]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slab_common.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / mm / slab_common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30
31 #include "internal.h"
32
33 #include "slab.h"
34
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39
40 #ifdef CONFIG_HARDENED_USERCOPY
41 bool usercopy_fallback __ro_after_init =
42 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43 module_param(usercopy_fallback, bool, 0400);
44 MODULE_PARM_DESC(usercopy_fallback,
45 "WARN instead of reject usercopy whitelist violations");
46 #endif
47
48 static LIST_HEAD(slab_caches_to_rcu_destroy);
49 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 slab_caches_to_rcu_destroy_workfn);
52
53 /*
54 * Set of flags that will prevent slab merging
55 */
56 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58 SLAB_FAILSLAB | kasan_never_merge())
59
60 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
62
63 /*
64 * Merge control. If this is set then no merging of slab caches will occur.
65 */
66 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
67
68 static int __init setup_slab_nomerge(char *str)
69 {
70 slab_nomerge = true;
71 return 1;
72 }
73
74 static int __init setup_slab_merge(char *str)
75 {
76 slab_nomerge = false;
77 return 1;
78 }
79
80 #ifdef CONFIG_SLUB
81 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
83 #endif
84
85 __setup("slab_nomerge", setup_slab_nomerge);
86 __setup("slab_merge", setup_slab_merge);
87
88 /*
89 * Determine the size of a slab object
90 */
91 unsigned int kmem_cache_size(struct kmem_cache *s)
92 {
93 return s->object_size;
94 }
95 EXPORT_SYMBOL(kmem_cache_size);
96
97 #ifdef CONFIG_DEBUG_VM
98 static int kmem_cache_sanity_check(const char *name, unsigned int size)
99 {
100 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
101 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
102 return -EINVAL;
103 }
104
105 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
106 return 0;
107 }
108 #else
109 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
110 {
111 return 0;
112 }
113 #endif
114
115 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
116 {
117 size_t i;
118
119 for (i = 0; i < nr; i++) {
120 if (s)
121 kmem_cache_free(s, p[i]);
122 else
123 kfree(p[i]);
124 }
125 }
126
127 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
128 void **p)
129 {
130 size_t i;
131
132 for (i = 0; i < nr; i++) {
133 void *x = p[i] = kmem_cache_alloc(s, flags);
134 if (!x) {
135 __kmem_cache_free_bulk(s, i, p);
136 return 0;
137 }
138 }
139 return i;
140 }
141
142 /*
143 * Figure out what the alignment of the objects will be given a set of
144 * flags, a user specified alignment and the size of the objects.
145 */
146 static unsigned int calculate_alignment(slab_flags_t flags,
147 unsigned int align, unsigned int size)
148 {
149 /*
150 * If the user wants hardware cache aligned objects then follow that
151 * suggestion if the object is sufficiently large.
152 *
153 * The hardware cache alignment cannot override the specified
154 * alignment though. If that is greater then use it.
155 */
156 if (flags & SLAB_HWCACHE_ALIGN) {
157 unsigned int ralign;
158
159 ralign = cache_line_size();
160 while (size <= ralign / 2)
161 ralign /= 2;
162 align = max(align, ralign);
163 }
164
165 if (align < ARCH_SLAB_MINALIGN)
166 align = ARCH_SLAB_MINALIGN;
167
168 return ALIGN(align, sizeof(void *));
169 }
170
171 /*
172 * Find a mergeable slab cache
173 */
174 int slab_unmergeable(struct kmem_cache *s)
175 {
176 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
177 return 1;
178
179 if (s->ctor)
180 return 1;
181
182 if (s->usersize)
183 return 1;
184
185 /*
186 * We may have set a slab to be unmergeable during bootstrap.
187 */
188 if (s->refcount < 0)
189 return 1;
190
191 return 0;
192 }
193
194 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
195 slab_flags_t flags, const char *name, void (*ctor)(void *))
196 {
197 struct kmem_cache *s;
198
199 if (slab_nomerge)
200 return NULL;
201
202 if (ctor)
203 return NULL;
204
205 size = ALIGN(size, sizeof(void *));
206 align = calculate_alignment(flags, align, size);
207 size = ALIGN(size, align);
208 flags = kmem_cache_flags(size, flags, name);
209
210 if (flags & SLAB_NEVER_MERGE)
211 return NULL;
212
213 list_for_each_entry_reverse(s, &slab_caches, list) {
214 if (slab_unmergeable(s))
215 continue;
216
217 if (size > s->size)
218 continue;
219
220 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
221 continue;
222 /*
223 * Check if alignment is compatible.
