]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slub.c
slab allocators: Remove SLAB_CTOR_ATOMIC
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23
24 /*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90 /*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
100 * - Variable sizing of the per node arrays
101 */
102
103 /* Enable to test recovery from slab corruption on boot */
104 #undef SLUB_RESILIENCY_TEST
105
106 #if PAGE_SHIFT <= 12
107
108 /*
109 * Small page size. Make sure that we do not fragment memory
110 */
111 #define DEFAULT_MAX_ORDER 1
112 #define DEFAULT_MIN_OBJECTS 4
113
114 #else
115
116 /*
117 * Large page machines are customarily able to handle larger
118 * page orders.
119 */
120 #define DEFAULT_MAX_ORDER 2
121 #define DEFAULT_MIN_OBJECTS 8
122
123 #endif
124
125 /*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
129 #define MIN_PARTIAL 2
130
131 /*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136 #define MAX_PARTIAL 10
137
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
140 /*
141 * Set of flags that will prevent slab merging
142 */
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
148
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #endif
152
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 #endif
156
157 /* Internal SLUB flags */
158 #define __OBJECT_POISON 0x80000000 /* Poison object */
159
160 static int kmem_size = sizeof(struct kmem_cache);
161
162 #ifdef CONFIG_SMP
163 static struct notifier_block slab_notifier;
164 #endif
165
166 static enum {
167 DOWN, /* No slab functionality available */
168 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
169 UP, /* Everything works */
170 SYSFS /* Sysfs up */
171 } slab_state = DOWN;
172
173 /* A list of all slab caches on the system */
174 static DECLARE_RWSEM(slub_lock);
175 LIST_HEAD(slab_caches);
176
177 #ifdef CONFIG_SYSFS
178 static int sysfs_slab_add(struct kmem_cache *);
179 static int sysfs_slab_alias(struct kmem_cache *, const char *);
180 static void sysfs_slab_remove(struct kmem_cache *);
181 #else
182 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
183 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
184 static void sysfs_slab_remove(struct kmem_cache *s) {}
185 #endif
186
187 /********************************************************************
188 * Core slab cache functions
189 *******************************************************************/
190
191 int slab_is_available(void)
192 {
193 return slab_state >= UP;
194 }
195
196 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
197 {
198 #ifdef CONFIG_NUMA
199 return s->node[node];
200 #else
201 return &s->local_node;
202 #endif
203 }
204
205 /*
206 * Object debugging
207 */
208 static void print_section(char *text, u8 *addr, unsigned int length)
209 {
210 int i, offset;
211 int newline = 1;
212 char ascii[17];
213
214 ascii[16] = 0;
215
216 for (i = 0; i < length; i++) {
217 if (newline) {
218 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
219 newline = 0;
220 }
221 printk(" %02x", addr[i]);
222 offset = i % 16;
223 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
224 if (offset == 15) {
225 printk(" %s\n",ascii);
226 newline = 1;
227 }
228 }
229 if (!newline) {
230 i %= 16;
231 while (i < 16) {
232 printk(" ");
233 ascii[i] = ' ';
234 i++;
235 }
236 printk(" %s\n", ascii);
237 }
238 }
239
240 /*
241 * Slow version of get and set free pointer.
242 *
243 * This requires touching the cache lines of kmem_cache.
244 * The offset can also be obtained from the page. In that
245 * case it is in the cacheline that we already need to touch.
246 */
247 static void *get_freepointer(struct kmem_cache *s, void *object)
248 {
249 return *(void **)(object + s->offset);
250 }
251
252 static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
253 {
254 *(void **)(object + s->offset) = fp;
255 }
256
257 /*
258 * Tracking user of a slab.
259 */
260 struct track {
261 void *addr; /* Called from address */
262 int cpu; /* Was running on cpu */
263 int pid; /* Pid context */
264 unsigned long when; /* When did the operation occur */
265 };
266
267 enum track_item { TRACK_ALLOC, TRACK_FREE };
268
269 static struct track *get_track(struct kmem_cache *s, void *object,
270 enum track_item alloc)
271 {
272 struct track *p;
273
274 if (s->offset)
275 p = object + s->offset + sizeof(void *);
276 else
277 p = object + s->inuse;
278
279 return p + alloc;
280 }
281
282 static void set_track(struct kmem_cache *s, void *object,
283 enum track_item alloc, void *addr)
284 {
285 struct track *p;
286
287 if (s->offset)
288 p = object + s->offset + sizeof(void *);
289 else
290 p = object + s->inuse;
291
292 p += alloc;
293 if (addr) {
294 p->addr = addr;
295 p->cpu = smp_processor_id();
296 p->pid = current ? current->pid : -1;
297 p->when = jiffies;
298 } else
299 memset(p, 0, sizeof(struct track));
300 }
301
302 static void init_tracking(struct kmem_cache *s, void *object)
303 {
304 if (s->flags & SLAB_STORE_USER) {
305 set_track(s, object, TRACK_FREE, NULL);
306 set_track(s, object, TRACK_ALLOC, NULL);
307 }
308 }
309
310 static void print_track(const char *s, struct track *t)
311 {
312 if (!t->addr)
313 return;
314
315 printk(KERN_ERR "%s: ", s);
316 __print_symbol("%s", (unsigned long)t->addr);
317 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
318 }
319
320 static void print_trailer(struct kmem_cache *s, u8 *p)
321 {
322 unsigned int off; /* Offset of last byte */
323
324 if (s->flags & SLAB_RED_ZONE)
325 print_section("Redzone", p + s->objsize,
326 s->inuse - s->objsize);
327
328 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
329 p + s->offset,
330 get_freepointer(s, p));
331
332 if (s->offset)
333 off = s->offset + sizeof(void *);
334 else
335 off = s->inuse;
336
337 if (s->flags & SLAB_STORE_USER) {
338 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
339 print_track("Last free ", get_track(s, p, TRACK_FREE));
340 off += 2 * sizeof(struct track);
341 }
342
343 if (off != s->size)
344 /* Beginning of the filler is the free pointer */
345 print_section("Filler", p + off, s->size - off);
346 }
347
348 static void object_err(struct kmem_cache *s, struct page *page,
349 u8 *object, char *reason)
350 {
351 u8 *addr = page_address(page);
352
353 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
354 s->name, reason, object, page);
355 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
356 object - addr, page->flags, page->inuse, page->freelist);
357 if (object > addr + 16)
358 print_section("Bytes b4", object - 16, 16);
359 print_section("Object", object, min(s->objsize, 128));
360 print_trailer(s, object);
361 dump_stack();
362 }
363
364 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
365 {
366 va_list args;
367 char buf[100];
368
369 va_start(args, reason);
370 vsnprintf(buf, sizeof(buf), reason, args);
371 va_end(args);
372 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
373 page);
374 dump_stack();
375 }
376
377 static void init_object(struct kmem_cache *s, void *object, int active)
378 {
379 u8 *p = object;
380
381 if (s->flags & __OBJECT_POISON) {
382 memset(p, POISON_FREE, s->objsize - 1);
383 p[s->objsize -1] = POISON_END;
384 }
385
386 if (s->flags & SLAB_RED_ZONE)
387 memset(p + s->objsize,
388 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
389 s->inuse - s->objsize);
390 }
391
392 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
393 {
394 while (bytes) {
395 if (*start != (u8)value)
396 return 0;
397 start++;
398 bytes--;
399 }
400 return 1;
401 }
402
403
404 static int check_valid_pointer(struct kmem_cache *s, struct page *page,
405 void *object)
406 {
407 void *base;
408
409 if (!object)
410 return 1;
411
412 base = page_address(page);
413 if (object < base || object >= base + s->objects * s->size ||
414 (object - base) % s->size) {
415 return 0;
416 }
417
418 return 1;
419 }
420
421 /*
422 * Object layout:
423 *
424 * object address
425 * Bytes of the object to be managed.
426 * If the freepointer may overlay the object then the free
427 * pointer is the first word of the object.
428 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
429 * 0xa5 (POISON_END)
430 *
431 * object + s->objsize
432 * Padding to reach word boundary. This is also used for Redzoning.
433 * Padding is extended to word size if Redzoning is enabled
434 * and objsize == inuse.
435 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
436 * 0xcc (RED_ACTIVE) for objects in use.
437 *
438 * object + s->inuse
439 * A. Free pointer (if we cannot overwrite object on free)
440 * B. Tracking data for SLAB_STORE_USER
441 * C. Padding to reach required alignment boundary
442 * Padding is done using 0x5a (POISON_INUSE)
443 *
444 * object + s->size
445 *
446 * If slabcaches are merged then the objsize and inuse boundaries are to
447 * be ignored. And therefore no slab options that rely on these boundaries
448 * may be used with merged slabcaches.
449 */
450
451 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
452 void *from, void *to)
453 {
454 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
455 s->name, message, data, from, to - 1);
456 memset(from, data, to - from);
457 }
458
459 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
460 {
461 unsigned long off = s->inuse; /* The end of info */
462
463 if (s->offset)
464 /* Freepointer is placed after the object. */
465 off += sizeof(void *);
466
467 if (s->flags & SLAB_STORE_USER)
468 /* We also have user information there */
469 off += 2 * sizeof(struct track);
470
471 if (s->size == off)
472 return 1;
473
474 if (check_bytes(p + off, POISON_INUSE, s->size - off))
475 return 1;
476
477 object_err(s, page, p, "Object padding check fails");
478
479 /*
480 * Restore padding
481 */
482 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
483 return 0;
484 }
485
486 static int slab_pad_check(struct kmem_cache *s, struct page *page)
487 {
488 u8 *p;
489 int length, remainder;
490
491 if (!(s->flags & SLAB_POISON))
492 return 1;
493
494 p = page_address(page);
495 length = s->objects * s->size;
496 remainder = (PAGE_SIZE << s->order) - length;
497 if (!remainder)
498 return 1;
499
500 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
501 slab_err(s, page, "Padding check failed");
502 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
503 p + length + remainder);
504 return 0;
505 }
506 return 1;
507 }
508
509 static int check_object(struct kmem_cache *s, struct page *page,
510 void *object, int active)
511 {
512 u8 *p = object;
513 u8 *endobject = object + s->objsize;
514
515 if (s->flags & SLAB_RED_ZONE) {
516 unsigned int red =
517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
518
519 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
520 object_err(s, page, object,
521 active ? "Redzone Active" : "Redzone Inactive");
522 restore_bytes(s, "redzone", red,
523 endobject, object + s->inuse);
524 return 0;
525 }
526 } else {
527 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
528 !check_bytes(endobject, POISON_INUSE,
529 s->inuse - s->objsize)) {
530 object_err(s, page, p, "Alignment padding check fails");
531 /*
532 * Fix it so that there will not be another report.
533 *
534 * Hmmm... We may be corrupting an object that now expects
535 * to be longer than allowed.
536 */
537 restore_bytes(s, "alignment padding", POISON_INUSE,
538 endobject, object + s->inuse);
539 }
540 }
541
542 if (s->flags & SLAB_POISON) {
543 if (!active && (s->flags & __OBJECT_POISON) &&
544 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
545 p[s->objsize - 1] != POISON_END)) {
546
547 object_err(s, page, p, "Poison check failed");
548 restore_bytes(s, "Poison", POISON_FREE,
549 p, p + s->objsize -1);
550 restore_bytes(s, "Poison", POISON_END,
551 p + s->objsize - 1, p + s->objsize);
552 return 0;
553 }
554 /*
555 * check_pad_bytes cleans up on its own.
556 */
557 check_pad_bytes(s, page, p);
558 }
559
560 if (!s->offset && active)
561 /*
562 * Object and freepointer overlap. Cannot check
563 * freepointer while object is allocated.
564 */
565 return 1;
566
567 /* Check free pointer validity */
568 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
569 object_err(s, page, p, "Freepointer corrupt");
570 /*
571 * No choice but to zap it and thus loose the remainder
572 * of the free objects in this slab. May cause
573 * another error because the object count maybe
574 * wrong now.
