]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
Input: tc3589x-keypad - support probing from device tree
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371 }
372
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378 {
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388 #endif
389 {
390 slab_lock(page);
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
393 page->freelist = freelist_new;
394 set_page_slub_counters(page, counters_new);
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404 #ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407
408 return 0;
409 }
410
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s->flags & __CMPXCHG_DOUBLE) {
419 if (cmpxchg_double(&page->freelist, &page->counters,
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424 #endif
425 {
426 unsigned long flags;
427
428 local_irq_save(flags);
429 slab_lock(page);
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
432 page->freelist = freelist_new;
433 set_page_slub_counters(page, counters_new);
434 slab_unlock(page);
435 local_irq_restore(flags);
436 return 1;
437 }
438 slab_unlock(page);
439 local_irq_restore(flags);
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445 #ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448
449 return 0;
450 }
451
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454 * Determine a map of object in use on a page.
455 *
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
458 */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466 }
467
468 /*
469 * Debug settings:
470 */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479
480 /*
481 * Object debugging
482 */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
487 }
488
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491 {
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500 }
501
502 static void set_track(struct kmem_cache *s, void *object,
503 enum track_item alloc, unsigned long addr)
504 {
505 struct track *p = get_track(s, object, alloc);
506
507 if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525 #endif
526 p->addr = addr;
527 p->cpu = smp_processor_id();
528 p->pid = current->pid;
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532 }
533
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542
543 static void print_track(const char *s, struct track *t)
544 {
545 if (!t->addr)
546 return;
547
548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559 #endif
560 }
561
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570
571 static void print_page_info(struct page *page)
572 {
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
576
577 }
578
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
592
593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595
596 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597 {
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605 }
606
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 unsigned int off; /* Offset of last byte */
610 u8 *addr = page_address(page);
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
620 print_section("Bytes b4 ", p - 16, 16);
621
622 print_section("Object ", p, min_t(unsigned long, s->object_size,
623 PAGE_SIZE));
624 if (s->flags & SLAB_RED_ZONE)
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
627
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
633 if (s->flags & SLAB_STORE_USER)
634 off += 2 * sizeof(struct track);
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p + off, s->size - off);
639
640 dump_stack();
641 }
642
643 static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645 {
646 slab_bug(s, "%s", reason);
647 print_trailer(s, page, object);
648 }
649
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
652 {
653 va_list args;
654 char buf[100];
655
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
658 va_end(args);
659 slab_bug(s, "%s", buf);
660 print_page_info(page);
661 dump_stack();
662 }
663
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
674 memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679 {
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682 }
683
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
686 u8 *start, unsigned int value, unsigned int bytes)
687 {
688 u8 *fault;
689 u8 *end;
690
691 fault = memchr_inv(start, value, bytes);
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
706 }
707
708 /*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
715 *
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
723 *
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
728 * Meta data starts here.
729 *
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
737 *
738 * object + s->size
739 * Nothing is used beyond s->size.
740 *
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
744 */
745
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
763 }
764
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
777 start = page_address(page);
778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 end = start + length;
780 remainder = length % s->size;
781 if (!remainder)
782 return 1;
783
784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 print_section("Padding ", end - remainder, remainder);
792
793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 return 0;
795 }
796
797 static int check_object(struct kmem_cache *s, struct page *page,
798 void *object, u8 val)
799 {
800 u8 *p = object;
801 u8 *endobject = object + s->object_size;
802
803 if (s->flags & SLAB_RED_ZONE) {
804 if (!check_bytes_and_report(s, page, object, "Redzone",
805 endobject, val, s->inuse - s->object_size))
806 return 0;
807 } else {
808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 check_bytes_and_report(s, page, p, "Alignment padding",
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
812 }
813 }
814
815 if (s->flags & SLAB_POISON) {
816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 (!check_bytes_and_report(s, page, p, "Poison", p,
818 POISON_FREE, s->object_size - 1) ||
819 !check_bytes_and_report(s, page, p, "Poison",
820 p + s->object_size - 1, POISON_END, 1)))
821 return 0;
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
828 if (!s->offset && val == SLUB_RED_ACTIVE)
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
842 */
843 set_freepointer(s, p, NULL);
844 return 0;
845 }
846 return 1;
847 }
848
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 int maxobj;
852
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
856 slab_err(s, page, "Not a valid slab page");
857 return 0;
858 }
859
860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
867 slab_err(s, page, "inuse %u > max %u",
868 s->name, page->inuse, page->objects);
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874 }
875
876 /*
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
879 */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 int nr = 0;
883 void *fp;
884 void *object = NULL;
885 unsigned long max_objects;
886
887 fp = page->freelist;
888 while (fp && nr <= page->objects) {
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
895 set_freepointer(s, object, NULL);
896 } else {
897 slab_err(s, page, "Freepointer corrupt");
898 page->freelist = NULL;
899 page->inuse = page->objects;
900 slab_fix(s, "Freelist cleared");
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
920 if (page->inuse != page->objects - nr) {
921 slab_err(s, page, "Wrong object count. Counter is %d but "
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
924 slab_fix(s, "Object count adjusted.");
925 }
926 return search == NULL;
927 }
928
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
931 {
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
940 print_section("Object ", (void *)object,
941 s->object_size);
942
943 dump_stack();
944 }
945 }
946
947 /*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 kmemleak_alloc(ptr, size, 1, flags);
954 }
955
956 static inline void kfree_hook(const void *x)
957 {
958 kmemleak_free(x);
959 }
960
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 flags &= gfp_allowed_mask;
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
967 return should_failslab(s->object_size, flags, s->flags);
968 }
969
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
972 {
973 flags &= gfp_allowed_mask;
974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 kmemleak_free_recursive(x, s->flags);
981
982 /*
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
994 local_irq_restore(flags);
995 }
996 #endif
997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 debug_check_no_obj_freed(x, s->object_size);
999 }
1000
1001 /*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 */
1004 static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
1006 {
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
1010 lockdep_assert_held(&n->list_lock);
1011 list_add(&page->lru, &n->full);
1012 }
1013
1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 {
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
1019 lockdep_assert_held(&n->list_lock);
1020 list_del(&page->lru);
1021 }
1022
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025 {
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029 }
1030
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032 {
1033 return atomic_long_read(&n->nr_slabs);
1034 }
1035
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
1046 if (likely(n)) {
1047 atomic_long_inc(&n->nr_slabs);
1048 atomic_long_add(objects, &n->total_objects);
1049 }
1050 }
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
1056 atomic_long_sub(objects, &n->total_objects);
1057 }
1058
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062 {
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
1066 init_object(s, object, SLUB_RED_INACTIVE);
1067 init_tracking(s, object);
1068 }
1069
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
1072 void *object, unsigned long addr)
1073 {
1074 if (!check_slab(s, page))
1075 goto bad;
1076
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
1079 goto bad;
1080 }
1081
1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083 goto bad;
1084
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
1089 init_object(s, object, SLUB_RED_ACTIVE);
1090 return 1;
1091
1092 bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
1097 * as used avoids touching the remaining objects.
1098 */
1099 slab_fix(s, "Marking all objects used");
1100 page->inuse = page->objects;
1101 page->freelist = NULL;
1102 }
1103 return 0;
1104 }
1105
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
1109 {
1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111
1112 spin_lock_irqsave(&n->list_lock, *flags);
1113 slab_lock(page);
1114
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
1124 object_err(s, page, object, "Object already free");
1125 goto fail;
1126 }
1127
1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129 goto out;
1130
1131 if (unlikely(s != page->slab_cache)) {
1132 if (!PageSlab(page)) {
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1135 } else if (!page->slab_cache) {
1136 printk(KERN_ERR
1137 "SLUB <none>: no slab for object 0x%p.\n",
1138 object);
1139 dump_stack();
1140 } else
1141 object_err(s, page, object,
1142 "page slab pointer corrupt.");
1143 goto fail;
1144 }
1145
1146 if (s->flags & SLAB_STORE_USER)
1147 set_track(s, object, TRACK_FREE, addr);
1148 trace(s, page, object, 0);
1149 init_object(s, object, SLUB_RED_INACTIVE);
1150 out:
1151 slab_unlock(page);
1152 /*
1153 * Keep node_lock to preserve integrity
1154 * until the object is actually freed
1155 */
1156 return n;
1157
1158 fail:
1159 slab_unlock(page);
1160 spin_unlock_irqrestore(&n->list_lock, *flags);
1161 slab_fix(s, "Object at 0x%p not freed", object);
1162 return NULL;
1163 }
1164
1165 static int __init setup_slub_debug(char *str)
1166 {
1167 slub_debug = DEBUG_DEFAULT_FLAGS;
1168 if (*str++ != '=' || !*str)
1169 /*
1170 * No options specified. Switch on full debugging.
1171 */
1172 goto out;
1173
1174 if (*str == ',')
1175 /*
1176 * No options but restriction on slabs. This means full
1177 * debugging for slabs matching a pattern.
1178 */
1179 goto check_slabs;
1180
1181 if (tolower(*str) == 'o') {
1182 /*
1183 * Avoid enabling debugging on caches if its minimum order
1184 * would increase as a result.
1185 */
1186 disable_higher_order_debug = 1;
1187 goto out;
1188 }
1189
1190 slub_debug = 0;
1191 if (*str == '-')
1192 /*
1193 * Switch off all debugging measures.
1194 */
1195 goto out;
1196
1197 /*
1198 * Determine which debug features should be switched on
1199 */
1200 for (; *str && *str != ','; str++) {
1201 switch (tolower(*str)) {
1202 case 'f':
1203 slub_debug |= SLAB_DEBUG_FREE;
1204 break;
1205 case 'z':
1206 slub_debug |= SLAB_RED_ZONE;
1207 break;
1208 case 'p':
1209 slub_debug |= SLAB_POISON;
1210 break;
1211 case 'u':
1212 slub_debug |= SLAB_STORE_USER;
1213 break;
1214 case 't':
1215 slub_debug |= SLAB_TRACE;
1216 break;
1217 case 'a':
1218 slub_debug |= SLAB_FAILSLAB;
1219 break;
1220 default:
1221 printk(KERN_ERR "slub_debug option '%c' "
1222 "unknown. skipped\n", *str);
1223 }
1224 }
1225
1226 check_slabs:
1227 if (*str == ',')
1228 slub_debug_slabs = str + 1;
1229 out:
1230 return 1;
1231 }
1232
1233 __setup("slub_debug", setup_slub_debug);
1234
1235 static unsigned long kmem_cache_flags(unsigned long object_size,
1236 unsigned long flags, const char *name,
1237 void (*ctor)(void *))
1238 {
1239 /*
1240 * Enable debugging if selected on the kernel commandline.
1241 */
1242 if (slub_debug && (!slub_debug_slabs || (name &&
1243 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1244 flags |= slub_debug;
1245
1246 return flags;
1247 }
1248 #else
1249 static inline void setup_object_debug(struct kmem_cache *s,
1250 struct page *page, void *object) {}
1251
1252 static inline int alloc_debug_processing(struct kmem_cache *s,
1253 struct page *page, void *object, unsigned long addr) { return 0; }
1254
1255 static inline struct kmem_cache_node *free_debug_processing(
1256 struct kmem_cache *s, struct page *page, void *object,
1257 unsigned long addr, unsigned long *flags) { return NULL; }
1258
1259 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1260 { return 1; }
1261 static inline int check_object(struct kmem_cache *s, struct page *page,
1262 void *object, u8 val) { return 1; }
1263 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1264 struct page *page) {}
1265 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
1267 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1268 unsigned long flags, const char *name,
1269 void (*ctor)(void *))
1270 {
1271 return flags;
1272 }
1273 #define slub_debug 0
1274
1275 #define disable_higher_order_debug 0
1276
1277 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1278 { return 0; }
1279 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1280 { return 0; }
1281 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1282 int objects) {}
1283 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
1285
1286 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1287 {
1288 kmemleak_alloc(ptr, size, 1, flags);
1289 }
1290
1291 static inline void kfree_hook(const void *x)
1292 {
1293 kmemleak_free(x);
1294 }
1295
1296 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1297 { return 0; }
1298
1299 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1300 void *object)
1301 {
1302 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1303 flags & gfp_allowed_mask);
1304 }
1305
1306 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1307 {
1308 kmemleak_free_recursive(x, s->flags);
1309 }
1310
1311 #endif /* CONFIG_SLUB_DEBUG */
1312
1313 /*
1314 * Slab allocation and freeing
1315 */
1316 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1317 struct kmem_cache_order_objects oo)
1318 {
1319 int order = oo_order(oo);
1320
1321 flags |= __GFP_NOTRACK;
1322
1323 if (node == NUMA_NO_NODE)
1324 return alloc_pages(flags, order);
1325 else
1326 return alloc_pages_exact_node(node, flags, order);
1327 }
1328
1329 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1330 {
1331 struct page *page;
1332 struct kmem_cache_order_objects oo = s->oo;
1333 gfp_t alloc_gfp;
1334
1335 flags &= gfp_allowed_mask;
1336
1337 if (flags & __GFP_WAIT)
1338 local_irq_enable();
1339
1340 flags |= s->allocflags;
1341
1342 /*
1343 * Let the initial higher-order allocation fail under memory pressure
1344 * so we fall-back to the minimum order allocation.
1345 */
1346 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1347
1348 page = alloc_slab_page(alloc_gfp, node, oo);
1349 if (unlikely(!page)) {
1350 oo = s->min;
1351 /*
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1354 */
1355 page = alloc_slab_page(flags, node, oo);
1356
1357 if (page)
1358 stat(s, ORDER_FALLBACK);
1359 }
1360
1361 if (kmemcheck_enabled && page
1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1363 int pages = 1 << oo_order(oo);
1364
1365 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1366
1367 /*
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1370 */
1371 if (s->ctor)
1372 kmemcheck_mark_uninitialized_pages(page, pages);
1373 else
1374 kmemcheck_mark_unallocated_pages(page, pages);
1375 }
1376
1377 if (flags & __GFP_WAIT)
1378 local_irq_disable();
1379 if (!page)
1380 return NULL;
1381
1382 page->objects = oo_objects(oo);
1383 mod_zone_page_state(page_zone(page),
1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1386 1 << oo_order(oo));
1387
1388 return page;
1389 }
1390
1391 static void setup_object(struct kmem_cache *s, struct page *page,
1392 void *object)
1393 {
1394 setup_object_debug(s, page, object);
1395 if (unlikely(s->ctor))
1396 s->ctor(object);
1397 }
1398
1399 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400 {
1401 struct page *page;
1402 void *start;
1403 void *last;
1404 void *p;
1405 int order;
1406
1407 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1408
1409 page = allocate_slab(s,
1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1411 if (!page)
1412 goto out;
1413
1414 order = compound_order(page);
1415 inc_slabs_node(s, page_to_nid(page), page->objects);
1416 memcg_bind_pages(s, order);
1417 page->slab_cache = s;
1418 __SetPageSlab(page);
1419 if (page->pfmemalloc)
1420 SetPageSlabPfmemalloc(page);
1421
1422 start = page_address(page);
1423
1424 if (unlikely(s->flags & SLAB_POISON))
1425 memset(start, POISON_INUSE, PAGE_SIZE << order);
1426
1427 last = start;
1428 for_each_object(p, s, start, page->objects) {
1429 setup_object(s, page, last);
1430 set_freepointer(s, last, p);
1431 last = p;
1432 }
1433 setup_object(s, page, last);
1434 set_freepointer(s, last, NULL);
1435
1436 page->freelist = start;
1437 page->inuse = page->objects;
1438 page->frozen = 1;
1439 out:
1440 return page;
1441 }
1442
1443 static void __free_slab(struct kmem_cache *s, struct page *page)
1444 {
1445 int order = compound_order(page);
1446 int pages = 1 << order;
1447
1448 if (kmem_cache_debug(s)) {
1449 void *p;
1450
1451 slab_pad_check(s, page);
1452 for_each_object(p, s, page_address(page),
1453 page->objects)
1454 check_object(s, page, p, SLUB_RED_INACTIVE);
1455 }
1456
1457 kmemcheck_free_shadow(page, compound_order(page));
1458
1459 mod_zone_page_state(page_zone(page),
1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1462 -pages);
1463
1464 __ClearPageSlabPfmemalloc(page);
1465 __ClearPageSlab(page);
1466
1467 memcg_release_pages(s, order);
1468 page_mapcount_reset(page);
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += pages;
1471 __free_memcg_kmem_pages(page, order);
1472 }
1473
1474 #define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476
1477 static void rcu_free_slab(struct rcu_head *h)
1478 {
1479 struct page *page;
1480
1481 if (need_reserve_slab_rcu)
1482 page = virt_to_head_page(h);
1483 else
1484 page = container_of((struct list_head *)h, struct page, lru);
1485
1486 __free_slab(page->slab_cache, page);
1487 }
1488
1489 static void free_slab(struct kmem_cache *s, struct page *page)
1490 {
1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1492 struct rcu_head *head;
1493
1494 if (need_reserve_slab_rcu) {
1495 int order = compound_order(page);
1496 int offset = (PAGE_SIZE << order) - s->reserved;
1497
1498 VM_BUG_ON(s->reserved != sizeof(*head));
1499 head = page_address(page) + offset;
1500 } else {
1501 /*
1502 * RCU free overloads the RCU head over the LRU
1503 */
1504 head = (void *)&page->lru;
1505 }
1506
1507 call_rcu(head, rcu_free_slab);
1508 } else
1509 __free_slab(s, page);
1510 }
1511
1512 static void discard_slab(struct kmem_cache *s, struct page *page)
1513 {
1514 dec_slabs_node(s, page_to_nid(page), page->objects);
1515 free_slab(s, page);
1516 }
1517
1518 /*
1519 * Management of partially allocated slabs.