224 * Courtesy of Adrian Drzewiecki
225 */
226 if ((s->size & ~(align - 1)) != s->size)
227 continue;
228
229 if (s->size - size >= sizeof(void *))
230 continue;
231
232 if (IS_ENABLED(CONFIG_SLAB) && align &&
233 (align > s->align || s->align % align))
234 continue;
235
236 return s;
237 }
238 return NULL;
239 }
240
241 static struct kmem_cache *create_cache(const char *name,
242 unsigned int object_size, unsigned int align,
243 slab_flags_t flags, unsigned int useroffset,
244 unsigned int usersize, void (*ctor)(void *),
245 struct kmem_cache *root_cache)
246 {
247 struct kmem_cache *s;
248 int err;
249
250 if (WARN_ON(useroffset + usersize > object_size))
251 useroffset = usersize = 0;
252
253 err = -ENOMEM;
254 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
255 if (!s)
256 goto out;
257
258 s->name = name;
259 s->size = s->object_size = object_size;
260 s->align = align;
261 s->ctor = ctor;
262 s->useroffset = useroffset;
263 s->usersize = usersize;
264
265 err = __kmem_cache_create(s, flags);
266 if (err)
267 goto out_free_cache;
268
269 s->refcount = 1;
270 list_add(&s->list, &slab_caches);
271 out:
272 if (err)
273 return ERR_PTR(err);
274 return s;
275
276 out_free_cache:
277 kmem_cache_free(kmem_cache, s);
278 goto out;
279 }
280
281 /**
282 * kmem_cache_create_usercopy - Create a cache with a region suitable
283 * for copying to userspace
284 * @name: A string which is used in /proc/slabinfo to identify this cache.
285 * @size: The size of objects to be created in this cache.
286 * @align: The required alignment for the objects.
287 * @flags: SLAB flags
288 * @useroffset: Usercopy region offset
289 * @usersize: Usercopy region size
290 * @ctor: A constructor for the objects.
291 *
292 * Cannot be called within a interrupt, but can be interrupted.
293 * The @ctor is run when new pages are allocated by the cache.
294 *
295 * The flags are
296 *
297 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
298 * to catch references to uninitialised memory.
299 *
300 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
301 * for buffer overruns.
302 *
303 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
304 * cacheline. This can be beneficial if you're counting cycles as closely
305 * as davem.
306 *
307 * Return: a pointer to the cache on success, NULL on failure.
308 */
309 struct kmem_cache *
310 kmem_cache_create_usercopy(const char *name,
311 unsigned int size, unsigned int align,
312 slab_flags_t flags,
313 unsigned int useroffset, unsigned int usersize,
314 void (*ctor)(void *))
315 {
316 struct kmem_cache *s = NULL;
317 const char *cache_name;
318 int err;
319
320 #ifdef CONFIG_SLUB_DEBUG
321 /*
322 * If no slub_debug was enabled globally, the static key is not yet
323 * enabled by setup_slub_debug(). Enable it if the cache is being
324 * created with any of the debugging flags passed explicitly.
325 */
326 if (flags & SLAB_DEBUG_FLAGS)
327 static_branch_enable(&slub_debug_enabled);
328 #endif
329
330 mutex_lock(&slab_mutex);
331
332 err = kmem_cache_sanity_check(name, size);
333 if (err) {
334 goto out_unlock;
335 }
336
337 /* Refuse requests with allocator specific flags */
338 if (flags & ~SLAB_FLAGS_PERMITTED) {
339 err = -EINVAL;
340 goto out_unlock;
341 }
342
343 /*
344 * Some allocators will constraint the set of valid flags to a subset
345 * of all flags. We expect them to define CACHE_CREATE_MASK in this
346 * case, and we'll just provide them with a sanitized version of the
347 * passed flags.
348 */
349 flags &= CACHE_CREATE_MASK;
350
351 /* Fail closed on bad usersize of useroffset values. */
352 if (WARN_ON(!usersize && useroffset) ||
353 WARN_ON(size < usersize || size - usersize < useroffset))
354 usersize = useroffset = 0;
355
356 if (!usersize)
357 s = __kmem_cache_alias(name, size, align, flags, ctor);
358 if (s)
359 goto out_unlock;
360
361 cache_name = kstrdup_const(name, GFP_KERNEL);
362 if (!cache_name) {
363 err = -ENOMEM;
364 goto out_unlock;
365 }
366
367 s = create_cache(cache_name, size,
368 calculate_alignment(flags, align, size),
369 flags, useroffset, usersize, ctor, NULL);
370 if (IS_ERR(s)) {
371 err = PTR_ERR(s);
372 kfree_const(cache_name);
373 }
374
375 out_unlock:
376 mutex_unlock(&slab_mutex);
377
378 if (err) {
379 if (flags & SLAB_PANIC)
380 panic("%s: Failed to create slab '%s'. Error %d\n",
381 __func__, name, err);
382 else {
383 pr_warn("%s(%s) failed with error %d\n",
384 __func__, name, err);
385 dump_stack();
386 }
387 return NULL;
388 }
389 return s;
390 }
391 EXPORT_SYMBOL(kmem_cache_create_usercopy);
392
393 /**
394 * kmem_cache_create - Create a cache.
