4 * Internal slab definitions
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
20 unsigned int object_size
;/* The original size of the object */
21 unsigned int size
; /* The aligned/padded/added on size */
22 unsigned int align
; /* Alignment as calculated */
23 unsigned long flags
; /* Active flags on the slab */
24 const char *name
; /* Slab name for sysfs */
25 int refcount
; /* Use counter */
26 void (*ctor
)(void *); /* Called on object slot creation */
27 struct list_head list
; /* List of all slab caches on the system */
30 #endif /* CONFIG_SLOB */
33 #include <linux/slab_def.h>
37 #include <linux/slub_def.h>
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
47 * State of the slab allocator.
49 * This is used to describe the states of the allocator during bootup.
50 * Allocators use this to gradually bootstrap themselves. Most allocators
51 * have the problem that the structures used for managing slab caches are
52 * allocated from slab caches themselves.
55 DOWN
, /* No slab functionality yet */
56 PARTIAL
, /* SLUB: kmem_cache_node available */
57 PARTIAL_NODE
, /* SLAB: kmalloc size for node struct available */
58 UP
, /* Slab caches usable but not all extras yet */
59 FULL
/* Everything is working */
62 extern enum slab_state slab_state
;
64 /* The slab cache mutex protects the management structures during changes */
65 extern struct mutex slab_mutex
;
67 /* The list of all slab caches on the system */
68 extern struct list_head slab_caches
;
70 /* The slab cache that manages slab cache information */
71 extern struct kmem_cache
*kmem_cache
;
73 unsigned long calculate_alignment(unsigned long flags
,
74 unsigned long align
, unsigned long size
);
77 /* Kmalloc array related functions */
78 void setup_kmalloc_cache_index_table(void);
79 void create_kmalloc_caches(unsigned long);
81 /* Find the kmalloc slab corresponding for a certain size */
82 struct kmem_cache
*kmalloc_slab(size_t, gfp_t
);
86 /* Functions provided by the slab allocators */
87 extern int __kmem_cache_create(struct kmem_cache
*, unsigned long flags
);
89 extern struct kmem_cache
*create_kmalloc_cache(const char *name
, size_t size
,
91 extern void create_boot_cache(struct kmem_cache
*, const char *name
,
92 size_t size
, unsigned long flags
);
94 int slab_unmergeable(struct kmem_cache
*s
);
95 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
96 unsigned long flags
, const char *name
, void (*ctor
)(void *));
99 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
100 unsigned long flags
, void (*ctor
)(void *));
102 unsigned long kmem_cache_flags(unsigned long object_size
,
103 unsigned long flags
, const char *name
,
104 void (*ctor
)(void *));
106 static inline struct kmem_cache
*
107 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
108 unsigned long flags
, void (*ctor
)(void *))
111 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
112 unsigned long flags
, const char *name
,
113 void (*ctor
)(void *))
120 /* Legal flag mask for kmem_cache_create(), for various configurations */
121 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
122 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
124 #if defined(CONFIG_DEBUG_SLAB)
125 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
126 #elif defined(CONFIG_SLUB_DEBUG)
127 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
128 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 #define SLAB_DEBUG_FLAGS (0)
133 #if defined(CONFIG_SLAB)
134 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
135 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
136 SLAB_NOTRACK | SLAB_ACCOUNT)
137 #elif defined(CONFIG_SLUB)
138 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
139 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 #define SLAB_CACHE_FLAGS (0)
144 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
146 int __kmem_cache_shutdown(struct kmem_cache
*);
147 void __kmem_cache_release(struct kmem_cache
*);
148 int __kmem_cache_shrink(struct kmem_cache
*, bool);
149 void slab_kmem_cache_release(struct kmem_cache
*);
155 unsigned long active_objs
;
156 unsigned long num_objs
;
157 unsigned long active_slabs
;
158 unsigned long num_slabs
;
159 unsigned long shared_avail
;
161 unsigned int batchcount
;
163 unsigned int objects_per_slab
;
164 unsigned int cache_order
;
167 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
);
168 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
);
169 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
170 size_t count
, loff_t
*ppos
);
173 * Generic implementation of bulk operations
174 * These are useful for situations in which the allocator cannot
175 * perform optimizations. In that case segments of the object listed
176 * may be allocated or freed using these operations.
178 void __kmem_cache_free_bulk(struct kmem_cache
*, size_t, void **);
179 int __kmem_cache_alloc_bulk(struct kmem_cache
*, gfp_t
, size_t, void **);
181 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
183 * Iterate over all memcg caches of the given root cache. The caller must hold
186 #define for_each_memcg_cache(iter, root) \
187 list_for_each_entry(iter, &(root)->memcg_params.list, \
190 static inline bool is_root_cache(struct kmem_cache
*s
)
192 return s
->memcg_params
.is_root_cache
;
195 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
196 struct kmem_cache
*p
)
198 return p
== s
|| p
== s
->memcg_params
.root_cache
;
202 * We use suffixes to the name in memcg because we can't have caches
203 * created in the system with the same name. But when we print them
204 * locally, better refer to them with the base name
206 static inline const char *cache_name(struct kmem_cache
*s
)
208 if (!is_root_cache(s
))
209 s
= s
->memcg_params
.root_cache
;
214 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
215 * That said the caller must assure the memcg's cache won't go away by either
216 * taking a css reference to the owner cgroup, or holding the slab_mutex.
