2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
28 enum slab_state slab_state
;
29 LIST_HEAD(slab_caches
);
30 DEFINE_MUTEX(slab_mutex
);
31 struct kmem_cache
*kmem_cache
;
33 static LIST_HEAD(slab_caches_to_rcu_destroy
);
34 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
35 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
36 slab_caches_to_rcu_destroy_workfn
);
39 * Set of flags that will prevent slab merging
41 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
43 SLAB_FAILSLAB | SLAB_KASAN)
45 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 SLAB_NOTRACK | SLAB_ACCOUNT)
49 * Merge control. If this is set then no merging of slab caches will occur.
50 * (Could be removed. This was introduced to pacify the merge skeptics.)
52 static int slab_nomerge
;
54 static int __init
setup_slab_nomerge(char *str
)
61 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
64 __setup("slab_nomerge", setup_slab_nomerge
);
67 * Determine the size of a slab object
69 unsigned int kmem_cache_size(struct kmem_cache
*s
)
71 return s
->object_size
;
73 EXPORT_SYMBOL(kmem_cache_size
);
75 #ifdef CONFIG_DEBUG_VM
76 static int kmem_cache_sanity_check(const char *name
, size_t size
)
78 struct kmem_cache
*s
= NULL
;
80 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
81 size
> KMALLOC_MAX_SIZE
) {
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
86 list_for_each_entry(s
, &slab_caches
, list
) {
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
95 res
= probe_kernel_address(s
->name
, tmp
);
97 pr_err("Slab cache with size %d has lost its name\n",
103 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
107 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
113 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
117 for (i
= 0; i
< nr
; i
++) {
119 kmem_cache_free(s
, p
[i
]);
125 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
130 for (i
= 0; i
< nr
; i
++) {
131 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
133 __kmem_cache_free_bulk(s
, i
, p
);
140 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
142 LIST_HEAD(slab_root_caches
);
144 void slab_init_memcg_params(struct kmem_cache
*s
)
146 s
->memcg_params
.root_cache
= NULL
;
147 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
148 INIT_LIST_HEAD(&s
->memcg_params
.children
);
151 static int init_memcg_params(struct kmem_cache
*s
,
152 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
154 struct memcg_cache_array
*arr
;
157 s
->memcg_params
.root_cache
= root_cache
;
158 s
->memcg_params
.memcg
= memcg
;
159 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
160 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
164 slab_init_memcg_params(s
);
166 if (!memcg_nr_cache_ids
)
169 arr
= kzalloc(sizeof(struct memcg_cache_array
) +
170 memcg_nr_cache_ids
* sizeof(void *),
175 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
179 static void destroy_memcg_params(struct kmem_cache
*s
)
181 if (is_root_cache(s
))
182 kfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
185 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
187 struct memcg_cache_array
*old
, *new;
189 new = kzalloc(sizeof(struct memcg_cache_array
) +
190 new_array_size
* sizeof(void *), GFP_KERNEL
);
194 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
195 lockdep_is_held(&slab_mutex
));
197 memcpy(new->entries
, old
->entries
,
198 memcg_nr_cache_ids
* sizeof(void *));
200 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
206 int memcg_update_all_caches(int num_memcgs
)
208 struct kmem_cache
*s
;
211 mutex_lock(&slab_mutex
);
212 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
213 ret
= update_memcg_params(s
, num_memcgs
);
215 * Instead of freeing the memory, we'll just leave the caches
216 * up to this point in an updated state.