395 * @name: A string which is used in /proc/slabinfo to identify this cache.
396 * @size: The size of objects to be created in this cache.
397 * @align: The required alignment for the objects.
398 * @flags: SLAB flags
399 * @ctor: A constructor for the objects.
400 *
401 * Cannot be called within a interrupt, but can be interrupted.
402 * The @ctor is run when new pages are allocated by the cache.
403 *
404 * The flags are
405 *
406 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
407 * to catch references to uninitialised memory.
408 *
409 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
410 * for buffer overruns.
411 *
412 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
413 * cacheline. This can be beneficial if you're counting cycles as closely
414 * as davem.
415 *
416 * Return: a pointer to the cache on success, NULL on failure.
417 */
418 struct kmem_cache *
419 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
420 slab_flags_t flags, void (*ctor)(void *))
421 {
422 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
423 ctor);
424 }
425 EXPORT_SYMBOL(kmem_cache_create);
426
427 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
428 {
429 LIST_HEAD(to_destroy);
430 struct kmem_cache *s, *s2;
431
432 /*
433 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
434 * @slab_caches_to_rcu_destroy list. The slab pages are freed
435 * through RCU and the associated kmem_cache are dereferenced
436 * while freeing the pages, so the kmem_caches should be freed only
437 * after the pending RCU operations are finished. As rcu_barrier()
438 * is a pretty slow operation, we batch all pending destructions
439 * asynchronously.
440 */
441 mutex_lock(&slab_mutex);
442 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
443 mutex_unlock(&slab_mutex);
444
445 if (list_empty(&to_destroy))
446 return;
447
448 rcu_barrier();
449
450 list_for_each_entry_safe(s, s2, &to_destroy, list) {
451 debugfs_slab_release(s);
452 kfence_shutdown_cache(s);
453 #ifdef SLAB_SUPPORTS_SYSFS
454 sysfs_slab_release(s);
455 #else
456 slab_kmem_cache_release(s);
457 #endif
458 }
459 }
460
461 static int shutdown_cache(struct kmem_cache *s)
462 {
463 /* free asan quarantined objects */
464 kasan_cache_shutdown(s);
465
466 if (__kmem_cache_shutdown(s) != 0)
467 return -EBUSY;
468
469 list_del(&s->list);
470
471 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
472 #ifdef SLAB_SUPPORTS_SYSFS
473 sysfs_slab_unlink(s);
474 #endif
475 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
476 schedule_work(&slab_caches_to_rcu_destroy_work);
477 } else {
478 kfence_shutdown_cache(s);
479 debugfs_slab_release(s);
480 #ifdef SLAB_SUPPORTS_SYSFS
481 sysfs_slab_unlink(s);
482 sysfs_slab_release(s);
483 #else
484 slab_kmem_cache_release(s);
485 #endif
486 }
487
488 return 0;
489 }
490
491 void slab_kmem_cache_release(struct kmem_cache *s)
492 {
493 __kmem_cache_release(s);
494 kfree_const(s->name);
495 kmem_cache_free(kmem_cache, s);
496 }
497
498 void kmem_cache_destroy(struct kmem_cache *s)
499 {
500 int err;
501
502 if (unlikely(!s))
503 return;
504
505 cpus_read_lock();
506 mutex_lock(&slab_mutex);
507
508 s->refcount--;
509 if (s->refcount)
510 goto out_unlock;
511
512 err = shutdown_cache(s);
513 if (err) {
514 pr_err("%s %s: Slab cache still has objects\n",
515 __func__, s->name);
516 dump_stack();
517 }
518 out_unlock:
519 mutex_unlock(&slab_mutex);
520 cpus_read_unlock();
521 }
522 EXPORT_SYMBOL(kmem_cache_destroy);
523
524 /**
525 * kmem_cache_shrink - Shrink a cache.
526 * @cachep: The cache to shrink.
527 *
528 * Releases as many slabs as possible for a cache.
529 * To help debugging, a zero exit status indicates all slabs were released.
530 *
531 * Return: %0 if all slabs were released, non-zero otherwise
532 */
533 int kmem_cache_shrink(struct kmem_cache *cachep)
534 {
535 int ret;
536
537
538 kasan_cache_shrink(cachep);
539 ret = __kmem_cache_shrink(cachep);
540
541 return ret;
542 }
543 EXPORT_SYMBOL(kmem_cache_shrink);
544
545 bool slab_is_available(void)
546 {
547 return slab_state >= UP;
548 }
549
550 #ifdef CONFIG_PRINTK
551 /**
552 * kmem_valid_obj - does the pointer reference a valid slab object?