575 */
576 set_freepointer(s, p, NULL);
577 return 0;
578 }
579 return 1;
580 }
581
582 static int check_slab(struct kmem_cache *s, struct page *page)
583 {
584 VM_BUG_ON(!irqs_disabled());
585
586 if (!PageSlab(page)) {
587 slab_err(s, page, "Not a valid slab page flags=%lx "
588 "mapping=0x%p count=%d", page->flags, page->mapping,
589 page_count(page));
590 return 0;
591 }
592 if (page->offset * sizeof(void *) != s->offset) {
593 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
594 "mapping=0x%p count=%d",
595 (unsigned long)(page->offset * sizeof(void *)),
596 page->flags,
597 page->mapping,
598 page_count(page));
599 return 0;
600 }
601 if (page->inuse > s->objects) {
602 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
603 "mapping=0x%p count=%d",
604 s->name, page->inuse, s->objects, page->flags,
605 page->mapping, page_count(page));
606 return 0;
607 }
608 /* Slab_pad_check fixes things up after itself */
609 slab_pad_check(s, page);
610 return 1;
611 }
612
613 /*
614 * Determine if a certain object on a page is on the freelist and
615 * therefore free. Must hold the slab lock for cpu slabs to
616 * guarantee that the chains are consistent.
617 */
618 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
619 {
620 int nr = 0;
621 void *fp = page->freelist;
622 void *object = NULL;
623
624 while (fp && nr <= s->objects) {
625 if (fp == search)
626 return 1;
627 if (!check_valid_pointer(s, page, fp)) {
628 if (object) {
629 object_err(s, page, object,
630 "Freechain corrupt");
631 set_freepointer(s, object, NULL);
632 break;
633 } else {
634 slab_err(s, page, "Freepointer 0x%p corrupt",
635 fp);
636 page->freelist = NULL;
637 page->inuse = s->objects;
638 printk(KERN_ERR "@@@ SLUB %s: Freelist "
639 "cleared. Slab 0x%p\n",
640 s->name, page);
641 return 0;
642 }
643 break;
644 }
645 object = fp;
646 fp = get_freepointer(s, object);
647 nr++;
648 }
649
650 if (page->inuse != s->objects - nr) {
651 slab_err(s, page, "Wrong object count. Counter is %d but "
652 "counted were %d", s, page, page->inuse,
653 s->objects - nr);
654 page->inuse = s->objects - nr;
655 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
656 "Slab @0x%p\n", s->name, page);
657 }
658 return search == NULL;
659 }
660
661 /*
662 * Tracking of fully allocated slabs for debugging
663 */
664 static void add_full(struct kmem_cache_node *n, struct page *page)
665 {
666 spin_lock(&n->list_lock);
667 list_add(&page->lru, &n->full);
668 spin_unlock(&n->list_lock);
669 }
670
671 static void remove_full(struct kmem_cache *s, struct page *page)
672 {
673 struct kmem_cache_node *n;
674
675 if (!(s->flags & SLAB_STORE_USER))
676 return;
677
678 n = get_node(s, page_to_nid(page));
679
680 spin_lock(&n->list_lock);
681 list_del(&page->lru);
682 spin_unlock(&n->list_lock);
683 }
684
685 static int alloc_object_checks(struct kmem_cache *s, struct page *page,
686 void *object)
687 {
688 if (!check_slab(s, page))
689 goto bad;
690
691 if (object && !on_freelist(s, page, object)) {
692 slab_err(s, page, "Object 0x%p already allocated", object);
693 goto bad;
694 }
695
696 if (!check_valid_pointer(s, page, object)) {
697 object_err(s, page, object, "Freelist Pointer check fails");
698 goto bad;
699 }
700
701 if (!object)
702 return 1;
703
704 if (!check_object(s, page, object, 0))
705 goto bad;
706
707 return 1;
708 bad:
709 if (PageSlab(page)) {
710 /*
711 * If this is a slab page then lets do the best we can
712 * to avoid issues in the future. Marking all objects
713 * as used avoids touching the remainder.
714 */
715 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
716 s->name, page);
717 page->inuse = s->objects;
718 page->freelist = NULL;
719 /* Fix up fields that may be corrupted */
720 page->offset = s->offset / sizeof(void *);
721 }
722 return 0;
723 }
724
725 static int free_object_checks(struct kmem_cache *s, struct page *page,
726 void *object)
727 {
728 if (!check_slab(s, page))
729 goto fail;
730
731 if (!check_valid_pointer(s, page, object)) {
732 slab_err(s, page, "Invalid object pointer 0x%p", object);
733 goto fail;
734 }
735
736 if (on_freelist(s, page, object)) {
737 slab_err(s, page, "Object 0x%p already free", object);
738 goto fail;
739 }
740
741 if (!check_object(s, page, object, 1))
742 return 0;
743
744 if (unlikely(s != page->slab)) {
745 if (!PageSlab(page))
746 slab_err(s, page, "Attempt to free object(0x%p) "
747 "outside of slab", object);
748 else
749 if (!page->slab) {
750 printk(KERN_ERR
751 "SLUB <none>: no slab for object 0x%p.\n",
752 object);
753 dump_stack();
754 }
755 else
756 slab_err(s, page, "object at 0x%p belongs "
757 "to slab %s", object, page->slab->name);
758 goto fail;
759 }
760 return 1;
761 fail:
762 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
763 s->name, page, object);
764 return 0;
765 }
766
767 /*
768 * Slab allocation and freeing
769 */
770 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
771 {
772 struct page * page;
773 int pages = 1 << s->order;
774
775 if (s->order)
776 flags |= __GFP_COMP;
777
778 if (s->flags & SLAB_CACHE_DMA)
779 flags |= SLUB_DMA;
780
781 if (node == -1)
782 page = alloc_pages(flags, s->order);
783 else
784 page = alloc_pages_node(node, flags, s->order);
785
786 if (!page)
787 return NULL;
788
789 mod_zone_page_state(page_zone(page),
790 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
791 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
792 pages);
793
794 return page;
795 }
796
797 static void setup_object(struct kmem_cache *s, struct page *page,
798 void *object)
799 {
800 if (PageError(page)) {
801 init_object(s, object, 0);
802 init_tracking(s, object);
803 }
804
805 if (unlikely(s->ctor))
806 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
807 }
808
809 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
810 {
811 struct page *page;
812 struct kmem_cache_node *n;
813 void *start;
814 void *end;
815 void *last;
816 void *p;
817
818 if (flags & __GFP_NO_GROW)
819 return NULL;
820
821 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
822
823 if (flags & __GFP_WAIT)
824 local_irq_enable();
825
826 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
827 if (!page)
828 goto out;
829
830 n = get_node(s, page_to_nid(page));
831 if (n)
832 atomic_long_inc(&n->nr_slabs);
833 page->offset = s->offset / sizeof(void *);
834 page->slab = s;
835 page->flags |= 1 << PG_slab;
836 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
837 SLAB_STORE_USER | SLAB_TRACE))
838 page->flags |= 1 << PG_error;
839
840 start = page_address(page);
841 end = start + s->objects * s->size;
842
843 if (unlikely(s->flags & SLAB_POISON))
844 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
845
846 last = start;
847 for (p = start + s->size; p < end; p += s->size) {
848 setup_object(s, page, last);
849 set_freepointer(s, last, p);
850 last = p;
851 }
852 setup_object(s, page, last);
853 set_freepointer(s, last, NULL);
854
855 page->freelist = start;
856 page->inuse = 0;
857 out:
858 if (flags & __GFP_WAIT)
859 local_irq_disable();
860 return page;
861 }
862
863 static void __free_slab(struct kmem_cache *s, struct page *page)
864 {
865 int pages = 1 << s->order;
866
867 if (unlikely(PageError(page) || s->dtor)) {
868 void *start = page_address(page);
869 void *end = start + (pages << PAGE_SHIFT);
870 void *p;
871
872 slab_pad_check(s, page);
873 for (p = start; p <= end - s->size; p += s->size) {
874 if (s->dtor)
875 s->dtor(p, s, 0);
876 check_object(s, page, p, 0);
877 }
878 }
879
880 mod_zone_page_state(page_zone(page),
881 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
882 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
883 - pages);
884
885 page->mapping = NULL;
886 __free_pages(page, s->order);
887 }
888
889 static void rcu_free_slab(struct rcu_head *h)
890 {
891 struct page *page;
892
893 page = container_of((struct list_head *)h, struct page, lru);
894 __free_slab(page->slab, page);
895 }
896
897 static void free_slab(struct kmem_cache *s, struct page *page)
898 {
899 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
900 /*
901 * RCU free overloads the RCU head over the LRU
902 */
903 struct rcu_head *head = (void *)&page->lru;
904
905 call_rcu(head, rcu_free_slab);
906 } else
907 __free_slab(s, page);
908 }
909
910 static void discard_slab(struct kmem_cache *s, struct page *page)
911 {
912 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
913
914 atomic_long_dec(&n->nr_slabs);
915 reset_page_mapcount(page);
916 page->flags &= ~(1 << PG_slab | 1 << PG_error);
917 free_slab(s, page);
918 }
919
920 /*
921 * Per slab locking using the pagelock
922 */
923 static __always_inline void slab_lock(struct page *page)
924 {
925 bit_spin_lock(PG_locked, &page->flags);
926 }
927
928 static __always_inline void slab_unlock(struct page *page)
929 {
930 bit_spin_unlock(PG_locked, &page->flags);
931 }
932
933 static __always_inline int slab_trylock(struct page *page)
934 {
935 int rc = 1;
936
937 rc = bit_spin_trylock(PG_locked, &page->flags);
938 return rc;
939 }
940
941 /*
942 * Management of partially allocated slabs
943 */
944 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
945 {
946 spin_lock(&n->list_lock);
947 n->nr_partial++;
948 list_add_tail(&page->lru, &n->partial);
949 spin_unlock(&n->list_lock);
950 }
951
952 static void add_partial(struct kmem_cache_node *n, struct page *page)
953 {
954 spin_lock(&n->list_lock);
955 n->nr_partial++;
956 list_add(&page->lru, &n->partial);
957 spin_unlock(&n->list_lock);
958 }
959
960 static void remove_partial(struct kmem_cache *s,
961 struct page *page)
962 {
963 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
964
965 spin_lock(&n->list_lock);
966 list_del(&page->lru);
967 n->nr_partial--;
968 spin_unlock(&n->list_lock);
969 }
970
971 /*
972 * Lock page and remove it from the partial list
973 *
974 * Must hold list_lock
975 */
976 static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
977 {
978 if (slab_trylock(page)) {
979 list_del(&page->lru);
980 n->nr_partial--;
981 return 1;
982 }
983 return 0;
984 }
985
986 /*
987 * Try to get a partial slab from a specific node
988 */
989 static struct page *get_partial_node(struct kmem_cache_node *n)
990 {
991 struct page *page;
992
993 /*
994 * Racy check. If we mistakenly see no partial slabs then we
995 * just allocate an empty slab. If we mistakenly try to get a
996 * partial slab then get_partials() will return NULL.
997 */
998 if (!n || !n->nr_partial)
999 return NULL;
1000
1001 spin_lock(&n->list_lock);
1002 list_for_each_entry(page, &n->partial, lru)
1003 if (lock_and_del_slab(n, page))
1004 goto out;
1005 page = NULL;
1006 out:
1007 spin_unlock(&n->list_lock);
1008 return page;
1009 }
1010
1011 /*
1012 * Get a page from somewhere. Search in increasing NUMA
1013 * distances.
1014 */
1015 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1016 {
1017 #ifdef CONFIG_NUMA
1018 struct zonelist *zonelist;
1019 struct zone **z;
1020 struct page *page;
1021
1022 /*
1023 * The defrag ratio allows to configure the tradeoffs between
1024 * inter node defragmentation and node local allocations.
1025 * A lower defrag_ratio increases the tendency to do local
1026 * allocations instead of scanning throught the partial
1027 * lists on other nodes.