221 mutex_unlock(&slab_mutex
);
225 void memcg_link_cache(struct kmem_cache
*s
)
227 if (is_root_cache(s
)) {
228 list_add(&s
->root_caches_node
, &slab_root_caches
);
230 list_add(&s
->memcg_params
.children_node
,
231 &s
->memcg_params
.root_cache
->memcg_params
.children
);
232 list_add(&s
->memcg_params
.kmem_caches_node
,
233 &s
->memcg_params
.memcg
->kmem_caches
);
237 static void memcg_unlink_cache(struct kmem_cache
*s
)
239 if (is_root_cache(s
)) {
240 list_del(&s
->root_caches_node
);
242 list_del(&s
->memcg_params
.children_node
);
243 list_del(&s
->memcg_params
.kmem_caches_node
);
247 static inline int init_memcg_params(struct kmem_cache
*s
,
248 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
253 static inline void destroy_memcg_params(struct kmem_cache
*s
)
257 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
260 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
263 * Find a mergeable slab cache
265 int slab_unmergeable(struct kmem_cache
*s
)
267 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
270 if (!is_root_cache(s
))
277 * We may have set a slab to be unmergeable during bootstrap.
285 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
286 unsigned long flags
, const char *name
, void (*ctor
)(void *))
288 struct kmem_cache
*s
;
296 size
= ALIGN(size
, sizeof(void *));
297 align
= calculate_alignment(flags
, align
, size
);
298 size
= ALIGN(size
, align
);
299 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
301 if (flags
& SLAB_NEVER_MERGE
)
304 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
305 if (slab_unmergeable(s
))
311 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
314 * Check if alignment is compatible.
315 * Courtesy of Adrian Drzewiecki
317 if ((s
->size
& ~(align
- 1)) != s
->size
)
320 if (s
->size
- size
>= sizeof(void *))
323 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
324 (align
> s
->align
|| s
->align
% align
))
333 * Figure out what the alignment of the objects will be given a set of
334 * flags, a user specified alignment and the size of the objects.
336 unsigned long calculate_alignment(unsigned long flags
,
337 unsigned long align
, unsigned long size
)
340 * If the user wants hardware cache aligned objects then follow that
341 * suggestion if the object is sufficiently large.
343 * The hardware cache alignment cannot override the specified
344 * alignment though. If that is greater then use it.
346 if (flags
& SLAB_HWCACHE_ALIGN
) {
347 unsigned long ralign
= cache_line_size();
348 while (size
<= ralign
/ 2)
350 align
= max(align
, ralign
);
353 if (align
< ARCH_SLAB_MINALIGN
)
354 align
= ARCH_SLAB_MINALIGN
;
356 return ALIGN(align
, sizeof(void *));
359 static struct kmem_cache
*create_cache(const char *name
,
360 size_t object_size
, size_t size
, size_t align
,
361 unsigned long flags
, void (*ctor
)(void *),
362 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
364 struct kmem_cache
*s
;
368 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
373 s
->object_size
= object_size
;
378 err
= init_memcg_params(s
, memcg
, root_cache
);
382 err
= __kmem_cache_create(s
, flags
);
387 list_add(&s
->list
, &slab_caches
);
395 destroy_memcg_params(s
);
396 kmem_cache_free(kmem_cache
, s
);
401 * kmem_cache_create - Create a cache.
402 * @name: A string which is used in /proc/slabinfo to identify this cache.
403 * @size: The size of objects to be created in this cache.
404 * @align: The required alignment for the objects.
406 * @ctor: A constructor for the objects.
408 * Returns a ptr to the cache on success, NULL on failure.
409 * Cannot be called within a interrupt, but can be interrupted.
410 * The @ctor is run when new pages are allocated by the cache.
414 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
415 * to catch references to uninitialised memory.
417 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
418 * for buffer overruns.
