]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slab.h
slab: get_online_mems for kmem_cache_{create,destroy,shrink}
[mirror_ubuntu-jammy-kernel.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 /*
8 * State of the slab allocator.
9 *
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
14 */
15 enum slab_state {
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
22 };
23
24 extern enum slab_state slab_state;
25
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
28
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
31
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
34
35 unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
37
38 #ifndef CONFIG_SLOB
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
41
42 /* Find the kmalloc slab corresponding for a certain size */
43 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
44 #endif
45
46
47 /* Functions provided by the slab allocators */
48 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
49
50 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
51 unsigned long flags);
52 extern void create_boot_cache(struct kmem_cache *, const char *name,
53 size_t size, unsigned long flags);
54
55 struct mem_cgroup;
56 #ifdef CONFIG_SLUB
57 struct kmem_cache *
58 __kmem_cache_alias(const char *name, size_t size, size_t align,
59 unsigned long flags, void (*ctor)(void *));
60 #else
61 static inline struct kmem_cache *
62 __kmem_cache_alias(const char *name, size_t size, size_t align,
63 unsigned long flags, void (*ctor)(void *))
64 { return NULL; }
65 #endif
66
67
68 /* Legal flag mask for kmem_cache_create(), for various configurations */
69 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
71
72 #if defined(CONFIG_DEBUG_SLAB)
73 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74 #elif defined(CONFIG_SLUB_DEBUG)
75 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76 SLAB_TRACE | SLAB_DEBUG_FREE)
77 #else
78 #define SLAB_DEBUG_FLAGS (0)
79 #endif
80
81 #if defined(CONFIG_SLAB)
82 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84 #elif defined(CONFIG_SLUB)
85 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86 SLAB_TEMPORARY | SLAB_NOTRACK)
87 #else
88 #define SLAB_CACHE_FLAGS (0)
89 #endif
90
91 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
92
93 int __kmem_cache_shutdown(struct kmem_cache *);
94 int __kmem_cache_shrink(struct kmem_cache *);
95 void slab_kmem_cache_release(struct kmem_cache *);
96
97 struct seq_file;
98 struct file;
99
100 struct slabinfo {
101 unsigned long active_objs;
102 unsigned long num_objs;
103 unsigned long active_slabs;
104 unsigned long num_slabs;
105 unsigned long shared_avail;
106 unsigned int limit;
107 unsigned int batchcount;
108 unsigned int shared;
109 unsigned int objects_per_slab;
110 unsigned int cache_order;
111 };
112
113 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
114 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
115 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
116 size_t count, loff_t *ppos);
117
118 #ifdef CONFIG_MEMCG_KMEM
119 static inline bool is_root_cache(struct kmem_cache *s)
120 {
121 return !s->memcg_params || s->memcg_params->is_root_cache;
122 }
123
124 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
125 {
126 if (!is_root_cache(s))
127 atomic_add(1 << order, &s->memcg_params->nr_pages);
128 }
129
130 static inline void memcg_release_pages(struct kmem_cache *s, int order)
131 {
132 if (is_root_cache(s))
133 return;
134
135 if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
136 mem_cgroup_destroy_cache(s);
137 }
138
139 static inline bool slab_equal_or_root(struct kmem_cache *s,
140 struct kmem_cache *p)
141 {
142 return (p == s) ||
143 (s->memcg_params && (p == s->memcg_params->root_cache));
144 }
145
146 /*
147 * We use suffixes to the name in memcg because we can't have caches
148 * created in the system with the same name. But when we print them
149 * locally, better refer to them with the base name
150 */
151 static inline const char *cache_name(struct kmem_cache *s)
152 {
153 if (!is_root_cache(s))
154 return s->memcg_params->root_cache->name;
155 return s->name;
156 }
157
158 /*
159 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
160 * That said the caller must assure the memcg's cache won't go away. Since once
161 * created a memcg's cache is destroyed only along with the root cache, it is
162 * true if we are going to allocate from the cache or hold a reference to the
163 * root cache by other means. Otherwise, we should hold either the slab_mutex
164 * or the memcg's slab_caches_mutex while calling this function and accessing
165 * the returned value.
