]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slub.c
301360bc00c6b456d1fd85e736103b0f2852dbf6
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 #include <trace/events/kmem.h>
32
33 /*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138 #define MIN_PARTIAL 5
139
140 /*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145 #define MAX_PARTIAL 10
146
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157 /*
158 * Set of flags that will prevent slab merging
159 */
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
163
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
173
174 static int kmem_size = sizeof(struct kmem_cache);
175
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
179
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* Kmem_cache_node works */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
186
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190
191 /*
192 * Tracking user of a slab.
193 */
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199 };
200
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 kfree(s->name);
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(const struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 return s->node[node];
239 }
240
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244 {
245 void *base;
246
247 if (!object)
248 return 1;
249
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257 }
258
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 return *(void **)(object + s->offset);
262 }
263
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 *(void **)(object + s->offset) = fp;
267 }
268
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 __p += (__s)->size)
273
274 /* Determine object index from a given position */
275 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
276 {
277 return (p - addr) / s->size;
278 }
279
280 static inline size_t slab_ksize(const struct kmem_cache *s)
281 {
282 #ifdef CONFIG_SLUB_DEBUG
283 /*
284 * Debugging requires use of the padding between object
285 * and whatever may come after it.
286 */
287 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
288 return s->objsize;
289
290 #endif
291 /*
292 * If we have the need to store the freelist pointer
293 * back there or track user information then we can
294 * only use the space before that information.
295 */
296 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
297 return s->inuse;
298 /*
299 * Else we can use all the padding etc for the allocation
300 */
301 return s->size;
302 }
303
304 static inline int order_objects(int order, unsigned long size, int reserved)
305 {
306 return ((PAGE_SIZE << order) - reserved) / size;
307 }
308
309 static inline struct kmem_cache_order_objects oo_make(int order,
310 unsigned long size, int reserved)
311 {
312 struct kmem_cache_order_objects x = {
313 (order << OO_SHIFT) + order_objects(order, size, reserved)
314 };
315
316 return x;
317 }
318
319 static inline int oo_order(struct kmem_cache_order_objects x)
320 {
321 return x.x >> OO_SHIFT;
322 }
323
324 static inline int oo_objects(struct kmem_cache_order_objects x)
325 {
326 return x.x & OO_MASK;
327 }
328
329 /*
330 * Determine a map of object in use on a page.
331 *
332 * Slab lock or node listlock must be held to guarantee that the page does
333 * not vanish from under us.
334 */
335 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
336 {
337 void *p;
338 void *addr = page_address(page);
339
340 for (p = page->freelist; p; p = get_freepointer(s, p))
341 set_bit(slab_index(p, s, addr), map);
342 }
343
344 #ifdef CONFIG_SLUB_DEBUG
345 /*
346 * Debug settings:
347 */
348 #ifdef CONFIG_SLUB_DEBUG_ON
349 static int slub_debug = DEBUG_DEFAULT_FLAGS;
350 #else
351 static int slub_debug;
352 #endif
353
354 static char *slub_debug_slabs;
355 static int disable_higher_order_debug;
356
357 /*
358 * Object debugging
359 */
360 static void print_section(char *text, u8 *addr, unsigned int length)
361 {
362 int i, offset;
363 int newline = 1;
364 char ascii[17];
365
366 ascii[16] = 0;
367
368 for (i = 0; i < length; i++) {
369 if (newline) {
370 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
371 newline = 0;
372 }
373 printk(KERN_CONT " %02x", addr[i]);
374 offset = i % 16;
375 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
376 if (offset == 15) {
377 printk(KERN_CONT " %s\n", ascii);
378 newline = 1;
379 }
380 }
381 if (!newline) {
382 i %= 16;
383 while (i < 16) {
384 printk(KERN_CONT " ");
385 ascii[i] = ' ';
386 i++;
387 }
388 printk(KERN_CONT " %s\n", ascii);
389 }
390 }
391
392 static struct track *get_track(struct kmem_cache *s, void *object,
393 enum track_item alloc)
394 {
395 struct track *p;
396
397 if (s->offset)
398 p = object + s->offset + sizeof(void *);
399 else
400 p = object + s->inuse;
401
402 return p + alloc;
403 }
404
405 static void set_track(struct kmem_cache *s, void *object,
406 enum track_item alloc, unsigned long addr)
407 {
408 struct track *p = get_track(s, object, alloc);
409
410 if (addr) {
411 p->addr = addr;
412 p->cpu = smp_processor_id();
413 p->pid = current->pid;
414 p->when = jiffies;
415 } else
416 memset(p, 0, sizeof(struct track));
417 }
418
419 static void init_tracking(struct kmem_cache *s, void *object)
420 {
421 if (!(s->flags & SLAB_STORE_USER))
422 return;
423
424 set_track(s, object, TRACK_FREE, 0UL);
425 set_track(s, object, TRACK_ALLOC, 0UL);
426 }
427
428 static void print_track(const char *s, struct track *t)
429 {
430 if (!t->addr)
431 return;
432
433 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
434 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
435 }
436
437 static void print_tracking(struct kmem_cache *s, void *object)
438 {
439 if (!(s->flags & SLAB_STORE_USER))
440 return;
441
442 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
443 print_track("Freed", get_track(s, object, TRACK_FREE));
444 }
445
446 static void print_page_info(struct page *page)
447 {
448 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
449 page, page->objects, page->inuse, page->freelist, page->flags);
450
451 }
452
453 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
454 {
455 va_list args;
456 char buf[100];
457
458 va_start(args, fmt);
459 vsnprintf(buf, sizeof(buf), fmt, args);
460 va_end(args);
461 printk(KERN_ERR "========================================"
462 "=====================================\n");
463 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
464 printk(KERN_ERR "----------------------------------------"
465 "-------------------------------------\n\n");
466 }
467
468 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
469 {
470 va_list args;
471 char buf[100];
472
473 va_start(args, fmt);
474 vsnprintf(buf, sizeof(buf), fmt, args);
475 va_end(args);
476 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
477 }
478
479 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
480 {
481 unsigned int off; /* Offset of last byte */
482 u8 *addr = page_address(page);
483
484 print_tracking(s, p);
485
486 print_page_info(page);
487
488 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
489 p, p - addr, get_freepointer(s, p));
490
491 if (p > addr + 16)
492 print_section("Bytes b4", p - 16, 16);
493
494 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
495
496 if (s->flags & SLAB_RED_ZONE)
497 print_section("Redzone", p + s->objsize,
498 s->inuse - s->objsize);
499
500 if (s->offset)
501 off = s->offset + sizeof(void *);
502 else
503 off = s->inuse;
504
505 if (s->flags & SLAB_STORE_USER)
506 off += 2 * sizeof(struct track);
507
508 if (off != s->size)
509 /* Beginning of the filler is the free pointer */
510 print_section("Padding", p + off, s->size - off);
511
512 dump_stack();
513 }
514
515 static void object_err(struct kmem_cache *s, struct page *page,
516 u8 *object, char *reason)
517 {
518 slab_bug(s, "%s", reason);
519 print_trailer(s, page, object);
520 }
521
522 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
523 {
524 va_list args;
525 char buf[100];
526
527 va_start(args, fmt);
528 vsnprintf(buf, sizeof(buf), fmt, args);
529 va_end(args);
530 slab_bug(s, "%s", buf);
531 print_page_info(page);
532 dump_stack();
533 }
534
535 static void init_object(struct kmem_cache *s, void *object, u8 val)
536 {
537 u8 *p = object;
538
539 if (s->flags & __OBJECT_POISON) {
540 memset(p, POISON_FREE, s->objsize - 1);
541 p[s->objsize - 1] = POISON_END;
542 }
543
544 if (s->flags & SLAB_RED_ZONE)
545 memset(p + s->objsize, val, s->inuse - s->objsize);
546 }
547
548 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
549 {
550 while (bytes) {
551 if (*start != (u8)value)
552 return start;
553 start++;
554 bytes--;
555 }
556 return NULL;
557 }
558
559 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
560 void *from, void *to)
561 {
562 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
563 memset(from, data, to - from);
564 }
565
566 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
567 u8 *object, char *what,
568 u8 *start, unsigned int value, unsigned int bytes)
569 {
570 u8 *fault;
571 u8 *end;
572
573 fault = check_bytes(start, value, bytes);
574 if (!fault)
575 return 1;
576
577 end = start + bytes;
578 while (end > fault && end[-1] == value)
579 end--;
580
581 slab_bug(s, "%s overwritten", what);
582 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
583 fault, end - 1, fault[0], value);
584 print_trailer(s, page, object);
585
586 restore_bytes(s, what, value, fault, end);
587 return 0;
588 }
589
590 /*
591 * Object layout:
592 *
593 * object address
594 * Bytes of the object to be managed.
595 * If the freepointer may overlay the object then the free
596 * pointer is the first word of the object.
597 *
598 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
599 * 0xa5 (POISON_END)
600 *
601 * object + s->objsize
602 * Padding to reach word boundary. This is also used for Redzoning.
603 * Padding is extended by another word if Redzoning is enabled and
604 * objsize == inuse.
605 *
606 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
607 * 0xcc (RED_ACTIVE) for objects in use.
608 *
609 * object + s->inuse
610 * Meta data starts here.
611 *
612 * A. Free pointer (if we cannot overwrite object on free)
613 * B. Tracking data for SLAB_STORE_USER
614 * C. Padding to reach required alignment boundary or at mininum
615 * one word if debugging is on to be able to detect writes
616 * before the word boundary.
617 *
618 * Padding is done using 0x5a (POISON_INUSE)
619 *
620 * object + s->size
621 * Nothing is used beyond s->size.
622 *
623 * If slabcaches are merged then the objsize and inuse boundaries are mostly
624 * ignored. And therefore no slab options that rely on these boundaries
625 * may be used with merged slabcaches.
626 */
627
628 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
629 {
630 unsigned long off = s->inuse; /* The end of info */
631
632 if (s->offset)
633 /* Freepointer is placed after the object. */
634 off += sizeof(void *);
635
636 if (s->flags & SLAB_STORE_USER)
637 /* We also have user information there */
638 off += 2 * sizeof(struct track);
639
640 if (s->size == off)
641 return 1;
642
643 return check_bytes_and_report(s, page, p, "Object padding",
644 p + off, POISON_INUSE, s->size - off);
645 }
646
647 /* Check the pad bytes at the end of a slab page */
648 static int slab_pad_check(struct kmem_cache *s, struct page *page)
649 {
650 u8 *start;
651 u8 *fault;
652 u8 *end;
653 int length;
654 int remainder;
655
656 if (!(s->flags & SLAB_POISON))
657 return 1;
658
659 start = page_address(page);
660 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
661 end = start + length;
662 remainder = length % s->size;
663 if (!remainder)
664 return 1;
665
666 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
667 if (!fault)
668 return 1;
669 while (end > fault && end[-1] == POISON_INUSE)
670 end--;
671
672 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
673 print_section("Padding", end - remainder, remainder);
674
675 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
676 return 0;
677 }
678
679 static int check_object(struct kmem_cache *s, struct page *page,
680 void *object, u8 val)
681 {
682 u8 *p = object;
683 u8 *endobject = object + s->objsize;
684
685 if (s->flags & SLAB_RED_ZONE) {
686 if (!check_bytes_and_report(s, page, object, "Redzone",
687 endobject, val, s->inuse - s->objsize))
688 return 0;
689 } else {
690 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
691 check_bytes_and_report(s, page, p, "Alignment padding",
692 endobject, POISON_INUSE, s->inuse - s->objsize);
693 }
694 }
695
696 if (s->flags & SLAB_POISON) {
697 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
698 (!check_bytes_and_report(s, page, p, "Poison", p,
699 POISON_FREE, s->objsize - 1) ||
700 !check_bytes_and_report(s, page, p, "Poison",
701 p + s->objsize - 1, POISON_END, 1)))
702 return 0;
703 /*
704 * check_pad_bytes cleans up on its own.
705 */
706 check_pad_bytes(s, page, p);
707 }
708
709 if (!s->offset && val == SLUB_RED_ACTIVE)
710 /*
711 * Object and freepointer overlap. Cannot check
712 * freepointer while object is allocated.
713 */
714 return 1;
715
716 /* Check free pointer validity */
717 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
718 object_err(s, page, p, "Freepointer corrupt");
719 /*
720 * No choice but to zap it and thus lose the remainder
721 * of the free objects in this slab. May cause
722 * another error because the object count is now wrong.
723 */
724 set_freepointer(s, p, NULL);
725 return 0;
726 }
727 return 1;
728 }
729
730 static int check_slab(struct kmem_cache *s, struct page *page)
731 {
732 int maxobj;
733
734 VM_BUG_ON(!irqs_disabled());
735
736 if (!PageSlab(page)) {
737 slab_err(s, page, "Not a valid slab page");
738 return 0;
739 }
740
741 maxobj = order_objects(compound_order(page), s->size, s->reserved);
742 if (page->objects > maxobj) {
743 slab_err(s, page, "objects %u > max %u",
744 s->name, page->objects, maxobj);
745 return 0;
746 }
747 if (page->inuse > page->objects) {
748 slab_err(s, page, "inuse %u > max %u",
749 s->name, page->inuse, page->objects);
750 return 0;
751 }
752 /* Slab_pad_check fixes things up after itself */
753 slab_pad_check(s, page);
754 return 1;
755 }
756
757 /*
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
760 */
761 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762 {
763 int nr = 0;
764 void *fp = page->freelist;
765 void *object = NULL;
766 unsigned long max_objects;
767
768 while (fp && nr <= page->objects) {
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
775 set_freepointer(s, object, NULL);
776 break;
777 } else {
778 slab_err(s, page, "Freepointer corrupt");
779 page->freelist = NULL;
780 page->inuse = page->objects;
781 slab_fix(s, "Freelist cleared");
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
791 max_objects = order_objects(compound_order(page), s->size, s->reserved);
792 if (max_objects > MAX_OBJS_PER_PAGE)
793 max_objects = MAX_OBJS_PER_PAGE;
794
795 if (page->objects != max_objects) {
796 slab_err(s, page, "Wrong number of objects. Found %d but "
797 "should be %d", page->objects, max_objects);
798 page->objects = max_objects;
799 slab_fix(s, "Number of objects adjusted.");
800 }
801 if (page->inuse != page->objects - nr) {
802 slab_err(s, page, "Wrong object count. Counter is %d but "
803 "counted were %d", page->inuse, page->objects - nr);
804 page->inuse = page->objects - nr;
805 slab_fix(s, "Object count adjusted.");
806 }
807 return search == NULL;
808 }
809
810 static void trace(struct kmem_cache *s, struct page *page, void *object,
811 int alloc)
812 {
813 if (s->flags & SLAB_TRACE) {
814 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
815 s->name,
816 alloc ? "alloc" : "free",
817 object, page->inuse,
818 page->freelist);
819
820 if (!alloc)
821 print_section("Object", (void *)object, s->objsize);
822
823 dump_stack();
824 }
825 }
826
827 /*
828 * Hooks for other subsystems that check memory allocations. In a typical
829 * production configuration these hooks all should produce no code at all.
830 */
831 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
832 {
833 flags &= gfp_allowed_mask;
834 lockdep_trace_alloc(flags);
835 might_sleep_if(flags & __GFP_WAIT);
836
837 return should_failslab(s->objsize, flags, s->flags);
838 }
839
840 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
841 {
842 flags &= gfp_allowed_mask;
843 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
844 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
845 }
846
847 static inline void slab_free_hook(struct kmem_cache *s, void *x)
848 {
849 kmemleak_free_recursive(x, s->flags);
850
851 /*
852 * Trouble is that we may no longer disable interupts in the fast path
853 * So in order to make the debug calls that expect irqs to be
854 * disabled we need to disable interrupts temporarily.
855 */
856 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
857 {
858 unsigned long flags;
859
860 local_irq_save(flags);
861 kmemcheck_slab_free(s, x, s->objsize);
862 debug_check_no_locks_freed(x, s->objsize);
863 local_irq_restore(flags);
864 }
865 #endif
866 if (!(s->flags & SLAB_DEBUG_OBJECTS))
867 debug_check_no_obj_freed(x, s->objsize);
868 }
869
870 /*
871 * Tracking of fully allocated slabs for debugging purposes.
