]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/slab_common.c
memcg: allocate memory for memcg caches whenever a new memcg appears
[mirror_ubuntu-kernels.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #include "slab.h"
24
25 enum slab_state slab_state;
26 LIST_HEAD(slab_caches);
27 DEFINE_MUTEX(slab_mutex);
28 struct kmem_cache *kmem_cache;
29
30 #ifdef CONFIG_DEBUG_VM
31 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
32 size_t size)
33 {
34 struct kmem_cache *s = NULL;
35
36 if (!name || in_interrupt() || size < sizeof(void *) ||
37 size > KMALLOC_MAX_SIZE) {
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 return -EINVAL;
40 }
41
42 list_for_each_entry(s, &slab_caches, list) {
43 char tmp;
44 int res;
45
46 /*
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
50 */
51 res = probe_kernel_address(s->name, tmp);
52 if (res) {
53 pr_err("Slab cache with size %d has lost its name\n",
54 s->object_size);
55 continue;
56 }
57
58 /*
59 * For simplicity, we won't check this in the list of memcg
60 * caches. We have control over memcg naming, and if there
61 * aren't duplicates in the global list, there won't be any
62 * duplicates in the memcg lists as well.
63 */
64 if (!memcg && !strcmp(s->name, name)) {
65 pr_err("%s (%s): Cache name already exists.\n",
66 __func__, name);
67 dump_stack();
68 s = NULL;
69 return -EINVAL;
70 }
71 }
72
73 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
74 return 0;
75 }
76 #else
77 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
78 const char *name, size_t size)
79 {
80 return 0;
81 }
82 #endif
83
84 #ifdef CONFIG_MEMCG_KMEM
85 int memcg_update_all_caches(int num_memcgs)
86 {
87 struct kmem_cache *s;
88 int ret = 0;
89 mutex_lock(&slab_mutex);
90
91 list_for_each_entry(s, &slab_caches, list) {
92 if (!is_root_cache(s))
93 continue;
94
95 ret = memcg_update_cache_size(s, num_memcgs);
96 /*
97 * See comment in memcontrol.c, memcg_update_cache_size:
98 * Instead of freeing the memory, we'll just leave the caches
99 * up to this point in an updated state.
100 */
101 if (ret)
102 goto out;
103 }
104
105 memcg_update_array_size(num_memcgs);
106 out:
107 mutex_unlock(&slab_mutex);
108 return ret;
109 }
110 #endif
111
112 /*
113 * Figure out what the alignment of the objects will be given a set of
114 * flags, a user specified alignment and the size of the objects.
115 */
116 unsigned long calculate_alignment(unsigned long flags,
117 unsigned long align, unsigned long size)
118 {
119 /*
120 * If the user wants hardware cache aligned objects then follow that
121 * suggestion if the object is sufficiently large.
122 *
123 * The hardware cache alignment cannot override the specified
124 * alignment though. If that is greater then use it.
125 */
126 if (flags & SLAB_HWCACHE_ALIGN) {
127 unsigned long ralign = cache_line_size();
128 while (size <= ralign / 2)
129 ralign /= 2;
130 align = max(align, ralign);
131 }
132
133 if (align < ARCH_SLAB_MINALIGN)
134 align = ARCH_SLAB_MINALIGN;
135
136 return ALIGN(align, sizeof(void *));
137 }
138
139
140 /*
141 * kmem_cache_create - Create a cache.
142 * @name: A string which is used in /proc/slabinfo to identify this cache.
143 * @size: The size of objects to be created in this cache.
144 * @align: The required alignment for the objects.
145 * @flags: SLAB flags
146 * @ctor: A constructor for the objects.
147 *
148 * Returns a ptr to the cache on success, NULL on failure.
149 * Cannot be called within a interrupt, but can be interrupted.
150 * The @ctor is run when new pages are allocated by the cache.
151 *
152 * The flags are
153 *
154 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
155 * to catch references to uninitialised memory.
156 *
157 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
158 * for buffer overruns.
159 *
160 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
161 * cacheline. This can be beneficial if you're counting cycles as closely
162 * as davem.
163 */
164
165 struct kmem_cache *
166 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
167 size_t align, unsigned long flags, void (*ctor)(void *))
168 {
169 struct kmem_cache *s = NULL;
170 int err = 0;
171
172 get_online_cpus();
173 mutex_lock(&slab_mutex);
174
175 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
176 goto out_locked;
177
178 /*
179 * Some allocators will constraint the set of valid flags to a subset
180 * of all flags. We expect them to define CACHE_CREATE_MASK in this
181 * case, and we'll just provide them with a sanitized version of the
182 * passed flags.
