]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/slab.h
f2fs: replace congestion_wait() calls with io_schedule_timeout()
[mirror_ubuntu-kernels.git] / mm / slab.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5 * Internal slab definitions
6 */
7
8 /* Reuses the bits in struct page */
9 struct slab {
10 unsigned long __page_flags;
11
12 #if defined(CONFIG_SLAB)
13
14 union {
15 struct list_head slab_list;
16 struct rcu_head rcu_head;
17 };
18 struct kmem_cache *slab_cache;
19 void *freelist; /* array of free object indexes */
20 void *s_mem; /* first object */
21 unsigned int active;
22
23 #elif defined(CONFIG_SLUB)
24
25 union {
26 struct list_head slab_list;
27 struct rcu_head rcu_head;
28 #ifdef CONFIG_SLUB_CPU_PARTIAL
29 struct {
30 struct slab *next;
31 int slabs; /* Nr of slabs left */
32 };
33 #endif
34 };
35 struct kmem_cache *slab_cache;
36 /* Double-word boundary */
37 void *freelist; /* first free object */
38 union {
39 unsigned long counters;
40 struct {
41 unsigned inuse:16;
42 unsigned objects:15;
43 unsigned frozen:1;
44 };
45 };
46 unsigned int __unused;
47
48 #elif defined(CONFIG_SLOB)
49
50 struct list_head slab_list;
51 void *__unused_1;
52 void *freelist; /* first free block */
53 long units;
54 unsigned int __unused_2;
55
56 #else
57 #error "Unexpected slab allocator configured"
58 #endif
59
60 atomic_t __page_refcount;
61 #ifdef CONFIG_MEMCG
62 unsigned long memcg_data;
63 #endif
64 };
65
66 #define SLAB_MATCH(pg, sl) \
67 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68 SLAB_MATCH(flags, __page_flags);
69 SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
70 #ifndef CONFIG_SLOB
71 SLAB_MATCH(rcu_head, rcu_head);
72 #endif
73 SLAB_MATCH(_refcount, __page_refcount);
74 #ifdef CONFIG_MEMCG
75 SLAB_MATCH(memcg_data, memcg_data);
76 #endif
77 #undef SLAB_MATCH
78 static_assert(sizeof(struct slab) <= sizeof(struct page));
79
80 /**
81 * folio_slab - Converts from folio to slab.
82 * @folio: The folio.
83 *
84 * Currently struct slab is a different representation of a folio where
85 * folio_test_slab() is true.
86 *
87 * Return: The slab which contains this folio.
88 */
89 #define folio_slab(folio) (_Generic((folio), \
90 const struct folio *: (const struct slab *)(folio), \
91 struct folio *: (struct slab *)(folio)))
92
93 /**
94 * slab_folio - The folio allocated for a slab
95 * @slab: The slab.
96 *
97 * Slabs are allocated as folios that contain the individual objects and are
98 * using some fields in the first struct page of the folio - those fields are
99 * now accessed by struct slab. It is occasionally necessary to convert back to
100 * a folio in order to communicate with the rest of the mm. Please use this
101 * helper function instead of casting yourself, as the implementation may change
102 * in the future.
103 */
104 #define slab_folio(s) (_Generic((s), \
105 const struct slab *: (const struct folio *)s, \
106 struct slab *: (struct folio *)s))
107
108 /**
109 * page_slab - Converts from first struct page to slab.
110 * @p: The first (either head of compound or single) page of slab.
111 *
112 * A temporary wrapper to convert struct page to struct slab in situations where
113 * we know the page is the compound head, or single order-0 page.
114 *
115 * Long-term ideally everything would work with struct slab directly or go
116 * through folio to struct slab.
117 *
118 * Return: The slab which contains this page
119 */
120 #define page_slab(p) (_Generic((p), \
121 const struct page *: (const struct slab *)(p), \
122 struct page *: (struct slab *)(p)))
123
124 /**
125 * slab_page - The first struct page allocated for a slab
126 * @slab: The slab.
127 *
128 * A convenience wrapper for converting slab to the first struct page of the
129 * underlying folio, to communicate with code not yet converted to folio or
130 * struct slab.
