]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slub.c
switch btrfs_ioctl_snap_create_transid() to fget_light()
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34
35 #include <trace/events/kmem.h>
36
37 #include "internal.h"
38
39 /*
40 * Lock order:
41 * 1. slab_mutex (Global Mutex)
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
44 *
45 * slab_mutex
46 *
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
113 */
114
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 /*
128 * Issues still to be resolved:
129 *
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
132 * - Variable sizing of the per node arrays
133 */
134
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
137
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
140
141 /*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
145 #define MIN_PARTIAL 5
146
147 /*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152 #define MAX_PARTIAL 10
153
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
156
157 /*
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
161 */
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163
164 /*
165 * Set of flags that will prevent slab merging
166 */
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
170
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
173
174 #define OO_SHIFT 16
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON 0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
181
182 static int kmem_size = sizeof(struct kmem_cache);
183
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
187
188 /*
189 * Tracking user of a slab.
190 */
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 unsigned long addr; /* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196 #endif
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s->name);
216 kfree(s);
217 }
218
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233 {
234 return s->node[node];
235 }
236
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
240 {
241 void *base;
242
243 if (!object)
244 return 1;
245
246 base = page_address(page);
247 if (object < base || object >= base + page->objects * s->size ||
248 (object - base) % s->size) {
249 return 0;
250 }
251
252 return 1;
253 }
254
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
256 {
257 return *(void **)(object + s->offset);
258 }
259
260 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261 {
262 prefetch(object + s->offset);
263 }
264
265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266 {
267 void *p;
268
269 #ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271 #else
272 p = get_freepointer(s, object);
273 #endif
274 return p;
275 }
276
277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 {
279 *(void **)(object + s->offset) = fp;
280 }
281
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 __p += (__s)->size)
286
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 {
290 return (p - addr) / s->size;
291 }
292
293 static inline size_t slab_ksize(const struct kmem_cache *s)
294 {
295 #ifdef CONFIG_SLUB_DEBUG
296 /*
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
299 */
300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
301 return s->object_size;
302
303 #endif
304 /*
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
308 */
309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 return s->inuse;
311 /*
312 * Else we can use all the padding etc for the allocation
313 */
314 return s->size;
315 }
316
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 return ((PAGE_SIZE << order) - reserved) / size;
320 }
321
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 unsigned long size, int reserved)
324 {
325 struct kmem_cache_order_objects x = {
326 (order << OO_SHIFT) + order_objects(order, size, reserved)
327 };
328
329 return x;
330 }
331
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 return x.x >> OO_SHIFT;
335 }
336
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 return x.x & OO_MASK;
340 }
341
342 /*
343 * Per slab locking using the pagelock
344 */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 bit_spin_lock(PG_locked, &page->flags);
348 }
349
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 __bit_spin_unlock(PG_locked, &page->flags);
353 }
354
355 /* Interrupts must be disabled (for the fallback code to work right) */
356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 void *freelist_old, unsigned long counters_old,
358 void *freelist_new, unsigned long counters_new,
359 const char *n)
360 {
361 VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 if (s->flags & __CMPXCHG_DOUBLE) {
365 if (cmpxchg_double(&page->freelist, &page->counters,
366 freelist_old, counters_old,
367 freelist_new, counters_new))
368 return 1;
369 } else
370 #endif
371 {
372 slab_lock(page);
373 if (page->freelist == freelist_old && page->counters == counters_old) {
374 page->freelist = freelist_new;
375 page->counters = counters_new;
376 slab_unlock(page);
377 return 1;
378 }
379 slab_unlock(page);
380 }
381
382 cpu_relax();
383 stat(s, CMPXCHG_DOUBLE_FAIL);
384
385 #ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387 #endif
388
389 return 0;
390 }
391
392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 void *freelist_old, unsigned long counters_old,
394 void *freelist_new, unsigned long counters_new,
395 const char *n)
396 {
397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
399 if (s->flags & __CMPXCHG_DOUBLE) {
400 if (cmpxchg_double(&page->freelist, &page->counters,
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405 #endif
406 {
407 unsigned long flags;
408
409 local_irq_save(flags);
410 slab_lock(page);
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
414 slab_unlock(page);
415 local_irq_restore(flags);
416 return 1;
417 }
418 slab_unlock(page);
419 local_irq_restore(flags);
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425 #ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427 #endif
428
429 return 0;
430 }
431
432 #ifdef CONFIG_SLUB_DEBUG
433 /*
434 * Determine a map of object in use on a page.
435 *
436 * Node listlock must be held to guarantee that the page does
437 * not vanish from under us.
438 */
439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440 {
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446 }
447
448 /*
449 * Debug settings:
450 */
451 #ifdef CONFIG_SLUB_DEBUG_ON
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459
460 /*
461 * Object debugging
462 */
463 static void print_section(char *text, u8 *addr, unsigned int length)
464 {
465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 length, 1);
467 }
468
469 static struct track *get_track(struct kmem_cache *s, void *object,
470 enum track_item alloc)
471 {
472 struct track *p;
473
474 if (s->offset)
475 p = object + s->offset + sizeof(void *);
476 else
477 p = object + s->inuse;
478
479 return p + alloc;
480 }
481
482 static void set_track(struct kmem_cache *s, void *object,
483 enum track_item alloc, unsigned long addr)
484 {
485 struct track *p = get_track(s, object, alloc);
486
487 if (addr) {
488 #ifdef CONFIG_STACKTRACE
489 struct stack_trace trace;
490 int i;
491
492 trace.nr_entries = 0;
493 trace.max_entries = TRACK_ADDRS_COUNT;
494 trace.entries = p->addrs;
495 trace.skip = 3;
496 save_stack_trace(&trace);
497
498 /* See rant in lockdep.c */
499 if (trace.nr_entries != 0 &&
500 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 trace.nr_entries--;
502
503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 p->addrs[i] = 0;
505 #endif
506 p->addr = addr;
507 p->cpu = smp_processor_id();
508 p->pid = current->pid;
509 p->when = jiffies;
510 } else
511 memset(p, 0, sizeof(struct track));
512 }
513
514 static void init_tracking(struct kmem_cache *s, void *object)
515 {
516 if (!(s->flags & SLAB_STORE_USER))
517 return;
518
519 set_track(s, object, TRACK_FREE, 0UL);
520 set_track(s, object, TRACK_ALLOC, 0UL);
521 }
522
523 static void print_track(const char *s, struct track *t)
524 {
525 if (!t->addr)
526 return;
527
528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
530 #ifdef CONFIG_STACKTRACE
531 {
532 int i;
533 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 if (t->addrs[i])
535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 else
537 break;
538 }
539 #endif
540 }
541
542 static void print_tracking(struct kmem_cache *s, void *object)
543 {
544 if (!(s->flags & SLAB_STORE_USER))
545 return;
546
547 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 print_track("Freed", get_track(s, object, TRACK_FREE));
549 }
550
551 static void print_page_info(struct page *page)
552 {
553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page, page->objects, page->inuse, page->freelist, page->flags);
555
556 }
557
558 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559 {
560 va_list args;
561 char buf[100];
562
563 va_start(args, fmt);
564 vsnprintf(buf, sizeof(buf), fmt, args);
565 va_end(args);
566 printk(KERN_ERR "========================================"
567 "=====================================\n");
568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
569 printk(KERN_ERR "----------------------------------------"
570 "-------------------------------------\n\n");
571 }
572
573 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574 {
575 va_list args;
576 char buf[100];
577
578 va_start(args, fmt);
579 vsnprintf(buf, sizeof(buf), fmt, args);
580 va_end(args);
581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582 }
583
584 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
585 {
586 unsigned int off; /* Offset of last byte */
587 u8 *addr = page_address(page);
588
589 print_tracking(s, p);
590
591 print_page_info(page);
592
593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 p, p - addr, get_freepointer(s, p));
595
596 if (p > addr + 16)
597 print_section("Bytes b4 ", p - 16, 16);
598
599 print_section("Object ", p, min_t(unsigned long, s->object_size,
600 PAGE_SIZE));
601 if (s->flags & SLAB_RED_ZONE)
602 print_section("Redzone ", p + s->object_size,
603 s->inuse - s->object_size);
604
605 if (s->offset)
606 off = s->offset + sizeof(void *);
607 else
608 off = s->inuse;
609
610 if (s->flags & SLAB_STORE_USER)
611 off += 2 * sizeof(struct track);
612
613 if (off != s->size)
614 /* Beginning of the filler is the free pointer */
615 print_section("Padding ", p + off, s->size - off);
616
617 dump_stack();
618 }
619
620 static void object_err(struct kmem_cache *s, struct page *page,
621 u8 *object, char *reason)
622 {
623 slab_bug(s, "%s", reason);
624 print_trailer(s, page, object);
625 }
626
627 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
628 {
629 va_list args;
630 char buf[100];
631
632 va_start(args, fmt);
633 vsnprintf(buf, sizeof(buf), fmt, args);
634 va_end(args);
635 slab_bug(s, "%s", buf);
636 print_page_info(page);
637 dump_stack();
638 }
639
640 static void init_object(struct kmem_cache *s, void *object, u8 val)
641 {
642 u8 *p = object;
643
644 if (s->flags & __OBJECT_POISON) {
645 memset(p, POISON_FREE, s->object_size - 1);
646 p[s->object_size - 1] = POISON_END;
647 }
648
649 if (s->flags & SLAB_RED_ZONE)
650 memset(p + s->object_size, val, s->inuse - s->object_size);
651 }
652
653 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 void *from, void *to)
655 {
656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 memset(from, data, to - from);
658 }
659
660 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 u8 *object, char *what,
662 u8 *start, unsigned int value, unsigned int bytes)
663 {
664 u8 *fault;
665 u8 *end;
666
667 fault = memchr_inv(start, value, bytes);
668 if (!fault)
669 return 1;
670
671 end = start + bytes;
672 while (end > fault && end[-1] == value)
673 end--;
674
675 slab_bug(s, "%s overwritten", what);
676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 fault, end - 1, fault[0], value);
678 print_trailer(s, page, object);
679
680 restore_bytes(s, what, value, fault, end);
681 return 0;
682 }
683
684 /*
685 * Object layout:
686 *
687 * object address
688 * Bytes of the object to be managed.
689 * If the freepointer may overlay the object then the free
690 * pointer is the first word of the object.
691 *
692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
693 * 0xa5 (POISON_END)
694 *
695 * object + s->object_size
696 * Padding to reach word boundary. This is also used for Redzoning.
697 * Padding is extended by another word if Redzoning is enabled and
698 * object_size == inuse.
699 *
700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701 * 0xcc (RED_ACTIVE) for objects in use.
702 *
703 * object + s->inuse
704 * Meta data starts here.
705 *
706 * A. Free pointer (if we cannot overwrite object on free)
707 * B. Tracking data for SLAB_STORE_USER
708 * C. Padding to reach required alignment boundary or at mininum
709 * one word if debugging is on to be able to detect writes
710 * before the word boundary.
711 *
712 * Padding is done using 0x5a (POISON_INUSE)
713 *
714 * object + s->size
715 * Nothing is used beyond s->size.
716 *
717 * If slabcaches are merged then the object_size and inuse boundaries are mostly
718 * ignored. And therefore no slab options that rely on these boundaries
719 * may be used with merged slabcaches.
720 */
721
722 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723 {
724 unsigned long off = s->inuse; /* The end of info */
725
726 if (s->offset)
727 /* Freepointer is placed after the object. */
728 off += sizeof(void *);
729
730 if (s->flags & SLAB_STORE_USER)
731 /* We also have user information there */
732 off += 2 * sizeof(struct track);
733
734 if (s->size == off)
735 return 1;
736
737 return check_bytes_and_report(s, page, p, "Object padding",
738 p + off, POISON_INUSE, s->size - off);
739 }
740
741 /* Check the pad bytes at the end of a slab page */
742 static int slab_pad_check(struct kmem_cache *s, struct page *page)
743 {
744 u8 *start;
745 u8 *fault;
746 u8 *end;
747 int length;
748 int remainder;
749
750 if (!(s->flags & SLAB_POISON))
751 return 1;
752
753 start = page_address(page);
754 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
755 end = start + length;
756 remainder = length % s->size;
757 if (!remainder)
758 return 1;
759
760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
761 if (!fault)
762 return 1;
763 while (end > fault && end[-1] == POISON_INUSE)
764 end--;
765
766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
767 print_section("Padding ", end - remainder, remainder);
768
769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
770 return 0;
771 }
772
773 static int check_object(struct kmem_cache *s, struct page *page,
774 void *object, u8 val)
775 {
776 u8 *p = object;
777 u8 *endobject = object + s->object_size;
778
779 if (s->flags & SLAB_RED_ZONE) {
780 if (!check_bytes_and_report(s, page, object, "Redzone",
781 endobject, val, s->inuse - s->object_size))
782 return 0;
783 } else {
784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
785 check_bytes_and_report(s, page, p, "Alignment padding",
786 endobject, POISON_INUSE, s->inuse - s->object_size);
787 }
788 }
789
790 if (s->flags & SLAB_POISON) {
791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
792 (!check_bytes_and_report(s, page, p, "Poison", p,
793 POISON_FREE, s->object_size - 1) ||
794 !check_bytes_and_report(s, page, p, "Poison",
795 p + s->object_size - 1, POISON_END, 1)))
796 return 0;
797 /*
798 * check_pad_bytes cleans up on its own.
799 */
800 check_pad_bytes(s, page, p);
801 }
802
803 if (!s->offset && val == SLUB_RED_ACTIVE)
804 /*
805 * Object and freepointer overlap. Cannot check
806 * freepointer while object is allocated.
807 */
808 return 1;
809
810 /* Check free pointer validity */
811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 object_err(s, page, p, "Freepointer corrupt");
813 /*
814 * No choice but to zap it and thus lose the remainder
815 * of the free objects in this slab. May cause
816 * another error because the object count is now wrong.
817 */
818 set_freepointer(s, p, NULL);
819 return 0;
820 }
821 return 1;
822 }
823
824 static int check_slab(struct kmem_cache *s, struct page *page)
825 {
826 int maxobj;
827
828 VM_BUG_ON(!irqs_disabled());
829
830 if (!PageSlab(page)) {
831 slab_err(s, page, "Not a valid slab page");
832 return 0;
833 }
834
835 maxobj = order_objects(compound_order(page), s->size, s->reserved);
836 if (page->objects > maxobj) {
837 slab_err(s, page, "objects %u > max %u",
838 s->name, page->objects, maxobj);
839 return 0;
840 }
841 if (page->inuse > page->objects) {
842 slab_err(s, page, "inuse %u > max %u",
843 s->name, page->inuse, page->objects);
844 return 0;
845 }
846 /* Slab_pad_check fixes things up after itself */
847 slab_pad_check(s, page);
848 return 1;
849 }
850
851 /*
852 * Determine if a certain object on a page is on the freelist. Must hold the
853 * slab lock to guarantee that the chains are in a consistent state.
854 */
855 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856 {
857 int nr = 0;
858 void *fp;
859 void *object = NULL;
860 unsigned long max_objects;
861
862 fp = page->freelist;
863 while (fp && nr <= page->objects) {
864 if (fp == search)
865 return 1;
866 if (!check_valid_pointer(s, page, fp)) {
867 if (object) {
868 object_err(s, page, object,
869 "Freechain corrupt");
870 set_freepointer(s, object, NULL);
871 break;
872 } else {
873 slab_err(s, page, "Freepointer corrupt");
874 page->freelist = NULL;
875 page->inuse = page->objects;
876 slab_fix(s, "Freelist cleared");
877 return 0;
878 }
879 break;
880 }
881 object = fp;
882 fp = get_freepointer(s, object);
883 nr++;
884 }
885
886 max_objects = order_objects(compound_order(page), s->size, s->reserved);
887 if (max_objects > MAX_OBJS_PER_PAGE)
888 max_objects = MAX_OBJS_PER_PAGE;
889
890 if (page->objects != max_objects) {
891 slab_err(s, page, "Wrong number of objects. Found %d but "
892 "should be %d", page->objects, max_objects);
893 page->objects = max_objects;
894 slab_fix(s, "Number of objects adjusted.");
895 }
896 if (page->inuse != page->objects - nr) {
897 slab_err(s, page, "Wrong object count. Counter is %d but "
898 "counted were %d", page->inuse, page->objects - nr);
899 page->inuse = page->objects - nr;
900 slab_fix(s, "Object count adjusted.");
901 }
902 return search == NULL;
903 }
904
905 static void trace(struct kmem_cache *s, struct page *page, void *object,
906 int alloc)
907 {
908 if (s->flags & SLAB_TRACE) {
909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 s->name,
911 alloc ? "alloc" : "free",
912 object, page->inuse,
913 page->freelist);
914
915 if (!alloc)
916 print_section("Object ", (void *)object, s->object_size);
917
918 dump_stack();
919 }
920 }
921
922 /*
923 * Hooks for other subsystems that check memory allocations. In a typical
924 * production configuration these hooks all should produce no code at all.
925 */
926 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927 {
928 flags &= gfp_allowed_mask;
929 lockdep_trace_alloc(flags);
930 might_sleep_if(flags & __GFP_WAIT);
931
932 return should_failslab(s->object_size, flags, s->flags);
933 }
934
935 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936 {
937 flags &= gfp_allowed_mask;
938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
940 }
941
942 static inline void slab_free_hook(struct kmem_cache *s, void *x)
943 {
944 kmemleak_free_recursive(x, s->flags);
945
946 /*
947 * Trouble is that we may no longer disable interupts in the fast path
948 * So in order to make the debug calls that expect irqs to be
949 * disabled we need to disable interrupts temporarily.
950 */
951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 {
953 unsigned long flags;
954
955 local_irq_save(flags);
956 kmemcheck_slab_free(s, x, s->object_size);
957 debug_check_no_locks_freed(x, s->object_size);
958 local_irq_restore(flags);
959 }
960 #endif
961 if (!(s->flags & SLAB_DEBUG_OBJECTS))
962 debug_check_no_obj_freed(x, s->object_size);
963 }
964
965 /*
966 * Tracking of fully allocated slabs for debugging purposes.