166 */
167 static inline struct kmem_cache *
168 cache_from_memcg_idx(struct kmem_cache *s, int idx)
169 {
170 struct kmem_cache *cachep;
171 struct memcg_cache_params *params;
172
173 if (!s->memcg_params)
174 return NULL;
175
176 rcu_read_lock();
177 params = rcu_dereference(s->memcg_params);
178 cachep = params->memcg_caches[idx];
179 rcu_read_unlock();
180
181 /*
182 * Make sure we will access the up-to-date value. The code updating
183 * memcg_caches issues a write barrier to match this (see
184 * memcg_register_cache()).
185 */
186 smp_read_barrier_depends();
187 return cachep;
188 }
189
190 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
191 {
192 if (is_root_cache(s))
193 return s;
194 return s->memcg_params->root_cache;
195 }
196
197 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
198 gfp_t gfp, int order)
199 {
200 if (!memcg_kmem_enabled())
201 return 0;
202 if (is_root_cache(s))
203 return 0;
204 return memcg_charge_kmem(s->memcg_params->memcg, gfp,
205 PAGE_SIZE << order);
206 }
207
208 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
209 {
210 if (!memcg_kmem_enabled())
211 return;
212 if (is_root_cache(s))
213 return;
214 memcg_uncharge_kmem(s->memcg_params->memcg, PAGE_SIZE << order);
215 }
216 #else
217 static inline bool is_root_cache(struct kmem_cache *s)
218 {
219 return true;
220 }
221
222 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
223 {
224 }
225
226 static inline void memcg_release_pages(struct kmem_cache *s, int order)
227 {
228 }
229
230 static inline bool slab_equal_or_root(struct kmem_cache *s,
231 struct kmem_cache *p)
232 {
233 return true;
234 }
235
236 static inline const char *cache_name(struct kmem_cache *s)
237 {
238 return s->name;
239 }
240
241 static inline struct kmem_cache *
242 cache_from_memcg_idx(struct kmem_cache *s, int idx)
243 {
244 return NULL;
245 }
246
247 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
248 {
249 return s;
250 }
251
252 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
253 {
254 return 0;
255 }
256
257 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
258 {
259 }
260 #endif
261
262 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
263 {
264 struct kmem_cache *cachep;
265 struct page *page;
266
267 /*
268 * When kmemcg is not being used, both assignments should return the
269 * same value. but we don't want to pay the assignment price in that
270 * case. If it is not compiled in, the compiler should be smart enough
271 * to not do even the assignment. In that case, slab_equal_or_root
272 * will also be a constant.
273 */
274 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
275 return s;
276
277 page = virt_to_head_page(x);
278 cachep = page->slab_cache;
279 if (slab_equal_or_root(cachep, s))
280 return cachep;
281
282 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
283 __FUNCTION__, cachep->name, s->name);
284 WARN_ON_ONCE(1);
285 return s;
286 }
287 #endif
288
289
290 /*
291 * The slab lists for all objects.
292 */
293 struct kmem_cache_node {
294 spinlock_t list_lock;
295
296 #ifdef CONFIG_SLAB
297 struct list_head slabs_partial; /* partial list first, better asm code */
298 struct list_head slabs_full;
299 struct list_head slabs_free;
300 unsigned long free_objects;
301 unsigned int free_limit;
302 unsigned int colour_next; /* Per-node cache coloring */
303 struct array_cache *shared; /* shared per node */
304 struct array_cache **alien; /* on other nodes */
305 unsigned long next_reap; /* updated without locking */
306 int free_touched; /* updated without locking */
307 #endif
308
309 #ifdef CONFIG_SLUB
310 unsigned long nr_partial;
311 struct list_head partial;
312 #ifdef CONFIG_SLUB_DEBUG
313 atomic_long_t nr_slabs;
314 atomic_long_t total_objects;
315 struct list_head full;
316 #endif
317 #endif
318
319 };
320
321 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
322 void slab_stop(struct seq_file *m, void *p);