218 static inline struct kmem_cache
*
219 cache_from_memcg_idx(struct kmem_cache
*s
, int idx
)
221 struct kmem_cache
*cachep
;
222 struct memcg_cache_array
*arr
;
225 arr
= rcu_dereference(s
->memcg_params
.memcg_caches
);
228 * Make sure we will access the up-to-date value. The code updating
229 * memcg_caches issues a write barrier to match this (see
230 * memcg_create_kmem_cache()).
232 cachep
= lockless_dereference(arr
->entries
[idx
]);
238 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
240 if (is_root_cache(s
))
242 return s
->memcg_params
.root_cache
;
245 static __always_inline
int memcg_charge_slab(struct page
*page
,
246 gfp_t gfp
, int order
,
247 struct kmem_cache
*s
)
251 if (!memcg_kmem_enabled())
253 if (is_root_cache(s
))
256 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
,
257 s
->memcg_params
.memcg
);
261 memcg_kmem_update_page_stat(page
,
262 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
263 MEMCG_SLAB_RECLAIMABLE
: MEMCG_SLAB_UNRECLAIMABLE
,
268 static __always_inline
void memcg_uncharge_slab(struct page
*page
, int order
,
269 struct kmem_cache
*s
)
271 memcg_kmem_update_page_stat(page
,
272 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
273 MEMCG_SLAB_RECLAIMABLE
: MEMCG_SLAB_UNRECLAIMABLE
,
275 memcg_kmem_uncharge(page
, order
);
278 extern void slab_init_memcg_params(struct kmem_cache
*);
280 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
282 #define for_each_memcg_cache(iter, root) \
283 for ((void)(iter), (void)(root); 0; )
285 static inline bool is_root_cache(struct kmem_cache
*s
)
290 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
291 struct kmem_cache
*p
)
296 static inline const char *cache_name(struct kmem_cache
*s
)
301 static inline struct kmem_cache
*
302 cache_from_memcg_idx(struct kmem_cache
*s
, int idx
)
307 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
312 static inline int memcg_charge_slab(struct page
*page
, gfp_t gfp
, int order
,
313 struct kmem_cache
*s
)
318 static inline void memcg_uncharge_slab(struct page
*page
, int order
,
319 struct kmem_cache
*s
)
323 static inline void slab_init_memcg_params(struct kmem_cache
*s
)
326 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
328 static inline struct kmem_cache
*cache_from_obj(struct kmem_cache
*s
, void *x
)
330 struct kmem_cache
*cachep
;
334 * When kmemcg is not being used, both assignments should return the
335 * same value. but we don't want to pay the assignment price in that
336 * case. If it is not compiled in, the compiler should be smart enough
337 * to not do even the assignment. In that case, slab_equal_or_root
338 * will also be a constant.
340 if (!memcg_kmem_enabled() &&
341 !unlikely(s
->flags
& SLAB_CONSISTENCY_CHECKS
))
344 page
= virt_to_head_page(x
);
345 cachep
= page
->slab_cache
;
346 if (slab_equal_or_root(cachep
, s
))
349 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
350 __func__
, s
->name
, cachep
->name
);
355 static inline size_t slab_ksize(const struct kmem_cache
*s
)
358 return s
->object_size
;
360 #else /* CONFIG_SLUB */
361 # ifdef CONFIG_SLUB_DEBUG
363 * Debugging requires use of the padding between object
364 * and whatever may come after it.
366 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
367 return s
->object_size
;
370 * If we have the need to store the freelist pointer
371 * back there or track user information then we can
372 * only use the space before that information.
374 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
377 * Else we can use all the padding etc for the allocation
383 static inline struct kmem_cache
*slab_pre_alloc_hook(struct kmem_cache
*s
,
386 flags
&= gfp_allowed_mask
;
387 lockdep_trace_alloc(flags
);
388 might_sleep_if(gfpflags_allow_blocking(flags
));
390 if (should_failslab(s
, flags
))
393 return memcg_kmem_get_cache(s
, flags
);
396 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
397 size_t size
, void **p
)
401 flags
&= gfp_allowed_mask
;
402 for (i
= 0; i
< size
; i
++) {
405 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
406 kmemleak_alloc_recursive(object
, s
->object_size
, 1,
408 kasan_slab_alloc(s
, object
, flags
);
410 memcg_kmem_put_cache(s
);
415 * The slab lists for all objects.
417 struct kmem_cache_node
{
418 spinlock_t list_lock
;
421 struct list_head slabs_partial
; /* partial list first, better asm code */
422 struct list_head slabs_full
;
423 struct list_head slabs_free
;
424 unsigned long free_objects
;
425 unsigned int free_limit
;
426 unsigned int colour_next
; /* Per-node cache coloring */
427 struct array_cache
*shared
; /* shared per node */
428 struct alien_cache
**alien
; /* on other nodes */
429 unsigned long next_reap
; /* updated without locking */
430 int free_touched
; /* updated without locking */
434 unsigned long nr_partial
;
435 struct list_head partial
;
436 #ifdef CONFIG_SLUB_DEBUG
437 atomic_long_t nr_slabs
;
438 atomic_long_t total_objects
;
439 struct list_head full
;
445 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
447 return s
->node
[node
];
451 * Iterator over all nodes. The body will be executed for each node that has
452 * a kmem_cache_node structure allocated (which is true for all online nodes)
454 #define for_each_kmem_cache_node(__s, __node, __n) \
455 for (__node = 0; __node < nr_node_ids; __node++) \
456 if ((__n = get_node(__s, __node)))
460 void *slab_start(struct seq_file
*m
, loff_t
*pos
);
461 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
);
462 void slab_stop(struct seq_file
*m
, void *p
);
463 int memcg_slab_show(struct seq_file
*m
, void *p
);
465 #endif /* MM_SLAB_H */