]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab_common.c
media: dvb_ca_en50221: prevent using slot_info for Spectre attacs
[mirror_ubuntu-bionic-kernel.git] / mm / slab_common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/compiler.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/page.h>
22 #include <linux/memcontrol.h>
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kmem.h>
26
27 #include "slab.h"
28
29 enum slab_state slab_state;
30 LIST_HEAD(slab_caches);
31 DEFINE_MUTEX(slab_mutex);
32 struct kmem_cache *kmem_cache;
33
34 static LIST_HEAD(slab_caches_to_rcu_destroy);
35 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
36 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
37 slab_caches_to_rcu_destroy_workfn);
38
39 /*
40 * Set of flags that will prevent slab merging
41 */
42 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
43 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
44 SLAB_FAILSLAB | SLAB_KASAN)
45
46 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
47 SLAB_ACCOUNT)
48
49 /*
50 * Merge control. If this is set then no merging of slab caches will occur.
51 */
52 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
53
54 static int __init setup_slab_nomerge(char *str)
55 {
56 slab_nomerge = true;
57 return 1;
58 }
59
60 #ifdef CONFIG_SLUB
61 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62 #endif
63
64 __setup("slab_nomerge", setup_slab_nomerge);
65
66 /*
67 * Determine the size of a slab object
68 */
69 unsigned int kmem_cache_size(struct kmem_cache *s)
70 {
71 return s->object_size;
72 }
73 EXPORT_SYMBOL(kmem_cache_size);
74
75 #ifdef CONFIG_DEBUG_VM
76 static int kmem_cache_sanity_check(const char *name, size_t size)
77 {
78 struct kmem_cache *s = NULL;
79
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
84 }
85
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
97 pr_err("Slab cache with size %d has lost its name\n",
98 s->object_size);
99 continue;
100 }
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
104 return 0;
105 }
106 #else
107 static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 {
109 return 0;
110 }
111 #endif
112
113 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114 {
115 size_t i;
116
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
123 }
124
125 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 void **p)
127 {
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
134 return 0;
135 }
136 }
137 return i;
138 }
139
140 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141
142 LIST_HEAD(slab_root_caches);
143
144 void slab_init_memcg_params(struct kmem_cache *s)
145 {
146 s->memcg_params.root_cache = NULL;
147 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
148 INIT_LIST_HEAD(&s->memcg_params.children);
149 }
150
151 static int init_memcg_params(struct kmem_cache *s,
152 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153 {
154 struct memcg_cache_array *arr;
155
156 if (root_cache) {
157 s->memcg_params.root_cache = root_cache;
158 s->memcg_params.memcg = memcg;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 return 0;
162 }
163
164 slab_init_memcg_params(s);
165
166 if (!memcg_nr_cache_ids)
167 return 0;
168
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
174
175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 return 0;
177 }
178
179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 if (is_root_cache(s))
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 }
184
185 static void free_memcg_params(struct rcu_head *rcu)
186 {
187 struct memcg_cache_array *old;
188
189 old = container_of(rcu, struct memcg_cache_array, rcu);
190 kvfree(old);
191 }
192
193 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
194 {
195 struct memcg_cache_array *old, *new;
196
197 new = kvzalloc(sizeof(struct memcg_cache_array) +
198 new_array_size * sizeof(void *), GFP_KERNEL);
199 if (!new)
200 return -ENOMEM;
201
202 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
203 lockdep_is_held(&slab_mutex));
204 if (old)
205 memcpy(new->entries, old->entries,
206 memcg_nr_cache_ids * sizeof(void *));
207
208 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
209 if (old)
210 call_rcu(&old->rcu, free_memcg_params);
211 return 0;
212 }
213
214 int memcg_update_all_caches(int num_memcgs)
215 {
216 struct kmem_cache *s;
217 int ret = 0;
218
219 mutex_lock(&slab_mutex);
220 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
221 ret = update_memcg_params(s, num_memcgs);
222 /*
223 * Instead of freeing the memory, we'll just leave the caches
224 * up to this point in an updated state.
225 */
226 if (ret)
227 break;
228 }
229 mutex_unlock(&slab_mutex);
230 return ret;
231 }
232
233 void memcg_link_cache(struct kmem_cache *s)
234 {
235 if (is_root_cache(s)) {
236 list_add(&s->root_caches_node, &slab_root_caches);
237 } else {
238 list_add(&s->memcg_params.children_node,
239 &s->memcg_params.root_cache->memcg_params.children);
240 list_add(&s->memcg_params.kmem_caches_node,
241 &s->memcg_params.memcg->kmem_caches);
242 }
243 }
244
245 static void memcg_unlink_cache(struct kmem_cache *s)
246 {
247 if (is_root_cache(s)) {
248 list_del(&s->root_caches_node);
249 } else {
250 list_del(&s->memcg_params.children_node);
251 list_del(&s->memcg_params.kmem_caches_node);
252 }
253 }
254 #else
255 static inline int init_memcg_params(struct kmem_cache *s,
256 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
257 {
258 return 0;
259 }
260
261 static inline void destroy_memcg_params(struct kmem_cache *s)
262 {
263 }
264
265 static inline void memcg_unlink_cache(struct kmem_cache *s)
266 {
267 }
268 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
269
270 /*
271 * Find a mergeable slab cache
272 */
273 int slab_unmergeable(struct kmem_cache *s)
274 {
275 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
276 return 1;
277
278 if (!is_root_cache(s))
279 return 1;
280
281 if (s->ctor)
282 return 1;
283
284 /*
285 * We may have set a slab to be unmergeable during bootstrap.