131 */
132 #define slab_page(s) folio_page(slab_folio(s), 0)
133
134 /*
135 * If network-based swap is enabled, sl*b must keep track of whether pages
136 * were allocated from pfmemalloc reserves.
137 */
138 static inline bool slab_test_pfmemalloc(const struct slab *slab)
139 {
140 return folio_test_active((struct folio *)slab_folio(slab));
141 }
142
143 static inline void slab_set_pfmemalloc(struct slab *slab)
144 {
145 folio_set_active(slab_folio(slab));
146 }
147
148 static inline void slab_clear_pfmemalloc(struct slab *slab)
149 {
150 folio_clear_active(slab_folio(slab));
151 }
152
153 static inline void __slab_clear_pfmemalloc(struct slab *slab)
154 {
155 __folio_clear_active(slab_folio(slab));
156 }
157
158 static inline void *slab_address(const struct slab *slab)
159 {
160 return folio_address(slab_folio(slab));
161 }
162
163 static inline int slab_nid(const struct slab *slab)
164 {
165 return folio_nid(slab_folio(slab));
166 }
167
168 static inline pg_data_t *slab_pgdat(const struct slab *slab)
169 {
170 return folio_pgdat(slab_folio(slab));
171 }
172
173 static inline struct slab *virt_to_slab(const void *addr)
174 {
175 struct folio *folio = virt_to_folio(addr);
176
177 if (!folio_test_slab(folio))
178 return NULL;
179
180 return folio_slab(folio);
181 }
182
183 static inline int slab_order(const struct slab *slab)
184 {
185 return folio_order((struct folio *)slab_folio(slab));
186 }
187
188 static inline size_t slab_size(const struct slab *slab)
189 {
190 return PAGE_SIZE << slab_order(slab);
191 }
192
193 #ifdef CONFIG_SLOB
194 /*
195 * Common fields provided in kmem_cache by all slab allocators
196 * This struct is either used directly by the allocator (SLOB)
197 * or the allocator must include definitions for all fields
198 * provided in kmem_cache_common in their definition of kmem_cache.
199 *
200 * Once we can do anonymous structs (C11 standard) we could put a
201 * anonymous struct definition in these allocators so that the
202 * separate allocations in the kmem_cache structure of SLAB and
203 * SLUB is no longer needed.
204 */
205 struct kmem_cache {
206 unsigned int object_size;/* The original size of the object */
207 unsigned int size; /* The aligned/padded/added on size */
208 unsigned int align; /* Alignment as calculated */
209 slab_flags_t flags; /* Active flags on the slab */
210 unsigned int useroffset;/* Usercopy region offset */
211 unsigned int usersize; /* Usercopy region size */
212 const char *name; /* Slab name for sysfs */
213 int refcount; /* Use counter */
214 void (*ctor)(void *); /* Called on object slot creation */
215 struct list_head list; /* List of all slab caches on the system */
216 };
217
218 #endif /* CONFIG_SLOB */
219
220 #ifdef CONFIG_SLAB
221 #include <linux/slab_def.h>
222 #endif
223
224 #ifdef CONFIG_SLUB
225 #include <linux/slub_def.h>
226 #endif
227
228 #include <linux/memcontrol.h>
229 #include <linux/fault-inject.h>
230 #include <linux/kasan.h>
231 #include <linux/kmemleak.h>
232 #include <linux/random.h>
233 #include <linux/sched/mm.h>
234
235 /*
236 * State of the slab allocator.
237 *
238 * This is used to describe the states of the allocator during bootup.
239 * Allocators use this to gradually bootstrap themselves. Most allocators
240 * have the problem that the structures used for managing slab caches are
241 * allocated from slab caches themselves.