967 *
968 * list_lock must be held.
969 */
970 static void add_full(struct kmem_cache *s,
971 struct kmem_cache_node *n, struct page *page)
972 {
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
975
976 list_add(&page->lru, &n->full);
977 }
978
979 /*
980 * list_lock must be held.
981 */
982 static void remove_full(struct kmem_cache *s, struct page *page)
983 {
984 if (!(s->flags & SLAB_STORE_USER))
985 return;
986
987 list_del(&page->lru);
988 }
989
990 /* Tracking of the number of slabs for debugging purposes */
991 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992 {
993 struct kmem_cache_node *n = get_node(s, node);
994
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999 {
1000 return atomic_long_read(&n->nr_slabs);
1001 }
1002
1003 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1004 {
1005 struct kmem_cache_node *n = get_node(s, node);
1006
1007 /*
1008 * May be called early in order to allocate a slab for the
1009 * kmem_cache_node structure. Solve the chicken-egg
1010 * dilemma by deferring the increment of the count during
1011 * bootstrap (see early_kmem_cache_node_alloc).
1012 */
1013 if (n) {
1014 atomic_long_inc(&n->nr_slabs);
1015 atomic_long_add(objects, &n->total_objects);
1016 }
1017 }
1018 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1019 {
1020 struct kmem_cache_node *n = get_node(s, node);
1021
1022 atomic_long_dec(&n->nr_slabs);
1023 atomic_long_sub(objects, &n->total_objects);
1024 }
1025
1026 /* Object debug checks for alloc/free paths */
1027 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 void *object)
1029 {
1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 return;
1032
1033 init_object(s, object, SLUB_RED_INACTIVE);
1034 init_tracking(s, object);
1035 }
1036
1037 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1038 void *object, unsigned long addr)
1039 {
1040 if (!check_slab(s, page))
1041 goto bad;
1042
1043 if (!check_valid_pointer(s, page, object)) {
1044 object_err(s, page, object, "Freelist Pointer check fails");
1045 goto bad;
1046 }
1047
1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1049 goto bad;
1050
1051 /* Success perform special debug activities for allocs */
1052 if (s->flags & SLAB_STORE_USER)
1053 set_track(s, object, TRACK_ALLOC, addr);
1054 trace(s, page, object, 1);
1055 init_object(s, object, SLUB_RED_ACTIVE);
1056 return 1;
1057
1058 bad:
1059 if (PageSlab(page)) {
1060 /*
1061 * If this is a slab page then lets do the best we can
1062 * to avoid issues in the future. Marking all objects
1063 * as used avoids touching the remaining objects.
1064 */
1065 slab_fix(s, "Marking all objects used");
1066 page->inuse = page->objects;
1067 page->freelist = NULL;
1068 }
1069 return 0;
1070 }
1071
1072 static noinline int free_debug_processing(struct kmem_cache *s,
1073 struct page *page, void *object, unsigned long addr)
1074 {
1075 unsigned long flags;
1076 int rc = 0;
1077
1078 local_irq_save(flags);
1079 slab_lock(page);
1080
1081 if (!check_slab(s, page))
1082 goto fail;
1083
1084 if (!check_valid_pointer(s, page, object)) {
1085 slab_err(s, page, "Invalid object pointer 0x%p", object);
1086 goto fail;
1087 }
1088
1089 if (on_freelist(s, page, object)) {
1090 object_err(s, page, object, "Object already free");
1091 goto fail;
1092 }
1093
1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1095 goto out;
1096
1097 if (unlikely(s != page->slab)) {
1098 if (!PageSlab(page)) {
1099 slab_err(s, page, "Attempt to free object(0x%p) "
1100 "outside of slab", object);
1101 } else if (!page->slab) {
1102 printk(KERN_ERR
1103 "SLUB <none>: no slab for object 0x%p.\n",
1104 object);
1105 dump_stack();
1106 } else
1107 object_err(s, page, object,
1108 "page slab pointer corrupt.");
1109 goto fail;
1110 }
1111
1112 if (s->flags & SLAB_STORE_USER)
1113 set_track(s, object, TRACK_FREE, addr);
1114 trace(s, page, object, 0);
1115 init_object(s, object, SLUB_RED_INACTIVE);
1116 rc = 1;
1117 out:
1118 slab_unlock(page);
1119 local_irq_restore(flags);
1120 return rc;
1121
1122 fail:
1123 slab_fix(s, "Object at 0x%p not freed", object);
1124 goto out;
1125 }
1126
1127 static int __init setup_slub_debug(char *str)
1128 {
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1131 /*
1132 * No options specified. Switch on full debugging.
1133 */
1134 goto out;
1135
1136 if (*str == ',')
1137 /*
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1140 */
1141 goto check_slabs;
1142
1143 if (tolower(*str) == 'o') {
1144 /*
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1147 */
1148 disable_higher_order_debug = 1;
1149 goto out;
1150 }
1151
1152 slub_debug = 0;
1153 if (*str == '-')
1154 /*
1155 * Switch off all debugging measures.
1156 */
1157 goto out;
1158
1159 /*
1160 * Determine which debug features should be switched on
1161 */
1162 for (; *str && *str != ','; str++) {
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
1184 "unknown. skipped\n", *str);
1185 }
1186 }
1187
1188 check_slabs:
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
1191 out:
1192 return 1;
1193 }
1194
1195 __setup("slub_debug", setup_slub_debug);
1196
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 unsigned long flags, const char *name,
1199 void (*ctor)(void *))
1200 {
1201 /*
1202 * Enable debugging if selected on the kernel commandline.
1203 */
1204 if (slub_debug && (!slub_debug_slabs ||
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 flags |= slub_debug;
1207
1208 return flags;
1209 }
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
1213
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 struct page *page, void *object, unsigned long addr) { return 0; }
1216
1217 static inline int free_debug_processing(struct kmem_cache *s,
1218 struct page *page, void *object, unsigned long addr) { return 0; }
1219
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 unsigned long flags, const char *name,
1229 void (*ctor)(void *))
1230 {
1231 return flags;
1232 }
1233 #define slub_debug 0
1234
1235 #define disable_higher_order_debug 0
1236
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
1254 #endif /* CONFIG_SLUB_DEBUG */
1255
1256 /*
1257 * Slab allocation and freeing
1258 */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261 {
1262 int order = oo_order(oo);
1263
1264 flags |= __GFP_NOTRACK;
1265
1266 if (node == NUMA_NO_NODE)
1267 return alloc_pages(flags, order);
1268 else
1269 return alloc_pages_exact_node(node, flags, order);
1270 }
1271
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 struct page *page;
1275 struct kmem_cache_order_objects oo = s->oo;
1276 gfp_t alloc_gfp;
1277
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
1283 flags |= s->allocflags;
1284
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
1299
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
1302 }
1303
1304 if (kmemcheck_enabled && page
1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
1318 }
1319
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
1325 page->objects = oo_objects(oo);
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 1 << oo_order(oo));
1330
1331 return page;
1332 }
1333
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336 {
1337 setup_object_debug(s, page, object);
1338 if (unlikely(s->ctor))
1339 s->ctor(object);
1340 }
1341
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 struct page *page;
1345 void *start;
1346 void *last;
1347 void *p;
1348
1349 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1350
1351 page = allocate_slab(s,
1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1353 if (!page)
1354 goto out;
1355
1356 inc_slabs_node(s, page_to_nid(page), page->objects);
1357 page->slab = s;
1358 __SetPageSlab(page);
1359 if (page->pfmemalloc)
1360 SetPageSlabPfmemalloc(page);
1361
1362 start = page_address(page);
1363
1364 if (unlikely(s->flags & SLAB_POISON))
1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1366
1367 last = start;
1368 for_each_object(p, s, start, page->objects) {
1369 setup_object(s, page, last);
1370 set_freepointer(s, last, p);
1371 last = p;
1372 }
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, NULL);
1375
1376 page->freelist = start;
1377 page->inuse = page->objects;
1378 page->frozen = 1;
1379 out:
1380 return page;
1381 }
1382
1383 static void __free_slab(struct kmem_cache *s, struct page *page)
1384 {
1385 int order = compound_order(page);
1386 int pages = 1 << order;
1387
1388 if (kmem_cache_debug(s)) {
1389 void *p;
1390
1391 slab_pad_check(s, page);
1392 for_each_object(p, s, page_address(page),
1393 page->objects)
1394 check_object(s, page, p, SLUB_RED_INACTIVE);
1395 }
1396
1397 kmemcheck_free_shadow(page, compound_order(page));
1398
1399 mod_zone_page_state(page_zone(page),
1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1402 -pages);
1403
1404 __ClearPageSlabPfmemalloc(page);
1405 __ClearPageSlab(page);
1406 reset_page_mapcount(page);
1407 if (current->reclaim_state)
1408 current->reclaim_state->reclaimed_slab += pages;
1409 __free_pages(page, order);
1410 }
1411
1412 #define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414
1415 static void rcu_free_slab(struct rcu_head *h)
1416 {
1417 struct page *page;
1418
1419 if (need_reserve_slab_rcu)
1420 page = virt_to_head_page(h);
1421 else
1422 page = container_of((struct list_head *)h, struct page, lru);
1423
1424 __free_slab(page->slab, page);
1425 }
1426
1427 static void free_slab(struct kmem_cache *s, struct page *page)
1428 {
1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1430 struct rcu_head *head;
1431
1432 if (need_reserve_slab_rcu) {
1433 int order = compound_order(page);
1434 int offset = (PAGE_SIZE << order) - s->reserved;
1435
1436 VM_BUG_ON(s->reserved != sizeof(*head));
1437 head = page_address(page) + offset;
1438 } else {
1439 /*
1440 * RCU free overloads the RCU head over the LRU
1441 */
1442 head = (void *)&page->lru;
1443 }
1444
1445 call_rcu(head, rcu_free_slab);
1446 } else
1447 __free_slab(s, page);
1448 }
1449
1450 static void discard_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 dec_slabs_node(s, page_to_nid(page), page->objects);
1453 free_slab(s, page);
1454 }
1455
1456 /*
1457 * Management of partially allocated slabs.
1458 *
1459 * list_lock must be held.
1460 */
1461 static inline void add_partial(struct kmem_cache_node *n,
1462 struct page *page, int tail)
1463 {
1464 n->nr_partial++;
1465 if (tail == DEACTIVATE_TO_TAIL)
1466 list_add_tail(&page->lru, &n->partial);
1467 else
1468 list_add(&page->lru, &n->partial);
1469 }
1470
1471 /*
1472 * list_lock must be held.
1473 */
1474 static inline void remove_partial(struct kmem_cache_node *n,
1475 struct page *page)
1476 {
1477 list_del(&page->lru);
1478 n->nr_partial--;
1479 }
1480
1481 /*
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
1484 *
1485 * Returns a list of objects or NULL if it fails.
1486 *
1487 * Must hold list_lock since we modify the partial list.
1488 */
1489 static inline void *acquire_slab(struct kmem_cache *s,
1490 struct kmem_cache_node *n, struct page *page,
1491 int mode)
1492 {
1493 void *freelist;
1494 unsigned long counters;
1495 struct page new;
1496
1497 /*
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1501 */
1502 freelist = page->freelist;
1503 counters = page->counters;
1504 new.counters = counters;
1505 if (mode) {
1506 new.inuse = page->objects;
1507 new.freelist = NULL;
1508 } else {
1509 new.freelist = freelist;
1510 }
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1515 if (!__cmpxchg_double_slab(s, page,
1516 freelist, counters,
1517 new.freelist, new.counters,
1518 "acquire_slab"))
1519 return NULL;
1520
1521 remove_partial(n, page);
1522 WARN_ON(!freelist);
1523 return freelist;
1524 }
1525
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1528
1529 /*
1530 * Try to allocate a partial slab from a specific node.
1531 */
1532 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1533 struct kmem_cache_cpu *c, gfp_t flags)
1534 {
1535 struct page *page, *page2;
1536 void *object = NULL;
1537
1538 /*
1539 * Racy check. If we mistakenly see no partial slabs then we
1540 * just allocate an empty slab. If we mistakenly try to get a
1541 * partial slab and there is none available then get_partials()
1542 * will return NULL.
1543 */
1544 if (!n || !n->nr_partial)
1545 return NULL;
1546
1547 spin_lock(&n->list_lock);
1548 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1549 void *t;
1550 int available;
1551
1552 if (!pfmemalloc_match(page, flags))
1553 continue;
1554
1555 t = acquire_slab(s, n, page, object == NULL);
1556 if (!t)
1557 break;
1558
1559 if (!object) {
1560 c->page = page;
1561 stat(s, ALLOC_FROM_PARTIAL);
1562 object = t;
1563 available = page->objects - page->inuse;
1564 } else {
1565 available = put_cpu_partial(s, page, 0);
1566 stat(s, CPU_PARTIAL_NODE);
1567 }
1568 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1569 break;
1570
1571 }
1572 spin_unlock(&n->list_lock);
1573 return object;
1574 }
1575
1576 /*
1577 * Get a page from somewhere. Search in increasing NUMA distances.
1578 */
1579 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1580 struct kmem_cache_cpu *c)
1581 {
1582 #ifdef CONFIG_NUMA
1583 struct zonelist *zonelist;
1584 struct zoneref *z;
1585 struct zone *zone;
1586 enum zone_type high_zoneidx = gfp_zone(flags);
1587 void *object;
1588 unsigned int cpuset_mems_cookie;
1589
1590 /*
1591 * The defrag ratio allows a configuration of the tradeoffs between
1592 * inter node defragmentation and node local allocations. A lower
1593 * defrag_ratio increases the tendency to do local allocations
1594 * instead of attempting to obtain partial slabs from other nodes.
1595 *
1596 * If the defrag_ratio is set to 0 then kmalloc() always
1597 * returns node local objects. If the ratio is higher then kmalloc()
1598 * may return off node objects because partial slabs are obtained
1599 * from other nodes and filled up.
1600 *
1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1602 * defrag_ratio = 1000) then every (well almost) allocation will
1603 * first attempt to defrag slab caches on other nodes. This means
1604 * scanning over all nodes to look for partial slabs which may be
1605 * expensive if we do it every time we are trying to find a slab
1606 * with available objects.
1607 */
1608 if (!s->remote_node_defrag_ratio ||
1609 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1610 return NULL;
1611
1612 do {
1613 cpuset_mems_cookie = get_mems_allowed();
1614 zonelist = node_zonelist(slab_node(), flags);
1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 struct kmem_cache_node *n;
1617
1618 n = get_node(s, zone_to_nid(zone));
1619
1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1621 n->nr_partial > s->min_partial) {
1622 object = get_partial_node(s, n, c, flags);
1623 if (object) {
1624 /*
1625 * Return the object even if
1626 * put_mems_allowed indicated that
1627 * the cpuset mems_allowed was
1628 * updated in parallel. It's a
1629 * harmless race between the alloc
1630 * and the cpuset update.
1631 */
1632 put_mems_allowed(cpuset_mems_cookie);
1633 return object;
1634 }
1635 }
1636 }
1637 } while (!put_mems_allowed(cpuset_mems_cookie));
1638 #endif
1639 return NULL;
1640 }
1641
1642 /*
1643 * Get a partial page, lock it and return it.
1644 */
1645 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1646 struct kmem_cache_cpu *c)
1647 {
1648 void *object;
1649 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1650
1651 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1652 if (object || node != NUMA_NO_NODE)
1653 return object;
1654
1655 return get_any_partial(s, flags, c);
1656 }
1657
1658 #ifdef CONFIG_PREEMPT
1659 /*
1660 * Calculate the next globally unique transaction for disambiguiation
1661 * during cmpxchg. The transactions start with the cpu number and are then
1662 * incremented by CONFIG_NR_CPUS.
1663 */
1664 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1665 #else
1666 /*
1667 * No preemption supported therefore also no need to check for
1668 * different cpus.
1669 */
1670 #define TID_STEP 1
1671 #endif
1672
1673 static inline unsigned long next_tid(unsigned long tid)
1674 {
1675 return tid + TID_STEP;
1676 }
1677
1678 static inline unsigned int tid_to_cpu(unsigned long tid)
1679 {
1680 return tid % TID_STEP;
1681 }
1682
1683 static inline unsigned long tid_to_event(unsigned long tid)
1684 {
1685 return tid / TID_STEP;
1686 }
1687
1688 static inline unsigned int init_tid(int cpu)
1689 {
1690 return cpu;
1691 }
1692
1693 static inline void note_cmpxchg_failure(const char *n,
1694 const struct kmem_cache *s, unsigned long tid)
1695 {
1696 #ifdef SLUB_DEBUG_CMPXCHG
1697 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1698
1699 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1700
1701 #ifdef CONFIG_PREEMPT
1702 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1703 printk("due to cpu change %d -> %d\n",
1704 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1705 else
1706 #endif
1707 if (tid_to_event(tid) != tid_to_event(actual_tid))
1708 printk("due to cpu running other code. Event %ld->%ld\n",
1709 tid_to_event(tid), tid_to_event(actual_tid));
1710 else
1711 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1712 actual_tid, tid, next_tid(tid));
1713 #endif
1714 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1715 }
1716
1717 void init_kmem_cache_cpus(struct kmem_cache *s)
1718 {
1719 int cpu;
1720
1721 for_each_possible_cpu(cpu)
1722 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1723 }
1724
1725 /*
1726 * Remove the cpu slab
1727 */
1728 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1729 {
1730 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1731 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1732 int lock = 0;
1733 enum slab_modes l = M_NONE, m = M_NONE;
1734 void *nextfree;
1735 int tail = DEACTIVATE_TO_HEAD;
1736 struct page new;
1737 struct page old;
1738
1739 if (page->freelist) {
1740 stat(s, DEACTIVATE_REMOTE_FREES);
1741 tail = DEACTIVATE_TO_TAIL;
1742 }
1743
1744 /*
1745 * Stage one: Free all available per cpu objects back
1746 * to the page freelist while it is still frozen. Leave the
1747 * last one.