286 */
287 if (s->refcount < 0)
288 return 1;
289
290 return 0;
291 }
292
293 struct kmem_cache *find_mergeable(size_t size, size_t align,
294 slab_flags_t flags, const char *name, void (*ctor)(void *))
295 {
296 struct kmem_cache *s;
297
298 if (slab_nomerge)
299 return NULL;
300
301 if (ctor)
302 return NULL;
303
304 size = ALIGN(size, sizeof(void *));
305 align = calculate_alignment(flags, align, size);
306 size = ALIGN(size, align);
307 flags = kmem_cache_flags(size, flags, name, NULL);
308
309 if (flags & SLAB_NEVER_MERGE)
310 return NULL;
311
312 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
313 if (slab_unmergeable(s))
314 continue;
315
316 if (size > s->size)
317 continue;
318
319 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
320 continue;
321 /*
322 * Check if alignment is compatible.
323 * Courtesy of Adrian Drzewiecki
324 */
325 if ((s->size & ~(align - 1)) != s->size)
326 continue;
327
328 if (s->size - size >= sizeof(void *))
329 continue;
330
331 if (IS_ENABLED(CONFIG_SLAB) && align &&
332 (align > s->align || s->align % align))
333 continue;
334
335 return s;
336 }
337 return NULL;
338 }
339
340 /*
341 * Figure out what the alignment of the objects will be given a set of
342 * flags, a user specified alignment and the size of the objects.
343 */
344 unsigned long calculate_alignment(slab_flags_t flags,
345 unsigned long align, unsigned long size)
346 {
347 /*
348 * If the user wants hardware cache aligned objects then follow that
349 * suggestion if the object is sufficiently large.
350 *
351 * The hardware cache alignment cannot override the specified
352 * alignment though. If that is greater then use it.
353 */
354 if (flags & SLAB_HWCACHE_ALIGN) {
355 unsigned long ralign = cache_line_size();
356 while (size <= ralign / 2)
357 ralign /= 2;
358 align = max(align, ralign);
359 }
360
361 if (align < ARCH_SLAB_MINALIGN)
362 align = ARCH_SLAB_MINALIGN;
363
364 return ALIGN(align, sizeof(void *));
365 }
366
367 static struct kmem_cache *create_cache(const char *name,
368 size_t object_size, size_t size, size_t align,
369 slab_flags_t flags, void (*ctor)(void *),
370 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
371 {
372 struct kmem_cache *s;
373 int err;
374
375 err = -ENOMEM;
376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 if (!s)
378 goto out;
379
380 s->name = name;
381 s->object_size = object_size;
382 s->size = size;
383 s->align = align;
384 s->ctor = ctor;
385
386 err = init_memcg_params(s, memcg, root_cache);
387 if (err)
388 goto out_free_cache;
389
390 err = __kmem_cache_create(s, flags);
391 if (err)
392 goto out_free_cache;
393
394 s->refcount = 1;
395 list_add(&s->list, &slab_caches);
396 memcg_link_cache(s);
397 out:
398 if (err)
399 return ERR_PTR(err);
400 return s;
401
402 out_free_cache:
403 destroy_memcg_params(s);
404 kmem_cache_free(kmem_cache, s);
405 goto out;
406 }
407
408 /*
409 * kmem_cache_create - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
413 * @flags: SLAB flags
414 * @ctor: A constructor for the objects.
415 *
416 * Returns a ptr to the cache on success, NULL on failure.
417 * Cannot be called within a interrupt, but can be interrupted.
418 * The @ctor is run when new pages are allocated by the cache.
419 *
420 * The flags are
421 *
422 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
423 * to catch references to uninitialised memory.
424 *
425 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
426 * for buffer overruns.
427 *
428 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
429 * cacheline. This can be beneficial if you're counting cycles as closely
430 * as davem.