242 */
243 enum slab_state {
244 DOWN, /* No slab functionality yet */
245 PARTIAL, /* SLUB: kmem_cache_node available */
246 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
247 UP, /* Slab caches usable but not all extras yet */
248 FULL /* Everything is working */
249 };
250
251 extern enum slab_state slab_state;
252
253 /* The slab cache mutex protects the management structures during changes */
254 extern struct mutex slab_mutex;
255
256 /* The list of all slab caches on the system */
257 extern struct list_head slab_caches;
258
259 /* The slab cache that manages slab cache information */
260 extern struct kmem_cache *kmem_cache;
261
262 /* A table of kmalloc cache names and sizes */
263 extern const struct kmalloc_info_struct {
264 const char *name[NR_KMALLOC_TYPES];
265 unsigned int size;
266 } kmalloc_info[];
267
268 #ifndef CONFIG_SLOB
269 /* Kmalloc array related functions */
270 void setup_kmalloc_cache_index_table(void);
271 void create_kmalloc_caches(slab_flags_t);
272
273 /* Find the kmalloc slab corresponding for a certain size */
274 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
275 #endif
276
277 gfp_t kmalloc_fix_flags(gfp_t flags);
278
279 /* Functions provided by the slab allocators */
280 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
281
282 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
283 slab_flags_t flags, unsigned int useroffset,
284 unsigned int usersize);
285 extern void create_boot_cache(struct kmem_cache *, const char *name,
286 unsigned int size, slab_flags_t flags,
287 unsigned int useroffset, unsigned int usersize);
288
289 int slab_unmergeable(struct kmem_cache *s);
290 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
291 slab_flags_t flags, const char *name, void (*ctor)(void *));
292 #ifndef CONFIG_SLOB
293 struct kmem_cache *
294 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
295 slab_flags_t flags, void (*ctor)(void *));
296
297 slab_flags_t kmem_cache_flags(unsigned int object_size,
298 slab_flags_t flags, const char *name);
299 #else
300 static inline struct kmem_cache *
301 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
302 slab_flags_t flags, void (*ctor)(void *))
303 { return NULL; }
304
305 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
306 slab_flags_t flags, const char *name)
307 {
308 return flags;
309 }
310 #endif
311
312
313 /* Legal flag mask for kmem_cache_create(), for various configurations */
314 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
315 SLAB_CACHE_DMA32 | SLAB_PANIC | \
316 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
317
318 #if defined(CONFIG_DEBUG_SLAB)
319 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
320 #elif defined(CONFIG_SLUB_DEBUG)
321 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
322 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
323 #else
324 #define SLAB_DEBUG_FLAGS (0)
325 #endif
326
327 #if defined(CONFIG_SLAB)
328 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
329 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
330 SLAB_ACCOUNT)
331 #elif defined(CONFIG_SLUB)
332 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
333 SLAB_TEMPORARY | SLAB_ACCOUNT)
334 #else
335 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
336 #endif
337
338 /* Common flags available with current configuration */
339 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
340
341 /* Common flags permitted for kmem_cache_create */
342 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
343 SLAB_RED_ZONE | \
344 SLAB_POISON | \
345 SLAB_STORE_USER | \
346 SLAB_TRACE | \
347 SLAB_CONSISTENCY_CHECKS | \
348 SLAB_MEM_SPREAD | \
349 SLAB_NOLEAKTRACE | \
350 SLAB_RECLAIM_ACCOUNT | \
351 SLAB_TEMPORARY | \
352 SLAB_ACCOUNT)
353
354 bool __kmem_cache_empty(struct kmem_cache *);
355 int __kmem_cache_shutdown(struct kmem_cache *);
356 void __kmem_cache_release(struct kmem_cache *);
357 int __kmem_cache_shrink(struct kmem_cache *);
358 void slab_kmem_cache_release(struct kmem_cache *);
359
360 struct seq_file;
361 struct file;
362
363 struct slabinfo {
364 unsigned long active_objs;
365 unsigned long num_objs;
366 unsigned long active_slabs;
367 unsigned long num_slabs;
368 unsigned long shared_avail;
369 unsigned int limit;
370 unsigned int batchcount;
371 unsigned int shared;
372 unsigned int objects_per_slab;
373 unsigned int cache_order;
374 };
375
376 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
377 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
378 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
379 size_t count, loff_t *ppos);
380
381 /*
382 * Generic implementation of bulk operations
383 * These are useful for situations in which the allocator cannot
384 * perform optimizations. In that case segments of the object listed
385 * may be allocated or freed using these operations.