872 */
873 static void add_full(struct kmem_cache_node *n, struct page *page)
874 {
875 spin_lock(&n->list_lock);
876 list_add(&page->lru, &n->full);
877 spin_unlock(&n->list_lock);
878 }
879
880 static void remove_full(struct kmem_cache *s, struct page *page)
881 {
882 struct kmem_cache_node *n;
883
884 if (!(s->flags & SLAB_STORE_USER))
885 return;
886
887 n = get_node(s, page_to_nid(page));
888
889 spin_lock(&n->list_lock);
890 list_del(&page->lru);
891 spin_unlock(&n->list_lock);
892 }
893
894 /* Tracking of the number of slabs for debugging purposes */
895 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
896 {
897 struct kmem_cache_node *n = get_node(s, node);
898
899 return atomic_long_read(&n->nr_slabs);
900 }
901
902 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
903 {
904 return atomic_long_read(&n->nr_slabs);
905 }
906
907 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
908 {
909 struct kmem_cache_node *n = get_node(s, node);
910
911 /*
912 * May be called early in order to allocate a slab for the
913 * kmem_cache_node structure. Solve the chicken-egg
914 * dilemma by deferring the increment of the count during
915 * bootstrap (see early_kmem_cache_node_alloc).
916 */
917 if (n) {
918 atomic_long_inc(&n->nr_slabs);
919 atomic_long_add(objects, &n->total_objects);
920 }
921 }
922 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
923 {
924 struct kmem_cache_node *n = get_node(s, node);
925
926 atomic_long_dec(&n->nr_slabs);
927 atomic_long_sub(objects, &n->total_objects);
928 }
929
930 /* Object debug checks for alloc/free paths */
931 static void setup_object_debug(struct kmem_cache *s, struct page *page,
932 void *object)
933 {
934 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
935 return;
936
937 init_object(s, object, SLUB_RED_INACTIVE);
938 init_tracking(s, object);
939 }
940
941 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
942 void *object, unsigned long addr)
943 {
944 if (!check_slab(s, page))
945 goto bad;
946
947 if (!on_freelist(s, page, object)) {
948 object_err(s, page, object, "Object already allocated");
949 goto bad;
950 }
951
952 if (!check_valid_pointer(s, page, object)) {
953 object_err(s, page, object, "Freelist Pointer check fails");
954 goto bad;
955 }
956
957 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
958 goto bad;
959
960 /* Success perform special debug activities for allocs */
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_ALLOC, addr);
963 trace(s, page, object, 1);
964 init_object(s, object, SLUB_RED_ACTIVE);
965 return 1;
966
967 bad:
968 if (PageSlab(page)) {
969 /*
970 * If this is a slab page then lets do the best we can
971 * to avoid issues in the future. Marking all objects
972 * as used avoids touching the remaining objects.
973 */
974 slab_fix(s, "Marking all objects used");
975 page->inuse = page->objects;
976 page->freelist = NULL;
977 }
978 return 0;
979 }
980
981 static noinline int free_debug_processing(struct kmem_cache *s,
982 struct page *page, void *object, unsigned long addr)
983 {
984 if (!check_slab(s, page))
985 goto fail;
986
987 if (!check_valid_pointer(s, page, object)) {
988 slab_err(s, page, "Invalid object pointer 0x%p", object);
989 goto fail;
990 }
991
992 if (on_freelist(s, page, object)) {
993 object_err(s, page, object, "Object already free");
994 goto fail;
995 }
996
997 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
998 return 0;
999
1000 if (unlikely(s != page->slab)) {
1001 if (!PageSlab(page)) {
1002 slab_err(s, page, "Attempt to free object(0x%p) "
1003 "outside of slab", object);
1004 } else if (!page->slab) {
1005 printk(KERN_ERR
1006 "SLUB <none>: no slab for object 0x%p.\n",
1007 object);
1008 dump_stack();
1009 } else
1010 object_err(s, page, object,
1011 "page slab pointer corrupt.");
1012 goto fail;
1013 }
1014
1015 /* Special debug activities for freeing objects */
1016 if (!PageSlubFrozen(page) && !page->freelist)
1017 remove_full(s, page);
1018 if (s->flags & SLAB_STORE_USER)
1019 set_track(s, object, TRACK_FREE, addr);
1020 trace(s, page, object, 0);
1021 init_object(s, object, SLUB_RED_INACTIVE);
1022 return 1;
1023
1024 fail:
1025 slab_fix(s, "Object at 0x%p not freed", object);
1026 return 0;
1027 }
1028
1029 static int __init setup_slub_debug(char *str)
1030 {
1031 slub_debug = DEBUG_DEFAULT_FLAGS;
1032 if (*str++ != '=' || !*str)
1033 /*
1034 * No options specified. Switch on full debugging.
1035 */
1036 goto out;
1037
1038 if (*str == ',')
1039 /*
1040 * No options but restriction on slabs. This means full
1041 * debugging for slabs matching a pattern.
1042 */
1043 goto check_slabs;
1044
1045 if (tolower(*str) == 'o') {
1046 /*
1047 * Avoid enabling debugging on caches if its minimum order
1048 * would increase as a result.
1049 */
1050 disable_higher_order_debug = 1;
1051 goto out;
1052 }
1053
1054 slub_debug = 0;
1055 if (*str == '-')
1056 /*
1057 * Switch off all debugging measures.
1058 */
1059 goto out;
1060
1061 /*
1062 * Determine which debug features should be switched on
1063 */
1064 for (; *str && *str != ','; str++) {
1065 switch (tolower(*str)) {
1066 case 'f':
1067 slub_debug |= SLAB_DEBUG_FREE;
1068 break;
1069 case 'z':
1070 slub_debug |= SLAB_RED_ZONE;
1071 break;
1072 case 'p':
1073 slub_debug |= SLAB_POISON;
1074 break;
1075 case 'u':
1076 slub_debug |= SLAB_STORE_USER;
1077 break;
1078 case 't':
1079 slub_debug |= SLAB_TRACE;
1080 break;
1081 case 'a':
1082 slub_debug |= SLAB_FAILSLAB;
1083 break;
1084 default:
1085 printk(KERN_ERR "slub_debug option '%c' "
1086 "unknown. skipped\n", *str);
1087 }
1088 }
1089
1090 check_slabs:
1091 if (*str == ',')
1092 slub_debug_slabs = str + 1;
1093 out:
1094 return 1;
1095 }
1096
1097 __setup("slub_debug", setup_slub_debug);
1098
1099 static unsigned long kmem_cache_flags(unsigned long objsize,
1100 unsigned long flags, const char *name,
1101 void (*ctor)(void *))
1102 {
1103 /*
1104 * Enable debugging if selected on the kernel commandline.
1105 */
1106 if (slub_debug && (!slub_debug_slabs ||
1107 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1108 flags |= slub_debug;
1109
1110 return flags;
1111 }
1112 #else
1113 static inline void setup_object_debug(struct kmem_cache *s,
1114 struct page *page, void *object) {}
1115
1116 static inline int alloc_debug_processing(struct kmem_cache *s,
1117 struct page *page, void *object, unsigned long addr) { return 0; }
1118
1119 static inline int free_debug_processing(struct kmem_cache *s,
1120 struct page *page, void *object, unsigned long addr) { return 0; }
1121
1122 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1123 { return 1; }
1124 static inline int check_object(struct kmem_cache *s, struct page *page,
1125 void *object, u8 val) { return 1; }
1126 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1127 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1128 unsigned long flags, const char *name,
1129 void (*ctor)(void *))
1130 {
1131 return flags;
1132 }
1133 #define slub_debug 0
1134
1135 #define disable_higher_order_debug 0
1136
1137 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1138 { return 0; }
1139 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1140 { return 0; }
1141 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1142 int objects) {}
1143 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1144 int objects) {}
1145
1146 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1147 { return 0; }
1148
1149 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1150 void *object) {}
1151
1152 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1153
1154 #endif /* CONFIG_SLUB_DEBUG */
1155
1156 /*
1157 * Slab allocation and freeing
1158 */
1159 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1160 struct kmem_cache_order_objects oo)
1161 {
1162 int order = oo_order(oo);
1163
1164 flags |= __GFP_NOTRACK;
1165
1166 if (node == NUMA_NO_NODE)
1167 return alloc_pages(flags, order);
1168 else
1169 return alloc_pages_exact_node(node, flags, order);
1170 }
1171
1172 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1173 {
1174 struct page *page;
1175 struct kmem_cache_order_objects oo = s->oo;
1176 gfp_t alloc_gfp;
1177
1178 flags |= s->allocflags;
1179
1180 /*
1181 * Let the initial higher-order allocation fail under memory pressure
1182 * so we fall-back to the minimum order allocation.
1183 */
1184 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1185
1186 page = alloc_slab_page(alloc_gfp, node, oo);
1187 if (unlikely(!page)) {
1188 oo = s->min;
1189 /*
1190 * Allocation may have failed due to fragmentation.
1191 * Try a lower order alloc if possible
1192 */
1193 page = alloc_slab_page(flags, node, oo);
1194 if (!page)
1195 return NULL;
1196
1197 stat(s, ORDER_FALLBACK);
1198 }
1199
1200 if (kmemcheck_enabled
1201 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1202 int pages = 1 << oo_order(oo);
1203
1204 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1205
1206 /*
1207 * Objects from caches that have a constructor don't get
1208 * cleared when they're allocated, so we need to do it here.
1209 */
1210 if (s->ctor)
1211 kmemcheck_mark_uninitialized_pages(page, pages);
1212 else
1213 kmemcheck_mark_unallocated_pages(page, pages);
1214 }
1215
1216 page->objects = oo_objects(oo);
1217 mod_zone_page_state(page_zone(page),
1218 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1219 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1220 1 << oo_order(oo));
1221
1222 return page;
1223 }
1224
1225 static void setup_object(struct kmem_cache *s, struct page *page,
1226 void *object)
1227 {
1228 setup_object_debug(s, page, object);
1229 if (unlikely(s->ctor))
1230 s->ctor(object);
1231 }
1232
1233 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1234 {
1235 struct page *page;
1236 void *start;
1237 void *last;
1238 void *p;
1239
1240 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1241
1242 page = allocate_slab(s,
1243 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1244 if (!page)
1245 goto out;
1246
1247 inc_slabs_node(s, page_to_nid(page), page->objects);
1248 page->slab = s;
1249 page->flags |= 1 << PG_slab;
1250
1251 start = page_address(page);
1252
1253 if (unlikely(s->flags & SLAB_POISON))
1254 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1255
1256 last = start;
1257 for_each_object(p, s, start, page->objects) {
1258 setup_object(s, page, last);
1259 set_freepointer(s, last, p);
1260 last = p;
1261 }
1262 setup_object(s, page, last);
1263 set_freepointer(s, last, NULL);
1264
1265 page->freelist = start;
1266 page->inuse = 0;
1267 out:
1268 return page;
1269 }
1270
1271 static void __free_slab(struct kmem_cache *s, struct page *page)
1272 {
1273 int order = compound_order(page);
1274 int pages = 1 << order;
1275
1276 if (kmem_cache_debug(s)) {
1277 void *p;
1278
1279 slab_pad_check(s, page);
1280 for_each_object(p, s, page_address(page),
1281 page->objects)
1282 check_object(s, page, p, SLUB_RED_INACTIVE);
1283 }
1284
1285 kmemcheck_free_shadow(page, compound_order(page));
1286
1287 mod_zone_page_state(page_zone(page),
1288 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1289 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1290 -pages);
1291
1292 __ClearPageSlab(page);
1293 reset_page_mapcount(page);
1294 if (current->reclaim_state)
1295 current->reclaim_state->reclaimed_slab += pages;
1296 __free_pages(page, order);
1297 }
1298
1299 #define need_reserve_slab_rcu \
1300 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1301
1302 static void rcu_free_slab(struct rcu_head *h)
1303 {
1304 struct page *page;
1305
1306 if (need_reserve_slab_rcu)
1307 page = virt_to_head_page(h);
1308 else
1309 page = container_of((struct list_head *)h, struct page, lru);
1310
1311 __free_slab(page->slab, page);
1312 }
1313
1314 static void free_slab(struct kmem_cache *s, struct page *page)
1315 {
1316 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1317 struct rcu_head *head;
1318
1319 if (need_reserve_slab_rcu) {
1320 int order = compound_order(page);
1321 int offset = (PAGE_SIZE << order) - s->reserved;
1322
1323 VM_BUG_ON(s->reserved != sizeof(*head));
1324 head = page_address(page) + offset;
1325 } else {
1326 /*
1327 * RCU free overloads the RCU head over the LRU
1328 */
1329 head = (void *)&page->lru;
1330 }
1331
1332 call_rcu(head, rcu_free_slab);
1333 } else
1334 __free_slab(s, page);
1335 }
1336
1337 static void discard_slab(struct kmem_cache *s, struct page *page)
1338 {
1339 dec_slabs_node(s, page_to_nid(page), page->objects);
1340 free_slab(s, page);
1341 }
1342
1343 /*
1344 * Per slab locking using the pagelock
1345 */
1346 static __always_inline void slab_lock(struct page *page)
1347 {
1348 bit_spin_lock(PG_locked, &page->flags);
1349 }
1350
1351 static __always_inline void slab_unlock(struct page *page)
1352 {
1353 __bit_spin_unlock(PG_locked, &page->flags);
1354 }
1355
1356 static __always_inline int slab_trylock(struct page *page)
1357 {
1358 int rc = 1;
1359
1360 rc = bit_spin_trylock(PG_locked, &page->flags);
1361 return rc;
1362 }
1363
1364 /*
1365 * Management of partially allocated slabs
1366 */
1367 static void add_partial(struct kmem_cache_node *n,
1368 struct page *page, int tail)
1369 {
1370 spin_lock(&n->list_lock);
1371 n->nr_partial++;
1372 if (tail)
1373 list_add_tail(&page->lru, &n->partial);
1374 else
1375 list_add(&page->lru, &n->partial);
1376 spin_unlock(&n->list_lock);
1377 }
1378
1379 static inline void __remove_partial(struct kmem_cache_node *n,
1380 struct page *page)
1381 {
1382 list_del(&page->lru);
1383 n->nr_partial--;
1384 }
1385
1386 static void remove_partial(struct kmem_cache *s, struct page *page)
1387 {
1388 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1389
1390 spin_lock(&n->list_lock);
1391 __remove_partial(n, page);
1392 spin_unlock(&n->list_lock);
1393 }
1394
1395 /*
1396 * Lock slab and remove from the partial list.
1397 *
1398 * Must hold list_lock.
1399 */
1400 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1401 struct page *page)
1402 {
1403 if (slab_trylock(page)) {
1404 __remove_partial(n, page);
1405 __SetPageSlubFrozen(page);
1406 return 1;
1407 }
1408 return 0;
1409 }
1410
1411 /*
1412 * Try to allocate a partial slab from a specific node.
1413 */
1414 static struct page *get_partial_node(struct kmem_cache_node *n)
1415 {
1416 struct page *page;
1417
1418 /*
1419 * Racy check. If we mistakenly see no partial slabs then we
1420 * just allocate an empty slab. If we mistakenly try to get a
1421 * partial slab and there is none available then get_partials()
1422 * will return NULL.
1423 */
1424 if (!n || !n->nr_partial)
1425 return NULL;
1426
1427 spin_lock(&n->list_lock);
1428 list_for_each_entry(page, &n->partial, lru)
1429 if (lock_and_freeze_slab(n, page))
1430 goto out;
1431 page = NULL;
1432 out:
1433 spin_unlock(&n->list_lock);
1434 return page;
1435 }
1436
1437 /*
1438 * Get a page from somewhere. Search in increasing NUMA distances.
1439 */
1440 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1441 {
1442 #ifdef CONFIG_NUMA
1443 struct zonelist *zonelist;
1444 struct zoneref *z;
1445 struct zone *zone;
1446 enum zone_type high_zoneidx = gfp_zone(flags);
1447 struct page *page;
1448
1449 /*
1450 * The defrag ratio allows a configuration of the tradeoffs between
1451 * inter node defragmentation and node local allocations. A lower
1452 * defrag_ratio increases the tendency to do local allocations
1453 * instead of attempting to obtain partial slabs from other nodes.
1454 *
1455 * If the defrag_ratio is set to 0 then kmalloc() always
1456 * returns node local objects. If the ratio is higher then kmalloc()
1457 * may return off node objects because partial slabs are obtained
1458 * from other nodes and filled up.
1459 *
1460 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1461 * defrag_ratio = 1000) then every (well almost) allocation will
1462 * first attempt to defrag slab caches on other nodes. This means
1463 * scanning over all nodes to look for partial slabs which may be
1464 * expensive if we do it every time we are trying to find a slab
1465 * with available objects.
1466 */
1467 if (!s->remote_node_defrag_ratio ||
1468 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1469 return NULL;
1470
1471 get_mems_allowed();
1472 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1473 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1474 struct kmem_cache_node *n;
1475
1476 n = get_node(s, zone_to_nid(zone));
1477
1478 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1479 n->nr_partial > s->min_partial) {
1480 page = get_partial_node(n);
1481 if (page) {
1482 put_mems_allowed();
1483 return page;
1484 }
1485 }
1486 }
1487 put_mems_allowed();
1488 #endif
1489 return NULL;
1490 }
1491
1492 /*
1493 * Get a partial page, lock it and return it.
