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
118
119 #if defined(CONFIG_DEBUG_SLAB)
120 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
121 #elif defined(CONFIG_SLUB_DEBUG)
122 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
123 SLAB_TRACE | SLAB_DEBUG_FREE)
124 #else
125 #define SLAB_DEBUG_FLAGS (0)
126 #endif
127
128 #if defined(CONFIG_SLAB)
129 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
130 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
131 #elif defined(CONFIG_SLUB)
132 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
133 SLAB_TEMPORARY | SLAB_NOTRACK)
134 #else
135 #define SLAB_CACHE_FLAGS (0)
136 #endif
137
138 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
139
140 int __kmem_cache_shutdown(struct kmem_cache *);
141 int __kmem_cache_shrink(struct kmem_cache *, bool);
142 void slab_kmem_cache_release(struct kmem_cache *);
143
144 struct seq_file;
145 struct file;
146
147 struct slabinfo {
148 unsigned long active_objs;
149 unsigned long num_objs;
150 unsigned long active_slabs;
151 unsigned long num_slabs;
152 unsigned long shared_avail;
153 unsigned int limit;
154 unsigned int batchcount;
155 unsigned int shared;
156 unsigned int objects_per_slab;
157 unsigned int cache_order;
158 };
159
160 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
161 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
162 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
163 size_t count, loff_t *ppos);
164
165 #ifdef CONFIG_MEMCG_KMEM
166 /*
167 * Iterate over all memcg caches of the given root cache. The caller must hold
168 * slab_mutex.
169 */
170 #define for_each_memcg_cache(iter, root) \
171 list_for_each_entry(iter, &(root)->memcg_params.list, \
172 memcg_params.list)
173
174 #define for_each_memcg_cache_safe(iter, tmp, root) \
175 list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \
176 memcg_params.list)
177
178 static inline bool is_root_cache(struct kmem_cache *s)
179 {
180 return s->memcg_params.is_root_cache;
181 }
182
183 static inline bool slab_equal_or_root(struct kmem_cache *s,
184 struct kmem_cache *p)
185 {
186 return p == s || p == s->memcg_params.root_cache;
187 }
188
189 /*
190 * We use suffixes to the name in memcg because we can't have caches
191 * created in the system with the same name. But when we print them
192 * locally, better refer to them with the base name
193 */
194 static inline const char *cache_name(struct kmem_cache *s)
195 {
196 if (!is_root_cache(s))
197 s = s->memcg_params.root_cache;
198 return s->name;
199 }
200
201 /*
202 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
203 * That said the caller must assure the memcg's cache won't go away by either
204 * taking a css reference to the owner cgroup, or holding the slab_mutex.
205 */
206 static inline struct kmem_cache *
207 cache_from_memcg_idx(struct kmem_cache *s, int idx)
208 {
209 struct kmem_cache *cachep;
210 struct memcg_cache_array *arr;
211
212 rcu_read_lock();
213 arr = rcu_dereference(s->memcg_params.memcg_caches);
214
215 /*
216 * Make sure we will access the up-to-date value. The code updating
217 * memcg_caches issues a write barrier to match this (see
218 * memcg_create_kmem_cache()).
219 */
220 cachep = lockless_dereference(arr->entries[idx]);
221 rcu_read_unlock();
222
223 return cachep;
224 }
225
226 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
227 {
228 if (is_root_cache(s))
229 return s;
230 return s->memcg_params.root_cache;
231 }
232
233 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
234 gfp_t gfp, int order)
235 {
236 if (!memcg_kmem_enabled())
237 return 0;
238 if (is_root_cache(s))
239 return 0;
240 return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order);
241 }
242
243 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
244 {
245 if (!memcg_kmem_enabled())
246 return;
247 if (is_root_cache(s))
248 return;
249 memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order);
250 }
251
252 extern void slab_init_memcg_params(struct kmem_cache *);
253
254 #else /* !CONFIG_MEMCG_KMEM */
255
256 #define for_each_memcg_cache(iter, root) \
257 for ((void)(iter), (void)(root); 0; )
258 #define for_each_memcg_cache_safe(iter, tmp, root) \
259 for ((void)(iter), (void)(tmp), (void)(root); 0; )
260
261 static inline bool is_root_cache(struct kmem_cache *s)
262 {
263 return true;
264 }
265
266 static inline bool slab_equal_or_root(struct kmem_cache *s,
267 struct kmem_cache *p)
268 {
269 return true;
270 }
271
272 static inline const char *cache_name(struct kmem_cache *s)
273 {
274 return s->name;
275 }
276
277 static inline struct kmem_cache *
278 cache_from_memcg_idx(struct kmem_cache *s, int idx)
279 {
280 return NULL;
281 }
282
283 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
284 {
285 return s;
286 }
287
288 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
289 {
290 return 0;
291 }
292
293 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
294 {
295 }
296
297 static inline void slab_init_memcg_params(struct kmem_cache *s)
298 {
299 }
300 #endif /* CONFIG_MEMCG_KMEM */
301
302 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
303 {
304 struct kmem_cache *cachep;
305 struct page *page;
306
307 /*
308 * When kmemcg is not being used, both assignments should return the
309 * same value. but we don't want to pay the assignment price in that
310 * case. If it is not compiled in, the compiler should be smart enough
311 * to not do even the assignment. In that case, slab_equal_or_root
312 * will also be a constant.
313 */
314 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
315 return s;
316
317 page = virt_to_head_page(x);
318 cachep = page->slab_cache;
319 if (slab_equal_or_root(cachep, s))
320 return cachep;
321
322 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
323 __func__, cachep->name, s->name);
324 WARN_ON_ONCE(1);
325 return s;
326 }
327
328 #ifndef CONFIG_SLOB
329 /*
330 * The slab lists for all objects.
331 */
332 struct kmem_cache_node {
333 spinlock_t list_lock;
334
335 #ifdef CONFIG_SLAB
336 struct list_head slabs_partial; /* partial list first, better asm code */
337 struct list_head slabs_full;
338 struct list_head slabs_free;
339 unsigned long free_objects;
340 unsigned int free_limit;
341 unsigned int colour_next; /* Per-node cache coloring */
342 struct array_cache *shared; /* shared per node */
343 struct alien_cache **alien; /* on other nodes */
344 unsigned long next_reap; /* updated without locking */
345 int free_touched; /* updated without locking */
346 #endif
347
348 #ifdef CONFIG_SLUB
349 unsigned long nr_partial;
350 struct list_head partial;
351 #ifdef CONFIG_SLUB_DEBUG
352 atomic_long_t nr_slabs;
353 atomic_long_t total_objects;
354 struct list_head full;
355 #endif
356 #endif
357
358 };
359
360 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
361 {
362 return s->node[node];
363 }
364
365 /*
366 * Iterator over all nodes. The body will be executed for each node that has
367 * a kmem_cache_node structure allocated (which is true for all online nodes)
368 */
369 #define for_each_kmem_cache_node(__s, __node, __n) \
370 for (__node = 0; __node < nr_node_ids; __node++) \
371 if ((__n = get_node(__s, __node)))
372
373 #endif
374
375 void *slab_start(struct seq_file *m, loff_t *pos);
376 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
377 void slab_stop(struct seq_file *m, void *p);
378 int memcg_slab_show(struct seq_file *m, void *p);
379
380 #endif /* MM_SLAB_H */