]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
block: return the correct bvec when checking for gaps
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/kfence.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects:
56 * A. page->freelist -> List of object free in a page
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * page->frozen The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125
126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130
131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 p += s->red_left_pad;
135
136 return p;
137 }
138
139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143 #else
144 return false;
145 #endif
146 }
147
148 /*
149 * Issues still to be resolved:
150 *
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
153 * - Variable sizing of the per node arrays
154 */
155
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161
162 /*
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166 #define MIN_PARTIAL 5
167
168 /*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173 #define MAX_PARTIAL 10
174
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178 /*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186 /*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193 #define OO_SHIFT 16
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203 /*
204 * Tracking user of a slab.
205 */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 #endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215 };
216
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238
239 /*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245 static nodemask_t slab_nodes;
246
247 /********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
251 /*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258 {
259 #ifdef CONFIG_SLAB_FREELIST_HARDENED
260 /*
261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
272 #else
273 return ptr;
274 #endif
275 }
276
277 /* Returns the freelist pointer recorded at location ptr_addr. */
278 static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280 {
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283 }
284
285 static inline void *get_freepointer(struct kmem_cache *s, void *object)
286 {
287 object = kasan_reset_tag(object);
288 return freelist_dereference(s, object + s->offset);
289 }
290
291 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292 {
293 prefetch(object + s->offset);
294 }
295
296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297 {
298 unsigned long freepointer_addr;
299 void *p;
300
301 if (!debug_pagealloc_enabled_static())
302 return get_freepointer(s, object);
303
304 object = kasan_reset_tag(object);
305 freepointer_addr = (unsigned long)object + s->offset;
306 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
307 return freelist_ptr(s, p, freepointer_addr);
308 }
309
310 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311 {
312 unsigned long freeptr_addr = (unsigned long)object + s->offset;
313
314 #ifdef CONFIG_SLAB_FREELIST_HARDENED
315 BUG_ON(object == fp); /* naive detection of double free or corruption */
316 #endif
317
318 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
319 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
320 }
321
322 /* Loop over all objects in a slab */
323 #define for_each_object(__p, __s, __addr, __objects) \
324 for (__p = fixup_red_left(__s, __addr); \
325 __p < (__addr) + (__objects) * (__s)->size; \
326 __p += (__s)->size)
327
328 static inline unsigned int order_objects(unsigned int order, unsigned int size)
329 {
330 return ((unsigned int)PAGE_SIZE << order) / size;
331 }
332
333 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
334 unsigned int size)
335 {
336 struct kmem_cache_order_objects x = {
337 (order << OO_SHIFT) + order_objects(order, size)
338 };
339
340 return x;
341 }
342
343 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
344 {
345 return x.x >> OO_SHIFT;
346 }
347
348 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
349 {
350 return x.x & OO_MASK;
351 }
352
353 /*
354 * Per slab locking using the pagelock
355 */
356 static __always_inline void slab_lock(struct page *page)
357 {
358 VM_BUG_ON_PAGE(PageTail(page), page);
359 bit_spin_lock(PG_locked, &page->flags);
360 }
361
362 static __always_inline void slab_unlock(struct page *page)
363 {
364 VM_BUG_ON_PAGE(PageTail(page), page);
365 __bit_spin_unlock(PG_locked, &page->flags);
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return true;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old &&
387 page->counters == counters_old) {
388 page->freelist = freelist_new;
389 page->counters = counters_new;
390 slab_unlock(page);
391 return true;
392 }
393 slab_unlock(page);
394 }
395
396 cpu_relax();
397 stat(s, CMPXCHG_DOUBLE_FAIL);
398
399 #ifdef SLUB_DEBUG_CMPXCHG
400 pr_info("%s %s: cmpxchg double redo ", n, s->name);
401 #endif
402
403 return false;
404 }
405
406 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
407 void *freelist_old, unsigned long counters_old,
408 void *freelist_new, unsigned long counters_new,
409 const char *n)
410 {
411 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
412 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
413 if (s->flags & __CMPXCHG_DOUBLE) {
414 if (cmpxchg_double(&page->freelist, &page->counters,
415 freelist_old, counters_old,
416 freelist_new, counters_new))
417 return true;
418 } else
419 #endif
420 {
421 unsigned long flags;
422
423 local_irq_save(flags);
424 slab_lock(page);
425 if (page->freelist == freelist_old &&
426 page->counters == counters_old) {
427 page->freelist = freelist_new;
428 page->counters = counters_new;
429 slab_unlock(page);
430 local_irq_restore(flags);
431 return true;
432 }
433 slab_unlock(page);
434 local_irq_restore(flags);
435 }
436
437 cpu_relax();
438 stat(s, CMPXCHG_DOUBLE_FAIL);
439
440 #ifdef SLUB_DEBUG_CMPXCHG
441 pr_info("%s %s: cmpxchg double redo ", n, s->name);
442 #endif
443
444 return false;
445 }
446
447 #ifdef CONFIG_SLUB_DEBUG
448 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
449 static DEFINE_SPINLOCK(object_map_lock);
450
451 /*
452 * Determine a map of object in use on a page.
453 *
454 * Node listlock must be held to guarantee that the page does
455 * not vanish from under us.
456 */
457 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
458 __acquires(&object_map_lock)
459 {
460 void *p;
461 void *addr = page_address(page);
462
463 VM_BUG_ON(!irqs_disabled());
464
465 spin_lock(&object_map_lock);
466
467 bitmap_zero(object_map, page->objects);
468
469 for (p = page->freelist; p; p = get_freepointer(s, p))
470 set_bit(__obj_to_index(s, addr, p), object_map);
471
472 return object_map;
473 }
474
475 static void put_map(unsigned long *map) __releases(&object_map_lock)
476 {
477 VM_BUG_ON(map != object_map);
478 spin_unlock(&object_map_lock);
479 }
480
481 static inline unsigned int size_from_object(struct kmem_cache *s)
482 {
483 if (s->flags & SLAB_RED_ZONE)
484 return s->size - s->red_left_pad;
485
486 return s->size;
487 }
488
489 static inline void *restore_red_left(struct kmem_cache *s, void *p)
490 {
491 if (s->flags & SLAB_RED_ZONE)
492 p -= s->red_left_pad;
493
494 return p;
495 }
496
497 /*
498 * Debug settings:
499 */
500 #if defined(CONFIG_SLUB_DEBUG_ON)
501 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
502 #else
503 static slab_flags_t slub_debug;
504 #endif
505
506 static char *slub_debug_string;
507 static int disable_higher_order_debug;
508
509 /*
510 * slub is about to manipulate internal object metadata. This memory lies
511 * outside the range of the allocated object, so accessing it would normally
512 * be reported by kasan as a bounds error. metadata_access_enable() is used
513 * to tell kasan that these accesses are OK.
514 */
515 static inline void metadata_access_enable(void)
516 {
517 kasan_disable_current();
518 }
519
520 static inline void metadata_access_disable(void)
521 {
522 kasan_enable_current();
523 }
524
525 /*
526 * Object debugging
527 */
528
529 /* Verify that a pointer has an address that is valid within a slab page */
530 static inline int check_valid_pointer(struct kmem_cache *s,
531 struct page *page, void *object)
532 {
533 void *base;
534
535 if (!object)
536 return 1;
537
538 base = page_address(page);
539 object = kasan_reset_tag(object);
540 object = restore_red_left(s, object);
541 if (object < base || object >= base + page->objects * s->size ||
542 (object - base) % s->size) {
543 return 0;
544 }
545
546 return 1;
547 }
548
549 static void print_section(char *level, char *text, u8 *addr,
550 unsigned int length)
551 {
552 metadata_access_enable();
553 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
554 16, 1, addr, length, 1);
555 metadata_access_disable();
556 }
557
558 /*
559 * See comment in calculate_sizes().
560 */
561 static inline bool freeptr_outside_object(struct kmem_cache *s)
562 {
563 return s->offset >= s->inuse;
564 }
565
566 /*
567 * Return offset of the end of info block which is inuse + free pointer if
568 * not overlapping with object.