1494 */
1495 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1496 {
1497 struct page *page;
1498 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1499
1500 page = get_partial_node(get_node(s, searchnode));
1501 if (page || node != NUMA_NO_NODE)
1502 return page;
1503
1504 return get_any_partial(s, flags);
1505 }
1506
1507 /*
1508 * Move a page back to the lists.
1509 *
1510 * Must be called with the slab lock held.
1511 *
1512 * On exit the slab lock will have been dropped.
1513 */
1514 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1515 __releases(bitlock)
1516 {
1517 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1518
1519 __ClearPageSlubFrozen(page);
1520 if (page->inuse) {
1521
1522 if (page->freelist) {
1523 add_partial(n, page, tail);
1524 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1525 } else {
1526 stat(s, DEACTIVATE_FULL);
1527 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1528 add_full(n, page);
1529 }
1530 slab_unlock(page);
1531 } else {
1532 stat(s, DEACTIVATE_EMPTY);
1533 if (n->nr_partial < s->min_partial) {
1534 /*
1535 * Adding an empty slab to the partial slabs in order
1536 * to avoid page allocator overhead. This slab needs
1537 * to come after the other slabs with objects in
1538 * so that the others get filled first. That way the
1539 * size of the partial list stays small.
1540 *
1541 * kmem_cache_shrink can reclaim any empty slabs from
1542 * the partial list.
1543 */
1544 add_partial(n, page, 1);
1545 slab_unlock(page);
1546 } else {
1547 slab_unlock(page);
1548 stat(s, FREE_SLAB);
1549 discard_slab(s, page);
1550 }
1551 }
1552 }
1553
1554 #ifdef CONFIG_CMPXCHG_LOCAL
1555 #ifdef CONFIG_PREEMPT
1556 /*
1557 * Calculate the next globally unique transaction for disambiguiation
1558 * during cmpxchg. The transactions start with the cpu number and are then
1559 * incremented by CONFIG_NR_CPUS.
1560 */
1561 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1562 #else
1563 /*
1564 * No preemption supported therefore also no need to check for
1565 * different cpus.
1566 */
1567 #define TID_STEP 1
1568 #endif
1569
1570 static inline unsigned long next_tid(unsigned long tid)
1571 {
1572 return tid + TID_STEP;
1573 }
1574
1575 static inline unsigned int tid_to_cpu(unsigned long tid)
1576 {
1577 return tid % TID_STEP;
1578 }
1579
1580 static inline unsigned long tid_to_event(unsigned long tid)
1581 {
1582 return tid / TID_STEP;
1583 }
1584
1585 static inline unsigned int init_tid(int cpu)
1586 {
1587 return cpu;
1588 }
1589
1590 static inline void note_cmpxchg_failure(const char *n,
1591 const struct kmem_cache *s, unsigned long tid)
1592 {
1593 #ifdef SLUB_DEBUG_CMPXCHG
1594 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1595
1596 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1597
1598 #ifdef CONFIG_PREEMPT
1599 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1600 printk("due to cpu change %d -> %d\n",
1601 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1602 else
1603 #endif
1604 if (tid_to_event(tid) != tid_to_event(actual_tid))
1605 printk("due to cpu running other code. Event %ld->%ld\n",
1606 tid_to_event(tid), tid_to_event(actual_tid));
1607 else
1608 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1609 actual_tid, tid, next_tid(tid));
1610 #endif
1611 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1612 }
1613
1614 #endif
1615
1616 void init_kmem_cache_cpus(struct kmem_cache *s)
1617 {
1618 #ifdef CONFIG_CMPXCHG_LOCAL
1619 int cpu;
1620
1621 for_each_possible_cpu(cpu)
1622 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1623 #endif
1624
1625 }
1626 /*
1627 * Remove the cpu slab
1628 */
1629 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1630 __releases(bitlock)
1631 {
1632 struct page *page = c->page;
1633 int tail = 1;
1634
1635 if (page->freelist)
1636 stat(s, DEACTIVATE_REMOTE_FREES);
1637 /*
1638 * Merge cpu freelist into slab freelist. Typically we get here
1639 * because both freelists are empty. So this is unlikely
1640 * to occur.
1641 */
1642 while (unlikely(c->freelist)) {
1643 void **object;
1644
1645 tail = 0; /* Hot objects. Put the slab first */
1646
1647 /* Retrieve object from cpu_freelist */
1648 object = c->freelist;
1649 c->freelist = get_freepointer(s, c->freelist);
1650
1651 /* And put onto the regular freelist */
1652 set_freepointer(s, object, page->freelist);
1653 page->freelist = object;
1654 page->inuse--;
1655 }
1656 c->page = NULL;
1657 #ifdef CONFIG_CMPXCHG_LOCAL
1658 c->tid = next_tid(c->tid);
1659 #endif
1660 unfreeze_slab(s, page, tail);
1661 }
1662
1663 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1664 {
1665 stat(s, CPUSLAB_FLUSH);
1666 slab_lock(c->page);
1667 deactivate_slab(s, c);
1668 }
1669
1670 /*
1671 * Flush cpu slab.
1672 *
1673 * Called from IPI handler with interrupts disabled.
1674 */
1675 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1676 {
1677 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1678
1679 if (likely(c && c->page))
1680 flush_slab(s, c);
1681 }
1682
1683 static void flush_cpu_slab(void *d)
1684 {
1685 struct kmem_cache *s = d;
1686
1687 __flush_cpu_slab(s, smp_processor_id());
1688 }
1689
1690 static void flush_all(struct kmem_cache *s)
1691 {
1692 on_each_cpu(flush_cpu_slab, s, 1);
1693 }
1694
1695 /*
1696 * Check if the objects in a per cpu structure fit numa
1697 * locality expectations.
1698 */
1699 static inline int node_match(struct kmem_cache_cpu *c, int node)
1700 {
1701 #ifdef CONFIG_NUMA
1702 if (node != NUMA_NO_NODE && c->node != node)
1703 return 0;
1704 #endif
1705 return 1;
1706 }
1707
1708 static int count_free(struct page *page)
1709 {
1710 return page->objects - page->inuse;
1711 }
1712
1713 static unsigned long count_partial(struct kmem_cache_node *n,
1714 int (*get_count)(struct page *))
1715 {
1716 unsigned long flags;
1717 unsigned long x = 0;
1718 struct page *page;
1719
1720 spin_lock_irqsave(&n->list_lock, flags);
1721 list_for_each_entry(page, &n->partial, lru)
1722 x += get_count(page);
1723 spin_unlock_irqrestore(&n->list_lock, flags);
1724 return x;
1725 }
1726
1727 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1728 {
1729 #ifdef CONFIG_SLUB_DEBUG
1730 return atomic_long_read(&n->total_objects);
1731 #else
1732 return 0;
1733 #endif
1734 }
1735
1736 static noinline void
1737 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1738 {
1739 int node;
1740
1741 printk(KERN_WARNING
1742 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1743 nid, gfpflags);
1744 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1745 "default order: %d, min order: %d\n", s->name, s->objsize,
1746 s->size, oo_order(s->oo), oo_order(s->min));
1747
1748 if (oo_order(s->min) > get_order(s->objsize))
1749 printk(KERN_WARNING " %s debugging increased min order, use "
1750 "slub_debug=O to disable.\n", s->name);
1751
1752 for_each_online_node(node) {
1753 struct kmem_cache_node *n = get_node(s, node);
1754 unsigned long nr_slabs;
1755 unsigned long nr_objs;
1756 unsigned long nr_free;
1757
1758 if (!n)
1759 continue;
1760
1761 nr_free = count_partial(n, count_free);
1762 nr_slabs = node_nr_slabs(n);
1763 nr_objs = node_nr_objs(n);
1764
1765 printk(KERN_WARNING
1766 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1767 node, nr_slabs, nr_objs, nr_free);
1768 }
1769 }
1770
1771 /*
1772 * Slow path. The lockless freelist is empty or we need to perform
1773 * debugging duties.
1774 *
1775 * Interrupts are disabled.
1776 *
1777 * Processing is still very fast if new objects have been freed to the
1778 * regular freelist. In that case we simply take over the regular freelist
1779 * as the lockless freelist and zap the regular freelist.
1780 *
1781 * If that is not working then we fall back to the partial lists. We take the
1782 * first element of the freelist as the object to allocate now and move the
1783 * rest of the freelist to the lockless freelist.
1784 *
1785 * And if we were unable to get a new slab from the partial slab lists then
1786 * we need to allocate a new slab. This is the slowest path since it involves
1787 * a call to the page allocator and the setup of a new slab.
1788 */
1789 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1790 unsigned long addr, struct kmem_cache_cpu *c)
1791 {
1792 void **object;
1793 struct page *page;
1794 #ifdef CONFIG_CMPXCHG_LOCAL
1795 unsigned long flags;
1796
1797 local_irq_save(flags);
1798 #ifdef CONFIG_PREEMPT
1799 /*
1800 * We may have been preempted and rescheduled on a different
1801 * cpu before disabling interrupts. Need to reload cpu area
1802 * pointer.
1803 */
1804 c = this_cpu_ptr(s->cpu_slab);
1805 #endif
1806 #endif
1807
1808 /* We handle __GFP_ZERO in the caller */
1809 gfpflags &= ~__GFP_ZERO;
1810
1811 page = c->page;
1812 if (!page)
1813 goto new_slab;
1814
1815 slab_lock(page);
1816 if (unlikely(!node_match(c, node)))
1817 goto another_slab;
1818
1819 stat(s, ALLOC_REFILL);
1820
1821 load_freelist:
1822 object = page->freelist;
1823 if (unlikely(!object))
1824 goto another_slab;
1825 if (kmem_cache_debug(s))
1826 goto debug;
1827
1828 c->freelist = get_freepointer(s, object);
1829 page->inuse = page->objects;
1830 page->freelist = NULL;
1831
1832 unlock_out:
1833 slab_unlock(page);
1834 #ifdef CONFIG_CMPXCHG_LOCAL
1835 c->tid = next_tid(c->tid);
1836 local_irq_restore(flags);
1837 #endif
1838 stat(s, ALLOC_SLOWPATH);
1839 return object;
1840
1841 another_slab:
1842 deactivate_slab(s, c);
1843
1844 new_slab:
1845 page = get_partial(s, gfpflags, node);
1846 if (page) {
1847 stat(s, ALLOC_FROM_PARTIAL);
1848 load_from_page:
1849 c->node = page_to_nid(page);
1850 c->page = page;
1851 goto load_freelist;
1852 }
1853
1854 gfpflags &= gfp_allowed_mask;
1855 if (gfpflags & __GFP_WAIT)
1856 local_irq_enable();
1857
1858 page = new_slab(s, gfpflags, node);
1859
1860 if (gfpflags & __GFP_WAIT)
1861 local_irq_disable();
1862
1863 if (page) {
1864 c = __this_cpu_ptr(s->cpu_slab);
1865 stat(s, ALLOC_SLAB);
1866 if (c->page)
1867 flush_slab(s, c);
1868
1869 slab_lock(page);
1870 __SetPageSlubFrozen(page);
1871
1872 goto load_from_page;
1873 }
1874 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1875 slab_out_of_memory(s, gfpflags, node);
1876 #ifdef CONFIG_CMPXCHG_LOCAL
1877 local_irq_restore(flags);
1878 #endif
1879 return NULL;
1880 debug:
1881 if (!alloc_debug_processing(s, page, object, addr))
1882 goto another_slab;
1883
1884 page->inuse++;
1885 page->freelist = get_freepointer(s, object);
1886 c->node = NUMA_NO_NODE;
1887 goto unlock_out;
1888 }
1889
1890 /*
1891 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1892 * have the fastpath folded into their functions. So no function call
1893 * overhead for requests that can be satisfied on the fastpath.
1894 *
1895 * The fastpath works by first checking if the lockless freelist can be used.
1896 * If not then __slab_alloc is called for slow processing.
1897 *
1898 * Otherwise we can simply pick the next object from the lockless free list.
1899 */
1900 static __always_inline void *slab_alloc(struct kmem_cache *s,
1901 gfp_t gfpflags, int node, unsigned long addr)
1902 {
1903 void **object;
1904 struct kmem_cache_cpu *c;
1905 #ifdef CONFIG_CMPXCHG_LOCAL
1906 unsigned long tid;
1907 #else
1908 unsigned long flags;
1909 #endif
1910
1911 if (slab_pre_alloc_hook(s, gfpflags))
1912 return NULL;
1913
1914 #ifndef CONFIG_CMPXCHG_LOCAL
1915 local_irq_save(flags);
1916 #else
1917 redo:
1918 #endif
1919
1920 /*
1921 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1922 * enabled. We may switch back and forth between cpus while
1923 * reading from one cpu area. That does not matter as long
1924 * as we end up on the original cpu again when doing the cmpxchg.
1925 */
1926 c = __this_cpu_ptr(s->cpu_slab);
1927
1928 #ifdef CONFIG_CMPXCHG_LOCAL
1929 /*
1930 * The transaction ids are globally unique per cpu and per operation on
1931 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1932 * occurs on the right processor and that there was no operation on the
1933 * linked list in between.
1934 */
1935 tid = c->tid;
1936 barrier();
1937 #endif
1938
1939 object = c->freelist;
1940 if (unlikely(!object || !node_match(c, node)))
1941
1942 object = __slab_alloc(s, gfpflags, node, addr, c);
1943
1944 else {
1945 #ifdef CONFIG_CMPXCHG_LOCAL
1946 /*
1947 * The cmpxchg will only match if there was no additonal
1948 * operation and if we are on the right processor.
1949 *
1950 * The cmpxchg does the following atomically (without lock semantics!)
1951 * 1. Relocate first pointer to the current per cpu area.
1952 * 2. Verify that tid and freelist have not been changed
1953 * 3. If they were not changed replace tid and freelist
1954 *
1955 * Since this is without lock semantics the protection is only against
1956 * code executing on this cpu *not* from access by other cpus.
1957 */
1958 if (unlikely(!this_cpu_cmpxchg_double(
1959 s->cpu_slab->freelist, s->cpu_slab->tid,
1960 object, tid,
1961 get_freepointer(s, object), next_tid(tid)))) {
1962
1963 note_cmpxchg_failure("slab_alloc", s, tid);
1964 goto redo;
1965 }
1966 #else
1967 c->freelist = get_freepointer(s, object);
1968 #endif
1969 stat(s, ALLOC_FASTPATH);
1970 }
1971
1972 #ifndef CONFIG_CMPXCHG_LOCAL
1973 local_irq_restore(flags);
1974 #endif
1975
1976 if (unlikely(gfpflags & __GFP_ZERO) && object)
1977 memset(object, 0, s->objsize);
1978
1979 slab_post_alloc_hook(s, gfpflags, object);
1980
1981 return object;
1982 }
1983
1984 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1985 {
1986 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1987
1988 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1989
1990 return ret;
1991 }
1992 EXPORT_SYMBOL(kmem_cache_alloc);
1993
1994 #ifdef CONFIG_TRACING
1995 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1996 {
1997 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1998 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1999 return ret;
2000 }
2001 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2002
2003 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2004 {
2005 void *ret = kmalloc_order(size, flags, order);
2006 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2007 return ret;
2008 }
2009 EXPORT_SYMBOL(kmalloc_order_trace);
2010 #endif
2011
2012 #ifdef CONFIG_NUMA
2013 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2014 {
2015 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2016
2017 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2018 s->objsize, s->size, gfpflags, node);
2019
2020 return ret;
2021 }
2022 EXPORT_SYMBOL(kmem_cache_alloc_node);
2023
2024 #ifdef CONFIG_TRACING
2025 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2026 gfp_t gfpflags,
2027 int node, size_t size)
2028 {
2029 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2030
2031 trace_kmalloc_node(_RET_IP_, ret,
2032 size, s->size, gfpflags, node);
2033 return ret;
2034 }
2035 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2036 #endif
2037 #endif
2038
2039 /*
2040 * Slow patch handling. This may still be called frequently since objects
2041 * have a longer lifetime than the cpu slabs in most processing loads.
2042 *
2043 * So we still attempt to reduce cache line usage. Just take the slab
2044 * lock and free the item. If there is no additional partial page
2045 * handling required then we can return immediately.