431 */
432 struct kmem_cache *
433 kmem_cache_create(const char *name, size_t size, size_t align,
434 slab_flags_t flags, void (*ctor)(void *))
435 {
436 struct kmem_cache *s = NULL;
437 const char *cache_name;
438 int err;
439
440 get_online_cpus();
441 get_online_mems();
442 memcg_get_cache_ids();
443
444 mutex_lock(&slab_mutex);
445
446 err = kmem_cache_sanity_check(name, size);
447 if (err) {
448 goto out_unlock;
449 }
450
451 /* Refuse requests with allocator specific flags */
452 if (flags & ~SLAB_FLAGS_PERMITTED) {
453 err = -EINVAL;
454 goto out_unlock;
455 }
456
457 /*
458 * Some allocators will constraint the set of valid flags to a subset
459 * of all flags. We expect them to define CACHE_CREATE_MASK in this
460 * case, and we'll just provide them with a sanitized version of the
461 * passed flags.
462 */
463 flags &= CACHE_CREATE_MASK;
464
465 s = __kmem_cache_alias(name, size, align, flags, ctor);
466 if (s)
467 goto out_unlock;
468
469 cache_name = kstrdup_const(name, GFP_KERNEL);
470 if (!cache_name) {
471 err = -ENOMEM;
472 goto out_unlock;
473 }
474
475 s = create_cache(cache_name, size, size,
476 calculate_alignment(flags, align, size),
477 flags, ctor, NULL, NULL);
478 if (IS_ERR(s)) {
479 err = PTR_ERR(s);
480 kfree_const(cache_name);
481 }
482
483 out_unlock:
484 mutex_unlock(&slab_mutex);
485
486 memcg_put_cache_ids();
487 put_online_mems();
488 put_online_cpus();
489
490 if (err) {
491 if (flags & SLAB_PANIC)
492 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
493 name, err);
494 else {
495 pr_warn("kmem_cache_create(%s) failed with error %d\n",
496 name, err);
497 dump_stack();
498 }
499 return NULL;
500 }
501 return s;
502 }
503 EXPORT_SYMBOL(kmem_cache_create);
504
505 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
506 {
507 LIST_HEAD(to_destroy);
508 struct kmem_cache *s, *s2;
509
510 /*
511 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
512 * @slab_caches_to_rcu_destroy list. The slab pages are freed
513 * through RCU and and the associated kmem_cache are dereferenced
514 * while freeing the pages, so the kmem_caches should be freed only
515 * after the pending RCU operations are finished. As rcu_barrier()
516 * is a pretty slow operation, we batch all pending destructions
517 * asynchronously.
518 */
519 mutex_lock(&slab_mutex);
520 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
521 mutex_unlock(&slab_mutex);
522
523 if (list_empty(&to_destroy))
524 return;
525
526 rcu_barrier();
527
528 list_for_each_entry_safe(s, s2, &to_destroy, list) {
529 #ifdef SLAB_SUPPORTS_SYSFS
530 sysfs_slab_release(s);
531 #else
532 slab_kmem_cache_release(s);
533 #endif
534 }
535 }
536
537 static int shutdown_cache(struct kmem_cache *s)
538 {
539 /* free asan quarantined objects */
540 kasan_cache_shutdown(s);
541
542 if (__kmem_cache_shutdown(s) != 0)
543 return -EBUSY;
544
545 memcg_unlink_cache(s);
546 list_del(&s->list);
547
548 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
549 #ifdef SLAB_SUPPORTS_SYSFS
550 sysfs_slab_unlink(s);
551 #endif
552 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
553 schedule_work(&slab_caches_to_rcu_destroy_work);
554 } else {
555 #ifdef SLAB_SUPPORTS_SYSFS
556 sysfs_slab_unlink(s);
557 sysfs_slab_release(s);
558 #else
559 slab_kmem_cache_release(s);
560 #endif
561 }
562
563 return 0;
564 }
565
566 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
567 /*
568 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
569 * @memcg: The memory cgroup the new cache is for.
570 * @root_cache: The parent of the new cache.
571 *
572 * This function attempts to create a kmem cache that will serve allocation
573 * requests going from @memcg to @root_cache. The new cache inherits properties
574 * from its parent.
575 */
576 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
577 struct kmem_cache *root_cache)
578 {
579 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
580 struct cgroup_subsys_state *css = &memcg->css;
581 struct memcg_cache_array *arr;
582 struct kmem_cache *s = NULL;
583 char *cache_name;
584 int idx;
585
586 get_online_cpus();
587 get_online_mems();
588
589 mutex_lock(&slab_mutex);
590
591 /*
592 * The memory cgroup could have been offlined while the cache
593 * creation work was pending.
594 */
595 if (memcg->kmem_state != KMEM_ONLINE)
596 goto out_unlock;
597
598 idx = memcg_cache_id(memcg);
599 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
600 lockdep_is_held(&slab_mutex));
601
602 /*
603 * Since per-memcg caches are created asynchronously on first
604 * allocation (see memcg_kmem_get_cache()), several threads can try to
605 * create the same cache, but only one of them may succeed.