1028 *
1029 * If defrag_ratio is set to 0 then kmalloc() always
1030 * returns node local objects. If its higher then kmalloc()
1031 * may return off node objects in order to avoid fragmentation.
1032 *
1033 * A higher ratio means slabs may be taken from other nodes
1034 * thus reducing the number of partial slabs on those nodes.
1035 *
1036 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1037 * defrag_ratio = 1000) then every (well almost) allocation
1038 * will first attempt to defrag slab caches on other nodes. This
1039 * means scanning over all nodes to look for partial slabs which
1040 * may be a bit expensive to do on every slab allocation.
1041 */
1042 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1043 return NULL;
1044
1045 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1046 ->node_zonelists[gfp_zone(flags)];
1047 for (z = zonelist->zones; *z; z++) {
1048 struct kmem_cache_node *n;
1049
1050 n = get_node(s, zone_to_nid(*z));
1051
1052 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1053 n->nr_partial > MIN_PARTIAL) {
1054 page = get_partial_node(n);
1055 if (page)
1056 return page;
1057 }
1058 }
1059 #endif
1060 return NULL;
1061 }
1062
1063 /*
1064 * Get a partial page, lock it and return it.
1065 */
1066 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1067 {
1068 struct page *page;
1069 int searchnode = (node == -1) ? numa_node_id() : node;
1070
1071 page = get_partial_node(get_node(s, searchnode));
1072 if (page || (flags & __GFP_THISNODE))
1073 return page;
1074
1075 return get_any_partial(s, flags);
1076 }
1077
1078 /*
1079 * Move a page back to the lists.
1080 *
1081 * Must be called with the slab lock held.
1082 *
1083 * On exit the slab lock will have been dropped.
1084 */
1085 static void putback_slab(struct kmem_cache *s, struct page *page)
1086 {
1087 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1088
1089 if (page->inuse) {
1090
1091 if (page->freelist)
1092 add_partial(n, page);
1093 else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1094 add_full(n, page);
1095 slab_unlock(page);
1096
1097 } else {
1098 if (n->nr_partial < MIN_PARTIAL) {
1099 /*
1100 * Adding an empty page to the partial slabs in order
1101 * to avoid page allocator overhead. This page needs to
1102 * come after all the others that are not fully empty
1103 * in order to make sure that we do maximum
1104 * defragmentation.
1105 */
1106 add_partial_tail(n, page);
1107 slab_unlock(page);
1108 } else {
1109 slab_unlock(page);
1110 discard_slab(s, page);
1111 }
1112 }
1113 }
1114
1115 /*
1116 * Remove the cpu slab
1117 */
1118 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1119 {
1120 s->cpu_slab[cpu] = NULL;
1121 ClearPageActive(page);
1122
1123 putback_slab(s, page);
1124 }
1125
1126 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1127 {
1128 slab_lock(page);
1129 deactivate_slab(s, page, cpu);
1130 }
1131
1132 /*
1133 * Flush cpu slab.
1134 * Called from IPI handler with interrupts disabled.
1135 */
1136 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1137 {
1138 struct page *page = s->cpu_slab[cpu];
1139
1140 if (likely(page))
1141 flush_slab(s, page, cpu);
1142 }
1143
1144 static void flush_cpu_slab(void *d)
1145 {
1146 struct kmem_cache *s = d;
1147 int cpu = smp_processor_id();
1148
1149 __flush_cpu_slab(s, cpu);
1150 }
1151
1152 static void flush_all(struct kmem_cache *s)
1153 {
1154 #ifdef CONFIG_SMP
1155 on_each_cpu(flush_cpu_slab, s, 1, 1);
1156 #else
1157 unsigned long flags;
1158
1159 local_irq_save(flags);
1160 flush_cpu_slab(s);
1161 local_irq_restore(flags);
1162 #endif
1163 }
1164
1165 /*
1166 * slab_alloc is optimized to only modify two cachelines on the fast path
1167 * (aside from the stack):
1168 *
1169 * 1. The page struct
1170 * 2. The first cacheline of the object to be allocated.
1171 *
1172 * The only cache lines that are read (apart from code) is the
1173 * per cpu array in the kmem_cache struct.
1174 *
1175 * Fastpath is not possible if we need to get a new slab or have
1176 * debugging enabled (which means all slabs are marked with PageError)
1177 */
1178 static void *slab_alloc(struct kmem_cache *s,
1179 gfp_t gfpflags, int node, void *addr)
1180 {
1181 struct page *page;
1182 void **object;
1183 unsigned long flags;
1184 int cpu;
1185
1186 local_irq_save(flags);
1187 cpu = smp_processor_id();
1188 page = s->cpu_slab[cpu];
1189 if (!page)
1190 goto new_slab;
1191
1192 slab_lock(page);
1193 if (unlikely(node != -1 && page_to_nid(page) != node))
1194 goto another_slab;
1195 redo:
1196 object = page->freelist;
1197 if (unlikely(!object))
1198 goto another_slab;
1199 if (unlikely(PageError(page)))
1200 goto debug;
1201
1202 have_object:
1203 page->inuse++;
1204 page->freelist = object[page->offset];
1205 slab_unlock(page);
1206 local_irq_restore(flags);
1207 return object;
1208
1209 another_slab:
1210 deactivate_slab(s, page, cpu);
1211
1212 new_slab:
1213 page = get_partial(s, gfpflags, node);
1214 if (likely(page)) {
1215 have_slab:
1216 s->cpu_slab[cpu] = page;
1217 SetPageActive(page);
1218 goto redo;
1219 }
1220
1221 page = new_slab(s, gfpflags, node);
1222 if (page) {
1223 cpu = smp_processor_id();
1224 if (s->cpu_slab[cpu]) {
1225 /*
1226 * Someone else populated the cpu_slab while we enabled
1227 * interrupts, or we have got scheduled on another cpu.
1228 * The page may not be on the requested node.
1229 */
1230 if (node == -1 ||
1231 page_to_nid(s->cpu_slab[cpu]) == node) {
1232 /*
1233 * Current cpuslab is acceptable and we
1234 * want the current one since its cache hot
1235 */
1236 discard_slab(s, page);
1237 page = s->cpu_slab[cpu];
1238 slab_lock(page);
1239 goto redo;
1240 }
1241 /* Dump the current slab */
1242 flush_slab(s, s->cpu_slab[cpu], cpu);
1243 }
1244 slab_lock(page);
1245 goto have_slab;
1246 }
1247 local_irq_restore(flags);
1248 return NULL;
1249 debug:
1250 if (!alloc_object_checks(s, page, object))
1251 goto another_slab;
1252 if (s->flags & SLAB_STORE_USER)
1253 set_track(s, object, TRACK_ALLOC, addr);
1254 if (s->flags & SLAB_TRACE) {
1255 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1256 s->name, object, page->inuse,
1257 page->freelist);
1258 dump_stack();
1259 }
1260 init_object(s, object, 1);
1261 goto have_object;
1262 }
1263
1264 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1265 {
1266 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1267 }
1268 EXPORT_SYMBOL(kmem_cache_alloc);
1269
1270 #ifdef CONFIG_NUMA
1271 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1272 {
1273 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1274 }
1275 EXPORT_SYMBOL(kmem_cache_alloc_node);
1276 #endif
1277
1278 /*
1279 * The fastpath only writes the cacheline of the page struct and the first
1280 * cacheline of the object.
1281 *
1282 * No special cachelines need to be read
1283 */
1284 static void slab_free(struct kmem_cache *s, struct page *page,
1285 void *x, void *addr)
1286 {
1287 void *prior;
1288 void **object = (void *)x;
1289 unsigned long flags;
1290
1291 local_irq_save(flags);
1292 slab_lock(page);
1293
1294 if (unlikely(PageError(page)))
1295 goto debug;
1296 checks_ok:
1297 prior = object[page->offset] = page->freelist;
1298 page->freelist = object;
1299 page->inuse--;
1300
1301 if (unlikely(PageActive(page)))
1302 /*
1303 * Cpu slabs are never on partial lists and are
1304 * never freed.
1305 */
1306 goto out_unlock;
1307
1308 if (unlikely(!page->inuse))
1309 goto slab_empty;
1310
1311 /*
1312 * Objects left in the slab. If it
1313 * was not on the partial list before
1314 * then add it.
1315 */
1316 if (unlikely(!prior))
1317 add_partial(get_node(s, page_to_nid(page)), page);
1318
1319 out_unlock:
1320 slab_unlock(page);
1321 local_irq_restore(flags);
1322 return;
1323
1324 slab_empty:
1325 if (prior)
1326 /*
1327 * Slab on the partial list.
1328 */
1329 remove_partial(s, page);
1330
1331 slab_unlock(page);
1332 discard_slab(s, page);
1333 local_irq_restore(flags);
1334 return;
1335
1336 debug:
1337 if (!free_object_checks(s, page, x))
1338 goto out_unlock;
1339 if (!PageActive(page) && !page->freelist)
1340 remove_full(s, page);
1341 if (s->flags & SLAB_STORE_USER)
1342 set_track(s, x, TRACK_FREE, addr);
1343 if (s->flags & SLAB_TRACE) {
1344 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1345 s->name, object, page->inuse,
1346 page->freelist);
1347 print_section("Object", (void *)object, s->objsize);
1348 dump_stack();
1349 }
1350 init_object(s, object, 0);
1351 goto checks_ok;
1352 }
1353
1354 void kmem_cache_free(struct kmem_cache *s, void *x)
1355 {
1356 struct page *page;
1357
1358 page = virt_to_head_page(x);
1359
1360 slab_free(s, page, x, __builtin_return_address(0));
1361 }
1362 EXPORT_SYMBOL(kmem_cache_free);
1363
1364 /* Figure out on which slab object the object resides */
1365 static struct page *get_object_page(const void *x)
1366 {
1367 struct page *page = virt_to_head_page(x);
1368
1369 if (!PageSlab(page))
1370 return NULL;
1371
1372 return page;
1373 }
1374
1375 /*
1376 * kmem_cache_open produces objects aligned at "size" and the first object
1377 * is placed at offset 0 in the slab (We have no metainformation on the
1378 * slab, all slabs are in essence "off slab").
1379 *
1380 * In order to get the desired alignment one just needs to align the
1381 * size.
1382 *
1383 * Notice that the allocation order determines the sizes of the per cpu
1384 * caches. Each processor has always one slab available for allocations.
1385 * Increasing the allocation order reduces the number of times that slabs
1386 * must be moved on and off the partial lists and therefore may influence
1387 * locking overhead.
1388 *
1389 * The offset is used to relocate the free list link in each object. It is
1390 * therefore possible to move the free list link behind the object. This
1391 * is necessary for RCU to work properly and also useful for debugging.
1392 */
1393
1394 /*
1395 * Mininum / Maximum order of slab pages. This influences locking overhead
1396 * and slab fragmentation. A higher order reduces the number of partial slabs
1397 * and increases the number of allocations possible without having to
1398 * take the list_lock.
1399 */
1400 static int slub_min_order;
1401 static int slub_max_order = DEFAULT_MAX_ORDER;
1402
1403 /*
1404 * Minimum number of objects per slab. This is necessary in order to
1405 * reduce locking overhead. Similar to the queue size in SLAB.
1406 */
1407 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1408
1409 /*
1410 * Merge control. If this is set then no merging of slab caches will occur.
1411 */
1412 static int slub_nomerge;
1413
1414 /*
1415 * Debug settings:
1416 */
1417 static int slub_debug;
1418
1419 static char *slub_debug_slabs;
1420
1421 /*
1422 * Calculate the order of allocation given an slab object size.
1423 *
1424 * The order of allocation has significant impact on other elements
1425 * of the system. Generally order 0 allocations should be preferred
1426 * since they do not cause fragmentation in the page allocator. Larger
1427 * objects may have problems with order 0 because there may be too much
1428 * space left unused in a slab. We go to a higher order if more than 1/8th
1429 * of the slab would be wasted.