569 */
570 static inline unsigned int get_info_end(struct kmem_cache *s)
571 {
572 if (freeptr_outside_object(s))
573 return s->inuse + sizeof(void *);
574 else
575 return s->inuse;
576 }
577
578 static struct track *get_track(struct kmem_cache *s, void *object,
579 enum track_item alloc)
580 {
581 struct track *p;
582
583 p = object + get_info_end(s);
584
585 return kasan_reset_tag(p + alloc);
586 }
587
588 static void set_track(struct kmem_cache *s, void *object,
589 enum track_item alloc, unsigned long addr)
590 {
591 struct track *p = get_track(s, object, alloc);
592
593 if (addr) {
594 #ifdef CONFIG_STACKTRACE
595 unsigned int nr_entries;
596
597 metadata_access_enable();
598 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
599 TRACK_ADDRS_COUNT, 3);
600 metadata_access_disable();
601
602 if (nr_entries < TRACK_ADDRS_COUNT)
603 p->addrs[nr_entries] = 0;
604 #endif
605 p->addr = addr;
606 p->cpu = smp_processor_id();
607 p->pid = current->pid;
608 p->when = jiffies;
609 } else {
610 memset(p, 0, sizeof(struct track));
611 }
612 }
613
614 static void init_tracking(struct kmem_cache *s, void *object)
615 {
616 if (!(s->flags & SLAB_STORE_USER))
617 return;
618
619 set_track(s, object, TRACK_FREE, 0UL);
620 set_track(s, object, TRACK_ALLOC, 0UL);
621 }
622
623 static void print_track(const char *s, struct track *t, unsigned long pr_time)
624 {
625 if (!t->addr)
626 return;
627
628 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
629 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
630 #ifdef CONFIG_STACKTRACE
631 {
632 int i;
633 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
634 if (t->addrs[i])
635 pr_err("\t%pS\n", (void *)t->addrs[i]);
636 else
637 break;
638 }
639 #endif
640 }
641
642 void print_tracking(struct kmem_cache *s, void *object)
643 {
644 unsigned long pr_time = jiffies;
645 if (!(s->flags & SLAB_STORE_USER))
646 return;
647
648 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
649 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
650 }
651
652 static void print_page_info(struct page *page)
653 {
654 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
655 page, page->objects, page->inuse, page->freelist,
656 page->flags, &page->flags);
657
658 }
659
660 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
661 {
662 struct va_format vaf;
663 va_list args;
664
665 va_start(args, fmt);
666 vaf.fmt = fmt;
667 vaf.va = &args;
668 pr_err("=============================================================================\n");
669 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
670 pr_err("-----------------------------------------------------------------------------\n\n");
671
672 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
673 va_end(args);
674 }
675
676 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
677 {
678 struct va_format vaf;
679 va_list args;
680
681 va_start(args, fmt);
682 vaf.fmt = fmt;
683 vaf.va = &args;
684 pr_err("FIX %s: %pV\n", s->name, &vaf);
685 va_end(args);
686 }
687
688 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
689 void **freelist, void *nextfree)
690 {
691 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
692 !check_valid_pointer(s, page, nextfree) && freelist) {
693 object_err(s, page, *freelist, "Freechain corrupt");
694 *freelist = NULL;
695 slab_fix(s, "Isolate corrupted freechain");
696 return true;
697 }
698
699 return false;
700 }
701
702 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
703 {
704 unsigned int off; /* Offset of last byte */
705 u8 *addr = page_address(page);
706
707 print_tracking(s, p);
708
709 print_page_info(page);
710
711 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
712 p, p - addr, get_freepointer(s, p));
713
714 if (s->flags & SLAB_RED_ZONE)
715 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
716 s->red_left_pad);
717 else if (p > addr + 16)
718 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
719
720 print_section(KERN_ERR, "Object ", p,
721 min_t(unsigned int, s->object_size, PAGE_SIZE));
722 if (s->flags & SLAB_RED_ZONE)
723 print_section(KERN_ERR, "Redzone ", p + s->object_size,
724 s->inuse - s->object_size);
725
726 off = get_info_end(s);
727
728 if (s->flags & SLAB_STORE_USER)
729 off += 2 * sizeof(struct track);
730
731 off += kasan_metadata_size(s);
732
733 if (off != size_from_object(s))
734 /* Beginning of the filler is the free pointer */
735 print_section(KERN_ERR, "Padding ", p + off,
736 size_from_object(s) - off);
737
738 dump_stack();
739 }
740
741 void object_err(struct kmem_cache *s, struct page *page,
742 u8 *object, char *reason)
743 {
744 slab_bug(s, "%s", reason);
745 print_trailer(s, page, object);
746 }
747
748 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
749 const char *fmt, ...)
750 {
751 va_list args;
752 char buf[100];
753
754 va_start(args, fmt);
755 vsnprintf(buf, sizeof(buf), fmt, args);
756 va_end(args);
757 slab_bug(s, "%s", buf);
758 print_page_info(page);
759 dump_stack();
760 }
761
762 static void init_object(struct kmem_cache *s, void *object, u8 val)
763 {
764 u8 *p = kasan_reset_tag(object);
765
766 if (s->flags & SLAB_RED_ZONE)
767 memset(p - s->red_left_pad, val, s->red_left_pad);
768
769 if (s->flags & __OBJECT_POISON) {
770 memset(p, POISON_FREE, s->object_size - 1);
771 p[s->object_size - 1] = POISON_END;
772 }
773
774 if (s->flags & SLAB_RED_ZONE)
775 memset(p + s->object_size, val, s->inuse - s->object_size);
776 }
777
778 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
779 void *from, void *to)
780 {
781 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
782 memset(from, data, to - from);
783 }
784
785 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
786 u8 *object, char *what,
787 u8 *start, unsigned int value, unsigned int bytes)
788 {
789 u8 *fault;
790 u8 *end;
791 u8 *addr = page_address(page);
792
793 metadata_access_enable();
794 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
795 metadata_access_disable();
796 if (!fault)
797 return 1;
798
799 end = start + bytes;
800 while (end > fault && end[-1] == value)
801 end--;
802
803 slab_bug(s, "%s overwritten", what);
804 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
805 fault, end - 1, fault - addr,
806 fault[0], value);
807 print_trailer(s, page, object);
808
809 restore_bytes(s, what, value, fault, end);
810 return 0;
811 }
812
813 /*
814 * Object layout:
815 *
816 * object address
817 * Bytes of the object to be managed.
818 * If the freepointer may overlay the object then the free
819 * pointer is at the middle of the object.
820 *
821 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
822 * 0xa5 (POISON_END)
823 *
824 * object + s->object_size
825 * Padding to reach word boundary. This is also used for Redzoning.
826 * Padding is extended by another word if Redzoning is enabled and
827 * object_size == inuse.
828 *
829 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
830 * 0xcc (RED_ACTIVE) for objects in use.
831 *
832 * object + s->inuse
833 * Meta data starts here.
834 *
835 * A. Free pointer (if we cannot overwrite object on free)
836 * B. Tracking data for SLAB_STORE_USER
837 * C. Padding to reach required alignment boundary or at minimum
838 * one word if debugging is on to be able to detect writes
839 * before the word boundary.
840 *
841 * Padding is done using 0x5a (POISON_INUSE)
842 *
843 * object + s->size
844 * Nothing is used beyond s->size.
845 *
846 * If slabcaches are merged then the object_size and inuse boundaries are mostly
847 * ignored. And therefore no slab options that rely on these boundaries
848 * may be used with merged slabcaches.
849 */
850
851 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
852 {
853 unsigned long off = get_info_end(s); /* The end of info */
854
855 if (s->flags & SLAB_STORE_USER)
856 /* We also have user information there */
857 off += 2 * sizeof(struct track);
858
859 off += kasan_metadata_size(s);
860
861 if (size_from_object(s) == off)
862 return 1;
863
864 return check_bytes_and_report(s, page, p, "Object padding",
865 p + off, POISON_INUSE, size_from_object(s) - off);
866 }
867
868 /* Check the pad bytes at the end of a slab page */
869 static int slab_pad_check(struct kmem_cache *s, struct page *page)
870 {
871 u8 *start;
872 u8 *fault;
873 u8 *end;
874 u8 *pad;
875 int length;
876 int remainder;
877
878 if (!(s->flags & SLAB_POISON))
879 return 1;
880
881 start = page_address(page);
882 length = page_size(page);
883 end = start + length;
884 remainder = length % s->size;
885 if (!remainder)
886 return 1;
887
888 pad = end - remainder;
889 metadata_access_enable();
890 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
891 metadata_access_disable();
892 if (!fault)
893 return 1;
894 while (end > fault && end[-1] == POISON_INUSE)
895 end--;
896
897 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
898 fault, end - 1, fault - start);
899 print_section(KERN_ERR, "Padding ", pad, remainder);
900
901 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
902 return 0;
903 }
904
905 static int check_object(struct kmem_cache *s, struct page *page,
906 void *object, u8 val)
907 {
908 u8 *p = object;
909 u8 *endobject = object + s->object_size;
910
911 if (s->flags & SLAB_RED_ZONE) {
912 if (!check_bytes_and_report(s, page, object, "Redzone",
913 object - s->red_left_pad, val, s->red_left_pad))
914 return 0;
915
916 if (!check_bytes_and_report(s, page, object, "Redzone",
917 endobject, val, s->inuse - s->object_size))
918 return 0;
919 } else {
920 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
921 check_bytes_and_report(s, page, p, "Alignment padding",
922 endobject, POISON_INUSE,
923 s->inuse - s->object_size);
924 }
925 }
926
927 if (s->flags & SLAB_POISON) {
928 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
929 (!check_bytes_and_report(s, page, p, "Poison", p,
930 POISON_FREE, s->object_size - 1) ||
931 !check_bytes_and_report(s, page, p, "Poison",
932 p + s->object_size - 1, POISON_END, 1)))
933 return 0;
934 /*
935 * check_pad_bytes cleans up on its own.
936 */
937 check_pad_bytes(s, page, p);
938 }
939
940 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
941 /*
942 * Object and freepointer overlap. Cannot check
943 * freepointer while object is allocated.
944 */
945 return 1;
946
947 /* Check free pointer validity */
948 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
949 object_err(s, page, p, "Freepointer corrupt");
950 /*
951 * No choice but to zap it and thus lose the remainder
952 * of the free objects in this slab. May cause
953 * another error because the object count is now wrong.
954 */
955 set_freepointer(s, p, NULL);
956 return 0;
957 }
958 return 1;
959 }
960
961 static int check_slab(struct kmem_cache *s, struct page *page)
962 {
963 int maxobj;
964
965 VM_BUG_ON(!irqs_disabled());
966
967 if (!PageSlab(page)) {
968 slab_err(s, page, "Not a valid slab page");
969 return 0;
970 }
971
972 maxobj = order_objects(compound_order(page), s->size);
973 if (page->objects > maxobj) {
974 slab_err(s, page, "objects %u > max %u",
975 page->objects, maxobj);
976 return 0;
977 }
978 if (page->inuse > page->objects) {
979 slab_err(s, page, "inuse %u > max %u",
980 page->inuse, page->objects);
981 return 0;
982 }
983 /* Slab_pad_check fixes things up after itself */
984 slab_pad_check(s, page);
985 return 1;
986 }
987
988 /*
989 * Determine if a certain object on a page is on the freelist. Must hold the
990 * slab lock to guarantee that the chains are in a consistent state.