2046 */
2047 static void __slab_free(struct kmem_cache *s, struct page *page,
2048 void *x, unsigned long addr)
2049 {
2050 void *prior;
2051 void **object = (void *)x;
2052 #ifdef CONFIG_CMPXCHG_LOCAL
2053 unsigned long flags;
2054
2055 local_irq_save(flags);
2056 #endif
2057 slab_lock(page);
2058 stat(s, FREE_SLOWPATH);
2059
2060 if (kmem_cache_debug(s))
2061 goto debug;
2062
2063 checks_ok:
2064 prior = page->freelist;
2065 set_freepointer(s, object, prior);
2066 page->freelist = object;
2067 page->inuse--;
2068
2069 if (unlikely(PageSlubFrozen(page))) {
2070 stat(s, FREE_FROZEN);
2071 goto out_unlock;
2072 }
2073
2074 if (unlikely(!page->inuse))
2075 goto slab_empty;
2076
2077 /*
2078 * Objects left in the slab. If it was not on the partial list before
2079 * then add it.
2080 */
2081 if (unlikely(!prior)) {
2082 add_partial(get_node(s, page_to_nid(page)), page, 1);
2083 stat(s, FREE_ADD_PARTIAL);
2084 }
2085
2086 out_unlock:
2087 slab_unlock(page);
2088 #ifdef CONFIG_CMPXCHG_LOCAL
2089 local_irq_restore(flags);
2090 #endif
2091 return;
2092
2093 slab_empty:
2094 if (prior) {
2095 /*
2096 * Slab still on the partial list.
2097 */
2098 remove_partial(s, page);
2099 stat(s, FREE_REMOVE_PARTIAL);
2100 }
2101 slab_unlock(page);
2102 #ifdef CONFIG_CMPXCHG_LOCAL
2103 local_irq_restore(flags);
2104 #endif
2105 stat(s, FREE_SLAB);
2106 discard_slab(s, page);
2107 return;
2108
2109 debug:
2110 if (!free_debug_processing(s, page, x, addr))
2111 goto out_unlock;
2112 goto checks_ok;
2113 }
2114
2115 /*
2116 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2117 * can perform fastpath freeing without additional function calls.
2118 *
2119 * The fastpath is only possible if we are freeing to the current cpu slab
2120 * of this processor. This typically the case if we have just allocated
2121 * the item before.
2122 *
2123 * If fastpath is not possible then fall back to __slab_free where we deal
2124 * with all sorts of special processing.
2125 */
2126 static __always_inline void slab_free(struct kmem_cache *s,
2127 struct page *page, void *x, unsigned long addr)
2128 {
2129 void **object = (void *)x;
2130 struct kmem_cache_cpu *c;
2131 #ifdef CONFIG_CMPXCHG_LOCAL
2132 unsigned long tid;
2133 #else
2134 unsigned long flags;
2135 #endif
2136
2137 slab_free_hook(s, x);
2138
2139 #ifndef CONFIG_CMPXCHG_LOCAL
2140 local_irq_save(flags);
2141
2142 #else
2143 redo:
2144 #endif
2145
2146 /*
2147 * Determine the currently cpus per cpu slab.
2148 * The cpu may change afterward. However that does not matter since
2149 * data is retrieved via this pointer. If we are on the same cpu
2150 * during the cmpxchg then the free will succedd.
2151 */
2152 c = __this_cpu_ptr(s->cpu_slab);
2153
2154 #ifdef CONFIG_CMPXCHG_LOCAL
2155 tid = c->tid;
2156 barrier();
2157 #endif
2158
2159 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
2160 set_freepointer(s, object, c->freelist);
2161
2162 #ifdef CONFIG_CMPXCHG_LOCAL
2163 if (unlikely(!this_cpu_cmpxchg_double(
2164 s->cpu_slab->freelist, s->cpu_slab->tid,
2165 c->freelist, tid,
2166 object, next_tid(tid)))) {
2167
2168 note_cmpxchg_failure("slab_free", s, tid);
2169 goto redo;
2170 }
2171 #else
2172 c->freelist = object;
2173 #endif
2174 stat(s, FREE_FASTPATH);
2175 } else
2176 __slab_free(s, page, x, addr);
2177
2178 #ifndef CONFIG_CMPXCHG_LOCAL
2179 local_irq_restore(flags);
2180 #endif
2181 }
2182
2183 void kmem_cache_free(struct kmem_cache *s, void *x)
2184 {
2185 struct page *page;
2186
2187 page = virt_to_head_page(x);
2188
2189 slab_free(s, page, x, _RET_IP_);
2190
2191 trace_kmem_cache_free(_RET_IP_, x);
2192 }
2193 EXPORT_SYMBOL(kmem_cache_free);
2194
2195 /*
2196 * Object placement in a slab is made very easy because we always start at
2197 * offset 0. If we tune the size of the object to the alignment then we can
2198 * get the required alignment by putting one properly sized object after
2199 * another.
2200 *
2201 * Notice that the allocation order determines the sizes of the per cpu
2202 * caches. Each processor has always one slab available for allocations.
2203 * Increasing the allocation order reduces the number of times that slabs
2204 * must be moved on and off the partial lists and is therefore a factor in
2205 * locking overhead.
2206 */
2207
2208 /*
2209 * Mininum / Maximum order of slab pages. This influences locking overhead
2210 * and slab fragmentation. A higher order reduces the number of partial slabs
2211 * and increases the number of allocations possible without having to
2212 * take the list_lock.
2213 */
2214 static int slub_min_order;
2215 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2216 static int slub_min_objects;
2217
2218 /*
2219 * Merge control. If this is set then no merging of slab caches will occur.
2220 * (Could be removed. This was introduced to pacify the merge skeptics.)
2221 */
2222 static int slub_nomerge;
2223
2224 /*
2225 * Calculate the order of allocation given an slab object size.
2226 *
2227 * The order of allocation has significant impact on performance and other
2228 * system components. Generally order 0 allocations should be preferred since
2229 * order 0 does not cause fragmentation in the page allocator. Larger objects
2230 * be problematic to put into order 0 slabs because there may be too much
2231 * unused space left. We go to a higher order if more than 1/16th of the slab
2232 * would be wasted.
2233 *
2234 * In order to reach satisfactory performance we must ensure that a minimum
2235 * number of objects is in one slab. Otherwise we may generate too much
2236 * activity on the partial lists which requires taking the list_lock. This is
2237 * less a concern for large slabs though which are rarely used.
2238 *
2239 * slub_max_order specifies the order where we begin to stop considering the
2240 * number of objects in a slab as critical. If we reach slub_max_order then
2241 * we try to keep the page order as low as possible. So we accept more waste
2242 * of space in favor of a small page order.
2243 *
2244 * Higher order allocations also allow the placement of more objects in a
2245 * slab and thereby reduce object handling overhead. If the user has
2246 * requested a higher mininum order then we start with that one instead of
2247 * the smallest order which will fit the object.
2248 */
2249 static inline int slab_order(int size, int min_objects,
2250 int max_order, int fract_leftover, int reserved)
2251 {
2252 int order;
2253 int rem;
2254 int min_order = slub_min_order;
2255
2256 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2257 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2258
2259 for (order = max(min_order,
2260 fls(min_objects * size - 1) - PAGE_SHIFT);
2261 order <= max_order; order++) {
2262
2263 unsigned long slab_size = PAGE_SIZE << order;
2264
2265 if (slab_size < min_objects * size + reserved)
2266 continue;
2267
2268 rem = (slab_size - reserved) % size;
2269
2270 if (rem <= slab_size / fract_leftover)
2271 break;
2272
2273 }
2274
2275 return order;
2276 }
2277
2278 static inline int calculate_order(int size, int reserved)
2279 {
2280 int order;
2281 int min_objects;
2282 int fraction;
2283 int max_objects;
2284
2285 /*
2286 * Attempt to find best configuration for a slab. This
2287 * works by first attempting to generate a layout with
2288 * the best configuration and backing off gradually.
2289 *
2290 * First we reduce the acceptable waste in a slab. Then
2291 * we reduce the minimum objects required in a slab.
2292 */
2293 min_objects = slub_min_objects;
2294 if (!min_objects)
2295 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2296 max_objects = order_objects(slub_max_order, size, reserved);
2297 min_objects = min(min_objects, max_objects);
2298
2299 while (min_objects > 1) {
2300 fraction = 16;
2301 while (fraction >= 4) {
2302 order = slab_order(size, min_objects,
2303 slub_max_order, fraction, reserved);
2304 if (order <= slub_max_order)
2305 return order;
2306 fraction /= 2;
2307 }
2308 min_objects--;
2309 }
2310
2311 /*
2312 * We were unable to place multiple objects in a slab. Now
2313 * lets see if we can place a single object there.
2314 */
2315 order = slab_order(size, 1, slub_max_order, 1, reserved);
2316 if (order <= slub_max_order)
2317 return order;
2318
2319 /*
2320 * Doh this slab cannot be placed using slub_max_order.
2321 */
2322 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2323 if (order < MAX_ORDER)
2324 return order;
2325 return -ENOSYS;
2326 }
2327
2328 /*
2329 * Figure out what the alignment of the objects will be.
2330 */
2331 static unsigned long calculate_alignment(unsigned long flags,
2332 unsigned long align, unsigned long size)
2333 {
2334 /*
2335 * If the user wants hardware cache aligned objects then follow that
2336 * suggestion if the object is sufficiently large.
2337 *
2338 * The hardware cache alignment cannot override the specified
2339 * alignment though. If that is greater then use it.
2340 */
2341 if (flags & SLAB_HWCACHE_ALIGN) {
2342 unsigned long ralign = cache_line_size();
2343 while (size <= ralign / 2)
2344 ralign /= 2;
2345 align = max(align, ralign);
2346 }
2347
2348 if (align < ARCH_SLAB_MINALIGN)
2349 align = ARCH_SLAB_MINALIGN;
2350
2351 return ALIGN(align, sizeof(void *));
2352 }
2353
2354 static void
2355 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2356 {
2357 n->nr_partial = 0;
2358 spin_lock_init(&n->list_lock);
2359 INIT_LIST_HEAD(&n->partial);
2360 #ifdef CONFIG_SLUB_DEBUG
2361 atomic_long_set(&n->nr_slabs, 0);
2362 atomic_long_set(&n->total_objects, 0);
2363 INIT_LIST_HEAD(&n->full);
2364 #endif
2365 }
2366
2367 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2368 {
2369 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2370 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2371
2372 #ifdef CONFIG_CMPXCHG_LOCAL
2373 /*
2374 * Must align to double word boundary for the double cmpxchg instructions
2375 * to work.
2376 */
2377 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2378 #else
2379 /* Regular alignment is sufficient */
2380 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2381 #endif
2382
2383 if (!s->cpu_slab)
2384 return 0;
2385
2386 init_kmem_cache_cpus(s);
2387
2388 return 1;
2389 }
2390
2391 static struct kmem_cache *kmem_cache_node;
2392
2393 /*
2394 * No kmalloc_node yet so do it by hand. We know that this is the first
2395 * slab on the node for this slabcache. There are no concurrent accesses
2396 * possible.
2397 *
2398 * Note that this function only works on the kmalloc_node_cache
2399 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2400 * memory on a fresh node that has no slab structures yet.
2401 */
2402 static void early_kmem_cache_node_alloc(int node)
2403 {
2404 struct page *page;
2405 struct kmem_cache_node *n;
2406 unsigned long flags;
2407
2408 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2409
2410 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2411
2412 BUG_ON(!page);
2413 if (page_to_nid(page) != node) {
2414 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2415 "node %d\n", node);
2416 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2417 "in order to be able to continue\n");
2418 }
2419
2420 n = page->freelist;
2421 BUG_ON(!n);
2422 page->freelist = get_freepointer(kmem_cache_node, n);
2423 page->inuse++;
2424 kmem_cache_node->node[node] = n;
2425 #ifdef CONFIG_SLUB_DEBUG
2426 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2427 init_tracking(kmem_cache_node, n);
2428 #endif
2429 init_kmem_cache_node(n, kmem_cache_node);
2430 inc_slabs_node(kmem_cache_node, node, page->objects);
2431
2432 /*
2433 * lockdep requires consistent irq usage for each lock
2434 * so even though there cannot be a race this early in
2435 * the boot sequence, we still disable irqs.
2436 */
2437 local_irq_save(flags);
2438 add_partial(n, page, 0);
2439 local_irq_restore(flags);
2440 }
2441
2442 static void free_kmem_cache_nodes(struct kmem_cache *s)
2443 {
2444 int node;
2445
2446 for_each_node_state(node, N_NORMAL_MEMORY) {
2447 struct kmem_cache_node *n = s->node[node];
2448
2449 if (n)
2450 kmem_cache_free(kmem_cache_node, n);
2451
2452 s->node[node] = NULL;
2453 }
2454 }
2455
2456 static int init_kmem_cache_nodes(struct kmem_cache *s)
2457 {
2458 int node;
2459
2460 for_each_node_state(node, N_NORMAL_MEMORY) {
2461 struct kmem_cache_node *n;
2462
2463 if (slab_state == DOWN) {
2464 early_kmem_cache_node_alloc(node);
2465 continue;
2466 }
2467 n = kmem_cache_alloc_node(kmem_cache_node,
2468 GFP_KERNEL, node);
2469
2470 if (!n) {
2471 free_kmem_cache_nodes(s);
2472 return 0;
2473 }
2474
2475 s->node[node] = n;
2476 init_kmem_cache_node(n, s);
2477 }
2478 return 1;
2479 }
2480
2481 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2482 {
2483 if (min < MIN_PARTIAL)
2484 min = MIN_PARTIAL;
2485 else if (min > MAX_PARTIAL)
2486 min = MAX_PARTIAL;
2487 s->min_partial = min;
2488 }
2489
2490 /*
2491 * calculate_sizes() determines the order and the distribution of data within
2492 * a slab object.
2493 */
2494 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2495 {
2496 unsigned long flags = s->flags;
2497 unsigned long size = s->objsize;
2498 unsigned long align = s->align;
2499 int order;
2500
2501 /*
2502 * Round up object size to the next word boundary. We can only
2503 * place the free pointer at word boundaries and this determines
2504 * the possible location of the free pointer.
2505 */
2506 size = ALIGN(size, sizeof(void *));
2507
2508 #ifdef CONFIG_SLUB_DEBUG
2509 /*
2510 * Determine if we can poison the object itself. If the user of
2511 * the slab may touch the object after free or before allocation
2512 * then we should never poison the object itself.
2513 */
2514 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2515 !s->ctor)
2516 s->flags |= __OBJECT_POISON;
2517 else
2518 s->flags &= ~__OBJECT_POISON;
2519
2520
2521 /*
2522 * If we are Redzoning then check if there is some space between the
2523 * end of the object and the free pointer. If not then add an
2524 * additional word to have some bytes to store Redzone information.
2525 */
2526 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2527 size += sizeof(void *);
2528 #endif
2529
2530 /*
2531 * With that we have determined the number of bytes in actual use
2532 * by the object. This is the potential offset to the free pointer.
2533 */
2534 s->inuse = size;
2535
2536 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2537 s->ctor)) {
2538 /*
2539 * Relocate free pointer after the object if it is not
2540 * permitted to overwrite the first word of the object on
2541 * kmem_cache_free.
2542 *
2543 * This is the case if we do RCU, have a constructor or
2544 * destructor or are poisoning the objects.
2545 */
2546 s->offset = size;
2547 size += sizeof(void *);
2548 }
2549
2550 #ifdef CONFIG_SLUB_DEBUG
2551 if (flags & SLAB_STORE_USER)
2552 /*
2553 * Need to store information about allocs and frees after
2554 * the object.
2555 */
2556 size += 2 * sizeof(struct track);
2557
2558 if (flags & SLAB_RED_ZONE)
2559 /*
2560 * Add some empty padding so that we can catch
2561 * overwrites from earlier objects rather than let
2562 * tracking information or the free pointer be
2563 * corrupted if a user writes before the start
2564 * of the object.
2565 */
2566 size += sizeof(void *);
2567 #endif
2568
2569 /*
2570 * Determine the alignment based on various parameters that the
2571 * user specified and the dynamic determination of cache line size
2572 * on bootup.
2573 */
2574 align = calculate_alignment(flags, align, s->objsize);
2575 s->align = align;
2576
2577 /*
2578 * SLUB stores one object immediately after another beginning from
2579 * offset 0. In order to align the objects we have to simply size
2580 * each object to conform to the alignment.