420 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
421 * cacheline. This can be beneficial if you're counting cycles as closely
425 kmem_cache_create(const char *name
, size_t size
, size_t align
,
426 unsigned long flags
, void (*ctor
)(void *))
428 struct kmem_cache
*s
= NULL
;
429 const char *cache_name
;
434 memcg_get_cache_ids();
436 mutex_lock(&slab_mutex
);
438 err
= kmem_cache_sanity_check(name
, size
);
443 /* Refuse requests with allocator specific flags */
444 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
450 * Some allocators will constraint the set of valid flags to a subset
451 * of all flags. We expect them to define CACHE_CREATE_MASK in this
452 * case, and we'll just provide them with a sanitized version of the
455 flags
&= CACHE_CREATE_MASK
;
457 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
461 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
467 s
= create_cache(cache_name
, size
, size
,
468 calculate_alignment(flags
, align
, size
),
469 flags
, ctor
, NULL
, NULL
);
472 kfree_const(cache_name
);
476 mutex_unlock(&slab_mutex
);
478 memcg_put_cache_ids();
483 if (flags
& SLAB_PANIC
)
484 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
487 pr_warn("kmem_cache_create(%s) failed with error %d\n",
495 EXPORT_SYMBOL(kmem_cache_create
);
497 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
499 LIST_HEAD(to_destroy
);
500 struct kmem_cache
*s
, *s2
;
503 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
504 * @slab_caches_to_rcu_destroy list. The slab pages are freed
505 * through RCU and and the associated kmem_cache are dereferenced
506 * while freeing the pages, so the kmem_caches should be freed only
507 * after the pending RCU operations are finished. As rcu_barrier()
508 * is a pretty slow operation, we batch all pending destructions
511 mutex_lock(&slab_mutex
);
512 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
513 mutex_unlock(&slab_mutex
);
515 if (list_empty(&to_destroy
))
520 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
521 #ifdef SLAB_SUPPORTS_SYSFS
522 sysfs_slab_release(s
);
524 slab_kmem_cache_release(s
);
529 static int shutdown_cache(struct kmem_cache
*s
)
531 /* free asan quarantined objects */
532 kasan_cache_shutdown(s
);
534 if (__kmem_cache_shutdown(s
) != 0)
537 memcg_unlink_cache(s
);
540 if (s
->flags
& SLAB_DESTROY_BY_RCU
) {
541 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
542 schedule_work(&slab_caches_to_rcu_destroy_work
);
544 #ifdef SLAB_SUPPORTS_SYSFS
545 sysfs_slab_release(s
);
547 slab_kmem_cache_release(s
);
554 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
556 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
557 * @memcg: The memory cgroup the new cache is for.
558 * @root_cache: The parent of the new cache.
560 * This function attempts to create a kmem cache that will serve allocation
561 * requests going from @memcg to @root_cache. The new cache inherits properties
564 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
565 struct kmem_cache
*root_cache
)
567 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
568 struct cgroup_subsys_state
*css
= &memcg
->css
;
569 struct memcg_cache_array
*arr
;
570 struct kmem_cache
*s
= NULL
;
577 mutex_lock(&slab_mutex
);
580 * The memory cgroup could have been offlined while the cache
581 * creation work was pending.
583 if (memcg
->kmem_state
!= KMEM_ONLINE
)
586 idx
= memcg_cache_id(memcg
);
587 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
588 lockdep_is_held(&slab_mutex
));
591 * Since per-memcg caches are created asynchronously on first
592 * allocation (see memcg_kmem_get_cache()), several threads can try to
593 * create the same cache, but only one of them may succeed.
595 if (arr
->entries
[idx
])
598 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
599 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
600 css
->serial_nr
, memcg_name_buf
);
604 s
= create_cache(cache_name
, root_cache
->object_size
,
605 root_cache
->size
, root_cache
->align
,
606 root_cache
->flags
& CACHE_CREATE_MASK
,
607 root_cache
->ctor
, memcg
, root_cache
);
609 * If we could not create a memcg cache, do not complain, because
610 * that's not critical at all as we can always proceed with the root
619 * Since readers won't lock (see cache_from_memcg_idx()), we need a
620 * barrier here to ensure nobody will see the kmem_cache partially
624 arr
->entries
[idx
] = s
;
627 mutex_unlock(&slab_mutex
);
633 static void kmemcg_deactivate_workfn(struct work_struct
*work
)
635 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
636 memcg_params
.deact_work
);
641 mutex_lock(&slab_mutex
);
643 s
->memcg_params
.deact_fn(s
);
645 mutex_unlock(&slab_mutex
);
650 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
651 css_put(&s
->memcg_params
.memcg
->css
);
654 static void kmemcg_deactivate_rcufn(struct rcu_head
*head
)
656 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
657 memcg_params
.deact_rcu_head
);
660 * We need to grab blocking locks. Bounce to ->deact_work. The
661 * work item shares the space with the RCU head and can't be
662 * initialized eariler.
