]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab_common.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
23
24 #include "slab.h"
25
26 enum slab_state slab_state;
27 LIST_HEAD(slab_caches);
28 DEFINE_MUTEX(slab_mutex);
29 struct kmem_cache *kmem_cache;
30
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(const char *name, size_t size)
33 {
34 struct kmem_cache *s = NULL;
35
36 if (!name || in_interrupt() || size < sizeof(void *) ||
37 size > KMALLOC_MAX_SIZE) {
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 return -EINVAL;
40 }
41
42 list_for_each_entry(s, &slab_caches, list) {
43 char tmp;
44 int res;
45
46 /*
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
50 */
51 res = probe_kernel_address(s->name, tmp);
52 if (res) {
53 pr_err("Slab cache with size %d has lost its name\n",
54 s->object_size);
55 continue;
56 }
57
58 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
59 if (!strcmp(s->name, name)) {
60 pr_err("%s (%s): Cache name already exists.\n",
61 __func__, name);
62 dump_stack();
63 s = NULL;
64 return -EINVAL;
65 }
66 #endif
67 }
68
69 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
70 return 0;
71 }
72 #else
73 static inline int kmem_cache_sanity_check(const char *name, size_t size)
74 {
75 return 0;
76 }
77 #endif
78
79 #ifdef CONFIG_MEMCG_KMEM
80 int memcg_update_all_caches(int num_memcgs)
81 {
82 struct kmem_cache *s;
83 int ret = 0;
84 mutex_lock(&slab_mutex);
85
86 list_for_each_entry(s, &slab_caches, list) {
87 if (!is_root_cache(s))
88 continue;
89
90 ret = memcg_update_cache_size(s, num_memcgs);
91 /*
92 * See comment in memcontrol.c, memcg_update_cache_size:
93 * Instead of freeing the memory, we'll just leave the caches
94 * up to this point in an updated state.
95 */
96 if (ret)
97 goto out;
98 }
99
100 memcg_update_array_size(num_memcgs);
101 out:
102 mutex_unlock(&slab_mutex);
103 return ret;
104 }
105 #endif
106
107 /*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
111 unsigned long calculate_alignment(unsigned long flags,
112 unsigned long align, unsigned long size)
113 {
114 /*
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
117 *
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
120 */
121 if (flags & SLAB_HWCACHE_ALIGN) {
122 unsigned long ralign = cache_line_size();
123 while (size <= ralign / 2)
124 ralign /= 2;
125 align = max(align, ralign);
126 }
127
128 if (align < ARCH_SLAB_MINALIGN)
129 align = ARCH_SLAB_MINALIGN;
130
131 return ALIGN(align, sizeof(void *));
132 }
133
134 static struct kmem_cache *
135 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136 unsigned long flags, void (*ctor)(void *),
137 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
138 {
139 struct kmem_cache *s;
140 int err;
141
142 err = -ENOMEM;
143 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144 if (!s)
145 goto out;
146
147 s->name = name;
148 s->object_size = object_size;
149 s->size = size;
150 s->align = align;
151 s->ctor = ctor;
152
153 err = memcg_alloc_cache_params(memcg, s, root_cache);
154 if (err)
155 goto out_free_cache;
156
157 err = __kmem_cache_create(s, flags);
158 if (err)
159 goto out_free_cache;
160
161 s->refcount = 1;
162 list_add(&s->list, &slab_caches);
163 memcg_register_cache(s);
164 out:
165 if (err)
166 return ERR_PTR(err);
167 return s;
168
169 out_free_cache:
170 memcg_free_cache_params(s);
171 kfree(s);
172 goto out;
173 }
174
175 /*
176 * kmem_cache_create - Create a cache.
177 * @name: A string which is used in /proc/slabinfo to identify this cache.
178 * @size: The size of objects to be created in this cache.
179 * @align: The required alignment for the objects.
180 * @flags: SLAB flags
181 * @ctor: A constructor for the objects.
182 *
183 * Returns a ptr to the cache on success, NULL on failure.
184 * Cannot be called within a interrupt, but can be interrupted.
185 * The @ctor is run when new pages are allocated by the cache.
186 *
187 * The flags are
188 *
189 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
190 * to catch references to uninitialised memory.
191 *
192 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
193 * for buffer overruns.
194 *
195 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
196 * cacheline. This can be beneficial if you're counting cycles as closely
197 * as davem.
198 */
199 struct kmem_cache *
200 kmem_cache_create(const char *name, size_t size, size_t align,
201 unsigned long flags, void (*ctor)(void *))
202 {
203 struct kmem_cache *s;
204 char *cache_name;
205 int err;
206
207 get_online_cpus();
208 mutex_lock(&slab_mutex);
209
210 err = kmem_cache_sanity_check(name, size);
211 if (err)
212 goto out_unlock;
213
214 /*
215 * Some allocators will constraint the set of valid flags to a subset
216 * of all flags. We expect them to define CACHE_CREATE_MASK in this
217 * case, and we'll just provide them with a sanitized version of the
218 * passed flags.