553 * @object: pointer to query.
554 *
555 * Return: %true if the pointer is to a not-yet-freed object from
556 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
557 * is to an already-freed object, and %false otherwise.
558 */
559 bool kmem_valid_obj(void *object)
560 {
561 struct page *page;
562
563 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
564 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
565 return false;
566 page = virt_to_head_page(object);
567 return PageSlab(page);
568 }
569 EXPORT_SYMBOL_GPL(kmem_valid_obj);
570
571 /**
572 * kmem_dump_obj - Print available slab provenance information
573 * @object: slab object for which to find provenance information.
574 *
575 * This function uses pr_cont(), so that the caller is expected to have
576 * printed out whatever preamble is appropriate. The provenance information
577 * depends on the type of object and on how much debugging is enabled.
578 * For a slab-cache object, the fact that it is a slab object is printed,
579 * and, if available, the slab name, return address, and stack trace from
580 * the allocation and last free path of that object.
581 *
582 * This function will splat if passed a pointer to a non-slab object.
583 * If you are not sure what type of object you have, you should instead
584 * use mem_dump_obj().
585 */
586 void kmem_dump_obj(void *object)
587 {
588 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
589 int i;
590 struct page *page;
591 unsigned long ptroffset;
592 struct kmem_obj_info kp = { };
593
594 if (WARN_ON_ONCE(!virt_addr_valid(object)))
595 return;
596 page = virt_to_head_page(object);
597 if (WARN_ON_ONCE(!PageSlab(page))) {
598 pr_cont(" non-slab memory.\n");
599 return;
600 }
601 kmem_obj_info(&kp, object, page);
602 if (kp.kp_slab_cache)
603 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
604 else
605 pr_cont(" slab%s", cp);
606 if (kp.kp_objp)
607 pr_cont(" start %px", kp.kp_objp);
608 if (kp.kp_data_offset)
609 pr_cont(" data offset %lu", kp.kp_data_offset);
610 if (kp.kp_objp) {
611 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
612 pr_cont(" pointer offset %lu", ptroffset);
613 }
614 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
615 pr_cont(" size %u", kp.kp_slab_cache->usersize);
616 if (kp.kp_ret)
617 pr_cont(" allocated at %pS\n", kp.kp_ret);
618 else
619 pr_cont("\n");
620 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
621 if (!kp.kp_stack[i])
622 break;
623 pr_info(" %pS\n", kp.kp_stack[i]);
624 }
625
626 if (kp.kp_free_stack[0])
627 pr_cont(" Free path:\n");
628
629 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
630 if (!kp.kp_free_stack[i])
631 break;
632 pr_info(" %pS\n", kp.kp_free_stack[i]);
633 }
634
635 }
636 EXPORT_SYMBOL_GPL(kmem_dump_obj);
637 #endif
638
639 #ifndef CONFIG_SLOB
640 /* Create a cache during boot when no slab services are available yet */
641 void __init create_boot_cache(struct kmem_cache *s, const char *name,
642 unsigned int size, slab_flags_t flags,
643 unsigned int useroffset, unsigned int usersize)
644 {
645 int err;
646 unsigned int align = ARCH_KMALLOC_MINALIGN;
647
648 s->name = name;
649 s->size = s->object_size = size;
650
651 /*
652 * For power of two sizes, guarantee natural alignment for kmalloc
653 * caches, regardless of SL*B debugging options.
654 */
655 if (is_power_of_2(size))
656 align = max(align, size);
657 s->align = calculate_alignment(flags, align, size);
658
659 s->useroffset = useroffset;
660 s->usersize = usersize;
661
662 err = __kmem_cache_create(s, flags);
663
664 if (err)
665 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
666 name, size, err);
667
668 s->refcount = -1; /* Exempt from merging for now */
669 }
670
671 struct kmem_cache *__init create_kmalloc_cache(const char *name,
672 unsigned int size, slab_flags_t flags,
673 unsigned int useroffset, unsigned int usersize)
674 {
675 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
676
677 if (!s)
678 panic("Out of memory when creating slab %s\n", name);
679
680 create_boot_cache(s, name, size, flags, useroffset, usersize);
681 kasan_cache_create_kmalloc(s);
682 list_add(&s->list, &slab_caches);
683 s->refcount = 1;
684 return s;
685 }
686
687 struct kmem_cache *
688 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
689 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
690 EXPORT_SYMBOL(kmalloc_caches);
691
692 /*
693 * Conversion table for small slabs sizes / 8 to the index in the
694 * kmalloc array. This is necessary for slabs < 192 since we have non power
695 * of two cache sizes there. The size of larger slabs can be determined using
696 * fls.