2581 */
2582 size = ALIGN(size, align);
2583 s->size = size;
2584 if (forced_order >= 0)
2585 order = forced_order;
2586 else
2587 order = calculate_order(size, s->reserved);
2588
2589 if (order < 0)
2590 return 0;
2591
2592 s->allocflags = 0;
2593 if (order)
2594 s->allocflags |= __GFP_COMP;
2595
2596 if (s->flags & SLAB_CACHE_DMA)
2597 s->allocflags |= SLUB_DMA;
2598
2599 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2600 s->allocflags |= __GFP_RECLAIMABLE;
2601
2602 /*
2603 * Determine the number of objects per slab
2604 */
2605 s->oo = oo_make(order, size, s->reserved);
2606 s->min = oo_make(get_order(size), size, s->reserved);
2607 if (oo_objects(s->oo) > oo_objects(s->max))
2608 s->max = s->oo;
2609
2610 return !!oo_objects(s->oo);
2611
2612 }
2613
2614 static int kmem_cache_open(struct kmem_cache *s,
2615 const char *name, size_t size,
2616 size_t align, unsigned long flags,
2617 void (*ctor)(void *))
2618 {
2619 memset(s, 0, kmem_size);
2620 s->name = name;
2621 s->ctor = ctor;
2622 s->objsize = size;
2623 s->align = align;
2624 s->flags = kmem_cache_flags(size, flags, name, ctor);
2625 s->reserved = 0;
2626
2627 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2628 s->reserved = sizeof(struct rcu_head);
2629
2630 if (!calculate_sizes(s, -1))
2631 goto error;
2632 if (disable_higher_order_debug) {
2633 /*
2634 * Disable debugging flags that store metadata if the min slab
2635 * order increased.
2636 */
2637 if (get_order(s->size) > get_order(s->objsize)) {
2638 s->flags &= ~DEBUG_METADATA_FLAGS;
2639 s->offset = 0;
2640 if (!calculate_sizes(s, -1))
2641 goto error;
2642 }
2643 }
2644
2645 /*
2646 * The larger the object size is, the more pages we want on the partial
2647 * list to avoid pounding the page allocator excessively.
2648 */
2649 set_min_partial(s, ilog2(s->size));
2650 s->refcount = 1;
2651 #ifdef CONFIG_NUMA
2652 s->remote_node_defrag_ratio = 1000;
2653 #endif
2654 if (!init_kmem_cache_nodes(s))
2655 goto error;
2656
2657 if (alloc_kmem_cache_cpus(s))
2658 return 1;
2659
2660 free_kmem_cache_nodes(s);
2661 error:
2662 if (flags & SLAB_PANIC)
2663 panic("Cannot create slab %s size=%lu realsize=%u "
2664 "order=%u offset=%u flags=%lx\n",
2665 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2666 s->offset, flags);
2667 return 0;
2668 }
2669
2670 /*
2671 * Determine the size of a slab object
2672 */
2673 unsigned int kmem_cache_size(struct kmem_cache *s)
2674 {
2675 return s->objsize;
2676 }
2677 EXPORT_SYMBOL(kmem_cache_size);
2678
2679 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2680 const char *text)
2681 {
2682 #ifdef CONFIG_SLUB_DEBUG
2683 void *addr = page_address(page);
2684 void *p;
2685 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2686 sizeof(long), GFP_ATOMIC);
2687 if (!map)
2688 return;
2689 slab_err(s, page, "%s", text);
2690 slab_lock(page);
2691
2692 get_map(s, page, map);
2693 for_each_object(p, s, addr, page->objects) {
2694
2695 if (!test_bit(slab_index(p, s, addr), map)) {
2696 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2697 p, p - addr);
2698 print_tracking(s, p);
2699 }
2700 }
2701 slab_unlock(page);
2702 kfree(map);
2703 #endif
2704 }
2705
2706 /*
2707 * Attempt to free all partial slabs on a node.
2708 */
2709 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2710 {
2711 unsigned long flags;
2712 struct page *page, *h;
2713
2714 spin_lock_irqsave(&n->list_lock, flags);
2715 list_for_each_entry_safe(page, h, &n->partial, lru) {
2716 if (!page->inuse) {
2717 __remove_partial(n, page);
2718 discard_slab(s, page);
2719 } else {
2720 list_slab_objects(s, page,
2721 "Objects remaining on kmem_cache_close()");
2722 }
2723 }
2724 spin_unlock_irqrestore(&n->list_lock, flags);
2725 }
2726
2727 /*
2728 * Release all resources used by a slab cache.
2729 */
2730 static inline int kmem_cache_close(struct kmem_cache *s)
2731 {
2732 int node;
2733
2734 flush_all(s);
2735 free_percpu(s->cpu_slab);
2736 /* Attempt to free all objects */
2737 for_each_node_state(node, N_NORMAL_MEMORY) {
2738 struct kmem_cache_node *n = get_node(s, node);
2739
2740 free_partial(s, n);
2741 if (n->nr_partial || slabs_node(s, node))
2742 return 1;
2743 }
2744 free_kmem_cache_nodes(s);
2745 return 0;
2746 }
2747
2748 /*
2749 * Close a cache and release the kmem_cache structure
2750 * (must be used for caches created using kmem_cache_create)
2751 */
2752 void kmem_cache_destroy(struct kmem_cache *s)
2753 {
2754 down_write(&slub_lock);
2755 s->refcount--;
2756 if (!s->refcount) {
2757 list_del(&s->list);
2758 if (kmem_cache_close(s)) {
2759 printk(KERN_ERR "SLUB %s: %s called for cache that "
2760 "still has objects.\n", s->name, __func__);
2761 dump_stack();
2762 }
2763 if (s->flags & SLAB_DESTROY_BY_RCU)
2764 rcu_barrier();
2765 sysfs_slab_remove(s);
2766 }
2767 up_write(&slub_lock);
2768 }
2769 EXPORT_SYMBOL(kmem_cache_destroy);
2770
2771 /********************************************************************
2772 * Kmalloc subsystem
2773 *******************************************************************/
2774
2775 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2776 EXPORT_SYMBOL(kmalloc_caches);
2777
2778 static struct kmem_cache *kmem_cache;
2779
2780 #ifdef CONFIG_ZONE_DMA
2781 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2782 #endif
2783
2784 static int __init setup_slub_min_order(char *str)
2785 {
2786 get_option(&str, &slub_min_order);
2787
2788 return 1;
2789 }
2790
2791 __setup("slub_min_order=", setup_slub_min_order);
2792
2793 static int __init setup_slub_max_order(char *str)
2794 {
2795 get_option(&str, &slub_max_order);
2796 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2797
2798 return 1;
2799 }
2800
2801 __setup("slub_max_order=", setup_slub_max_order);
2802
2803 static int __init setup_slub_min_objects(char *str)
2804 {
2805 get_option(&str, &slub_min_objects);
2806
2807 return 1;
2808 }
2809
2810 __setup("slub_min_objects=", setup_slub_min_objects);
2811
2812 static int __init setup_slub_nomerge(char *str)
2813 {
2814 slub_nomerge = 1;
2815 return 1;
2816 }
2817
2818 __setup("slub_nomerge", setup_slub_nomerge);
2819
2820 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2821 int size, unsigned int flags)
2822 {
2823 struct kmem_cache *s;
2824
2825 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2826
2827 /*
2828 * This function is called with IRQs disabled during early-boot on
2829 * single CPU so there's no need to take slub_lock here.
2830 */
2831 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2832 flags, NULL))
2833 goto panic;
2834
2835 list_add(&s->list, &slab_caches);
2836 return s;
2837
2838 panic:
2839 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2840 return NULL;
2841 }
2842
2843 /*
2844 * Conversion table for small slabs sizes / 8 to the index in the
2845 * kmalloc array. This is necessary for slabs < 192 since we have non power
2846 * of two cache sizes there. The size of larger slabs can be determined using
2847 * fls.
2848 */
2849 static s8 size_index[24] = {
2850 3, /* 8 */
2851 4, /* 16 */
2852 5, /* 24 */
2853 5, /* 32 */
2854 6, /* 40 */
2855 6, /* 48 */
2856 6, /* 56 */
2857 6, /* 64 */
2858 1, /* 72 */
2859 1, /* 80 */
2860 1, /* 88 */
2861 1, /* 96 */
2862 7, /* 104 */
2863 7, /* 112 */
2864 7, /* 120 */
2865 7, /* 128 */
2866 2, /* 136 */
2867 2, /* 144 */
2868 2, /* 152 */
2869 2, /* 160 */
2870 2, /* 168 */
2871 2, /* 176 */
2872 2, /* 184 */
2873 2 /* 192 */
2874 };
2875
2876 static inline int size_index_elem(size_t bytes)
2877 {
2878 return (bytes - 1) / 8;
2879 }
2880
2881 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2882 {
2883 int index;
2884
2885 if (size <= 192) {
2886 if (!size)
2887 return ZERO_SIZE_PTR;
2888
2889 index = size_index[size_index_elem(size)];
2890 } else
2891 index = fls(size - 1);
2892
2893 #ifdef CONFIG_ZONE_DMA
2894 if (unlikely((flags & SLUB_DMA)))
2895 return kmalloc_dma_caches[index];
2896
2897 #endif
2898 return kmalloc_caches[index];
2899 }
2900
2901 void *__kmalloc(size_t size, gfp_t flags)
2902 {
2903 struct kmem_cache *s;
2904 void *ret;
2905
2906 if (unlikely(size > SLUB_MAX_SIZE))
2907 return kmalloc_large(size, flags);
2908
2909 s = get_slab(size, flags);
2910
2911 if (unlikely(ZERO_OR_NULL_PTR(s)))
2912 return s;
2913
2914 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2915
2916 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2917
2918 return ret;
2919 }
2920 EXPORT_SYMBOL(__kmalloc);
2921
2922 #ifdef CONFIG_NUMA
2923 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2924 {
2925 struct page *page;
2926 void *ptr = NULL;
2927
2928 flags |= __GFP_COMP | __GFP_NOTRACK;
2929 page = alloc_pages_node(node, flags, get_order(size));
2930 if (page)
2931 ptr = page_address(page);
2932
2933 kmemleak_alloc(ptr, size, 1, flags);
2934 return ptr;
2935 }
2936
2937 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2938 {
2939 struct kmem_cache *s;
2940 void *ret;
2941
2942 if (unlikely(size > SLUB_MAX_SIZE)) {
2943 ret = kmalloc_large_node(size, flags, node);
2944
2945 trace_kmalloc_node(_RET_IP_, ret,
2946 size, PAGE_SIZE << get_order(size),
2947 flags, node);
2948
2949 return ret;
2950 }
2951
2952 s = get_slab(size, flags);
2953
2954 if (unlikely(ZERO_OR_NULL_PTR(s)))
2955 return s;
2956
2957 ret = slab_alloc(s, flags, node, _RET_IP_);
2958
2959 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2960
2961 return ret;
2962 }
2963 EXPORT_SYMBOL(__kmalloc_node);
2964 #endif
2965
2966 size_t ksize(const void *object)
2967 {
2968 struct page *page;
2969
2970 if (unlikely(object == ZERO_SIZE_PTR))
2971 return 0;
2972
2973 page = virt_to_head_page(object);
2974
2975 if (unlikely(!PageSlab(page))) {
2976 WARN_ON(!PageCompound(page));
2977 return PAGE_SIZE << compound_order(page);
2978 }
2979
2980 return slab_ksize(page->slab);
2981 }
2982 EXPORT_SYMBOL(ksize);
2983
2984 void kfree(const void *x)
2985 {
2986 struct page *page;
2987 void *object = (void *)x;
2988
2989 trace_kfree(_RET_IP_, x);
2990
2991 if (unlikely(ZERO_OR_NULL_PTR(x)))
2992 return;
2993
2994 page = virt_to_head_page(x);
2995 if (unlikely(!PageSlab(page))) {
2996 BUG_ON(!PageCompound(page));
2997 kmemleak_free(x);
2998 put_page(page);
2999 return;
3000 }
3001 slab_free(page->slab, page, object, _RET_IP_);
3002 }
3003 EXPORT_SYMBOL(kfree);
3004
3005 /*
3006 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3007 * the remaining slabs by the number of items in use. The slabs with the
3008 * most items in use come first. New allocations will then fill those up
3009 * and thus they can be removed from the partial lists.
3010 *
3011 * The slabs with the least items are placed last. This results in them
3012 * being allocated from last increasing the chance that the last objects
3013 * are freed in them.
3014 */
3015 int kmem_cache_shrink(struct kmem_cache *s)
3016 {
3017 int node;
3018 int i;
3019 struct kmem_cache_node *n;
3020 struct page *page;
3021 struct page *t;
3022 int objects = oo_objects(s->max);
3023 struct list_head *slabs_by_inuse =
3024 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3025 unsigned long flags;
3026
3027 if (!slabs_by_inuse)
3028 return -ENOMEM;
3029
3030 flush_all(s);
3031 for_each_node_state(node, N_NORMAL_MEMORY) {
3032 n = get_node(s, node);
3033
3034 if (!n->nr_partial)
3035 continue;
3036
3037 for (i = 0; i < objects; i++)
3038 INIT_LIST_HEAD(slabs_by_inuse + i);
3039
3040 spin_lock_irqsave(&n->list_lock, flags);
3041
3042 /*
3043 * Build lists indexed by the items in use in each slab.
3044 *
3045 * Note that concurrent frees may occur while we hold the
3046 * list_lock. page->inuse here is the upper limit.
3047 */
3048 list_for_each_entry_safe(page, t, &n->partial, lru) {
3049 if (!page->inuse && slab_trylock(page)) {
3050 /*
3051 * Must hold slab lock here because slab_free
3052 * may have freed the last object and be
3053 * waiting to release the slab.
3054 */
3055 __remove_partial(n, page);
3056 slab_unlock(page);
3057 discard_slab(s, page);
3058 } else {
3059 list_move(&page->lru,
3060 slabs_by_inuse + page->inuse);
3061 }
3062 }
3063
3064 /*
3065 * Rebuild the partial list with the slabs filled up most
3066 * first and the least used slabs at the end.
3067 */
3068 for (i = objects - 1; i >= 0; i--)
3069 list_splice(slabs_by_inuse + i, n->partial.prev);
3070
3071 spin_unlock_irqrestore(&n->list_lock, flags);
3072 }
3073
3074 kfree(slabs_by_inuse);
3075 return 0;
3076 }
3077 EXPORT_SYMBOL(kmem_cache_shrink);
3078
3079 #if defined(CONFIG_MEMORY_HOTPLUG)
3080 static int slab_mem_going_offline_callback(void *arg)
3081 {
3082 struct kmem_cache *s;
3083
3084 down_read(&slub_lock);
3085 list_for_each_entry(s, &slab_caches, list)
3086 kmem_cache_shrink(s);
3087 up_read(&slub_lock);
3088
3089 return 0;
3090 }
3091
3092 static void slab_mem_offline_callback(void *arg)
3093 {
3094 struct kmem_cache_node *n;
3095 struct kmem_cache *s;
3096 struct memory_notify *marg = arg;
3097 int offline_node;
3098
3099 offline_node = marg->status_change_nid;
3100
3101 /*
3102 * If the node still has available memory. we need kmem_cache_node
3103 * for it yet.
3104 */
3105 if (offline_node < 0)
3106 return;
3107
3108 down_read(&slub_lock);
3109 list_for_each_entry(s, &slab_caches, list) {
3110 n = get_node(s, offline_node);
3111 if (n) {
3112 /*
3113 * if n->nr_slabs > 0, slabs still exist on the node
3114 * that is going down. We were unable to free them,
3115 * and offline_pages() function shouldn't call this
3116 * callback. So, we must fail.
3117 */
3118 BUG_ON(slabs_node(s, offline_node));
3119
3120 s->node[offline_node] = NULL;
3121 kmem_cache_free(kmem_cache_node, n);
3122 }
3123 }
3124 up_read(&slub_lock);
3125 }
3126
3127 static int slab_mem_going_online_callback(void *arg)
3128 {
3129 struct kmem_cache_node *n;
3130 struct kmem_cache *s;
3131 struct memory_notify *marg = arg;
3132 int nid = marg->status_change_nid;
3133 int ret = 0;
3134
3135 /*
3136 * If the node's memory is already available, then kmem_cache_node is
3137 * already created. Nothing to do.
3138 */
3139 if (nid < 0)
3140 return 0;
3141
3142 /*
3143 * We are bringing a node online. No memory is available yet. We must
3144 * allocate a kmem_cache_node structure in order to bring the node
3145 * online.
3146 */
3147 down_read(&slub_lock);
3148 list_for_each_entry(s, &slab_caches, list) {
3149 /*
3150 * XXX: kmem_cache_alloc_node will fallback to other nodes
3151 * since memory is not yet available from the node that
3152 * is brought up.