664 INIT_WORK(&s
->memcg_params
.deact_work
, kmemcg_deactivate_workfn
);
665 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.deact_work
);
669 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
670 * sched RCU grace period
671 * @s: target kmem_cache
672 * @deact_fn: deactivation function to call
674 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
675 * held after a sched RCU grace period. The slab is guaranteed to stay
676 * alive until @deact_fn is finished. This is to be used from
677 * __kmemcg_cache_deactivate().
679 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache
*s
,
680 void (*deact_fn
)(struct kmem_cache
*))
682 if (WARN_ON_ONCE(is_root_cache(s
)) ||
683 WARN_ON_ONCE(s
->memcg_params
.deact_fn
))
686 /* pin memcg so that @s doesn't get destroyed in the middle */
687 css_get(&s
->memcg_params
.memcg
->css
);
689 s
->memcg_params
.deact_fn
= deact_fn
;
690 call_rcu_sched(&s
->memcg_params
.deact_rcu_head
, kmemcg_deactivate_rcufn
);
693 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
696 struct memcg_cache_array
*arr
;
697 struct kmem_cache
*s
, *c
;
699 idx
= memcg_cache_id(memcg
);
704 mutex_lock(&slab_mutex
);
705 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
706 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
707 lockdep_is_held(&slab_mutex
));
708 c
= arr
->entries
[idx
];
712 __kmemcg_cache_deactivate(c
);
713 arr
->entries
[idx
] = NULL
;
715 mutex_unlock(&slab_mutex
);
721 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
723 struct kmem_cache
*s
, *s2
;
728 mutex_lock(&slab_mutex
);
729 list_for_each_entry_safe(s
, s2
, &memcg
->kmem_caches
,
730 memcg_params
.kmem_caches_node
) {
732 * The cgroup is about to be freed and therefore has no charges
733 * left. Hence, all its caches must be empty by now.
735 BUG_ON(shutdown_cache(s
));
737 mutex_unlock(&slab_mutex
);
743 static int shutdown_memcg_caches(struct kmem_cache
*s
)
745 struct memcg_cache_array
*arr
;
746 struct kmem_cache
*c
, *c2
;
750 BUG_ON(!is_root_cache(s
));
753 * First, shutdown active caches, i.e. caches that belong to online
756 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
757 lockdep_is_held(&slab_mutex
));
758 for_each_memcg_cache_index(i
) {
762 if (shutdown_cache(c
))
764 * The cache still has objects. Move it to a temporary
765 * list so as not to try to destroy it for a second
766 * time while iterating over inactive caches below.
768 list_move(&c
->memcg_params
.children_node
, &busy
);
771 * The cache is empty and will be destroyed soon. Clear
772 * the pointer to it in the memcg_caches array so that
773 * it will never be accessed even if the root cache
776 arr
->entries
[i
] = NULL
;
780 * Second, shutdown all caches left from memory cgroups that are now
783 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
784 memcg_params
.children_node
)
787 list_splice(&busy
, &s
->memcg_params
.children
);
790 * A cache being destroyed must be empty. In particular, this means
791 * that all per memcg caches attached to it must be empty too.
793 if (!list_empty(&s
->memcg_params
.children
))
798 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
802 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
804 void slab_kmem_cache_release(struct kmem_cache
*s
)
806 __kmem_cache_release(s
);
807 destroy_memcg_params(s
);
808 kfree_const(s
->name
);
809 kmem_cache_free(kmem_cache
, s
);
812 void kmem_cache_destroy(struct kmem_cache
*s
)
822 mutex_lock(&slab_mutex
);
828 err
= shutdown_memcg_caches(s
);
830 err
= shutdown_cache(s
);
833 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
838 mutex_unlock(&slab_mutex
);
843 EXPORT_SYMBOL(kmem_cache_destroy
);
846 * kmem_cache_shrink - Shrink a cache.