1430 *
1431 * In order to reach satisfactory performance we must ensure that
1432 * a minimum number of objects is in one slab. Otherwise we may
1433 * generate too much activity on the partial lists. This is less a
1434 * concern for large slabs though. slub_max_order specifies the order
1435 * where we begin to stop considering the number of objects in a slab.
1436 *
1437 * Higher order allocations also allow the placement of more objects
1438 * in a slab and thereby reduce object handling overhead. If the user
1439 * has requested a higher mininum order then we start with that one
1440 * instead of zero.
1441 */
1442 static int calculate_order(int size)
1443 {
1444 int order;
1445 int rem;
1446
1447 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1448 order < MAX_ORDER; order++) {
1449 unsigned long slab_size = PAGE_SIZE << order;
1450
1451 if (slub_max_order > order &&
1452 slab_size < slub_min_objects * size)
1453 continue;
1454
1455 if (slab_size < size)
1456 continue;
1457
1458 rem = slab_size % size;
1459
1460 if (rem <= (PAGE_SIZE << order) / 8)
1461 break;
1462
1463 }
1464 if (order >= MAX_ORDER)
1465 return -E2BIG;
1466 return order;
1467 }
1468
1469 /*
1470 * Function to figure out which alignment to use from the
1471 * various ways of specifying it.
1472 */
1473 static unsigned long calculate_alignment(unsigned long flags,
1474 unsigned long align, unsigned long size)
1475 {
1476 /*
1477 * If the user wants hardware cache aligned objects then
1478 * follow that suggestion if the object is sufficiently
1479 * large.
1480 *
1481 * The hardware cache alignment cannot override the
1482 * specified alignment though. If that is greater
1483 * then use it.
1484 */
1485 if ((flags & SLAB_HWCACHE_ALIGN) &&
1486 size > L1_CACHE_BYTES / 2)
1487 return max_t(unsigned long, align, L1_CACHE_BYTES);
1488
1489 if (align < ARCH_SLAB_MINALIGN)
1490 return ARCH_SLAB_MINALIGN;
1491
1492 return ALIGN(align, sizeof(void *));
1493 }
1494
1495 static void init_kmem_cache_node(struct kmem_cache_node *n)
1496 {
1497 n->nr_partial = 0;
1498 atomic_long_set(&n->nr_slabs, 0);
1499 spin_lock_init(&n->list_lock);
1500 INIT_LIST_HEAD(&n->partial);
1501 INIT_LIST_HEAD(&n->full);
1502 }
1503
1504 #ifdef CONFIG_NUMA
1505 /*
1506 * No kmalloc_node yet so do it by hand. We know that this is the first
1507 * slab on the node for this slabcache. There are no concurrent accesses
1508 * possible.
1509 *
1510 * Note that this function only works on the kmalloc_node_cache
1511 * when allocating for the kmalloc_node_cache.
1512 */
1513 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1514 int node)
1515 {
1516 struct page *page;
1517 struct kmem_cache_node *n;
1518
1519 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1520
1521 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1522 /* new_slab() disables interupts */
1523 local_irq_enable();
1524
1525 BUG_ON(!page);
1526 n = page->freelist;
1527 BUG_ON(!n);
1528 page->freelist = get_freepointer(kmalloc_caches, n);
1529 page->inuse++;
1530 kmalloc_caches->node[node] = n;
1531 init_object(kmalloc_caches, n, 1);
1532 init_kmem_cache_node(n);
1533 atomic_long_inc(&n->nr_slabs);
1534 add_partial(n, page);
1535 return n;
1536 }
1537
1538 static void free_kmem_cache_nodes(struct kmem_cache *s)
1539 {
1540 int node;
1541
1542 for_each_online_node(node) {
1543 struct kmem_cache_node *n = s->node[node];
1544 if (n && n != &s->local_node)
1545 kmem_cache_free(kmalloc_caches, n);
1546 s->node[node] = NULL;
1547 }
1548 }
1549
1550 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1551 {
1552 int node;
1553 int local_node;
1554
1555 if (slab_state >= UP)
1556 local_node = page_to_nid(virt_to_page(s));
1557 else
1558 local_node = 0;
1559
1560 for_each_online_node(node) {
1561 struct kmem_cache_node *n;
1562
1563 if (local_node == node)
1564 n = &s->local_node;
1565 else {
1566 if (slab_state == DOWN) {
1567 n = early_kmem_cache_node_alloc(gfpflags,
1568 node);
1569 continue;
1570 }
1571 n = kmem_cache_alloc_node(kmalloc_caches,
1572 gfpflags, node);
1573
1574 if (!n) {
1575 free_kmem_cache_nodes(s);
1576 return 0;
1577 }
1578
1579 }
1580 s->node[node] = n;
1581 init_kmem_cache_node(n);
1582 }
1583 return 1;
1584 }
1585 #else
1586 static void free_kmem_cache_nodes(struct kmem_cache *s)
1587 {
1588 }
1589
1590 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1591 {
1592 init_kmem_cache_node(&s->local_node);
1593 return 1;
1594 }
1595 #endif
1596
1597 /*
1598 * calculate_sizes() determines the order and the distribution of data within
1599 * a slab object.
1600 */
1601 static int calculate_sizes(struct kmem_cache *s)
1602 {
1603 unsigned long flags = s->flags;
1604 unsigned long size = s->objsize;
1605 unsigned long align = s->align;
1606
1607 /*
1608 * Determine if we can poison the object itself. If the user of
1609 * the slab may touch the object after free or before allocation
1610 * then we should never poison the object itself.
1611 */
1612 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1613 !s->ctor && !s->dtor)
1614 s->flags |= __OBJECT_POISON;
1615 else
1616 s->flags &= ~__OBJECT_POISON;
1617
1618 /*
1619 * Round up object size to the next word boundary. We can only
1620 * place the free pointer at word boundaries and this determines
1621 * the possible location of the free pointer.
1622 */
1623 size = ALIGN(size, sizeof(void *));
1624
1625 /*
1626 * If we are redzoning then check if there is some space between the
1627 * end of the object and the free pointer. If not then add an
1628 * additional word, so that we can establish a redzone between
1629 * the object and the freepointer to be able to check for overwrites.
1630 */
1631 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1632 size += sizeof(void *);
1633
1634 /*
1635 * With that we have determined how much of the slab is in actual
1636 * use by the object. This is the potential offset to the free
1637 * pointer.
1638 */
1639 s->inuse = size;
1640
1641 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1642 s->ctor || s->dtor)) {
1643 /*
1644 * Relocate free pointer after the object if it is not
1645 * permitted to overwrite the first word of the object on
1646 * kmem_cache_free.
1647 *
1648 * This is the case if we do RCU, have a constructor or
1649 * destructor or are poisoning the objects.
1650 */
1651 s->offset = size;
1652 size += sizeof(void *);
1653 }
1654
1655 if (flags & SLAB_STORE_USER)
1656 /*
1657 * Need to store information about allocs and frees after
1658 * the object.
1659 */
1660 size += 2 * sizeof(struct track);
1661
1662 if (flags & DEBUG_DEFAULT_FLAGS)
1663 /*
1664 * Add some empty padding so that we can catch
1665 * overwrites from earlier objects rather than let
1666 * tracking information or the free pointer be
1667 * corrupted if an user writes before the start
1668 * of the object.
1669 */
1670 size += sizeof(void *);
1671 /*
1672 * Determine the alignment based on various parameters that the
1673 * user specified (this is unecessarily complex due to the attempt
1674 * to be compatible with SLAB. Should be cleaned up some day).
1675 */
1676 align = calculate_alignment(flags, align, s->objsize);
1677
1678 /*
1679 * SLUB stores one object immediately after another beginning from
1680 * offset 0. In order to align the objects we have to simply size
1681 * each object to conform to the alignment.
1682 */
1683 size = ALIGN(size, align);
1684 s->size = size;
1685
1686 s->order = calculate_order(size);
1687 if (s->order < 0)
1688 return 0;
1689
1690 /*
1691 * Determine the number of objects per slab
1692 */
1693 s->objects = (PAGE_SIZE << s->order) / size;
1694
1695 /*
1696 * Verify that the number of objects is within permitted limits.
1697 * The page->inuse field is only 16 bit wide! So we cannot have
1698 * more than 64k objects per slab.
1699 */
1700 if (!s->objects || s->objects > 65535)
1701 return 0;
1702 return 1;
1703
1704 }
1705
1706 static int __init finish_bootstrap(void)
1707 {
1708 struct list_head *h;
1709 int err;
1710
1711 slab_state = SYSFS;
1712
1713 list_for_each(h, &slab_caches) {
1714 struct kmem_cache *s =
1715 container_of(h, struct kmem_cache, list);
1716
1717 err = sysfs_slab_add(s);
1718 BUG_ON(err);
1719 }
1720 return 0;
1721 }
1722
1723 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1724 const char *name, size_t size,
1725 size_t align, unsigned long flags,
1726 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1727 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1728 {
1729 memset(s, 0, kmem_size);
1730 s->name = name;
1731 s->ctor = ctor;
1732 s->dtor = dtor;
1733 s->objsize = size;
1734 s->flags = flags;
1735 s->align = align;
1736
1737 /*
1738 * The page->offset field is only 16 bit wide. This is an offset
1739 * in units of words from the beginning of an object. If the slab
1740 * size is bigger then we cannot move the free pointer behind the
1741 * object anymore.
1742 *
1743 * On 32 bit platforms the limit is 256k. On 64bit platforms
1744 * the limit is 512k.
1745 *
1746 * Debugging or ctor/dtors may create a need to move the free
1747 * pointer. Fail if this happens.
1748 */
1749 if (s->size >= 65535 * sizeof(void *)) {
1750 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1751 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1752 BUG_ON(ctor || dtor);
1753 }
1754 else
1755 /*
1756 * Enable debugging if selected on the kernel commandline.
1757 */
1758 if (slub_debug && (!slub_debug_slabs ||
1759 strncmp(slub_debug_slabs, name,
1760 strlen(slub_debug_slabs)) == 0))
1761 s->flags |= slub_debug;
1762
1763 if (!calculate_sizes(s))
1764 goto error;
1765
1766 s->refcount = 1;
1767 #ifdef CONFIG_NUMA
1768 s->defrag_ratio = 100;
1769 #endif
1770
1771 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1772 return 1;
1773 error:
1774 if (flags & SLAB_PANIC)
1775 panic("Cannot create slab %s size=%lu realsize=%u "
1776 "order=%u offset=%u flags=%lx\n",
1777 s->name, (unsigned long)size, s->size, s->order,
1778 s->offset, flags);
1779 return 0;
1780 }
1781 EXPORT_SYMBOL(kmem_cache_open);
1782
1783 /*
1784 * Check if a given pointer is valid
1785 */
1786 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1787 {
1788 struct page * page;
1789 void *addr;
1790
1791 page = get_object_page(object);
1792
1793 if (!page || s != page->slab)
1794 /* No slab or wrong slab */
1795 return 0;
1796
1797 addr = page_address(page);
1798 if (object < addr || object >= addr + s->objects * s->size)
1799 /* Out of bounds */
1800 return 0;
1801
1802 if ((object - addr) % s->size)
1803 /* Improperly aligned */
1804 return 0;
1805
1806 /*
1807 * We could also check if the object is on the slabs freelist.
1808 * But this would be too expensive and it seems that the main
1809 * purpose of kmem_ptr_valid is to check if the object belongs
1810 * to a certain slab.