991 */
992 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
993 {
994 int nr = 0;
995 void *fp;
996 void *object = NULL;
997 int max_objects;
998
999 fp = page->freelist;
1000 while (fp && nr <= page->objects) {
1001 if (fp == search)
1002 return 1;
1003 if (!check_valid_pointer(s, page, fp)) {
1004 if (object) {
1005 object_err(s, page, object,
1006 "Freechain corrupt");
1007 set_freepointer(s, object, NULL);
1008 } else {
1009 slab_err(s, page, "Freepointer corrupt");
1010 page->freelist = NULL;
1011 page->inuse = page->objects;
1012 slab_fix(s, "Freelist cleared");
1013 return 0;
1014 }
1015 break;
1016 }
1017 object = fp;
1018 fp = get_freepointer(s, object);
1019 nr++;
1020 }
1021
1022 max_objects = order_objects(compound_order(page), s->size);
1023 if (max_objects > MAX_OBJS_PER_PAGE)
1024 max_objects = MAX_OBJS_PER_PAGE;
1025
1026 if (page->objects != max_objects) {
1027 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1028 page->objects, max_objects);
1029 page->objects = max_objects;
1030 slab_fix(s, "Number of objects adjusted.");
1031 }
1032 if (page->inuse != page->objects - nr) {
1033 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1034 page->inuse, page->objects - nr);
1035 page->inuse = page->objects - nr;
1036 slab_fix(s, "Object count adjusted.");
1037 }
1038 return search == NULL;
1039 }
1040
1041 static void trace(struct kmem_cache *s, struct page *page, void *object,
1042 int alloc)
1043 {
1044 if (s->flags & SLAB_TRACE) {
1045 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1046 s->name,
1047 alloc ? "alloc" : "free",
1048 object, page->inuse,
1049 page->freelist);
1050
1051 if (!alloc)
1052 print_section(KERN_INFO, "Object ", (void *)object,
1053 s->object_size);
1054
1055 dump_stack();
1056 }
1057 }
1058
1059 /*
1060 * Tracking of fully allocated slabs for debugging purposes.
1061 */
1062 static void add_full(struct kmem_cache *s,
1063 struct kmem_cache_node *n, struct page *page)
1064 {
1065 if (!(s->flags & SLAB_STORE_USER))
1066 return;
1067
1068 lockdep_assert_held(&n->list_lock);
1069 list_add(&page->slab_list, &n->full);
1070 }
1071
1072 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1073 {
1074 if (!(s->flags & SLAB_STORE_USER))
1075 return;
1076
1077 lockdep_assert_held(&n->list_lock);
1078 list_del(&page->slab_list);
1079 }
1080
1081 /* Tracking of the number of slabs for debugging purposes */
1082 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 {
1084 struct kmem_cache_node *n = get_node(s, node);
1085
1086 return atomic_long_read(&n->nr_slabs);
1087 }
1088
1089 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1090 {
1091 return atomic_long_read(&n->nr_slabs);
1092 }
1093
1094 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1095 {
1096 struct kmem_cache_node *n = get_node(s, node);
1097
1098 /*
1099 * May be called early in order to allocate a slab for the
1100 * kmem_cache_node structure. Solve the chicken-egg
1101 * dilemma by deferring the increment of the count during
1102 * bootstrap (see early_kmem_cache_node_alloc).
1103 */
1104 if (likely(n)) {
1105 atomic_long_inc(&n->nr_slabs);
1106 atomic_long_add(objects, &n->total_objects);
1107 }
1108 }
1109 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1110 {
1111 struct kmem_cache_node *n = get_node(s, node);
1112
1113 atomic_long_dec(&n->nr_slabs);
1114 atomic_long_sub(objects, &n->total_objects);
1115 }
1116
1117 /* Object debug checks for alloc/free paths */
1118 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1119 void *object)
1120 {
1121 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1122 return;
1123
1124 init_object(s, object, SLUB_RED_INACTIVE);
1125 init_tracking(s, object);
1126 }
1127
1128 static
1129 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1130 {
1131 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1132 return;
1133
1134 metadata_access_enable();
1135 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1136 metadata_access_disable();
1137 }
1138
1139 static inline int alloc_consistency_checks(struct kmem_cache *s,
1140 struct page *page, void *object)
1141 {
1142 if (!check_slab(s, page))
1143 return 0;
1144
1145 if (!check_valid_pointer(s, page, object)) {
1146 object_err(s, page, object, "Freelist Pointer check fails");
1147 return 0;
1148 }
1149
1150 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1151 return 0;
1152
1153 return 1;
1154 }
1155
1156 static noinline int alloc_debug_processing(struct kmem_cache *s,
1157 struct page *page,
1158 void *object, unsigned long addr)
1159 {
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!alloc_consistency_checks(s, page, object))
1162 goto bad;
1163 }
1164
1165 /* Success perform special debug activities for allocs */
1166 if (s->flags & SLAB_STORE_USER)
1167 set_track(s, object, TRACK_ALLOC, addr);
1168 trace(s, page, object, 1);
1169 init_object(s, object, SLUB_RED_ACTIVE);
1170 return 1;
1171
1172 bad:
1173 if (PageSlab(page)) {
1174 /*
1175 * If this is a slab page then lets do the best we can
1176 * to avoid issues in the future. Marking all objects
1177 * as used avoids touching the remaining objects.
1178 */
1179 slab_fix(s, "Marking all objects used");
1180 page->inuse = page->objects;
1181 page->freelist = NULL;
1182 }
1183 return 0;
1184 }
1185
1186 static inline int free_consistency_checks(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr)
1188 {
1189 if (!check_valid_pointer(s, page, object)) {
1190 slab_err(s, page, "Invalid object pointer 0x%p", object);
1191 return 0;
1192 }
1193
1194 if (on_freelist(s, page, object)) {
1195 object_err(s, page, object, "Object already free");
1196 return 0;
1197 }
1198
1199 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1200 return 0;
1201
1202 if (unlikely(s != page->slab_cache)) {
1203 if (!PageSlab(page)) {
1204 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1205 object);
1206 } else if (!page->slab_cache) {
1207 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1208 object);
1209 dump_stack();
1210 } else
1211 object_err(s, page, object,
1212 "page slab pointer corrupt.");
1213 return 0;
1214 }
1215 return 1;
1216 }
1217
1218 /* Supports checking bulk free of a constructed freelist */
1219 static noinline int free_debug_processing(
1220 struct kmem_cache *s, struct page *page,
1221 void *head, void *tail, int bulk_cnt,
1222 unsigned long addr)
1223 {
1224 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1225 void *object = head;
1226 int cnt = 0;
1227 unsigned long flags;
1228 int ret = 0;
1229
1230 spin_lock_irqsave(&n->list_lock, flags);
1231 slab_lock(page);
1232
1233 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1234 if (!check_slab(s, page))
1235 goto out;
1236 }
1237
1238 next_object:
1239 cnt++;
1240
1241 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1242 if (!free_consistency_checks(s, page, object, addr))
1243 goto out;
1244 }
1245
1246 if (s->flags & SLAB_STORE_USER)
1247 set_track(s, object, TRACK_FREE, addr);
1248 trace(s, page, object, 0);
1249 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1250 init_object(s, object, SLUB_RED_INACTIVE);
1251
1252 /* Reached end of constructed freelist yet? */
1253 if (object != tail) {
1254 object = get_freepointer(s, object);
1255 goto next_object;
1256 }
1257 ret = 1;
1258
1259 out:
1260 if (cnt != bulk_cnt)
1261 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1262 bulk_cnt, cnt);
1263
1264 slab_unlock(page);
1265 spin_unlock_irqrestore(&n->list_lock, flags);
1266 if (!ret)
1267 slab_fix(s, "Object at 0x%p not freed", object);
1268 return ret;
1269 }
1270
1271 /*
1272 * Parse a block of slub_debug options. Blocks are delimited by ';'
1273 *
1274 * @str: start of block
1275 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1276 * @slabs: return start of list of slabs, or NULL when there's no list
1277 * @init: assume this is initial parsing and not per-kmem-create parsing
1278 *
1279 * returns the start of next block if there's any, or NULL
1280 */
1281 static char *
1282 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1283 {
1284 bool higher_order_disable = false;
1285
1286 /* Skip any completely empty blocks */
1287 while (*str && *str == ';')
1288 str++;
1289
1290 if (*str == ',') {
1291 /*
1292 * No options but restriction on slabs. This means full
1293 * debugging for slabs matching a pattern.
1294 */
1295 *flags = DEBUG_DEFAULT_FLAGS;
1296 goto check_slabs;
1297 }
1298 *flags = 0;
1299
1300 /* Determine which debug features should be switched on */
1301 for (; *str && *str != ',' && *str != ';'; str++) {
1302 switch (tolower(*str)) {
1303 case '-':
1304 *flags = 0;
1305 break;
1306 case 'f':
1307 *flags |= SLAB_CONSISTENCY_CHECKS;
1308 break;
1309 case 'z':
1310 *flags |= SLAB_RED_ZONE;
1311 break;
1312 case 'p':
1313 *flags |= SLAB_POISON;
1314 break;
1315 case 'u':
1316 *flags |= SLAB_STORE_USER;
1317 break;
1318 case 't':
1319 *flags |= SLAB_TRACE;
1320 break;
1321 case 'a':
1322 *flags |= SLAB_FAILSLAB;
1323 break;
1324 case 'o':
1325 /*
1326 * Avoid enabling debugging on caches if its minimum
1327 * order would increase as a result.