847 * @cachep: The cache to shrink.
849 * Releases as many slabs as possible for a cache.
850 * To help debugging, a zero exit status indicates all slabs were released.
852 int kmem_cache_shrink(struct kmem_cache
*cachep
)
858 kasan_cache_shrink(cachep
);
859 ret
= __kmem_cache_shrink(cachep
);
864 EXPORT_SYMBOL(kmem_cache_shrink
);
866 bool slab_is_available(void)
868 return slab_state
>= UP
;
872 /* Create a cache during boot when no slab services are available yet */
873 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
879 s
->size
= s
->object_size
= size
;
880 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
882 slab_init_memcg_params(s
);
884 err
= __kmem_cache_create(s
, flags
);
887 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
890 s
->refcount
= -1; /* Exempt from merging for now */
893 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
896 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
899 panic("Out of memory when creating slab %s\n", name
);
901 create_boot_cache(s
, name
, size
, flags
);
902 list_add(&s
->list
, &slab_caches
);
908 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
909 EXPORT_SYMBOL(kmalloc_caches
);
911 #ifdef CONFIG_ZONE_DMA
912 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
913 EXPORT_SYMBOL(kmalloc_dma_caches
);
917 * Conversion table for small slabs sizes / 8 to the index in the
918 * kmalloc array. This is necessary for slabs < 192 since we have non power
919 * of two cache sizes there. The size of larger slabs can be determined using
922 static s8 size_index
[24] = {
949 static inline int size_index_elem(size_t bytes
)
951 return (bytes
- 1) / 8;
955 * Find the kmem_cache structure that serves a given size of
958 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
962 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
963 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
969 return ZERO_SIZE_PTR
;
971 index
= size_index
[size_index_elem(size
)];
973 index
= fls(size
- 1);
975 #ifdef CONFIG_ZONE_DMA
976 if (unlikely((flags
& GFP_DMA
)))
977 return kmalloc_dma_caches
[index
];
980 return kmalloc_caches
[index
];
984 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
985 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
988 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
989 {NULL
, 0}, {"kmalloc-96", 96},
990 {"kmalloc-192", 192}, {"kmalloc-8", 8},
991 {"kmalloc-16", 16}, {"kmalloc-32", 32},
992 {"kmalloc-64", 64}, {"kmalloc-128", 128},
993 {"kmalloc-256", 256}, {"kmalloc-512", 512},
994 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
995 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
996 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
997 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
998 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
999 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1000 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1001 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1002 {"kmalloc-67108864", 67108864}
1006 * Patch up the size_index table if we have strange large alignment
1007 * requirements for the kmalloc array. This is only the case for
1008 * MIPS it seems. The standard arches will not generate any code here.
1010 * Largest permitted alignment is 256 bytes due to the way we
1011 * handle the index determination for the smaller caches.
1013 * Make sure that nothing crazy happens if someone starts tinkering
1014 * around with ARCH_KMALLOC_MINALIGN
1016 void __init
setup_kmalloc_cache_index_table(void)
1020 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1021 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1023 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1024 int elem
= size_index_elem(i
);
1026 if (elem
>= ARRAY_SIZE(size_index
))
1028 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1031 if (KMALLOC_MIN_SIZE
>= 64) {
1033 * The 96 byte size cache is not used if the alignment
1036 for (i
= 64 + 8; i
<= 96; i
+= 8)
1037 size_index
[size_index_elem(i
)] = 7;
1041 if (KMALLOC_MIN_SIZE
>= 128) {
1043 * The 192 byte sized cache is not used if the alignment
1044 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1047 for (i
= 128 + 8; i
<= 192; i
+= 8)
1048 size_index
[size_index_elem(i
)] = 8;
1052 static void __init
new_kmalloc_cache(int idx
, unsigned long flags
)
1054 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
1055 kmalloc_info
[idx
].size
, flags
);
1059 * Create the kmalloc array. Some of the regular kmalloc arrays
1060 * may already have been created because they were needed to
1061 * enable allocations for slab creation.