3153 */
3154 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3155 if (!n) {
3156 ret = -ENOMEM;
3157 goto out;
3158 }
3159 init_kmem_cache_node(n, s);
3160 s->node[nid] = n;
3161 }
3162 out:
3163 up_read(&slub_lock);
3164 return ret;
3165 }
3166
3167 static int slab_memory_callback(struct notifier_block *self,
3168 unsigned long action, void *arg)
3169 {
3170 int ret = 0;
3171
3172 switch (action) {
3173 case MEM_GOING_ONLINE:
3174 ret = slab_mem_going_online_callback(arg);
3175 break;
3176 case MEM_GOING_OFFLINE:
3177 ret = slab_mem_going_offline_callback(arg);
3178 break;
3179 case MEM_OFFLINE:
3180 case MEM_CANCEL_ONLINE:
3181 slab_mem_offline_callback(arg);
3182 break;
3183 case MEM_ONLINE:
3184 case MEM_CANCEL_OFFLINE:
3185 break;
3186 }
3187 if (ret)
3188 ret = notifier_from_errno(ret);
3189 else
3190 ret = NOTIFY_OK;
3191 return ret;
3192 }
3193
3194 #endif /* CONFIG_MEMORY_HOTPLUG */
3195
3196 /********************************************************************
3197 * Basic setup of slabs
3198 *******************************************************************/
3199
3200 /*
3201 * Used for early kmem_cache structures that were allocated using
3202 * the page allocator
3203 */
3204
3205 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3206 {
3207 int node;
3208
3209 list_add(&s->list, &slab_caches);
3210 s->refcount = -1;
3211
3212 for_each_node_state(node, N_NORMAL_MEMORY) {
3213 struct kmem_cache_node *n = get_node(s, node);
3214 struct page *p;
3215
3216 if (n) {
3217 list_for_each_entry(p, &n->partial, lru)
3218 p->slab = s;
3219
3220 #ifdef CONFIG_SLUB_DEBUG
3221 list_for_each_entry(p, &n->full, lru)
3222 p->slab = s;
3223 #endif
3224 }
3225 }
3226 }
3227
3228 void __init kmem_cache_init(void)
3229 {
3230 int i;
3231 int caches = 0;
3232 struct kmem_cache *temp_kmem_cache;
3233 int order;
3234 struct kmem_cache *temp_kmem_cache_node;
3235 unsigned long kmalloc_size;
3236
3237 kmem_size = offsetof(struct kmem_cache, node) +
3238 nr_node_ids * sizeof(struct kmem_cache_node *);
3239
3240 /* Allocate two kmem_caches from the page allocator */
3241 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3242 order = get_order(2 * kmalloc_size);
3243 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3244
3245 /*
3246 * Must first have the slab cache available for the allocations of the
3247 * struct kmem_cache_node's. There is special bootstrap code in
3248 * kmem_cache_open for slab_state == DOWN.
3249 */
3250 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3251
3252 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3253 sizeof(struct kmem_cache_node),
3254 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3255
3256 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3257
3258 /* Able to allocate the per node structures */
3259 slab_state = PARTIAL;
3260
3261 temp_kmem_cache = kmem_cache;
3262 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3263 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3264 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3265 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3266
3267 /*
3268 * Allocate kmem_cache_node properly from the kmem_cache slab.
3269 * kmem_cache_node is separately allocated so no need to
3270 * update any list pointers.
3271 */
3272 temp_kmem_cache_node = kmem_cache_node;
3273
3274 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3275 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3276
3277 kmem_cache_bootstrap_fixup(kmem_cache_node);
3278
3279 caches++;
3280 kmem_cache_bootstrap_fixup(kmem_cache);
3281 caches++;
3282 /* Free temporary boot structure */
3283 free_pages((unsigned long)temp_kmem_cache, order);
3284
3285 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3286
3287 /*
3288 * Patch up the size_index table if we have strange large alignment
3289 * requirements for the kmalloc array. This is only the case for
3290 * MIPS it seems. The standard arches will not generate any code here.
3291 *
3292 * Largest permitted alignment is 256 bytes due to the way we
3293 * handle the index determination for the smaller caches.
3294 *
3295 * Make sure that nothing crazy happens if someone starts tinkering
3296 * around with ARCH_KMALLOC_MINALIGN
3297 */
3298 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3299 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3300
3301 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3302 int elem = size_index_elem(i);
3303 if (elem >= ARRAY_SIZE(size_index))
3304 break;
3305 size_index[elem] = KMALLOC_SHIFT_LOW;
3306 }
3307
3308 if (KMALLOC_MIN_SIZE == 64) {
3309 /*
3310 * The 96 byte size cache is not used if the alignment
3311 * is 64 byte.
3312 */
3313 for (i = 64 + 8; i <= 96; i += 8)
3314 size_index[size_index_elem(i)] = 7;
3315 } else if (KMALLOC_MIN_SIZE == 128) {
3316 /*
3317 * The 192 byte sized cache is not used if the alignment
3318 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3319 * instead.
3320 */
3321 for (i = 128 + 8; i <= 192; i += 8)
3322 size_index[size_index_elem(i)] = 8;
3323 }
3324
3325 /* Caches that are not of the two-to-the-power-of size */
3326 if (KMALLOC_MIN_SIZE <= 32) {
3327 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3328 caches++;
3329 }
3330
3331 if (KMALLOC_MIN_SIZE <= 64) {
3332 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3333 caches++;
3334 }
3335
3336 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3337 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3338 caches++;
3339 }
3340
3341 slab_state = UP;
3342
3343 /* Provide the correct kmalloc names now that the caches are up */
3344 if (KMALLOC_MIN_SIZE <= 32) {
3345 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3346 BUG_ON(!kmalloc_caches[1]->name);
3347 }
3348
3349 if (KMALLOC_MIN_SIZE <= 64) {
3350 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3351 BUG_ON(!kmalloc_caches[2]->name);
3352 }
3353
3354 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3355 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3356
3357 BUG_ON(!s);
3358 kmalloc_caches[i]->name = s;
3359 }
3360
3361 #ifdef CONFIG_SMP
3362 register_cpu_notifier(&slab_notifier);
3363 #endif
3364
3365 #ifdef CONFIG_ZONE_DMA
3366 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3367 struct kmem_cache *s = kmalloc_caches[i];
3368
3369 if (s && s->size) {
3370 char *name = kasprintf(GFP_NOWAIT,
3371 "dma-kmalloc-%d", s->objsize);
3372
3373 BUG_ON(!name);
3374 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3375 s->objsize, SLAB_CACHE_DMA);
3376 }
3377 }
3378 #endif
3379 printk(KERN_INFO
3380 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3381 " CPUs=%d, Nodes=%d\n",
3382 caches, cache_line_size(),
3383 slub_min_order, slub_max_order, slub_min_objects,
3384 nr_cpu_ids, nr_node_ids);
3385 }
3386
3387 void __init kmem_cache_init_late(void)
3388 {
3389 }
3390
3391 /*
3392 * Find a mergeable slab cache
3393 */
3394 static int slab_unmergeable(struct kmem_cache *s)
3395 {
3396 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3397 return 1;
3398
3399 if (s->ctor)
3400 return 1;
3401
3402 /*
3403 * We may have set a slab to be unmergeable during bootstrap.
3404 */
3405 if (s->refcount < 0)
3406 return 1;
3407
3408 return 0;
3409 }
3410
3411 static struct kmem_cache *find_mergeable(size_t size,
3412 size_t align, unsigned long flags, const char *name,
3413 void (*ctor)(void *))
3414 {
3415 struct kmem_cache *s;
3416
3417 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3418 return NULL;
3419
3420 if (ctor)
3421 return NULL;
3422
3423 size = ALIGN(size, sizeof(void *));
3424 align = calculate_alignment(flags, align, size);
3425 size = ALIGN(size, align);
3426 flags = kmem_cache_flags(size, flags, name, NULL);
3427
3428 list_for_each_entry(s, &slab_caches, list) {
3429 if (slab_unmergeable(s))
3430 continue;
3431
3432 if (size > s->size)
3433 continue;
3434
3435 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3436 continue;
3437 /*
3438 * Check if alignment is compatible.
3439 * Courtesy of Adrian Drzewiecki
3440 */
3441 if ((s->size & ~(align - 1)) != s->size)
3442 continue;
3443
3444 if (s->size - size >= sizeof(void *))
3445 continue;
3446
3447 return s;
3448 }
3449 return NULL;
3450 }
3451
3452 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3453 size_t align, unsigned long flags, void (*ctor)(void *))
3454 {
3455 struct kmem_cache *s;
3456 char *n;
3457
3458 if (WARN_ON(!name))
3459 return NULL;
3460
3461 down_write(&slub_lock);
3462 s = find_mergeable(size, align, flags, name, ctor);
3463 if (s) {
3464 s->refcount++;
3465 /*
3466 * Adjust the object sizes so that we clear
3467 * the complete object on kzalloc.
3468 */
3469 s->objsize = max(s->objsize, (int)size);
3470 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3471
3472 if (sysfs_slab_alias(s, name)) {
3473 s->refcount--;
3474 goto err;
3475 }
3476 up_write(&slub_lock);
3477 return s;
3478 }
3479
3480 n = kstrdup(name, GFP_KERNEL);
3481 if (!n)
3482 goto err;
3483
3484 s = kmalloc(kmem_size, GFP_KERNEL);
3485 if (s) {
3486 if (kmem_cache_open(s, n,
3487 size, align, flags, ctor)) {
3488 list_add(&s->list, &slab_caches);
3489 if (sysfs_slab_add(s)) {
3490 list_del(&s->list);
3491 kfree(n);
3492 kfree(s);
3493 goto err;
3494 }
3495 up_write(&slub_lock);
3496 return s;
3497 }
3498 kfree(n);
3499 kfree(s);
3500 }
3501 err:
3502 up_write(&slub_lock);
3503
3504 if (flags & SLAB_PANIC)
3505 panic("Cannot create slabcache %s\n", name);
3506 else
3507 s = NULL;
3508 return s;
3509 }
3510 EXPORT_SYMBOL(kmem_cache_create);
3511
3512 #ifdef CONFIG_SMP
3513 /*
3514 * Use the cpu notifier to insure that the cpu slabs are flushed when
3515 * necessary.
3516 */
3517 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3518 unsigned long action, void *hcpu)
3519 {
3520 long cpu = (long)hcpu;
3521 struct kmem_cache *s;
3522 unsigned long flags;
3523
3524 switch (action) {
3525 case CPU_UP_CANCELED:
3526 case CPU_UP_CANCELED_FROZEN:
3527 case CPU_DEAD:
3528 case CPU_DEAD_FROZEN:
3529 down_read(&slub_lock);
3530 list_for_each_entry(s, &slab_caches, list) {
3531 local_irq_save(flags);
3532 __flush_cpu_slab(s, cpu);
3533 local_irq_restore(flags);
3534 }
3535 up_read(&slub_lock);
3536 break;
3537 default:
3538 break;
3539 }
3540 return NOTIFY_OK;
3541 }
3542
3543 static struct notifier_block __cpuinitdata slab_notifier = {
3544 .notifier_call = slab_cpuup_callback
3545 };
3546
3547 #endif
3548
3549 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3550 {
3551 struct kmem_cache *s;
3552 void *ret;
3553
3554 if (unlikely(size > SLUB_MAX_SIZE))
3555 return kmalloc_large(size, gfpflags);
3556
3557 s = get_slab(size, gfpflags);
3558
3559 if (unlikely(ZERO_OR_NULL_PTR(s)))
3560 return s;
3561
3562 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3563
3564 /* Honor the call site pointer we recieved. */
3565 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3566
3567 return ret;
3568 }
3569
3570 #ifdef CONFIG_NUMA
3571 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3572 int node, unsigned long caller)
3573 {
3574 struct kmem_cache *s;
3575 void *ret;
3576
3577 if (unlikely(size > SLUB_MAX_SIZE)) {
3578 ret = kmalloc_large_node(size, gfpflags, node);
3579
3580 trace_kmalloc_node(caller, ret,
3581 size, PAGE_SIZE << get_order(size),
3582 gfpflags, node);
3583
3584 return ret;
3585 }
3586
3587 s = get_slab(size, gfpflags);
3588
3589 if (unlikely(ZERO_OR_NULL_PTR(s)))
3590 return s;
3591
3592 ret = slab_alloc(s, gfpflags, node, caller);
3593
3594 /* Honor the call site pointer we recieved. */
3595 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3596
3597 return ret;
3598 }
3599 #endif
3600
3601 #ifdef CONFIG_SYSFS
3602 static int count_inuse(struct page *page)
3603 {
3604 return page->inuse;
3605 }
3606
3607 static int count_total(struct page *page)
3608 {
3609 return page->objects;
3610 }
3611 #endif
3612
3613 #ifdef CONFIG_SLUB_DEBUG
3614 static int validate_slab(struct kmem_cache *s, struct page *page,
3615 unsigned long *map)
3616 {
3617 void *p;
3618 void *addr = page_address(page);
3619
3620 if (!check_slab(s, page) ||
3621 !on_freelist(s, page, NULL))
3622 return 0;
3623
3624 /* Now we know that a valid freelist exists */
3625 bitmap_zero(map, page->objects);
3626
3627 get_map(s, page, map);
3628 for_each_object(p, s, addr, page->objects) {
3629 if (test_bit(slab_index(p, s, addr), map))
3630 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3631 return 0;
3632 }
3633
3634 for_each_object(p, s, addr, page->objects)
3635 if (!test_bit(slab_index(p, s, addr), map))
3636 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3637 return 0;
3638 return 1;
3639 }
3640
3641 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3642 unsigned long *map)
3643 {
3644 if (slab_trylock(page)) {
3645 validate_slab(s, page, map);
3646 slab_unlock(page);
3647 } else
3648 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3649 s->name, page);
3650 }
3651
3652 static int validate_slab_node(struct kmem_cache *s,
3653 struct kmem_cache_node *n, unsigned long *map)
3654 {
3655 unsigned long count = 0;
3656 struct page *page;
3657 unsigned long flags;
3658
3659 spin_lock_irqsave(&n->list_lock, flags);
3660
3661 list_for_each_entry(page, &n->partial, lru) {
3662 validate_slab_slab(s, page, map);
3663 count++;
3664 }
3665 if (count != n->nr_partial)
3666 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3667 "counter=%ld\n", s->name, count, n->nr_partial);
3668
3669 if (!(s->flags & SLAB_STORE_USER))
3670 goto out;
3671
3672 list_for_each_entry(page, &n->full, lru) {
3673 validate_slab_slab(s, page, map);
3674 count++;
3675 }
3676 if (count != atomic_long_read(&n->nr_slabs))
3677 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3678 "counter=%ld\n", s->name, count,
3679 atomic_long_read(&n->nr_slabs));
3680
3681 out:
3682 spin_unlock_irqrestore(&n->list_lock, flags);
3683 return count;
3684 }
3685
3686 static long validate_slab_cache(struct kmem_cache *s)
3687 {
3688 int node;
3689 unsigned long count = 0;
3690 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3691 sizeof(unsigned long), GFP_KERNEL);
3692
3693 if (!map)
3694 return -ENOMEM;
3695
3696 flush_all(s);
3697 for_each_node_state(node, N_NORMAL_MEMORY) {
3698 struct kmem_cache_node *n = get_node(s, node);
3699
3700 count += validate_slab_node(s, n, map);
3701 }
3702 kfree(map);
3703 return count;
3704 }
3705 /*
3706 * Generate lists of code addresses where slabcache objects are allocated
3707 * and freed.
3708 */
3709
3710 struct location {
3711 unsigned long count;
3712 unsigned long addr;
3713 long long sum_time;
3714 long min_time;
3715 long max_time;
3716 long min_pid;
3717 long max_pid;
3718 DECLARE_BITMAP(cpus, NR_CPUS);
3719 nodemask_t nodes;
3720 };
3721
3722 struct loc_track {
3723 unsigned long max;
3724 unsigned long count;
3725 struct location *loc;
3726 };
3727
3728 static void free_loc_track(struct loc_track *t)
3729 {
3730 if (t->max)
3731 free_pages((unsigned long)t->loc,
3732 get_order(sizeof(struct location) * t->max));
3733 }
3734
3735 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3736 {
3737 struct location *l;
3738 int order;
3739
3740 order = get_order(sizeof(struct location) * max);
3741
3742 l = (void *)__get_free_pages(flags, order);
3743 if (!l)
3744 return 0;
3745
3746 if (t->count) {
3747 memcpy(l, t->loc, sizeof(struct location) * t->count);
3748 free_loc_track(t);
3749 }
3750 t->max = max;
3751 t->loc = l;
3752 return 1;
3753 }
3754
3755 static int add_location(struct loc_track *t, struct kmem_cache *s,
3756 const struct track *track)
3757 {
3758 long start, end, pos;
3759 struct location *l;
3760 unsigned long caddr;
3761 unsigned long age = jiffies - track->when;
3762
3763 start = -1;
3764 end = t->count;
3765
3766 for ( ; ; ) {
3767 pos = start + (end - start + 1) / 2;
3768
3769 /*
3770 * There is nothing at "end". If we end up there
3771 * we need to add something to before end.
