]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slob.c
mm/sl[aou]b: Use "kmem_cache" name for slab cache with kmem_cache struct
[mirror_ubuntu-artful-kernel.git] / mm / slob.c
1 /*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14 *
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_exact_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
58 */
59
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 #include "slab.h"
63
64 #include <linux/mm.h>
65 #include <linux/swap.h> /* struct reclaim_state */
66 #include <linux/cache.h>
67 #include <linux/init.h>
68 #include <linux/export.h>
69 #include <linux/rcupdate.h>
70 #include <linux/list.h>
71 #include <linux/kmemleak.h>
72
73 #include <trace/events/kmem.h>
74
75 #include <linux/atomic.h>
76
77 /*
78 * slob_block has a field 'units', which indicates size of block if +ve,
79 * or offset of next block if -ve (in SLOB_UNITs).
80 *
81 * Free blocks of size 1 unit simply contain the offset of the next block.
82 * Those with larger size contain their size in the first SLOB_UNIT of
83 * memory, and the offset of the next free block in the second SLOB_UNIT.
84 */
85 #if PAGE_SIZE <= (32767 * 2)
86 typedef s16 slobidx_t;
87 #else
88 typedef s32 slobidx_t;
89 #endif
90
91 struct slob_block {
92 slobidx_t units;
93 };
94 typedef struct slob_block slob_t;
95
96 /*
97 * All partially free slob pages go on these lists.
98 */
99 #define SLOB_BREAK1 256
100 #define SLOB_BREAK2 1024
101 static LIST_HEAD(free_slob_small);
102 static LIST_HEAD(free_slob_medium);
103 static LIST_HEAD(free_slob_large);
104
105 /*
106 * slob_page_free: true for pages on free_slob_pages list.
107 */
108 static inline int slob_page_free(struct page *sp)
109 {
110 return PageSlobFree(sp);
111 }
112
113 static void set_slob_page_free(struct page *sp, struct list_head *list)
114 {
115 list_add(&sp->list, list);
116 __SetPageSlobFree(sp);
117 }
118
119 static inline void clear_slob_page_free(struct page *sp)
120 {
121 list_del(&sp->list);
122 __ClearPageSlobFree(sp);
123 }
124
125 #define SLOB_UNIT sizeof(slob_t)
126 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
127 #define SLOB_ALIGN L1_CACHE_BYTES
128
129 /*
130 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
131 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
132 * the block using call_rcu.
133 */
134 struct slob_rcu {
135 struct rcu_head head;
136 int size;
137 };
138
139 /*
140 * slob_lock protects all slob allocator structures.
141 */
142 static DEFINE_SPINLOCK(slob_lock);
143
144 /*
145 * Encode the given size and next info into a free slob block s.
146 */
147 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
148 {
149 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
150 slobidx_t offset = next - base;
151
152 if (size > 1) {
153 s[0].units = size;
154 s[1].units = offset;
155 } else
156 s[0].units = -offset;
157 }
158
159 /*
160 * Return the size of a slob block.
161 */
162 static slobidx_t slob_units(slob_t *s)
163 {
164 if (s->units > 0)
165 return s->units;
166 return 1;
167 }
168
169 /*
170 * Return the next free slob block pointer after this one.
171 */
172 static slob_t *slob_next(slob_t *s)
173 {
174 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
175 slobidx_t next;
176
177 if (s[0].units < 0)
178 next = -s[0].units;
179 else
180 next = s[1].units;
181 return base+next;
182 }
183
184 /*
185 * Returns true if s is the last free block in its page.
186 */
187 static int slob_last(slob_t *s)
188 {
189 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
190 }
191
192 static void *slob_new_pages(gfp_t gfp, int order, int node)
193 {
194 void *page;
195
196 #ifdef CONFIG_NUMA
197 if (node != -1)
198 page = alloc_pages_exact_node(node, gfp, order);
199 else
200 #endif
201 page = alloc_pages(gfp, order);
202
203 if (!page)
204 return NULL;
205
206 return page_address(page);
207 }
208
209 static void slob_free_pages(void *b, int order)
210 {
211 if (current->reclaim_state)
212 current->reclaim_state->reclaimed_slab += 1 << order;
213 free_pages((unsigned long)b, order);
214 }
215
216 /*
217 * Allocate a slob block within a given slob_page sp.