1328 */
1329 higher_order_disable = true;
1330 break;
1331 default:
1332 if (init)
1333 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1334 }
1335 }
1336 check_slabs:
1337 if (*str == ',')
1338 *slabs = ++str;
1339 else
1340 *slabs = NULL;
1341
1342 /* Skip over the slab list */
1343 while (*str && *str != ';')
1344 str++;
1345
1346 /* Skip any completely empty blocks */
1347 while (*str && *str == ';')
1348 str++;
1349
1350 if (init && higher_order_disable)
1351 disable_higher_order_debug = 1;
1352
1353 if (*str)
1354 return str;
1355 else
1356 return NULL;
1357 }
1358
1359 static int __init setup_slub_debug(char *str)
1360 {
1361 slab_flags_t flags;
1362 char *saved_str;
1363 char *slab_list;
1364 bool global_slub_debug_changed = false;
1365 bool slab_list_specified = false;
1366
1367 slub_debug = DEBUG_DEFAULT_FLAGS;
1368 if (*str++ != '=' || !*str)
1369 /*
1370 * No options specified. Switch on full debugging.
1371 */
1372 goto out;
1373
1374 saved_str = str;
1375 while (str) {
1376 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1377
1378 if (!slab_list) {
1379 slub_debug = flags;
1380 global_slub_debug_changed = true;
1381 } else {
1382 slab_list_specified = true;
1383 }
1384 }
1385
1386 /*
1387 * For backwards compatibility, a single list of flags with list of
1388 * slabs means debugging is only enabled for those slabs, so the global
1389 * slub_debug should be 0. We can extended that to multiple lists as
1390 * long as there is no option specifying flags without a slab list.
1391 */
1392 if (slab_list_specified) {
1393 if (!global_slub_debug_changed)
1394 slub_debug = 0;
1395 slub_debug_string = saved_str;
1396 }
1397 out:
1398 if (slub_debug != 0 || slub_debug_string)
1399 static_branch_enable(&slub_debug_enabled);
1400 if ((static_branch_unlikely(&init_on_alloc) ||
1401 static_branch_unlikely(&init_on_free)) &&
1402 (slub_debug & SLAB_POISON))
1403 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1404 return 1;
1405 }
1406
1407 __setup("slub_debug", setup_slub_debug);
1408
1409 /*
1410 * kmem_cache_flags - apply debugging options to the cache
1411 * @object_size: the size of an object without meta data
1412 * @flags: flags to set
1413 * @name: name of the cache
1414 *
1415 * Debug option(s) are applied to @flags. In addition to the debug
1416 * option(s), if a slab name (or multiple) is specified i.e.
1417 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1418 * then only the select slabs will receive the debug option(s).
1419 */
1420 slab_flags_t kmem_cache_flags(unsigned int object_size,
1421 slab_flags_t flags, const char *name)
1422 {
1423 char *iter;
1424 size_t len;
1425 char *next_block;
1426 slab_flags_t block_flags;
1427 slab_flags_t slub_debug_local = slub_debug;
1428
1429 /*
1430 * If the slab cache is for debugging (e.g. kmemleak) then
1431 * don't store user (stack trace) information by default,
1432 * but let the user enable it via the command line below.
1433 */
1434 if (flags & SLAB_NOLEAKTRACE)
1435 slub_debug_local &= ~SLAB_STORE_USER;
1436
1437 len = strlen(name);
1438 next_block = slub_debug_string;
1439 /* Go through all blocks of debug options, see if any matches our slab's name */
1440 while (next_block) {
1441 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1442 if (!iter)
1443 continue;
1444 /* Found a block that has a slab list, search it */
1445 while (*iter) {
1446 char *end, *glob;
1447 size_t cmplen;
1448
1449 end = strchrnul(iter, ',');
1450 if (next_block && next_block < end)
1451 end = next_block - 1;
1452
1453 glob = strnchr(iter, end - iter, '*');
1454 if (glob)
1455 cmplen = glob - iter;
1456 else
1457 cmplen = max_t(size_t, len, (end - iter));
1458
1459 if (!strncmp(name, iter, cmplen)) {
1460 flags |= block_flags;
1461 return flags;
1462 }
1463
1464 if (!*end || *end == ';')
1465 break;
1466 iter = end + 1;
1467 }
1468 }
1469
1470 return flags | slub_debug_local;
1471 }
1472 #else /* !CONFIG_SLUB_DEBUG */
1473 static inline void setup_object_debug(struct kmem_cache *s,
1474 struct page *page, void *object) {}
1475 static inline
1476 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1477
1478 static inline int alloc_debug_processing(struct kmem_cache *s,
1479 struct page *page, void *object, unsigned long addr) { return 0; }
1480
1481 static inline int free_debug_processing(
1482 struct kmem_cache *s, struct page *page,
1483 void *head, void *tail, int bulk_cnt,
1484 unsigned long addr) { return 0; }
1485
1486 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1487 { return 1; }
1488 static inline int check_object(struct kmem_cache *s, struct page *page,
1489 void *object, u8 val) { return 1; }
1490 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1491 struct page *page) {}
1492 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1493 struct page *page) {}
1494 slab_flags_t kmem_cache_flags(unsigned int object_size,
1495 slab_flags_t flags, const char *name)
1496 {
1497 return flags;
1498 }
1499 #define slub_debug 0
1500
1501 #define disable_higher_order_debug 0
1502
1503 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1504 { return 0; }
1505 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1506 { return 0; }
1507 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1508 int objects) {}
1509 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1510 int objects) {}
1511
1512 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1513 void **freelist, void *nextfree)
1514 {
1515 return false;
1516 }
1517 #endif /* CONFIG_SLUB_DEBUG */
1518
1519 /*
1520 * Hooks for other subsystems that check memory allocations. In a typical
1521 * production configuration these hooks all should produce no code at all.
1522 */
1523 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1524 {
1525 ptr = kasan_kmalloc_large(ptr, size, flags);
1526 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1527 kmemleak_alloc(ptr, size, 1, flags);
1528 return ptr;
1529 }
1530
1531 static __always_inline void kfree_hook(void *x)
1532 {
1533 kmemleak_free(x);
1534 kasan_kfree_large(x);
1535 }
1536
1537 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1538 void *x, bool init)
1539 {
1540 kmemleak_free_recursive(x, s->flags);
1541
1542 /*
1543 * Trouble is that we may no longer disable interrupts in the fast path
1544 * So in order to make the debug calls that expect irqs to be
1545 * disabled we need to disable interrupts temporarily.
1546 */
1547 #ifdef CONFIG_LOCKDEP
1548 {
1549 unsigned long flags;
1550
1551 local_irq_save(flags);
1552 debug_check_no_locks_freed(x, s->object_size);
1553 local_irq_restore(flags);
1554 }
1555 #endif
1556 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1557 debug_check_no_obj_freed(x, s->object_size);
1558
1559 /* Use KCSAN to help debug racy use-after-free. */
1560 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1561 __kcsan_check_access(x, s->object_size,
1562 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1563
1564 /*
1565 * As memory initialization might be integrated into KASAN,
1566 * kasan_slab_free and initialization memset's must be
1567 * kept together to avoid discrepancies in behavior.
1568 *
1569 * The initialization memset's clear the object and the metadata,
1570 * but don't touch the SLAB redzone.
1571 */
1572 if (init) {
1573 int rsize;
1574
1575 if (!kasan_has_integrated_init())
1576 memset(kasan_reset_tag(x), 0, s->object_size);
1577 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1578 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1579 s->size - s->inuse - rsize);
1580 }
1581 /* KASAN might put x into memory quarantine, delaying its reuse. */
1582 return kasan_slab_free(s, x, init);
1583 }
1584
1585 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1586 void **head, void **tail)
1587 {
1588
1589 void *object;
1590 void *next = *head;
1591 void *old_tail = *tail ? *tail : *head;
1592
1593 if (is_kfence_address(next)) {
1594 slab_free_hook(s, next, false);
1595 return true;
1596 }
1597
1598 /* Head and tail of the reconstructed freelist */
1599 *head = NULL;
1600 *tail = NULL;
1601
1602 do {
1603 object = next;
1604 next = get_freepointer(s, object);
1605
1606 /* If object's reuse doesn't have to be delayed */
1607 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1608 /* Move object to the new freelist */
1609 set_freepointer(s, object, *head);
1610 *head = object;
1611 if (!*tail)
1612 *tail = object;
1613 }
1614 } while (object != old_tail);
1615
1616 if (*head == *tail)
1617 *tail = NULL;
1618
1619 return *head != NULL;
1620 }
1621
1622 static void *setup_object(struct kmem_cache *s, struct page *page,
1623 void *object)
1624 {
1625 setup_object_debug(s, page, object);
1626 object = kasan_init_slab_obj(s, object);
1627 if (unlikely(s->ctor)) {
1628 kasan_unpoison_object_data(s, object);
1629 s->ctor(object);
1630 kasan_poison_object_data(s, object);
1631 }
1632 return object;
1633 }
1634
1635 /*
1636 * Slab allocation and freeing
1637 */
1638 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1639 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1640 {
1641 struct page *page;
1642 unsigned int order = oo_order(oo);
1643
1644 if (node == NUMA_NO_NODE)
1645 page = alloc_pages(flags, order);
1646 else
1647 page = __alloc_pages_node(node, flags, order);
1648
1649 return page;
1650 }
1651
1652 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1653 /* Pre-initialize the random sequence cache */
1654 static int init_cache_random_seq(struct kmem_cache *s)
1655 {
1656 unsigned int count = oo_objects(s->oo);
1657 int err;
1658
1659 /* Bailout if already initialised */
1660 if (s->random_seq)
1661 return 0;
1662
1663 err = cache_random_seq_create(s, count, GFP_KERNEL);
1664 if (err) {
1665 pr_err("SLUB: Unable to initialize free list for %s\n",
1666 s->name);
1667 return err;
1668 }
1669
1670 /* Transform to an offset on the set of pages */
1671 if (s->random_seq) {
1672 unsigned int i;
1673
1674 for (i = 0; i < count; i++)
1675 s->random_seq[i] *= s->size;
1676 }
1677 return 0;
1678 }
1679
1680 /* Initialize each random sequence freelist per cache */
1681 static void __init init_freelist_randomization(void)
1682 {
1683 struct kmem_cache *s;
1684
1685 mutex_lock(&slab_mutex);
1686
1687 list_for_each_entry(s, &slab_caches, list)
1688 init_cache_random_seq(s);
1689
1690 mutex_unlock(&slab_mutex);
1691 }
1692
1693 /* Get the next entry on the pre-computed freelist randomized */
1694 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1695 unsigned long *pos, void *start,
1696 unsigned long page_limit,
1697 unsigned long freelist_count)
1698 {
1699 unsigned int idx;
1700
1701 /*
1702 * If the target page allocation failed, the number of objects on the
1703 * page might be smaller than the usual size defined by the cache.