606 */
607 if (arr->entries[idx])
608 goto out_unlock;
609
610 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
611 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
612 css->serial_nr, memcg_name_buf);
613 if (!cache_name)
614 goto out_unlock;
615
616 s = create_cache(cache_name, root_cache->object_size,
617 root_cache->size, root_cache->align,
618 root_cache->flags & CACHE_CREATE_MASK,
619 root_cache->ctor, memcg, root_cache);
620 /*
621 * If we could not create a memcg cache, do not complain, because
622 * that's not critical at all as we can always proceed with the root
623 * cache.
624 */
625 if (IS_ERR(s)) {
626 kfree(cache_name);
627 goto out_unlock;
628 }
629
630 /*
631 * Since readers won't lock (see cache_from_memcg_idx()), we need a
632 * barrier here to ensure nobody will see the kmem_cache partially
633 * initialized.
634 */
635 smp_wmb();
636 arr->entries[idx] = s;
637
638 out_unlock:
639 mutex_unlock(&slab_mutex);
640
641 put_online_mems();
642 put_online_cpus();
643 }
644
645 static void kmemcg_deactivate_workfn(struct work_struct *work)
646 {
647 struct kmem_cache *s = container_of(work, struct kmem_cache,
648 memcg_params.deact_work);
649
650 get_online_cpus();
651 get_online_mems();
652
653 mutex_lock(&slab_mutex);
654
655 s->memcg_params.deact_fn(s);
656
657 mutex_unlock(&slab_mutex);
658
659 put_online_mems();
660 put_online_cpus();
661
662 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
663 css_put(&s->memcg_params.memcg->css);
664 }
665
666 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
667 {
668 struct kmem_cache *s = container_of(head, struct kmem_cache,
669 memcg_params.deact_rcu_head);
670
671 /*
672 * We need to grab blocking locks. Bounce to ->deact_work. The
673 * work item shares the space with the RCU head and can't be
674 * initialized eariler.
675 */
676 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
677 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
678 }
679
680 /**
681 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
682 * sched RCU grace period
683 * @s: target kmem_cache
684 * @deact_fn: deactivation function to call
685 *
686 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
687 * held after a sched RCU grace period. The slab is guaranteed to stay
688 * alive until @deact_fn is finished. This is to be used from
689 * __kmemcg_cache_deactivate().
690 */
691 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
692 void (*deact_fn)(struct kmem_cache *))
693 {
694 if (WARN_ON_ONCE(is_root_cache(s)) ||
695 WARN_ON_ONCE(s->memcg_params.deact_fn))
696 return;
697
698 /* pin memcg so that @s doesn't get destroyed in the middle */
699 css_get(&s->memcg_params.memcg->css);
700
701 s->memcg_params.deact_fn = deact_fn;
702 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
703 }
704
705 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
706 {
707 int idx;
708 struct memcg_cache_array *arr;
709 struct kmem_cache *s, *c;
710
711 idx = memcg_cache_id(memcg);
712
713 get_online_cpus();
714 get_online_mems();
715
716 mutex_lock(&slab_mutex);
717 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
718 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
719 lockdep_is_held(&slab_mutex));
720 c = arr->entries[idx];
721 if (!c)
722 continue;
723
724 __kmemcg_cache_deactivate(c);
725 arr->entries[idx] = NULL;
726 }
727 mutex_unlock(&slab_mutex);
728
729 put_online_mems();
730 put_online_cpus();
731 }
732
733 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
734 {
735 struct kmem_cache *s, *s2;
736
737 get_online_cpus();
738 get_online_mems();
739
740 mutex_lock(&slab_mutex);
741 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
742 memcg_params.kmem_caches_node) {
743 /*
744 * The cgroup is about to be freed and therefore has no charges
745 * left. Hence, all its caches must be empty by now.
746 */
747 BUG_ON(shutdown_cache(s));
748 }
749 mutex_unlock(&slab_mutex);
750
751 put_online_mems();
752 put_online_cpus();
753 }
754
755 static int shutdown_memcg_caches(struct kmem_cache *s)
756 {
757 struct memcg_cache_array *arr;
758 struct kmem_cache *c, *c2;
759 LIST_HEAD(busy);
760 int i;
761
762 BUG_ON(!is_root_cache(s));
763
764 /*
765 * First, shutdown active caches, i.e. caches that belong to online
766 * memory cgroups.
767 */
768 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
769 lockdep_is_held(&slab_mutex));
770 for_each_memcg_cache_index(i) {
771 c = arr->entries[i];
772 if (!c)
773 continue;
774 if (shutdown_cache(c))
775 /*
776 * The cache still has objects. Move it to a temporary
777 * list so as not to try to destroy it for a second
778 * time while iterating over inactive caches below.
779 */
780 list_move(&c->memcg_params.children_node, &busy);
781 else
782 /*
783 * The cache is empty and will be destroyed soon. Clear
784 * the pointer to it in the memcg_caches array so that
785 * it will never be accessed even if the root cache
786 * stays alive.