386 */
387 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
388 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
389
390 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
391 {
392 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
393 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
394 }
395
396 #ifdef CONFIG_SLUB_DEBUG
397 #ifdef CONFIG_SLUB_DEBUG_ON
398 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
399 #else
400 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
401 #endif
402 extern void print_tracking(struct kmem_cache *s, void *object);
403 long validate_slab_cache(struct kmem_cache *s);
404 static inline bool __slub_debug_enabled(void)
405 {
406 return static_branch_unlikely(&slub_debug_enabled);
407 }
408 #else
409 static inline void print_tracking(struct kmem_cache *s, void *object)
410 {
411 }
412 static inline bool __slub_debug_enabled(void)
413 {
414 return false;
415 }
416 #endif
417
418 /*
419 * Returns true if any of the specified slub_debug flags is enabled for the
420 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
421 * the static key.
422 */
423 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
424 {
425 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
426 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
427 if (__slub_debug_enabled())
428 return s->flags & flags;
429 return false;
430 }
431
432 #ifdef CONFIG_MEMCG_KMEM
433 /*
434 * slab_objcgs - get the object cgroups vector associated with a slab
435 * @slab: a pointer to the slab struct
436 *
437 * Returns a pointer to the object cgroups vector associated with the slab,
438 * or NULL if no such vector has been associated yet.
439 */
440 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
441 {
442 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
443
444 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
445 slab_page(slab));
446 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
447
448 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
449 }
450
451 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
452 gfp_t gfp, bool new_slab);
453 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
454 enum node_stat_item idx, int nr);
455
456 static inline void memcg_free_slab_cgroups(struct slab *slab)
457 {
458 kfree(slab_objcgs(slab));
459 slab->memcg_data = 0;
460 }
461
462 static inline size_t obj_full_size(struct kmem_cache *s)
463 {
464 /*
465 * For each accounted object there is an extra space which is used
466 * to store obj_cgroup membership. Charge it too.
467 */
468 return s->size + sizeof(struct obj_cgroup *);
469 }
470
471 /*
472 * Returns false if the allocation should fail.
473 */
474 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
475 struct obj_cgroup **objcgp,
476 size_t objects, gfp_t flags)
477 {
478 struct obj_cgroup *objcg;
479
480 if (!memcg_kmem_enabled())
481 return true;
482
483 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
484 return true;
485
486 objcg = get_obj_cgroup_from_current();
487 if (!objcg)
488 return true;
489
490 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
491 obj_cgroup_put(objcg);
492 return false;
493 }
494
495 *objcgp = objcg;
496 return true;
497 }
498
499 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
500 struct obj_cgroup *objcg,
501 gfp_t flags, size_t size,
502 void **p)
503 {
504 struct slab *slab;
505 unsigned long off;
506 size_t i;
507
508 if (!memcg_kmem_enabled() || !objcg)
509 return;
510
511 for (i = 0; i < size; i++) {
512 if (likely(p[i])) {
513 slab = virt_to_slab(p[i]);
514
515 if (!slab_objcgs(slab) &&
516 memcg_alloc_slab_cgroups(slab, s, flags,
517 false)) {
518 obj_cgroup_uncharge(objcg, obj_full_size(s));
519 continue;
520 }
521
522 off = obj_to_index(s, slab, p[i]);
523 obj_cgroup_get(objcg);
524 slab_objcgs(slab)[off] = objcg;
525 mod_objcg_state(objcg, slab_pgdat(slab),
526 cache_vmstat_idx(s), obj_full_size(s));
527 } else {
528 obj_cgroup_uncharge(objcg, obj_full_size(s));
529 }
530 }
531 obj_cgroup_put(objcg);
532 }
533
534 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
535 void **p, int objects)
536 {
537 struct kmem_cache *s;
538 struct obj_cgroup **objcgs;
539 struct obj_cgroup *objcg;
540 struct slab *slab;
541 unsigned int off;
542 int i;
543
544 if (!memcg_kmem_enabled())
545 return;
546
547 for (i = 0; i < objects; i++) {
548 if (unlikely(!p[i]))
549 continue;