697 */
698 static u8 size_index[24] __ro_after_init = {
699 3, /* 8 */
700 4, /* 16 */
701 5, /* 24 */
702 5, /* 32 */
703 6, /* 40 */
704 6, /* 48 */
705 6, /* 56 */
706 6, /* 64 */
707 1, /* 72 */
708 1, /* 80 */
709 1, /* 88 */
710 1, /* 96 */
711 7, /* 104 */
712 7, /* 112 */
713 7, /* 120 */
714 7, /* 128 */
715 2, /* 136 */
716 2, /* 144 */
717 2, /* 152 */
718 2, /* 160 */
719 2, /* 168 */
720 2, /* 176 */
721 2, /* 184 */
722 2 /* 192 */
723 };
724
725 static inline unsigned int size_index_elem(unsigned int bytes)
726 {
727 return (bytes - 1) / 8;
728 }
729
730 /*
731 * Find the kmem_cache structure that serves a given size of
732 * allocation
733 */
734 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
735 {
736 unsigned int index;
737
738 if (size <= 192) {
739 if (!size)
740 return ZERO_SIZE_PTR;
741
742 index = size_index[size_index_elem(size)];
743 } else {
744 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
745 return NULL;
746 index = fls(size - 1);
747 }
748
749 return kmalloc_caches[kmalloc_type(flags)][index];
750 }
751
752 #ifdef CONFIG_ZONE_DMA
753 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
754 #else
755 #define KMALLOC_DMA_NAME(sz)
756 #endif
757
758 #ifdef CONFIG_MEMCG_KMEM
759 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
760 #else
761 #define KMALLOC_CGROUP_NAME(sz)
762 #endif
763
764 #define INIT_KMALLOC_INFO(__size, __short_size) \
765 { \
766 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
767 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
768 KMALLOC_CGROUP_NAME(__short_size) \
769 KMALLOC_DMA_NAME(__short_size) \
770 .size = __size, \
771 }
772
773 /*
774 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
775 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
776 * kmalloc-32M.
777 */
778 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
779 INIT_KMALLOC_INFO(0, 0),
780 INIT_KMALLOC_INFO(96, 96),
781 INIT_KMALLOC_INFO(192, 192),
782 INIT_KMALLOC_INFO(8, 8),
783 INIT_KMALLOC_INFO(16, 16),
784 INIT_KMALLOC_INFO(32, 32),
785 INIT_KMALLOC_INFO(64, 64),
786 INIT_KMALLOC_INFO(128, 128),
787 INIT_KMALLOC_INFO(256, 256),
788 INIT_KMALLOC_INFO(512, 512),
789 INIT_KMALLOC_INFO(1024, 1k),
790 INIT_KMALLOC_INFO(2048, 2k),
791 INIT_KMALLOC_INFO(4096, 4k),
792 INIT_KMALLOC_INFO(8192, 8k),
793 INIT_KMALLOC_INFO(16384, 16k),
794 INIT_KMALLOC_INFO(32768, 32k),
795 INIT_KMALLOC_INFO(65536, 64k),
796 INIT_KMALLOC_INFO(131072, 128k),
797 INIT_KMALLOC_INFO(262144, 256k),
798 INIT_KMALLOC_INFO(524288, 512k),
799 INIT_KMALLOC_INFO(1048576, 1M),
800 INIT_KMALLOC_INFO(2097152, 2M),
801 INIT_KMALLOC_INFO(4194304, 4M),
802 INIT_KMALLOC_INFO(8388608, 8M),
803 INIT_KMALLOC_INFO(16777216, 16M),
804 INIT_KMALLOC_INFO(33554432, 32M)
805 };
806
807 /*
808 * Patch up the size_index table if we have strange large alignment
809 * requirements for the kmalloc array. This is only the case for
810 * MIPS it seems. The standard arches will not generate any code here.
811 *
812 * Largest permitted alignment is 256 bytes due to the way we
813 * handle the index determination for the smaller caches.
814 *
815 * Make sure that nothing crazy happens if someone starts tinkering
816 * around with ARCH_KMALLOC_MINALIGN
817 */
818 void __init setup_kmalloc_cache_index_table(void)
819 {
820 unsigned int i;
821
822 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
823 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
824
825 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
826 unsigned int elem = size_index_elem(i);
827
828 if (elem >= ARRAY_SIZE(size_index))
829 break;
830 size_index[elem] = KMALLOC_SHIFT_LOW;
831 }
832
833 if (KMALLOC_MIN_SIZE >= 64) {
834 /*
835 * The 96 byte size cache is not used if the alignment
836 * is 64 byte.
837 */
838 for (i = 64 + 8; i <= 96; i += 8)
839 size_index[size_index_elem(i)] = 7;
840
841 }
842
843 if (KMALLOC_MIN_SIZE >= 128) {
844 /*
845 * The 192 byte sized cache is not used if the alignment
846 * is 128 byte. Redirect kmalloc to use the 256 byte cache
847 * instead.