1520 */
1521 static inline void
1522 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1523 {
1524 n->nr_partial++;
1525 if (tail == DEACTIVATE_TO_TAIL)
1526 list_add_tail(&page->lru, &n->partial);
1527 else
1528 list_add(&page->lru, &n->partial);
1529 }
1530
1531 static inline void add_partial(struct kmem_cache_node *n,
1532 struct page *page, int tail)
1533 {
1534 lockdep_assert_held(&n->list_lock);
1535 __add_partial(n, page, tail);
1536 }
1537
1538 static inline void
1539 __remove_partial(struct kmem_cache_node *n, struct page *page)
1540 {
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543 }
1544
1545 static inline void remove_partial(struct kmem_cache_node *n,
1546 struct page *page)
1547 {
1548 lockdep_assert_held(&n->list_lock);
1549 __remove_partial(n, page);
1550 }
1551
1552 /*
1553 * Remove slab from the partial list, freeze it and
1554 * return the pointer to the freelist.
1555 *
1556 * Returns a list of objects or NULL if it fails.
1557 */
1558 static inline void *acquire_slab(struct kmem_cache *s,
1559 struct kmem_cache_node *n, struct page *page,
1560 int mode, int *objects)
1561 {
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
1566 lockdep_assert_held(&n->list_lock);
1567
1568 /*
1569 * Zap the freelist and set the frozen bit.
1570 * The old freelist is the list of objects for the
1571 * per cpu allocation list.
1572 */
1573 freelist = page->freelist;
1574 counters = page->counters;
1575 new.counters = counters;
1576 *objects = new.objects - new.inuse;
1577 if (mode) {
1578 new.inuse = page->objects;
1579 new.freelist = NULL;
1580 } else {
1581 new.freelist = freelist;
1582 }
1583
1584 VM_BUG_ON(new.frozen);
1585 new.frozen = 1;
1586
1587 if (!__cmpxchg_double_slab(s, page,
1588 freelist, counters,
1589 new.freelist, new.counters,
1590 "acquire_slab"))
1591 return NULL;
1592
1593 remove_partial(n, page);
1594 WARN_ON(!freelist);
1595 return freelist;
1596 }
1597
1598 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1600
1601 /*
1602 * Try to allocate a partial slab from a specific node.
1603 */
1604 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1605 struct kmem_cache_cpu *c, gfp_t flags)
1606 {
1607 struct page *page, *page2;
1608 void *object = NULL;
1609 int available = 0;
1610 int objects;
1611
1612 /*
1613 * Racy check. If we mistakenly see no partial slabs then we
1614 * just allocate an empty slab. If we mistakenly try to get a
1615 * partial slab and there is none available then get_partials()
1616 * will return NULL.
1617 */
1618 if (!n || !n->nr_partial)
1619 return NULL;
1620
1621 spin_lock(&n->list_lock);
1622 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1623 void *t;
1624
1625 if (!pfmemalloc_match(page, flags))
1626 continue;
1627
1628 t = acquire_slab(s, n, page, object == NULL, &objects);
1629 if (!t)
1630 break;
1631
1632 available += objects;
1633 if (!object) {
1634 c->page = page;
1635 stat(s, ALLOC_FROM_PARTIAL);
1636 object = t;
1637 } else {
1638 put_cpu_partial(s, page, 0);
1639 stat(s, CPU_PARTIAL_NODE);
1640 }
1641 if (!kmem_cache_has_cpu_partial(s)
1642 || available > s->cpu_partial / 2)
1643 break;
1644
1645 }
1646 spin_unlock(&n->list_lock);
1647 return object;
1648 }
1649
1650 /*
1651 * Get a page from somewhere. Search in increasing NUMA distances.
1652 */
1653 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1654 struct kmem_cache_cpu *c)
1655 {
1656 #ifdef CONFIG_NUMA
1657 struct zonelist *zonelist;
1658 struct zoneref *z;
1659 struct zone *zone;
1660 enum zone_type high_zoneidx = gfp_zone(flags);
1661 void *object;
1662 unsigned int cpuset_mems_cookie;
1663
1664 /*
1665 * The defrag ratio allows a configuration of the tradeoffs between
1666 * inter node defragmentation and node local allocations. A lower
1667 * defrag_ratio increases the tendency to do local allocations
1668 * instead of attempting to obtain partial slabs from other nodes.
1669 *
1670 * If the defrag_ratio is set to 0 then kmalloc() always
1671 * returns node local objects. If the ratio is higher then kmalloc()
1672 * may return off node objects because partial slabs are obtained
1673 * from other nodes and filled up.
1674 *
1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1676 * defrag_ratio = 1000) then every (well almost) allocation will
1677 * first attempt to defrag slab caches on other nodes. This means
1678 * scanning over all nodes to look for partial slabs which may be
1679 * expensive if we do it every time we are trying to find a slab
1680 * with available objects.
1681 */
1682 if (!s->remote_node_defrag_ratio ||
1683 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1684 return NULL;
1685
1686 do {
1687 cpuset_mems_cookie = get_mems_allowed();
1688 zonelist = node_zonelist(slab_node(), flags);
1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1690 struct kmem_cache_node *n;
1691
1692 n = get_node(s, zone_to_nid(zone));
1693
1694 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1695 n->nr_partial > s->min_partial) {
1696 object = get_partial_node(s, n, c, flags);
1697 if (object) {
1698 /*
1699 * Return the object even if
1700 * put_mems_allowed indicated that
1701 * the cpuset mems_allowed was
1702 * updated in parallel. It's a
1703 * harmless race between the alloc
1704 * and the cpuset update.
1705 */
1706 put_mems_allowed(cpuset_mems_cookie);
1707 return object;
1708 }
1709 }
1710 }
1711 } while (!put_mems_allowed(cpuset_mems_cookie));
1712 #endif
1713 return NULL;
1714 }
1715
1716 /*
1717 * Get a partial page, lock it and return it.
1718 */
1719 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720 struct kmem_cache_cpu *c)
1721 {
1722 void *object;
1723 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1724
1725 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726 if (object || node != NUMA_NO_NODE)
1727 return object;
1728
1729 return get_any_partial(s, flags, c);
1730 }
1731
1732 #ifdef CONFIG_PREEMPT
1733 /*
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1737 */
1738 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1739 #else
1740 /*
1741 * No preemption supported therefore also no need to check for
1742 * different cpus.
1743 */
1744 #define TID_STEP 1
1745 #endif
1746
1747 static inline unsigned long next_tid(unsigned long tid)
1748 {
1749 return tid + TID_STEP;
1750 }
1751
1752 static inline unsigned int tid_to_cpu(unsigned long tid)
1753 {
1754 return tid % TID_STEP;
1755 }
1756
1757 static inline unsigned long tid_to_event(unsigned long tid)
1758 {
1759 return tid / TID_STEP;
1760 }
1761
1762 static inline unsigned int init_tid(int cpu)
1763 {
1764 return cpu;
1765 }
1766
1767 static inline void note_cmpxchg_failure(const char *n,
1768 const struct kmem_cache *s, unsigned long tid)
1769 {
1770 #ifdef SLUB_DEBUG_CMPXCHG
1771 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772
1773 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774
1775 #ifdef CONFIG_PREEMPT
1776 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777 printk("due to cpu change %d -> %d\n",
1778 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779 else
1780 #endif
1781 if (tid_to_event(tid) != tid_to_event(actual_tid))
1782 printk("due to cpu running other code. Event %ld->%ld\n",
1783 tid_to_event(tid), tid_to_event(actual_tid));
1784 else
1785 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 actual_tid, tid, next_tid(tid));
1787 #endif
1788 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789 }
1790
1791 static void init_kmem_cache_cpus(struct kmem_cache *s)
1792 {
1793 int cpu;
1794
1795 for_each_possible_cpu(cpu)
1796 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1797 }
1798
1799 /*
1800 * Remove the cpu slab
1801 */
1802 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803 void *freelist)
1804 {
1805 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1806 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807 int lock = 0;
1808 enum slab_modes l = M_NONE, m = M_NONE;
1809 void *nextfree;
1810 int tail = DEACTIVATE_TO_HEAD;
1811 struct page new;
1812 struct page old;
1813
1814 if (page->freelist) {
1815 stat(s, DEACTIVATE_REMOTE_FREES);
1816 tail = DEACTIVATE_TO_TAIL;
1817 }
1818
1819 /*
1820 * Stage one: Free all available per cpu objects back
1821 * to the page freelist while it is still frozen. Leave the
1822 * last one.
1823 *
1824 * There is no need to take the list->lock because the page
1825 * is still frozen.
1826 */
1827 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828 void *prior;
1829 unsigned long counters;
1830
1831 do {
1832 prior = page->freelist;
1833 counters = page->counters;
1834 set_freepointer(s, freelist, prior);
1835 new.counters = counters;
1836 new.inuse--;
1837 VM_BUG_ON(!new.frozen);
1838
1839 } while (!__cmpxchg_double_slab(s, page,
1840 prior, counters,
1841 freelist, new.counters,
1842 "drain percpu freelist"));
1843
1844 freelist = nextfree;
1845 }
1846
1847 /*
1848 * Stage two: Ensure that the page is unfrozen while the
1849 * list presence reflects the actual number of objects
1850 * during unfreeze.
1851 *
1852 * We setup the list membership and then perform a cmpxchg
1853 * with the count. If there is a mismatch then the page
1854 * is not unfrozen but the page is on the wrong list.
1855 *
1856 * Then we restart the process which may have to remove
1857 * the page from the list that we just put it on again
1858 * because the number of objects in the slab may have
1859 * changed.
1860 */
1861 redo:
1862
1863 old.freelist = page->freelist;
1864 old.counters = page->counters;
1865 VM_BUG_ON(!old.frozen);
1866
1867 /* Determine target state of the slab */
1868 new.counters = old.counters;
1869 if (freelist) {
1870 new.inuse--;
1871 set_freepointer(s, freelist, old.freelist);
1872 new.freelist = freelist;
1873 } else
1874 new.freelist = old.freelist;
1875
1876 new.frozen = 0;
1877
1878 if (!new.inuse && n->nr_partial > s->min_partial)
1879 m = M_FREE;
1880 else if (new.freelist) {
1881 m = M_PARTIAL;
1882 if (!lock) {
1883 lock = 1;
1884 /*
1885 * Taking the spinlock removes the possiblity
1886 * that acquire_slab() will see a slab page that
1887 * is frozen
1888 */
1889 spin_lock(&n->list_lock);
1890 }
1891 } else {
1892 m = M_FULL;
1893 if (kmem_cache_debug(s) && !lock) {
1894 lock = 1;
1895 /*
1896 * This also ensures that the scanning of full
1897 * slabs from diagnostic functions will not see
1898 * any frozen slabs.
1899 */
1900 spin_lock(&n->list_lock);
1901 }
1902 }
1903
1904 if (l != m) {
1905
1906 if (l == M_PARTIAL)
1907
1908 remove_partial(n, page);
1909
1910 else if (l == M_FULL)
1911
1912 remove_full(s, n, page);
1913
1914 if (m == M_PARTIAL) {
1915
1916 add_partial(n, page, tail);
1917 stat(s, tail);
1918
1919 } else if (m == M_FULL) {
1920
1921 stat(s, DEACTIVATE_FULL);
1922 add_full(s, n, page);
1923
1924 }
1925 }
1926
1927 l = m;
1928 if (!__cmpxchg_double_slab(s, page,
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"))
1932 goto redo;
1933
1934 if (lock)
1935 spin_unlock(&n->list_lock);
1936
1937 if (m == M_FREE) {
1938 stat(s, DEACTIVATE_EMPTY);
1939 discard_slab(s, page);
1940 stat(s, FREE_SLAB);
1941 }
1942 }
1943
1944 /*
1945 * Unfreeze all the cpu partial slabs.
1946 *
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
1950 */
1951 static void unfreeze_partials(struct kmem_cache *s,
1952 struct kmem_cache_cpu *c)
1953 {
1954 #ifdef CONFIG_SLUB_CPU_PARTIAL
1955 struct kmem_cache_node *n = NULL, *n2 = NULL;
1956 struct page *page, *discard_page = NULL;
1957
1958 while ((page = c->partial)) {
1959 struct page new;
1960 struct page old;
1961
1962 c->partial = page->next;
1963
1964 n2 = get_node(s, page_to_nid(page));
1965 if (n != n2) {
1966 if (n)
1967 spin_unlock(&n->list_lock);
1968
1969 n = n2;
1970 spin_lock(&n->list_lock);
1971 }
1972
1973 do {
1974
1975 old.freelist = page->freelist;
1976 old.counters = page->counters;
1977 VM_BUG_ON(!old.frozen);
1978
1979 new.counters = old.counters;
1980 new.freelist = old.freelist;
1981
1982 new.frozen = 0;
1983
1984 } while (!__cmpxchg_double_slab(s, page,
1985 old.freelist, old.counters,
1986 new.freelist, new.counters,
1987 "unfreezing slab"));
1988
1989 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990 page->next = discard_page;
1991 discard_page = page;
1992 } else {
1993 add_partial(n, page, DEACTIVATE_TO_TAIL);
1994 stat(s, FREE_ADD_PARTIAL);
1995 }
1996 }
1997
1998 if (n)
1999 spin_unlock(&n->list_lock);
2000
2001 while (discard_page) {
2002 page = discard_page;
2003 discard_page = discard_page->next;
2004
2005 stat(s, DEACTIVATE_EMPTY);
2006 discard_slab(s, page);
2007 stat(s, FREE_SLAB);
2008 }
2009 #endif
2010 }
2011
2012 /*
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
2017 *
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2020 */
2021 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022 {
2023 #ifdef CONFIG_SLUB_CPU_PARTIAL
2024 struct page *oldpage;
2025 int pages;
2026 int pobjects;
2027
2028 do {
2029 pages = 0;
2030 pobjects = 0;
2031 oldpage = this_cpu_read(s->cpu_slab->partial);
2032
2033 if (oldpage) {
2034 pobjects = oldpage->pobjects;
2035 pages = oldpage->pages;
2036 if (drain && pobjects > s->cpu_partial) {
2037 unsigned long flags;
2038 /*
2039 * partial array is full. Move the existing
2040 * set to the per node partial list.