1811 */
1812 return 1;
1813 }
1814 EXPORT_SYMBOL(kmem_ptr_validate);
1815
1816 /*
1817 * Determine the size of a slab object
1818 */
1819 unsigned int kmem_cache_size(struct kmem_cache *s)
1820 {
1821 return s->objsize;
1822 }
1823 EXPORT_SYMBOL(kmem_cache_size);
1824
1825 const char *kmem_cache_name(struct kmem_cache *s)
1826 {
1827 return s->name;
1828 }
1829 EXPORT_SYMBOL(kmem_cache_name);
1830
1831 /*
1832 * Attempt to free all slabs on a node
1833 */
1834 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1835 struct list_head *list)
1836 {
1837 int slabs_inuse = 0;
1838 unsigned long flags;
1839 struct page *page, *h;
1840
1841 spin_lock_irqsave(&n->list_lock, flags);
1842 list_for_each_entry_safe(page, h, list, lru)
1843 if (!page->inuse) {
1844 list_del(&page->lru);
1845 discard_slab(s, page);
1846 } else
1847 slabs_inuse++;
1848 spin_unlock_irqrestore(&n->list_lock, flags);
1849 return slabs_inuse;
1850 }
1851
1852 /*
1853 * Release all resources used by slab cache
1854 */
1855 static int kmem_cache_close(struct kmem_cache *s)
1856 {
1857 int node;
1858
1859 flush_all(s);
1860
1861 /* Attempt to free all objects */
1862 for_each_online_node(node) {
1863 struct kmem_cache_node *n = get_node(s, node);
1864
1865 n->nr_partial -= free_list(s, n, &n->partial);
1866 if (atomic_long_read(&n->nr_slabs))
1867 return 1;
1868 }
1869 free_kmem_cache_nodes(s);
1870 return 0;
1871 }
1872
1873 /*
1874 * Close a cache and release the kmem_cache structure
1875 * (must be used for caches created using kmem_cache_create)
1876 */
1877 void kmem_cache_destroy(struct kmem_cache *s)
1878 {
1879 down_write(&slub_lock);
1880 s->refcount--;
1881 if (!s->refcount) {
1882 list_del(&s->list);
1883 if (kmem_cache_close(s))
1884 WARN_ON(1);
1885 sysfs_slab_remove(s);
1886 kfree(s);
1887 }
1888 up_write(&slub_lock);
1889 }
1890 EXPORT_SYMBOL(kmem_cache_destroy);
1891
1892 /********************************************************************
1893 * Kmalloc subsystem
1894 *******************************************************************/
1895
1896 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1897 EXPORT_SYMBOL(kmalloc_caches);
1898
1899 #ifdef CONFIG_ZONE_DMA
1900 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1901 #endif
1902
1903 static int __init setup_slub_min_order(char *str)
1904 {
1905 get_option (&str, &slub_min_order);
1906
1907 return 1;
1908 }
1909
1910 __setup("slub_min_order=", setup_slub_min_order);
1911
1912 static int __init setup_slub_max_order(char *str)
1913 {
1914 get_option (&str, &slub_max_order);
1915
1916 return 1;
1917 }
1918
1919 __setup("slub_max_order=", setup_slub_max_order);
1920
1921 static int __init setup_slub_min_objects(char *str)
1922 {
1923 get_option (&str, &slub_min_objects);
1924
1925 return 1;
1926 }
1927
1928 __setup("slub_min_objects=", setup_slub_min_objects);
1929
1930 static int __init setup_slub_nomerge(char *str)
1931 {
1932 slub_nomerge = 1;
1933 return 1;
1934 }
1935
1936 __setup("slub_nomerge", setup_slub_nomerge);
1937
1938 static int __init setup_slub_debug(char *str)
1939 {
1940 if (!str || *str != '=')
1941 slub_debug = DEBUG_DEFAULT_FLAGS;
1942 else {
1943 str++;
1944 if (*str == 0 || *str == ',')
1945 slub_debug = DEBUG_DEFAULT_FLAGS;
1946 else
1947 for( ;*str && *str != ','; str++)
1948 switch (*str) {
1949 case 'f' : case 'F' :
1950 slub_debug |= SLAB_DEBUG_FREE;
1951 break;
1952 case 'z' : case 'Z' :
1953 slub_debug |= SLAB_RED_ZONE;
1954 break;
1955 case 'p' : case 'P' :
1956 slub_debug |= SLAB_POISON;
1957 break;
1958 case 'u' : case 'U' :
1959 slub_debug |= SLAB_STORE_USER;
1960 break;
1961 case 't' : case 'T' :
1962 slub_debug |= SLAB_TRACE;
1963 break;
1964 default:
1965 printk(KERN_ERR "slub_debug option '%c' "
1966 "unknown. skipped\n",*str);
1967 }
1968 }
1969
1970 if (*str == ',')
1971 slub_debug_slabs = str + 1;
1972 return 1;
1973 }
1974
1975 __setup("slub_debug", setup_slub_debug);
1976
1977 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1978 const char *name, int size, gfp_t gfp_flags)
1979 {
1980 unsigned int flags = 0;
1981
1982 if (gfp_flags & SLUB_DMA)
1983 flags = SLAB_CACHE_DMA;
1984
1985 down_write(&slub_lock);
1986 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1987 flags, NULL, NULL))
1988 goto panic;
1989
1990 list_add(&s->list, &slab_caches);
1991 up_write(&slub_lock);
1992 if (sysfs_slab_add(s))
1993 goto panic;
1994 return s;
1995
1996 panic:
1997 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1998 }
1999
2000 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2001 {
2002 int index = kmalloc_index(size);
2003
2004 if (!index)
2005 return NULL;
2006
2007 /* Allocation too large? */
2008 BUG_ON(index < 0);
2009
2010 #ifdef CONFIG_ZONE_DMA
2011 if ((flags & SLUB_DMA)) {
2012 struct kmem_cache *s;
2013 struct kmem_cache *x;
2014 char *text;
2015 size_t realsize;
2016
2017 s = kmalloc_caches_dma[index];
2018 if (s)
2019 return s;
2020
2021 /* Dynamically create dma cache */
2022 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2023 if (!x)
2024 panic("Unable to allocate memory for dma cache\n");
2025
2026 if (index <= KMALLOC_SHIFT_HIGH)
2027 realsize = 1 << index;
2028 else {
2029 if (index == 1)
2030 realsize = 96;
2031 else
2032 realsize = 192;
2033 }
2034
2035 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2036 (unsigned int)realsize);
2037 s = create_kmalloc_cache(x, text, realsize, flags);
2038 kmalloc_caches_dma[index] = s;
2039 return s;
2040 }
2041 #endif
2042 return &kmalloc_caches[index];
2043 }
2044
2045 void *__kmalloc(size_t size, gfp_t flags)
2046 {
2047 struct kmem_cache *s = get_slab(size, flags);
2048
2049 if (s)
2050 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2051 return NULL;
2052 }
2053 EXPORT_SYMBOL(__kmalloc);
2054
2055 #ifdef CONFIG_NUMA
2056 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2057 {
2058 struct kmem_cache *s = get_slab(size, flags);
2059
2060 if (s)
2061 return slab_alloc(s, flags, node, __builtin_return_address(0));
2062 return NULL;
2063 }
2064 EXPORT_SYMBOL(__kmalloc_node);
2065 #endif
2066
2067 size_t ksize(const void *object)
2068 {
2069 struct page *page = get_object_page(object);
2070 struct kmem_cache *s;
2071
2072 BUG_ON(!page);
2073 s = page->slab;
2074 BUG_ON(!s);
2075
2076 /*
2077 * Debugging requires use of the padding between object
2078 * and whatever may come after it.
2079 */
2080 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2081 return s->objsize;
2082
2083 /*
2084 * If we have the need to store the freelist pointer
2085 * back there or track user information then we can
2086 * only use the space before that information.
2087 */
2088 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2089 return s->inuse;
2090
2091 /*
2092 * Else we can use all the padding etc for the allocation
2093 */
2094 return s->size;
2095 }
2096 EXPORT_SYMBOL(ksize);
2097
2098 void kfree(const void *x)
2099 {
2100 struct kmem_cache *s;
2101 struct page *page;
2102
2103 if (!x)
2104 return;
2105
2106 page = virt_to_head_page(x);
2107 s = page->slab;
2108
2109 slab_free(s, page, (void *)x, __builtin_return_address(0));
2110 }
2111 EXPORT_SYMBOL(kfree);
2112
2113 /*
2114 * kmem_cache_shrink removes empty slabs from the partial lists
2115 * and then sorts the partially allocated slabs by the number
2116 * of items in use. The slabs with the most items in use
2117 * come first. New allocations will remove these from the
2118 * partial list because they are full. The slabs with the
2119 * least items are placed last. If it happens that the objects
2120 * are freed then the page can be returned to the page allocator.
2121 */
2122 int kmem_cache_shrink(struct kmem_cache *s)
2123 {
2124 int node;
2125 int i;
2126 struct kmem_cache_node *n;
2127 struct page *page;
2128 struct page *t;
2129 struct list_head *slabs_by_inuse =
2130 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2131 unsigned long flags;
2132
2133 if (!slabs_by_inuse)
2134 return -ENOMEM;
2135
2136 flush_all(s);
2137 for_each_online_node(node) {
2138 n = get_node(s, node);
2139
2140 if (!n->nr_partial)
2141 continue;
2142
2143 for (i = 0; i < s->objects; i++)
2144 INIT_LIST_HEAD(slabs_by_inuse + i);
2145
2146 spin_lock_irqsave(&n->list_lock, flags);
2147
2148 /*
2149 * Build lists indexed by the items in use in
2150 * each slab or free slabs if empty.
2151 *
2152 * Note that concurrent frees may occur while
2153 * we hold the list_lock. page->inuse here is
2154 * the upper limit.
2155 */
2156 list_for_each_entry_safe(page, t, &n->partial, lru) {
2157 if (!page->inuse && slab_trylock(page)) {
2158 /*
2159 * Must hold slab lock here because slab_free
2160 * may have freed the last object and be
2161 * waiting to release the slab.
2162 */
2163 list_del(&page->lru);
2164 n->nr_partial--;
2165 slab_unlock(page);
2166 discard_slab(s, page);
2167 } else {
2168 if (n->nr_partial > MAX_PARTIAL)
2169 list_move(&page->lru,
2170 slabs_by_inuse + page->inuse);
2171 }
2172 }
2173
2174 if (n->nr_partial <= MAX_PARTIAL)
2175 goto out;
2176
2177 /*
2178 * Rebuild the partial list with the slabs filled up
2179 * most first and the least used slabs at the end.
2180 */
2181 for (i = s->objects - 1; i >= 0; i--)
2182 list_splice(slabs_by_inuse + i, n->partial.prev);
2183
2184 out:
2185 spin_unlock_irqrestore(&n->list_lock, flags);
2186 }
2187
2188 kfree(slabs_by_inuse);
2189 return 0;
2190 }
2191 EXPORT_SYMBOL(kmem_cache_shrink);
2192
2193 /**
2194 * krealloc - reallocate memory. The contents will remain unchanged.
2195 *
2196 * @p: object to reallocate memory for.
2197 * @new_size: how many bytes of memory are required.
2198 * @flags: the type of memory to allocate.
2199 *
2200 * The contents of the object pointed to are preserved up to the
2201 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2202 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2203 * %NULL pointer, the object pointed to is freed.
2204 */
2205 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2206 {
2207 struct kmem_cache *new_cache;
2208 void *ret;
2209 struct page *page;
2210
2211 if (unlikely(!p))
2212 return kmalloc(new_size, flags);
2213
2214 if (unlikely(!new_size)) {
2215 kfree(p);
2216 return NULL;
2217 }
2218
2219 page = virt_to_head_page(p);
2220
2221 new_cache = get_slab(new_size, flags);
2222
2223 /*
2224 * If new size fits in the current cache, bail out.
2225 */
2226 if (likely(page->slab == new_cache))
2227 return (void *)p;
2228
2229 ret = kmalloc(new_size, flags);
2230 if (ret) {
2231 memcpy(ret, p, min(new_size, ksize(p)));
2232 kfree(p);
2233 }
2234 return ret;
2235 }
2236 EXPORT_SYMBOL(krealloc);
2237
2238 /********************************************************************
2239 * Basic setup of slabs
2240 *******************************************************************/
2241
2242 void __init kmem_cache_init(void)
2243 {
2244 int i;
2245
2246 #ifdef CONFIG_NUMA
2247 /*
2248 * Must first have the slab cache available for the allocations of the
2249 * struct kmalloc_cache_node's. There is special bootstrap code in
2250 * kmem_cache_open for slab_state == DOWN.