848 */
849 for (i = 128 + 8; i <= 192; i += 8)
850 size_index[size_index_elem(i)] = 8;
851 }
852 }
853
854 static void __init
855 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
856 {
857 if (type == KMALLOC_RECLAIM) {
858 flags |= SLAB_RECLAIM_ACCOUNT;
859 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
860 if (cgroup_memory_nokmem) {
861 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
862 return;
863 }
864 flags |= SLAB_ACCOUNT;
865 }
866
867 kmalloc_caches[type][idx] = create_kmalloc_cache(
868 kmalloc_info[idx].name[type],
869 kmalloc_info[idx].size, flags, 0,
870 kmalloc_info[idx].size);
871
872 /*
873 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
874 * KMALLOC_NORMAL caches.
875 */
876 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
877 kmalloc_caches[type][idx]->refcount = -1;
878 }
879
880 /*
881 * Create the kmalloc array. Some of the regular kmalloc arrays
882 * may already have been created because they were needed to
883 * enable allocations for slab creation.
884 */
885 void __init create_kmalloc_caches(slab_flags_t flags)
886 {
887 int i;
888 enum kmalloc_cache_type type;
889
890 /*
891 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
892 */
893 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
894 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
895 if (!kmalloc_caches[type][i])
896 new_kmalloc_cache(i, type, flags);
897
898 /*
899 * Caches that are not of the two-to-the-power-of size.
900 * These have to be created immediately after the
901 * earlier power of two caches
902 */
903 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
904 !kmalloc_caches[type][1])
905 new_kmalloc_cache(1, type, flags);
906 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
907 !kmalloc_caches[type][2])
908 new_kmalloc_cache(2, type, flags);
909 }
910 }
911
912 /* Kmalloc array is now usable */
913 slab_state = UP;
914
915 #ifdef CONFIG_ZONE_DMA
916 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
917 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
918
919 if (s) {
920 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
921 kmalloc_info[i].name[KMALLOC_DMA],
922 kmalloc_info[i].size,
923 SLAB_CACHE_DMA | flags, 0,
924 kmalloc_info[i].size);
925 }
926 }
927 #endif
928 }
929 #endif /* !CONFIG_SLOB */
930
931 gfp_t kmalloc_fix_flags(gfp_t flags)
932 {
933 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
934
935 flags &= ~GFP_SLAB_BUG_MASK;
936 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
937 invalid_mask, &invalid_mask, flags, &flags);
938 dump_stack();
939
940 return flags;
941 }
942
943 /*
944 * To avoid unnecessary overhead, we pass through large allocation requests
945 * directly to the page allocator. We use __GFP_COMP, because we will need to
946 * know the allocation order to free the pages properly in kfree.
947 */
948 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
949 {
950 void *ret = NULL;
951 struct page *page;
952
953 if (unlikely(flags & GFP_SLAB_BUG_MASK))
954 flags = kmalloc_fix_flags(flags);
955
956 flags |= __GFP_COMP;
957 page = alloc_pages(flags, order);
958 if (likely(page)) {
959 ret = page_address(page);
960 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
961 PAGE_SIZE << order);
962 }
963 ret = kasan_kmalloc_large(ret, size, flags);
964 /* As ret might get tagged, call kmemleak hook after KASAN. */
965 kmemleak_alloc(ret, size, 1, flags);
966 return ret;
967 }
968 EXPORT_SYMBOL(kmalloc_order);
969
970 #ifdef CONFIG_TRACING
971 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
972 {
973 void *ret = kmalloc_order(size, flags, order);
974 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
975 return ret;
976 }
977 EXPORT_SYMBOL(kmalloc_order_trace);
978 #endif
979
980 #ifdef CONFIG_SLAB_FREELIST_RANDOM
981 /* Randomize a generic freelist */
982 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
983 unsigned int count)
984 {
985 unsigned int rand;
986 unsigned int i;
987
988 for (i = 0; i < count; i++)
989 list[i] = i;
990
991 /* Fisher-Yates shuffle */
992 for (i = count - 1; i > 0; i--) {
993 rand = prandom_u32_state(state);
994 rand %= (i + 1);
995 swap(list[i], list[rand]);
996 }
997 }
998
999 /* Create a random sequence per cache */
1000 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1001 gfp_t gfp)
1002 {
1003 struct rnd_state state;
1004
1005 if (count < 2 || cachep->random_seq)
1006 return 0;
1007
1008 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1009 if (!cachep->random_seq)
1010 return -ENOMEM;
1011
1012 /* Get best entropy at this stage of boot */
1013 prandom_seed_state(&state, get_random_long());
1014
1015 freelist_randomize(&state, cachep->random_seq, count);
1016 return 0;
1017 }
1018
1019 /* Destroy the per-cache random freelist sequence */
1020 void cache_random_seq_destroy(struct kmem_cache *cachep)
1021 {
1022 kfree(cachep->random_seq);
1023 cachep->random_seq = NULL;
1024 }
1025 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1026
1027 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1028 #ifdef CONFIG_SLAB
1029 #define SLABINFO_RIGHTS (0600)
1030 #else
1031 #define SLABINFO_RIGHTS (0400)
1032 #endif
1033
1034 static void print_slabinfo_header(struct seq_file *m)
1035 {
1036 /*
1037 * Output format version, so at least we can change it
1038 * without _too_ many complaints.