183 */
184 flags &= CACHE_CREATE_MASK;
185
186 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
187 if (s)
188 goto out_locked;
189
190 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
191 if (s) {
192 s->object_size = s->size = size;
193 s->align = calculate_alignment(flags, align, size);
194 s->ctor = ctor;
195
196 if (memcg_register_cache(memcg, s)) {
197 kmem_cache_free(kmem_cache, s);
198 err = -ENOMEM;
199 goto out_locked;
200 }
201
202 s->name = kstrdup(name, GFP_KERNEL);
203 if (!s->name) {
204 kmem_cache_free(kmem_cache, s);
205 err = -ENOMEM;
206 goto out_locked;
207 }
208
209 err = __kmem_cache_create(s, flags);
210 if (!err) {
211 s->refcount = 1;
212 list_add(&s->list, &slab_caches);
213 memcg_cache_list_add(memcg, s);
214 } else {
215 kfree(s->name);
216 kmem_cache_free(kmem_cache, s);
217 }
218 } else
219 err = -ENOMEM;
220
221 out_locked:
222 mutex_unlock(&slab_mutex);
223 put_online_cpus();
224
225 if (err) {
226
227 if (flags & SLAB_PANIC)
228 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
229 name, err);
230 else {
231 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
232 name, err);
233 dump_stack();
234 }
235
236 return NULL;
237 }
238
239 return s;
240 }
241
242 struct kmem_cache *
243 kmem_cache_create(const char *name, size_t size, size_t align,
244 unsigned long flags, void (*ctor)(void *))
245 {
246 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor);
247 }
248 EXPORT_SYMBOL(kmem_cache_create);
249
250 void kmem_cache_destroy(struct kmem_cache *s)
251 {
252 get_online_cpus();
253 mutex_lock(&slab_mutex);
254 s->refcount--;
255 if (!s->refcount) {
256 list_del(&s->list);
257
258 if (!__kmem_cache_shutdown(s)) {
259 mutex_unlock(&slab_mutex);
260 if (s->flags & SLAB_DESTROY_BY_RCU)
261 rcu_barrier();
262
263 memcg_release_cache(s);
264 kfree(s->name);
265 kmem_cache_free(kmem_cache, s);
266 } else {
267 list_add(&s->list, &slab_caches);
268 mutex_unlock(&slab_mutex);
269 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
270 s->name);
271 dump_stack();
272 }
273 } else {
274 mutex_unlock(&slab_mutex);
275 }
276 put_online_cpus();
277 }
278 EXPORT_SYMBOL(kmem_cache_destroy);
279
280 int slab_is_available(void)
281 {
282 return slab_state >= UP;
283 }
284
285 #ifndef CONFIG_SLOB
286 /* Create a cache during boot when no slab services are available yet */
287 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
288 unsigned long flags)
289 {
290 int err;
291
292 s->name = name;
293 s->size = s->object_size = size;
294 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
295 err = __kmem_cache_create(s, flags);
296
297 if (err)
298 panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
299 name, size, err);
300
301 s->refcount = -1; /* Exempt from merging for now */
302 }
303
304 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
305 unsigned long flags)
306 {
307 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
308
309 if (!s)
310 panic("Out of memory when creating slab %s\n", name);
311
312 create_boot_cache(s, name, size, flags);
313 list_add(&s->list, &slab_caches);
314 s->refcount = 1;
315 return s;
316 }
317
318 #endif /* !CONFIG_SLOB */
319
320
321 #ifdef CONFIG_SLABINFO
322 static void print_slabinfo_header(struct seq_file *m)
323 {
324 /*
325 * Output format version, so at least we can change it
326 * without _too_ many complaints.
327 */
328 #ifdef CONFIG_DEBUG_SLAB
329 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
330 #else
331 seq_puts(m, "slabinfo - version: 2.1\n");
332 #endif
333 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
334 "<objperslab> <pagesperslab>");
335 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
336 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
337 #ifdef CONFIG_DEBUG_SLAB
338 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
339 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
340 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
341 #endif
342 seq_putc(m, '\n');
343 }
344
345 static void *s_start(struct seq_file *m, loff_t *pos)
346 {
347 loff_t n = *pos;
348
349 mutex_lock(&slab_mutex);
350 if (!n)
351 print_slabinfo_header(m);
352
353 return seq_list_start(&slab_caches, *pos);
354 }
355
356 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
357 {
358 return seq_list_next(p, &slab_caches, pos);
359 }
360
361 static void s_stop(struct seq_file *m, void *p)
362 {
363 mutex_unlock(&slab_mutex);
364 }
365
366 static int s_show(struct seq_file *m, void *p)
367 {
368 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
369 struct slabinfo sinfo;
370
371 memset(&sinfo, 0, sizeof(sinfo));
372 get_slabinfo(s, &sinfo);
373
374 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
375 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
376 sinfo.objects_per_slab, (1 << sinfo.cache_order));
377
378 seq_printf(m, " : tunables %4u %4u %4u",
379 sinfo.limit, sinfo.batchcount, sinfo.shared);
380 seq_printf(m, " : slabdata %6lu %6lu %6lu",
381 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
382 slabinfo_show_stats(m, s);
383 seq_putc(m, '\n');
384 return 0;
385 }
386
387 /*
388 * slabinfo_op - iterator that generates /proc/slabinfo
389 *
390 * Output layout:
391 * cache-name
392 * num-active-objs
393 * total-objs
394 * object size
395 * num-active-slabs
396 * total-slabs
397 * num-pages-per-slab
398 * + further values on SMP and with statistics enabled
399 */
400 static const struct seq_operations slabinfo_op = {
401 .start = s_start,
402 .next = s_next,
403 .stop = s_stop,
404 .show = s_show,
405 };
406
407 static int slabinfo_open(struct inode *inode, struct file *file)
408 {
409 return seq_open(file, &slabinfo_op);
410 }
411
412 static const struct file_operations proc_slabinfo_operations = {
413 .open = slabinfo_open,
414 .read = seq_read,
415 .write = slabinfo_write,
416 .llseek = seq_lseek,
417 .release = seq_release,
418 };
419
420 static int __init slab_proc_init(void)
421 {
422 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
423 return 0;
424 }
425 module_init(slab_proc_init);
426 #endif /* CONFIG_SLABINFO */