2041 */
2042 local_irq_save(flags);
2043 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044 local_irq_restore(flags);
2045 oldpage = NULL;
2046 pobjects = 0;
2047 pages = 0;
2048 stat(s, CPU_PARTIAL_DRAIN);
2049 }
2050 }
2051
2052 pages++;
2053 pobjects += page->objects - page->inuse;
2054
2055 page->pages = pages;
2056 page->pobjects = pobjects;
2057 page->next = oldpage;
2058
2059 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060 != oldpage);
2061 #endif
2062 }
2063
2064 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2065 {
2066 stat(s, CPUSLAB_FLUSH);
2067 deactivate_slab(s, c->page, c->freelist);
2068
2069 c->tid = next_tid(c->tid);
2070 c->page = NULL;
2071 c->freelist = NULL;
2072 }
2073
2074 /*
2075 * Flush cpu slab.
2076 *
2077 * Called from IPI handler with interrupts disabled.
2078 */
2079 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2080 {
2081 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2082
2083 if (likely(c)) {
2084 if (c->page)
2085 flush_slab(s, c);
2086
2087 unfreeze_partials(s, c);
2088 }
2089 }
2090
2091 static void flush_cpu_slab(void *d)
2092 {
2093 struct kmem_cache *s = d;
2094
2095 __flush_cpu_slab(s, smp_processor_id());
2096 }
2097
2098 static bool has_cpu_slab(int cpu, void *info)
2099 {
2100 struct kmem_cache *s = info;
2101 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2102
2103 return c->page || c->partial;
2104 }
2105
2106 static void flush_all(struct kmem_cache *s)
2107 {
2108 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2109 }
2110
2111 /*
2112 * Check if the objects in a per cpu structure fit numa
2113 * locality expectations.
2114 */
2115 static inline int node_match(struct page *page, int node)
2116 {
2117 #ifdef CONFIG_NUMA
2118 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119 return 0;
2120 #endif
2121 return 1;
2122 }
2123
2124 static int count_free(struct page *page)
2125 {
2126 return page->objects - page->inuse;
2127 }
2128
2129 static unsigned long count_partial(struct kmem_cache_node *n,
2130 int (*get_count)(struct page *))
2131 {
2132 unsigned long flags;
2133 unsigned long x = 0;
2134 struct page *page;
2135
2136 spin_lock_irqsave(&n->list_lock, flags);
2137 list_for_each_entry(page, &n->partial, lru)
2138 x += get_count(page);
2139 spin_unlock_irqrestore(&n->list_lock, flags);
2140 return x;
2141 }
2142
2143 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144 {
2145 #ifdef CONFIG_SLUB_DEBUG
2146 return atomic_long_read(&n->total_objects);
2147 #else
2148 return 0;
2149 #endif
2150 }
2151
2152 static noinline void
2153 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154 {
2155 int node;
2156
2157 printk(KERN_WARNING
2158 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159 nid, gfpflags);
2160 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2161 "default order: %d, min order: %d\n", s->name, s->object_size,
2162 s->size, oo_order(s->oo), oo_order(s->min));
2163
2164 if (oo_order(s->min) > get_order(s->object_size))
2165 printk(KERN_WARNING " %s debugging increased min order, use "
2166 "slub_debug=O to disable.\n", s->name);
2167
2168 for_each_online_node(node) {
2169 struct kmem_cache_node *n = get_node(s, node);
2170 unsigned long nr_slabs;
2171 unsigned long nr_objs;
2172 unsigned long nr_free;
2173
2174 if (!n)
2175 continue;
2176
2177 nr_free = count_partial(n, count_free);
2178 nr_slabs = node_nr_slabs(n);
2179 nr_objs = node_nr_objs(n);
2180
2181 printk(KERN_WARNING
2182 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183 node, nr_slabs, nr_objs, nr_free);
2184 }
2185 }
2186
2187 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188 int node, struct kmem_cache_cpu **pc)
2189 {
2190 void *freelist;
2191 struct kmem_cache_cpu *c = *pc;
2192 struct page *page;
2193
2194 freelist = get_partial(s, flags, node, c);
2195
2196 if (freelist)
2197 return freelist;
2198
2199 page = new_slab(s, flags, node);
2200 if (page) {
2201 c = __this_cpu_ptr(s->cpu_slab);
2202 if (c->page)
2203 flush_slab(s, c);
2204
2205 /*
2206 * No other reference to the page yet so we can
2207 * muck around with it freely without cmpxchg
2208 */
2209 freelist = page->freelist;
2210 page->freelist = NULL;
2211
2212 stat(s, ALLOC_SLAB);
2213 c->page = page;
2214 *pc = c;
2215 } else
2216 freelist = NULL;
2217
2218 return freelist;
2219 }
2220
2221 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222 {
2223 if (unlikely(PageSlabPfmemalloc(page)))
2224 return gfp_pfmemalloc_allowed(gfpflags);
2225
2226 return true;
2227 }
2228
2229 /*
2230 * Check the page->freelist of a page and either transfer the freelist to the
2231 * per cpu freelist or deactivate the page.
2232 *
2233 * The page is still frozen if the return value is not NULL.
2234 *
2235 * If this function returns NULL then the page has been unfrozen.
2236 *
2237 * This function must be called with interrupt disabled.
2238 */
2239 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240 {
2241 struct page new;
2242 unsigned long counters;
2243 void *freelist;
2244
2245 do {
2246 freelist = page->freelist;
2247 counters = page->counters;
2248
2249 new.counters = counters;
2250 VM_BUG_ON(!new.frozen);
2251
2252 new.inuse = page->objects;
2253 new.frozen = freelist != NULL;
2254
2255 } while (!__cmpxchg_double_slab(s, page,
2256 freelist, counters,
2257 NULL, new.counters,
2258 "get_freelist"));
2259
2260 return freelist;
2261 }
2262
2263 /*
2264 * Slow path. The lockless freelist is empty or we need to perform
2265 * debugging duties.
2266 *
2267 * Processing is still very fast if new objects have been freed to the
2268 * regular freelist. In that case we simply take over the regular freelist
2269 * as the lockless freelist and zap the regular freelist.
2270 *
2271 * If that is not working then we fall back to the partial lists. We take the
2272 * first element of the freelist as the object to allocate now and move the
2273 * rest of the freelist to the lockless freelist.
2274 *
2275 * And if we were unable to get a new slab from the partial slab lists then
2276 * we need to allocate a new slab. This is the slowest path since it involves
2277 * a call to the page allocator and the setup of a new slab.
2278 */
2279 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280 unsigned long addr, struct kmem_cache_cpu *c)
2281 {
2282 void *freelist;
2283 struct page *page;
2284 unsigned long flags;
2285
2286 local_irq_save(flags);
2287 #ifdef CONFIG_PREEMPT
2288 /*
2289 * We may have been preempted and rescheduled on a different
2290 * cpu before disabling interrupts. Need to reload cpu area
2291 * pointer.
2292 */
2293 c = this_cpu_ptr(s->cpu_slab);
2294 #endif
2295
2296 page = c->page;
2297 if (!page)
2298 goto new_slab;
2299 redo:
2300
2301 if (unlikely(!node_match(page, node))) {
2302 stat(s, ALLOC_NODE_MISMATCH);
2303 deactivate_slab(s, page, c->freelist);
2304 c->page = NULL;
2305 c->freelist = NULL;
2306 goto new_slab;
2307 }
2308
2309 /*
2310 * By rights, we should be searching for a slab page that was
2311 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 * information when the page leaves the per-cpu allocator
2313 */
2314 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315 deactivate_slab(s, page, c->freelist);
2316 c->page = NULL;
2317 c->freelist = NULL;
2318 goto new_slab;
2319 }
2320
2321 /* must check again c->freelist in case of cpu migration or IRQ */
2322 freelist = c->freelist;
2323 if (freelist)
2324 goto load_freelist;
2325
2326 stat(s, ALLOC_SLOWPATH);
2327
2328 freelist = get_freelist(s, page);
2329
2330 if (!freelist) {
2331 c->page = NULL;
2332 stat(s, DEACTIVATE_BYPASS);
2333 goto new_slab;
2334 }
2335
2336 stat(s, ALLOC_REFILL);
2337
2338 load_freelist:
2339 /*
2340 * freelist is pointing to the list of objects to be used.
2341 * page is pointing to the page from which the objects are obtained.
2342 * That page must be frozen for per cpu allocations to work.
2343 */
2344 VM_BUG_ON(!c->page->frozen);
2345 c->freelist = get_freepointer(s, freelist);
2346 c->tid = next_tid(c->tid);
2347 local_irq_restore(flags);
2348 return freelist;
2349
2350 new_slab:
2351
2352 if (c->partial) {
2353 page = c->page = c->partial;
2354 c->partial = page->next;
2355 stat(s, CPU_PARTIAL_ALLOC);
2356 c->freelist = NULL;
2357 goto redo;
2358 }
2359
2360 freelist = new_slab_objects(s, gfpflags, node, &c);
2361
2362 if (unlikely(!freelist)) {
2363 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364 slab_out_of_memory(s, gfpflags, node);
2365
2366 local_irq_restore(flags);
2367 return NULL;
2368 }
2369
2370 page = c->page;
2371 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2372 goto load_freelist;
2373
2374 /* Only entered in the debug case */
2375 if (kmem_cache_debug(s) &&
2376 !alloc_debug_processing(s, page, freelist, addr))
2377 goto new_slab; /* Slab failed checks. Next slab needed */
2378
2379 deactivate_slab(s, page, get_freepointer(s, freelist));
2380 c->page = NULL;
2381 c->freelist = NULL;
2382 local_irq_restore(flags);
2383 return freelist;
2384 }
2385
2386 /*
2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388 * have the fastpath folded into their functions. So no function call
2389 * overhead for requests that can be satisfied on the fastpath.
2390 *
2391 * The fastpath works by first checking if the lockless freelist can be used.
2392 * If not then __slab_alloc is called for slow processing.
2393 *
2394 * Otherwise we can simply pick the next object from the lockless free list.
2395 */
2396 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397 gfp_t gfpflags, int node, unsigned long addr)
2398 {
2399 void **object;
2400 struct kmem_cache_cpu *c;
2401 struct page *page;
2402 unsigned long tid;
2403
2404 if (slab_pre_alloc_hook(s, gfpflags))
2405 return NULL;
2406
2407 s = memcg_kmem_get_cache(s, gfpflags);
2408 redo:
2409 /*
2410 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411 * enabled. We may switch back and forth between cpus while
2412 * reading from one cpu area. That does not matter as long
2413 * as we end up on the original cpu again when doing the cmpxchg.
2414 *
2415 * Preemption is disabled for the retrieval of the tid because that
2416 * must occur from the current processor. We cannot allow rescheduling
2417 * on a different processor between the determination of the pointer
2418 * and the retrieval of the tid.
2419 */
2420 preempt_disable();
2421 c = __this_cpu_ptr(s->cpu_slab);
2422
2423 /*
2424 * The transaction ids are globally unique per cpu and per operation on
2425 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426 * occurs on the right processor and that there was no operation on the
2427 * linked list in between.
2428 */
2429 tid = c->tid;
2430 preempt_enable();
2431
2432 object = c->freelist;
2433 page = c->page;
2434 if (unlikely(!object || !node_match(page, node)))
2435 object = __slab_alloc(s, gfpflags, node, addr, c);
2436
2437 else {
2438 void *next_object = get_freepointer_safe(s, object);
2439
2440 /*
2441 * The cmpxchg will only match if there was no additional
2442 * operation and if we are on the right processor.
2443 *
2444 * The cmpxchg does the following atomically (without lock
2445 * semantics!)
2446 * 1. Relocate first pointer to the current per cpu area.
2447 * 2. Verify that tid and freelist have not been changed
2448 * 3. If they were not changed replace tid and freelist
2449 *
2450 * Since this is without lock semantics the protection is only
2451 * against code executing on this cpu *not* from access by
2452 * other cpus.
2453 */
2454 if (unlikely(!this_cpu_cmpxchg_double(
2455 s->cpu_slab->freelist, s->cpu_slab->tid,
2456 object, tid,
2457 next_object, next_tid(tid)))) {
2458
2459 note_cmpxchg_failure("slab_alloc", s, tid);
2460 goto redo;
2461 }
2462 prefetch_freepointer(s, next_object);
2463 stat(s, ALLOC_FASTPATH);
2464 }
2465
2466 if (unlikely(gfpflags & __GFP_ZERO) && object)
2467 memset(object, 0, s->object_size);
2468
2469 slab_post_alloc_hook(s, gfpflags, object);
2470
2471 return object;
2472 }
2473
2474 static __always_inline void *slab_alloc(struct kmem_cache *s,
2475 gfp_t gfpflags, unsigned long addr)
2476 {
2477 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2478 }
2479
2480 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2481 {
2482 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2483
2484 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485 s->size, gfpflags);
2486
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(kmem_cache_alloc);
2490
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493 {
2494 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496 return ret;
2497 }
2498 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2499 #endif
2500
2501 #ifdef CONFIG_NUMA
2502 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503 {
2504 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2505
2506 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507 s->object_size, s->size, gfpflags, node);
2508
2509 return ret;
2510 }
2511 EXPORT_SYMBOL(kmem_cache_alloc_node);
2512
2513 #ifdef CONFIG_TRACING
2514 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2515 gfp_t gfpflags,
2516 int node, size_t size)
2517 {
2518 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2519
2520 trace_kmalloc_node(_RET_IP_, ret,
2521 size, s->size, gfpflags, node);
2522 return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2525 #endif
2526 #endif
2527
2528 /*
2529 * Slow patch handling. This may still be called frequently since objects
2530 * have a longer lifetime than the cpu slabs in most processing loads.
2531 *
2532 * So we still attempt to reduce cache line usage. Just take the slab
2533 * lock and free the item. If there is no additional partial page
2534 * handling required then we can return immediately.
2535 */
2536 static void __slab_free(struct kmem_cache *s, struct page *page,
2537 void *x, unsigned long addr)
2538 {
2539 void *prior;
2540 void **object = (void *)x;
2541 int was_frozen;
2542 struct page new;
2543 unsigned long counters;
2544 struct kmem_cache_node *n = NULL;
2545 unsigned long uninitialized_var(flags);
2546
2547 stat(s, FREE_SLOWPATH);
2548
2549 if (kmem_cache_debug(s) &&
2550 !(n = free_debug_processing(s, page, x, addr, &flags)))
2551 return;
2552
2553 do {
2554 if (unlikely(n)) {
2555 spin_unlock_irqrestore(&n->list_lock, flags);
2556 n = NULL;
2557 }
2558 prior = page->freelist;
2559 counters = page->counters;
2560 set_freepointer(s, object, prior);
2561 new.counters = counters;
2562 was_frozen = new.frozen;
2563 new.inuse--;
2564 if ((!new.inuse || !prior) && !was_frozen) {
2565
2566 if (kmem_cache_has_cpu_partial(s) && !prior) {
2567
2568 /*
2569 * Slab was on no list before and will be
2570 * partially empty
2571 * We can defer the list move and instead
2572 * freeze it.
2573 */
2574 new.frozen = 1;
2575
2576 } else { /* Needs to be taken off a list */
2577
2578 n = get_node(s, page_to_nid(page));
2579 /*
2580 * Speculatively acquire the list_lock.
2581 * If the cmpxchg does not succeed then we may
2582 * drop the list_lock without any processing.