1748 *
1749 * There is no need to take the list->lock because the page
1750 * is still frozen.
1751 */
1752 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1753 void *prior;
1754 unsigned long counters;
1755
1756 do {
1757 prior = page->freelist;
1758 counters = page->counters;
1759 set_freepointer(s, freelist, prior);
1760 new.counters = counters;
1761 new.inuse--;
1762 VM_BUG_ON(!new.frozen);
1763
1764 } while (!__cmpxchg_double_slab(s, page,
1765 prior, counters,
1766 freelist, new.counters,
1767 "drain percpu freelist"));
1768
1769 freelist = nextfree;
1770 }
1771
1772 /*
1773 * Stage two: Ensure that the page is unfrozen while the
1774 * list presence reflects the actual number of objects
1775 * during unfreeze.
1776 *
1777 * We setup the list membership and then perform a cmpxchg
1778 * with the count. If there is a mismatch then the page
1779 * is not unfrozen but the page is on the wrong list.
1780 *
1781 * Then we restart the process which may have to remove
1782 * the page from the list that we just put it on again
1783 * because the number of objects in the slab may have
1784 * changed.
1785 */
1786 redo:
1787
1788 old.freelist = page->freelist;
1789 old.counters = page->counters;
1790 VM_BUG_ON(!old.frozen);
1791
1792 /* Determine target state of the slab */
1793 new.counters = old.counters;
1794 if (freelist) {
1795 new.inuse--;
1796 set_freepointer(s, freelist, old.freelist);
1797 new.freelist = freelist;
1798 } else
1799 new.freelist = old.freelist;
1800
1801 new.frozen = 0;
1802
1803 if (!new.inuse && n->nr_partial > s->min_partial)
1804 m = M_FREE;
1805 else if (new.freelist) {
1806 m = M_PARTIAL;
1807 if (!lock) {
1808 lock = 1;
1809 /*
1810 * Taking the spinlock removes the possiblity
1811 * that acquire_slab() will see a slab page that
1812 * is frozen
1813 */
1814 spin_lock(&n->list_lock);
1815 }
1816 } else {
1817 m = M_FULL;
1818 if (kmem_cache_debug(s) && !lock) {
1819 lock = 1;
1820 /*
1821 * This also ensures that the scanning of full
1822 * slabs from diagnostic functions will not see
1823 * any frozen slabs.
1824 */
1825 spin_lock(&n->list_lock);
1826 }
1827 }
1828
1829 if (l != m) {
1830
1831 if (l == M_PARTIAL)
1832
1833 remove_partial(n, page);
1834
1835 else if (l == M_FULL)
1836
1837 remove_full(s, page);
1838
1839 if (m == M_PARTIAL) {
1840
1841 add_partial(n, page, tail);
1842 stat(s, tail);
1843
1844 } else if (m == M_FULL) {
1845
1846 stat(s, DEACTIVATE_FULL);
1847 add_full(s, n, page);
1848
1849 }
1850 }
1851
1852 l = m;
1853 if (!__cmpxchg_double_slab(s, page,
1854 old.freelist, old.counters,
1855 new.freelist, new.counters,
1856 "unfreezing slab"))
1857 goto redo;
1858
1859 if (lock)
1860 spin_unlock(&n->list_lock);
1861
1862 if (m == M_FREE) {
1863 stat(s, DEACTIVATE_EMPTY);
1864 discard_slab(s, page);
1865 stat(s, FREE_SLAB);
1866 }
1867 }
1868
1869 /*
1870 * Unfreeze all the cpu partial slabs.
1871 *
1872 * This function must be called with interrupt disabled.
1873 */
1874 static void unfreeze_partials(struct kmem_cache *s)
1875 {
1876 struct kmem_cache_node *n = NULL, *n2 = NULL;
1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1878 struct page *page, *discard_page = NULL;
1879
1880 while ((page = c->partial)) {
1881 struct page new;
1882 struct page old;
1883
1884 c->partial = page->next;
1885
1886 n2 = get_node(s, page_to_nid(page));
1887 if (n != n2) {
1888 if (n)
1889 spin_unlock(&n->list_lock);
1890
1891 n = n2;
1892 spin_lock(&n->list_lock);
1893 }
1894
1895 do {
1896
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1900
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1903
1904 new.frozen = 0;
1905
1906 } while (!__cmpxchg_double_slab(s, page,
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"));
1910
1911 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1912 page->next = discard_page;
1913 discard_page = page;
1914 } else {
1915 add_partial(n, page, DEACTIVATE_TO_TAIL);
1916 stat(s, FREE_ADD_PARTIAL);
1917 }
1918 }
1919
1920 if (n)
1921 spin_unlock(&n->list_lock);
1922
1923 while (discard_page) {
1924 page = discard_page;
1925 discard_page = discard_page->next;
1926
1927 stat(s, DEACTIVATE_EMPTY);
1928 discard_slab(s, page);
1929 stat(s, FREE_SLAB);
1930 }
1931 }
1932
1933 /*
1934 * Put a page that was just frozen (in __slab_free) into a partial page
1935 * slot if available. This is done without interrupts disabled and without
1936 * preemption disabled. The cmpxchg is racy and may put the partial page
1937 * onto a random cpus partial slot.
1938 *
1939 * If we did not find a slot then simply move all the partials to the
1940 * per node partial list.
1941 */
1942 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1943 {
1944 struct page *oldpage;
1945 int pages;
1946 int pobjects;
1947
1948 do {
1949 pages = 0;
1950 pobjects = 0;
1951 oldpage = this_cpu_read(s->cpu_slab->partial);
1952
1953 if (oldpage) {
1954 pobjects = oldpage->pobjects;
1955 pages = oldpage->pages;
1956 if (drain && pobjects > s->cpu_partial) {
1957 unsigned long flags;
1958 /*
1959 * partial array is full. Move the existing
1960 * set to the per node partial list.
1961 */
1962 local_irq_save(flags);
1963 unfreeze_partials(s);
1964 local_irq_restore(flags);
1965 pobjects = 0;
1966 pages = 0;
1967 stat(s, CPU_PARTIAL_DRAIN);
1968 }
1969 }
1970
1971 pages++;
1972 pobjects += page->objects - page->inuse;
1973
1974 page->pages = pages;
1975 page->pobjects = pobjects;
1976 page->next = oldpage;
1977
1978 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1979 return pobjects;
1980 }
1981
1982 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1983 {
1984 stat(s, CPUSLAB_FLUSH);
1985 deactivate_slab(s, c->page, c->freelist);
1986
1987 c->tid = next_tid(c->tid);
1988 c->page = NULL;
1989 c->freelist = NULL;
1990 }
1991
1992 /*
1993 * Flush cpu slab.
1994 *
1995 * Called from IPI handler with interrupts disabled.
1996 */
1997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1998 {
1999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2000
2001 if (likely(c)) {
2002 if (c->page)
2003 flush_slab(s, c);
2004
2005 unfreeze_partials(s);
2006 }
2007 }
2008
2009 static void flush_cpu_slab(void *d)
2010 {
2011 struct kmem_cache *s = d;
2012
2013 __flush_cpu_slab(s, smp_processor_id());
2014 }
2015
2016 static bool has_cpu_slab(int cpu, void *info)
2017 {
2018 struct kmem_cache *s = info;
2019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2020
2021 return c->page || c->partial;
2022 }
2023
2024 static void flush_all(struct kmem_cache *s)
2025 {
2026 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2027 }
2028
2029 /*
2030 * Check if the objects in a per cpu structure fit numa
2031 * locality expectations.
2032 */
2033 static inline int node_match(struct page *page, int node)
2034 {
2035 #ifdef CONFIG_NUMA
2036 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2037 return 0;
2038 #endif
2039 return 1;
2040 }
2041
2042 static int count_free(struct page *page)
2043 {
2044 return page->objects - page->inuse;
2045 }
2046
2047 static unsigned long count_partial(struct kmem_cache_node *n,
2048 int (*get_count)(struct page *))
2049 {
2050 unsigned long flags;
2051 unsigned long x = 0;
2052 struct page *page;
2053
2054 spin_lock_irqsave(&n->list_lock, flags);
2055 list_for_each_entry(page, &n->partial, lru)
2056 x += get_count(page);
2057 spin_unlock_irqrestore(&n->list_lock, flags);
2058 return x;
2059 }
2060
2061 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2062 {
2063 #ifdef CONFIG_SLUB_DEBUG
2064 return atomic_long_read(&n->total_objects);
2065 #else
2066 return 0;
2067 #endif
2068 }
2069
2070 static noinline void
2071 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2072 {
2073 int node;
2074
2075 printk(KERN_WARNING
2076 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2077 nid, gfpflags);
2078 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2079 "default order: %d, min order: %d\n", s->name, s->object_size,
2080 s->size, oo_order(s->oo), oo_order(s->min));
2081
2082 if (oo_order(s->min) > get_order(s->object_size))
2083 printk(KERN_WARNING " %s debugging increased min order, use "
2084 "slub_debug=O to disable.\n", s->name);
2085
2086 for_each_online_node(node) {
2087 struct kmem_cache_node *n = get_node(s, node);
2088 unsigned long nr_slabs;
2089 unsigned long nr_objs;
2090 unsigned long nr_free;
2091
2092 if (!n)
2093 continue;
2094
2095 nr_free = count_partial(n, count_free);
2096 nr_slabs = node_nr_slabs(n);
2097 nr_objs = node_nr_objs(n);
2098
2099 printk(KERN_WARNING
2100 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2101 node, nr_slabs, nr_objs, nr_free);
2102 }
2103 }
2104
2105 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2106 int node, struct kmem_cache_cpu **pc)
2107 {
2108 void *freelist;
2109 struct kmem_cache_cpu *c = *pc;
2110 struct page *page;
2111
2112 freelist = get_partial(s, flags, node, c);
2113
2114 if (freelist)
2115 return freelist;
2116
2117 page = new_slab(s, flags, node);
2118 if (page) {
2119 c = __this_cpu_ptr(s->cpu_slab);
2120 if (c->page)
2121 flush_slab(s, c);
2122
2123 /*
2124 * No other reference to the page yet so we can
2125 * muck around with it freely without cmpxchg
2126 */
2127 freelist = page->freelist;
2128 page->freelist = NULL;
2129
2130 stat(s, ALLOC_SLAB);
2131 c->page = page;
2132 *pc = c;
2133 } else
2134 freelist = NULL;
2135
2136 return freelist;
2137 }
2138
2139 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2140 {
2141 if (unlikely(PageSlabPfmemalloc(page)))
2142 return gfp_pfmemalloc_allowed(gfpflags);
2143
2144 return true;
2145 }
2146
2147 /*
2148 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2149 * or deactivate the page.
2150 *
2151 * The page is still frozen if the return value is not NULL.
2152 *
2153 * If this function returns NULL then the page has been unfrozen.
2154 *
2155 * This function must be called with interrupt disabled.
2156 */
2157 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2158 {
2159 struct page new;
2160 unsigned long counters;
2161 void *freelist;
2162
2163 do {
2164 freelist = page->freelist;
2165 counters = page->counters;
2166
2167 new.counters = counters;
2168 VM_BUG_ON(!new.frozen);
2169
2170 new.inuse = page->objects;
2171 new.frozen = freelist != NULL;
2172
2173 } while (!__cmpxchg_double_slab(s, page,
2174 freelist, counters,
2175 NULL, new.counters,
2176 "get_freelist"));
2177
2178 return freelist;
2179 }
2180
2181 /*
2182 * Slow path. The lockless freelist is empty or we need to perform
2183 * debugging duties.
2184 *
2185 * Processing is still very fast if new objects have been freed to the
2186 * regular freelist. In that case we simply take over the regular freelist
2187 * as the lockless freelist and zap the regular freelist.
2188 *
2189 * If that is not working then we fall back to the partial lists. We take the
2190 * first element of the freelist as the object to allocate now and move the
2191 * rest of the freelist to the lockless freelist.
2192 *
2193 * And if we were unable to get a new slab from the partial slab lists then
2194 * we need to allocate a new slab. This is the slowest path since it involves
2195 * a call to the page allocator and the setup of a new slab.
2196 */
2197 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2198 unsigned long addr, struct kmem_cache_cpu *c)
2199 {
2200 void *freelist;
2201 struct page *page;
2202 unsigned long flags;
2203
2204 local_irq_save(flags);
2205 #ifdef CONFIG_PREEMPT
2206 /*
2207 * We may have been preempted and rescheduled on a different
2208 * cpu before disabling interrupts. Need to reload cpu area
2209 * pointer.
2210 */
2211 c = this_cpu_ptr(s->cpu_slab);
2212 #endif
2213
2214 page = c->page;
2215 if (!page)
2216 goto new_slab;
2217 redo:
2218
2219 if (unlikely(!node_match(page, node))) {
2220 stat(s, ALLOC_NODE_MISMATCH);
2221 deactivate_slab(s, page, c->freelist);
2222 c->page = NULL;
2223 c->freelist = NULL;
2224 goto new_slab;
2225 }
2226
2227 /*
2228 * By rights, we should be searching for a slab page that was
2229 * PFMEMALLOC but right now, we are losing the pfmemalloc
2230 * information when the page leaves the per-cpu allocator
2231 */
2232 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2233 deactivate_slab(s, page, c->freelist);
2234 c->page = NULL;
2235 c->freelist = NULL;
2236 goto new_slab;
2237 }
2238
2239 /* must check again c->freelist in case of cpu migration or IRQ */
2240 freelist = c->freelist;
2241 if (freelist)
2242 goto load_freelist;
2243
2244 stat(s, ALLOC_SLOWPATH);
2245
2246 freelist = get_freelist(s, page);
2247
2248 if (!freelist) {
2249 c->page = NULL;
2250 stat(s, DEACTIVATE_BYPASS);
2251 goto new_slab;
2252 }
2253
2254 stat(s, ALLOC_REFILL);
2255
2256 load_freelist:
2257 /*
2258 * freelist is pointing to the list of objects to be used.
2259 * page is pointing to the page from which the objects are obtained.
2260 * That page must be frozen for per cpu allocations to work.
2261 */
2262 VM_BUG_ON(!c->page->frozen);
2263 c->freelist = get_freepointer(s, freelist);
2264 c->tid = next_tid(c->tid);
2265 local_irq_restore(flags);
2266 return freelist;
2267
2268 new_slab:
2269
2270 if (c->partial) {
2271 page = c->page = c->partial;
2272 c->partial = page->next;
2273 stat(s, CPU_PARTIAL_ALLOC);
2274 c->freelist = NULL;
2275 goto redo;
2276 }
2277
2278 freelist = new_slab_objects(s, gfpflags, node, &c);
2279
2280 if (unlikely(!freelist)) {
2281 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2282 slab_out_of_memory(s, gfpflags, node);
2283
2284 local_irq_restore(flags);
2285 return NULL;
2286 }
2287
2288 page = c->page;
2289 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2290 goto load_freelist;
2291
2292 /* Only entered in the debug case */
2293 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2294 goto new_slab; /* Slab failed checks. Next slab needed */
2295
2296 deactivate_slab(s, page, get_freepointer(s, freelist));
2297 c->page = NULL;
2298 c->freelist = NULL;
2299 local_irq_restore(flags);
2300 return freelist;
2301 }
2302
2303 /*
2304 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2305 * have the fastpath folded into their functions. So no function call
2306 * overhead for requests that can be satisfied on the fastpath.
2307 *
2308 * The fastpath works by first checking if the lockless freelist can be used.
2309 * If not then __slab_alloc is called for slow processing.
2310 *
2311 * Otherwise we can simply pick the next object from the lockless free list.
2312 */
2313 static __always_inline void *slab_alloc(struct kmem_cache *s,
2314 gfp_t gfpflags, int node, unsigned long addr)
2315 {
2316 void **object;
2317 struct kmem_cache_cpu *c;
2318 struct page *page;
2319 unsigned long tid;
2320
2321 if (slab_pre_alloc_hook(s, gfpflags))
2322 return NULL;
2323
2324 redo:
2325
2326 /*
2327 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2328 * enabled. We may switch back and forth between cpus while
2329 * reading from one cpu area. That does not matter as long
2330 * as we end up on the original cpu again when doing the cmpxchg.
2331 */
2332 c = __this_cpu_ptr(s->cpu_slab);
2333
2334 /*
2335 * The transaction ids are globally unique per cpu and per operation on
2336 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2337 * occurs on the right processor and that there was no operation on the
2338 * linked list in between.
2339 */
2340 tid = c->tid;
2341 barrier();
2342
2343 object = c->freelist;
2344 page = c->page;
2345 if (unlikely(!object || !node_match(page, node)))
2346 object = __slab_alloc(s, gfpflags, node, addr, c);
2347
2348 else {
2349 void *next_object = get_freepointer_safe(s, object);
2350
2351 /*
2352 * The cmpxchg will only match if there was no additional
2353 * operation and if we are on the right processor.
2354 *
2355 * The cmpxchg does the following atomically (without lock semantics!)
2356 * 1. Relocate first pointer to the current per cpu area.
2357 * 2. Verify that tid and freelist have not been changed
2358 * 3. If they were not changed replace tid and freelist
2359 *
2360 * Since this is without lock semantics the protection is only against
2361 * code executing on this cpu *not* from access by other cpus.