218 */
219 static void *slob_page_alloc(struct page *sp, size_t size, int align)
220 {
221 slob_t *prev, *cur, *aligned = NULL;
222 int delta = 0, units = SLOB_UNITS(size);
223
224 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
225 slobidx_t avail = slob_units(cur);
226
227 if (align) {
228 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
229 delta = aligned - cur;
230 }
231 if (avail >= units + delta) { /* room enough? */
232 slob_t *next;
233
234 if (delta) { /* need to fragment head to align? */
235 next = slob_next(cur);
236 set_slob(aligned, avail - delta, next);
237 set_slob(cur, delta, aligned);
238 prev = cur;
239 cur = aligned;
240 avail = slob_units(cur);
241 }
242
243 next = slob_next(cur);
244 if (avail == units) { /* exact fit? unlink. */
245 if (prev)
246 set_slob(prev, slob_units(prev), next);
247 else
248 sp->freelist = next;
249 } else { /* fragment */
250 if (prev)
251 set_slob(prev, slob_units(prev), cur + units);
252 else
253 sp->freelist = cur + units;
254 set_slob(cur + units, avail - units, next);
255 }
256
257 sp->units -= units;
258 if (!sp->units)
259 clear_slob_page_free(sp);
260 return cur;
261 }
262 if (slob_last(cur))
263 return NULL;
264 }
265 }
266
267 /*
268 * slob_alloc: entry point into the slob allocator.
269 */
270 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
271 {
272 struct page *sp;
273 struct list_head *prev;
274 struct list_head *slob_list;
275 slob_t *b = NULL;
276 unsigned long flags;
277
278 if (size < SLOB_BREAK1)
279 slob_list = &free_slob_small;
280 else if (size < SLOB_BREAK2)
281 slob_list = &free_slob_medium;
282 else
283 slob_list = &free_slob_large;
284
285 spin_lock_irqsave(&slob_lock, flags);
286 /* Iterate through each partially free page, try to find room */
287 list_for_each_entry(sp, slob_list, list) {
288 #ifdef CONFIG_NUMA
289 /*
290 * If there's a node specification, search for a partial
291 * page with a matching node id in the freelist.
292 */
293 if (node != -1 && page_to_nid(sp) != node)
294 continue;
295 #endif
296 /* Enough room on this page? */
297 if (sp->units < SLOB_UNITS(size))
298 continue;
299
300 /* Attempt to alloc */
301 prev = sp->list.prev;
302 b = slob_page_alloc(sp, size, align);
303 if (!b)
304 continue;
305
306 /* Improve fragment distribution and reduce our average
307 * search time by starting our next search here. (see
308 * Knuth vol 1, sec 2.5, pg 449) */
309 if (prev != slob_list->prev &&
310 slob_list->next != prev->next)
311 list_move_tail(slob_list, prev->next);
312 break;
313 }
314 spin_unlock_irqrestore(&slob_lock, flags);
315
316 /* Not enough space: must allocate a new page */
317 if (!b) {
318 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
319 if (!b)
320 return NULL;
321 sp = virt_to_page(b);
322 __SetPageSlab(sp);
323
324 spin_lock_irqsave(&slob_lock, flags);
325 sp->units = SLOB_UNITS(PAGE_SIZE);
326 sp->freelist = b;
327 INIT_LIST_HEAD(&sp->list);
328 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
329 set_slob_page_free(sp, slob_list);
330 b = slob_page_alloc(sp, size, align);
331 BUG_ON(!b);
332 spin_unlock_irqrestore(&slob_lock, flags);
333 }
334 if (unlikely((gfp & __GFP_ZERO) && b))
335 memset(b, 0, size);
336 return b;
337 }
338
339 /*
340 * slob_free: entry point into the slob allocator.