2583 *
2584 * Otherwise the list_lock will synchronize with
2585 * other processors updating the list of slabs.
2586 */
2587 spin_lock_irqsave(&n->list_lock, flags);
2588
2589 }
2590 }
2591
2592 } while (!cmpxchg_double_slab(s, page,
2593 prior, counters,
2594 object, new.counters,
2595 "__slab_free"));
2596
2597 if (likely(!n)) {
2598
2599 /*
2600 * If we just froze the page then put it onto the
2601 * per cpu partial list.
2602 */
2603 if (new.frozen && !was_frozen) {
2604 put_cpu_partial(s, page, 1);
2605 stat(s, CPU_PARTIAL_FREE);
2606 }
2607 /*
2608 * The list lock was not taken therefore no list
2609 * activity can be necessary.
2610 */
2611 if (was_frozen)
2612 stat(s, FREE_FROZEN);
2613 return;
2614 }
2615
2616 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2617 goto slab_empty;
2618
2619 /*
2620 * Objects left in the slab. If it was not on the partial list before
2621 * then add it.
2622 */
2623 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624 if (kmem_cache_debug(s))
2625 remove_full(s, n, page);
2626 add_partial(n, page, DEACTIVATE_TO_TAIL);
2627 stat(s, FREE_ADD_PARTIAL);
2628 }
2629 spin_unlock_irqrestore(&n->list_lock, flags);
2630 return;
2631
2632 slab_empty:
2633 if (prior) {
2634 /*
2635 * Slab on the partial list.
2636 */
2637 remove_partial(n, page);
2638 stat(s, FREE_REMOVE_PARTIAL);
2639 } else {
2640 /* Slab must be on the full list */
2641 remove_full(s, n, page);
2642 }
2643
2644 spin_unlock_irqrestore(&n->list_lock, flags);
2645 stat(s, FREE_SLAB);
2646 discard_slab(s, page);
2647 }
2648
2649 /*
2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651 * can perform fastpath freeing without additional function calls.
2652 *
2653 * The fastpath is only possible if we are freeing to the current cpu slab
2654 * of this processor. This typically the case if we have just allocated
2655 * the item before.
2656 *
2657 * If fastpath is not possible then fall back to __slab_free where we deal
2658 * with all sorts of special processing.
2659 */
2660 static __always_inline void slab_free(struct kmem_cache *s,
2661 struct page *page, void *x, unsigned long addr)
2662 {
2663 void **object = (void *)x;
2664 struct kmem_cache_cpu *c;
2665 unsigned long tid;
2666
2667 slab_free_hook(s, x);
2668
2669 redo:
2670 /*
2671 * Determine the currently cpus per cpu slab.
2672 * The cpu may change afterward. However that does not matter since
2673 * data is retrieved via this pointer. If we are on the same cpu
2674 * during the cmpxchg then the free will succedd.
2675 */
2676 preempt_disable();
2677 c = __this_cpu_ptr(s->cpu_slab);
2678
2679 tid = c->tid;
2680 preempt_enable();
2681
2682 if (likely(page == c->page)) {
2683 set_freepointer(s, object, c->freelist);
2684
2685 if (unlikely(!this_cpu_cmpxchg_double(
2686 s->cpu_slab->freelist, s->cpu_slab->tid,
2687 c->freelist, tid,
2688 object, next_tid(tid)))) {
2689
2690 note_cmpxchg_failure("slab_free", s, tid);
2691 goto redo;
2692 }
2693 stat(s, FREE_FASTPATH);
2694 } else
2695 __slab_free(s, page, x, addr);
2696
2697 }
2698
2699 void kmem_cache_free(struct kmem_cache *s, void *x)
2700 {
2701 s = cache_from_obj(s, x);
2702 if (!s)
2703 return;
2704 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2705 trace_kmem_cache_free(_RET_IP_, x);
2706 }
2707 EXPORT_SYMBOL(kmem_cache_free);
2708
2709 /*
2710 * Object placement in a slab is made very easy because we always start at
2711 * offset 0. If we tune the size of the object to the alignment then we can
2712 * get the required alignment by putting one properly sized object after
2713 * another.
2714 *
2715 * Notice that the allocation order determines the sizes of the per cpu
2716 * caches. Each processor has always one slab available for allocations.
2717 * Increasing the allocation order reduces the number of times that slabs
2718 * must be moved on and off the partial lists and is therefore a factor in
2719 * locking overhead.
2720 */
2721
2722 /*
2723 * Mininum / Maximum order of slab pages. This influences locking overhead
2724 * and slab fragmentation. A higher order reduces the number of partial slabs
2725 * and increases the number of allocations possible without having to
2726 * take the list_lock.
2727 */
2728 static int slub_min_order;
2729 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730 static int slub_min_objects;
2731
2732 /*
2733 * Merge control. If this is set then no merging of slab caches will occur.
2734 * (Could be removed. This was introduced to pacify the merge skeptics.)
2735 */
2736 static int slub_nomerge;
2737
2738 /*
2739 * Calculate the order of allocation given an slab object size.
2740 *
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
2745 * unused space left. We go to a higher order if more than 1/16th of the slab
2746 * would be wasted.
2747 *
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
2752 *
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
2757 *
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
2762 */
2763 static inline int slab_order(int size, int min_objects,
2764 int max_order, int fract_leftover, int reserved)
2765 {
2766 int order;
2767 int rem;
2768 int min_order = slub_min_order;
2769
2770 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772
2773 for (order = max(min_order,
2774 fls(min_objects * size - 1) - PAGE_SHIFT);
2775 order <= max_order; order++) {
2776
2777 unsigned long slab_size = PAGE_SIZE << order;
2778
2779 if (slab_size < min_objects * size + reserved)
2780 continue;
2781
2782 rem = (slab_size - reserved) % size;
2783
2784 if (rem <= slab_size / fract_leftover)
2785 break;
2786
2787 }
2788
2789 return order;
2790 }
2791
2792 static inline int calculate_order(int size, int reserved)
2793 {
2794 int order;
2795 int min_objects;
2796 int fraction;
2797 int max_objects;
2798
2799 /*
2800 * Attempt to find best configuration for a slab. This
2801 * works by first attempting to generate a layout with
2802 * the best configuration and backing off gradually.
2803 *
2804 * First we reduce the acceptable waste in a slab. Then
2805 * we reduce the minimum objects required in a slab.
2806 */
2807 min_objects = slub_min_objects;
2808 if (!min_objects)
2809 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810 max_objects = order_objects(slub_max_order, size, reserved);
2811 min_objects = min(min_objects, max_objects);
2812
2813 while (min_objects > 1) {
2814 fraction = 16;
2815 while (fraction >= 4) {
2816 order = slab_order(size, min_objects,
2817 slub_max_order, fraction, reserved);
2818 if (order <= slub_max_order)
2819 return order;
2820 fraction /= 2;
2821 }
2822 min_objects--;
2823 }
2824
2825 /*
2826 * We were unable to place multiple objects in a slab. Now
2827 * lets see if we can place a single object there.
2828 */
2829 order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 if (order <= slub_max_order)
2831 return order;
2832
2833 /*
2834 * Doh this slab cannot be placed using slub_max_order.
2835 */
2836 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837 if (order < MAX_ORDER)
2838 return order;
2839 return -ENOSYS;
2840 }
2841
2842 static void
2843 init_kmem_cache_node(struct kmem_cache_node *n)
2844 {
2845 n->nr_partial = 0;
2846 spin_lock_init(&n->list_lock);
2847 INIT_LIST_HEAD(&n->partial);
2848 #ifdef CONFIG_SLUB_DEBUG
2849 atomic_long_set(&n->nr_slabs, 0);
2850 atomic_long_set(&n->total_objects, 0);
2851 INIT_LIST_HEAD(&n->full);
2852 #endif
2853 }
2854
2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856 {
2857 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859
2860 /*
2861 * Must align to double word boundary for the double cmpxchg
2862 * instructions to work; see __pcpu_double_call_return_bool().
2863 */
2864 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865 2 * sizeof(void *));
2866
2867 if (!s->cpu_slab)
2868 return 0;
2869
2870 init_kmem_cache_cpus(s);
2871
2872 return 1;
2873 }
2874
2875 static struct kmem_cache *kmem_cache_node;
2876
2877 /*
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2880 * possible.
2881 *
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884 * memory on a fresh node that has no slab structures yet.
2885 */
2886 static void early_kmem_cache_node_alloc(int node)
2887 {
2888 struct page *page;
2889 struct kmem_cache_node *n;
2890
2891 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892
2893 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894
2895 BUG_ON(!page);
2896 if (page_to_nid(page) != node) {
2897 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898 "node %d\n", node);
2899 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900 "in order to be able to continue\n");
2901 }
2902
2903 n = page->freelist;
2904 BUG_ON(!n);
2905 page->freelist = get_freepointer(kmem_cache_node, n);
2906 page->inuse = 1;
2907 page->frozen = 0;
2908 kmem_cache_node->node[node] = n;
2909 #ifdef CONFIG_SLUB_DEBUG
2910 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911 init_tracking(kmem_cache_node, n);
2912 #endif
2913 init_kmem_cache_node(n);
2914 inc_slabs_node(kmem_cache_node, node, page->objects);
2915
2916 /*
2917 * No locks need to be taken here as it has just been
2918 * initialized and there is no concurrent access.
2919 */
2920 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2921 }
2922
2923 static void free_kmem_cache_nodes(struct kmem_cache *s)
2924 {
2925 int node;
2926
2927 for_each_node_state(node, N_NORMAL_MEMORY) {
2928 struct kmem_cache_node *n = s->node[node];
2929
2930 if (n)
2931 kmem_cache_free(kmem_cache_node, n);
2932
2933 s->node[node] = NULL;
2934 }
2935 }
2936
2937 static int init_kmem_cache_nodes(struct kmem_cache *s)
2938 {
2939 int node;
2940
2941 for_each_node_state(node, N_NORMAL_MEMORY) {
2942 struct kmem_cache_node *n;
2943
2944 if (slab_state == DOWN) {
2945 early_kmem_cache_node_alloc(node);
2946 continue;
2947 }
2948 n = kmem_cache_alloc_node(kmem_cache_node,
2949 GFP_KERNEL, node);
2950
2951 if (!n) {
2952 free_kmem_cache_nodes(s);
2953 return 0;
2954 }
2955
2956 s->node[node] = n;
2957 init_kmem_cache_node(n);
2958 }
2959 return 1;
2960 }
2961
2962 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963 {
2964 if (min < MIN_PARTIAL)
2965 min = MIN_PARTIAL;
2966 else if (min > MAX_PARTIAL)
2967 min = MAX_PARTIAL;
2968 s->min_partial = min;
2969 }
2970
2971 /*
2972 * calculate_sizes() determines the order and the distribution of data within
2973 * a slab object.
2974 */
2975 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2976 {
2977 unsigned long flags = s->flags;
2978 unsigned long size = s->object_size;
2979 int order;
2980
2981 /*
2982 * Round up object size to the next word boundary. We can only
2983 * place the free pointer at word boundaries and this determines
2984 * the possible location of the free pointer.
2985 */
2986 size = ALIGN(size, sizeof(void *));
2987
2988 #ifdef CONFIG_SLUB_DEBUG
2989 /*
2990 * Determine if we can poison the object itself. If the user of
2991 * the slab may touch the object after free or before allocation
2992 * then we should never poison the object itself.
2993 */
2994 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995 !s->ctor)
2996 s->flags |= __OBJECT_POISON;
2997 else
2998 s->flags &= ~__OBJECT_POISON;
2999
3000
3001 /*
3002 * If we are Redzoning then check if there is some space between the
3003 * end of the object and the free pointer. If not then add an
3004 * additional word to have some bytes to store Redzone information.
3005 */
3006 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3007 size += sizeof(void *);
3008 #endif
3009
3010 /*
3011 * With that we have determined the number of bytes in actual use
3012 * by the object. This is the potential offset to the free pointer.
3013 */
3014 s->inuse = size;
3015
3016 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017 s->ctor)) {
3018 /*
3019 * Relocate free pointer after the object if it is not
3020 * permitted to overwrite the first word of the object on
3021 * kmem_cache_free.
3022 *
3023 * This is the case if we do RCU, have a constructor or
3024 * destructor or are poisoning the objects.
3025 */
3026 s->offset = size;
3027 size += sizeof(void *);
3028 }
3029
3030 #ifdef CONFIG_SLUB_DEBUG
3031 if (flags & SLAB_STORE_USER)
3032 /*
3033 * Need to store information about allocs and frees after
3034 * the object.
3035 */
3036 size += 2 * sizeof(struct track);
3037
3038 if (flags & SLAB_RED_ZONE)
3039 /*
3040 * Add some empty padding so that we can catch
3041 * overwrites from earlier objects rather than let
3042 * tracking information or the free pointer be
3043 * corrupted if a user writes before the start
3044 * of the object.
3045 */
3046 size += sizeof(void *);
3047 #endif
3048
3049 /*
3050 * SLUB stores one object immediately after another beginning from
3051 * offset 0. In order to align the objects we have to simply size
3052 * each object to conform to the alignment.
3053 */
3054 size = ALIGN(size, s->align);
3055 s->size = size;
3056 if (forced_order >= 0)
3057 order = forced_order;
3058 else
3059 order = calculate_order(size, s->reserved);
3060
3061 if (order < 0)
3062 return 0;
3063
3064 s->allocflags = 0;
3065 if (order)
3066 s->allocflags |= __GFP_COMP;
3067
3068 if (s->flags & SLAB_CACHE_DMA)
3069 s->allocflags |= GFP_DMA;
3070
3071 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072 s->allocflags |= __GFP_RECLAIMABLE;
3073
3074 /*
3075 * Determine the number of objects per slab
3076 */
3077 s->oo = oo_make(order, size, s->reserved);
3078 s->min = oo_make(get_order(size), size, s->reserved);
3079 if (oo_objects(s->oo) > oo_objects(s->max))
3080 s->max = s->oo;
3081
3082 return !!oo_objects(s->oo);
3083 }
3084
3085 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3086 {
3087 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3088 s->reserved = 0;
3089
3090 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091 s->reserved = sizeof(struct rcu_head);
3092
3093 if (!calculate_sizes(s, -1))
3094 goto error;
3095 if (disable_higher_order_debug) {
3096 /*
3097 * Disable debugging flags that store metadata if the min slab
3098 * order increased.
3099 */
3100 if (get_order(s->size) > get_order(s->object_size)) {
3101 s->flags &= ~DEBUG_METADATA_FLAGS;
3102 s->offset = 0;
3103 if (!calculate_sizes(s, -1))
3104 goto error;
3105 }
3106 }
3107
3108 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111 /* Enable fast mode */
3112 s->flags |= __CMPXCHG_DOUBLE;
3113 #endif
3114
3115 /*
3116 * The larger the object size is, the more pages we want on the partial
3117 * list to avoid pounding the page allocator excessively.
3118 */
3119 set_min_partial(s, ilog2(s->size) / 2);
3120
3121 /*
3122 * cpu_partial determined the maximum number of objects kept in the
3123 * per cpu partial lists of a processor.
3124 *
3125 * Per cpu partial lists mainly contain slabs that just have one
3126 * object freed. If they are used for allocation then they can be
3127 * filled up again with minimal effort. The slab will never hit the
3128 * per node partial lists and therefore no locking will be required.
3129 *
3130 * This setting also determines
3131 *
3132 * A) The number of objects from per cpu partial slabs dumped to the
3133 * per node list when we reach the limit.
3134 * B) The number of objects in cpu partial slabs to extract from the
3135 * per node list when we run out of per cpu objects. We only fetch
3136 * 50% to keep some capacity around for frees.