219 */
220 flags &= CACHE_CREATE_MASK;
221
222 s = __kmem_cache_alias(name, size, align, flags, ctor);
223 if (s)
224 goto out_unlock;
225
226 cache_name = kstrdup(name, GFP_KERNEL);
227 if (!cache_name) {
228 err = -ENOMEM;
229 goto out_unlock;
230 }
231
232 s = do_kmem_cache_create(cache_name, size, size,
233 calculate_alignment(flags, align, size),
234 flags, ctor, NULL, NULL);
235 if (IS_ERR(s)) {
236 err = PTR_ERR(s);
237 kfree(cache_name);
238 }
239
240 out_unlock:
241 mutex_unlock(&slab_mutex);
242 put_online_cpus();
243
244 if (err) {
245 if (flags & SLAB_PANIC)
246 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
247 name, err);
248 else {
249 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
250 name, err);
251 dump_stack();
252 }
253 return NULL;
254 }
255 return s;
256 }
257 EXPORT_SYMBOL(kmem_cache_create);
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * kmem_cache_create_memcg - Create a cache for a memory cgroup.
262 * @memcg: The memory cgroup the new cache is for.
263 * @root_cache: The parent of the new cache.
264 *
265 * This function attempts to create a kmem cache that will serve allocation
266 * requests going from @memcg to @root_cache. The new cache inherits properties
267 * from its parent.
268 */
269 void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache)
270 {
271 struct kmem_cache *s;
272 char *cache_name;
273
274 get_online_cpus();
275 mutex_lock(&slab_mutex);
276
277 /*
278 * Since per-memcg caches are created asynchronously on first
279 * allocation (see memcg_kmem_get_cache()), several threads can try to
280 * create the same cache, but only one of them may succeed.
281 */
282 if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg)))
283 goto out_unlock;
284
285 cache_name = memcg_create_cache_name(memcg, root_cache);
286 if (!cache_name)
287 goto out_unlock;
288
289 s = do_kmem_cache_create(cache_name, root_cache->object_size,
290 root_cache->size, root_cache->align,
291 root_cache->flags, root_cache->ctor,
292 memcg, root_cache);
293 if (IS_ERR(s)) {
294 kfree(cache_name);
295 goto out_unlock;
296 }
297
298 s->allocflags |= __GFP_KMEMCG;
299
300 out_unlock:
301 mutex_unlock(&slab_mutex);
302 put_online_cpus();
303 }
304
305 static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
306 {
307 int rc;
308
309 if (!s->memcg_params ||
310 !s->memcg_params->is_root_cache)
311 return 0;
312
313 mutex_unlock(&slab_mutex);
314 rc = __kmem_cache_destroy_memcg_children(s);
315 mutex_lock(&slab_mutex);
316
317 return rc;
318 }
319 #else
320 static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
321 {
322 return 0;
323 }
324 #endif /* CONFIG_MEMCG_KMEM */
325
326 void kmem_cache_destroy(struct kmem_cache *s)
327 {
328 get_online_cpus();
329 mutex_lock(&slab_mutex);
330
331 s->refcount--;
332 if (s->refcount)
333 goto out_unlock;
334
335 if (kmem_cache_destroy_memcg_children(s) != 0)
336 goto out_unlock;
337
338 list_del(&s->list);
339 memcg_unregister_cache(s);
340
341 if (__kmem_cache_shutdown(s) != 0) {
342 list_add(&s->list, &slab_caches);
343 memcg_register_cache(s);
344 printk(KERN_ERR "kmem_cache_destroy %s: "
345 "Slab cache still has objects\n", s->name);
346 dump_stack();
347 goto out_unlock;
348 }
349
350 mutex_unlock(&slab_mutex);
351 if (s->flags & SLAB_DESTROY_BY_RCU)
352 rcu_barrier();
353
354 memcg_free_cache_params(s);
355 kfree(s->name);
356 kmem_cache_free(kmem_cache, s);
357 goto out_put_cpus;
358
359 out_unlock:
360 mutex_unlock(&slab_mutex);
361 out_put_cpus:
362 put_online_cpus();
363 }
364 EXPORT_SYMBOL(kmem_cache_destroy);
365
366 int slab_is_available(void)
367 {
368 return slab_state >= UP;
369 }
370
371 #ifndef CONFIG_SLOB
372 /* Create a cache during boot when no slab services are available yet */
373 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
374 unsigned long flags)
375 {
376 int err;
377
378 s->name = name;
379 s->size = s->object_size = size;
380 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
381 err = __kmem_cache_create(s, flags);
382
383 if (err)
384 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
385 name, size, err);
386
387 s->refcount = -1; /* Exempt from merging for now */
388 }
389
390 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
391 unsigned long flags)
392 {
393 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
394
395 if (!s)
396 panic("Out of memory when creating slab %s\n", name);
397
398 create_boot_cache(s, name, size, flags);
399 list_add(&s->list, &slab_caches);
400 s->refcount = 1;
401 return s;
402 }
403
404 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
405 EXPORT_SYMBOL(kmalloc_caches);
406
407 #ifdef CONFIG_ZONE_DMA
408 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
409 EXPORT_SYMBOL(kmalloc_dma_caches);
410 #endif
411
412 /*
413 * Conversion table for small slabs sizes / 8 to the index in the
414 * kmalloc array. This is necessary for slabs < 192 since we have non power
415 * of two cache sizes there. The size of larger slabs can be determined using
416 * fls.