1039 */
1040 #ifdef CONFIG_DEBUG_SLAB
1041 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1042 #else
1043 seq_puts(m, "slabinfo - version: 2.1\n");
1044 #endif
1045 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1046 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1047 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1048 #ifdef CONFIG_DEBUG_SLAB
1049 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1050 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1051 #endif
1052 seq_putc(m, '\n');
1053 }
1054
1055 void *slab_start(struct seq_file *m, loff_t *pos)
1056 {
1057 mutex_lock(&slab_mutex);
1058 return seq_list_start(&slab_caches, *pos);
1059 }
1060
1061 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1062 {
1063 return seq_list_next(p, &slab_caches, pos);
1064 }
1065
1066 void slab_stop(struct seq_file *m, void *p)
1067 {
1068 mutex_unlock(&slab_mutex);
1069 }
1070
1071 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1072 {
1073 struct slabinfo sinfo;
1074
1075 memset(&sinfo, 0, sizeof(sinfo));
1076 get_slabinfo(s, &sinfo);
1077
1078 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1079 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1080 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1081
1082 seq_printf(m, " : tunables %4u %4u %4u",
1083 sinfo.limit, sinfo.batchcount, sinfo.shared);
1084 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1085 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1086 slabinfo_show_stats(m, s);
1087 seq_putc(m, '\n');
1088 }
1089
1090 static int slab_show(struct seq_file *m, void *p)
1091 {
1092 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1093
1094 if (p == slab_caches.next)
1095 print_slabinfo_header(m);
1096 cache_show(s, m);
1097 return 0;
1098 }
1099
1100 void dump_unreclaimable_slab(void)
1101 {
1102 struct kmem_cache *s;
1103 struct slabinfo sinfo;
1104
1105 /*
1106 * Here acquiring slab_mutex is risky since we don't prefer to get
1107 * sleep in oom path. But, without mutex hold, it may introduce a
1108 * risk of crash.
1109 * Use mutex_trylock to protect the list traverse, dump nothing
1110 * without acquiring the mutex.
1111 */
1112 if (!mutex_trylock(&slab_mutex)) {
1113 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1114 return;
1115 }
1116
1117 pr_info("Unreclaimable slab info:\n");
1118 pr_info("Name Used Total\n");
1119
1120 list_for_each_entry(s, &slab_caches, list) {
1121 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1122 continue;
1123
1124 get_slabinfo(s, &sinfo);
1125
1126 if (sinfo.num_objs > 0)
1127 pr_info("%-17s %10luKB %10luKB\n", s->name,
1128 (sinfo.active_objs * s->size) / 1024,
1129 (sinfo.num_objs * s->size) / 1024);
1130 }
1131 mutex_unlock(&slab_mutex);
1132 }
1133
1134 #if defined(CONFIG_MEMCG_KMEM)
1135 int memcg_slab_show(struct seq_file *m, void *p)
1136 {
1137 /*
1138 * Deprecated.
1139 * Please, take a look at tools/cgroup/slabinfo.py .
1140 */
1141 return 0;
1142 }
1143 #endif
1144
1145 /*
1146 * slabinfo_op - iterator that generates /proc/slabinfo
1147 *
1148 * Output layout:
1149 * cache-name
1150 * num-active-objs
1151 * total-objs
1152 * object size
1153 * num-active-slabs
1154 * total-slabs
1155 * num-pages-per-slab
1156 * + further values on SMP and with statistics enabled
1157 */
1158 static const struct seq_operations slabinfo_op = {
1159 .start = slab_start,
1160 .next = slab_next,
1161 .stop = slab_stop,
1162 .show = slab_show,
1163 };
1164
1165 static int slabinfo_open(struct inode *inode, struct file *file)
1166 {
1167 return seq_open(file, &slabinfo_op);
1168 }
1169
1170 static const struct proc_ops slabinfo_proc_ops = {
1171 .proc_flags = PROC_ENTRY_PERMANENT,
1172 .proc_open = slabinfo_open,
1173 .proc_read = seq_read,
1174 .proc_write = slabinfo_write,
1175 .proc_lseek = seq_lseek,
1176 .proc_release = seq_release,
1177 };
1178
1179 static int __init slab_proc_init(void)
1180 {
1181 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1182 return 0;
1183 }
1184 module_init(slab_proc_init);
1185
1186 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1187
1188 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1189 gfp_t flags)
1190 {
1191 void *ret;
1192 size_t ks;
1193
1194 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1195 if (likely(!ZERO_OR_NULL_PTR(p))) {
1196 if (!kasan_check_byte(p))
1197 return NULL;
1198 ks = kfence_ksize(p) ?: __ksize(p);
1199 } else
1200 ks = 0;
1201
1202 /* If the object still fits, repoison it precisely. */
1203 if (ks >= new_size) {
1204 p = kasan_krealloc((void *)p, new_size, flags);
1205 return (void *)p;
1206 }
1207
1208 ret = kmalloc_track_caller(new_size, flags);
1209 if (ret && p) {
1210 /* Disable KASAN checks as the object's redzone is accessed. */
1211 kasan_disable_current();
1212 memcpy(ret, kasan_reset_tag(p), ks);
1213 kasan_enable_current();
1214 }
1215
1216 return ret;
1217 }
1218
1219 /**
1220 * krealloc - reallocate memory. The contents will remain unchanged.