3137 */
3138 if (!kmem_cache_has_cpu_partial(s))
3139 s->cpu_partial = 0;
3140 else if (s->size >= PAGE_SIZE)
3141 s->cpu_partial = 2;
3142 else if (s->size >= 1024)
3143 s->cpu_partial = 6;
3144 else if (s->size >= 256)
3145 s->cpu_partial = 13;
3146 else
3147 s->cpu_partial = 30;
3148
3149 #ifdef CONFIG_NUMA
3150 s->remote_node_defrag_ratio = 1000;
3151 #endif
3152 if (!init_kmem_cache_nodes(s))
3153 goto error;
3154
3155 if (alloc_kmem_cache_cpus(s))
3156 return 0;
3157
3158 free_kmem_cache_nodes(s);
3159 error:
3160 if (flags & SLAB_PANIC)
3161 panic("Cannot create slab %s size=%lu realsize=%u "
3162 "order=%u offset=%u flags=%lx\n",
3163 s->name, (unsigned long)s->size, s->size,
3164 oo_order(s->oo), s->offset, flags);
3165 return -EINVAL;
3166 }
3167
3168 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169 const char *text)
3170 {
3171 #ifdef CONFIG_SLUB_DEBUG
3172 void *addr = page_address(page);
3173 void *p;
3174 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175 sizeof(long), GFP_ATOMIC);
3176 if (!map)
3177 return;
3178 slab_err(s, page, text, s->name);
3179 slab_lock(page);
3180
3181 get_map(s, page, map);
3182 for_each_object(p, s, addr, page->objects) {
3183
3184 if (!test_bit(slab_index(p, s, addr), map)) {
3185 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186 p, p - addr);
3187 print_tracking(s, p);
3188 }
3189 }
3190 slab_unlock(page);
3191 kfree(map);
3192 #endif
3193 }
3194
3195 /*
3196 * Attempt to free all partial slabs on a node.
3197 * This is called from kmem_cache_close(). We must be the last thread
3198 * using the cache and therefore we do not need to lock anymore.
3199 */
3200 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3201 {
3202 struct page *page, *h;
3203
3204 list_for_each_entry_safe(page, h, &n->partial, lru) {
3205 if (!page->inuse) {
3206 __remove_partial(n, page);
3207 discard_slab(s, page);
3208 } else {
3209 list_slab_objects(s, page,
3210 "Objects remaining in %s on kmem_cache_close()");
3211 }
3212 }
3213 }
3214
3215 /*
3216 * Release all resources used by a slab cache.
3217 */
3218 static inline int kmem_cache_close(struct kmem_cache *s)
3219 {
3220 int node;
3221
3222 flush_all(s);
3223 /* Attempt to free all objects */
3224 for_each_node_state(node, N_NORMAL_MEMORY) {
3225 struct kmem_cache_node *n = get_node(s, node);
3226
3227 free_partial(s, n);
3228 if (n->nr_partial || slabs_node(s, node))
3229 return 1;
3230 }
3231 free_percpu(s->cpu_slab);
3232 free_kmem_cache_nodes(s);
3233 return 0;
3234 }
3235
3236 int __kmem_cache_shutdown(struct kmem_cache *s)
3237 {
3238 int rc = kmem_cache_close(s);
3239
3240 if (!rc) {
3241 /*
3242 * We do the same lock strategy around sysfs_slab_add, see
3243 * __kmem_cache_create. Because this is pretty much the last
3244 * operation we do and the lock will be released shortly after
3245 * that in slab_common.c, we could just move sysfs_slab_remove
3246 * to a later point in common code. We should do that when we
3247 * have a common sysfs framework for all allocators.
3248 */
3249 mutex_unlock(&slab_mutex);
3250 sysfs_slab_remove(s);
3251 mutex_lock(&slab_mutex);
3252 }
3253
3254 return rc;
3255 }
3256
3257 /********************************************************************
3258 * Kmalloc subsystem
3259 *******************************************************************/
3260
3261 static int __init setup_slub_min_order(char *str)
3262 {
3263 get_option(&str, &slub_min_order);
3264
3265 return 1;
3266 }
3267
3268 __setup("slub_min_order=", setup_slub_min_order);
3269
3270 static int __init setup_slub_max_order(char *str)
3271 {
3272 get_option(&str, &slub_max_order);
3273 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3274
3275 return 1;
3276 }
3277
3278 __setup("slub_max_order=", setup_slub_max_order);
3279
3280 static int __init setup_slub_min_objects(char *str)
3281 {
3282 get_option(&str, &slub_min_objects);
3283
3284 return 1;
3285 }
3286
3287 __setup("slub_min_objects=", setup_slub_min_objects);
3288
3289 static int __init setup_slub_nomerge(char *str)
3290 {
3291 slub_nomerge = 1;
3292 return 1;
3293 }
3294
3295 __setup("slub_nomerge", setup_slub_nomerge);
3296
3297 void *__kmalloc(size_t size, gfp_t flags)
3298 {
3299 struct kmem_cache *s;
3300 void *ret;
3301
3302 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3303 return kmalloc_large(size, flags);
3304
3305 s = kmalloc_slab(size, flags);
3306
3307 if (unlikely(ZERO_OR_NULL_PTR(s)))
3308 return s;
3309
3310 ret = slab_alloc(s, flags, _RET_IP_);
3311
3312 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3313
3314 return ret;
3315 }
3316 EXPORT_SYMBOL(__kmalloc);
3317
3318 #ifdef CONFIG_NUMA
3319 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3320 {
3321 struct page *page;
3322 void *ptr = NULL;
3323
3324 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3325 page = alloc_pages_node(node, flags, get_order(size));
3326 if (page)
3327 ptr = page_address(page);
3328
3329 kmalloc_large_node_hook(ptr, size, flags);
3330 return ptr;
3331 }
3332
3333 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3334 {
3335 struct kmem_cache *s;
3336 void *ret;
3337
3338 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3339 ret = kmalloc_large_node(size, flags, node);
3340
3341 trace_kmalloc_node(_RET_IP_, ret,
3342 size, PAGE_SIZE << get_order(size),
3343 flags, node);
3344
3345 return ret;
3346 }
3347
3348 s = kmalloc_slab(size, flags);
3349
3350 if (unlikely(ZERO_OR_NULL_PTR(s)))
3351 return s;
3352
3353 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3354
3355 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3356
3357 return ret;
3358 }
3359 EXPORT_SYMBOL(__kmalloc_node);
3360 #endif
3361
3362 size_t ksize(const void *object)
3363 {
3364 struct page *page;
3365
3366 if (unlikely(object == ZERO_SIZE_PTR))
3367 return 0;
3368
3369 page = virt_to_head_page(object);
3370
3371 if (unlikely(!PageSlab(page))) {
3372 WARN_ON(!PageCompound(page));
3373 return PAGE_SIZE << compound_order(page);
3374 }
3375
3376 return slab_ksize(page->slab_cache);
3377 }
3378 EXPORT_SYMBOL(ksize);
3379
3380 void kfree(const void *x)
3381 {
3382 struct page *page;
3383 void *object = (void *)x;
3384
3385 trace_kfree(_RET_IP_, x);
3386
3387 if (unlikely(ZERO_OR_NULL_PTR(x)))
3388 return;
3389
3390 page = virt_to_head_page(x);
3391 if (unlikely(!PageSlab(page))) {
3392 BUG_ON(!PageCompound(page));
3393 kfree_hook(x);
3394 __free_memcg_kmem_pages(page, compound_order(page));
3395 return;
3396 }
3397 slab_free(page->slab_cache, page, object, _RET_IP_);
3398 }
3399 EXPORT_SYMBOL(kfree);
3400
3401 /*
3402 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3403 * the remaining slabs by the number of items in use. The slabs with the
3404 * most items in use come first. New allocations will then fill those up
3405 * and thus they can be removed from the partial lists.
3406 *
3407 * The slabs with the least items are placed last. This results in them
3408 * being allocated from last increasing the chance that the last objects
3409 * are freed in them.
3410 */
3411 int kmem_cache_shrink(struct kmem_cache *s)
3412 {
3413 int node;
3414 int i;
3415 struct kmem_cache_node *n;
3416 struct page *page;
3417 struct page *t;
3418 int objects = oo_objects(s->max);
3419 struct list_head *slabs_by_inuse =
3420 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3421 unsigned long flags;
3422
3423 if (!slabs_by_inuse)
3424 return -ENOMEM;
3425
3426 flush_all(s);
3427 for_each_node_state(node, N_NORMAL_MEMORY) {
3428 n = get_node(s, node);
3429
3430 if (!n->nr_partial)
3431 continue;
3432
3433 for (i = 0; i < objects; i++)
3434 INIT_LIST_HEAD(slabs_by_inuse + i);
3435
3436 spin_lock_irqsave(&n->list_lock, flags);
3437
3438 /*
3439 * Build lists indexed by the items in use in each slab.
3440 *
3441 * Note that concurrent frees may occur while we hold the
3442 * list_lock. page->inuse here is the upper limit.
3443 */
3444 list_for_each_entry_safe(page, t, &n->partial, lru) {
3445 list_move(&page->lru, slabs_by_inuse + page->inuse);
3446 if (!page->inuse)
3447 n->nr_partial--;
3448 }
3449
3450 /*
3451 * Rebuild the partial list with the slabs filled up most
3452 * first and the least used slabs at the end.
3453 */
3454 for (i = objects - 1; i > 0; i--)
3455 list_splice(slabs_by_inuse + i, n->partial.prev);
3456
3457 spin_unlock_irqrestore(&n->list_lock, flags);
3458
3459 /* Release empty slabs */
3460 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3461 discard_slab(s, page);
3462 }
3463
3464 kfree(slabs_by_inuse);
3465 return 0;
3466 }
3467 EXPORT_SYMBOL(kmem_cache_shrink);
3468
3469 static int slab_mem_going_offline_callback(void *arg)
3470 {
3471 struct kmem_cache *s;
3472
3473 mutex_lock(&slab_mutex);
3474 list_for_each_entry(s, &slab_caches, list)
3475 kmem_cache_shrink(s);
3476 mutex_unlock(&slab_mutex);
3477
3478 return 0;
3479 }
3480
3481 static void slab_mem_offline_callback(void *arg)
3482 {
3483 struct kmem_cache_node *n;
3484 struct kmem_cache *s;
3485 struct memory_notify *marg = arg;
3486 int offline_node;
3487
3488 offline_node = marg->status_change_nid_normal;
3489
3490 /*
3491 * If the node still has available memory. we need kmem_cache_node
3492 * for it yet.
3493 */
3494 if (offline_node < 0)
3495 return;
3496
3497 mutex_lock(&slab_mutex);
3498 list_for_each_entry(s, &slab_caches, list) {
3499 n = get_node(s, offline_node);
3500 if (n) {
3501 /*
3502 * if n->nr_slabs > 0, slabs still exist on the node
3503 * that is going down. We were unable to free them,
3504 * and offline_pages() function shouldn't call this
3505 * callback. So, we must fail.
3506 */
3507 BUG_ON(slabs_node(s, offline_node));
3508
3509 s->node[offline_node] = NULL;
3510 kmem_cache_free(kmem_cache_node, n);
3511 }
3512 }
3513 mutex_unlock(&slab_mutex);
3514 }
3515
3516 static int slab_mem_going_online_callback(void *arg)
3517 {
3518 struct kmem_cache_node *n;
3519 struct kmem_cache *s;
3520 struct memory_notify *marg = arg;
3521 int nid = marg->status_change_nid_normal;
3522 int ret = 0;
3523
3524 /*
3525 * If the node's memory is already available, then kmem_cache_node is
3526 * already created. Nothing to do.
3527 */
3528 if (nid < 0)
3529 return 0;
3530
3531 /*
3532 * We are bringing a node online. No memory is available yet. We must
3533 * allocate a kmem_cache_node structure in order to bring the node
3534 * online.
3535 */
3536 mutex_lock(&slab_mutex);
3537 list_for_each_entry(s, &slab_caches, list) {
3538 /*
3539 * XXX: kmem_cache_alloc_node will fallback to other nodes
3540 * since memory is not yet available from the node that
3541 * is brought up.
3542 */
3543 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3544 if (!n) {
3545 ret = -ENOMEM;
3546 goto out;
3547 }
3548 init_kmem_cache_node(n);
3549 s->node[nid] = n;
3550 }
3551 out:
3552 mutex_unlock(&slab_mutex);
3553 return ret;
3554 }
3555
3556 static int slab_memory_callback(struct notifier_block *self,
3557 unsigned long action, void *arg)
3558 {
3559 int ret = 0;
3560
3561 switch (action) {
3562 case MEM_GOING_ONLINE:
3563 ret = slab_mem_going_online_callback(arg);
3564 break;
3565 case MEM_GOING_OFFLINE:
3566 ret = slab_mem_going_offline_callback(arg);
3567 break;
3568 case MEM_OFFLINE:
3569 case MEM_CANCEL_ONLINE:
3570 slab_mem_offline_callback(arg);
3571 break;
3572 case MEM_ONLINE:
3573 case MEM_CANCEL_OFFLINE:
3574 break;
3575 }
3576 if (ret)
3577 ret = notifier_from_errno(ret);
3578 else
3579 ret = NOTIFY_OK;
3580 return ret;
3581 }
3582
3583 static struct notifier_block slab_memory_callback_nb = {
3584 .notifier_call = slab_memory_callback,
3585 .priority = SLAB_CALLBACK_PRI,
3586 };
3587
3588 /********************************************************************
3589 * Basic setup of slabs
3590 *******************************************************************/
3591
3592 /*
3593 * Used for early kmem_cache structures that were allocated using
3594 * the page allocator. Allocate them properly then fix up the pointers
3595 * that may be pointing to the wrong kmem_cache structure.
3596 */
3597
3598 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3599 {
3600 int node;
3601 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3602
3603 memcpy(s, static_cache, kmem_cache->object_size);
3604
3605 /*
3606 * This runs very early, and only the boot processor is supposed to be
3607 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3608 * IPIs around.
3609 */
3610 __flush_cpu_slab(s, smp_processor_id());
3611 for_each_node_state(node, N_NORMAL_MEMORY) {
3612 struct kmem_cache_node *n = get_node(s, node);
3613 struct page *p;
3614
3615 if (n) {
3616 list_for_each_entry(p, &n->partial, lru)
3617 p->slab_cache = s;
3618
3619 #ifdef CONFIG_SLUB_DEBUG
3620 list_for_each_entry(p, &n->full, lru)
3621 p->slab_cache = s;
3622 #endif
3623 }
3624 }
3625 list_add(&s->list, &slab_caches);
3626 return s;
3627 }
3628
3629 void __init kmem_cache_init(void)
3630 {
3631 static __initdata struct kmem_cache boot_kmem_cache,
3632 boot_kmem_cache_node;
3633
3634 if (debug_guardpage_minorder())
3635 slub_max_order = 0;
3636
3637 kmem_cache_node = &boot_kmem_cache_node;
3638 kmem_cache = &boot_kmem_cache;
3639
3640 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3641 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3642
3643 register_hotmemory_notifier(&slab_memory_callback_nb);
3644
3645 /* Able to allocate the per node structures */
3646 slab_state = PARTIAL;
3647
3648 create_boot_cache(kmem_cache, "kmem_cache",
3649 offsetof(struct kmem_cache, node) +
3650 nr_node_ids * sizeof(struct kmem_cache_node *),
3651 SLAB_HWCACHE_ALIGN);
3652
3653 kmem_cache = bootstrap(&boot_kmem_cache);
3654
3655 /*
3656 * Allocate kmem_cache_node properly from the kmem_cache slab.
3657 * kmem_cache_node is separately allocated so no need to
3658 * update any list pointers.