2251 */
2252 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2253 sizeof(struct kmem_cache_node), GFP_KERNEL);
2254 #endif
2255
2256 /* Able to allocate the per node structures */
2257 slab_state = PARTIAL;
2258
2259 /* Caches that are not of the two-to-the-power-of size */
2260 create_kmalloc_cache(&kmalloc_caches[1],
2261 "kmalloc-96", 96, GFP_KERNEL);
2262 create_kmalloc_cache(&kmalloc_caches[2],
2263 "kmalloc-192", 192, GFP_KERNEL);
2264
2265 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2266 create_kmalloc_cache(&kmalloc_caches[i],
2267 "kmalloc", 1 << i, GFP_KERNEL);
2268
2269 slab_state = UP;
2270
2271 /* Provide the correct kmalloc names now that the caches are up */
2272 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2273 kmalloc_caches[i]. name =
2274 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2275
2276 #ifdef CONFIG_SMP
2277 register_cpu_notifier(&slab_notifier);
2278 #endif
2279
2280 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2281 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2282 + nr_cpu_ids * sizeof(struct page *);
2283
2284 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2285 " Processors=%d, Nodes=%d\n",
2286 KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
2287 slub_min_order, slub_max_order, slub_min_objects,
2288 nr_cpu_ids, nr_node_ids);
2289 }
2290
2291 /*
2292 * Find a mergeable slab cache
2293 */
2294 static int slab_unmergeable(struct kmem_cache *s)
2295 {
2296 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2297 return 1;
2298
2299 if (s->ctor || s->dtor)
2300 return 1;
2301
2302 return 0;
2303 }
2304
2305 static struct kmem_cache *find_mergeable(size_t size,
2306 size_t align, unsigned long flags,
2307 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2308 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2309 {
2310 struct list_head *h;
2311
2312 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2313 return NULL;
2314
2315 if (ctor || dtor)
2316 return NULL;
2317
2318 size = ALIGN(size, sizeof(void *));
2319 align = calculate_alignment(flags, align, size);
2320 size = ALIGN(size, align);
2321
2322 list_for_each(h, &slab_caches) {
2323 struct kmem_cache *s =
2324 container_of(h, struct kmem_cache, list);
2325
2326 if (slab_unmergeable(s))
2327 continue;
2328
2329 if (size > s->size)
2330 continue;
2331
2332 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2333 (s->flags & SLUB_MERGE_SAME))
2334 continue;
2335 /*
2336 * Check if alignment is compatible.
2337 * Courtesy of Adrian Drzewiecki
2338 */
2339 if ((s->size & ~(align -1)) != s->size)
2340 continue;
2341
2342 if (s->size - size >= sizeof(void *))
2343 continue;
2344
2345 return s;
2346 }
2347 return NULL;
2348 }
2349
2350 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2351 size_t align, unsigned long flags,
2352 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2353 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2354 {
2355 struct kmem_cache *s;
2356
2357 down_write(&slub_lock);
2358 s = find_mergeable(size, align, flags, dtor, ctor);
2359 if (s) {
2360 s->refcount++;
2361 /*
2362 * Adjust the object sizes so that we clear
2363 * the complete object on kzalloc.
2364 */
2365 s->objsize = max(s->objsize, (int)size);
2366 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2367 if (sysfs_slab_alias(s, name))
2368 goto err;
2369 } else {
2370 s = kmalloc(kmem_size, GFP_KERNEL);
2371 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2372 size, align, flags, ctor, dtor)) {
2373 if (sysfs_slab_add(s)) {
2374 kfree(s);
2375 goto err;
2376 }
2377 list_add(&s->list, &slab_caches);
2378 } else
2379 kfree(s);
2380 }
2381 up_write(&slub_lock);
2382 return s;
2383
2384 err:
2385 up_write(&slub_lock);
2386 if (flags & SLAB_PANIC)
2387 panic("Cannot create slabcache %s\n", name);
2388 else
2389 s = NULL;
2390 return s;
2391 }
2392 EXPORT_SYMBOL(kmem_cache_create);
2393
2394 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2395 {
2396 void *x;
2397
2398 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2399 if (x)
2400 memset(x, 0, s->objsize);
2401 return x;
2402 }
2403 EXPORT_SYMBOL(kmem_cache_zalloc);
2404
2405 #ifdef CONFIG_SMP
2406 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2407 {
2408 struct list_head *h;
2409
2410 down_read(&slub_lock);
2411 list_for_each(h, &slab_caches) {
2412 struct kmem_cache *s =
2413 container_of(h, struct kmem_cache, list);
2414
2415 func(s, cpu);
2416 }
2417 up_read(&slub_lock);
2418 }
2419
2420 /*
2421 * Use the cpu notifier to insure that the slab are flushed
2422 * when necessary.
2423 */
2424 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2425 unsigned long action, void *hcpu)
2426 {
2427 long cpu = (long)hcpu;
2428
2429 switch (action) {
2430 case CPU_UP_CANCELED:
2431 case CPU_DEAD:
2432 for_all_slabs(__flush_cpu_slab, cpu);
2433 break;
2434 default:
2435 break;
2436 }
2437 return NOTIFY_OK;
2438 }
2439
2440 static struct notifier_block __cpuinitdata slab_notifier =
2441 { &slab_cpuup_callback, NULL, 0 };
2442
2443 #endif
2444
2445 #ifdef CONFIG_NUMA
2446
2447 /*****************************************************************
2448 * Generic reaper used to support the page allocator
2449 * (the cpu slabs are reaped by a per slab workqueue).
2450 *
2451 * Maybe move this to the page allocator?
2452 ****************************************************************/
2453
2454 static DEFINE_PER_CPU(unsigned long, reap_node);
2455
2456 static void init_reap_node(int cpu)
2457 {
2458 int node;
2459
2460 node = next_node(cpu_to_node(cpu), node_online_map);
2461 if (node == MAX_NUMNODES)
2462 node = first_node(node_online_map);
2463
2464 __get_cpu_var(reap_node) = node;
2465 }
2466
2467 static void next_reap_node(void)
2468 {
2469 int node = __get_cpu_var(reap_node);
2470
2471 /*
2472 * Also drain per cpu pages on remote zones
2473 */
2474 if (node != numa_node_id())
2475 drain_node_pages(node);
2476
2477 node = next_node(node, node_online_map);
2478 if (unlikely(node >= MAX_NUMNODES))
2479 node = first_node(node_online_map);
2480 __get_cpu_var(reap_node) = node;
2481 }
2482 #else
2483 #define init_reap_node(cpu) do { } while (0)
2484 #define next_reap_node(void) do { } while (0)
2485 #endif
2486
2487 #define REAPTIMEOUT_CPUC (2*HZ)
2488
2489 #ifdef CONFIG_SMP
2490 static DEFINE_PER_CPU(struct delayed_work, reap_work);
2491
2492 static void cache_reap(struct work_struct *unused)
2493 {
2494 next_reap_node();
2495 refresh_cpu_vm_stats(smp_processor_id());
2496 schedule_delayed_work(&__get_cpu_var(reap_work),
2497 REAPTIMEOUT_CPUC);
2498 }
2499
2500 static void __devinit start_cpu_timer(int cpu)
2501 {
2502 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2503
2504 /*
2505 * When this gets called from do_initcalls via cpucache_init(),
2506 * init_workqueues() has already run, so keventd will be setup
2507 * at that time.
2508 */
2509 if (keventd_up() && reap_work->work.func == NULL) {
2510 init_reap_node(cpu);
2511 INIT_DELAYED_WORK(reap_work, cache_reap);
2512 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2513 }
2514 }
2515
2516 static int __init cpucache_init(void)
2517 {
2518 int cpu;
2519
2520 /*
2521 * Register the timers that drain pcp pages and update vm statistics
2522 */
2523 for_each_online_cpu(cpu)
2524 start_cpu_timer(cpu);
2525 return 0;
2526 }
2527 __initcall(cpucache_init);
2528 #endif
2529
2530 #ifdef SLUB_RESILIENCY_TEST
2531 static unsigned long validate_slab_cache(struct kmem_cache *s);
2532
2533 static void resiliency_test(void)
2534 {
2535 u8 *p;
2536
2537 printk(KERN_ERR "SLUB resiliency testing\n");
2538 printk(KERN_ERR "-----------------------\n");
2539 printk(KERN_ERR "A. Corruption after allocation\n");
2540
2541 p = kzalloc(16, GFP_KERNEL);
2542 p[16] = 0x12;
2543 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2544 " 0x12->0x%p\n\n", p + 16);
2545
2546 validate_slab_cache(kmalloc_caches + 4);
2547
2548 /* Hmmm... The next two are dangerous */
2549 p = kzalloc(32, GFP_KERNEL);
2550 p[32 + sizeof(void *)] = 0x34;
2551 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2552 " 0x34 -> -0x%p\n", p);
2553 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2554
2555 validate_slab_cache(kmalloc_caches + 5);
2556 p = kzalloc(64, GFP_KERNEL);
2557 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2558 *p = 0x56;
2559 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2560 p);
2561 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2562 validate_slab_cache(kmalloc_caches + 6);
2563
2564 printk(KERN_ERR "\nB. Corruption after free\n");
2565 p = kzalloc(128, GFP_KERNEL);
2566 kfree(p);
2567 *p = 0x78;
2568 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2569 validate_slab_cache(kmalloc_caches + 7);
2570
2571 p = kzalloc(256, GFP_KERNEL);
2572 kfree(p);
2573 p[50] = 0x9a;
2574 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2575 validate_slab_cache(kmalloc_caches + 8);
2576
2577 p = kzalloc(512, GFP_KERNEL);
2578 kfree(p);
2579 p[512] = 0xab;
2580 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2581 validate_slab_cache(kmalloc_caches + 9);
2582 }
2583 #else
2584 static void resiliency_test(void) {};
2585 #endif
2586
2587 /*
2588 * These are not as efficient as kmalloc for the non debug case.
2589 * We do not have the page struct available so we have to touch one
2590 * cacheline in struct kmem_cache to check slab flags.