787 */
788 arr->entries[i] = NULL;
789 }
790
791 /*
792 * Second, shutdown all caches left from memory cgroups that are now
793 * offline.
794 */
795 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
796 memcg_params.children_node)
797 shutdown_cache(c);
798
799 list_splice(&busy, &s->memcg_params.children);
800
801 /*
802 * A cache being destroyed must be empty. In particular, this means
803 * that all per memcg caches attached to it must be empty too.
804 */
805 if (!list_empty(&s->memcg_params.children))
806 return -EBUSY;
807 return 0;
808 }
809 #else
810 static inline int shutdown_memcg_caches(struct kmem_cache *s)
811 {
812 return 0;
813 }
814 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
815
816 void slab_kmem_cache_release(struct kmem_cache *s)
817 {
818 __kmem_cache_release(s);
819 destroy_memcg_params(s);
820 kfree_const(s->name);
821 kmem_cache_free(kmem_cache, s);
822 }
823
824 void kmem_cache_destroy(struct kmem_cache *s)
825 {
826 int err;
827
828 if (unlikely(!s))
829 return;
830
831 get_online_cpus();
832 get_online_mems();
833
834 mutex_lock(&slab_mutex);
835
836 s->refcount--;
837 if (s->refcount)
838 goto out_unlock;
839
840 err = shutdown_memcg_caches(s);
841 if (!err)
842 err = shutdown_cache(s);
843
844 if (err) {
845 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
846 s->name);
847 dump_stack();
848 }
849 out_unlock:
850 mutex_unlock(&slab_mutex);
851
852 put_online_mems();
853 put_online_cpus();
854 }
855 EXPORT_SYMBOL(kmem_cache_destroy);
856
857 /**
858 * kmem_cache_shrink - Shrink a cache.
859 * @cachep: The cache to shrink.
860 *
861 * Releases as many slabs as possible for a cache.
862 * To help debugging, a zero exit status indicates all slabs were released.
863 */
864 int kmem_cache_shrink(struct kmem_cache *cachep)
865 {
866 int ret;
867
868 get_online_cpus();
869 get_online_mems();
870 kasan_cache_shrink(cachep);
871 ret = __kmem_cache_shrink(cachep);
872 put_online_mems();
873 put_online_cpus();
874 return ret;
875 }
876 EXPORT_SYMBOL(kmem_cache_shrink);
877
878 bool slab_is_available(void)
879 {
880 return slab_state >= UP;
881 }
882
883 #ifndef CONFIG_SLOB
884 /* Create a cache during boot when no slab services are available yet */
885 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
886 slab_flags_t flags)
887 {
888 int err;
889
890 s->name = name;
891 s->size = s->object_size = size;
892 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
893
894 slab_init_memcg_params(s);
895
896 err = __kmem_cache_create(s, flags);
897
898 if (err)
899 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
900 name, size, err);
901
902 s->refcount = -1; /* Exempt from merging for now */
903 }
904
905 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
906 slab_flags_t flags)
907 {
908 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
909
910 if (!s)
911 panic("Out of memory when creating slab %s\n", name);
912
913 create_boot_cache(s, name, size, flags);
914 list_add(&s->list, &slab_caches);
915 memcg_link_cache(s);
916 s->refcount = 1;
917 return s;
918 }
919
920 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
921 EXPORT_SYMBOL(kmalloc_caches);
922
923 #ifdef CONFIG_ZONE_DMA
924 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
925 EXPORT_SYMBOL(kmalloc_dma_caches);
926 #endif
927
928 /*
929 * Conversion table for small slabs sizes / 8 to the index in the
930 * kmalloc array. This is necessary for slabs < 192 since we have non power
931 * of two cache sizes there. The size of larger slabs can be determined using
932 * fls.
933 */
934 static s8 size_index[24] = {
935 3, /* 8 */
936 4, /* 16 */
937 5, /* 24 */
938 5, /* 32 */
939 6, /* 40 */
940 6, /* 48 */
941 6, /* 56 */
942 6, /* 64 */
943 1, /* 72 */
944 1, /* 80 */
945 1, /* 88 */
946 1, /* 96 */
947 7, /* 104 */
948 7, /* 112 */
949 7, /* 120 */
950 7, /* 128 */
951 2, /* 136 */
952 2, /* 144 */
953 2, /* 152 */
954 2, /* 160 */
955 2, /* 168 */
956 2, /* 176 */
957 2, /* 184 */
958 2 /* 192 */
959 };
960
961 static inline int size_index_elem(size_t bytes)
962 {
963 return (bytes - 1) / 8;
964 }
965
966 /*
967 * Find the kmem_cache structure that serves a given size of
968 * allocation
969 */
970 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
971 {
972 int index;
973
974 if (unlikely(size > KMALLOC_MAX_SIZE)) {
975 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
976 return NULL;
977 }
978
979 if (size <= 192) {
980 if (!size)
981 return ZERO_SIZE_PTR;
982
983 index = size_index[size_index_elem(size)];
984 } else
985 index = fls(size - 1);
986
987 #ifdef CONFIG_ZONE_DMA
988 if (unlikely((flags & GFP_DMA)))
989 return kmalloc_dma_caches[index];
990
991 #endif
992 return kmalloc_caches[index];
993 }
994
995 /*
996 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
997 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
998 * kmalloc-67108864.