3659 */
3660 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3661
3662 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3663 create_kmalloc_caches(0);
3664
3665 #ifdef CONFIG_SMP
3666 register_cpu_notifier(&slab_notifier);
3667 #endif
3668
3669 printk(KERN_INFO
3670 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3671 " CPUs=%d, Nodes=%d\n",
3672 cache_line_size(),
3673 slub_min_order, slub_max_order, slub_min_objects,
3674 nr_cpu_ids, nr_node_ids);
3675 }
3676
3677 void __init kmem_cache_init_late(void)
3678 {
3679 }
3680
3681 /*
3682 * Find a mergeable slab cache
3683 */
3684 static int slab_unmergeable(struct kmem_cache *s)
3685 {
3686 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3687 return 1;
3688
3689 if (s->ctor)
3690 return 1;
3691
3692 /*
3693 * We may have set a slab to be unmergeable during bootstrap.
3694 */
3695 if (s->refcount < 0)
3696 return 1;
3697
3698 return 0;
3699 }
3700
3701 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3702 size_t align, unsigned long flags, const char *name,
3703 void (*ctor)(void *))
3704 {
3705 struct kmem_cache *s;
3706
3707 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3708 return NULL;
3709
3710 if (ctor)
3711 return NULL;
3712
3713 size = ALIGN(size, sizeof(void *));
3714 align = calculate_alignment(flags, align, size);
3715 size = ALIGN(size, align);
3716 flags = kmem_cache_flags(size, flags, name, NULL);
3717
3718 list_for_each_entry(s, &slab_caches, list) {
3719 if (slab_unmergeable(s))
3720 continue;
3721
3722 if (size > s->size)
3723 continue;
3724
3725 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3726 continue;
3727 /*
3728 * Check if alignment is compatible.
3729 * Courtesy of Adrian Drzewiecki
3730 */
3731 if ((s->size & ~(align - 1)) != s->size)
3732 continue;
3733
3734 if (s->size - size >= sizeof(void *))
3735 continue;
3736
3737 if (!cache_match_memcg(s, memcg))
3738 continue;
3739
3740 return s;
3741 }
3742 return NULL;
3743 }
3744
3745 struct kmem_cache *
3746 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3747 size_t align, unsigned long flags, void (*ctor)(void *))
3748 {
3749 struct kmem_cache *s;
3750
3751 s = find_mergeable(memcg, size, align, flags, name, ctor);
3752 if (s) {
3753 s->refcount++;
3754 /*
3755 * Adjust the object sizes so that we clear
3756 * the complete object on kzalloc.
3757 */
3758 s->object_size = max(s->object_size, (int)size);
3759 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3760
3761 if (sysfs_slab_alias(s, name)) {
3762 s->refcount--;
3763 s = NULL;
3764 }
3765 }
3766
3767 return s;
3768 }
3769
3770 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3771 {
3772 int err;
3773
3774 err = kmem_cache_open(s, flags);
3775 if (err)
3776 return err;
3777
3778 /* Mutex is not taken during early boot */
3779 if (slab_state <= UP)
3780 return 0;
3781
3782 memcg_propagate_slab_attrs(s);
3783 mutex_unlock(&slab_mutex);
3784 err = sysfs_slab_add(s);
3785 mutex_lock(&slab_mutex);
3786
3787 if (err)
3788 kmem_cache_close(s);
3789
3790 return err;
3791 }
3792
3793 #ifdef CONFIG_SMP
3794 /*
3795 * Use the cpu notifier to insure that the cpu slabs are flushed when
3796 * necessary.
3797 */
3798 static int slab_cpuup_callback(struct notifier_block *nfb,
3799 unsigned long action, void *hcpu)
3800 {
3801 long cpu = (long)hcpu;
3802 struct kmem_cache *s;
3803 unsigned long flags;
3804
3805 switch (action) {
3806 case CPU_UP_CANCELED:
3807 case CPU_UP_CANCELED_FROZEN:
3808 case CPU_DEAD:
3809 case CPU_DEAD_FROZEN:
3810 mutex_lock(&slab_mutex);
3811 list_for_each_entry(s, &slab_caches, list) {
3812 local_irq_save(flags);
3813 __flush_cpu_slab(s, cpu);
3814 local_irq_restore(flags);
3815 }
3816 mutex_unlock(&slab_mutex);
3817 break;
3818 default:
3819 break;
3820 }
3821 return NOTIFY_OK;
3822 }
3823
3824 static struct notifier_block slab_notifier = {
3825 .notifier_call = slab_cpuup_callback
3826 };
3827
3828 #endif
3829
3830 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3831 {
3832 struct kmem_cache *s;
3833 void *ret;
3834
3835 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3836 return kmalloc_large(size, gfpflags);
3837
3838 s = kmalloc_slab(size, gfpflags);
3839
3840 if (unlikely(ZERO_OR_NULL_PTR(s)))
3841 return s;
3842
3843 ret = slab_alloc(s, gfpflags, caller);
3844
3845 /* Honor the call site pointer we received. */
3846 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3847
3848 return ret;
3849 }
3850
3851 #ifdef CONFIG_NUMA
3852 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3853 int node, unsigned long caller)
3854 {
3855 struct kmem_cache *s;
3856 void *ret;
3857
3858 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3859 ret = kmalloc_large_node(size, gfpflags, node);
3860
3861 trace_kmalloc_node(caller, ret,
3862 size, PAGE_SIZE << get_order(size),
3863 gfpflags, node);
3864
3865 return ret;
3866 }
3867
3868 s = kmalloc_slab(size, gfpflags);
3869
3870 if (unlikely(ZERO_OR_NULL_PTR(s)))
3871 return s;
3872
3873 ret = slab_alloc_node(s, gfpflags, node, caller);
3874
3875 /* Honor the call site pointer we received. */
3876 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3877
3878 return ret;
3879 }
3880 #endif
3881
3882 #ifdef CONFIG_SYSFS
3883 static int count_inuse(struct page *page)
3884 {
3885 return page->inuse;
3886 }
3887
3888 static int count_total(struct page *page)
3889 {
3890 return page->objects;
3891 }
3892 #endif
3893
3894 #ifdef CONFIG_SLUB_DEBUG
3895 static int validate_slab(struct kmem_cache *s, struct page *page,
3896 unsigned long *map)
3897 {
3898 void *p;
3899 void *addr = page_address(page);
3900
3901 if (!check_slab(s, page) ||
3902 !on_freelist(s, page, NULL))
3903 return 0;
3904
3905 /* Now we know that a valid freelist exists */
3906 bitmap_zero(map, page->objects);
3907
3908 get_map(s, page, map);
3909 for_each_object(p, s, addr, page->objects) {
3910 if (test_bit(slab_index(p, s, addr), map))
3911 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3912 return 0;
3913 }
3914
3915 for_each_object(p, s, addr, page->objects)
3916 if (!test_bit(slab_index(p, s, addr), map))
3917 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3918 return 0;
3919 return 1;
3920 }
3921
3922 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3923 unsigned long *map)
3924 {
3925 slab_lock(page);
3926 validate_slab(s, page, map);
3927 slab_unlock(page);
3928 }
3929
3930 static int validate_slab_node(struct kmem_cache *s,
3931 struct kmem_cache_node *n, unsigned long *map)
3932 {
3933 unsigned long count = 0;
3934 struct page *page;
3935 unsigned long flags;
3936
3937 spin_lock_irqsave(&n->list_lock, flags);
3938
3939 list_for_each_entry(page, &n->partial, lru) {
3940 validate_slab_slab(s, page, map);
3941 count++;
3942 }
3943 if (count != n->nr_partial)
3944 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3945 "counter=%ld\n", s->name, count, n->nr_partial);
3946
3947 if (!(s->flags & SLAB_STORE_USER))
3948 goto out;
3949
3950 list_for_each_entry(page, &n->full, lru) {
3951 validate_slab_slab(s, page, map);
3952 count++;
3953 }
3954 if (count != atomic_long_read(&n->nr_slabs))
3955 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3956 "counter=%ld\n", s->name, count,
3957 atomic_long_read(&n->nr_slabs));
3958
3959 out:
3960 spin_unlock_irqrestore(&n->list_lock, flags);
3961 return count;
3962 }
3963
3964 static long validate_slab_cache(struct kmem_cache *s)
3965 {
3966 int node;
3967 unsigned long count = 0;
3968 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3969 sizeof(unsigned long), GFP_KERNEL);
3970
3971 if (!map)
3972 return -ENOMEM;
3973
3974 flush_all(s);
3975 for_each_node_state(node, N_NORMAL_MEMORY) {
3976 struct kmem_cache_node *n = get_node(s, node);
3977
3978 count += validate_slab_node(s, n, map);
3979 }
3980 kfree(map);
3981 return count;
3982 }
3983 /*
3984 * Generate lists of code addresses where slabcache objects are allocated
3985 * and freed.
3986 */
3987
3988 struct location {
3989 unsigned long count;
3990 unsigned long addr;
3991 long long sum_time;
3992 long min_time;
3993 long max_time;
3994 long min_pid;
3995 long max_pid;
3996 DECLARE_BITMAP(cpus, NR_CPUS);
3997 nodemask_t nodes;
3998 };
3999
4000 struct loc_track {
4001 unsigned long max;
4002 unsigned long count;
4003 struct location *loc;
4004 };
4005
4006 static void free_loc_track(struct loc_track *t)
4007 {
4008 if (t->max)
4009 free_pages((unsigned long)t->loc,
4010 get_order(sizeof(struct location) * t->max));
4011 }
4012
4013 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4014 {
4015 struct location *l;
4016 int order;
4017
4018 order = get_order(sizeof(struct location) * max);
4019
4020 l = (void *)__get_free_pages(flags, order);
4021 if (!l)
4022 return 0;
4023
4024 if (t->count) {
4025 memcpy(l, t->loc, sizeof(struct location) * t->count);
4026 free_loc_track(t);
4027 }
4028 t->max = max;
4029 t->loc = l;
4030 return 1;
4031 }
4032
4033 static int add_location(struct loc_track *t, struct kmem_cache *s,
4034 const struct track *track)
4035 {
4036 long start, end, pos;
4037 struct location *l;
4038 unsigned long caddr;
4039 unsigned long age = jiffies - track->when;
4040
4041 start = -1;
4042 end = t->count;
4043
4044 for ( ; ; ) {
4045 pos = start + (end - start + 1) / 2;
4046
4047 /*
4048 * There is nothing at "end". If we end up there
4049 * we need to add something to before end.
4050 */
4051 if (pos == end)
4052 break;
4053
4054 caddr = t->loc[pos].addr;
4055 if (track->addr == caddr) {
4056
4057 l = &t->loc[pos];
4058 l->count++;
4059 if (track->when) {
4060 l->sum_time += age;
4061 if (age < l->min_time)
4062 l->min_time = age;
4063 if (age > l->max_time)
4064 l->max_time = age;
4065
4066 if (track->pid < l->min_pid)
4067 l->min_pid = track->pid;
4068 if (track->pid > l->max_pid)
4069 l->max_pid = track->pid;
4070
4071 cpumask_set_cpu(track->cpu,
4072 to_cpumask(l->cpus));
4073 }
4074 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4075 return 1;
4076 }
4077
4078 if (track->addr < caddr)
4079 end = pos;
4080 else
4081 start = pos;
4082 }
4083
4084 /*
4085 * Not found. Insert new tracking element.