341 */
342 static void slob_free(void *block, int size)
343 {
344 struct page *sp;
345 slob_t *prev, *next, *b = (slob_t *)block;
346 slobidx_t units;
347 unsigned long flags;
348 struct list_head *slob_list;
349
350 if (unlikely(ZERO_OR_NULL_PTR(block)))
351 return;
352 BUG_ON(!size);
353
354 sp = virt_to_page(block);
355 units = SLOB_UNITS(size);
356
357 spin_lock_irqsave(&slob_lock, flags);
358
359 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
360 /* Go directly to page allocator. Do not pass slob allocator */
361 if (slob_page_free(sp))
362 clear_slob_page_free(sp);
363 spin_unlock_irqrestore(&slob_lock, flags);
364 __ClearPageSlab(sp);
365 reset_page_mapcount(sp);
366 slob_free_pages(b, 0);
367 return;
368 }
369
370 if (!slob_page_free(sp)) {
371 /* This slob page is about to become partially free. Easy! */
372 sp->units = units;
373 sp->freelist = b;
374 set_slob(b, units,
375 (void *)((unsigned long)(b +
376 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
377 if (size < SLOB_BREAK1)
378 slob_list = &free_slob_small;
379 else if (size < SLOB_BREAK2)
380 slob_list = &free_slob_medium;
381 else
382 slob_list = &free_slob_large;
383 set_slob_page_free(sp, slob_list);
384 goto out;
385 }
386
387 /*
388 * Otherwise the page is already partially free, so find reinsertion
389 * point.
390 */
391 sp->units += units;
392
393 if (b < (slob_t *)sp->freelist) {
394 if (b + units == sp->freelist) {
395 units += slob_units(sp->freelist);
396 sp->freelist = slob_next(sp->freelist);
397 }
398 set_slob(b, units, sp->freelist);
399 sp->freelist = b;
400 } else {
401 prev = sp->freelist;
402 next = slob_next(prev);
403 while (b > next) {
404 prev = next;
405 next = slob_next(prev);
406 }
407
408 if (!slob_last(prev) && b + units == next) {
409 units += slob_units(next);
410 set_slob(b, units, slob_next(next));
411 } else
412 set_slob(b, units, next);
413
414 if (prev + slob_units(prev) == b) {
415 units = slob_units(b) + slob_units(prev);
416 set_slob(prev, units, slob_next(b));
417 } else
418 set_slob(prev, slob_units(prev), b);
419 }
420 out:
421 spin_unlock_irqrestore(&slob_lock, flags);
422 }
423
424 /*
425 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
426 */
427
428 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
429 {
430 unsigned int *m;
431 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
432 void *ret;
433
434 gfp &= gfp_allowed_mask;
435
436 lockdep_trace_alloc(gfp);
437
438 if (size < PAGE_SIZE - align) {
439 if (!size)
440 return ZERO_SIZE_PTR;
441
442 m = slob_alloc(size + align, gfp, align, node);
443
444 if (!m)
445 return NULL;
446 *m = size;
447 ret = (void *)m + align;
448
449 trace_kmalloc_node(_RET_IP_, ret,
450 size, size + align, gfp, node);
451 } else {
452 unsigned int order = get_order(size);
453
454 if (likely(order))
455 gfp |= __GFP_COMP;
456 ret = slob_new_pages(gfp, order, node);
457 if (ret) {
458 struct page *page;
459 page = virt_to_page(ret);
460 page->private = size;
461 }
462
463 trace_kmalloc_node(_RET_IP_, ret,
464 size, PAGE_SIZE << order, gfp, node);
465 }
466
467 kmemleak_alloc(ret, size, 1, gfp);
468 return ret;
469 }
470 EXPORT_SYMBOL(__kmalloc_node);
471
472 void kfree(const void *block)
473 {
474 struct page *sp;
475
476 trace_kfree(_RET_IP_, block);
477
478 if (unlikely(ZERO_OR_NULL_PTR(block)))
479 return;
480 kmemleak_free(block);
481
482 sp = virt_to_page(block);
483 if (PageSlab(sp)) {
484 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
485 unsigned int *m = (unsigned int *)(block - align);
486 slob_free(m, *m + align);
487 } else
488 put_page(sp);
489 }
490 EXPORT_SYMBOL(kfree);
491
492 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