2362 */
2363 if (unlikely(!this_cpu_cmpxchg_double(
2364 s->cpu_slab->freelist, s->cpu_slab->tid,
2365 object, tid,
2366 next_object, next_tid(tid)))) {
2367
2368 note_cmpxchg_failure("slab_alloc", s, tid);
2369 goto redo;
2370 }
2371 prefetch_freepointer(s, next_object);
2372 stat(s, ALLOC_FASTPATH);
2373 }
2374
2375 if (unlikely(gfpflags & __GFP_ZERO) && object)
2376 memset(object, 0, s->object_size);
2377
2378 slab_post_alloc_hook(s, gfpflags, object);
2379
2380 return object;
2381 }
2382
2383 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2384 {
2385 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2386
2387 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2388
2389 return ret;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_alloc);
2392
2393 #ifdef CONFIG_TRACING
2394 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2395 {
2396 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2397 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2398 return ret;
2399 }
2400 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2401
2402 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2403 {
2404 void *ret = kmalloc_order(size, flags, order);
2405 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2406 return ret;
2407 }
2408 EXPORT_SYMBOL(kmalloc_order_trace);
2409 #endif
2410
2411 #ifdef CONFIG_NUMA
2412 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2413 {
2414 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2415
2416 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2417 s->object_size, s->size, gfpflags, node);
2418
2419 return ret;
2420 }
2421 EXPORT_SYMBOL(kmem_cache_alloc_node);
2422
2423 #ifdef CONFIG_TRACING
2424 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2425 gfp_t gfpflags,
2426 int node, size_t size)
2427 {
2428 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2429
2430 trace_kmalloc_node(_RET_IP_, ret,
2431 size, s->size, gfpflags, node);
2432 return ret;
2433 }
2434 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2435 #endif
2436 #endif
2437
2438 /*
2439 * Slow patch handling. This may still be called frequently since objects
2440 * have a longer lifetime than the cpu slabs in most processing loads.
2441 *
2442 * So we still attempt to reduce cache line usage. Just take the slab
2443 * lock and free the item. If there is no additional partial page
2444 * handling required then we can return immediately.
2445 */
2446 static void __slab_free(struct kmem_cache *s, struct page *page,
2447 void *x, unsigned long addr)
2448 {
2449 void *prior;
2450 void **object = (void *)x;
2451 int was_frozen;
2452 int inuse;
2453 struct page new;
2454 unsigned long counters;
2455 struct kmem_cache_node *n = NULL;
2456 unsigned long uninitialized_var(flags);
2457
2458 stat(s, FREE_SLOWPATH);
2459
2460 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2461 return;
2462
2463 do {
2464 prior = page->freelist;
2465 counters = page->counters;
2466 set_freepointer(s, object, prior);
2467 new.counters = counters;
2468 was_frozen = new.frozen;
2469 new.inuse--;
2470 if ((!new.inuse || !prior) && !was_frozen && !n) {
2471
2472 if (!kmem_cache_debug(s) && !prior)
2473
2474 /*
2475 * Slab was on no list before and will be partially empty
2476 * We can defer the list move and instead freeze it.
2477 */
2478 new.frozen = 1;
2479
2480 else { /* Needs to be taken off a list */
2481
2482 n = get_node(s, page_to_nid(page));
2483 /*
2484 * Speculatively acquire the list_lock.
2485 * If the cmpxchg does not succeed then we may
2486 * drop the list_lock without any processing.
2487 *
2488 * Otherwise the list_lock will synchronize with
2489 * other processors updating the list of slabs.
2490 */
2491 spin_lock_irqsave(&n->list_lock, flags);
2492
2493 }
2494 }
2495 inuse = new.inuse;
2496
2497 } while (!cmpxchg_double_slab(s, page,
2498 prior, counters,
2499 object, new.counters,
2500 "__slab_free"));
2501
2502 if (likely(!n)) {
2503
2504 /*
2505 * If we just froze the page then put it onto the
2506 * per cpu partial list.
2507 */
2508 if (new.frozen && !was_frozen) {
2509 put_cpu_partial(s, page, 1);
2510 stat(s, CPU_PARTIAL_FREE);
2511 }
2512 /*
2513 * The list lock was not taken therefore no list
2514 * activity can be necessary.
2515 */
2516 if (was_frozen)
2517 stat(s, FREE_FROZEN);
2518 return;
2519 }
2520
2521 /*
2522 * was_frozen may have been set after we acquired the list_lock in
2523 * an earlier loop. So we need to check it here again.
2524 */
2525 if (was_frozen)
2526 stat(s, FREE_FROZEN);
2527 else {
2528 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2529 goto slab_empty;
2530
2531 /*
2532 * Objects left in the slab. If it was not on the partial list before
2533 * then add it.
2534 */
2535 if (unlikely(!prior)) {
2536 remove_full(s, page);
2537 add_partial(n, page, DEACTIVATE_TO_TAIL);
2538 stat(s, FREE_ADD_PARTIAL);
2539 }
2540 }
2541 spin_unlock_irqrestore(&n->list_lock, flags);
2542 return;
2543
2544 slab_empty:
2545 if (prior) {
2546 /*
2547 * Slab on the partial list.
2548 */
2549 remove_partial(n, page);
2550 stat(s, FREE_REMOVE_PARTIAL);
2551 } else
2552 /* Slab must be on the full list */
2553 remove_full(s, page);
2554
2555 spin_unlock_irqrestore(&n->list_lock, flags);
2556 stat(s, FREE_SLAB);
2557 discard_slab(s, page);
2558 }
2559
2560 /*
2561 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2562 * can perform fastpath freeing without additional function calls.
2563 *
2564 * The fastpath is only possible if we are freeing to the current cpu slab
2565 * of this processor. This typically the case if we have just allocated
2566 * the item before.
2567 *
2568 * If fastpath is not possible then fall back to __slab_free where we deal
2569 * with all sorts of special processing.
2570 */
2571 static __always_inline void slab_free(struct kmem_cache *s,
2572 struct page *page, void *x, unsigned long addr)
2573 {
2574 void **object = (void *)x;
2575 struct kmem_cache_cpu *c;
2576 unsigned long tid;
2577
2578 slab_free_hook(s, x);
2579
2580 redo:
2581 /*
2582 * Determine the currently cpus per cpu slab.
2583 * The cpu may change afterward. However that does not matter since
2584 * data is retrieved via this pointer. If we are on the same cpu
2585 * during the cmpxchg then the free will succedd.
2586 */
2587 c = __this_cpu_ptr(s->cpu_slab);
2588
2589 tid = c->tid;
2590 barrier();
2591
2592 if (likely(page == c->page)) {
2593 set_freepointer(s, object, c->freelist);
2594
2595 if (unlikely(!this_cpu_cmpxchg_double(
2596 s->cpu_slab->freelist, s->cpu_slab->tid,
2597 c->freelist, tid,
2598 object, next_tid(tid)))) {
2599
2600 note_cmpxchg_failure("slab_free", s, tid);
2601 goto redo;
2602 }
2603 stat(s, FREE_FASTPATH);
2604 } else
2605 __slab_free(s, page, x, addr);
2606
2607 }
2608
2609 void kmem_cache_free(struct kmem_cache *s, void *x)
2610 {
2611 struct page *page;
2612
2613 page = virt_to_head_page(x);
2614
2615 slab_free(s, page, x, _RET_IP_);
2616
2617 trace_kmem_cache_free(_RET_IP_, x);
2618 }
2619 EXPORT_SYMBOL(kmem_cache_free);
2620
2621 /*
2622 * Object placement in a slab is made very easy because we always start at
2623 * offset 0. If we tune the size of the object to the alignment then we can
2624 * get the required alignment by putting one properly sized object after
2625 * another.
2626 *
2627 * Notice that the allocation order determines the sizes of the per cpu
2628 * caches. Each processor has always one slab available for allocations.
2629 * Increasing the allocation order reduces the number of times that slabs
2630 * must be moved on and off the partial lists and is therefore a factor in
2631 * locking overhead.
2632 */
2633
2634 /*
2635 * Mininum / Maximum order of slab pages. This influences locking overhead
2636 * and slab fragmentation. A higher order reduces the number of partial slabs
2637 * and increases the number of allocations possible without having to
2638 * take the list_lock.
2639 */
2640 static int slub_min_order;
2641 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2642 static int slub_min_objects;
2643
2644 /*
2645 * Merge control. If this is set then no merging of slab caches will occur.
2646 * (Could be removed. This was introduced to pacify the merge skeptics.)
2647 */
2648 static int slub_nomerge;
2649
2650 /*
2651 * Calculate the order of allocation given an slab object size.
2652 *
2653 * The order of allocation has significant impact on performance and other
2654 * system components. Generally order 0 allocations should be preferred since
2655 * order 0 does not cause fragmentation in the page allocator. Larger objects
2656 * be problematic to put into order 0 slabs because there may be too much
2657 * unused space left. We go to a higher order if more than 1/16th of the slab
2658 * would be wasted.
2659 *
2660 * In order to reach satisfactory performance we must ensure that a minimum
2661 * number of objects is in one slab. Otherwise we may generate too much
2662 * activity on the partial lists which requires taking the list_lock. This is
2663 * less a concern for large slabs though which are rarely used.
2664 *
2665 * slub_max_order specifies the order where we begin to stop considering the
2666 * number of objects in a slab as critical. If we reach slub_max_order then
2667 * we try to keep the page order as low as possible. So we accept more waste
2668 * of space in favor of a small page order.
2669 *
2670 * Higher order allocations also allow the placement of more objects in a
2671 * slab and thereby reduce object handling overhead. If the user has
2672 * requested a higher mininum order then we start with that one instead of
2673 * the smallest order which will fit the object.
2674 */
2675 static inline int slab_order(int size, int min_objects,
2676 int max_order, int fract_leftover, int reserved)
2677 {
2678 int order;
2679 int rem;
2680 int min_order = slub_min_order;
2681
2682 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2683 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2684
2685 for (order = max(min_order,
2686 fls(min_objects * size - 1) - PAGE_SHIFT);
2687 order <= max_order; order++) {
2688
2689 unsigned long slab_size = PAGE_SIZE << order;
2690
2691 if (slab_size < min_objects * size + reserved)
2692 continue;
2693
2694 rem = (slab_size - reserved) % size;
2695
2696 if (rem <= slab_size / fract_leftover)
2697 break;
2698
2699 }
2700
2701 return order;
2702 }
2703
2704 static inline int calculate_order(int size, int reserved)
2705 {
2706 int order;
2707 int min_objects;
2708 int fraction;
2709 int max_objects;
2710
2711 /*
2712 * Attempt to find best configuration for a slab. This
2713 * works by first attempting to generate a layout with
2714 * the best configuration and backing off gradually.
2715 *
2716 * First we reduce the acceptable waste in a slab. Then
2717 * we reduce the minimum objects required in a slab.
2718 */
2719 min_objects = slub_min_objects;
2720 if (!min_objects)
2721 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2722 max_objects = order_objects(slub_max_order, size, reserved);
2723 min_objects = min(min_objects, max_objects);
2724
2725 while (min_objects > 1) {
2726 fraction = 16;
2727 while (fraction >= 4) {
2728 order = slab_order(size, min_objects,
2729 slub_max_order, fraction, reserved);
2730 if (order <= slub_max_order)
2731 return order;
2732 fraction /= 2;
2733 }
2734 min_objects--;
2735 }
2736
2737 /*
2738 * We were unable to place multiple objects in a slab. Now
2739 * lets see if we can place a single object there.
2740 */
2741 order = slab_order(size, 1, slub_max_order, 1, reserved);
2742 if (order <= slub_max_order)
2743 return order;
2744
2745 /*
2746 * Doh this slab cannot be placed using slub_max_order.
2747 */
2748 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2749 if (order < MAX_ORDER)
2750 return order;
2751 return -ENOSYS;
2752 }
2753
2754 /*
2755 * Figure out what the alignment of the objects will be.
2756 */
2757 static unsigned long calculate_alignment(unsigned long flags,
2758 unsigned long align, unsigned long size)
2759 {
2760 /*
2761 * If the user wants hardware cache aligned objects then follow that
2762 * suggestion if the object is sufficiently large.
2763 *
2764 * The hardware cache alignment cannot override the specified
2765 * alignment though. If that is greater then use it.
2766 */
2767 if (flags & SLAB_HWCACHE_ALIGN) {
2768 unsigned long ralign = cache_line_size();
2769 while (size <= ralign / 2)
2770 ralign /= 2;
2771 align = max(align, ralign);
2772 }
2773
2774 if (align < ARCH_SLAB_MINALIGN)
2775 align = ARCH_SLAB_MINALIGN;
2776
2777 return ALIGN(align, sizeof(void *));
2778 }
2779
2780 static void
2781 init_kmem_cache_node(struct kmem_cache_node *n)
2782 {
2783 n->nr_partial = 0;
2784 spin_lock_init(&n->list_lock);
2785 INIT_LIST_HEAD(&n->partial);
2786 #ifdef CONFIG_SLUB_DEBUG
2787 atomic_long_set(&n->nr_slabs, 0);
2788 atomic_long_set(&n->total_objects, 0);
2789 INIT_LIST_HEAD(&n->full);
2790 #endif
2791 }
2792
2793 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2794 {
2795 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2796 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2797
2798 /*
2799 * Must align to double word boundary for the double cmpxchg
2800 * instructions to work; see __pcpu_double_call_return_bool().
2801 */
2802 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2803 2 * sizeof(void *));
2804
2805 if (!s->cpu_slab)
2806 return 0;
2807
2808 init_kmem_cache_cpus(s);
2809
2810 return 1;
2811 }
2812
2813 static struct kmem_cache *kmem_cache_node;
2814
2815 /*
2816 * No kmalloc_node yet so do it by hand. We know that this is the first
2817 * slab on the node for this slabcache. There are no concurrent accesses
2818 * possible.
2819 *
2820 * Note that this function only works on the kmalloc_node_cache
2821 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2822 * memory on a fresh node that has no slab structures yet.
2823 */
2824 static void early_kmem_cache_node_alloc(int node)
2825 {
2826 struct page *page;
2827 struct kmem_cache_node *n;
2828
2829 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2830
2831 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2832
2833 BUG_ON(!page);
2834 if (page_to_nid(page) != node) {
2835 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2836 "node %d\n", node);
2837 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2838 "in order to be able to continue\n");
2839 }
2840
2841 n = page->freelist;
2842 BUG_ON(!n);
2843 page->freelist = get_freepointer(kmem_cache_node, n);
2844 page->inuse = 1;
2845 page->frozen = 0;
2846 kmem_cache_node->node[node] = n;
2847 #ifdef CONFIG_SLUB_DEBUG
2848 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2849 init_tracking(kmem_cache_node, n);
2850 #endif
2851 init_kmem_cache_node(n);
2852 inc_slabs_node(kmem_cache_node, node, page->objects);
2853
2854 add_partial(n, page, DEACTIVATE_TO_HEAD);
2855 }
2856
2857 static void free_kmem_cache_nodes(struct kmem_cache *s)
2858 {
2859 int node;
2860
2861 for_each_node_state(node, N_NORMAL_MEMORY) {
2862 struct kmem_cache_node *n = s->node[node];
2863
2864 if (n)
2865 kmem_cache_free(kmem_cache_node, n);
2866
2867 s->node[node] = NULL;
2868 }
2869 }
2870
2871 static int init_kmem_cache_nodes(struct kmem_cache *s)
2872 {
2873 int node;
2874
2875 for_each_node_state(node, N_NORMAL_MEMORY) {
2876 struct kmem_cache_node *n;
2877
2878 if (slab_state == DOWN) {
2879 early_kmem_cache_node_alloc(node);
2880 continue;
2881 }
2882 n = kmem_cache_alloc_node(kmem_cache_node,
2883 GFP_KERNEL, node);
2884
2885 if (!n) {
2886 free_kmem_cache_nodes(s);
2887 return 0;
2888 }
2889
2890 s->node[node] = n;
2891 init_kmem_cache_node(n);
2892 }
2893 return 1;
2894 }
2895
2896 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2897 {
2898 if (min < MIN_PARTIAL)
2899 min = MIN_PARTIAL;
2900 else if (min > MAX_PARTIAL)
2901 min = MAX_PARTIAL;
2902 s->min_partial = min;
2903 }
2904
2905 /*
2906 * calculate_sizes() determines the order and the distribution of data within
2907 * a slab object.
2908 */
2909 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2910 {
2911 unsigned long flags = s->flags;
2912 unsigned long size = s->object_size;
2913 unsigned long align = s->align;
2914 int order;
2915
2916 /*
2917 * Round up object size to the next word boundary. We can only
2918 * place the free pointer at word boundaries and this determines
2919 * the possible location of the free pointer.
2920 */
2921 size = ALIGN(size, sizeof(void *));
2922
2923 #ifdef CONFIG_SLUB_DEBUG
2924 /*
2925 * Determine if we can poison the object itself. If the user of
2926 * the slab may touch the object after free or before allocation
2927 * then we should never poison the object itself.
2928 */
2929 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2930 !s->ctor)
2931 s->flags |= __OBJECT_POISON;
2932 else
2933 s->flags &= ~__OBJECT_POISON;
2934
2935
2936 /*
2937 * If we are Redzoning then check if there is some space between the
2938 * end of the object and the free pointer. If not then add an
2939 * additional word to have some bytes to store Redzone information.
2940 */
2941 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2942 size += sizeof(void *);
2943 #endif
2944
2945 /*
2946 * With that we have determined the number of bytes in actual use
2947 * by the object. This is the potential offset to the free pointer.
2948 */
2949 s->inuse = size;
2950
2951 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2952 s->ctor)) {
2953 /*
2954 * Relocate free pointer after the object if it is not
2955 * permitted to overwrite the first word of the object on
2956 * kmem_cache_free.
2957 *
2958 * This is the case if we do RCU, have a constructor or
2959 * destructor or are poisoning the objects.
2960 */
2961 s->offset = size;
2962 size += sizeof(void *);
2963 }
2964
2965 #ifdef CONFIG_SLUB_DEBUG
2966 if (flags & SLAB_STORE_USER)
2967 /*
2968 * Need to store information about allocs and frees after
2969 * the object.
2970 */
2971 size += 2 * sizeof(struct track);
2972
2973 if (flags & SLAB_RED_ZONE)
2974 /*
2975 * Add some empty padding so that we can catch
2976 * overwrites from earlier objects rather than let
2977 * tracking information or the free pointer be
2978 * corrupted if a user writes before the start
2979 * of the object.
2980 */
2981 size += sizeof(void *);
2982 #endif
2983
2984 /*
2985 * Determine the alignment based on various parameters that the
2986 * user specified and the dynamic determination of cache line size
2987 * on bootup.