550
551 slab = virt_to_slab(p[i]);
552 /* we could be given a kmalloc_large() object, skip those */
553 if (!slab)
554 continue;
555
556 objcgs = slab_objcgs(slab);
557 if (!objcgs)
558 continue;
559
560 if (!s_orig)
561 s = slab->slab_cache;
562 else
563 s = s_orig;
564
565 off = obj_to_index(s, slab, p[i]);
566 objcg = objcgs[off];
567 if (!objcg)
568 continue;
569
570 objcgs[off] = NULL;
571 obj_cgroup_uncharge(objcg, obj_full_size(s));
572 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
573 -obj_full_size(s));
574 obj_cgroup_put(objcg);
575 }
576 }
577
578 #else /* CONFIG_MEMCG_KMEM */
579 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
580 {
581 return NULL;
582 }
583
584 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
585 {
586 return NULL;
587 }
588
589 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
590 struct kmem_cache *s, gfp_t gfp,
591 bool new_slab)
592 {
593 return 0;
594 }
595
596 static inline void memcg_free_slab_cgroups(struct slab *slab)
597 {
598 }
599
600 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
601 struct obj_cgroup **objcgp,
602 size_t objects, gfp_t flags)
603 {
604 return true;
605 }
606
607 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
608 struct obj_cgroup *objcg,
609 gfp_t flags, size_t size,
610 void **p)
611 {
612 }
613
614 static inline void memcg_slab_free_hook(struct kmem_cache *s,
615 void **p, int objects)
616 {
617 }
618 #endif /* CONFIG_MEMCG_KMEM */
619
620 #ifndef CONFIG_SLOB
621 static inline struct kmem_cache *virt_to_cache(const void *obj)
622 {
623 struct slab *slab;
624
625 slab = virt_to_slab(obj);
626 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
627 __func__))
628 return NULL;
629 return slab->slab_cache;
630 }
631
632 static __always_inline void account_slab(struct slab *slab, int order,
633 struct kmem_cache *s, gfp_t gfp)
634 {
635 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
636 memcg_alloc_slab_cgroups(slab, s, gfp, true);
637
638 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
639 PAGE_SIZE << order);
640 }
641
642 static __always_inline void unaccount_slab(struct slab *slab, int order,
643 struct kmem_cache *s)
644 {
645 if (memcg_kmem_enabled())
646 memcg_free_slab_cgroups(slab);
647
648 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
649 -(PAGE_SIZE << order));
650 }
651
652 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
653 {
654 struct kmem_cache *cachep;
655
656 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
657 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
658 return s;
659
660 cachep = virt_to_cache(x);
661 if (WARN(cachep && cachep != s,
662 "%s: Wrong slab cache. %s but object is from %s\n",
663 __func__, s->name, cachep->name))
664 print_tracking(cachep, x);
665 return cachep;
666 }
667 #endif /* CONFIG_SLOB */
668
669 static inline size_t slab_ksize(const struct kmem_cache *s)
670 {
671 #ifndef CONFIG_SLUB
672 return s->object_size;
673
674 #else /* CONFIG_SLUB */
675 # ifdef CONFIG_SLUB_DEBUG
676 /*
677 * Debugging requires use of the padding between object
678 * and whatever may come after it.
679 */
680 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
681 return s->object_size;
682 # endif
683 if (s->flags & SLAB_KASAN)
684 return s->object_size;
685 /*
686 * If we have the need to store the freelist pointer
687 * back there or track user information then we can
688 * only use the space before that information.
689 */
690 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
691 return s->inuse;
692 /*
693 * Else we can use all the padding etc for the allocation
694 */
695 return s->size;
696 #endif
697 }
698
699 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
700 struct obj_cgroup **objcgp,
701 size_t size, gfp_t flags)
702 {
703 flags &= gfp_allowed_mask;
704
705 might_alloc(flags);
706
707 if (should_failslab(s, flags))
708 return NULL;
709
710 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
711 return NULL;
712
713 return s;
714 }
715
716 static inline void slab_post_alloc_hook(struct kmem_cache *s,
717 struct obj_cgroup *objcg, gfp_t flags,
718 size_t size, void **p, bool init)
719 {
720 size_t i;
721
722 flags &= gfp_allowed_mask;
723
724 /*
725 * As memory initialization might be integrated into KASAN,
726 * kasan_slab_alloc and initialization memset must be
727 * kept together to avoid discrepancies in behavior.