417 */
418 static s8 size_index[24] = {
419 3, /* 8 */
420 4, /* 16 */
421 5, /* 24 */
422 5, /* 32 */
423 6, /* 40 */
424 6, /* 48 */
425 6, /* 56 */
426 6, /* 64 */
427 1, /* 72 */
428 1, /* 80 */
429 1, /* 88 */
430 1, /* 96 */
431 7, /* 104 */
432 7, /* 112 */
433 7, /* 120 */
434 7, /* 128 */
435 2, /* 136 */
436 2, /* 144 */
437 2, /* 152 */
438 2, /* 160 */
439 2, /* 168 */
440 2, /* 176 */
441 2, /* 184 */
442 2 /* 192 */
443 };
444
445 static inline int size_index_elem(size_t bytes)
446 {
447 return (bytes - 1) / 8;
448 }
449
450 /*
451 * Find the kmem_cache structure that serves a given size of
452 * allocation
453 */
454 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
455 {
456 int index;
457
458 if (unlikely(size > KMALLOC_MAX_SIZE)) {
459 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
460 return NULL;
461 }
462
463 if (size <= 192) {
464 if (!size)
465 return ZERO_SIZE_PTR;
466
467 index = size_index[size_index_elem(size)];
468 } else
469 index = fls(size - 1);
470
471 #ifdef CONFIG_ZONE_DMA
472 if (unlikely((flags & GFP_DMA)))
473 return kmalloc_dma_caches[index];
474
475 #endif
476 return kmalloc_caches[index];
477 }
478
479 /*
480 * Create the kmalloc array. Some of the regular kmalloc arrays
481 * may already have been created because they were needed to
482 * enable allocations for slab creation.
483 */
484 void __init create_kmalloc_caches(unsigned long flags)
485 {
486 int i;
487
488 /*
489 * Patch up the size_index table if we have strange large alignment
490 * requirements for the kmalloc array. This is only the case for
491 * MIPS it seems. The standard arches will not generate any code here.
492 *
493 * Largest permitted alignment is 256 bytes due to the way we
494 * handle the index determination for the smaller caches.
495 *
496 * Make sure that nothing crazy happens if someone starts tinkering
497 * around with ARCH_KMALLOC_MINALIGN
498 */
499 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
500 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
501
502 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
503 int elem = size_index_elem(i);
504
505 if (elem >= ARRAY_SIZE(size_index))
506 break;
507 size_index[elem] = KMALLOC_SHIFT_LOW;
508 }
509
510 if (KMALLOC_MIN_SIZE >= 64) {
511 /*
512 * The 96 byte size cache is not used if the alignment
513 * is 64 byte.
514 */
515 for (i = 64 + 8; i <= 96; i += 8)
516 size_index[size_index_elem(i)] = 7;
517
518 }
519
520 if (KMALLOC_MIN_SIZE >= 128) {
521 /*
522 * The 192 byte sized cache is not used if the alignment
523 * is 128 byte. Redirect kmalloc to use the 256 byte cache
524 * instead.
525 */
526 for (i = 128 + 8; i <= 192; i += 8)
527 size_index[size_index_elem(i)] = 8;
528 }
529 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
530 if (!kmalloc_caches[i]) {
531 kmalloc_caches[i] = create_kmalloc_cache(NULL,
532 1 << i, flags);
533 }
534
535 /*
536 * Caches that are not of the two-to-the-power-of size.