2988 */
2989 align = calculate_alignment(flags, align, s->object_size);
2990 s->align = align;
2991
2992 /*
2993 * SLUB stores one object immediately after another beginning from
2994 * offset 0. In order to align the objects we have to simply size
2995 * each object to conform to the alignment.
2996 */
2997 size = ALIGN(size, align);
2998 s->size = size;
2999 if (forced_order >= 0)
3000 order = forced_order;
3001 else
3002 order = calculate_order(size, s->reserved);
3003
3004 if (order < 0)
3005 return 0;
3006
3007 s->allocflags = 0;
3008 if (order)
3009 s->allocflags |= __GFP_COMP;
3010
3011 if (s->flags & SLAB_CACHE_DMA)
3012 s->allocflags |= SLUB_DMA;
3013
3014 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3015 s->allocflags |= __GFP_RECLAIMABLE;
3016
3017 /*
3018 * Determine the number of objects per slab
3019 */
3020 s->oo = oo_make(order, size, s->reserved);
3021 s->min = oo_make(get_order(size), size, s->reserved);
3022 if (oo_objects(s->oo) > oo_objects(s->max))
3023 s->max = s->oo;
3024
3025 return !!oo_objects(s->oo);
3026
3027 }
3028
3029 static int kmem_cache_open(struct kmem_cache *s,
3030 const char *name, size_t size,
3031 size_t align, unsigned long flags,
3032 void (*ctor)(void *))
3033 {
3034 memset(s, 0, kmem_size);
3035 s->name = name;
3036 s->ctor = ctor;
3037 s->object_size = size;
3038 s->align = align;
3039 s->flags = kmem_cache_flags(size, flags, name, ctor);
3040 s->reserved = 0;
3041
3042 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3043 s->reserved = sizeof(struct rcu_head);
3044
3045 if (!calculate_sizes(s, -1))
3046 goto error;
3047 if (disable_higher_order_debug) {
3048 /*
3049 * Disable debugging flags that store metadata if the min slab
3050 * order increased.
3051 */
3052 if (get_order(s->size) > get_order(s->object_size)) {
3053 s->flags &= ~DEBUG_METADATA_FLAGS;
3054 s->offset = 0;
3055 if (!calculate_sizes(s, -1))
3056 goto error;
3057 }
3058 }
3059
3060 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3061 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3062 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3063 /* Enable fast mode */
3064 s->flags |= __CMPXCHG_DOUBLE;
3065 #endif
3066
3067 /*
3068 * The larger the object size is, the more pages we want on the partial
3069 * list to avoid pounding the page allocator excessively.
3070 */
3071 set_min_partial(s, ilog2(s->size) / 2);
3072
3073 /*
3074 * cpu_partial determined the maximum number of objects kept in the
3075 * per cpu partial lists of a processor.
3076 *
3077 * Per cpu partial lists mainly contain slabs that just have one
3078 * object freed. If they are used for allocation then they can be
3079 * filled up again with minimal effort. The slab will never hit the
3080 * per node partial lists and therefore no locking will be required.
3081 *
3082 * This setting also determines
3083 *
3084 * A) The number of objects from per cpu partial slabs dumped to the
3085 * per node list when we reach the limit.
3086 * B) The number of objects in cpu partial slabs to extract from the
3087 * per node list when we run out of per cpu objects. We only fetch 50%
3088 * to keep some capacity around for frees.
3089 */
3090 if (kmem_cache_debug(s))
3091 s->cpu_partial = 0;
3092 else if (s->size >= PAGE_SIZE)
3093 s->cpu_partial = 2;
3094 else if (s->size >= 1024)
3095 s->cpu_partial = 6;
3096 else if (s->size >= 256)
3097 s->cpu_partial = 13;
3098 else
3099 s->cpu_partial = 30;
3100
3101 s->refcount = 1;
3102 #ifdef CONFIG_NUMA
3103 s->remote_node_defrag_ratio = 1000;
3104 #endif
3105 if (!init_kmem_cache_nodes(s))
3106 goto error;
3107
3108 if (alloc_kmem_cache_cpus(s))
3109 return 1;
3110
3111 free_kmem_cache_nodes(s);
3112 error:
3113 if (flags & SLAB_PANIC)
3114 panic("Cannot create slab %s size=%lu realsize=%u "
3115 "order=%u offset=%u flags=%lx\n",
3116 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3117 s->offset, flags);
3118 return 0;
3119 }
3120
3121 /*
3122 * Determine the size of a slab object
3123 */
3124 unsigned int kmem_cache_size(struct kmem_cache *s)
3125 {
3126 return s->object_size;
3127 }
3128 EXPORT_SYMBOL(kmem_cache_size);
3129
3130 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3131 const char *text)
3132 {
3133 #ifdef CONFIG_SLUB_DEBUG
3134 void *addr = page_address(page);
3135 void *p;
3136 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3137 sizeof(long), GFP_ATOMIC);
3138 if (!map)
3139 return;
3140 slab_err(s, page, "%s", text);
3141 slab_lock(page);
3142
3143 get_map(s, page, map);
3144 for_each_object(p, s, addr, page->objects) {
3145
3146 if (!test_bit(slab_index(p, s, addr), map)) {
3147 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3148 p, p - addr);
3149 print_tracking(s, p);
3150 }
3151 }
3152 slab_unlock(page);
3153 kfree(map);
3154 #endif
3155 }
3156
3157 /*
3158 * Attempt to free all partial slabs on a node.
3159 * This is called from kmem_cache_close(). We must be the last thread
3160 * using the cache and therefore we do not need to lock anymore.
3161 */
3162 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3163 {
3164 struct page *page, *h;
3165
3166 list_for_each_entry_safe(page, h, &n->partial, lru) {
3167 if (!page->inuse) {
3168 remove_partial(n, page);
3169 discard_slab(s, page);
3170 } else {
3171 list_slab_objects(s, page,
3172 "Objects remaining on kmem_cache_close()");
3173 }
3174 }
3175 }
3176
3177 /*
3178 * Release all resources used by a slab cache.
3179 */
3180 static inline int kmem_cache_close(struct kmem_cache *s)
3181 {
3182 int node;
3183
3184 flush_all(s);
3185 free_percpu(s->cpu_slab);
3186 /* Attempt to free all objects */
3187 for_each_node_state(node, N_NORMAL_MEMORY) {
3188 struct kmem_cache_node *n = get_node(s, node);
3189
3190 free_partial(s, n);
3191 if (n->nr_partial || slabs_node(s, node))
3192 return 1;
3193 }
3194 free_kmem_cache_nodes(s);
3195 return 0;
3196 }
3197
3198 /*
3199 * Close a cache and release the kmem_cache structure
3200 * (must be used for caches created using kmem_cache_create)
3201 */
3202 void kmem_cache_destroy(struct kmem_cache *s)
3203 {
3204 mutex_lock(&slab_mutex);
3205 s->refcount--;
3206 if (!s->refcount) {
3207 list_del(&s->list);
3208 mutex_unlock(&slab_mutex);
3209 if (kmem_cache_close(s)) {
3210 printk(KERN_ERR "SLUB %s: %s called for cache that "
3211 "still has objects.\n", s->name, __func__);
3212 dump_stack();
3213 }
3214 if (s->flags & SLAB_DESTROY_BY_RCU)
3215 rcu_barrier();
3216 sysfs_slab_remove(s);
3217 } else
3218 mutex_unlock(&slab_mutex);
3219 }
3220 EXPORT_SYMBOL(kmem_cache_destroy);
3221
3222 /********************************************************************
3223 * Kmalloc subsystem
3224 *******************************************************************/
3225
3226 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3227 EXPORT_SYMBOL(kmalloc_caches);
3228
3229 static struct kmem_cache *kmem_cache;
3230
3231 #ifdef CONFIG_ZONE_DMA
3232 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3233 #endif
3234
3235 static int __init setup_slub_min_order(char *str)
3236 {
3237 get_option(&str, &slub_min_order);
3238
3239 return 1;
3240 }
3241
3242 __setup("slub_min_order=", setup_slub_min_order);
3243
3244 static int __init setup_slub_max_order(char *str)
3245 {
3246 get_option(&str, &slub_max_order);
3247 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3248
3249 return 1;
3250 }
3251
3252 __setup("slub_max_order=", setup_slub_max_order);
3253
3254 static int __init setup_slub_min_objects(char *str)
3255 {
3256 get_option(&str, &slub_min_objects);
3257
3258 return 1;
3259 }
3260
3261 __setup("slub_min_objects=", setup_slub_min_objects);
3262
3263 static int __init setup_slub_nomerge(char *str)
3264 {
3265 slub_nomerge = 1;
3266 return 1;
3267 }
3268
3269 __setup("slub_nomerge", setup_slub_nomerge);
3270
3271 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3272 int size, unsigned int flags)
3273 {
3274 struct kmem_cache *s;
3275
3276 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3277
3278 /*
3279 * This function is called with IRQs disabled during early-boot on
3280 * single CPU so there's no need to take slab_mutex here.
3281 */
3282 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3283 flags, NULL))
3284 goto panic;
3285
3286 list_add(&s->list, &slab_caches);
3287 return s;
3288
3289 panic:
3290 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3291 return NULL;
3292 }
3293
3294 /*
3295 * Conversion table for small slabs sizes / 8 to the index in the
3296 * kmalloc array. This is necessary for slabs < 192 since we have non power
3297 * of two cache sizes there. The size of larger slabs can be determined using
3298 * fls.
3299 */
3300 static s8 size_index[24] = {
3301 3, /* 8 */
3302 4, /* 16 */
3303 5, /* 24 */
3304 5, /* 32 */
3305 6, /* 40 */
3306 6, /* 48 */
3307 6, /* 56 */
3308 6, /* 64 */
3309 1, /* 72 */
3310 1, /* 80 */
3311 1, /* 88 */
3312 1, /* 96 */
3313 7, /* 104 */
3314 7, /* 112 */
3315 7, /* 120 */
3316 7, /* 128 */
3317 2, /* 136 */
3318 2, /* 144 */
3319 2, /* 152 */
3320 2, /* 160 */
3321 2, /* 168 */
3322 2, /* 176 */
3323 2, /* 184 */
3324 2 /* 192 */
3325 };
3326
3327 static inline int size_index_elem(size_t bytes)
3328 {
3329 return (bytes - 1) / 8;
3330 }
3331
3332 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3333 {
3334 int index;
3335
3336 if (size <= 192) {
3337 if (!size)
3338 return ZERO_SIZE_PTR;
3339
3340 index = size_index[size_index_elem(size)];
3341 } else
3342 index = fls(size - 1);
3343
3344 #ifdef CONFIG_ZONE_DMA
3345 if (unlikely((flags & SLUB_DMA)))
3346 return kmalloc_dma_caches[index];
3347
3348 #endif
3349 return kmalloc_caches[index];
3350 }
3351
3352 void *__kmalloc(size_t size, gfp_t flags)
3353 {
3354 struct kmem_cache *s;
3355 void *ret;
3356
3357 if (unlikely(size > SLUB_MAX_SIZE))
3358 return kmalloc_large(size, flags);
3359
3360 s = get_slab(size, flags);
3361
3362 if (unlikely(ZERO_OR_NULL_PTR(s)))
3363 return s;
3364
3365 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3366
3367 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3368
3369 return ret;
3370 }
3371 EXPORT_SYMBOL(__kmalloc);
3372
3373 #ifdef CONFIG_NUMA
3374 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3375 {
3376 struct page *page;
3377 void *ptr = NULL;
3378
3379 flags |= __GFP_COMP | __GFP_NOTRACK;
3380 page = alloc_pages_node(node, flags, get_order(size));
3381 if (page)
3382 ptr = page_address(page);
3383
3384 kmemleak_alloc(ptr, size, 1, flags);
3385 return ptr;
3386 }
3387
3388 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3389 {
3390 struct kmem_cache *s;
3391 void *ret;
3392
3393 if (unlikely(size > SLUB_MAX_SIZE)) {
3394 ret = kmalloc_large_node(size, flags, node);
3395
3396 trace_kmalloc_node(_RET_IP_, ret,
3397 size, PAGE_SIZE << get_order(size),
3398 flags, node);
3399
3400 return ret;
3401 }
3402
3403 s = get_slab(size, flags);
3404
3405 if (unlikely(ZERO_OR_NULL_PTR(s)))
3406 return s;
3407
3408 ret = slab_alloc(s, flags, node, _RET_IP_);
3409
3410 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3411
3412 return ret;
3413 }
3414 EXPORT_SYMBOL(__kmalloc_node);
3415 #endif
3416
3417 size_t ksize(const void *object)
3418 {
3419 struct page *page;
3420
3421 if (unlikely(object == ZERO_SIZE_PTR))
3422 return 0;
3423
3424 page = virt_to_head_page(object);
3425
3426 if (unlikely(!PageSlab(page))) {
3427 WARN_ON(!PageCompound(page));
3428 return PAGE_SIZE << compound_order(page);
3429 }
3430
3431 return slab_ksize(page->slab);
3432 }
3433 EXPORT_SYMBOL(ksize);
3434
3435 #ifdef CONFIG_SLUB_DEBUG
3436 bool verify_mem_not_deleted(const void *x)
3437 {
3438 struct page *page;
3439 void *object = (void *)x;
3440 unsigned long flags;
3441 bool rv;
3442
3443 if (unlikely(ZERO_OR_NULL_PTR(x)))
3444 return false;
3445
3446 local_irq_save(flags);
3447
3448 page = virt_to_head_page(x);
3449 if (unlikely(!PageSlab(page))) {
3450 /* maybe it was from stack? */
3451 rv = true;
3452 goto out_unlock;
3453 }
3454
3455 slab_lock(page);
3456 if (on_freelist(page->slab, page, object)) {
3457 object_err(page->slab, page, object, "Object is on free-list");
3458 rv = false;
3459 } else {
3460 rv = true;
3461 }
3462 slab_unlock(page);
3463
3464 out_unlock:
3465 local_irq_restore(flags);
3466 return rv;
3467 }
3468 EXPORT_SYMBOL(verify_mem_not_deleted);
3469 #endif
3470
3471 void kfree(const void *x)
3472 {
3473 struct page *page;
3474 void *object = (void *)x;
3475
3476 trace_kfree(_RET_IP_, x);
3477
3478 if (unlikely(ZERO_OR_NULL_PTR(x)))
3479 return;
3480
3481 page = virt_to_head_page(x);
3482 if (unlikely(!PageSlab(page))) {
3483 BUG_ON(!PageCompound(page));
3484 kmemleak_free(x);
3485 put_page(page);
3486 return;
3487 }
3488 slab_free(page->slab, page, object, _RET_IP_);
3489 }
3490 EXPORT_SYMBOL(kfree);
3491
3492 /*
3493 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3494 * the remaining slabs by the number of items in use. The slabs with the
3495 * most items in use come first. New allocations will then fill those up
3496 * and thus they can be removed from the partial lists.
3497 *
3498 * The slabs with the least items are placed last. This results in them
3499 * being allocated from last increasing the chance that the last objects
3500 * are freed in them.
3501 */
3502 int kmem_cache_shrink(struct kmem_cache *s)
3503 {
3504 int node;
3505 int i;
3506 struct kmem_cache_node *n;
3507 struct page *page;
3508 struct page *t;
3509 int objects = oo_objects(s->max);
3510 struct list_head *slabs_by_inuse =
3511 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3512 unsigned long flags;
3513
3514 if (!slabs_by_inuse)
3515 return -ENOMEM;
3516
3517 flush_all(s);
3518 for_each_node_state(node, N_NORMAL_MEMORY) {
3519 n = get_node(s, node);
3520
3521 if (!n->nr_partial)
3522 continue;
3523
3524 for (i = 0; i < objects; i++)
3525 INIT_LIST_HEAD(slabs_by_inuse + i);
3526
3527 spin_lock_irqsave(&n->list_lock, flags);
3528
3529 /*
3530 * Build lists indexed by the items in use in each slab.
3531 *
3532 * Note that concurrent frees may occur while we hold the
3533 * list_lock. page->inuse here is the upper limit.
3534 */
3535 list_for_each_entry_safe(page, t, &n->partial, lru) {
3536 list_move(&page->lru, slabs_by_inuse + page->inuse);
3537 if (!page->inuse)
3538 n->nr_partial--;
3539 }
3540
3541 /*
3542 * Rebuild the partial list with the slabs filled up most
3543 * first and the least used slabs at the end.
3544 */
3545 for (i = objects - 1; i > 0; i--)
3546 list_splice(slabs_by_inuse + i, n->partial.prev);
3547
3548 spin_unlock_irqrestore(&n->list_lock, flags);
3549
3550 /* Release empty slabs */
3551 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3552 discard_slab(s, page);
3553 }
3554
3555 kfree(slabs_by_inuse);
3556 return 0;
3557 }
3558 EXPORT_SYMBOL(kmem_cache_shrink);
3559
3560 #if defined(CONFIG_MEMORY_HOTPLUG)
3561 static int slab_mem_going_offline_callback(void *arg)
3562 {
3563 struct kmem_cache *s;
3564
3565 mutex_lock(&slab_mutex);
3566 list_for_each_entry(s, &slab_caches, list)
3567 kmem_cache_shrink(s);
3568 mutex_unlock(&slab_mutex);
3569
3570 return 0;
3571 }
3572
3573 static void slab_mem_offline_callback(void *arg)
3574 {
3575 struct kmem_cache_node *n;
3576 struct kmem_cache *s;
3577 struct memory_notify *marg = arg;
3578 int offline_node;
3579
3580 offline_node = marg->status_change_nid;
3581
3582 /*
3583 * If the node still has available memory. we need kmem_cache_node
3584 * for it yet.
3585 */
3586 if (offline_node < 0)
3587 return;
3588
3589 mutex_lock(&slab_mutex);
3590 list_for_each_entry(s, &slab_caches, list) {
3591 n = get_node(s, offline_node);
3592 if (n) {
3593 /*
3594 * if n->nr_slabs > 0, slabs still exist on the node
3595 * that is going down. We were unable to free them,
3596 * and offline_pages() function shouldn't call this
3597 * callback. So, we must fail.