1221 * @p: object to reallocate memory for.
1222 * @new_size: how many bytes of memory are required.
1223 * @flags: the type of memory to allocate.
1224 *
1225 * The contents of the object pointed to are preserved up to the
1226 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1227 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1228 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1229 *
1230 * Return: pointer to the allocated memory or %NULL in case of error
1231 */
1232 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1233 {
1234 void *ret;
1235
1236 if (unlikely(!new_size)) {
1237 kfree(p);
1238 return ZERO_SIZE_PTR;
1239 }
1240
1241 ret = __do_krealloc(p, new_size, flags);
1242 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1243 kfree(p);
1244
1245 return ret;
1246 }
1247 EXPORT_SYMBOL(krealloc);
1248
1249 /**
1250 * kfree_sensitive - Clear sensitive information in memory before freeing
1251 * @p: object to free memory of
1252 *
1253 * The memory of the object @p points to is zeroed before freed.
1254 * If @p is %NULL, kfree_sensitive() does nothing.
1255 *
1256 * Note: this function zeroes the whole allocated buffer which can be a good
1257 * deal bigger than the requested buffer size passed to kmalloc(). So be
1258 * careful when using this function in performance sensitive code.
1259 */
1260 void kfree_sensitive(const void *p)
1261 {
1262 size_t ks;
1263 void *mem = (void *)p;
1264
1265 ks = ksize(mem);
1266 if (ks)
1267 memzero_explicit(mem, ks);
1268 kfree(mem);
1269 }
1270 EXPORT_SYMBOL(kfree_sensitive);
1271
1272 /**
1273 * ksize - get the actual amount of memory allocated for a given object
1274 * @objp: Pointer to the object
1275 *
1276 * kmalloc may internally round up allocations and return more memory
1277 * than requested. ksize() can be used to determine the actual amount of
1278 * memory allocated. The caller may use this additional memory, even though
1279 * a smaller amount of memory was initially specified with the kmalloc call.
1280 * The caller must guarantee that objp points to a valid object previously
1281 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1282 * must not be freed during the duration of the call.
1283 *
1284 * Return: size of the actual memory used by @objp in bytes
1285 */
1286 size_t ksize(const void *objp)
1287 {
1288 size_t size;
1289
1290 /*
1291 * We need to first check that the pointer to the object is valid, and
1292 * only then unpoison the memory. The report printed from ksize() is
1293 * more useful, then when it's printed later when the behaviour could
1294 * be undefined due to a potential use-after-free or double-free.
1295 *
1296 * We use kasan_check_byte(), which is supported for the hardware
1297 * tag-based KASAN mode, unlike kasan_check_read/write().
1298 *
1299 * If the pointed to memory is invalid, we return 0 to avoid users of
1300 * ksize() writing to and potentially corrupting the memory region.
1301 *
1302 * We want to perform the check before __ksize(), to avoid potentially
1303 * crashing in __ksize() due to accessing invalid metadata.
1304 */
1305 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1306 return 0;
1307
1308 size = kfence_ksize(objp) ?: __ksize(objp);
1309 /*
1310 * We assume that ksize callers could use whole allocated area,
1311 * so we need to unpoison this area.
1312 */
1313 kasan_unpoison_range(objp, size);
1314 return size;
1315 }
1316 EXPORT_SYMBOL(ksize);
1317
1318 /* Tracepoints definitions. */
1319 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1320 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1321 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1322 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1323 EXPORT_TRACEPOINT_SYMBOL(kfree);
1324 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1325
1326 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1327 {
1328 if (__should_failslab(s, gfpflags))
1329 return -ENOMEM;
1330 return 0;
1331 }
1332 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);