493 size_t ksize(const void *block)
494 {
495 struct page *sp;
496
497 BUG_ON(!block);
498 if (unlikely(block == ZERO_SIZE_PTR))
499 return 0;
500
501 sp = virt_to_page(block);
502 if (PageSlab(sp)) {
503 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
504 unsigned int *m = (unsigned int *)(block - align);
505 return SLOB_UNITS(*m) * SLOB_UNIT;
506 } else
507 return sp->private;
508 }
509 EXPORT_SYMBOL(ksize);
510
511 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
512 size_t align, unsigned long flags, void (*ctor)(void *))
513 {
514 struct kmem_cache *c;
515
516 c = slob_alloc(sizeof(struct kmem_cache),
517 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
518
519 if (c) {
520 c->name = name;
521 c->size = size;
522 if (flags & SLAB_DESTROY_BY_RCU) {
523 /* leave room for rcu footer at the end of object */
524 c->size += sizeof(struct slob_rcu);
525 }
526 c->flags = flags;
527 c->ctor = ctor;
528 /* ignore alignment unless it's forced */
529 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
530 if (c->align < ARCH_SLAB_MINALIGN)
531 c->align = ARCH_SLAB_MINALIGN;
532 if (c->align < align)
533 c->align = align;
534
535 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
536 c->refcount = 1;
537 }
538 return c;
539 }
540
541 void __kmem_cache_destroy(struct kmem_cache *c)
542 {
543 kmemleak_free(c);
544 slob_free(c, sizeof(struct kmem_cache));
545 }
546
547 void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
548 {
549 void *b;
550
551 flags &= gfp_allowed_mask;
552
553 lockdep_trace_alloc(flags);
554
555 if (c->size < PAGE_SIZE) {
556 b = slob_alloc(c->size, flags, c->align, node);
557 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
558 SLOB_UNITS(c->size) * SLOB_UNIT,
559 flags, node);
560 } else {
561 b = slob_new_pages(flags, get_order(c->size), node);
562 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
563 PAGE_SIZE << get_order(c->size),
564 flags, node);
565 }
566
567 if (c->ctor)
568 c->ctor(b);
569
570 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
571 return b;
572 }
573 EXPORT_SYMBOL(kmem_cache_alloc_node);
574
575 static void __kmem_cache_free(void *b, int size)
576 {
577 if (size < PAGE_SIZE)
578 slob_free(b, size);
579 else
580 slob_free_pages(b, get_order(size));
581 }
582
583 static void kmem_rcu_free(struct rcu_head *head)
584 {
585 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
586 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
587
588 __kmem_cache_free(b, slob_rcu->size);
589 }
590
591 void kmem_cache_free(struct kmem_cache *c, void *b)
592 {
593 kmemleak_free_recursive(b, c->flags);
594 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
595 struct slob_rcu *slob_rcu;
596 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
597 slob_rcu->size = c->size;
598 call_rcu(&slob_rcu->head, kmem_rcu_free);
599 } else {
600 __kmem_cache_free(b, c->size);
601 }
602
603 trace_kmem_cache_free(_RET_IP_, b);
604 }
605 EXPORT_SYMBOL(kmem_cache_free);
606
607 unsigned int kmem_cache_size(struct kmem_cache *c)
608 {
609 return c->size;
610 }
611 EXPORT_SYMBOL(kmem_cache_size);
612
613 int __kmem_cache_shutdown(struct kmem_cache *c)
614 {
615 /* No way to check for remaining objects */
616 return 0;
617 }
618
619 int kmem_cache_shrink(struct kmem_cache *d)
620 {
621 return 0;
622 }
623 EXPORT_SYMBOL(kmem_cache_shrink);
624
625 struct kmem_cache kmem_cache_boot = {
626 .name = "kmem_cache",
627 .size = sizeof(struct kmem_cache),
628 .flags = SLAB_PANIC,
629 .align = ARCH_KMALLOC_MINALIGN,
630 };
631
632 void __init kmem_cache_init(void)
633 {
634 kmem_cache = &kmem_cache_boot;
635 slab_state = UP;
636 }
637
638 void __init kmem_cache_init_late(void)
639 {
640 slab_state = FULL;
641 }