728 *
729 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
730 */
731 for (i = 0; i < size; i++) {
732 p[i] = kasan_slab_alloc(s, p[i], flags, init);
733 if (p[i] && init && !kasan_has_integrated_init())
734 memset(p[i], 0, s->object_size);
735 kmemleak_alloc_recursive(p[i], s->object_size, 1,
736 s->flags, flags);
737 }
738
739 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
740 }
741
742 #ifndef CONFIG_SLOB
743 /*
744 * The slab lists for all objects.
745 */
746 struct kmem_cache_node {
747 spinlock_t list_lock;
748
749 #ifdef CONFIG_SLAB
750 struct list_head slabs_partial; /* partial list first, better asm code */
751 struct list_head slabs_full;
752 struct list_head slabs_free;
753 unsigned long total_slabs; /* length of all slab lists */
754 unsigned long free_slabs; /* length of free slab list only */
755 unsigned long free_objects;
756 unsigned int free_limit;
757 unsigned int colour_next; /* Per-node cache coloring */
758 struct array_cache *shared; /* shared per node */
759 struct alien_cache **alien; /* on other nodes */
760 unsigned long next_reap; /* updated without locking */
761 int free_touched; /* updated without locking */
762 #endif
763
764 #ifdef CONFIG_SLUB
765 unsigned long nr_partial;
766 struct list_head partial;
767 #ifdef CONFIG_SLUB_DEBUG
768 atomic_long_t nr_slabs;
769 atomic_long_t total_objects;
770 struct list_head full;
771 #endif
772 #endif
773
774 };
775
776 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
777 {
778 return s->node[node];
779 }
780
781 /*
782 * Iterator over all nodes. The body will be executed for each node that has
783 * a kmem_cache_node structure allocated (which is true for all online nodes)
784 */
785 #define for_each_kmem_cache_node(__s, __node, __n) \
786 for (__node = 0; __node < nr_node_ids; __node++) \
787 if ((__n = get_node(__s, __node)))
788
789 #endif
790
791 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
792 void dump_unreclaimable_slab(void);
793 #else
794 static inline void dump_unreclaimable_slab(void)
795 {
796 }
797 #endif
798
799 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
800
801 #ifdef CONFIG_SLAB_FREELIST_RANDOM
802 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
803 gfp_t gfp);
804 void cache_random_seq_destroy(struct kmem_cache *cachep);
805 #else
806 static inline int cache_random_seq_create(struct kmem_cache *cachep,
807 unsigned int count, gfp_t gfp)
808 {
809 return 0;
810 }
811 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
812 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
813
814 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
815 {
816 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
817 &init_on_alloc)) {
818 if (c->ctor)
819 return false;
820 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
821 return flags & __GFP_ZERO;
822 return true;
823 }
824 return flags & __GFP_ZERO;
825 }
826
827 static inline bool slab_want_init_on_free(struct kmem_cache *c)
828 {
829 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
830 &init_on_free))
831 return !(c->ctor ||
832 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
833 return false;
834 }
835
836 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
837 void debugfs_slab_release(struct kmem_cache *);
838 #else
839 static inline void debugfs_slab_release(struct kmem_cache *s) { }
840 #endif
841
842 #ifdef CONFIG_PRINTK
843 #define KS_ADDRS_COUNT 16
844 struct kmem_obj_info {
845 void *kp_ptr;
846 struct slab *kp_slab;
847 void *kp_objp;
848 unsigned long kp_data_offset;
849 struct kmem_cache *kp_slab_cache;
850 void *kp_ret;
851 void *kp_stack[KS_ADDRS_COUNT];
852 void *kp_free_stack[KS_ADDRS_COUNT];
853 };
854 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
855 #endif
856
857 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
858 void __check_heap_object(const void *ptr, unsigned long n,
859 const struct slab *slab, bool to_user);
860 #else
861 static inline
862 void __check_heap_object(const void *ptr, unsigned long n,
863 const struct slab *slab, bool to_user)
864 {
865 }
866 #endif
867
868 #endif /* MM_SLAB_H */