537 * These have to be created immediately after the
538 * earlier power of two caches
539 */
540 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
541 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
542
543 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
544 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
545 }
546
547 /* Kmalloc array is now usable */
548 slab_state = UP;
549
550 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
551 struct kmem_cache *s = kmalloc_caches[i];
552 char *n;
553
554 if (s) {
555 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
556
557 BUG_ON(!n);
558 s->name = n;
559 }
560 }
561
562 #ifdef CONFIG_ZONE_DMA
563 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
564 struct kmem_cache *s = kmalloc_caches[i];
565
566 if (s) {
567 int size = kmalloc_size(i);
568 char *n = kasprintf(GFP_NOWAIT,
569 "dma-kmalloc-%d", size);
570
571 BUG_ON(!n);
572 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
573 size, SLAB_CACHE_DMA | flags);
574 }
575 }
576 #endif
577 }
578 #endif /* !CONFIG_SLOB */
579
580 #ifdef CONFIG_TRACING
581 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
582 {
583 void *ret = kmalloc_order(size, flags, order);
584 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
585 return ret;
586 }
587 EXPORT_SYMBOL(kmalloc_order_trace);
588 #endif
589
590 #ifdef CONFIG_SLABINFO
591
592 #ifdef CONFIG_SLAB
593 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
594 #else
595 #define SLABINFO_RIGHTS S_IRUSR
596 #endif
597
598 void print_slabinfo_header(struct seq_file *m)
599 {
600 /*
601 * Output format version, so at least we can change it
602 * without _too_ many complaints.
603 */
604 #ifdef CONFIG_DEBUG_SLAB
605 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
606 #else
607 seq_puts(m, "slabinfo - version: 2.1\n");
608 #endif
609 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
610 "<objperslab> <pagesperslab>");
611 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
612 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
613 #ifdef CONFIG_DEBUG_SLAB
614 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
615 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
616 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
617 #endif
618 seq_putc(m, '\n');
619 }
620
621 static void *s_start(struct seq_file *m, loff_t *pos)
622 {
623 loff_t n = *pos;
624
625 mutex_lock(&slab_mutex);
626 if (!n)
627 print_slabinfo_header(m);
628
629 return seq_list_start(&slab_caches, *pos);
630 }
631
632 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
633 {
634 return seq_list_next(p, &slab_caches, pos);
635 }
636
637 void slab_stop(struct seq_file *m, void *p)
638 {
639 mutex_unlock(&slab_mutex);
640 }
641
642 static void
643 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
644 {
645 struct kmem_cache *c;
646 struct slabinfo sinfo;
647 int i;
648
649 if (!is_root_cache(s))
650 return;
651
652 for_each_memcg_cache_index(i) {
653 c = cache_from_memcg_idx(s, i);
654 if (!c)
655 continue;
656
657 memset(&sinfo, 0, sizeof(sinfo));
658 get_slabinfo(c, &sinfo);
659
660 info->active_slabs += sinfo.active_slabs;
661 info->num_slabs += sinfo.num_slabs;
662 info->shared_avail += sinfo.shared_avail;
663 info->active_objs += sinfo.active_objs;
664 info->num_objs += sinfo.num_objs;
665 }
666 }
667
668 int cache_show(struct kmem_cache *s, struct seq_file *m)
669 {
670 struct slabinfo sinfo;
671
672 memset(&sinfo, 0, sizeof(sinfo));
673 get_slabinfo(s, &sinfo);
674
675 memcg_accumulate_slabinfo(s, &sinfo);
676
677 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
678 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
679 sinfo.objects_per_slab, (1 << sinfo.cache_order));
680
681 seq_printf(m, " : tunables %4u %4u %4u",
682 sinfo.limit, sinfo.batchcount, sinfo.shared);
683 seq_printf(m, " : slabdata %6lu %6lu %6lu",
684 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
685 slabinfo_show_stats(m, s);
686 seq_putc(m, '\n');
687 return 0;
688 }
689
690 static int s_show(struct seq_file *m, void *p)
691 {
692 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
693
694 if (!is_root_cache(s))
695 return 0;
696 return cache_show(s, m);
697 }
698
699 /*
700 * slabinfo_op - iterator that generates /proc/slabinfo
701 *
702 * Output layout:
703 * cache-name
704 * num-active-objs
705 * total-objs
706 * object size
707 * num-active-slabs
708 * total-slabs
709 * num-pages-per-slab
710 * + further values on SMP and with statistics enabled
711 */
712 static const struct seq_operations slabinfo_op = {
713 .start = s_start,
714 .next = slab_next,
715 .stop = slab_stop,
716 .show = s_show,
717 };
718
719 static int slabinfo_open(struct inode *inode, struct file *file)
720 {
721 return seq_open(file, &slabinfo_op);
722 }
723
724 static const struct file_operations proc_slabinfo_operations = {
725 .open = slabinfo_open,
726 .read = seq_read,
727 .write = slabinfo_write,
728 .llseek = seq_lseek,
729 .release = seq_release,
730 };
731
732 static int __init slab_proc_init(void)
733 {
734 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
735 &proc_slabinfo_operations);
736 return 0;
737 }
738 module_init(slab_proc_init);
739 #endif /* CONFIG_SLABINFO */