]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.h
slab: Common function to create the kmalloc array
[mirror_ubuntu-bionic-kernel.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 /*
8 * State of the slab allocator.
9 *
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
14 */
15 enum slab_state {
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
22 };
23
24 extern enum slab_state slab_state;
25
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
28
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
31
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
34
35 unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
37
38 #ifndef CONFIG_SLOB
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
41 #endif
42
43
44 /* Functions provided by the slab allocators */
45 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
46
47 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
48 unsigned long flags);
49 extern void create_boot_cache(struct kmem_cache *, const char *name,
50 size_t size, unsigned long flags);
51
52 struct mem_cgroup;
53 #ifdef CONFIG_SLUB
54 struct kmem_cache *
55 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
56 size_t align, unsigned long flags, void (*ctor)(void *));
57 #else
58 static inline struct kmem_cache *
59 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
60 size_t align, unsigned long flags, void (*ctor)(void *))
61 { return NULL; }
62 #endif
63
64
65 /* Legal flag mask for kmem_cache_create(), for various configurations */
66 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
67 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
68
69 #if defined(CONFIG_DEBUG_SLAB)
70 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
71 #elif defined(CONFIG_SLUB_DEBUG)
72 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
73 SLAB_TRACE | SLAB_DEBUG_FREE)
74 #else
75 #define SLAB_DEBUG_FLAGS (0)
76 #endif
77
78 #if defined(CONFIG_SLAB)
79 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
80 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
81 #elif defined(CONFIG_SLUB)
82 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
83 SLAB_TEMPORARY | SLAB_NOTRACK)
84 #else
85 #define SLAB_CACHE_FLAGS (0)
86 #endif
87
88 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
89
90 int __kmem_cache_shutdown(struct kmem_cache *);
91
92 struct seq_file;
93 struct file;
94
95 struct slabinfo {
96 unsigned long active_objs;
97 unsigned long num_objs;
98 unsigned long active_slabs;
99 unsigned long num_slabs;
100 unsigned long shared_avail;
101 unsigned int limit;
102 unsigned int batchcount;
103 unsigned int shared;
104 unsigned int objects_per_slab;
105 unsigned int cache_order;
106 };
107
108 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
109 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
110 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
111 size_t count, loff_t *ppos);
112
113 #ifdef CONFIG_MEMCG_KMEM
114 static inline bool is_root_cache(struct kmem_cache *s)
115 {
116 return !s->memcg_params || s->memcg_params->is_root_cache;
117 }
118
119 static inline bool cache_match_memcg(struct kmem_cache *cachep,
120 struct mem_cgroup *memcg)
121 {
122 return (is_root_cache(cachep) && !memcg) ||
123 (cachep->memcg_params->memcg == memcg);
124 }
125
126 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
127 {
128 if (!is_root_cache(s))
129 atomic_add(1 << order, &s->memcg_params->nr_pages);
130 }
131
132 static inline void memcg_release_pages(struct kmem_cache *s, int order)
133 {
134 if (is_root_cache(s))
135 return;
136
137 if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
138 mem_cgroup_destroy_cache(s);
139 }
140
141 static inline bool slab_equal_or_root(struct kmem_cache *s,
142 struct kmem_cache *p)
143 {
144 return (p == s) ||
145 (s->memcg_params && (p == s->memcg_params->root_cache));
146 }
147
148 /*
149 * We use suffixes to the name in memcg because we can't have caches
150 * created in the system with the same name. But when we print them
151 * locally, better refer to them with the base name
152 */
153 static inline const char *cache_name(struct kmem_cache *s)
154 {
155 if (!is_root_cache(s))
156 return s->memcg_params->root_cache->name;
157 return s->name;
158 }
159
160 static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
161 {
162 return s->memcg_params->memcg_caches[idx];
163 }
164
165 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
166 {
167 if (is_root_cache(s))
168 return s;
169 return s->memcg_params->root_cache;
170 }
171 #else
172 static inline bool is_root_cache(struct kmem_cache *s)
173 {
174 return true;
175 }
176
177 static inline bool cache_match_memcg(struct kmem_cache *cachep,
178 struct mem_cgroup *memcg)
179 {
180 return true;
181 }
182
183 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
184 {
185 }
186
187 static inline void memcg_release_pages(struct kmem_cache *s, int order)
188 {
189 }
190
191 static inline bool slab_equal_or_root(struct kmem_cache *s,
192 struct kmem_cache *p)
193 {
194 return true;
195 }
196
197 static inline const char *cache_name(struct kmem_cache *s)
198 {
199 return s->name;
200 }
201
202 static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
203 {
204 return NULL;
205 }
206
207 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
208 {
209 return s;
210 }
211 #endif
212
213 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
214 {
215 struct kmem_cache *cachep;
216 struct page *page;
217
218 /*
219 * When kmemcg is not being used, both assignments should return the
220 * same value. but we don't want to pay the assignment price in that
221 * case. If it is not compiled in, the compiler should be smart enough
222 * to not do even the assignment. In that case, slab_equal_or_root
223 * will also be a constant.
224 */
225 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
226 return s;
227
228 page = virt_to_head_page(x);
229 cachep = page->slab_cache;
230 if (slab_equal_or_root(cachep, s))
231 return cachep;
232
233 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
234 __FUNCTION__, cachep->name, s->name);
235 WARN_ON_ONCE(1);
236 return s;
237 }
238 #endif