3772 */
3773 if (pos == end)
3774 break;
3775
3776 caddr = t->loc[pos].addr;
3777 if (track->addr == caddr) {
3778
3779 l = &t->loc[pos];
3780 l->count++;
3781 if (track->when) {
3782 l->sum_time += age;
3783 if (age < l->min_time)
3784 l->min_time = age;
3785 if (age > l->max_time)
3786 l->max_time = age;
3787
3788 if (track->pid < l->min_pid)
3789 l->min_pid = track->pid;
3790 if (track->pid > l->max_pid)
3791 l->max_pid = track->pid;
3792
3793 cpumask_set_cpu(track->cpu,
3794 to_cpumask(l->cpus));
3795 }
3796 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3797 return 1;
3798 }
3799
3800 if (track->addr < caddr)
3801 end = pos;
3802 else
3803 start = pos;
3804 }
3805
3806 /*
3807 * Not found. Insert new tracking element.
3808 */
3809 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3810 return 0;
3811
3812 l = t->loc + pos;
3813 if (pos < t->count)
3814 memmove(l + 1, l,
3815 (t->count - pos) * sizeof(struct location));
3816 t->count++;
3817 l->count = 1;
3818 l->addr = track->addr;
3819 l->sum_time = age;
3820 l->min_time = age;
3821 l->max_time = age;
3822 l->min_pid = track->pid;
3823 l->max_pid = track->pid;
3824 cpumask_clear(to_cpumask(l->cpus));
3825 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3826 nodes_clear(l->nodes);
3827 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3828 return 1;
3829 }
3830
3831 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3832 struct page *page, enum track_item alloc,
3833 unsigned long *map)
3834 {
3835 void *addr = page_address(page);
3836 void *p;
3837
3838 bitmap_zero(map, page->objects);
3839 get_map(s, page, map);
3840
3841 for_each_object(p, s, addr, page->objects)
3842 if (!test_bit(slab_index(p, s, addr), map))
3843 add_location(t, s, get_track(s, p, alloc));
3844 }
3845
3846 static int list_locations(struct kmem_cache *s, char *buf,
3847 enum track_item alloc)
3848 {
3849 int len = 0;
3850 unsigned long i;
3851 struct loc_track t = { 0, 0, NULL };
3852 int node;
3853 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3854 sizeof(unsigned long), GFP_KERNEL);
3855
3856 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3857 GFP_TEMPORARY)) {
3858 kfree(map);
3859 return sprintf(buf, "Out of memory\n");
3860 }
3861 /* Push back cpu slabs */
3862 flush_all(s);
3863
3864 for_each_node_state(node, N_NORMAL_MEMORY) {
3865 struct kmem_cache_node *n = get_node(s, node);
3866 unsigned long flags;
3867 struct page *page;
3868
3869 if (!atomic_long_read(&n->nr_slabs))
3870 continue;
3871
3872 spin_lock_irqsave(&n->list_lock, flags);
3873 list_for_each_entry(page, &n->partial, lru)
3874 process_slab(&t, s, page, alloc, map);
3875 list_for_each_entry(page, &n->full, lru)
3876 process_slab(&t, s, page, alloc, map);
3877 spin_unlock_irqrestore(&n->list_lock, flags);
3878 }
3879
3880 for (i = 0; i < t.count; i++) {
3881 struct location *l = &t.loc[i];
3882
3883 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3884 break;
3885 len += sprintf(buf + len, "%7ld ", l->count);
3886
3887 if (l->addr)
3888 len += sprintf(buf + len, "%pS", (void *)l->addr);
3889 else
3890 len += sprintf(buf + len, "<not-available>");
3891
3892 if (l->sum_time != l->min_time) {
3893 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3894 l->min_time,
3895 (long)div_u64(l->sum_time, l->count),
3896 l->max_time);
3897 } else
3898 len += sprintf(buf + len, " age=%ld",
3899 l->min_time);
3900
3901 if (l->min_pid != l->max_pid)
3902 len += sprintf(buf + len, " pid=%ld-%ld",
3903 l->min_pid, l->max_pid);
3904 else
3905 len += sprintf(buf + len, " pid=%ld",
3906 l->min_pid);
3907
3908 if (num_online_cpus() > 1 &&
3909 !cpumask_empty(to_cpumask(l->cpus)) &&
3910 len < PAGE_SIZE - 60) {
3911 len += sprintf(buf + len, " cpus=");
3912 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3913 to_cpumask(l->cpus));
3914 }
3915
3916 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3917 len < PAGE_SIZE - 60) {
3918 len += sprintf(buf + len, " nodes=");
3919 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3920 l->nodes);
3921 }
3922
3923 len += sprintf(buf + len, "\n");
3924 }
3925
3926 free_loc_track(&t);
3927 kfree(map);
3928 if (!t.count)
3929 len += sprintf(buf, "No data\n");
3930 return len;
3931 }
3932 #endif
3933
3934 #ifdef SLUB_RESILIENCY_TEST
3935 static void resiliency_test(void)
3936 {
3937 u8 *p;
3938
3939 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3940
3941 printk(KERN_ERR "SLUB resiliency testing\n");
3942 printk(KERN_ERR "-----------------------\n");
3943 printk(KERN_ERR "A. Corruption after allocation\n");
3944
3945 p = kzalloc(16, GFP_KERNEL);
3946 p[16] = 0x12;
3947 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3948 " 0x12->0x%p\n\n", p + 16);
3949
3950 validate_slab_cache(kmalloc_caches[4]);
3951
3952 /* Hmmm... The next two are dangerous */
3953 p = kzalloc(32, GFP_KERNEL);
3954 p[32 + sizeof(void *)] = 0x34;
3955 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3956 " 0x34 -> -0x%p\n", p);
3957 printk(KERN_ERR
3958 "If allocated object is overwritten then not detectable\n\n");
3959
3960 validate_slab_cache(kmalloc_caches[5]);
3961 p = kzalloc(64, GFP_KERNEL);
3962 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3963 *p = 0x56;
3964 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3965 p);
3966 printk(KERN_ERR
3967 "If allocated object is overwritten then not detectable\n\n");
3968 validate_slab_cache(kmalloc_caches[6]);
3969
3970 printk(KERN_ERR "\nB. Corruption after free\n");
3971 p = kzalloc(128, GFP_KERNEL);
3972 kfree(p);
3973 *p = 0x78;
3974 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3975 validate_slab_cache(kmalloc_caches[7]);
3976
3977 p = kzalloc(256, GFP_KERNEL);
3978 kfree(p);
3979 p[50] = 0x9a;
3980 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3981 p);
3982 validate_slab_cache(kmalloc_caches[8]);
3983
3984 p = kzalloc(512, GFP_KERNEL);
3985 kfree(p);
3986 p[512] = 0xab;
3987 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3988 validate_slab_cache(kmalloc_caches[9]);
3989 }
3990 #else
3991 #ifdef CONFIG_SYSFS
3992 static void resiliency_test(void) {};
3993 #endif
3994 #endif
3995
3996 #ifdef CONFIG_SYSFS
3997 enum slab_stat_type {
3998 SL_ALL, /* All slabs */
3999 SL_PARTIAL, /* Only partially allocated slabs */
4000 SL_CPU, /* Only slabs used for cpu caches */
4001 SL_OBJECTS, /* Determine allocated objects not slabs */
4002 SL_TOTAL /* Determine object capacity not slabs */
4003 };
4004
4005 #define SO_ALL (1 << SL_ALL)
4006 #define SO_PARTIAL (1 << SL_PARTIAL)
4007 #define SO_CPU (1 << SL_CPU)
4008 #define SO_OBJECTS (1 << SL_OBJECTS)
4009 #define SO_TOTAL (1 << SL_TOTAL)
4010
4011 static ssize_t show_slab_objects(struct kmem_cache *s,
4012 char *buf, unsigned long flags)
4013 {
4014 unsigned long total = 0;
4015 int node;
4016 int x;
4017 unsigned long *nodes;
4018 unsigned long *per_cpu;
4019
4020 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4021 if (!nodes)
4022 return -ENOMEM;
4023 per_cpu = nodes + nr_node_ids;
4024
4025 if (flags & SO_CPU) {
4026 int cpu;
4027
4028 for_each_possible_cpu(cpu) {
4029 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4030
4031 if (!c || c->node < 0)
4032 continue;
4033
4034 if (c->page) {
4035 if (flags & SO_TOTAL)
4036 x = c->page->objects;
4037 else if (flags & SO_OBJECTS)
4038 x = c->page->inuse;
4039 else
4040 x = 1;
4041
4042 total += x;
4043 nodes[c->node] += x;
4044 }
4045 per_cpu[c->node]++;
4046 }
4047 }
4048
4049 lock_memory_hotplug();
4050 #ifdef CONFIG_SLUB_DEBUG
4051 if (flags & SO_ALL) {
4052 for_each_node_state(node, N_NORMAL_MEMORY) {
4053 struct kmem_cache_node *n = get_node(s, node);
4054
4055 if (flags & SO_TOTAL)
4056 x = atomic_long_read(&n->total_objects);
4057 else if (flags & SO_OBJECTS)
4058 x = atomic_long_read(&n->total_objects) -
4059 count_partial(n, count_free);
4060
4061 else
4062 x = atomic_long_read(&n->nr_slabs);
4063 total += x;
4064 nodes[node] += x;
4065 }
4066
4067 } else
4068 #endif
4069 if (flags & SO_PARTIAL) {
4070 for_each_node_state(node, N_NORMAL_MEMORY) {
4071 struct kmem_cache_node *n = get_node(s, node);
4072
4073 if (flags & SO_TOTAL)
4074 x = count_partial(n, count_total);
4075 else if (flags & SO_OBJECTS)
4076 x = count_partial(n, count_inuse);
4077 else
4078 x = n->nr_partial;
4079 total += x;
4080 nodes[node] += x;
4081 }
4082 }
4083 x = sprintf(buf, "%lu", total);
4084 #ifdef CONFIG_NUMA
4085 for_each_node_state(node, N_NORMAL_MEMORY)
4086 if (nodes[node])
4087 x += sprintf(buf + x, " N%d=%lu",
4088 node, nodes[node]);
4089 #endif
4090 unlock_memory_hotplug();
4091 kfree(nodes);
4092 return x + sprintf(buf + x, "\n");
4093 }
4094
4095 #ifdef CONFIG_SLUB_DEBUG
4096 static int any_slab_objects(struct kmem_cache *s)
4097 {
4098 int node;
4099
4100 for_each_online_node(node) {
4101 struct kmem_cache_node *n = get_node(s, node);
4102
4103 if (!n)
4104 continue;
4105
4106 if (atomic_long_read(&n->total_objects))
4107 return 1;
4108 }
4109 return 0;
4110 }
4111 #endif
4112
4113 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4114 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4115
4116 struct slab_attribute {
4117 struct attribute attr;
4118 ssize_t (*show)(struct kmem_cache *s, char *buf);
4119 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4120 };
4121
4122 #define SLAB_ATTR_RO(_name) \
4123 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4124
4125 #define SLAB_ATTR(_name) \
4126 static struct slab_attribute _name##_attr = \
4127 __ATTR(_name, 0644, _name##_show, _name##_store)
4128
4129 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4130 {
4131 return sprintf(buf, "%d\n", s->size);
4132 }
4133 SLAB_ATTR_RO(slab_size);
4134
4135 static ssize_t align_show(struct kmem_cache *s, char *buf)
4136 {
4137 return sprintf(buf, "%d\n", s->align);
4138 }
4139 SLAB_ATTR_RO(align);
4140
4141 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4142 {
4143 return sprintf(buf, "%d\n", s->objsize);
4144 }
4145 SLAB_ATTR_RO(object_size);
4146
4147 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4148 {
4149 return sprintf(buf, "%d\n", oo_objects(s->oo));
4150 }
4151 SLAB_ATTR_RO(objs_per_slab);
4152
4153 static ssize_t order_store(struct kmem_cache *s,
4154 const char *buf, size_t length)
4155 {
4156 unsigned long order;
4157 int err;
4158
4159 err = strict_strtoul(buf, 10, &order);
4160 if (err)
4161 return err;
4162
4163 if (order > slub_max_order || order < slub_min_order)
4164 return -EINVAL;
4165
4166 calculate_sizes(s, order);
4167 return length;
4168 }
4169
4170 static ssize_t order_show(struct kmem_cache *s, char *buf)
4171 {
4172 return sprintf(buf, "%d\n", oo_order(s->oo));
4173 }
4174 SLAB_ATTR(order);
4175
4176 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4177 {
4178 return sprintf(buf, "%lu\n", s->min_partial);
4179 }
4180
4181 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4182 size_t length)
4183 {
4184 unsigned long min;
4185 int err;
4186
4187 err = strict_strtoul(buf, 10, &min);
4188 if (err)
4189 return err;
4190
4191 set_min_partial(s, min);
4192 return length;
4193 }
4194 SLAB_ATTR(min_partial);
4195
4196 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4197 {
4198 if (!s->ctor)
4199 return 0;
4200 return sprintf(buf, "%pS\n", s->ctor);
4201 }
4202 SLAB_ATTR_RO(ctor);
4203
4204 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4205 {
4206 return sprintf(buf, "%d\n", s->refcount - 1);
4207 }
4208 SLAB_ATTR_RO(aliases);
4209
4210 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4211 {
4212 return show_slab_objects(s, buf, SO_PARTIAL);
4213 }
4214 SLAB_ATTR_RO(partial);
4215
4216 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4217 {
4218 return show_slab_objects(s, buf, SO_CPU);
4219 }
4220 SLAB_ATTR_RO(cpu_slabs);
4221
4222 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4223 {
4224 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4225 }
4226 SLAB_ATTR_RO(objects);
4227
4228 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4229 {
4230 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4231 }
4232 SLAB_ATTR_RO(objects_partial);
4233
4234 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4235 {
4236 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4237 }
4238
4239 static ssize_t reclaim_account_store(struct kmem_cache *s,
4240 const char *buf, size_t length)
4241 {
4242 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4243 if (buf[0] == '1')
4244 s->flags |= SLAB_RECLAIM_ACCOUNT;
4245 return length;
4246 }
4247 SLAB_ATTR(reclaim_account);
4248
4249 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4250 {
4251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4252 }
4253 SLAB_ATTR_RO(hwcache_align);
4254
4255 #ifdef CONFIG_ZONE_DMA
4256 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4257 {
4258 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4259 }
4260 SLAB_ATTR_RO(cache_dma);
4261 #endif
4262
4263 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4264 {
4265 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4266 }
4267 SLAB_ATTR_RO(destroy_by_rcu);
4268
4269 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4270 {
4271 return sprintf(buf, "%d\n", s->reserved);
4272 }
4273 SLAB_ATTR_RO(reserved);
4274
4275 #ifdef CONFIG_SLUB_DEBUG
4276 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4277 {
4278 return show_slab_objects(s, buf, SO_ALL);
4279 }
4280 SLAB_ATTR_RO(slabs);
4281
4282 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4283 {
4284 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4285 }
4286 SLAB_ATTR_RO(total_objects);
4287
4288 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4289 {
4290 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4291 }
4292
4293 static ssize_t sanity_checks_store(struct kmem_cache *s,
4294 const char *buf, size_t length)
4295 {
4296 s->flags &= ~SLAB_DEBUG_FREE;
4297 if (buf[0] == '1')
4298 s->flags |= SLAB_DEBUG_FREE;
4299 return length;
4300 }
4301 SLAB_ATTR(sanity_checks);
4302
4303 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4304 {
4305 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4306 }
4307
4308 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4309 size_t length)
4310 {
4311 s->flags &= ~SLAB_TRACE;
4312 if (buf[0] == '1')
4313 s->flags |= SLAB_TRACE;
4314 return length;
4315 }
4316 SLAB_ATTR(trace);
4317
4318 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4319 {
4320 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4321 }
4322
4323 static ssize_t red_zone_store(struct kmem_cache *s,
4324 const char *buf, size_t length)
4325 {
4326 if (any_slab_objects(s))
4327 return -EBUSY;
4328
4329 s->flags &= ~SLAB_RED_ZONE;
4330 if (buf[0] == '1')
4331 s->flags |= SLAB_RED_ZONE;
4332 calculate_sizes(s, -1);
4333 return length;
4334 }
4335 SLAB_ATTR(red_zone);
4336
4337 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4338 {
4339 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4340 }
4341
4342 static ssize_t poison_store(struct kmem_cache *s,
4343 const char *buf, size_t length)
4344 {
4345 if (any_slab_objects(s))
4346 return -EBUSY;
4347
4348 s->flags &= ~SLAB_POISON;
4349 if (buf[0] == '1')
4350 s->flags |= SLAB_POISON;
4351 calculate_sizes(s, -1);
4352 return length;
4353 }