999 */
1000 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1001 {NULL, 0}, {"kmalloc-96", 96},
1002 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1003 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1004 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1005 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1006 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1007 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1008 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1009 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1010 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1011 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1012 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1013 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1014 {"kmalloc-67108864", 67108864}
1015 };
1016
1017 /*
1018 * Patch up the size_index table if we have strange large alignment
1019 * requirements for the kmalloc array. This is only the case for
1020 * MIPS it seems. The standard arches will not generate any code here.
1021 *
1022 * Largest permitted alignment is 256 bytes due to the way we
1023 * handle the index determination for the smaller caches.
1024 *
1025 * Make sure that nothing crazy happens if someone starts tinkering
1026 * around with ARCH_KMALLOC_MINALIGN
1027 */
1028 void __init setup_kmalloc_cache_index_table(void)
1029 {
1030 int i;
1031
1032 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1033 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1034
1035 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1036 int elem = size_index_elem(i);
1037
1038 if (elem >= ARRAY_SIZE(size_index))
1039 break;
1040 size_index[elem] = KMALLOC_SHIFT_LOW;
1041 }
1042
1043 if (KMALLOC_MIN_SIZE >= 64) {
1044 /*
1045 * The 96 byte size cache is not used if the alignment
1046 * is 64 byte.
1047 */
1048 for (i = 64 + 8; i <= 96; i += 8)
1049 size_index[size_index_elem(i)] = 7;
1050
1051 }
1052
1053 if (KMALLOC_MIN_SIZE >= 128) {
1054 /*
1055 * The 192 byte sized cache is not used if the alignment
1056 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1057 * instead.
1058 */
1059 for (i = 128 + 8; i <= 192; i += 8)
1060 size_index[size_index_elem(i)] = 8;
1061 }
1062 }
1063
1064 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1065 {
1066 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1067 kmalloc_info[idx].size, flags);
1068 }
1069
1070 /*
1071 * Create the kmalloc array. Some of the regular kmalloc arrays
1072 * may already have been created because they were needed to
1073 * enable allocations for slab creation.
1074 */
1075 void __init create_kmalloc_caches(slab_flags_t flags)
1076 {
1077 int i;
1078
1079 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1080 if (!kmalloc_caches[i])
1081 new_kmalloc_cache(i, flags);
1082
1083 /*
1084 * Caches that are not of the two-to-the-power-of size.
1085 * These have to be created immediately after the
1086 * earlier power of two caches
1087 */
1088 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1089 new_kmalloc_cache(1, flags);
1090 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1091 new_kmalloc_cache(2, flags);
1092 }
1093
1094 /* Kmalloc array is now usable */
1095 slab_state = UP;
1096
1097 #ifdef CONFIG_ZONE_DMA
1098 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1099 struct kmem_cache *s = kmalloc_caches[i];
1100
1101 if (s) {
1102 int size = kmalloc_size(i);
1103 char *n = kasprintf(GFP_NOWAIT,
1104 "dma-kmalloc-%d", size);
1105
1106 BUG_ON(!n);
1107 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1108 size, SLAB_CACHE_DMA | flags);
1109 }
1110 }
1111 #endif
1112 }
1113 #endif /* !CONFIG_SLOB */
1114
1115 /*
1116 * To avoid unnecessary overhead, we pass through large allocation requests
1117 * directly to the page allocator. We use __GFP_COMP, because we will need to
1118 * know the allocation order to free the pages properly in kfree.