3598 */
3599 BUG_ON(slabs_node(s, offline_node));
3600
3601 s->node[offline_node] = NULL;
3602 kmem_cache_free(kmem_cache_node, n);
3603 }
3604 }
3605 mutex_unlock(&slab_mutex);
3606 }
3607
3608 static int slab_mem_going_online_callback(void *arg)
3609 {
3610 struct kmem_cache_node *n;
3611 struct kmem_cache *s;
3612 struct memory_notify *marg = arg;
3613 int nid = marg->status_change_nid;
3614 int ret = 0;
3615
3616 /*
3617 * If the node's memory is already available, then kmem_cache_node is
3618 * already created. Nothing to do.
3619 */
3620 if (nid < 0)
3621 return 0;
3622
3623 /*
3624 * We are bringing a node online. No memory is available yet. We must
3625 * allocate a kmem_cache_node structure in order to bring the node
3626 * online.
3627 */
3628 mutex_lock(&slab_mutex);
3629 list_for_each_entry(s, &slab_caches, list) {
3630 /*
3631 * XXX: kmem_cache_alloc_node will fallback to other nodes
3632 * since memory is not yet available from the node that
3633 * is brought up.
3634 */
3635 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3636 if (!n) {
3637 ret = -ENOMEM;
3638 goto out;
3639 }
3640 init_kmem_cache_node(n);
3641 s->node[nid] = n;
3642 }
3643 out:
3644 mutex_unlock(&slab_mutex);
3645 return ret;
3646 }
3647
3648 static int slab_memory_callback(struct notifier_block *self,
3649 unsigned long action, void *arg)
3650 {
3651 int ret = 0;
3652
3653 switch (action) {
3654 case MEM_GOING_ONLINE:
3655 ret = slab_mem_going_online_callback(arg);
3656 break;
3657 case MEM_GOING_OFFLINE:
3658 ret = slab_mem_going_offline_callback(arg);
3659 break;
3660 case MEM_OFFLINE:
3661 case MEM_CANCEL_ONLINE:
3662 slab_mem_offline_callback(arg);
3663 break;
3664 case MEM_ONLINE:
3665 case MEM_CANCEL_OFFLINE:
3666 break;
3667 }
3668 if (ret)
3669 ret = notifier_from_errno(ret);
3670 else
3671 ret = NOTIFY_OK;
3672 return ret;
3673 }
3674
3675 #endif /* CONFIG_MEMORY_HOTPLUG */
3676
3677 /********************************************************************
3678 * Basic setup of slabs
3679 *******************************************************************/
3680
3681 /*
3682 * Used for early kmem_cache structures that were allocated using
3683 * the page allocator
3684 */
3685
3686 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3687 {
3688 int node;
3689
3690 list_add(&s->list, &slab_caches);
3691 s->refcount = -1;
3692
3693 for_each_node_state(node, N_NORMAL_MEMORY) {
3694 struct kmem_cache_node *n = get_node(s, node);
3695 struct page *p;
3696
3697 if (n) {
3698 list_for_each_entry(p, &n->partial, lru)
3699 p->slab = s;
3700
3701 #ifdef CONFIG_SLUB_DEBUG
3702 list_for_each_entry(p, &n->full, lru)
3703 p->slab = s;
3704 #endif
3705 }
3706 }
3707 }
3708
3709 void __init kmem_cache_init(void)
3710 {
3711 int i;
3712 int caches = 0;
3713 struct kmem_cache *temp_kmem_cache;
3714 int order;
3715 struct kmem_cache *temp_kmem_cache_node;
3716 unsigned long kmalloc_size;
3717
3718 if (debug_guardpage_minorder())
3719 slub_max_order = 0;
3720
3721 kmem_size = offsetof(struct kmem_cache, node) +
3722 nr_node_ids * sizeof(struct kmem_cache_node *);
3723
3724 /* Allocate two kmem_caches from the page allocator */
3725 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3726 order = get_order(2 * kmalloc_size);
3727 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3728
3729 /*
3730 * Must first have the slab cache available for the allocations of the
3731 * struct kmem_cache_node's. There is special bootstrap code in
3732 * kmem_cache_open for slab_state == DOWN.
3733 */
3734 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3735
3736 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3737 sizeof(struct kmem_cache_node),
3738 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3739
3740 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3741
3742 /* Able to allocate the per node structures */
3743 slab_state = PARTIAL;
3744
3745 temp_kmem_cache = kmem_cache;
3746 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3747 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3748 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3749 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3750
3751 /*
3752 * Allocate kmem_cache_node properly from the kmem_cache slab.
3753 * kmem_cache_node is separately allocated so no need to
3754 * update any list pointers.
3755 */
3756 temp_kmem_cache_node = kmem_cache_node;
3757
3758 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3759 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3760
3761 kmem_cache_bootstrap_fixup(kmem_cache_node);
3762
3763 caches++;
3764 kmem_cache_bootstrap_fixup(kmem_cache);
3765 caches++;
3766 /* Free temporary boot structure */
3767 free_pages((unsigned long)temp_kmem_cache, order);
3768
3769 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3770
3771 /*
3772 * Patch up the size_index table if we have strange large alignment
3773 * requirements for the kmalloc array. This is only the case for
3774 * MIPS it seems. The standard arches will not generate any code here.
3775 *
3776 * Largest permitted alignment is 256 bytes due to the way we
3777 * handle the index determination for the smaller caches.
3778 *
3779 * Make sure that nothing crazy happens if someone starts tinkering
3780 * around with ARCH_KMALLOC_MINALIGN
3781 */
3782 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3783 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3784
3785 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3786 int elem = size_index_elem(i);
3787 if (elem >= ARRAY_SIZE(size_index))
3788 break;
3789 size_index[elem] = KMALLOC_SHIFT_LOW;
3790 }
3791
3792 if (KMALLOC_MIN_SIZE == 64) {
3793 /*
3794 * The 96 byte size cache is not used if the alignment
3795 * is 64 byte.
3796 */
3797 for (i = 64 + 8; i <= 96; i += 8)
3798 size_index[size_index_elem(i)] = 7;
3799 } else if (KMALLOC_MIN_SIZE == 128) {
3800 /*
3801 * The 192 byte sized cache is not used if the alignment
3802 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3803 * instead.
3804 */
3805 for (i = 128 + 8; i <= 192; i += 8)
3806 size_index[size_index_elem(i)] = 8;
3807 }
3808
3809 /* Caches that are not of the two-to-the-power-of size */
3810 if (KMALLOC_MIN_SIZE <= 32) {
3811 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3812 caches++;
3813 }
3814
3815 if (KMALLOC_MIN_SIZE <= 64) {
3816 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3817 caches++;
3818 }
3819
3820 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3821 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3822 caches++;
3823 }
3824
3825 slab_state = UP;
3826
3827 /* Provide the correct kmalloc names now that the caches are up */
3828 if (KMALLOC_MIN_SIZE <= 32) {
3829 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3830 BUG_ON(!kmalloc_caches[1]->name);
3831 }
3832
3833 if (KMALLOC_MIN_SIZE <= 64) {
3834 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3835 BUG_ON(!kmalloc_caches[2]->name);
3836 }
3837
3838 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3839 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3840
3841 BUG_ON(!s);
3842 kmalloc_caches[i]->name = s;
3843 }
3844
3845 #ifdef CONFIG_SMP
3846 register_cpu_notifier(&slab_notifier);
3847 #endif
3848
3849 #ifdef CONFIG_ZONE_DMA
3850 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3851 struct kmem_cache *s = kmalloc_caches[i];
3852
3853 if (s && s->size) {
3854 char *name = kasprintf(GFP_NOWAIT,
3855 "dma-kmalloc-%d", s->object_size);
3856
3857 BUG_ON(!name);
3858 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3859 s->object_size, SLAB_CACHE_DMA);
3860 }
3861 }
3862 #endif
3863 printk(KERN_INFO
3864 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3865 " CPUs=%d, Nodes=%d\n",
3866 caches, cache_line_size(),
3867 slub_min_order, slub_max_order, slub_min_objects,
3868 nr_cpu_ids, nr_node_ids);
3869 }
3870
3871 void __init kmem_cache_init_late(void)
3872 {
3873 }
3874
3875 /*
3876 * Find a mergeable slab cache
3877 */
3878 static int slab_unmergeable(struct kmem_cache *s)
3879 {
3880 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3881 return 1;
3882
3883 if (s->ctor)
3884 return 1;
3885
3886 /*
3887 * We may have set a slab to be unmergeable during bootstrap.
3888 */
3889 if (s->refcount < 0)
3890 return 1;
3891
3892 return 0;
3893 }
3894
3895 static struct kmem_cache *find_mergeable(size_t size,
3896 size_t align, unsigned long flags, const char *name,
3897 void (*ctor)(void *))
3898 {
3899 struct kmem_cache *s;
3900
3901 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3902 return NULL;
3903
3904 if (ctor)
3905 return NULL;
3906
3907 size = ALIGN(size, sizeof(void *));
3908 align = calculate_alignment(flags, align, size);
3909 size = ALIGN(size, align);
3910 flags = kmem_cache_flags(size, flags, name, NULL);
3911
3912 list_for_each_entry(s, &slab_caches, list) {
3913 if (slab_unmergeable(s))
3914 continue;
3915
3916 if (size > s->size)
3917 continue;
3918
3919 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3920 continue;
3921 /*
3922 * Check if alignment is compatible.
3923 * Courtesy of Adrian Drzewiecki
3924 */
3925 if ((s->size & ~(align - 1)) != s->size)
3926 continue;
3927
3928 if (s->size - size >= sizeof(void *))
3929 continue;
3930
3931 return s;
3932 }
3933 return NULL;
3934 }
3935
3936 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3937 size_t align, unsigned long flags, void (*ctor)(void *))
3938 {
3939 struct kmem_cache *s;
3940 char *n;
3941
3942 s = find_mergeable(size, align, flags, name, ctor);
3943 if (s) {
3944 s->refcount++;
3945 /*
3946 * Adjust the object sizes so that we clear
3947 * the complete object on kzalloc.
3948 */
3949 s->object_size = max(s->object_size, (int)size);
3950 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3951
3952 if (sysfs_slab_alias(s, name)) {
3953 s->refcount--;
3954 return NULL;
3955 }
3956 return s;
3957 }
3958
3959 n = kstrdup(name, GFP_KERNEL);
3960 if (!n)
3961 return NULL;
3962
3963 s = kmalloc(kmem_size, GFP_KERNEL);
3964 if (s) {
3965 if (kmem_cache_open(s, n,
3966 size, align, flags, ctor)) {
3967 int r;
3968
3969 list_add(&s->list, &slab_caches);
3970 mutex_unlock(&slab_mutex);
3971 r = sysfs_slab_add(s);
3972 mutex_lock(&slab_mutex);
3973
3974 if (!r)
3975 return s;
3976
3977 list_del(&s->list);
3978 kmem_cache_close(s);
3979 }
3980 kfree(s);
3981 }
3982 kfree(n);
3983 return NULL;
3984 }
3985
3986 #ifdef CONFIG_SMP
3987 /*
3988 * Use the cpu notifier to insure that the cpu slabs are flushed when
3989 * necessary.
3990 */
3991 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3992 unsigned long action, void *hcpu)
3993 {
3994 long cpu = (long)hcpu;
3995 struct kmem_cache *s;
3996 unsigned long flags;
3997
3998 switch (action) {
3999 case CPU_UP_CANCELED:
4000 case CPU_UP_CANCELED_FROZEN:
4001 case CPU_DEAD:
4002 case CPU_DEAD_FROZEN:
4003 mutex_lock(&slab_mutex);
4004 list_for_each_entry(s, &slab_caches, list) {
4005 local_irq_save(flags);
4006 __flush_cpu_slab(s, cpu);
4007 local_irq_restore(flags);
4008 }
4009 mutex_unlock(&slab_mutex);
4010 break;
4011 default:
4012 break;
4013 }
4014 return NOTIFY_OK;
4015 }
4016
4017 static struct notifier_block __cpuinitdata slab_notifier = {
4018 .notifier_call = slab_cpuup_callback
4019 };
4020
4021 #endif
4022
4023 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4024 {
4025 struct kmem_cache *s;
4026 void *ret;
4027
4028 if (unlikely(size > SLUB_MAX_SIZE))
4029 return kmalloc_large(size, gfpflags);
4030
4031 s = get_slab(size, gfpflags);
4032
4033 if (unlikely(ZERO_OR_NULL_PTR(s)))
4034 return s;
4035
4036 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4037
4038 /* Honor the call site pointer we received. */
4039 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4040
4041 return ret;
4042 }
4043
4044 #ifdef CONFIG_NUMA
4045 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4046 int node, unsigned long caller)
4047 {
4048 struct kmem_cache *s;
4049 void *ret;
4050
4051 if (unlikely(size > SLUB_MAX_SIZE)) {
4052 ret = kmalloc_large_node(size, gfpflags, node);
4053
4054 trace_kmalloc_node(caller, ret,
4055 size, PAGE_SIZE << get_order(size),
4056 gfpflags, node);
4057
4058 return ret;
4059 }
4060
4061 s = get_slab(size, gfpflags);
4062
4063 if (unlikely(ZERO_OR_NULL_PTR(s)))
4064 return s;
4065
4066 ret = slab_alloc(s, gfpflags, node, caller);
4067
4068 /* Honor the call site pointer we received. */
4069 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4070
4071 return ret;
4072 }
4073 #endif
4074
4075 #ifdef CONFIG_SYSFS
4076 static int count_inuse(struct page *page)
4077 {
4078 return page->inuse;
4079 }
4080
4081 static int count_total(struct page *page)
4082 {
4083 return page->objects;
4084 }
4085 #endif
4086
4087 #ifdef CONFIG_SLUB_DEBUG
4088 static int validate_slab(struct kmem_cache *s, struct page *page,
4089 unsigned long *map)
4090 {
4091 void *p;
4092 void *addr = page_address(page);
4093
4094 if (!check_slab(s, page) ||
4095 !on_freelist(s, page, NULL))
4096 return 0;
4097
4098 /* Now we know that a valid freelist exists */
4099 bitmap_zero(map, page->objects);
4100
4101 get_map(s, page, map);
4102 for_each_object(p, s, addr, page->objects) {
4103 if (test_bit(slab_index(p, s, addr), map))
4104 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4105 return 0;
4106 }
4107
4108 for_each_object(p, s, addr, page->objects)
4109 if (!test_bit(slab_index(p, s, addr), map))
4110 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4111 return 0;
4112 return 1;
4113 }
4114
4115 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4116 unsigned long *map)
4117 {
4118 slab_lock(page);
4119 validate_slab(s, page, map);
4120 slab_unlock(page);
4121 }
4122
4123 static int validate_slab_node(struct kmem_cache *s,
4124 struct kmem_cache_node *n, unsigned long *map)
4125 {
4126 unsigned long count = 0;
4127 struct page *page;
4128 unsigned long flags;
4129
4130 spin_lock_irqsave(&n->list_lock, flags);
4131
4132 list_for_each_entry(page, &n->partial, lru) {
4133 validate_slab_slab(s, page, map);
4134 count++;
4135 }
4136 if (count != n->nr_partial)
4137 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4138 "counter=%ld\n", s->name, count, n->nr_partial);
4139
4140 if (!(s->flags & SLAB_STORE_USER))
4141 goto out;
4142
4143 list_for_each_entry(page, &n->full, lru) {
4144 validate_slab_slab(s, page, map);
4145 count++;
4146 }
4147 if (count != atomic_long_read(&n->nr_slabs))
4148 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4149 "counter=%ld\n", s->name, count,
4150 atomic_long_read(&n->nr_slabs));
4151
4152 out:
4153 spin_unlock_irqrestore(&n->list_lock, flags);
4154 return count;
4155 }
4156
4157 static long validate_slab_cache(struct kmem_cache *s)
4158 {
4159 int node;
4160 unsigned long count = 0;
4161 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4162 sizeof(unsigned long), GFP_KERNEL);
4163
4164 if (!map)
4165 return -ENOMEM;
4166
4167 flush_all(s);
4168 for_each_node_state(node, N_NORMAL_MEMORY) {
4169 struct kmem_cache_node *n = get_node(s, node);
4170
4171 count += validate_slab_node(s, n, map);
4172 }
4173 kfree(map);
4174 return count;
4175 }
4176 /*
4177 * Generate lists of code addresses where slabcache objects are allocated
4178 * and freed.
4179 */
4180
4181 struct location {
4182 unsigned long count;
4183 unsigned long addr;
4184 long long sum_time;
4185 long min_time;
4186 long max_time;
4187 long min_pid;
4188 long max_pid;
4189 DECLARE_BITMAP(cpus, NR_CPUS);
4190 nodemask_t nodes;
4191 };
4192
4193 struct loc_track {
4194 unsigned long max;
4195 unsigned long count;
4196 struct location *loc;
4197 };
4198
4199 static void free_loc_track(struct loc_track *t)
4200 {
4201 if (t->max)
4202 free_pages((unsigned long)t->loc,
4203 get_order(sizeof(struct location) * t->max));
4204 }
4205
4206 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4207 {
4208 struct location *l;
4209 int order;
4210
4211 order = get_order(sizeof(struct location) * max);
4212
4213 l = (void *)__get_free_pages(flags, order);
4214 if (!l)
4215 return 0;
4216
4217 if (t->count) {
4218 memcpy(l, t->loc, sizeof(struct location) * t->count);
4219 free_loc_track(t);
4220 }
4221 t->max = max;
4222 t->loc = l;
4223 return 1;
4224 }
4225
4226 static int add_location(struct loc_track *t, struct kmem_cache *s,
4227 const struct track *track)
4228 {
4229 long start, end, pos;
4230 struct location *l;
4231 unsigned long caddr;
4232 unsigned long age = jiffies - track->when;
4233
4234 start = -1;
4235 end = t->count;
4236
4237 for ( ; ; ) {
4238 pos = start + (end - start + 1) / 2;
4239
4240 /*
4241 * There is nothing at "end". If we end up there
4242 * we need to add something to before end.