4354 SLAB_ATTR(poison);
4355
4356 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4357 {
4358 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4359 }
4360
4361 static ssize_t store_user_store(struct kmem_cache *s,
4362 const char *buf, size_t length)
4363 {
4364 if (any_slab_objects(s))
4365 return -EBUSY;
4366
4367 s->flags &= ~SLAB_STORE_USER;
4368 if (buf[0] == '1')
4369 s->flags |= SLAB_STORE_USER;
4370 calculate_sizes(s, -1);
4371 return length;
4372 }
4373 SLAB_ATTR(store_user);
4374
4375 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4376 {
4377 return 0;
4378 }
4379
4380 static ssize_t validate_store(struct kmem_cache *s,
4381 const char *buf, size_t length)
4382 {
4383 int ret = -EINVAL;
4384
4385 if (buf[0] == '1') {
4386 ret = validate_slab_cache(s);
4387 if (ret >= 0)
4388 ret = length;
4389 }
4390 return ret;
4391 }
4392 SLAB_ATTR(validate);
4393
4394 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4395 {
4396 if (!(s->flags & SLAB_STORE_USER))
4397 return -ENOSYS;
4398 return list_locations(s, buf, TRACK_ALLOC);
4399 }
4400 SLAB_ATTR_RO(alloc_calls);
4401
4402 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4403 {
4404 if (!(s->flags & SLAB_STORE_USER))
4405 return -ENOSYS;
4406 return list_locations(s, buf, TRACK_FREE);
4407 }
4408 SLAB_ATTR_RO(free_calls);
4409 #endif /* CONFIG_SLUB_DEBUG */
4410
4411 #ifdef CONFIG_FAILSLAB
4412 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4413 {
4414 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4415 }
4416
4417 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4418 size_t length)
4419 {
4420 s->flags &= ~SLAB_FAILSLAB;
4421 if (buf[0] == '1')
4422 s->flags |= SLAB_FAILSLAB;
4423 return length;
4424 }
4425 SLAB_ATTR(failslab);
4426 #endif
4427
4428 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4429 {
4430 return 0;
4431 }
4432
4433 static ssize_t shrink_store(struct kmem_cache *s,
4434 const char *buf, size_t length)
4435 {
4436 if (buf[0] == '1') {
4437 int rc = kmem_cache_shrink(s);
4438
4439 if (rc)
4440 return rc;
4441 } else
4442 return -EINVAL;
4443 return length;
4444 }
4445 SLAB_ATTR(shrink);
4446
4447 #ifdef CONFIG_NUMA
4448 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4449 {
4450 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4451 }
4452
4453 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4454 const char *buf, size_t length)
4455 {
4456 unsigned long ratio;
4457 int err;
4458
4459 err = strict_strtoul(buf, 10, &ratio);
4460 if (err)
4461 return err;
4462
4463 if (ratio <= 100)
4464 s->remote_node_defrag_ratio = ratio * 10;
4465
4466 return length;
4467 }
4468 SLAB_ATTR(remote_node_defrag_ratio);
4469 #endif
4470
4471 #ifdef CONFIG_SLUB_STATS
4472 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4473 {
4474 unsigned long sum = 0;
4475 int cpu;
4476 int len;
4477 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4478
4479 if (!data)
4480 return -ENOMEM;
4481
4482 for_each_online_cpu(cpu) {
4483 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4484
4485 data[cpu] = x;
4486 sum += x;
4487 }
4488
4489 len = sprintf(buf, "%lu", sum);
4490
4491 #ifdef CONFIG_SMP
4492 for_each_online_cpu(cpu) {
4493 if (data[cpu] && len < PAGE_SIZE - 20)
4494 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4495 }
4496 #endif
4497 kfree(data);
4498 return len + sprintf(buf + len, "\n");
4499 }
4500
4501 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4502 {
4503 int cpu;
4504
4505 for_each_online_cpu(cpu)
4506 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4507 }
4508
4509 #define STAT_ATTR(si, text) \
4510 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4511 { \
4512 return show_stat(s, buf, si); \
4513 } \
4514 static ssize_t text##_store(struct kmem_cache *s, \
4515 const char *buf, size_t length) \
4516 { \
4517 if (buf[0] != '0') \
4518 return -EINVAL; \
4519 clear_stat(s, si); \
4520 return length; \
4521 } \
4522 SLAB_ATTR(text); \
4523
4524 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4525 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4526 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4527 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4528 STAT_ATTR(FREE_FROZEN, free_frozen);
4529 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4530 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4531 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4532 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4533 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4534 STAT_ATTR(FREE_SLAB, free_slab);
4535 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4536 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4537 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4538 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4539 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4540 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4541 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4542 #endif
4543
4544 static struct attribute *slab_attrs[] = {
4545 &slab_size_attr.attr,
4546 &object_size_attr.attr,
4547 &objs_per_slab_attr.attr,
4548 &order_attr.attr,
4549 &min_partial_attr.attr,
4550 &objects_attr.attr,
4551 &objects_partial_attr.attr,
4552 &partial_attr.attr,
4553 &cpu_slabs_attr.attr,
4554 &ctor_attr.attr,
4555 &aliases_attr.attr,
4556 &align_attr.attr,
4557 &hwcache_align_attr.attr,
4558 &reclaim_account_attr.attr,
4559 &destroy_by_rcu_attr.attr,
4560 &shrink_attr.attr,
4561 &reserved_attr.attr,
4562 #ifdef CONFIG_SLUB_DEBUG
4563 &total_objects_attr.attr,
4564 &slabs_attr.attr,
4565 &sanity_checks_attr.attr,
4566 &trace_attr.attr,
4567 &red_zone_attr.attr,
4568 &poison_attr.attr,
4569 &store_user_attr.attr,
4570 &validate_attr.attr,
4571 &alloc_calls_attr.attr,
4572 &free_calls_attr.attr,
4573 #endif
4574 #ifdef CONFIG_ZONE_DMA
4575 &cache_dma_attr.attr,
4576 #endif
4577 #ifdef CONFIG_NUMA
4578 &remote_node_defrag_ratio_attr.attr,
4579 #endif
4580 #ifdef CONFIG_SLUB_STATS
4581 &alloc_fastpath_attr.attr,
4582 &alloc_slowpath_attr.attr,
4583 &free_fastpath_attr.attr,
4584 &free_slowpath_attr.attr,
4585 &free_frozen_attr.attr,
4586 &free_add_partial_attr.attr,
4587 &free_remove_partial_attr.attr,
4588 &alloc_from_partial_attr.attr,
4589 &alloc_slab_attr.attr,
4590 &alloc_refill_attr.attr,
4591 &free_slab_attr.attr,
4592 &cpuslab_flush_attr.attr,
4593 &deactivate_full_attr.attr,
4594 &deactivate_empty_attr.attr,
4595 &deactivate_to_head_attr.attr,
4596 &deactivate_to_tail_attr.attr,
4597 &deactivate_remote_frees_attr.attr,
4598 &order_fallback_attr.attr,
4599 #endif
4600 #ifdef CONFIG_FAILSLAB
4601 &failslab_attr.attr,
4602 #endif
4603
4604 NULL
4605 };
4606
4607 static struct attribute_group slab_attr_group = {
4608 .attrs = slab_attrs,
4609 };
4610
4611 static ssize_t slab_attr_show(struct kobject *kobj,
4612 struct attribute *attr,
4613 char *buf)
4614 {
4615 struct slab_attribute *attribute;
4616 struct kmem_cache *s;
4617 int err;
4618
4619 attribute = to_slab_attr(attr);
4620 s = to_slab(kobj);
4621
4622 if (!attribute->show)
4623 return -EIO;
4624
4625 err = attribute->show(s, buf);
4626
4627 return err;
4628 }
4629
4630 static ssize_t slab_attr_store(struct kobject *kobj,
4631 struct attribute *attr,
4632 const char *buf, size_t len)
4633 {
4634 struct slab_attribute *attribute;
4635 struct kmem_cache *s;
4636 int err;
4637
4638 attribute = to_slab_attr(attr);
4639 s = to_slab(kobj);
4640
4641 if (!attribute->store)
4642 return -EIO;
4643
4644 err = attribute->store(s, buf, len);
4645
4646 return err;
4647 }
4648
4649 static void kmem_cache_release(struct kobject *kobj)
4650 {
4651 struct kmem_cache *s = to_slab(kobj);
4652
4653 kfree(s->name);
4654 kfree(s);
4655 }
4656
4657 static const struct sysfs_ops slab_sysfs_ops = {
4658 .show = slab_attr_show,
4659 .store = slab_attr_store,
4660 };
4661
4662 static struct kobj_type slab_ktype = {
4663 .sysfs_ops = &slab_sysfs_ops,
4664 .release = kmem_cache_release
4665 };
4666
4667 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4668 {
4669 struct kobj_type *ktype = get_ktype(kobj);
4670
4671 if (ktype == &slab_ktype)
4672 return 1;
4673 return 0;
4674 }
4675
4676 static const struct kset_uevent_ops slab_uevent_ops = {
4677 .filter = uevent_filter,
4678 };
4679
4680 static struct kset *slab_kset;
4681
4682 #define ID_STR_LENGTH 64
4683
4684 /* Create a unique string id for a slab cache:
4685 *
4686 * Format :[flags-]size
4687 */
4688 static char *create_unique_id(struct kmem_cache *s)
4689 {
4690 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4691 char *p = name;
4692
4693 BUG_ON(!name);
4694
4695 *p++ = ':';
4696 /*
4697 * First flags affecting slabcache operations. We will only
4698 * get here for aliasable slabs so we do not need to support
4699 * too many flags. The flags here must cover all flags that
4700 * are matched during merging to guarantee that the id is
4701 * unique.
4702 */
4703 if (s->flags & SLAB_CACHE_DMA)
4704 *p++ = 'd';
4705 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4706 *p++ = 'a';
4707 if (s->flags & SLAB_DEBUG_FREE)
4708 *p++ = 'F';
4709 if (!(s->flags & SLAB_NOTRACK))
4710 *p++ = 't';
4711 if (p != name + 1)
4712 *p++ = '-';
4713 p += sprintf(p, "%07d", s->size);
4714 BUG_ON(p > name + ID_STR_LENGTH - 1);
4715 return name;
4716 }
4717
4718 static int sysfs_slab_add(struct kmem_cache *s)
4719 {
4720 int err;
4721 const char *name;
4722 int unmergeable;
4723
4724 if (slab_state < SYSFS)
4725 /* Defer until later */
4726 return 0;
4727
4728 unmergeable = slab_unmergeable(s);
4729 if (unmergeable) {
4730 /*
4731 * Slabcache can never be merged so we can use the name proper.
4732 * This is typically the case for debug situations. In that
4733 * case we can catch duplicate names easily.
4734 */
4735 sysfs_remove_link(&slab_kset->kobj, s->name);
4736 name = s->name;
4737 } else {
4738 /*
4739 * Create a unique name for the slab as a target
4740 * for the symlinks.
4741 */
4742 name = create_unique_id(s);
4743 }
4744
4745 s->kobj.kset = slab_kset;
4746 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4747 if (err) {
4748 kobject_put(&s->kobj);
4749 return err;
4750 }
4751
4752 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4753 if (err) {
4754 kobject_del(&s->kobj);
4755 kobject_put(&s->kobj);
4756 return err;
4757 }
4758 kobject_uevent(&s->kobj, KOBJ_ADD);
4759 if (!unmergeable) {
4760 /* Setup first alias */
4761 sysfs_slab_alias(s, s->name);
4762 kfree(name);
4763 }
4764 return 0;
4765 }
4766
4767 static void sysfs_slab_remove(struct kmem_cache *s)
4768 {
4769 if (slab_state < SYSFS)
4770 /*
4771 * Sysfs has not been setup yet so no need to remove the
4772 * cache from sysfs.
4773 */
4774 return;
4775
4776 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4777 kobject_del(&s->kobj);
4778 kobject_put(&s->kobj);
4779 }
4780
4781 /*
4782 * Need to buffer aliases during bootup until sysfs becomes
4783 * available lest we lose that information.
4784 */
4785 struct saved_alias {
4786 struct kmem_cache *s;
4787 const char *name;
4788 struct saved_alias *next;
4789 };
4790
4791 static struct saved_alias *alias_list;
4792
4793 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4794 {
4795 struct saved_alias *al;
4796
4797 if (slab_state == SYSFS) {
4798 /*
4799 * If we have a leftover link then remove it.
4800 */
4801 sysfs_remove_link(&slab_kset->kobj, name);
4802 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4803 }
4804
4805 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4806 if (!al)
4807 return -ENOMEM;
4808
4809 al->s = s;
4810 al->name = name;
4811 al->next = alias_list;
4812 alias_list = al;
4813 return 0;
4814 }
4815
4816 static int __init slab_sysfs_init(void)
4817 {
4818 struct kmem_cache *s;
4819 int err;
4820
4821 down_write(&slub_lock);
4822
4823 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4824 if (!slab_kset) {
4825 up_write(&slub_lock);
4826 printk(KERN_ERR "Cannot register slab subsystem.\n");
4827 return -ENOSYS;
4828 }
4829
4830 slab_state = SYSFS;
4831
4832 list_for_each_entry(s, &slab_caches, list) {
4833 err = sysfs_slab_add(s);
4834 if (err)
4835 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4836 " to sysfs\n", s->name);
4837 }
4838
4839 while (alias_list) {
4840 struct saved_alias *al = alias_list;
4841
4842 alias_list = alias_list->next;
4843 err = sysfs_slab_alias(al->s, al->name);
4844 if (err)
4845 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4846 " %s to sysfs\n", s->name);
4847 kfree(al);
4848 }
4849
4850 up_write(&slub_lock);
4851 resiliency_test();
4852 return 0;
4853 }
4854
4855 __initcall(slab_sysfs_init);
4856 #endif /* CONFIG_SYSFS */
4857
4858 /*
4859 * The /proc/slabinfo ABI
4860 */
4861 #ifdef CONFIG_SLABINFO
4862 static void print_slabinfo_header(struct seq_file *m)
4863 {
4864 seq_puts(m, "slabinfo - version: 2.1\n");
4865 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4866 "<objperslab> <pagesperslab>");
4867 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4868 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4869 seq_putc(m, '\n');
4870 }
4871
4872 static void *s_start(struct seq_file *m, loff_t *pos)
4873 {
4874 loff_t n = *pos;
4875
4876 down_read(&slub_lock);
4877 if (!n)
4878 print_slabinfo_header(m);
4879
4880 return seq_list_start(&slab_caches, *pos);
4881 }
4882
4883 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4884 {
4885 return seq_list_next(p, &slab_caches, pos);
4886 }
4887
4888 static void s_stop(struct seq_file *m, void *p)
4889 {
4890 up_read(&slub_lock);
4891 }
4892
4893 static int s_show(struct seq_file *m, void *p)
4894 {
4895 unsigned long nr_partials = 0;
4896 unsigned long nr_slabs = 0;
4897 unsigned long nr_inuse = 0;
4898 unsigned long nr_objs = 0;
4899 unsigned long nr_free = 0;
4900 struct kmem_cache *s;
4901 int node;
4902
4903 s = list_entry(p, struct kmem_cache, list);
4904
4905 for_each_online_node(node) {
4906 struct kmem_cache_node *n = get_node(s, node);
4907
4908 if (!n)
4909 continue;
4910
4911 nr_partials += n->nr_partial;
4912 nr_slabs += atomic_long_read(&n->nr_slabs);
4913 nr_objs += atomic_long_read(&n->total_objects);
4914 nr_free += count_partial(n, count_free);
4915 }
4916
4917 nr_inuse = nr_objs - nr_free;
4918
4919 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4920 nr_objs, s->size, oo_objects(s->oo),
4921 (1 << oo_order(s->oo)));
4922 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4923 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4924 0UL);
4925 seq_putc(m, '\n');
4926 return 0;
4927 }
4928
4929 static const struct seq_operations slabinfo_op = {
4930 .start = s_start,
4931 .next = s_next,
4932 .stop = s_stop,
4933 .show = s_show,
4934 };
4935
4936 static int slabinfo_open(struct inode *inode, struct file *file)
4937 {
4938 return seq_open(file, &slabinfo_op);
4939 }
4940
4941 static const struct file_operations proc_slabinfo_operations = {
4942 .open = slabinfo_open,
4943 .read = seq_read,
4944 .llseek = seq_lseek,
4945 .release = seq_release,
4946 };
4947
4948 static int __init slab_proc_init(void)
4949 {
4950 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4951 return 0;
4952 }
4953 module_init(slab_proc_init);
4954 #endif /* CONFIG_SLABINFO */