2591 */
2592 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2593 {
2594 struct kmem_cache *s = get_slab(size, gfpflags);
2595
2596 if (!s)
2597 return NULL;
2598
2599 return slab_alloc(s, gfpflags, -1, caller);
2600 }
2601
2602 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2603 int node, void *caller)
2604 {
2605 struct kmem_cache *s = get_slab(size, gfpflags);
2606
2607 if (!s)
2608 return NULL;
2609
2610 return slab_alloc(s, gfpflags, node, caller);
2611 }
2612
2613 #ifdef CONFIG_SYSFS
2614
2615 static int validate_slab(struct kmem_cache *s, struct page *page)
2616 {
2617 void *p;
2618 void *addr = page_address(page);
2619 unsigned long map[BITS_TO_LONGS(s->objects)];
2620
2621 if (!check_slab(s, page) ||
2622 !on_freelist(s, page, NULL))
2623 return 0;
2624
2625 /* Now we know that a valid freelist exists */
2626 bitmap_zero(map, s->objects);
2627
2628 for(p = page->freelist; p; p = get_freepointer(s, p)) {
2629 set_bit((p - addr) / s->size, map);
2630 if (!check_object(s, page, p, 0))
2631 return 0;
2632 }
2633
2634 for(p = addr; p < addr + s->objects * s->size; p += s->size)
2635 if (!test_bit((p - addr) / s->size, map))
2636 if (!check_object(s, page, p, 1))
2637 return 0;
2638 return 1;
2639 }
2640
2641 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2642 {
2643 if (slab_trylock(page)) {
2644 validate_slab(s, page);
2645 slab_unlock(page);
2646 } else
2647 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2648 s->name, page);
2649
2650 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2651 if (!PageError(page))
2652 printk(KERN_ERR "SLUB %s: PageError not set "
2653 "on slab 0x%p\n", s->name, page);
2654 } else {
2655 if (PageError(page))
2656 printk(KERN_ERR "SLUB %s: PageError set on "
2657 "slab 0x%p\n", s->name, page);
2658 }
2659 }
2660
2661 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2662 {
2663 unsigned long count = 0;
2664 struct page *page;
2665 unsigned long flags;
2666
2667 spin_lock_irqsave(&n->list_lock, flags);
2668
2669 list_for_each_entry(page, &n->partial, lru) {
2670 validate_slab_slab(s, page);
2671 count++;
2672 }
2673 if (count != n->nr_partial)
2674 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2675 "counter=%ld\n", s->name, count, n->nr_partial);
2676
2677 if (!(s->flags & SLAB_STORE_USER))
2678 goto out;
2679
2680 list_for_each_entry(page, &n->full, lru) {
2681 validate_slab_slab(s, page);
2682 count++;
2683 }
2684 if (count != atomic_long_read(&n->nr_slabs))
2685 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2686 "counter=%ld\n", s->name, count,
2687 atomic_long_read(&n->nr_slabs));
2688
2689 out:
2690 spin_unlock_irqrestore(&n->list_lock, flags);
2691 return count;
2692 }
2693
2694 static unsigned long validate_slab_cache(struct kmem_cache *s)
2695 {
2696 int node;
2697 unsigned long count = 0;
2698
2699 flush_all(s);
2700 for_each_online_node(node) {
2701 struct kmem_cache_node *n = get_node(s, node);
2702
2703 count += validate_slab_node(s, n);
2704 }
2705 return count;
2706 }
2707
2708 /*
2709 * Generate lists of locations where slabcache objects are allocated
2710 * and freed.
2711 */
2712
2713 struct location {
2714 unsigned long count;
2715 void *addr;
2716 };
2717
2718 struct loc_track {
2719 unsigned long max;
2720 unsigned long count;
2721 struct location *loc;
2722 };
2723
2724 static void free_loc_track(struct loc_track *t)
2725 {
2726 if (t->max)
2727 free_pages((unsigned long)t->loc,
2728 get_order(sizeof(struct location) * t->max));
2729 }
2730
2731 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2732 {
2733 struct location *l;
2734 int order;
2735
2736 if (!max)
2737 max = PAGE_SIZE / sizeof(struct location);
2738
2739 order = get_order(sizeof(struct location) * max);
2740
2741 l = (void *)__get_free_pages(GFP_KERNEL, order);
2742
2743 if (!l)
2744 return 0;
2745
2746 if (t->count) {
2747 memcpy(l, t->loc, sizeof(struct location) * t->count);
2748 free_loc_track(t);
2749 }
2750 t->max = max;
2751 t->loc = l;
2752 return 1;
2753 }
2754
2755 static int add_location(struct loc_track *t, struct kmem_cache *s,
2756 void *addr)
2757 {
2758 long start, end, pos;
2759 struct location *l;
2760 void *caddr;
2761
2762 start = -1;
2763 end = t->count;
2764
2765 for ( ; ; ) {
2766 pos = start + (end - start + 1) / 2;
2767
2768 /*
2769 * There is nothing at "end". If we end up there
2770 * we need to add something to before end.
2771 */
2772 if (pos == end)
2773 break;
2774
2775 caddr = t->loc[pos].addr;
2776 if (addr == caddr) {
2777 t->loc[pos].count++;
2778 return 1;
2779 }
2780
2781 if (addr < caddr)
2782 end = pos;
2783 else
2784 start = pos;
2785 }
2786
2787 /*
2788 * Not found. Insert new tracking element
2789 */
2790 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2791 return 0;
2792
2793 l = t->loc + pos;
2794 if (pos < t->count)
2795 memmove(l + 1, l,
2796 (t->count - pos) * sizeof(struct location));
2797 t->count++;
2798 l->count = 1;
2799 l->addr = addr;
2800 return 1;
2801 }
2802
2803 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2804 struct page *page, enum track_item alloc)
2805 {
2806 void *addr = page_address(page);
2807 unsigned long map[BITS_TO_LONGS(s->objects)];
2808 void *p;
2809
2810 bitmap_zero(map, s->objects);
2811 for (p = page->freelist; p; p = get_freepointer(s, p))
2812 set_bit((p - addr) / s->size, map);
2813
2814 for (p = addr; p < addr + s->objects * s->size; p += s->size)
2815 if (!test_bit((p - addr) / s->size, map)) {
2816 void *addr = get_track(s, p, alloc)->addr;
2817
2818 add_location(t, s, addr);
2819 }
2820 }
2821
2822 static int list_locations(struct kmem_cache *s, char *buf,
2823 enum track_item alloc)
2824 {
2825 int n = 0;
2826 unsigned long i;
2827 struct loc_track t;
2828 int node;
2829
2830 t.count = 0;
2831 t.max = 0;
2832
2833 /* Push back cpu slabs */
2834 flush_all(s);
2835
2836 for_each_online_node(node) {
2837 struct kmem_cache_node *n = get_node(s, node);
2838 unsigned long flags;
2839 struct page *page;
2840
2841 if (!atomic_read(&n->nr_slabs))
2842 continue;
2843
2844 spin_lock_irqsave(&n->list_lock, flags);
2845 list_for_each_entry(page, &n->partial, lru)
2846 process_slab(&t, s, page, alloc);
2847 list_for_each_entry(page, &n->full, lru)
2848 process_slab(&t, s, page, alloc);
2849 spin_unlock_irqrestore(&n->list_lock, flags);
2850 }
2851
2852 for (i = 0; i < t.count; i++) {
2853 void *addr = t.loc[i].addr;
2854
2855 if (n > PAGE_SIZE - 100)
2856 break;
2857 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2858 if (addr)
2859 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2860 else
2861 n += sprintf(buf + n, "<not-available>");
2862 n += sprintf(buf + n, "\n");
2863 }
2864
2865 free_loc_track(&t);
2866 if (!t.count)
2867 n += sprintf(buf, "No data\n");
2868 return n;
2869 }
2870
2871 static unsigned long count_partial(struct kmem_cache_node *n)
2872 {
2873 unsigned long flags;
2874 unsigned long x = 0;
2875 struct page *page;
2876
2877 spin_lock_irqsave(&n->list_lock, flags);
2878 list_for_each_entry(page, &n->partial, lru)
2879 x += page->inuse;
2880 spin_unlock_irqrestore(&n->list_lock, flags);
2881 return x;
2882 }
2883
2884 enum slab_stat_type {
2885 SL_FULL,
2886 SL_PARTIAL,
2887 SL_CPU,
2888 SL_OBJECTS
2889 };
2890
2891 #define SO_FULL (1 << SL_FULL)
2892 #define SO_PARTIAL (1 << SL_PARTIAL)
2893 #define SO_CPU (1 << SL_CPU)
2894 #define SO_OBJECTS (1 << SL_OBJECTS)
2895
2896 static unsigned long slab_objects(struct kmem_cache *s,
2897 char *buf, unsigned long flags)
2898 {
2899 unsigned long total = 0;
2900 int cpu;
2901 int node;
2902 int x;
2903 unsigned long *nodes;
2904 unsigned long *per_cpu;
2905
2906 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2907 per_cpu = nodes + nr_node_ids;
2908
2909 for_each_possible_cpu(cpu) {
2910 struct page *page = s->cpu_slab[cpu];
2911 int node;
2912
2913 if (page) {
2914 node = page_to_nid(page);
2915 if (flags & SO_CPU) {
2916 int x = 0;
2917
2918 if (flags & SO_OBJECTS)
2919 x = page->inuse;
2920 else
2921 x = 1;
2922 total += x;
2923 nodes[node] += x;
2924 }
2925 per_cpu[node]++;
2926 }
2927 }
2928
2929 for_each_online_node(node) {
2930 struct kmem_cache_node *n = get_node(s, node);
2931
2932 if (flags & SO_PARTIAL) {
2933 if (flags & SO_OBJECTS)
2934 x = count_partial(n);
2935 else
2936 x = n->nr_partial;
2937 total += x;
2938 nodes[node] += x;
2939 }
2940
2941 if (flags & SO_FULL) {
2942 int full_slabs = atomic_read(&n->nr_slabs)
2943 - per_cpu[node]
2944 - n->nr_partial;
2945
2946 if (flags & SO_OBJECTS)
2947 x = full_slabs * s->objects;
2948 else
2949 x = full_slabs;
2950 total += x;
2951 nodes[node] += x;
2952 }
2953 }
2954
2955 x = sprintf(buf, "%lu", total);
2956 #ifdef CONFIG_NUMA
2957 for_each_online_node(node)
2958 if (nodes[node])
2959 x += sprintf(buf + x, " N%d=%lu",
2960 node, nodes[node]);
2961 #endif
2962 kfree(nodes);
2963 return x + sprintf(buf + x, "\n");
2964 }
2965
2966 static int any_slab_objects(struct kmem_cache *s)
2967 {
2968 int node;
2969 int cpu;
2970
2971 for_each_possible_cpu(cpu)
2972 if (s->cpu_slab[cpu])
2973 return 1;
2974
2975 for_each_node(node) {
2976 struct kmem_cache_node *n = get_node(s, node);
2977
2978 if (n->nr_partial || atomic_read(&n->nr_slabs))
2979 return 1;
2980 }
2981 return 0;
2982 }
2983
2984 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2985 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
2986
2987 struct slab_attribute {
2988 struct attribute attr;
2989 ssize_t (*show)(struct kmem_cache *s, char *buf);
2990 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2991 };
2992
2993 #define SLAB_ATTR_RO(_name) \
2994 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2995
2996 #define SLAB_ATTR(_name) \
2997 static struct slab_attribute _name##_attr = \
2998 __ATTR(_name, 0644, _name##_show, _name##_store)
2999
3000 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3001 {
3002 return sprintf(buf, "%d\n", s->size);
3003 }
3004 SLAB_ATTR_RO(slab_size);
3005
3006 static ssize_t align_show(struct kmem_cache *s, char *buf)
3007 {
3008 return sprintf(buf, "%d\n", s->align);
3009 }
3010 SLAB_ATTR_RO(align);
3011
3012 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3013 {
3014 return sprintf(buf, "%d\n", s->objsize);
3015 }
3016 SLAB_ATTR_RO(object_size);
3017
3018 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3019 {
3020 return sprintf(buf, "%d\n", s->objects);
3021 }
3022 SLAB_ATTR_RO(objs_per_slab);
3023
3024 static ssize_t order_show(struct kmem_cache *s, char *buf)
3025 {
3026 return sprintf(buf, "%d\n", s->order);
3027 }
3028 SLAB_ATTR_RO(order);
3029
3030 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3031 {
3032 if (s->ctor) {
3033 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3034
3035 return n + sprintf(buf + n, "\n");
3036 }
3037 return 0;
3038 }
3039 SLAB_ATTR_RO(ctor);
3040
3041 static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3042 {
3043 if (s->dtor) {
3044 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3045
3046 return n + sprintf(buf + n, "\n");
3047 }
3048 return 0;
3049 }
3050 SLAB_ATTR_RO(dtor);
3051
3052 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3053 {
3054 return sprintf(buf, "%d\n", s->refcount - 1);
3055 }
3056 SLAB_ATTR_RO(aliases);
3057
3058 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3059 {