4086 */
4087 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4088 return 0;
4089
4090 l = t->loc + pos;
4091 if (pos < t->count)
4092 memmove(l + 1, l,
4093 (t->count - pos) * sizeof(struct location));
4094 t->count++;
4095 l->count = 1;
4096 l->addr = track->addr;
4097 l->sum_time = age;
4098 l->min_time = age;
4099 l->max_time = age;
4100 l->min_pid = track->pid;
4101 l->max_pid = track->pid;
4102 cpumask_clear(to_cpumask(l->cpus));
4103 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4104 nodes_clear(l->nodes);
4105 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4106 return 1;
4107 }
4108
4109 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4110 struct page *page, enum track_item alloc,
4111 unsigned long *map)
4112 {
4113 void *addr = page_address(page);
4114 void *p;
4115
4116 bitmap_zero(map, page->objects);
4117 get_map(s, page, map);
4118
4119 for_each_object(p, s, addr, page->objects)
4120 if (!test_bit(slab_index(p, s, addr), map))
4121 add_location(t, s, get_track(s, p, alloc));
4122 }
4123
4124 static int list_locations(struct kmem_cache *s, char *buf,
4125 enum track_item alloc)
4126 {
4127 int len = 0;
4128 unsigned long i;
4129 struct loc_track t = { 0, 0, NULL };
4130 int node;
4131 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4132 sizeof(unsigned long), GFP_KERNEL);
4133
4134 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4135 GFP_TEMPORARY)) {
4136 kfree(map);
4137 return sprintf(buf, "Out of memory\n");
4138 }
4139 /* Push back cpu slabs */
4140 flush_all(s);
4141
4142 for_each_node_state(node, N_NORMAL_MEMORY) {
4143 struct kmem_cache_node *n = get_node(s, node);
4144 unsigned long flags;
4145 struct page *page;
4146
4147 if (!atomic_long_read(&n->nr_slabs))
4148 continue;
4149
4150 spin_lock_irqsave(&n->list_lock, flags);
4151 list_for_each_entry(page, &n->partial, lru)
4152 process_slab(&t, s, page, alloc, map);
4153 list_for_each_entry(page, &n->full, lru)
4154 process_slab(&t, s, page, alloc, map);
4155 spin_unlock_irqrestore(&n->list_lock, flags);
4156 }
4157
4158 for (i = 0; i < t.count; i++) {
4159 struct location *l = &t.loc[i];
4160
4161 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4162 break;
4163 len += sprintf(buf + len, "%7ld ", l->count);
4164
4165 if (l->addr)
4166 len += sprintf(buf + len, "%pS", (void *)l->addr);
4167 else
4168 len += sprintf(buf + len, "<not-available>");
4169
4170 if (l->sum_time != l->min_time) {
4171 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4172 l->min_time,
4173 (long)div_u64(l->sum_time, l->count),
4174 l->max_time);
4175 } else
4176 len += sprintf(buf + len, " age=%ld",
4177 l->min_time);
4178
4179 if (l->min_pid != l->max_pid)
4180 len += sprintf(buf + len, " pid=%ld-%ld",
4181 l->min_pid, l->max_pid);
4182 else
4183 len += sprintf(buf + len, " pid=%ld",
4184 l->min_pid);
4185
4186 if (num_online_cpus() > 1 &&
4187 !cpumask_empty(to_cpumask(l->cpus)) &&
4188 len < PAGE_SIZE - 60) {
4189 len += sprintf(buf + len, " cpus=");
4190 len += cpulist_scnprintf(buf + len,
4191 PAGE_SIZE - len - 50,
4192 to_cpumask(l->cpus));
4193 }
4194
4195 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4196 len < PAGE_SIZE - 60) {
4197 len += sprintf(buf + len, " nodes=");
4198 len += nodelist_scnprintf(buf + len,
4199 PAGE_SIZE - len - 50,
4200 l->nodes);
4201 }
4202
4203 len += sprintf(buf + len, "\n");
4204 }
4205
4206 free_loc_track(&t);
4207 kfree(map);
4208 if (!t.count)
4209 len += sprintf(buf, "No data\n");
4210 return len;
4211 }
4212 #endif
4213
4214 #ifdef SLUB_RESILIENCY_TEST
4215 static void resiliency_test(void)
4216 {
4217 u8 *p;
4218
4219 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4220
4221 printk(KERN_ERR "SLUB resiliency testing\n");
4222 printk(KERN_ERR "-----------------------\n");
4223 printk(KERN_ERR "A. Corruption after allocation\n");
4224
4225 p = kzalloc(16, GFP_KERNEL);
4226 p[16] = 0x12;
4227 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4228 " 0x12->0x%p\n\n", p + 16);
4229
4230 validate_slab_cache(kmalloc_caches[4]);
4231
4232 /* Hmmm... The next two are dangerous */
4233 p = kzalloc(32, GFP_KERNEL);
4234 p[32 + sizeof(void *)] = 0x34;
4235 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4236 " 0x34 -> -0x%p\n", p);
4237 printk(KERN_ERR
4238 "If allocated object is overwritten then not detectable\n\n");
4239
4240 validate_slab_cache(kmalloc_caches[5]);
4241 p = kzalloc(64, GFP_KERNEL);
4242 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4243 *p = 0x56;
4244 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4245 p);
4246 printk(KERN_ERR
4247 "If allocated object is overwritten then not detectable\n\n");
4248 validate_slab_cache(kmalloc_caches[6]);
4249
4250 printk(KERN_ERR "\nB. Corruption after free\n");
4251 p = kzalloc(128, GFP_KERNEL);
4252 kfree(p);
4253 *p = 0x78;
4254 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4255 validate_slab_cache(kmalloc_caches[7]);
4256
4257 p = kzalloc(256, GFP_KERNEL);
4258 kfree(p);
4259 p[50] = 0x9a;
4260 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4261 p);
4262 validate_slab_cache(kmalloc_caches[8]);
4263
4264 p = kzalloc(512, GFP_KERNEL);
4265 kfree(p);
4266 p[512] = 0xab;
4267 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4268 validate_slab_cache(kmalloc_caches[9]);
4269 }
4270 #else
4271 #ifdef CONFIG_SYSFS
4272 static void resiliency_test(void) {};
4273 #endif
4274 #endif
4275
4276 #ifdef CONFIG_SYSFS
4277 enum slab_stat_type {
4278 SL_ALL, /* All slabs */
4279 SL_PARTIAL, /* Only partially allocated slabs */
4280 SL_CPU, /* Only slabs used for cpu caches */
4281 SL_OBJECTS, /* Determine allocated objects not slabs */
4282 SL_TOTAL /* Determine object capacity not slabs */
4283 };
4284
4285 #define SO_ALL (1 << SL_ALL)
4286 #define SO_PARTIAL (1 << SL_PARTIAL)
4287 #define SO_CPU (1 << SL_CPU)
4288 #define SO_OBJECTS (1 << SL_OBJECTS)
4289 #define SO_TOTAL (1 << SL_TOTAL)
4290
4291 static ssize_t show_slab_objects(struct kmem_cache *s,
4292 char *buf, unsigned long flags)
4293 {
4294 unsigned long total = 0;
4295 int node;
4296 int x;
4297 unsigned long *nodes;
4298
4299 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4300 if (!nodes)
4301 return -ENOMEM;
4302
4303 if (flags & SO_CPU) {
4304 int cpu;
4305
4306 for_each_possible_cpu(cpu) {
4307 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4308 cpu);
4309 int node;
4310 struct page *page;
4311
4312 page = ACCESS_ONCE(c->page);
4313 if (!page)
4314 continue;
4315
4316 node = page_to_nid(page);
4317 if (flags & SO_TOTAL)
4318 x = page->objects;
4319 else if (flags & SO_OBJECTS)
4320 x = page->inuse;
4321 else
4322 x = 1;
4323
4324 total += x;
4325 nodes[node] += x;
4326
4327 page = ACCESS_ONCE(c->partial);
4328 if (page) {
4329 node = page_to_nid(page);
4330 if (flags & SO_TOTAL)
4331 WARN_ON_ONCE(1);
4332 else if (flags & SO_OBJECTS)
4333 WARN_ON_ONCE(1);
4334 else
4335 x = page->pages;
4336 total += x;
4337 nodes[node] += x;
4338 }
4339 }
4340 }
4341
4342 lock_memory_hotplug();
4343 #ifdef CONFIG_SLUB_DEBUG
4344 if (flags & SO_ALL) {
4345 for_each_node_state(node, N_NORMAL_MEMORY) {
4346 struct kmem_cache_node *n = get_node(s, node);
4347
4348 if (flags & SO_TOTAL)
4349 x = atomic_long_read(&n->total_objects);
4350 else if (flags & SO_OBJECTS)
4351 x = atomic_long_read(&n->total_objects) -
4352 count_partial(n, count_free);
4353 else
4354 x = atomic_long_read(&n->nr_slabs);
4355 total += x;
4356 nodes[node] += x;
4357 }
4358
4359 } else
4360 #endif
4361 if (flags & SO_PARTIAL) {
4362 for_each_node_state(node, N_NORMAL_MEMORY) {
4363 struct kmem_cache_node *n = get_node(s, node);
4364
4365 if (flags & SO_TOTAL)
4366 x = count_partial(n, count_total);
4367 else if (flags & SO_OBJECTS)
4368 x = count_partial(n, count_inuse);
4369 else
4370 x = n->nr_partial;
4371 total += x;
4372 nodes[node] += x;
4373 }
4374 }
4375 x = sprintf(buf, "%lu", total);
4376 #ifdef CONFIG_NUMA
4377 for_each_node_state(node, N_NORMAL_MEMORY)
4378 if (nodes[node])
4379 x += sprintf(buf + x, " N%d=%lu",
4380 node, nodes[node]);
4381 #endif
4382 unlock_memory_hotplug();
4383 kfree(nodes);
4384 return x + sprintf(buf + x, "\n");
4385 }
4386
4387 #ifdef CONFIG_SLUB_DEBUG
4388 static int any_slab_objects(struct kmem_cache *s)
4389 {
4390 int node;
4391
4392 for_each_online_node(node) {
4393 struct kmem_cache_node *n = get_node(s, node);
4394
4395 if (!n)
4396 continue;
4397
4398 if (atomic_long_read(&n->total_objects))
4399 return 1;
4400 }
4401 return 0;
4402 }
4403 #endif
4404
4405 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407
4408 struct slab_attribute {
4409 struct attribute attr;
4410 ssize_t (*show)(struct kmem_cache *s, char *buf);
4411 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412 };
4413
4414 #define SLAB_ATTR_RO(_name) \
4415 static struct slab_attribute _name##_attr = \
4416 __ATTR(_name, 0400, _name##_show, NULL)
4417
4418 #define SLAB_ATTR(_name) \
4419 static struct slab_attribute _name##_attr = \
4420 __ATTR(_name, 0600, _name##_show, _name##_store)
4421
4422 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4423 {
4424 return sprintf(buf, "%d\n", s->size);
4425 }
4426 SLAB_ATTR_RO(slab_size);
4427
4428 static ssize_t align_show(struct kmem_cache *s, char *buf)
4429 {
4430 return sprintf(buf, "%d\n", s->align);
4431 }
4432 SLAB_ATTR_RO(align);
4433
4434 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4435 {
4436 return sprintf(buf, "%d\n", s->object_size);
4437 }
4438 SLAB_ATTR_RO(object_size);
4439
4440 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4441 {
4442 return sprintf(buf, "%d\n", oo_objects(s->oo));
4443 }
4444 SLAB_ATTR_RO(objs_per_slab);
4445
4446 static ssize_t order_store(struct kmem_cache *s,
4447 const char *buf, size_t length)
4448 {
4449 unsigned long order;
4450 int err;
4451
4452 err = kstrtoul(buf, 10, &order);
4453 if (err)
4454 return err;
4455
4456 if (order > slub_max_order || order < slub_min_order)
4457 return -EINVAL;
4458
4459 calculate_sizes(s, order);
4460 return length;
4461 }
4462
4463 static ssize_t order_show(struct kmem_cache *s, char *buf)
4464 {
4465 return sprintf(buf, "%d\n", oo_order(s->oo));
4466 }
4467 SLAB_ATTR(order);
4468
4469 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4470 {
4471 return sprintf(buf, "%lu\n", s->min_partial);
4472 }
4473
4474 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4475 size_t length)
4476 {
4477 unsigned long min;
4478 int err;
4479
4480 err = kstrtoul(buf, 10, &min);
4481 if (err)
4482 return err;
4483
4484 set_min_partial(s, min);
4485 return length;
4486 }
4487 SLAB_ATTR(min_partial);
4488
4489 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4490 {
4491 return sprintf(buf, "%u\n", s->cpu_partial);
4492 }
4493
4494 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4495 size_t length)
4496 {
4497 unsigned long objects;
4498 int err;
4499
4500 err = kstrtoul(buf, 10, &objects);
4501 if (err)
4502 return err;
4503 if (objects && !kmem_cache_has_cpu_partial(s))
4504 return -EINVAL;
4505
4506 s->cpu_partial = objects;
4507 flush_all(s);
4508 return length;
4509 }
4510 SLAB_ATTR(cpu_partial);
4511
4512 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4513 {
4514 if (!s->ctor)
4515 return 0;
4516 return sprintf(buf, "%pS\n", s->ctor);
4517 }
4518 SLAB_ATTR_RO(ctor);
4519
4520 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4521 {
4522 return sprintf(buf, "%d\n", s->refcount - 1);
4523 }
4524 SLAB_ATTR_RO(aliases);
4525
4526 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4527 {
4528 return show_slab_objects(s, buf, SO_PARTIAL);
4529 }
4530 SLAB_ATTR_RO(partial);
4531
4532 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4533 {
4534 return show_slab_objects(s, buf, SO_CPU);
4535 }
4536 SLAB_ATTR_RO(cpu_slabs);
4537
4538 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4539 {
4540 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4541 }
4542 SLAB_ATTR_RO(objects);
4543
4544 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4545 {
4546 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4547 }
4548 SLAB_ATTR_RO(objects_partial);
4549
4550 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4551 {
4552 int objects = 0;
4553 int pages = 0;
4554 int cpu;
4555 int len;
4556
4557 for_each_online_cpu(cpu) {
4558 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4559
4560 if (page) {
4561 pages += page->pages;
4562 objects += page->pobjects;
4563 }
4564 }
4565
4566 len = sprintf(buf, "%d(%d)", objects, pages);
4567
4568 #ifdef CONFIG_SMP
4569 for_each_online_cpu(cpu) {
4570 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4571
4572 if (page && len < PAGE_SIZE - 20)
4573 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4574 page->pobjects, page->pages);
4575 }
4576 #endif
4577 return len + sprintf(buf + len, "\n");
4578 }
4579 SLAB_ATTR_RO(slabs_cpu_partial);
4580
4581 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4582 {
4583 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4584 }
4585
4586 static ssize_t reclaim_account_store(struct kmem_cache *s,
4587 const char *buf, size_t length)
4588 {
4589 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4590 if (buf[0] == '1')
4591 s->flags |= SLAB_RECLAIM_ACCOUNT;
4592 return length;
4593 }
4594 SLAB_ATTR(reclaim_account);
4595
4596 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4597 {
4598 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4599 }
4600 SLAB_ATTR_RO(hwcache_align);
4601
4602 #ifdef CONFIG_ZONE_DMA
4603 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4604 {
4605 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4606 }
4607 SLAB_ATTR_RO(cache_dma);
4608 #endif
4609
4610 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4611 {
4612 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4613 }
4614 SLAB_ATTR_RO(destroy_by_rcu);
4615
4616 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4617 {
4618 return sprintf(buf, "%d\n", s->reserved);
4619 }
4620 SLAB_ATTR_RO(reserved);
4621
4622 #ifdef CONFIG_SLUB_DEBUG
4623 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4624 {
4625 return show_slab_objects(s, buf, SO_ALL);
4626 }
4627 SLAB_ATTR_RO(slabs);
4628
4629 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4630 {
4631 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4632 }
4633 SLAB_ATTR_RO(total_objects);
4634
4635 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4636 {
4637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4638 }
4639
4640 static ssize_t sanity_checks_store(struct kmem_cache *s,
4641 const char *buf, size_t length)
4642 {
4643 s->flags &= ~SLAB_DEBUG_FREE;
4644 if (buf[0] == '1') {
4645 s->flags &= ~__CMPXCHG_DOUBLE;
4646 s->flags |= SLAB_DEBUG_FREE;
4647 }
4648 return length;
4649 }
4650 SLAB_ATTR(sanity_checks);
4651
4652 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4653 {
4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4655 }
4656
4657 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4658 size_t length)
4659 {
4660 s->flags &= ~SLAB_TRACE;
4661 if (buf[0] == '1') {
4662 s->flags &= ~__CMPXCHG_DOUBLE;
4663 s->flags |= SLAB_TRACE;
4664 }
4665 return length;
4666 }
4667 SLAB_ATTR(trace);
4668
4669 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4670 {
4671 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4672 }
4673
4674 static ssize_t red_zone_store(struct kmem_cache *s,
4675 const char *buf, size_t length)
4676 {
4677 if (any_slab_objects(s))
4678 return -EBUSY;
4679
4680 s->flags &= ~SLAB_RED_ZONE;
4681 if (buf[0] == '1') {
4682 s->flags &= ~__CMPXCHG_DOUBLE;
4683 s->flags |= SLAB_RED_ZONE;
4684 }
4685 calculate_sizes(s, -1);
4686 return length;
4687 }
4688 SLAB_ATTR(red_zone);
4689
4690 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4691 {
4692 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4693 }
4694
4695 static ssize_t poison_store(struct kmem_cache *s,
4696 const char *buf, size_t length)
4697 {
4698 if (any_slab_objects(s))
4699 return -EBUSY;
4700
4701 s->flags &= ~SLAB_POISON;
4702 if (buf[0] == '1') {
4703 s->flags &= ~__CMPXCHG_DOUBLE;
4704 s->flags |= SLAB_POISON;
4705 }
4706 calculate_sizes(s, -1);
4707 return length;
4708 }
4709 SLAB_ATTR(poison);
4710
4711 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4712 {
4713 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4714 }
4715
4716 static ssize_t store_user_store(struct kmem_cache *s,
4717 const char *buf, size_t length)
4718 {
4719 if (any_slab_objects(s))
4720 return -EBUSY;
4721
4722 s->flags &= ~SLAB_STORE_USER;
4723 if (buf[0] == '1') {
4724 s->flags &= ~__CMPXCHG_DOUBLE;