1704 */
1705 do {
1706 idx = s->random_seq[*pos];
1707 *pos += 1;
1708 if (*pos >= freelist_count)
1709 *pos = 0;
1710 } while (unlikely(idx >= page_limit));
1711
1712 return (char *)start + idx;
1713 }
1714
1715 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1716 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1717 {
1718 void *start;
1719 void *cur;
1720 void *next;
1721 unsigned long idx, pos, page_limit, freelist_count;
1722
1723 if (page->objects < 2 || !s->random_seq)
1724 return false;
1725
1726 freelist_count = oo_objects(s->oo);
1727 pos = get_random_int() % freelist_count;
1728
1729 page_limit = page->objects * s->size;
1730 start = fixup_red_left(s, page_address(page));
1731
1732 /* First entry is used as the base of the freelist */
1733 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1734 freelist_count);
1735 cur = setup_object(s, page, cur);
1736 page->freelist = cur;
1737
1738 for (idx = 1; idx < page->objects; idx++) {
1739 next = next_freelist_entry(s, page, &pos, start, page_limit,
1740 freelist_count);
1741 next = setup_object(s, page, next);
1742 set_freepointer(s, cur, next);
1743 cur = next;
1744 }
1745 set_freepointer(s, cur, NULL);
1746
1747 return true;
1748 }
1749 #else
1750 static inline int init_cache_random_seq(struct kmem_cache *s)
1751 {
1752 return 0;
1753 }
1754 static inline void init_freelist_randomization(void) { }
1755 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1756 {
1757 return false;
1758 }
1759 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1760
1761 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1762 {
1763 struct page *page;
1764 struct kmem_cache_order_objects oo = s->oo;
1765 gfp_t alloc_gfp;
1766 void *start, *p, *next;
1767 int idx;
1768 bool shuffle;
1769
1770 flags &= gfp_allowed_mask;
1771
1772 if (gfpflags_allow_blocking(flags))
1773 local_irq_enable();
1774
1775 flags |= s->allocflags;
1776
1777 /*
1778 * Let the initial higher-order allocation fail under memory pressure
1779 * so we fall-back to the minimum order allocation.
1780 */
1781 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1782 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1783 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1784
1785 page = alloc_slab_page(s, alloc_gfp, node, oo);
1786 if (unlikely(!page)) {
1787 oo = s->min;
1788 alloc_gfp = flags;
1789 /*
1790 * Allocation may have failed due to fragmentation.
1791 * Try a lower order alloc if possible
1792 */
1793 page = alloc_slab_page(s, alloc_gfp, node, oo);
1794 if (unlikely(!page))
1795 goto out;
1796 stat(s, ORDER_FALLBACK);
1797 }
1798
1799 page->objects = oo_objects(oo);
1800
1801 account_slab_page(page, oo_order(oo), s, flags);
1802
1803 page->slab_cache = s;
1804 __SetPageSlab(page);
1805 if (page_is_pfmemalloc(page))
1806 SetPageSlabPfmemalloc(page);
1807
1808 kasan_poison_slab(page);
1809
1810 start = page_address(page);
1811
1812 setup_page_debug(s, page, start);
1813
1814 shuffle = shuffle_freelist(s, page);
1815
1816 if (!shuffle) {
1817 start = fixup_red_left(s, start);
1818 start = setup_object(s, page, start);
1819 page->freelist = start;
1820 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1821 next = p + s->size;
1822 next = setup_object(s, page, next);
1823 set_freepointer(s, p, next);
1824 p = next;
1825 }
1826 set_freepointer(s, p, NULL);
1827 }
1828
1829 page->inuse = page->objects;
1830 page->frozen = 1;
1831
1832 out:
1833 if (gfpflags_allow_blocking(flags))
1834 local_irq_disable();
1835 if (!page)
1836 return NULL;
1837
1838 inc_slabs_node(s, page_to_nid(page), page->objects);
1839
1840 return page;
1841 }
1842
1843 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1844 {
1845 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1846 flags = kmalloc_fix_flags(flags);
1847
1848 return allocate_slab(s,
1849 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1850 }
1851
1852 static void __free_slab(struct kmem_cache *s, struct page *page)
1853 {
1854 int order = compound_order(page);
1855 int pages = 1 << order;
1856
1857 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1858 void *p;
1859
1860 slab_pad_check(s, page);
1861 for_each_object(p, s, page_address(page),
1862 page->objects)
1863 check_object(s, page, p, SLUB_RED_INACTIVE);
1864 }
1865
1866 __ClearPageSlabPfmemalloc(page);
1867 __ClearPageSlab(page);
1868 /* In union with page->mapping where page allocator expects NULL */
1869 page->slab_cache = NULL;
1870 if (current->reclaim_state)
1871 current->reclaim_state->reclaimed_slab += pages;
1872 unaccount_slab_page(page, order, s);
1873 __free_pages(page, order);
1874 }
1875
1876 static void rcu_free_slab(struct rcu_head *h)
1877 {
1878 struct page *page = container_of(h, struct page, rcu_head);
1879
1880 __free_slab(page->slab_cache, page);
1881 }
1882
1883 static void free_slab(struct kmem_cache *s, struct page *page)
1884 {
1885 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1886 call_rcu(&page->rcu_head, rcu_free_slab);
1887 } else
1888 __free_slab(s, page);
1889 }
1890
1891 static void discard_slab(struct kmem_cache *s, struct page *page)
1892 {
1893 dec_slabs_node(s, page_to_nid(page), page->objects);
1894 free_slab(s, page);
1895 }
1896
1897 /*
1898 * Management of partially allocated slabs.
1899 */
1900 static inline void
1901 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1902 {
1903 n->nr_partial++;
1904 if (tail == DEACTIVATE_TO_TAIL)
1905 list_add_tail(&page->slab_list, &n->partial);
1906 else
1907 list_add(&page->slab_list, &n->partial);
1908 }
1909
1910 static inline void add_partial(struct kmem_cache_node *n,
1911 struct page *page, int tail)
1912 {
1913 lockdep_assert_held(&n->list_lock);
1914 __add_partial(n, page, tail);
1915 }
1916
1917 static inline void remove_partial(struct kmem_cache_node *n,
1918 struct page *page)
1919 {
1920 lockdep_assert_held(&n->list_lock);
1921 list_del(&page->slab_list);
1922 n->nr_partial--;
1923 }
1924
1925 /*
1926 * Remove slab from the partial list, freeze it and
1927 * return the pointer to the freelist.
1928 *
1929 * Returns a list of objects or NULL if it fails.
1930 */
1931 static inline void *acquire_slab(struct kmem_cache *s,
1932 struct kmem_cache_node *n, struct page *page,
1933 int mode, int *objects)
1934 {
1935 void *freelist;
1936 unsigned long counters;
1937 struct page new;
1938
1939 lockdep_assert_held(&n->list_lock);
1940
1941 /*
1942 * Zap the freelist and set the frozen bit.
1943 * The old freelist is the list of objects for the
1944 * per cpu allocation list.
1945 */
1946 freelist = page->freelist;
1947 counters = page->counters;
1948 new.counters = counters;
1949 *objects = new.objects - new.inuse;
1950 if (mode) {
1951 new.inuse = page->objects;
1952 new.freelist = NULL;
1953 } else {
1954 new.freelist = freelist;
1955 }
1956
1957 VM_BUG_ON(new.frozen);
1958 new.frozen = 1;
1959
1960 if (!__cmpxchg_double_slab(s, page,
1961 freelist, counters,
1962 new.freelist, new.counters,
1963 "acquire_slab"))
1964 return NULL;
1965
1966 remove_partial(n, page);
1967 WARN_ON(!freelist);
1968 return freelist;
1969 }
1970
1971 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1972 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1973
1974 /*
1975 * Try to allocate a partial slab from a specific node.