4243 */
4244 if (pos == end)
4245 break;
4246
4247 caddr = t->loc[pos].addr;
4248 if (track->addr == caddr) {
4249
4250 l = &t->loc[pos];
4251 l->count++;
4252 if (track->when) {
4253 l->sum_time += age;
4254 if (age < l->min_time)
4255 l->min_time = age;
4256 if (age > l->max_time)
4257 l->max_time = age;
4258
4259 if (track->pid < l->min_pid)
4260 l->min_pid = track->pid;
4261 if (track->pid > l->max_pid)
4262 l->max_pid = track->pid;
4263
4264 cpumask_set_cpu(track->cpu,
4265 to_cpumask(l->cpus));
4266 }
4267 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4268 return 1;
4269 }
4270
4271 if (track->addr < caddr)
4272 end = pos;
4273 else
4274 start = pos;
4275 }
4276
4277 /*
4278 * Not found. Insert new tracking element.
4279 */
4280 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4281 return 0;
4282
4283 l = t->loc + pos;
4284 if (pos < t->count)
4285 memmove(l + 1, l,
4286 (t->count - pos) * sizeof(struct location));
4287 t->count++;
4288 l->count = 1;
4289 l->addr = track->addr;
4290 l->sum_time = age;
4291 l->min_time = age;
4292 l->max_time = age;
4293 l->min_pid = track->pid;
4294 l->max_pid = track->pid;
4295 cpumask_clear(to_cpumask(l->cpus));
4296 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4297 nodes_clear(l->nodes);
4298 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4299 return 1;
4300 }
4301
4302 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4303 struct page *page, enum track_item alloc,
4304 unsigned long *map)
4305 {
4306 void *addr = page_address(page);
4307 void *p;
4308
4309 bitmap_zero(map, page->objects);
4310 get_map(s, page, map);
4311
4312 for_each_object(p, s, addr, page->objects)
4313 if (!test_bit(slab_index(p, s, addr), map))
4314 add_location(t, s, get_track(s, p, alloc));
4315 }
4316
4317 static int list_locations(struct kmem_cache *s, char *buf,
4318 enum track_item alloc)
4319 {
4320 int len = 0;
4321 unsigned long i;
4322 struct loc_track t = { 0, 0, NULL };
4323 int node;
4324 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4325 sizeof(unsigned long), GFP_KERNEL);
4326
4327 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4328 GFP_TEMPORARY)) {
4329 kfree(map);
4330 return sprintf(buf, "Out of memory\n");
4331 }
4332 /* Push back cpu slabs */
4333 flush_all(s);
4334
4335 for_each_node_state(node, N_NORMAL_MEMORY) {
4336 struct kmem_cache_node *n = get_node(s, node);
4337 unsigned long flags;
4338 struct page *page;
4339
4340 if (!atomic_long_read(&n->nr_slabs))
4341 continue;
4342
4343 spin_lock_irqsave(&n->list_lock, flags);
4344 list_for_each_entry(page, &n->partial, lru)
4345 process_slab(&t, s, page, alloc, map);
4346 list_for_each_entry(page, &n->full, lru)
4347 process_slab(&t, s, page, alloc, map);
4348 spin_unlock_irqrestore(&n->list_lock, flags);
4349 }
4350
4351 for (i = 0; i < t.count; i++) {
4352 struct location *l = &t.loc[i];
4353
4354 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4355 break;
4356 len += sprintf(buf + len, "%7ld ", l->count);
4357
4358 if (l->addr)
4359 len += sprintf(buf + len, "%pS", (void *)l->addr);
4360 else
4361 len += sprintf(buf + len, "<not-available>");
4362
4363 if (l->sum_time != l->min_time) {
4364 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4365 l->min_time,
4366 (long)div_u64(l->sum_time, l->count),
4367 l->max_time);
4368 } else
4369 len += sprintf(buf + len, " age=%ld",
4370 l->min_time);
4371
4372 if (l->min_pid != l->max_pid)
4373 len += sprintf(buf + len, " pid=%ld-%ld",
4374 l->min_pid, l->max_pid);
4375 else
4376 len += sprintf(buf + len, " pid=%ld",
4377 l->min_pid);
4378
4379 if (num_online_cpus() > 1 &&
4380 !cpumask_empty(to_cpumask(l->cpus)) &&
4381 len < PAGE_SIZE - 60) {
4382 len += sprintf(buf + len, " cpus=");
4383 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4384 to_cpumask(l->cpus));
4385 }
4386
4387 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4388 len < PAGE_SIZE - 60) {
4389 len += sprintf(buf + len, " nodes=");
4390 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4391 l->nodes);
4392 }
4393
4394 len += sprintf(buf + len, "\n");
4395 }
4396
4397 free_loc_track(&t);
4398 kfree(map);
4399 if (!t.count)
4400 len += sprintf(buf, "No data\n");
4401 return len;
4402 }
4403 #endif
4404
4405 #ifdef SLUB_RESILIENCY_TEST
4406 static void resiliency_test(void)
4407 {
4408 u8 *p;
4409
4410 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4411
4412 printk(KERN_ERR "SLUB resiliency testing\n");
4413 printk(KERN_ERR "-----------------------\n");
4414 printk(KERN_ERR "A. Corruption after allocation\n");
4415
4416 p = kzalloc(16, GFP_KERNEL);
4417 p[16] = 0x12;
4418 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4419 " 0x12->0x%p\n\n", p + 16);
4420
4421 validate_slab_cache(kmalloc_caches[4]);
4422
4423 /* Hmmm... The next two are dangerous */
4424 p = kzalloc(32, GFP_KERNEL);
4425 p[32 + sizeof(void *)] = 0x34;
4426 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4427 " 0x34 -> -0x%p\n", p);
4428 printk(KERN_ERR
4429 "If allocated object is overwritten then not detectable\n\n");
4430
4431 validate_slab_cache(kmalloc_caches[5]);
4432 p = kzalloc(64, GFP_KERNEL);
4433 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4434 *p = 0x56;
4435 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4436 p);
4437 printk(KERN_ERR
4438 "If allocated object is overwritten then not detectable\n\n");
4439 validate_slab_cache(kmalloc_caches[6]);
4440
4441 printk(KERN_ERR "\nB. Corruption after free\n");
4442 p = kzalloc(128, GFP_KERNEL);
4443 kfree(p);
4444 *p = 0x78;
4445 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4446 validate_slab_cache(kmalloc_caches[7]);
4447
4448 p = kzalloc(256, GFP_KERNEL);
4449 kfree(p);
4450 p[50] = 0x9a;
4451 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4452 p);
4453 validate_slab_cache(kmalloc_caches[8]);
4454
4455 p = kzalloc(512, GFP_KERNEL);
4456 kfree(p);
4457 p[512] = 0xab;
4458 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4459 validate_slab_cache(kmalloc_caches[9]);
4460 }
4461 #else
4462 #ifdef CONFIG_SYSFS
4463 static void resiliency_test(void) {};
4464 #endif
4465 #endif
4466
4467 #ifdef CONFIG_SYSFS
4468 enum slab_stat_type {
4469 SL_ALL, /* All slabs */
4470 SL_PARTIAL, /* Only partially allocated slabs */
4471 SL_CPU, /* Only slabs used for cpu caches */
4472 SL_OBJECTS, /* Determine allocated objects not slabs */
4473 SL_TOTAL /* Determine object capacity not slabs */
4474 };
4475
4476 #define SO_ALL (1 << SL_ALL)
4477 #define SO_PARTIAL (1 << SL_PARTIAL)
4478 #define SO_CPU (1 << SL_CPU)
4479 #define SO_OBJECTS (1 << SL_OBJECTS)
4480 #define SO_TOTAL (1 << SL_TOTAL)
4481
4482 static ssize_t show_slab_objects(struct kmem_cache *s,
4483 char *buf, unsigned long flags)
4484 {
4485 unsigned long total = 0;
4486 int node;
4487 int x;
4488 unsigned long *nodes;
4489 unsigned long *per_cpu;
4490
4491 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4492 if (!nodes)
4493 return -ENOMEM;
4494 per_cpu = nodes + nr_node_ids;
4495
4496 if (flags & SO_CPU) {
4497 int cpu;
4498
4499 for_each_possible_cpu(cpu) {
4500 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4501 int node;
4502 struct page *page;
4503
4504 page = ACCESS_ONCE(c->page);
4505 if (!page)
4506 continue;
4507
4508 node = page_to_nid(page);
4509 if (flags & SO_TOTAL)
4510 x = page->objects;
4511 else if (flags & SO_OBJECTS)
4512 x = page->inuse;
4513 else
4514 x = 1;
4515
4516 total += x;
4517 nodes[node] += x;
4518
4519 page = ACCESS_ONCE(c->partial);
4520 if (page) {
4521 x = page->pobjects;
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
4526 per_cpu[node]++;
4527 }
4528 }
4529
4530 lock_memory_hotplug();
4531 #ifdef CONFIG_SLUB_DEBUG
4532 if (flags & SO_ALL) {
4533 for_each_node_state(node, N_NORMAL_MEMORY) {
4534 struct kmem_cache_node *n = get_node(s, node);
4535
4536 if (flags & SO_TOTAL)
4537 x = atomic_long_read(&n->total_objects);
4538 else if (flags & SO_OBJECTS)
4539 x = atomic_long_read(&n->total_objects) -
4540 count_partial(n, count_free);
4541
4542 else
4543 x = atomic_long_read(&n->nr_slabs);
4544 total += x;
4545 nodes[node] += x;
4546 }
4547
4548 } else
4549 #endif
4550 if (flags & SO_PARTIAL) {
4551 for_each_node_state(node, N_NORMAL_MEMORY) {
4552 struct kmem_cache_node *n = get_node(s, node);
4553
4554 if (flags & SO_TOTAL)
4555 x = count_partial(n, count_total);
4556 else if (flags & SO_OBJECTS)
4557 x = count_partial(n, count_inuse);
4558 else
4559 x = n->nr_partial;
4560 total += x;
4561 nodes[node] += x;
4562 }
4563 }
4564 x = sprintf(buf, "%lu", total);
4565 #ifdef CONFIG_NUMA
4566 for_each_node_state(node, N_NORMAL_MEMORY)
4567 if (nodes[node])
4568 x += sprintf(buf + x, " N%d=%lu",
4569 node, nodes[node]);
4570 #endif
4571 unlock_memory_hotplug();
4572 kfree(nodes);
4573 return x + sprintf(buf + x, "\n");
4574 }
4575
4576 #ifdef CONFIG_SLUB_DEBUG
4577 static int any_slab_objects(struct kmem_cache *s)
4578 {
4579 int node;
4580
4581 for_each_online_node(node) {
4582 struct kmem_cache_node *n = get_node(s, node);
4583
4584 if (!n)
4585 continue;
4586
4587 if (atomic_long_read(&n->total_objects))
4588 return 1;
4589 }
4590 return 0;
4591 }
4592 #endif
4593
4594 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4595 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4596
4597 struct slab_attribute {
4598 struct attribute attr;
4599 ssize_t (*show)(struct kmem_cache *s, char *buf);
4600 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4601 };
4602
4603 #define SLAB_ATTR_RO(_name) \
4604 static struct slab_attribute _name##_attr = \
4605 __ATTR(_name, 0400, _name##_show, NULL)
4606
4607 #define SLAB_ATTR(_name) \
4608 static struct slab_attribute _name##_attr = \
4609 __ATTR(_name, 0600, _name##_show, _name##_store)
4610
4611 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4612 {
4613 return sprintf(buf, "%d\n", s->size);
4614 }
4615 SLAB_ATTR_RO(slab_size);
4616
4617 static ssize_t align_show(struct kmem_cache *s, char *buf)
4618 {
4619 return sprintf(buf, "%d\n", s->align);
4620 }
4621 SLAB_ATTR_RO(align);
4622
4623 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4624 {
4625 return sprintf(buf, "%d\n", s->object_size);
4626 }
4627 SLAB_ATTR_RO(object_size);
4628
4629 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4630 {
4631 return sprintf(buf, "%d\n", oo_objects(s->oo));
4632 }
4633 SLAB_ATTR_RO(objs_per_slab);
4634
4635 static ssize_t order_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637 {
4638 unsigned long order;
4639 int err;
4640
4641 err = strict_strtoul(buf, 10, &order);
4642 if (err)
4643 return err;
4644
4645 if (order > slub_max_order || order < slub_min_order)
4646 return -EINVAL;
4647
4648 calculate_sizes(s, order);
4649 return length;
4650 }
4651
4652 static ssize_t order_show(struct kmem_cache *s, char *buf)
4653 {
4654 return sprintf(buf, "%d\n", oo_order(s->oo));
4655 }
4656 SLAB_ATTR(order);
4657
4658 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4659 {
4660 return sprintf(buf, "%lu\n", s->min_partial);
4661 }
4662
4663 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4664 size_t length)
4665 {
4666 unsigned long min;
4667 int err;
4668
4669 err = strict_strtoul(buf, 10, &min);
4670 if (err)
4671 return err;
4672
4673 set_min_partial(s, min);
4674 return length;
4675 }
4676 SLAB_ATTR(min_partial);
4677
4678 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%u\n", s->cpu_partial);
4681 }
4682
4683 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4684 size_t length)
4685 {
4686 unsigned long objects;
4687 int err;
4688
4689 err = strict_strtoul(buf, 10, &objects);
4690 if (err)
4691 return err;
4692 if (objects && kmem_cache_debug(s))
4693 return -EINVAL;
4694
4695 s->cpu_partial = objects;
4696 flush_all(s);
4697 return length;
4698 }
4699 SLAB_ATTR(cpu_partial);
4700
4701 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4702 {
4703 if (!s->ctor)
4704 return 0;
4705 return sprintf(buf, "%pS\n", s->ctor);
4706 }
4707 SLAB_ATTR_RO(ctor);
4708
4709 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4710 {
4711 return sprintf(buf, "%d\n", s->refcount - 1);
4712 }
4713 SLAB_ATTR_RO(aliases);
4714
4715 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4716 {
4717 return show_slab_objects(s, buf, SO_PARTIAL);
4718 }
4719 SLAB_ATTR_RO(partial);
4720
4721 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4722 {
4723 return show_slab_objects(s, buf, SO_CPU);
4724 }
4725 SLAB_ATTR_RO(cpu_slabs);
4726
4727 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4728 {
4729 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4730 }
4731 SLAB_ATTR_RO(objects);
4732
4733 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4734 {
4735 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4736 }
4737 SLAB_ATTR_RO(objects_partial);
4738
4739 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4740 {
4741 int objects = 0;
4742 int pages = 0;
4743 int cpu;
4744 int len;
4745
4746 for_each_online_cpu(cpu) {
4747 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4748
4749 if (page) {
4750 pages += page->pages;
4751 objects += page->pobjects;
4752 }
4753 }
4754
4755 len = sprintf(buf, "%d(%d)", objects, pages);
4756
4757 #ifdef CONFIG_SMP
4758 for_each_online_cpu(cpu) {
4759 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4760
4761 if (page && len < PAGE_SIZE - 20)
4762 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4763 page->pobjects, page->pages);
4764 }
4765 #endif
4766 return len + sprintf(buf + len, "\n");
4767 }
4768 SLAB_ATTR_RO(slabs_cpu_partial);
4769
4770 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4771 {
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4773 }
4774
4775 static ssize_t reclaim_account_store(struct kmem_cache *s,
4776 const char *buf, size_t length)
4777 {
4778 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4779 if (buf[0] == '1')
4780 s->flags |= SLAB_RECLAIM_ACCOUNT;
4781 return length;
4782 }
4783 SLAB_ATTR(reclaim_account);
4784
4785 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4786 {
4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4788 }
4789 SLAB_ATTR_RO(hwcache_align);
4790
4791 #ifdef CONFIG_ZONE_DMA
4792 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4793 {
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4795 }
4796 SLAB_ATTR_RO(cache_dma);
4797 #endif
4798
4799 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4800 {
4801 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4802 }
4803 SLAB_ATTR_RO(destroy_by_rcu);
4804
4805 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4806 {
4807 return sprintf(buf, "%d\n", s->reserved);
4808 }
4809 SLAB_ATTR_RO(reserved);
4810
4811 #ifdef CONFIG_SLUB_DEBUG
4812 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4813 {
4814 return show_slab_objects(s, buf, SO_ALL);
4815 }
4816 SLAB_ATTR_RO(slabs);
4817
4818 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4819 {
4820 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4821 }
4822 SLAB_ATTR_RO(total_objects);
4823
4824 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4825 {
4826 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4827 }
4828
4829 static ssize_t sanity_checks_store(struct kmem_cache *s,
4830 const char *buf, size_t length)
4831 {
4832 s->flags &= ~SLAB_DEBUG_FREE;
4833 if (buf[0] == '1') {
4834 s->flags &= ~__CMPXCHG_DOUBLE;
4835 s->flags |= SLAB_DEBUG_FREE;
4836 }
4837 return length;
4838 }
4839 SLAB_ATTR(sanity_checks);
4840
4841 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4842 {
4843 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4844 }
4845
4846 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4847 size_t length)
4848 {
4849 s->flags &= ~SLAB_TRACE;
4850 if (buf[0] == '1') {
4851 s->flags &= ~__CMPXCHG_DOUBLE;
4852 s->flags |= SLAB_TRACE;
4853 }
4854 return length;
4855 }
4856 SLAB_ATTR(trace);
4857
4858 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4859 {
4860 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4861 }
4862
4863 static ssize_t red_zone_store(struct kmem_cache *s,
4864 const char *buf, size_t length)
4865 {
4866 if (any_slab_objects(s))
4867 return -EBUSY;
4868
4869 s->flags &= ~SLAB_RED_ZONE;
4870 if (buf[0] == '1') {
4871 s->flags &= ~__CMPXCHG_DOUBLE;
4872 s->flags |= SLAB_RED_ZONE;
4873 }
4874 calculate_sizes(s, -1);
4875 return length;
4876 }
4877 SLAB_ATTR(red_zone);
4878
4879 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4880 {
4881 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4882 }