4725 s->flags |= SLAB_STORE_USER;
4726 }
4727 calculate_sizes(s, -1);
4728 return length;
4729 }
4730 SLAB_ATTR(store_user);
4731
4732 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4733 {
4734 return 0;
4735 }
4736
4737 static ssize_t validate_store(struct kmem_cache *s,
4738 const char *buf, size_t length)
4739 {
4740 int ret = -EINVAL;
4741
4742 if (buf[0] == '1') {
4743 ret = validate_slab_cache(s);
4744 if (ret >= 0)
4745 ret = length;
4746 }
4747 return ret;
4748 }
4749 SLAB_ATTR(validate);
4750
4751 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4752 {
4753 if (!(s->flags & SLAB_STORE_USER))
4754 return -ENOSYS;
4755 return list_locations(s, buf, TRACK_ALLOC);
4756 }
4757 SLAB_ATTR_RO(alloc_calls);
4758
4759 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4760 {
4761 if (!(s->flags & SLAB_STORE_USER))
4762 return -ENOSYS;
4763 return list_locations(s, buf, TRACK_FREE);
4764 }
4765 SLAB_ATTR_RO(free_calls);
4766 #endif /* CONFIG_SLUB_DEBUG */
4767
4768 #ifdef CONFIG_FAILSLAB
4769 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4770 {
4771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4772 }
4773
4774 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4775 size_t length)
4776 {
4777 s->flags &= ~SLAB_FAILSLAB;
4778 if (buf[0] == '1')
4779 s->flags |= SLAB_FAILSLAB;
4780 return length;
4781 }
4782 SLAB_ATTR(failslab);
4783 #endif
4784
4785 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4786 {
4787 return 0;
4788 }
4789
4790 static ssize_t shrink_store(struct kmem_cache *s,
4791 const char *buf, size_t length)
4792 {
4793 if (buf[0] == '1') {
4794 int rc = kmem_cache_shrink(s);
4795
4796 if (rc)
4797 return rc;
4798 } else
4799 return -EINVAL;
4800 return length;
4801 }
4802 SLAB_ATTR(shrink);
4803
4804 #ifdef CONFIG_NUMA
4805 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4806 {
4807 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4808 }
4809
4810 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4811 const char *buf, size_t length)
4812 {
4813 unsigned long ratio;
4814 int err;
4815
4816 err = kstrtoul(buf, 10, &ratio);
4817 if (err)
4818 return err;
4819
4820 if (ratio <= 100)
4821 s->remote_node_defrag_ratio = ratio * 10;
4822
4823 return length;
4824 }
4825 SLAB_ATTR(remote_node_defrag_ratio);
4826 #endif
4827
4828 #ifdef CONFIG_SLUB_STATS
4829 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4830 {
4831 unsigned long sum = 0;
4832 int cpu;
4833 int len;
4834 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4835
4836 if (!data)
4837 return -ENOMEM;
4838
4839 for_each_online_cpu(cpu) {
4840 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4841
4842 data[cpu] = x;
4843 sum += x;
4844 }
4845
4846 len = sprintf(buf, "%lu", sum);
4847
4848 #ifdef CONFIG_SMP
4849 for_each_online_cpu(cpu) {
4850 if (data[cpu] && len < PAGE_SIZE - 20)
4851 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4852 }
4853 #endif
4854 kfree(data);
4855 return len + sprintf(buf + len, "\n");
4856 }
4857
4858 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4859 {
4860 int cpu;
4861
4862 for_each_online_cpu(cpu)
4863 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4864 }
4865
4866 #define STAT_ATTR(si, text) \
4867 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4868 { \
4869 return show_stat(s, buf, si); \
4870 } \
4871 static ssize_t text##_store(struct kmem_cache *s, \
4872 const char *buf, size_t length) \
4873 { \
4874 if (buf[0] != '0') \
4875 return -EINVAL; \
4876 clear_stat(s, si); \
4877 return length; \
4878 } \
4879 SLAB_ATTR(text); \
4880
4881 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4882 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4883 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4884 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4885 STAT_ATTR(FREE_FROZEN, free_frozen);
4886 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4887 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4888 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4889 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4890 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4891 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4892 STAT_ATTR(FREE_SLAB, free_slab);
4893 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4894 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4895 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4896 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4897 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4898 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4899 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4900 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4901 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4902 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4903 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4904 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4905 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4906 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4907 #endif
4908
4909 static struct attribute *slab_attrs[] = {
4910 &slab_size_attr.attr,
4911 &object_size_attr.attr,
4912 &objs_per_slab_attr.attr,
4913 &order_attr.attr,
4914 &min_partial_attr.attr,
4915 &cpu_partial_attr.attr,
4916 &objects_attr.attr,
4917 &objects_partial_attr.attr,
4918 &partial_attr.attr,
4919 &cpu_slabs_attr.attr,
4920 &ctor_attr.attr,
4921 &aliases_attr.attr,
4922 &align_attr.attr,
4923 &hwcache_align_attr.attr,
4924 &reclaim_account_attr.attr,
4925 &destroy_by_rcu_attr.attr,
4926 &shrink_attr.attr,
4927 &reserved_attr.attr,
4928 &slabs_cpu_partial_attr.attr,
4929 #ifdef CONFIG_SLUB_DEBUG
4930 &total_objects_attr.attr,
4931 &slabs_attr.attr,
4932 &sanity_checks_attr.attr,
4933 &trace_attr.attr,
4934 &red_zone_attr.attr,
4935 &poison_attr.attr,
4936 &store_user_attr.attr,
4937 &validate_attr.attr,
4938 &alloc_calls_attr.attr,
4939 &free_calls_attr.attr,
4940 #endif
4941 #ifdef CONFIG_ZONE_DMA
4942 &cache_dma_attr.attr,
4943 #endif
4944 #ifdef CONFIG_NUMA
4945 &remote_node_defrag_ratio_attr.attr,
4946 #endif
4947 #ifdef CONFIG_SLUB_STATS
4948 &alloc_fastpath_attr.attr,
4949 &alloc_slowpath_attr.attr,
4950 &free_fastpath_attr.attr,
4951 &free_slowpath_attr.attr,
4952 &free_frozen_attr.attr,
4953 &free_add_partial_attr.attr,
4954 &free_remove_partial_attr.attr,
4955 &alloc_from_partial_attr.attr,
4956 &alloc_slab_attr.attr,
4957 &alloc_refill_attr.attr,
4958 &alloc_node_mismatch_attr.attr,
4959 &free_slab_attr.attr,
4960 &cpuslab_flush_attr.attr,
4961 &deactivate_full_attr.attr,
4962 &deactivate_empty_attr.attr,
4963 &deactivate_to_head_attr.attr,
4964 &deactivate_to_tail_attr.attr,
4965 &deactivate_remote_frees_attr.attr,
4966 &deactivate_bypass_attr.attr,
4967 &order_fallback_attr.attr,
4968 &cmpxchg_double_fail_attr.attr,
4969 &cmpxchg_double_cpu_fail_attr.attr,
4970 &cpu_partial_alloc_attr.attr,
4971 &cpu_partial_free_attr.attr,
4972 &cpu_partial_node_attr.attr,
4973 &cpu_partial_drain_attr.attr,
4974 #endif
4975 #ifdef CONFIG_FAILSLAB
4976 &failslab_attr.attr,
4977 #endif
4978
4979 NULL
4980 };
4981
4982 static struct attribute_group slab_attr_group = {
4983 .attrs = slab_attrs,
4984 };
4985
4986 static ssize_t slab_attr_show(struct kobject *kobj,
4987 struct attribute *attr,
4988 char *buf)
4989 {
4990 struct slab_attribute *attribute;
4991 struct kmem_cache *s;
4992 int err;
4993
4994 attribute = to_slab_attr(attr);
4995 s = to_slab(kobj);
4996
4997 if (!attribute->show)
4998 return -EIO;
4999
5000 err = attribute->show(s, buf);
5001
5002 return err;
5003 }
5004
5005 static ssize_t slab_attr_store(struct kobject *kobj,
5006 struct attribute *attr,
5007 const char *buf, size_t len)
5008 {
5009 struct slab_attribute *attribute;
5010 struct kmem_cache *s;
5011 int err;
5012
5013 attribute = to_slab_attr(attr);
5014 s = to_slab(kobj);
5015
5016 if (!attribute->store)
5017 return -EIO;
5018
5019 err = attribute->store(s, buf, len);
5020 #ifdef CONFIG_MEMCG_KMEM
5021 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5022 int i;
5023
5024 mutex_lock(&slab_mutex);
5025 if (s->max_attr_size < len)
5026 s->max_attr_size = len;
5027
5028 /*
5029 * This is a best effort propagation, so this function's return
5030 * value will be determined by the parent cache only. This is
5031 * basically because not all attributes will have a well
5032 * defined semantics for rollbacks - most of the actions will
5033 * have permanent effects.
5034 *
5035 * Returning the error value of any of the children that fail
5036 * is not 100 % defined, in the sense that users seeing the
5037 * error code won't be able to know anything about the state of
5038 * the cache.
5039 *
5040 * Only returning the error code for the parent cache at least
5041 * has well defined semantics. The cache being written to
5042 * directly either failed or succeeded, in which case we loop
5043 * through the descendants with best-effort propagation.
5044 */
5045 for_each_memcg_cache_index(i) {
5046 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5047 if (c)
5048 attribute->store(c, buf, len);
5049 }
5050 mutex_unlock(&slab_mutex);
5051 }
5052 #endif
5053 return err;
5054 }
5055
5056 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5057 {
5058 #ifdef CONFIG_MEMCG_KMEM
5059 int i;
5060 char *buffer = NULL;
5061
5062 if (!is_root_cache(s))
5063 return;
5064
5065 /*
5066 * This mean this cache had no attribute written. Therefore, no point
5067 * in copying default values around
5068 */
5069 if (!s->max_attr_size)
5070 return;
5071
5072 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5073 char mbuf[64];
5074 char *buf;
5075 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5076
5077 if (!attr || !attr->store || !attr->show)
5078 continue;
5079
5080 /*
5081 * It is really bad that we have to allocate here, so we will
5082 * do it only as a fallback. If we actually allocate, though,
5083 * we can just use the allocated buffer until the end.
5084 *
5085 * Most of the slub attributes will tend to be very small in
5086 * size, but sysfs allows buffers up to a page, so they can
5087 * theoretically happen.
5088 */
5089 if (buffer)
5090 buf = buffer;
5091 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5092 buf = mbuf;
5093 else {
5094 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5095 if (WARN_ON(!buffer))
5096 continue;
5097 buf = buffer;
5098 }
5099
5100 attr->show(s->memcg_params->root_cache, buf);
5101 attr->store(s, buf, strlen(buf));
5102 }
5103
5104 if (buffer)
5105 free_page((unsigned long)buffer);
5106 #endif
5107 }
5108
5109 static const struct sysfs_ops slab_sysfs_ops = {
5110 .show = slab_attr_show,
5111 .store = slab_attr_store,
5112 };
5113
5114 static struct kobj_type slab_ktype = {
5115 .sysfs_ops = &slab_sysfs_ops,
5116 };
5117
5118 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5119 {
5120 struct kobj_type *ktype = get_ktype(kobj);
5121
5122 if (ktype == &slab_ktype)
5123 return 1;
5124 return 0;
5125 }
5126
5127 static const struct kset_uevent_ops slab_uevent_ops = {
5128 .filter = uevent_filter,
5129 };
5130
5131 static struct kset *slab_kset;
5132
5133 #define ID_STR_LENGTH 64
5134
5135 /* Create a unique string id for a slab cache:
5136 *
5137 * Format :[flags-]size
5138 */
5139 static char *create_unique_id(struct kmem_cache *s)
5140 {
5141 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5142 char *p = name;
5143
5144 BUG_ON(!name);
5145
5146 *p++ = ':';
5147 /*
5148 * First flags affecting slabcache operations. We will only
5149 * get here for aliasable slabs so we do not need to support
5150 * too many flags. The flags here must cover all flags that
5151 * are matched during merging to guarantee that the id is
5152 * unique.
5153 */
5154 if (s->flags & SLAB_CACHE_DMA)
5155 *p++ = 'd';
5156 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5157 *p++ = 'a';
5158 if (s->flags & SLAB_DEBUG_FREE)
5159 *p++ = 'F';
5160 if (!(s->flags & SLAB_NOTRACK))
5161 *p++ = 't';
5162 if (p != name + 1)
5163 *p++ = '-';
5164 p += sprintf(p, "%07d", s->size);
5165
5166 #ifdef CONFIG_MEMCG_KMEM
5167 if (!is_root_cache(s))
5168 p += sprintf(p, "-%08d",
5169 memcg_cache_id(s->memcg_params->memcg));
5170 #endif
5171
5172 BUG_ON(p > name + ID_STR_LENGTH - 1);
5173 return name;
5174 }
5175
5176 static int sysfs_slab_add(struct kmem_cache *s)
5177 {
5178 int err;
5179 const char *name;
5180 int unmergeable = slab_unmergeable(s);
5181
5182 if (unmergeable) {
5183 /*
5184 * Slabcache can never be merged so we can use the name proper.
5185 * This is typically the case for debug situations. In that
5186 * case we can catch duplicate names easily.
5187 */
5188 sysfs_remove_link(&slab_kset->kobj, s->name);
5189 name = s->name;
5190 } else {
5191 /*
5192 * Create a unique name for the slab as a target
5193 * for the symlinks.
5194 */
5195 name = create_unique_id(s);
5196 }
5197
5198 s->kobj.kset = slab_kset;
5199 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5200 if (err) {
5201 kobject_put(&s->kobj);
5202 return err;
5203 }
5204
5205 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5206 if (err) {
5207 kobject_del(&s->kobj);
5208 kobject_put(&s->kobj);
5209 return err;
5210 }
5211 kobject_uevent(&s->kobj, KOBJ_ADD);
5212 if (!unmergeable) {
5213 /* Setup first alias */
5214 sysfs_slab_alias(s, s->name);
5215 kfree(name);
5216 }
5217 return 0;
5218 }
5219
5220 static void sysfs_slab_remove(struct kmem_cache *s)
5221 {
5222 if (slab_state < FULL)
5223 /*
5224 * Sysfs has not been setup yet so no need to remove the
5225 * cache from sysfs.
5226 */
5227 return;
5228
5229 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5230 kobject_del(&s->kobj);
5231 kobject_put(&s->kobj);
5232 }
5233
5234 /*
5235 * Need to buffer aliases during bootup until sysfs becomes
5236 * available lest we lose that information.
5237 */
5238 struct saved_alias {
5239 struct kmem_cache *s;
5240 const char *name;
5241 struct saved_alias *next;
5242 };
5243
5244 static struct saved_alias *alias_list;
5245
5246 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5247 {
5248 struct saved_alias *al;
5249
5250 if (slab_state == FULL) {
5251 /*
5252 * If we have a leftover link then remove it.
5253 */
5254 sysfs_remove_link(&slab_kset->kobj, name);
5255 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5256 }
5257
5258 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5259 if (!al)
5260 return -ENOMEM;
5261
5262 al->s = s;
5263 al->name = name;
5264 al->next = alias_list;
5265 alias_list = al;
5266 return 0;
5267 }
5268
5269 static int __init slab_sysfs_init(void)
5270 {
5271 struct kmem_cache *s;
5272 int err;
5273
5274 mutex_lock(&slab_mutex);
5275
5276 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5277 if (!slab_kset) {
5278 mutex_unlock(&slab_mutex);
5279 printk(KERN_ERR "Cannot register slab subsystem.\n");
5280 return -ENOSYS;
5281 }
5282
5283 slab_state = FULL;
5284
5285 list_for_each_entry(s, &slab_caches, list) {
5286 err = sysfs_slab_add(s);
5287 if (err)
5288 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5289 " to sysfs\n", s->name);
5290 }
5291
5292 while (alias_list) {
5293 struct saved_alias *al = alias_list;
5294
5295 alias_list = alias_list->next;
5296 err = sysfs_slab_alias(al->s, al->name);
5297 if (err)
5298 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5299 " %s to sysfs\n", al->name);
5300 kfree(al);
5301 }
5302
5303 mutex_unlock(&slab_mutex);
5304 resiliency_test();
5305 return 0;
5306 }
5307
5308 __initcall(slab_sysfs_init);
5309 #endif /* CONFIG_SYSFS */
5310
5311 /*
5312 * The /proc/slabinfo ABI
5313 */
5314 #ifdef CONFIG_SLABINFO
5315 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5316 {
5317 unsigned long nr_slabs = 0;
5318 unsigned long nr_objs = 0;
5319 unsigned long nr_free = 0;
5320 int node;
5321
5322 for_each_online_node(node) {
5323 struct kmem_cache_node *n = get_node(s, node);
5324
5325 if (!n)
5326 continue;
5327
5328 nr_slabs += node_nr_slabs(n);
5329 nr_objs += node_nr_objs(n);
5330 nr_free += count_partial(n, count_free);
5331 }
5332
5333 sinfo->active_objs = nr_objs - nr_free;
5334 sinfo->num_objs = nr_objs;
5335 sinfo->active_slabs = nr_slabs;
5336 sinfo->num_slabs = nr_slabs;
5337 sinfo->objects_per_slab = oo_objects(s->oo);
5338 sinfo->cache_order = oo_order(s->oo);
5339 }
5340
5341 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5342 {
5343 }
5344
5345 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5346 size_t count, loff_t *ppos)
5347 {
5348 return -EIO;
5349 }
5350 #endif /* CONFIG_SLABINFO */