1976 */
1977 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1978 struct kmem_cache_cpu *c, gfp_t flags)
1979 {
1980 struct page *page, *page2;
1981 void *object = NULL;
1982 unsigned int available = 0;
1983 int objects;
1984
1985 /*
1986 * Racy check. If we mistakenly see no partial slabs then we
1987 * just allocate an empty slab. If we mistakenly try to get a
1988 * partial slab and there is none available then get_partial()
1989 * will return NULL.
1990 */
1991 if (!n || !n->nr_partial)
1992 return NULL;
1993
1994 spin_lock(&n->list_lock);
1995 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1996 void *t;
1997
1998 if (!pfmemalloc_match(page, flags))
1999 continue;
2000
2001 t = acquire_slab(s, n, page, object == NULL, &objects);
2002 if (!t)
2003 break;
2004
2005 available += objects;
2006 if (!object) {
2007 c->page = page;
2008 stat(s, ALLOC_FROM_PARTIAL);
2009 object = t;
2010 } else {
2011 put_cpu_partial(s, page, 0);
2012 stat(s, CPU_PARTIAL_NODE);
2013 }
2014 if (!kmem_cache_has_cpu_partial(s)
2015 || available > slub_cpu_partial(s) / 2)
2016 break;
2017
2018 }
2019 spin_unlock(&n->list_lock);
2020 return object;
2021 }
2022
2023 /*
2024 * Get a page from somewhere. Search in increasing NUMA distances.
2025 */
2026 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2027 struct kmem_cache_cpu *c)
2028 {
2029 #ifdef CONFIG_NUMA
2030 struct zonelist *zonelist;
2031 struct zoneref *z;
2032 struct zone *zone;
2033 enum zone_type highest_zoneidx = gfp_zone(flags);
2034 void *object;
2035 unsigned int cpuset_mems_cookie;
2036
2037 /*
2038 * The defrag ratio allows a configuration of the tradeoffs between
2039 * inter node defragmentation and node local allocations. A lower
2040 * defrag_ratio increases the tendency to do local allocations
2041 * instead of attempting to obtain partial slabs from other nodes.
2042 *
2043 * If the defrag_ratio is set to 0 then kmalloc() always
2044 * returns node local objects. If the ratio is higher then kmalloc()
2045 * may return off node objects because partial slabs are obtained
2046 * from other nodes and filled up.
2047 *
2048 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2049 * (which makes defrag_ratio = 1000) then every (well almost)
2050 * allocation will first attempt to defrag slab caches on other nodes.
2051 * This means scanning over all nodes to look for partial slabs which
2052 * may be expensive if we do it every time we are trying to find a slab
2053 * with available objects.
2054 */
2055 if (!s->remote_node_defrag_ratio ||
2056 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2057 return NULL;
2058
2059 do {
2060 cpuset_mems_cookie = read_mems_allowed_begin();
2061 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2062 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2063 struct kmem_cache_node *n;
2064
2065 n = get_node(s, zone_to_nid(zone));
2066
2067 if (n && cpuset_zone_allowed(zone, flags) &&
2068 n->nr_partial > s->min_partial) {
2069 object = get_partial_node(s, n, c, flags);
2070 if (object) {
2071 /*
2072 * Don't check read_mems_allowed_retry()
2073 * here - if mems_allowed was updated in
2074 * parallel, that was a harmless race
2075 * between allocation and the cpuset
2076 * update
2077 */
2078 return object;
2079 }
2080 }
2081 }
2082 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2083 #endif /* CONFIG_NUMA */
2084 return NULL;
2085 }
2086
2087 /*
2088 * Get a partial page, lock it and return it.
2089 */
2090 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2091 struct kmem_cache_cpu *c)
2092 {
2093 void *object;
2094 int searchnode = node;
2095
2096 if (node == NUMA_NO_NODE)
2097 searchnode = numa_mem_id();
2098
2099 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2100 if (object || node != NUMA_NO_NODE)
2101 return object;
2102
2103 return get_any_partial(s, flags, c);
2104 }
2105
2106 #ifdef CONFIG_PREEMPTION
2107 /*
2108 * Calculate the next globally unique transaction for disambiguation
2109 * during cmpxchg. The transactions start with the cpu number and are then
2110 * incremented by CONFIG_NR_CPUS.
2111 */
2112 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2113 #else
2114 /*
2115 * No preemption supported therefore also no need to check for
2116 * different cpus.
2117 */
2118 #define TID_STEP 1
2119 #endif
2120
2121 static inline unsigned long next_tid(unsigned long tid)
2122 {
2123 return tid + TID_STEP;
2124 }
2125
2126 #ifdef SLUB_DEBUG_CMPXCHG
2127 static inline unsigned int tid_to_cpu(unsigned long tid)
2128 {
2129 return tid % TID_STEP;
2130 }
2131
2132 static inline unsigned long tid_to_event(unsigned long tid)
2133 {
2134 return tid / TID_STEP;
2135 }
2136 #endif
2137
2138 static inline unsigned int init_tid(int cpu)
2139 {
2140 return cpu;
2141 }
2142
2143 static inline void note_cmpxchg_failure(const char *n,
2144 const struct kmem_cache *s, unsigned long tid)
2145 {
2146 #ifdef SLUB_DEBUG_CMPXCHG
2147 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2148
2149 pr_info("%s %s: cmpxchg redo ", n, s->name);
2150
2151 #ifdef CONFIG_PREEMPTION
2152 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2153 pr_warn("due to cpu change %d -> %d\n",
2154 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2155 else
2156 #endif
2157 if (tid_to_event(tid) != tid_to_event(actual_tid))
2158 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2159 tid_to_event(tid), tid_to_event(actual_tid));
2160 else
2161 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2162 actual_tid, tid, next_tid(tid));
2163 #endif
2164 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2165 }
2166
2167 static void init_kmem_cache_cpus(struct kmem_cache *s)
2168 {
2169 int cpu;
2170
2171 for_each_possible_cpu(cpu)
2172 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2173 }
2174
2175 /*
2176 * Remove the cpu slab
2177 */
2178 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2179 void *freelist, struct kmem_cache_cpu *c)
2180 {
2181 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2182 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2183 int lock = 0, free_delta = 0;
2184 enum slab_modes l = M_NONE, m = M_NONE;
2185 void *nextfree, *freelist_iter, *freelist_tail;
2186 int tail = DEACTIVATE_TO_HEAD;
2187 struct page new;
2188 struct page old;
2189
2190 if (page->freelist) {
2191 stat(s, DEACTIVATE_REMOTE_FREES);
2192 tail = DEACTIVATE_TO_TAIL;
2193 }
2194
2195 /*
2196 * Stage one: Count the objects on cpu's freelist as free_delta and
2197 * remember the last object in freelist_tail for later splicing.
2198 */
2199 freelist_tail = NULL;
2200 freelist_iter = freelist;
2201 while (freelist_iter) {
2202 nextfree = get_freepointer(s, freelist_iter);
2203
2204 /*
2205 * If 'nextfree' is invalid, it is possible that the object at
2206 * 'freelist_iter' is already corrupted. So isolate all objects
2207 * starting at 'freelist_iter' by skipping them.
2208 */
2209 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2210 break;
2211
2212 freelist_tail = freelist_iter;
2213 free_delta++;
2214
2215 freelist_iter = nextfree;
2216 }
2217
2218 /*
2219 * Stage two: Unfreeze the page while splicing the per-cpu
2220 * freelist to the head of page's freelist.
2221 *
2222 * Ensure that the page is unfrozen while the list presence
2223 * reflects the actual number of objects during unfreeze.
2224 *
2225 * We setup the list membership and then perform a cmpxchg
2226 * with the count. If there is a mismatch then the page
2227 * is not unfrozen but the page is on the wrong list.
2228 *
2229 * Then we restart the process which may have to remove
2230 * the page from the list that we just put it on again
2231 * because the number of objects in the slab may have
2232 * changed.
2233 */
2234 redo:
2235
2236 old.freelist = READ_ONCE(page->freelist);
2237 old.counters = READ_ONCE(page->counters);
2238 VM_BUG_ON(!old.frozen);
2239
2240 /* Determine target state of the slab */
2241 new.counters = old.counters;
2242 if (freelist_tail) {
2243 new.inuse -= free_delta;
2244 set_freepointer(s, freelist_tail, old.freelist);
2245 new.freelist = freelist;
2246 } else
2247 new.freelist = old.freelist;
2248
2249 new.frozen = 0;
2250
2251 if (!new.inuse && n->nr_partial >= s->min_partial)
2252 m = M_FREE;
2253 else if (new.freelist) {
2254 m = M_PARTIAL;
2255 if (!lock) {
2256 lock = 1;
2257 /*
2258 * Taking the spinlock removes the possibility
2259 * that acquire_slab() will see a slab page that
2260 * is frozen
2261 */
2262 spin_lock(&n->list_lock);
2263 }
2264 } else {
2265 m = M_FULL;
2266 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2267 lock = 1;
2268 /*
2269 * This also ensures that the scanning of full
2270 * slabs from diagnostic functions will not see
2271 * any frozen slabs.
2272 */
2273 spin_lock(&n->list_lock);
2274 }
2275 }
2276
2277 if (l != m) {
2278 if (l == M_PARTIAL)
2279 remove_partial(n, page);
2280 else if (l == M_FULL)
2281 remove_full(s, n, page);
2282
2283 if (m == M_PARTIAL)
2284 add_partial(n, page, tail);
2285 else if (m == M_FULL)
2286 add_full(s, n, page);
2287 }
2288
2289 l = m;
2290 if (!__cmpxchg_double_slab(s, page,
2291 old.freelist, old.counters,
2292 new.freelist, new.counters,
2293 "unfreezing slab"))
2294 goto redo;
2295
2296 if (lock)
2297 spin_unlock(&n->list_lock);
2298
2299 if (m == M_PARTIAL)
2300 stat(s, tail);
2301 else if (m == M_FULL)
2302 stat(s, DEACTIVATE_FULL);
2303 else if (m == M_FREE) {
2304 stat(s, DEACTIVATE_EMPTY);
2305 discard_slab(s, page);
2306 stat(s, FREE_SLAB);
2307 }
2308
2309 c->page = NULL;
2310 c->freelist = NULL;
2311 }
2312
2313 /*
2314 * Unfreeze all the cpu partial slabs.