1063 void __init
create_kmalloc_caches(unsigned long flags
)
1067 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1068 if (!kmalloc_caches
[i
])
1069 new_kmalloc_cache(i
, flags
);
1072 * Caches that are not of the two-to-the-power-of size.
1073 * These have to be created immediately after the
1074 * earlier power of two caches
1076 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
1077 new_kmalloc_cache(1, flags
);
1078 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
1079 new_kmalloc_cache(2, flags
);
1082 /* Kmalloc array is now usable */
1085 #ifdef CONFIG_ZONE_DMA
1086 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1087 struct kmem_cache
*s
= kmalloc_caches
[i
];
1090 int size
= kmalloc_size(i
);
1091 char *n
= kasprintf(GFP_NOWAIT
,
1092 "dma-kmalloc-%d", size
);
1095 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
1096 size
, SLAB_CACHE_DMA
| flags
);
1101 #endif /* !CONFIG_SLOB */
1104 * To avoid unnecessary overhead, we pass through large allocation requests
1105 * directly to the page allocator. We use __GFP_COMP, because we will need to
1106 * know the allocation order to free the pages properly in kfree.
1108 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1113 flags
|= __GFP_COMP
;
1114 page
= alloc_pages(flags
, order
);
1115 ret
= page
? page_address(page
) : NULL
;
1116 kmemleak_alloc(ret
, size
, 1, flags
);
1117 kasan_kmalloc_large(ret
, size
, flags
);
1120 EXPORT_SYMBOL(kmalloc_order
);
1122 #ifdef CONFIG_TRACING
1123 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1125 void *ret
= kmalloc_order(size
, flags
, order
);
1126 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1129 EXPORT_SYMBOL(kmalloc_order_trace
);
1132 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1133 /* Randomize a generic freelist */
1134 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1140 for (i
= 0; i
< count
; i
++)
1143 /* Fisher-Yates shuffle */
1144 for (i
= count
- 1; i
> 0; i
--) {
1145 rand
= prandom_u32_state(state
);
1147 swap(list
[i
], list
[rand
]);
1151 /* Create a random sequence per cache */
1152 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1155 struct rnd_state state
;
1157 if (count
< 2 || cachep
->random_seq
)
1160 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1161 if (!cachep
->random_seq
)
1164 /* Get best entropy at this stage of boot */
1165 prandom_seed_state(&state
, get_random_long());
1167 freelist_randomize(&state
, cachep
->random_seq
, count
);
1171 /* Destroy the per-cache random freelist sequence */
1172 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1174 kfree(cachep
->random_seq
);
1175 cachep
->random_seq
= NULL
;
1177 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1179 #ifdef CONFIG_SLABINFO
1182 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1184 #define SLABINFO_RIGHTS S_IRUSR
1187 static void print_slabinfo_header(struct seq_file
*m
)
1190 * Output format version, so at least we can change it
1191 * without _too_ many complaints.