1119 */
1120 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1121 {
1122 void *ret;
1123 struct page *page;
1124
1125 flags |= __GFP_COMP;
1126 page = alloc_pages(flags, order);
1127 ret = page ? page_address(page) : NULL;
1128 kmemleak_alloc(ret, size, 1, flags);
1129 kasan_kmalloc_large(ret, size, flags);
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(kmalloc_order);
1133
1134 #ifdef CONFIG_TRACING
1135 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1136 {
1137 void *ret = kmalloc_order(size, flags, order);
1138 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1139 return ret;
1140 }
1141 EXPORT_SYMBOL(kmalloc_order_trace);
1142 #endif
1143
1144 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1145 /* Randomize a generic freelist */
1146 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1147 size_t count)
1148 {
1149 size_t i;
1150 unsigned int rand;
1151
1152 for (i = 0; i < count; i++)
1153 list[i] = i;
1154
1155 /* Fisher-Yates shuffle */
1156 for (i = count - 1; i > 0; i--) {
1157 rand = prandom_u32_state(state);
1158 rand %= (i + 1);
1159 swap(list[i], list[rand]);
1160 }
1161 }
1162
1163 /* Create a random sequence per cache */
1164 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1165 gfp_t gfp)
1166 {
1167 struct rnd_state state;
1168
1169 if (count < 2 || cachep->random_seq)
1170 return 0;
1171
1172 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1173 if (!cachep->random_seq)
1174 return -ENOMEM;
1175
1176 /* Get best entropy at this stage of boot */
1177 prandom_seed_state(&state, get_random_long());
1178
1179 freelist_randomize(&state, cachep->random_seq, count);
1180 return 0;
1181 }
1182
1183 /* Destroy the per-cache random freelist sequence */
1184 void cache_random_seq_destroy(struct kmem_cache *cachep)
1185 {
1186 kfree(cachep->random_seq);
1187 cachep->random_seq = NULL;
1188 }
1189 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1190
1191 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1192 #ifdef CONFIG_SLAB
1193 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1194 #else
1195 #define SLABINFO_RIGHTS S_IRUSR
1196 #endif
1197
1198 static void print_slabinfo_header(struct seq_file *m)
1199 {
1200 /*
1201 * Output format version, so at least we can change it
1202 * without _too_ many complaints.
1203 */
1204 #ifdef CONFIG_DEBUG_SLAB
1205 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1206 #else
1207 seq_puts(m, "slabinfo - version: 2.1\n");
1208 #endif
1209 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1210 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1211 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1212 #ifdef CONFIG_DEBUG_SLAB
1213 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1214 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1215 #endif
1216 seq_putc(m, '\n');
1217 }
1218
1219 void *slab_start(struct seq_file *m, loff_t *pos)
1220 {
1221 mutex_lock(&slab_mutex);
1222 return seq_list_start(&slab_root_caches, *pos);
1223 }
1224
1225 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1226 {
1227 return seq_list_next(p, &slab_root_caches, pos);
1228 }
1229
1230 void slab_stop(struct seq_file *m, void *p)
1231 {
1232 mutex_unlock(&slab_mutex);
1233 }
1234
1235 static void
1236 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1237 {
1238 struct kmem_cache *c;
1239 struct slabinfo sinfo;
1240
1241 if (!is_root_cache(s))
1242 return;
1243
1244 for_each_memcg_cache(c, s) {
1245 memset(&sinfo, 0, sizeof(sinfo));
1246 get_slabinfo(c, &sinfo);
1247
1248 info->active_slabs += sinfo.active_slabs;
1249 info->num_slabs += sinfo.num_slabs;
1250 info->shared_avail += sinfo.shared_avail;
1251 info->active_objs += sinfo.active_objs;
1252 info->num_objs += sinfo.num_objs;
1253 }
1254 }
1255
1256 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1257 {
1258 struct slabinfo sinfo;
1259
1260 memset(&sinfo, 0, sizeof(sinfo));
1261 get_slabinfo(s, &sinfo);
1262
1263 memcg_accumulate_slabinfo(s, &sinfo);
1264
1265 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1266 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1267 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1268
1269 seq_printf(m, " : tunables %4u %4u %4u",
1270 sinfo.limit, sinfo.batchcount, sinfo.shared);
1271 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1272 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1273 slabinfo_show_stats(m, s);
1274 seq_putc(m, '\n');
1275 }
1276
1277 static int slab_show(struct seq_file *m, void *p)
1278 {
1279 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1280
1281 if (p == slab_root_caches.next)
1282 print_slabinfo_header(m);
1283 cache_show(s, m);
1284 return 0;
1285 }
1286
1287 void dump_unreclaimable_slab(void)
1288 {
1289 struct kmem_cache *s, *s2;
1290 struct slabinfo sinfo;
1291
1292 /*
1293 * Here acquiring slab_mutex is risky since we don't prefer to get
1294 * sleep in oom path. But, without mutex hold, it may introduce a
1295 * risk of crash.
1296 * Use mutex_trylock to protect the list traverse, dump nothing
1297 * without acquiring the mutex.