2315 *
2316 * This function must be called with interrupts disabled
2317 * for the cpu using c (or some other guarantee must be there
2318 * to guarantee no concurrent accesses).
2319 */
2320 static void unfreeze_partials(struct kmem_cache *s,
2321 struct kmem_cache_cpu *c)
2322 {
2323 #ifdef CONFIG_SLUB_CPU_PARTIAL
2324 struct kmem_cache_node *n = NULL, *n2 = NULL;
2325 struct page *page, *discard_page = NULL;
2326
2327 while ((page = slub_percpu_partial(c))) {
2328 struct page new;
2329 struct page old;
2330
2331 slub_set_percpu_partial(c, page);
2332
2333 n2 = get_node(s, page_to_nid(page));
2334 if (n != n2) {
2335 if (n)
2336 spin_unlock(&n->list_lock);
2337
2338 n = n2;
2339 spin_lock(&n->list_lock);
2340 }
2341
2342 do {
2343
2344 old.freelist = page->freelist;
2345 old.counters = page->counters;
2346 VM_BUG_ON(!old.frozen);
2347
2348 new.counters = old.counters;
2349 new.freelist = old.freelist;
2350
2351 new.frozen = 0;
2352
2353 } while (!__cmpxchg_double_slab(s, page,
2354 old.freelist, old.counters,
2355 new.freelist, new.counters,
2356 "unfreezing slab"));
2357
2358 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2359 page->next = discard_page;
2360 discard_page = page;
2361 } else {
2362 add_partial(n, page, DEACTIVATE_TO_TAIL);
2363 stat(s, FREE_ADD_PARTIAL);
2364 }
2365 }
2366
2367 if (n)
2368 spin_unlock(&n->list_lock);
2369
2370 while (discard_page) {
2371 page = discard_page;
2372 discard_page = discard_page->next;
2373
2374 stat(s, DEACTIVATE_EMPTY);
2375 discard_slab(s, page);
2376 stat(s, FREE_SLAB);
2377 }
2378 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2379 }
2380
2381 /*
2382 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2383 * partial page slot if available.
2384 *
2385 * If we did not find a slot then simply move all the partials to the
2386 * per node partial list.
2387 */
2388 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2389 {
2390 #ifdef CONFIG_SLUB_CPU_PARTIAL
2391 struct page *oldpage;
2392 int pages;
2393 int pobjects;
2394
2395 preempt_disable();
2396 do {
2397 pages = 0;
2398 pobjects = 0;
2399 oldpage = this_cpu_read(s->cpu_slab->partial);
2400
2401 if (oldpage) {
2402 pobjects = oldpage->pobjects;
2403 pages = oldpage->pages;
2404 if (drain && pobjects > slub_cpu_partial(s)) {
2405 unsigned long flags;
2406 /*
2407 * partial array is full. Move the existing
2408 * set to the per node partial list.
2409 */
2410 local_irq_save(flags);
2411 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2412 local_irq_restore(flags);
2413 oldpage = NULL;
2414 pobjects = 0;
2415 pages = 0;
2416 stat(s, CPU_PARTIAL_DRAIN);
2417 }
2418 }
2419
2420 pages++;
2421 pobjects += page->objects - page->inuse;
2422
2423 page->pages = pages;
2424 page->pobjects = pobjects;
2425 page->next = oldpage;
2426
2427 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2428 != oldpage);
2429 if (unlikely(!slub_cpu_partial(s))) {
2430 unsigned long flags;
2431
2432 local_irq_save(flags);
2433 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2434 local_irq_restore(flags);
2435 }
2436 preempt_enable();
2437 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2438 }
2439
2440 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2441 {
2442 stat(s, CPUSLAB_FLUSH);
2443 deactivate_slab(s, c->page, c->freelist, c);
2444
2445 c->tid = next_tid(c->tid);
2446 }
2447
2448 /*
2449 * Flush cpu slab.
2450 *
2451 * Called from IPI handler with interrupts disabled.
2452 */
2453 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2454 {
2455 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2456
2457 if (c->page)
2458 flush_slab(s, c);
2459
2460 unfreeze_partials(s, c);
2461 }
2462
2463 static void flush_cpu_slab(void *d)
2464 {
2465 struct kmem_cache *s = d;
2466
2467 __flush_cpu_slab(s, smp_processor_id());
2468 }
2469
2470 static bool has_cpu_slab(int cpu, void *info)
2471 {
2472 struct kmem_cache *s = info;
2473 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2474
2475 return c->page || slub_percpu_partial(c);
2476 }
2477
2478 static void flush_all(struct kmem_cache *s)
2479 {
2480 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2481 }
2482
2483 /*
2484 * Use the cpu notifier to insure that the cpu slabs are flushed when
2485 * necessary.
2486 */
2487 static int slub_cpu_dead(unsigned int cpu)
2488 {
2489 struct kmem_cache *s;
2490 unsigned long flags;
2491
2492 mutex_lock(&slab_mutex);
2493 list_for_each_entry(s, &slab_caches, list) {
2494 local_irq_save(flags);
2495 __flush_cpu_slab(s, cpu);
2496 local_irq_restore(flags);
2497 }
2498 mutex_unlock(&slab_mutex);
2499 return 0;
2500 }
2501
2502 /*
2503 * Check if the objects in a per cpu structure fit numa
2504 * locality expectations.
2505 */
2506 static inline int node_match(struct page *page, int node)
2507 {
2508 #ifdef CONFIG_NUMA
2509 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2510 return 0;
2511 #endif
2512 return 1;
2513 }
2514
2515 #ifdef CONFIG_SLUB_DEBUG
2516 static int count_free(struct page *page)
2517 {
2518 return page->objects - page->inuse;
2519 }
2520
2521 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2522 {
2523 return atomic_long_read(&n->total_objects);
2524 }
2525 #endif /* CONFIG_SLUB_DEBUG */
2526
2527 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2528 static unsigned long count_partial(struct kmem_cache_node *n,
2529 int (*get_count)(struct page *))
2530 {
2531 unsigned long flags;
2532 unsigned long x = 0;
2533 struct page *page;
2534
2535 spin_lock_irqsave(&n->list_lock, flags);
2536 list_for_each_entry(page, &n->partial, slab_list)
2537 x += get_count(page);
2538 spin_unlock_irqrestore(&n->list_lock, flags);
2539 return x;
2540 }
2541 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2542
2543 static noinline void
2544 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2545 {
2546 #ifdef CONFIG_SLUB_DEBUG
2547 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2548 DEFAULT_RATELIMIT_BURST);
2549 int node;
2550 struct kmem_cache_node *n;
2551
2552 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2553 return;
2554
2555 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2556 nid, gfpflags, &gfpflags);
2557 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2558 s->name, s->object_size, s->size, oo_order(s->oo),
2559 oo_order(s->min));
2560
2561 if (oo_order(s->min) > get_order(s->object_size))
2562 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2563 s->name);
2564
2565 for_each_kmem_cache_node(s, node, n) {
2566 unsigned long nr_slabs;
2567 unsigned long nr_objs;
2568 unsigned long nr_free;
2569
2570 nr_free = count_partial(n, count_free);
2571 nr_slabs = node_nr_slabs(n);
2572 nr_objs = node_nr_objs(n);
2573
2574 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2575 node, nr_slabs, nr_objs, nr_free);
2576 }
2577 #endif
2578 }
2579
2580 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2581 int node, struct kmem_cache_cpu **pc)
2582 {
2583 void *freelist;
2584 struct kmem_cache_cpu *c = *pc;
2585 struct page *page;
2586
2587 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2588
2589 freelist = get_partial(s, flags, node, c);
2590
2591 if (freelist)
2592 return freelist;
2593
2594 page = new_slab(s, flags, node);
2595 if (page) {
2596 c = raw_cpu_ptr(s->cpu_slab);
2597 if (c->page)
2598 flush_slab(s, c);
2599
2600 /*
2601 * No other reference to the page yet so we can
2602 * muck around with it freely without cmpxchg
2603 */
2604 freelist = page->freelist;
2605 page->freelist = NULL;
2606
2607 stat(s, ALLOC_SLAB);
2608 c->page = page;
2609 *pc = c;
2610 }
2611
2612 return freelist;
2613 }
2614
2615 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2616 {
2617 if (unlikely(PageSlabPfmemalloc(page)))
2618 return gfp_pfmemalloc_allowed(gfpflags);
2619
2620 return true;
2621 }
2622
2623 /*
2624 * Check the page->freelist of a page and either transfer the freelist to the
2625 * per cpu freelist or deactivate the page.
2626 *
2627 * The page is still frozen if the return value is not NULL.
2628 *
2629 * If this function returns NULL then the page has been unfrozen.
2630 *
2631 * This function must be called with interrupt disabled.