1193 #ifdef CONFIG_DEBUG_SLAB
1194 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1196 seq_puts(m
, "slabinfo - version: 2.1\n");
1198 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1199 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1200 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1201 #ifdef CONFIG_DEBUG_SLAB
1202 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1203 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1208 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1210 mutex_lock(&slab_mutex
);
1211 return seq_list_start(&slab_root_caches
, *pos
);
1214 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1216 return seq_list_next(p
, &slab_root_caches
, pos
);
1219 void slab_stop(struct seq_file
*m
, void *p
)
1221 mutex_unlock(&slab_mutex
);
1225 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1227 struct kmem_cache
*c
;
1228 struct slabinfo sinfo
;
1230 if (!is_root_cache(s
))
1233 for_each_memcg_cache(c
, s
) {
1234 memset(&sinfo
, 0, sizeof(sinfo
));
1235 get_slabinfo(c
, &sinfo
);
1237 info
->active_slabs
+= sinfo
.active_slabs
;
1238 info
->num_slabs
+= sinfo
.num_slabs
;
1239 info
->shared_avail
+= sinfo
.shared_avail
;
1240 info
->active_objs
+= sinfo
.active_objs
;
1241 info
->num_objs
+= sinfo
.num_objs
;
1245 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1247 struct slabinfo sinfo
;
1249 memset(&sinfo
, 0, sizeof(sinfo
));
1250 get_slabinfo(s
, &sinfo
);
1252 memcg_accumulate_slabinfo(s
, &sinfo
);
1254 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1255 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1256 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1258 seq_printf(m
, " : tunables %4u %4u %4u",
1259 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1260 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1261 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1262 slabinfo_show_stats(m
, s
);
1266 static int slab_show(struct seq_file
*m
, void *p
)
1268 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1270 if (p
== slab_root_caches
.next
)
1271 print_slabinfo_header(m
);
1276 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1277 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1279 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1281 mutex_lock(&slab_mutex
);
1282 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1285 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1287 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1289 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1292 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1294 mutex_unlock(&slab_mutex
);
1297 int memcg_slab_show(struct seq_file
*m
, void *p
)
1299 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1300 memcg_params
.kmem_caches_node
);
1301 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1303 if (p
== memcg
->kmem_caches
.next
)
1304 print_slabinfo_header(m
);
1311 * slabinfo_op - iterator that generates /proc/slabinfo
1320 * num-pages-per-slab
1321 * + further values on SMP and with statistics enabled
1323 static const struct seq_operations slabinfo_op
= {
1324 .start
= slab_start
,
1330 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1332 return seq_open(file
, &slabinfo_op
);
1335 static const struct file_operations proc_slabinfo_operations
= {
1336 .open
= slabinfo_open
,
1338 .write
= slabinfo_write
,
1339 .llseek
= seq_lseek
,
1340 .release
= seq_release
,
1343 static int __init
slab_proc_init(void)
1345 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1346 &proc_slabinfo_operations
);
1349 module_init(slab_proc_init
);
1350 #endif /* CONFIG_SLABINFO */
1352 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1361 if (ks
>= new_size
) {
1362 kasan_krealloc((void *)p
, new_size
, flags
);
1366 ret
= kmalloc_track_caller(new_size
, flags
);
1374 * __krealloc - like krealloc() but don't free @p.
1375 * @p: object to reallocate memory for.
1376 * @new_size: how many bytes of memory are required.
1377 * @flags: the type of memory to allocate.
1379 * This function is like krealloc() except it never frees the originally
1380 * allocated buffer. Use this if you don't want to free the buffer immediately
1381 * like, for example, with RCU.
1383 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1385 if (unlikely(!new_size
))
1386 return ZERO_SIZE_PTR
;
1388 return __do_krealloc(p
, new_size
, flags
);
1391 EXPORT_SYMBOL(__krealloc
);
1394 * krealloc - reallocate memory. The contents will remain unchanged.
1395 * @p: object to reallocate memory for.
1396 * @new_size: how many bytes of memory are required.
1397 * @flags: the type of memory to allocate.
1399 * The contents of the object pointed to are preserved up to the
1400 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1401 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1402 * %NULL pointer, the object pointed to is freed.
1404 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1408 if (unlikely(!new_size
)) {
1410 return ZERO_SIZE_PTR
;
1413 ret
= __do_krealloc(p
, new_size
, flags
);
1414 if (ret
&& p
!= ret
)
1419 EXPORT_SYMBOL(krealloc
);
1422 * kzfree - like kfree but zero memory
1423 * @p: object to free memory of
1425 * The memory of the object @p points to is zeroed before freed.
1426 * If @p is %NULL, kzfree() does nothing.
1428 * Note: this function zeroes the whole allocated buffer which can be a good
1429 * deal bigger than the requested buffer size passed to kmalloc(). So be
1430 * careful when using this function in performance sensitive code.
1432 void kzfree(const void *p
)
1435 void *mem
= (void *)p
;
1437 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1443 EXPORT_SYMBOL(kzfree
);
1445 /* Tracepoints definitions. */
1446 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1447 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1448 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1449 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1450 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1451 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);