1298 */
1299 if (!mutex_trylock(&slab_mutex)) {
1300 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1301 return;
1302 }
1303
1304 pr_info("Unreclaimable slab info:\n");
1305 pr_info("Name Used Total\n");
1306
1307 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1308 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1309 continue;
1310
1311 get_slabinfo(s, &sinfo);
1312
1313 if (sinfo.num_objs > 0)
1314 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1315 (sinfo.active_objs * s->size) / 1024,
1316 (sinfo.num_objs * s->size) / 1024);
1317 }
1318 mutex_unlock(&slab_mutex);
1319 }
1320
1321 #if defined(CONFIG_MEMCG)
1322 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1323 {
1324 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1325
1326 mutex_lock(&slab_mutex);
1327 return seq_list_start(&memcg->kmem_caches, *pos);
1328 }
1329
1330 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1331 {
1332 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1333
1334 return seq_list_next(p, &memcg->kmem_caches, pos);
1335 }
1336
1337 void memcg_slab_stop(struct seq_file *m, void *p)
1338 {
1339 mutex_unlock(&slab_mutex);
1340 }
1341
1342 int memcg_slab_show(struct seq_file *m, void *p)
1343 {
1344 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1345 memcg_params.kmem_caches_node);
1346 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1347
1348 if (p == memcg->kmem_caches.next)
1349 print_slabinfo_header(m);
1350 cache_show(s, m);
1351 return 0;
1352 }
1353 #endif
1354
1355 /*
1356 * slabinfo_op - iterator that generates /proc/slabinfo
1357 *
1358 * Output layout:
1359 * cache-name
1360 * num-active-objs
1361 * total-objs
1362 * object size
1363 * num-active-slabs
1364 * total-slabs
1365 * num-pages-per-slab
1366 * + further values on SMP and with statistics enabled
1367 */
1368 static const struct seq_operations slabinfo_op = {
1369 .start = slab_start,
1370 .next = slab_next,
1371 .stop = slab_stop,
1372 .show = slab_show,
1373 };
1374
1375 static int slabinfo_open(struct inode *inode, struct file *file)
1376 {
1377 return seq_open(file, &slabinfo_op);
1378 }
1379
1380 static const struct file_operations proc_slabinfo_operations = {
1381 .open = slabinfo_open,
1382 .read = seq_read,
1383 .write = slabinfo_write,
1384 .llseek = seq_lseek,
1385 .release = seq_release,
1386 };
1387
1388 static int __init slab_proc_init(void)
1389 {
1390 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1391 &proc_slabinfo_operations);
1392 return 0;
1393 }
1394 module_init(slab_proc_init);
1395 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1396
1397 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1398 gfp_t flags)
1399 {
1400 void *ret;
1401 size_t ks = 0;
1402
1403 if (p)
1404 ks = ksize(p);
1405
1406 if (ks >= new_size) {
1407 kasan_krealloc((void *)p, new_size, flags);
1408 return (void *)p;
1409 }
1410
1411 ret = kmalloc_track_caller(new_size, flags);
1412 if (ret && p)
1413 memcpy(ret, p, ks);
1414
1415 return ret;
1416 }
1417
1418 /**
1419 * __krealloc - like krealloc() but don't free @p.
1420 * @p: object to reallocate memory for.
1421 * @new_size: how many bytes of memory are required.
1422 * @flags: the type of memory to allocate.
1423 *
1424 * This function is like krealloc() except it never frees the originally
1425 * allocated buffer. Use this if you don't want to free the buffer immediately
1426 * like, for example, with RCU.
1427 */
1428 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1429 {
1430 if (unlikely(!new_size))
1431 return ZERO_SIZE_PTR;
1432
1433 return __do_krealloc(p, new_size, flags);
1434
1435 }
1436 EXPORT_SYMBOL(__krealloc);
1437
1438 /**
1439 * krealloc - reallocate memory. The contents will remain unchanged.
1440 * @p: object to reallocate memory for.
1441 * @new_size: how many bytes of memory are required.
1442 * @flags: the type of memory to allocate.
1443 *
1444 * The contents of the object pointed to are preserved up to the
1445 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1446 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1447 * %NULL pointer, the object pointed to is freed.
1448 */
1449 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1450 {
1451 void *ret;
1452
1453 if (unlikely(!new_size)) {
1454 kfree(p);
1455 return ZERO_SIZE_PTR;
1456 }
1457
1458 ret = __do_krealloc(p, new_size, flags);
1459 if (ret && p != ret)
1460 kfree(p);
1461
1462 return ret;
1463 }
1464 EXPORT_SYMBOL(krealloc);
1465
1466 /**
1467 * kzfree - like kfree but zero memory
1468 * @p: object to free memory of
1469 *
1470 * The memory of the object @p points to is zeroed before freed.
1471 * If @p is %NULL, kzfree() does nothing.
1472 *
1473 * Note: this function zeroes the whole allocated buffer which can be a good
1474 * deal bigger than the requested buffer size passed to kmalloc(). So be
1475 * careful when using this function in performance sensitive code.
1476 */
1477 void kzfree(const void *p)
1478 {
1479 size_t ks;
1480 void *mem = (void *)p;
1481
1482 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1483 return;
1484 ks = ksize(mem);
1485 memset(mem, 0, ks);
1486 kfree(mem);
1487 }
1488 EXPORT_SYMBOL(kzfree);
1489
1490 /* Tracepoints definitions. */
1491 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1492 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1493 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1494 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1495 EXPORT_TRACEPOINT_SYMBOL(kfree);
1496 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);