3060 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3061 }
3062 SLAB_ATTR_RO(slabs);
3063
3064 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3065 {
3066 return slab_objects(s, buf, SO_PARTIAL);
3067 }
3068 SLAB_ATTR_RO(partial);
3069
3070 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3071 {
3072 return slab_objects(s, buf, SO_CPU);
3073 }
3074 SLAB_ATTR_RO(cpu_slabs);
3075
3076 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3077 {
3078 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3079 }
3080 SLAB_ATTR_RO(objects);
3081
3082 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3083 {
3084 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3085 }
3086
3087 static ssize_t sanity_checks_store(struct kmem_cache *s,
3088 const char *buf, size_t length)
3089 {
3090 s->flags &= ~SLAB_DEBUG_FREE;
3091 if (buf[0] == '1')
3092 s->flags |= SLAB_DEBUG_FREE;
3093 return length;
3094 }
3095 SLAB_ATTR(sanity_checks);
3096
3097 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3098 {
3099 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3100 }
3101
3102 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3103 size_t length)
3104 {
3105 s->flags &= ~SLAB_TRACE;
3106 if (buf[0] == '1')
3107 s->flags |= SLAB_TRACE;
3108 return length;
3109 }
3110 SLAB_ATTR(trace);
3111
3112 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3113 {
3114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3115 }
3116
3117 static ssize_t reclaim_account_store(struct kmem_cache *s,
3118 const char *buf, size_t length)
3119 {
3120 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3121 if (buf[0] == '1')
3122 s->flags |= SLAB_RECLAIM_ACCOUNT;
3123 return length;
3124 }
3125 SLAB_ATTR(reclaim_account);
3126
3127 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3128 {
3129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3130 }
3131 SLAB_ATTR_RO(hwcache_align);
3132
3133 #ifdef CONFIG_ZONE_DMA
3134 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3135 {
3136 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3137 }
3138 SLAB_ATTR_RO(cache_dma);
3139 #endif
3140
3141 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3142 {
3143 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3144 }
3145 SLAB_ATTR_RO(destroy_by_rcu);
3146
3147 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3148 {
3149 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3150 }
3151
3152 static ssize_t red_zone_store(struct kmem_cache *s,
3153 const char *buf, size_t length)
3154 {
3155 if (any_slab_objects(s))
3156 return -EBUSY;
3157
3158 s->flags &= ~SLAB_RED_ZONE;
3159 if (buf[0] == '1')
3160 s->flags |= SLAB_RED_ZONE;
3161 calculate_sizes(s);
3162 return length;
3163 }
3164 SLAB_ATTR(red_zone);
3165
3166 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3167 {
3168 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3169 }
3170
3171 static ssize_t poison_store(struct kmem_cache *s,
3172 const char *buf, size_t length)
3173 {
3174 if (any_slab_objects(s))
3175 return -EBUSY;
3176
3177 s->flags &= ~SLAB_POISON;
3178 if (buf[0] == '1')
3179 s->flags |= SLAB_POISON;
3180 calculate_sizes(s);
3181 return length;
3182 }
3183 SLAB_ATTR(poison);
3184
3185 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3186 {
3187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3188 }
3189
3190 static ssize_t store_user_store(struct kmem_cache *s,
3191 const char *buf, size_t length)
3192 {
3193 if (any_slab_objects(s))
3194 return -EBUSY;
3195
3196 s->flags &= ~SLAB_STORE_USER;
3197 if (buf[0] == '1')
3198 s->flags |= SLAB_STORE_USER;
3199 calculate_sizes(s);
3200 return length;
3201 }
3202 SLAB_ATTR(store_user);
3203
3204 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3205 {
3206 return 0;
3207 }
3208
3209 static ssize_t validate_store(struct kmem_cache *s,
3210 const char *buf, size_t length)
3211 {
3212 if (buf[0] == '1')
3213 validate_slab_cache(s);
3214 else
3215 return -EINVAL;
3216 return length;
3217 }
3218 SLAB_ATTR(validate);
3219
3220 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3221 {
3222 return 0;
3223 }
3224
3225 static ssize_t shrink_store(struct kmem_cache *s,
3226 const char *buf, size_t length)
3227 {
3228 if (buf[0] == '1') {
3229 int rc = kmem_cache_shrink(s);
3230
3231 if (rc)
3232 return rc;
3233 } else
3234 return -EINVAL;
3235 return length;
3236 }
3237 SLAB_ATTR(shrink);
3238
3239 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3240 {
3241 if (!(s->flags & SLAB_STORE_USER))
3242 return -ENOSYS;
3243 return list_locations(s, buf, TRACK_ALLOC);
3244 }
3245 SLAB_ATTR_RO(alloc_calls);
3246
3247 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3248 {
3249 if (!(s->flags & SLAB_STORE_USER))
3250 return -ENOSYS;
3251 return list_locations(s, buf, TRACK_FREE);
3252 }
3253 SLAB_ATTR_RO(free_calls);
3254
3255 #ifdef CONFIG_NUMA
3256 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3257 {
3258 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3259 }
3260
3261 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3262 const char *buf, size_t length)
3263 {
3264 int n = simple_strtoul(buf, NULL, 10);
3265
3266 if (n < 100)
3267 s->defrag_ratio = n * 10;
3268 return length;
3269 }
3270 SLAB_ATTR(defrag_ratio);
3271 #endif
3272
3273 static struct attribute * slab_attrs[] = {
3274 &slab_size_attr.attr,
3275 &object_size_attr.attr,
3276 &objs_per_slab_attr.attr,
3277 &order_attr.attr,
3278 &objects_attr.attr,
3279 &slabs_attr.attr,
3280 &partial_attr.attr,
3281 &cpu_slabs_attr.attr,
3282 &ctor_attr.attr,
3283 &dtor_attr.attr,
3284 &aliases_attr.attr,
3285 &align_attr.attr,
3286 &sanity_checks_attr.attr,
3287 &trace_attr.attr,
3288 &hwcache_align_attr.attr,
3289 &reclaim_account_attr.attr,
3290 &destroy_by_rcu_attr.attr,
3291 &red_zone_attr.attr,
3292 &poison_attr.attr,
3293 &store_user_attr.attr,
3294 &validate_attr.attr,
3295 &shrink_attr.attr,
3296 &alloc_calls_attr.attr,
3297 &free_calls_attr.attr,
3298 #ifdef CONFIG_ZONE_DMA
3299 &cache_dma_attr.attr,
3300 #endif
3301 #ifdef CONFIG_NUMA
3302 &defrag_ratio_attr.attr,
3303 #endif
3304 NULL
3305 };
3306
3307 static struct attribute_group slab_attr_group = {
3308 .attrs = slab_attrs,
3309 };
3310
3311 static ssize_t slab_attr_show(struct kobject *kobj,
3312 struct attribute *attr,
3313 char *buf)
3314 {
3315 struct slab_attribute *attribute;
3316 struct kmem_cache *s;
3317 int err;
3318
3319 attribute = to_slab_attr(attr);
3320 s = to_slab(kobj);
3321
3322 if (!attribute->show)
3323 return -EIO;
3324
3325 err = attribute->show(s, buf);
3326
3327 return err;
3328 }
3329
3330 static ssize_t slab_attr_store(struct kobject *kobj,
3331 struct attribute *attr,
3332 const char *buf, size_t len)
3333 {
3334 struct slab_attribute *attribute;
3335 struct kmem_cache *s;
3336 int err;
3337
3338 attribute = to_slab_attr(attr);
3339 s = to_slab(kobj);
3340
3341 if (!attribute->store)
3342 return -EIO;
3343
3344 err = attribute->store(s, buf, len);
3345
3346 return err;
3347 }
3348
3349 static struct sysfs_ops slab_sysfs_ops = {
3350 .show = slab_attr_show,
3351 .store = slab_attr_store,
3352 };
3353
3354 static struct kobj_type slab_ktype = {
3355 .sysfs_ops = &slab_sysfs_ops,
3356 };
3357
3358 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3359 {
3360 struct kobj_type *ktype = get_ktype(kobj);
3361
3362 if (ktype == &slab_ktype)
3363 return 1;
3364 return 0;
3365 }
3366
3367 static struct kset_uevent_ops slab_uevent_ops = {
3368 .filter = uevent_filter,
3369 };
3370
3371 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3372
3373 #define ID_STR_LENGTH 64
3374
3375 /* Create a unique string id for a slab cache:
3376 * format
3377 * :[flags-]size:[memory address of kmemcache]
3378 */
3379 static char *create_unique_id(struct kmem_cache *s)
3380 {
3381 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3382 char *p = name;
3383
3384 BUG_ON(!name);
3385
3386 *p++ = ':';
3387 /*
3388 * First flags affecting slabcache operations. We will only
3389 * get here for aliasable slabs so we do not need to support
3390 * too many flags. The flags here must cover all flags that
3391 * are matched during merging to guarantee that the id is
3392 * unique.
3393 */
3394 if (s->flags & SLAB_CACHE_DMA)
3395 *p++ = 'd';
3396 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3397 *p++ = 'a';
3398 if (s->flags & SLAB_DEBUG_FREE)
3399 *p++ = 'F';
3400 if (p != name + 1)
3401 *p++ = '-';
3402 p += sprintf(p, "%07d", s->size);
3403 BUG_ON(p > name + ID_STR_LENGTH - 1);
3404 return name;
3405 }
3406
3407 static int sysfs_slab_add(struct kmem_cache *s)
3408 {
3409 int err;
3410 const char *name;
3411 int unmergeable;
3412
3413 if (slab_state < SYSFS)
3414 /* Defer until later */
3415 return 0;
3416
3417 unmergeable = slab_unmergeable(s);
3418 if (unmergeable) {
3419 /*
3420 * Slabcache can never be merged so we can use the name proper.
3421 * This is typically the case for debug situations. In that
3422 * case we can catch duplicate names easily.
3423 */
3424 sysfs_remove_link(&slab_subsys.kset.kobj, s->name);
3425 name = s->name;
3426 } else {
3427 /*
3428 * Create a unique name for the slab as a target
3429 * for the symlinks.
3430 */
3431 name = create_unique_id(s);
3432 }
3433
3434 kobj_set_kset_s(s, slab_subsys);
3435 kobject_set_name(&s->kobj, name);
3436 kobject_init(&s->kobj);
3437 err = kobject_add(&s->kobj);
3438 if (err)
3439 return err;
3440
3441 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3442 if (err)
3443 return err;
3444 kobject_uevent(&s->kobj, KOBJ_ADD);
3445 if (!unmergeable) {
3446 /* Setup first alias */
3447 sysfs_slab_alias(s, s->name);
3448 kfree(name);
3449 }
3450 return 0;
3451 }
3452
3453 static void sysfs_slab_remove(struct kmem_cache *s)
3454 {
3455 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3456 kobject_del(&s->kobj);
3457 }
3458
3459 /*
3460 * Need to buffer aliases during bootup until sysfs becomes
3461 * available lest we loose that information.
3462 */
3463 struct saved_alias {
3464 struct kmem_cache *s;
3465 const char *name;
3466 struct saved_alias *next;
3467 };
3468
3469 struct saved_alias *alias_list;
3470
3471 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3472 {
3473 struct saved_alias *al;
3474
3475 if (slab_state == SYSFS) {
3476 /*
3477 * If we have a leftover link then remove it.
3478 */
3479 sysfs_remove_link(&slab_subsys.kset.kobj, name);
3480 return sysfs_create_link(&slab_subsys.kset.kobj,
3481 &s->kobj, name);
3482 }
3483
3484 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3485 if (!al)
3486 return -ENOMEM;
3487
3488 al->s = s;
3489 al->name = name;
3490 al->next = alias_list;
3491 alias_list = al;
3492 return 0;
3493 }
3494
3495 static int __init slab_sysfs_init(void)
3496 {
3497 int err;
3498
3499 err = subsystem_register(&slab_subsys);
3500 if (err) {
3501 printk(KERN_ERR "Cannot register slab subsystem.\n");
3502 return -ENOSYS;
3503 }
3504
3505 finish_bootstrap();
3506
3507 while (alias_list) {
3508 struct saved_alias *al = alias_list;
3509
3510 alias_list = alias_list->next;
3511 err = sysfs_slab_alias(al->s, al->name);
3512 BUG_ON(err);
3513 kfree(al);
3514 }
3515
3516 resiliency_test();
3517 return 0;
3518 }
3519
3520 __initcall(slab_sysfs_init);
3521 #else
3522 __initcall(finish_bootstrap);
3523 #endif