4883
4884 static ssize_t poison_store(struct kmem_cache *s,
4885 const char *buf, size_t length)
4886 {
4887 if (any_slab_objects(s))
4888 return -EBUSY;
4889
4890 s->flags &= ~SLAB_POISON;
4891 if (buf[0] == '1') {
4892 s->flags &= ~__CMPXCHG_DOUBLE;
4893 s->flags |= SLAB_POISON;
4894 }
4895 calculate_sizes(s, -1);
4896 return length;
4897 }
4898 SLAB_ATTR(poison);
4899
4900 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4901 {
4902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4903 }
4904
4905 static ssize_t store_user_store(struct kmem_cache *s,
4906 const char *buf, size_t length)
4907 {
4908 if (any_slab_objects(s))
4909 return -EBUSY;
4910
4911 s->flags &= ~SLAB_STORE_USER;
4912 if (buf[0] == '1') {
4913 s->flags &= ~__CMPXCHG_DOUBLE;
4914 s->flags |= SLAB_STORE_USER;
4915 }
4916 calculate_sizes(s, -1);
4917 return length;
4918 }
4919 SLAB_ATTR(store_user);
4920
4921 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4922 {
4923 return 0;
4924 }
4925
4926 static ssize_t validate_store(struct kmem_cache *s,
4927 const char *buf, size_t length)
4928 {
4929 int ret = -EINVAL;
4930
4931 if (buf[0] == '1') {
4932 ret = validate_slab_cache(s);
4933 if (ret >= 0)
4934 ret = length;
4935 }
4936 return ret;
4937 }
4938 SLAB_ATTR(validate);
4939
4940 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4941 {
4942 if (!(s->flags & SLAB_STORE_USER))
4943 return -ENOSYS;
4944 return list_locations(s, buf, TRACK_ALLOC);
4945 }
4946 SLAB_ATTR_RO(alloc_calls);
4947
4948 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4949 {
4950 if (!(s->flags & SLAB_STORE_USER))
4951 return -ENOSYS;
4952 return list_locations(s, buf, TRACK_FREE);
4953 }
4954 SLAB_ATTR_RO(free_calls);
4955 #endif /* CONFIG_SLUB_DEBUG */
4956
4957 #ifdef CONFIG_FAILSLAB
4958 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4959 {
4960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4961 }
4962
4963 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4964 size_t length)
4965 {
4966 s->flags &= ~SLAB_FAILSLAB;
4967 if (buf[0] == '1')
4968 s->flags |= SLAB_FAILSLAB;
4969 return length;
4970 }
4971 SLAB_ATTR(failslab);
4972 #endif
4973
4974 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4975 {
4976 return 0;
4977 }
4978
4979 static ssize_t shrink_store(struct kmem_cache *s,
4980 const char *buf, size_t length)
4981 {
4982 if (buf[0] == '1') {
4983 int rc = kmem_cache_shrink(s);
4984
4985 if (rc)
4986 return rc;
4987 } else
4988 return -EINVAL;
4989 return length;
4990 }
4991 SLAB_ATTR(shrink);
4992
4993 #ifdef CONFIG_NUMA
4994 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4995 {
4996 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4997 }
4998
4999 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5000 const char *buf, size_t length)
5001 {
5002 unsigned long ratio;
5003 int err;
5004
5005 err = strict_strtoul(buf, 10, &ratio);
5006 if (err)
5007 return err;
5008
5009 if (ratio <= 100)
5010 s->remote_node_defrag_ratio = ratio * 10;
5011
5012 return length;
5013 }
5014 SLAB_ATTR(remote_node_defrag_ratio);
5015 #endif
5016
5017 #ifdef CONFIG_SLUB_STATS
5018 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5019 {
5020 unsigned long sum = 0;
5021 int cpu;
5022 int len;
5023 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5024
5025 if (!data)
5026 return -ENOMEM;
5027
5028 for_each_online_cpu(cpu) {
5029 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5030
5031 data[cpu] = x;
5032 sum += x;
5033 }
5034
5035 len = sprintf(buf, "%lu", sum);
5036
5037 #ifdef CONFIG_SMP
5038 for_each_online_cpu(cpu) {
5039 if (data[cpu] && len < PAGE_SIZE - 20)
5040 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5041 }
5042 #endif
5043 kfree(data);
5044 return len + sprintf(buf + len, "\n");
5045 }
5046
5047 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5048 {
5049 int cpu;
5050
5051 for_each_online_cpu(cpu)
5052 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5053 }
5054
5055 #define STAT_ATTR(si, text) \
5056 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5057 { \
5058 return show_stat(s, buf, si); \
5059 } \
5060 static ssize_t text##_store(struct kmem_cache *s, \
5061 const char *buf, size_t length) \
5062 { \
5063 if (buf[0] != '0') \
5064 return -EINVAL; \
5065 clear_stat(s, si); \
5066 return length; \
5067 } \
5068 SLAB_ATTR(text); \
5069
5070 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5071 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5072 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5073 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5074 STAT_ATTR(FREE_FROZEN, free_frozen);
5075 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5076 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5077 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5078 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5079 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5080 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5081 STAT_ATTR(FREE_SLAB, free_slab);
5082 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5083 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5084 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5085 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5086 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5087 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5088 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5089 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5090 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5091 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5092 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5093 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5094 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5095 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5096 #endif
5097
5098 static struct attribute *slab_attrs[] = {
5099 &slab_size_attr.attr,
5100 &object_size_attr.attr,
5101 &objs_per_slab_attr.attr,
5102 &order_attr.attr,
5103 &min_partial_attr.attr,
5104 &cpu_partial_attr.attr,
5105 &objects_attr.attr,
5106 &objects_partial_attr.attr,
5107 &partial_attr.attr,
5108 &cpu_slabs_attr.attr,
5109 &ctor_attr.attr,
5110 &aliases_attr.attr,
5111 &align_attr.attr,
5112 &hwcache_align_attr.attr,
5113 &reclaim_account_attr.attr,
5114 &destroy_by_rcu_attr.attr,
5115 &shrink_attr.attr,
5116 &reserved_attr.attr,
5117 &slabs_cpu_partial_attr.attr,
5118 #ifdef CONFIG_SLUB_DEBUG
5119 &total_objects_attr.attr,
5120 &slabs_attr.attr,
5121 &sanity_checks_attr.attr,
5122 &trace_attr.attr,
5123 &red_zone_attr.attr,
5124 &poison_attr.attr,
5125 &store_user_attr.attr,
5126 &validate_attr.attr,
5127 &alloc_calls_attr.attr,
5128 &free_calls_attr.attr,
5129 #endif
5130 #ifdef CONFIG_ZONE_DMA
5131 &cache_dma_attr.attr,
5132 #endif
5133 #ifdef CONFIG_NUMA
5134 &remote_node_defrag_ratio_attr.attr,
5135 #endif
5136 #ifdef CONFIG_SLUB_STATS
5137 &alloc_fastpath_attr.attr,
5138 &alloc_slowpath_attr.attr,
5139 &free_fastpath_attr.attr,
5140 &free_slowpath_attr.attr,
5141 &free_frozen_attr.attr,
5142 &free_add_partial_attr.attr,
5143 &free_remove_partial_attr.attr,
5144 &alloc_from_partial_attr.attr,
5145 &alloc_slab_attr.attr,
5146 &alloc_refill_attr.attr,
5147 &alloc_node_mismatch_attr.attr,
5148 &free_slab_attr.attr,
5149 &cpuslab_flush_attr.attr,
5150 &deactivate_full_attr.attr,
5151 &deactivate_empty_attr.attr,
5152 &deactivate_to_head_attr.attr,
5153 &deactivate_to_tail_attr.attr,
5154 &deactivate_remote_frees_attr.attr,
5155 &deactivate_bypass_attr.attr,
5156 &order_fallback_attr.attr,
5157 &cmpxchg_double_fail_attr.attr,
5158 &cmpxchg_double_cpu_fail_attr.attr,
5159 &cpu_partial_alloc_attr.attr,
5160 &cpu_partial_free_attr.attr,
5161 &cpu_partial_node_attr.attr,
5162 &cpu_partial_drain_attr.attr,
5163 #endif
5164 #ifdef CONFIG_FAILSLAB
5165 &failslab_attr.attr,
5166 #endif
5167
5168 NULL
5169 };
5170
5171 static struct attribute_group slab_attr_group = {
5172 .attrs = slab_attrs,
5173 };
5174
5175 static ssize_t slab_attr_show(struct kobject *kobj,
5176 struct attribute *attr,
5177 char *buf)
5178 {
5179 struct slab_attribute *attribute;
5180 struct kmem_cache *s;
5181 int err;
5182
5183 attribute = to_slab_attr(attr);
5184 s = to_slab(kobj);
5185
5186 if (!attribute->show)
5187 return -EIO;
5188
5189 err = attribute->show(s, buf);
5190
5191 return err;
5192 }
5193
5194 static ssize_t slab_attr_store(struct kobject *kobj,
5195 struct attribute *attr,
5196 const char *buf, size_t len)
5197 {
5198 struct slab_attribute *attribute;
5199 struct kmem_cache *s;
5200 int err;
5201
5202 attribute = to_slab_attr(attr);
5203 s = to_slab(kobj);
5204
5205 if (!attribute->store)
5206 return -EIO;
5207
5208 err = attribute->store(s, buf, len);
5209
5210 return err;
5211 }
5212
5213 static void kmem_cache_release(struct kobject *kobj)
5214 {
5215 struct kmem_cache *s = to_slab(kobj);
5216
5217 kfree(s->name);
5218 kfree(s);
5219 }
5220
5221 static const struct sysfs_ops slab_sysfs_ops = {
5222 .show = slab_attr_show,
5223 .store = slab_attr_store,
5224 };
5225
5226 static struct kobj_type slab_ktype = {
5227 .sysfs_ops = &slab_sysfs_ops,
5228 .release = kmem_cache_release
5229 };
5230
5231 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5232 {
5233 struct kobj_type *ktype = get_ktype(kobj);
5234
5235 if (ktype == &slab_ktype)
5236 return 1;
5237 return 0;
5238 }
5239
5240 static const struct kset_uevent_ops slab_uevent_ops = {
5241 .filter = uevent_filter,
5242 };
5243
5244 static struct kset *slab_kset;
5245
5246 #define ID_STR_LENGTH 64
5247
5248 /* Create a unique string id for a slab cache:
5249 *
5250 * Format :[flags-]size
5251 */
5252 static char *create_unique_id(struct kmem_cache *s)
5253 {
5254 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5255 char *p = name;
5256
5257 BUG_ON(!name);
5258
5259 *p++ = ':';
5260 /*
5261 * First flags affecting slabcache operations. We will only
5262 * get here for aliasable slabs so we do not need to support
5263 * too many flags. The flags here must cover all flags that
5264 * are matched during merging to guarantee that the id is
5265 * unique.
5266 */
5267 if (s->flags & SLAB_CACHE_DMA)
5268 *p++ = 'd';
5269 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5270 *p++ = 'a';
5271 if (s->flags & SLAB_DEBUG_FREE)
5272 *p++ = 'F';
5273 if (!(s->flags & SLAB_NOTRACK))
5274 *p++ = 't';
5275 if (p != name + 1)
5276 *p++ = '-';
5277 p += sprintf(p, "%07d", s->size);
5278 BUG_ON(p > name + ID_STR_LENGTH - 1);
5279 return name;
5280 }
5281
5282 static int sysfs_slab_add(struct kmem_cache *s)
5283 {
5284 int err;
5285 const char *name;
5286 int unmergeable;
5287
5288 if (slab_state < FULL)
5289 /* Defer until later */
5290 return 0;
5291
5292 unmergeable = slab_unmergeable(s);
5293 if (unmergeable) {
5294 /*
5295 * Slabcache can never be merged so we can use the name proper.
5296 * This is typically the case for debug situations. In that
5297 * case we can catch duplicate names easily.
5298 */
5299 sysfs_remove_link(&slab_kset->kobj, s->name);
5300 name = s->name;
5301 } else {
5302 /*
5303 * Create a unique name for the slab as a target
5304 * for the symlinks.
5305 */
5306 name = create_unique_id(s);
5307 }
5308
5309 s->kobj.kset = slab_kset;
5310 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5311 if (err) {
5312 kobject_put(&s->kobj);
5313 return err;
5314 }
5315
5316 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5317 if (err) {
5318 kobject_del(&s->kobj);
5319 kobject_put(&s->kobj);
5320 return err;
5321 }
5322 kobject_uevent(&s->kobj, KOBJ_ADD);
5323 if (!unmergeable) {
5324 /* Setup first alias */
5325 sysfs_slab_alias(s, s->name);
5326 kfree(name);
5327 }
5328 return 0;
5329 }
5330
5331 static void sysfs_slab_remove(struct kmem_cache *s)
5332 {
5333 if (slab_state < FULL)
5334 /*
5335 * Sysfs has not been setup yet so no need to remove the
5336 * cache from sysfs.
5337 */
5338 return;
5339
5340 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5341 kobject_del(&s->kobj);
5342 kobject_put(&s->kobj);
5343 }
5344
5345 /*
5346 * Need to buffer aliases during bootup until sysfs becomes
5347 * available lest we lose that information.
5348 */
5349 struct saved_alias {
5350 struct kmem_cache *s;
5351 const char *name;
5352 struct saved_alias *next;
5353 };
5354
5355 static struct saved_alias *alias_list;
5356
5357 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5358 {
5359 struct saved_alias *al;
5360
5361 if (slab_state == FULL) {
5362 /*
5363 * If we have a leftover link then remove it.
5364 */
5365 sysfs_remove_link(&slab_kset->kobj, name);
5366 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5367 }
5368
5369 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5370 if (!al)
5371 return -ENOMEM;
5372
5373 al->s = s;
5374 al->name = name;
5375 al->next = alias_list;
5376 alias_list = al;
5377 return 0;
5378 }
5379
5380 static int __init slab_sysfs_init(void)
5381 {
5382 struct kmem_cache *s;
5383 int err;
5384
5385 mutex_lock(&slab_mutex);
5386
5387 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5388 if (!slab_kset) {
5389 mutex_unlock(&slab_mutex);
5390 printk(KERN_ERR "Cannot register slab subsystem.\n");
5391 return -ENOSYS;
5392 }
5393
5394 slab_state = FULL;
5395
5396 list_for_each_entry(s, &slab_caches, list) {
5397 err = sysfs_slab_add(s);
5398 if (err)
5399 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5400 " to sysfs\n", s->name);
5401 }
5402
5403 while (alias_list) {
5404 struct saved_alias *al = alias_list;
5405
5406 alias_list = alias_list->next;
5407 err = sysfs_slab_alias(al->s, al->name);
5408 if (err)
5409 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5410 " %s to sysfs\n", al->name);
5411 kfree(al);
5412 }
5413
5414 mutex_unlock(&slab_mutex);
5415 resiliency_test();
5416 return 0;
5417 }
5418
5419 __initcall(slab_sysfs_init);
5420 #endif /* CONFIG_SYSFS */
5421
5422 /*
5423 * The /proc/slabinfo ABI
5424 */
5425 #ifdef CONFIG_SLABINFO
5426 static void print_slabinfo_header(struct seq_file *m)
5427 {
5428 seq_puts(m, "slabinfo - version: 2.1\n");
5429 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5430 "<objperslab> <pagesperslab>");
5431 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5432 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5433 seq_putc(m, '\n');
5434 }
5435
5436 static void *s_start(struct seq_file *m, loff_t *pos)
5437 {
5438 loff_t n = *pos;
5439
5440 mutex_lock(&slab_mutex);
5441 if (!n)
5442 print_slabinfo_header(m);
5443
5444 return seq_list_start(&slab_caches, *pos);
5445 }
5446
5447 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5448 {
5449 return seq_list_next(p, &slab_caches, pos);
5450 }
5451
5452 static void s_stop(struct seq_file *m, void *p)
5453 {
5454 mutex_unlock(&slab_mutex);
5455 }
5456
5457 static int s_show(struct seq_file *m, void *p)
5458 {
5459 unsigned long nr_partials = 0;
5460 unsigned long nr_slabs = 0;
5461 unsigned long nr_inuse = 0;
5462 unsigned long nr_objs = 0;
5463 unsigned long nr_free = 0;
5464 struct kmem_cache *s;
5465 int node;
5466
5467 s = list_entry(p, struct kmem_cache, list);
5468
5469 for_each_online_node(node) {
5470 struct kmem_cache_node *n = get_node(s, node);
5471
5472 if (!n)
5473 continue;
5474
5475 nr_partials += n->nr_partial;
5476 nr_slabs += atomic_long_read(&n->nr_slabs);
5477 nr_objs += atomic_long_read(&n->total_objects);
5478 nr_free += count_partial(n, count_free);
5479 }
5480
5481 nr_inuse = nr_objs - nr_free;
5482
5483 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5484 nr_objs, s->size, oo_objects(s->oo),
5485 (1 << oo_order(s->oo)));
5486 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5487 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5488 0UL);
5489 seq_putc(m, '\n');
5490 return 0;
5491 }
5492
5493 static const struct seq_operations slabinfo_op = {
5494 .start = s_start,
5495 .next = s_next,
5496 .stop = s_stop,
5497 .show = s_show,
5498 };
5499
5500 static int slabinfo_open(struct inode *inode, struct file *file)
5501 {
5502 return seq_open(file, &slabinfo_op);
5503 }
5504
5505 static const struct file_operations proc_slabinfo_operations = {
5506 .open = slabinfo_open,
5507 .read = seq_read,
5508 .llseek = seq_lseek,
5509 .release = seq_release,
5510 };
5511
5512 static int __init slab_proc_init(void)
5513 {
5514 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5515 return 0;
5516 }
5517 module_init(slab_proc_init);
5518 #endif /* CONFIG_SLABINFO */