2632 */
2633 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2634 {
2635 struct page new;
2636 unsigned long counters;
2637 void *freelist;
2638
2639 do {
2640 freelist = page->freelist;
2641 counters = page->counters;
2642
2643 new.counters = counters;
2644 VM_BUG_ON(!new.frozen);
2645
2646 new.inuse = page->objects;
2647 new.frozen = freelist != NULL;
2648
2649 } while (!__cmpxchg_double_slab(s, page,
2650 freelist, counters,
2651 NULL, new.counters,
2652 "get_freelist"));
2653
2654 return freelist;
2655 }
2656
2657 /*
2658 * Slow path. The lockless freelist is empty or we need to perform
2659 * debugging duties.
2660 *
2661 * Processing is still very fast if new objects have been freed to the
2662 * regular freelist. In that case we simply take over the regular freelist
2663 * as the lockless freelist and zap the regular freelist.
2664 *
2665 * If that is not working then we fall back to the partial lists. We take the
2666 * first element of the freelist as the object to allocate now and move the
2667 * rest of the freelist to the lockless freelist.
2668 *
2669 * And if we were unable to get a new slab from the partial slab lists then
2670 * we need to allocate a new slab. This is the slowest path since it involves
2671 * a call to the page allocator and the setup of a new slab.
2672 *
2673 * Version of __slab_alloc to use when we know that interrupts are
2674 * already disabled (which is the case for bulk allocation).
2675 */
2676 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2677 unsigned long addr, struct kmem_cache_cpu *c)
2678 {
2679 void *freelist;
2680 struct page *page;
2681
2682 stat(s, ALLOC_SLOWPATH);
2683
2684 page = c->page;
2685 if (!page) {
2686 /*
2687 * if the node is not online or has no normal memory, just
2688 * ignore the node constraint
2689 */
2690 if (unlikely(node != NUMA_NO_NODE &&
2691 !node_isset(node, slab_nodes)))
2692 node = NUMA_NO_NODE;
2693 goto new_slab;
2694 }
2695 redo:
2696
2697 if (unlikely(!node_match(page, node))) {
2698 /*
2699 * same as above but node_match() being false already
2700 * implies node != NUMA_NO_NODE
2701 */
2702 if (!node_isset(node, slab_nodes)) {
2703 node = NUMA_NO_NODE;
2704 goto redo;
2705 } else {
2706 stat(s, ALLOC_NODE_MISMATCH);
2707 deactivate_slab(s, page, c->freelist, c);
2708 goto new_slab;
2709 }
2710 }
2711
2712 /*
2713 * By rights, we should be searching for a slab page that was
2714 * PFMEMALLOC but right now, we are losing the pfmemalloc
2715 * information when the page leaves the per-cpu allocator
2716 */
2717 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2718 deactivate_slab(s, page, c->freelist, c);
2719 goto new_slab;
2720 }
2721
2722 /* must check again c->freelist in case of cpu migration or IRQ */
2723 freelist = c->freelist;
2724 if (freelist)
2725 goto load_freelist;
2726
2727 freelist = get_freelist(s, page);
2728
2729 if (!freelist) {
2730 c->page = NULL;
2731 stat(s, DEACTIVATE_BYPASS);
2732 goto new_slab;
2733 }
2734
2735 stat(s, ALLOC_REFILL);
2736
2737 load_freelist:
2738 /*
2739 * freelist is pointing to the list of objects to be used.
2740 * page is pointing to the page from which the objects are obtained.
2741 * That page must be frozen for per cpu allocations to work.
2742 */
2743 VM_BUG_ON(!c->page->frozen);
2744 c->freelist = get_freepointer(s, freelist);
2745 c->tid = next_tid(c->tid);
2746 return freelist;
2747
2748 new_slab:
2749
2750 if (slub_percpu_partial(c)) {
2751 page = c->page = slub_percpu_partial(c);
2752 slub_set_percpu_partial(c, page);
2753 stat(s, CPU_PARTIAL_ALLOC);
2754 goto redo;
2755 }
2756
2757 freelist = new_slab_objects(s, gfpflags, node, &c);
2758
2759 if (unlikely(!freelist)) {
2760 slab_out_of_memory(s, gfpflags, node);
2761 return NULL;
2762 }
2763
2764 page = c->page;
2765 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2766 goto load_freelist;
2767
2768 /* Only entered in the debug case */
2769 if (kmem_cache_debug(s) &&
2770 !alloc_debug_processing(s, page, freelist, addr))
2771 goto new_slab; /* Slab failed checks. Next slab needed */
2772
2773 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2774 return freelist;
2775 }
2776
2777 /*
2778 * Another one that disabled interrupt and compensates for possible
2779 * cpu changes by refetching the per cpu area pointer.
2780 */
2781 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2782 unsigned long addr, struct kmem_cache_cpu *c)
2783 {
2784 void *p;
2785 unsigned long flags;
2786
2787 local_irq_save(flags);
2788 #ifdef CONFIG_PREEMPTION
2789 /*
2790 * We may have been preempted and rescheduled on a different
2791 * cpu before disabling interrupts. Need to reload cpu area
2792 * pointer.
2793 */
2794 c = this_cpu_ptr(s->cpu_slab);
2795 #endif
2796
2797 p = ___slab_alloc(s, gfpflags, node, addr, c);
2798 local_irq_restore(flags);
2799 return p;
2800 }
2801
2802 /*
2803 * If the object has been wiped upon free, make sure it's fully initialized by
2804 * zeroing out freelist pointer.
2805 */
2806 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2807 void *obj)
2808 {
2809 if (unlikely(slab_want_init_on_free(s)) && obj)
2810 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2811 0, sizeof(void *));
2812 }
2813
2814 /*
2815 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2816 * have the fastpath folded into their functions. So no function call
2817 * overhead for requests that can be satisfied on the fastpath.
2818 *
2819 * The fastpath works by first checking if the lockless freelist can be used.
2820 * If not then __slab_alloc is called for slow processing.
2821 *
2822 * Otherwise we can simply pick the next object from the lockless free list.
2823 */
2824 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2825 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2826 {
2827 void *object;
2828 struct kmem_cache_cpu *c;
2829 struct page *page;
2830 unsigned long tid;
2831 struct obj_cgroup *objcg = NULL;
2832 bool init = false;
2833
2834 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2835 if (!s)
2836 return NULL;
2837
2838 object = kfence_alloc(s, orig_size, gfpflags);
2839 if (unlikely(object))
2840 goto out;
2841
2842 redo:
2843 /*
2844 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2845 * enabled. We may switch back and forth between cpus while
2846 * reading from one cpu area. That does not matter as long
2847 * as we end up on the original cpu again when doing the cmpxchg.
2848 *
2849 * We should guarantee that tid and kmem_cache are retrieved on
2850 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2851 * to check if it is matched or not.
2852 */
2853 do {
2854 tid = this_cpu_read(s->cpu_slab->tid);
2855 c = raw_cpu_ptr(s->cpu_slab);
2856 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2857 unlikely(tid != READ_ONCE(c->tid)));
2858
2859 /*
2860 * Irqless object alloc/free algorithm used here depends on sequence
2861 * of fetching cpu_slab's data. tid should be fetched before anything
2862 * on c to guarantee that object and page associated with previous tid
2863 * won't be used with current tid. If we fetch tid first, object and
2864 * page could be one associated with next tid and our alloc/free
2865 * request will be failed. In this case, we will retry. So, no problem.
2866 */
2867 barrier();
2868
2869 /*
2870 * The transaction ids are globally unique per cpu and per operation on
2871 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2872 * occurs on the right processor and that there was no operation on the
2873 * linked list in between.
2874 */
2875
2876 object = c->freelist;
2877 page = c->page;
2878 if (unlikely(!object || !page || !node_match(page, node))) {
2879 object = __slab_alloc(s, gfpflags, node, addr, c);
2880 } else {
2881 void *next_object = get_freepointer_safe(s, object);
2882
2883 /*
2884 * The cmpxchg will only match if there was no additional
2885 * operation and if we are on the right processor.
2886 *
2887 * The cmpxchg does the following atomically (without lock
2888 * semantics!)
2889 * 1. Relocate first pointer to the current per cpu area.
2890 * 2. Verify that tid and freelist have not been changed
2891 * 3. If they were not changed replace tid and freelist
2892 *
2893 * Since this is without lock semantics the protection is only
2894 * against code executing on this cpu *not* from access by
2895 * other cpus.
2896 */
2897 if (unlikely(!this_cpu_cmpxchg_double(
2898 s->cpu_slab->freelist, s->cpu_slab->tid,
2899 object, tid,
2900 next_object, next_tid(tid)))) {
2901
2902 note_cmpxchg_failure("slab_alloc", s, tid);
2903 goto redo;
2904 }
2905 prefetch_freepointer(s, next_object);
2906 stat(s, ALLOC_FASTPATH);
2907 }
2908
2909 maybe_wipe_obj_freeptr(s, object);
2910 init = slab_want_init_on_alloc(gfpflags, s);
2911
2912 out:
2913 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2914
2915 return object;
2916 }
2917
2918 static __always_inline void *slab_alloc(struct kmem_cache *s,
2919 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2920 {
2921 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2922 }
2923
2924 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2925 {
2926 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2927
2928 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2929 s->size, gfpflags);
2930
2931 return ret;
2932 }
2933 EXPORT_SYMBOL(kmem_cache_alloc);
2934
2935 #ifdef CONFIG_TRACING
2936 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2937 {
2938 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2939 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2940 ret = kasan_kmalloc(s, ret, size, gfpflags);
2941 return ret;
2942 }
2943 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2944 #endif
2945
2946 #ifdef CONFIG_NUMA
2947 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2948 {
2949 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2950
2951 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2952 s->object_size, s->size, gfpflags, node);
2953
2954 return ret;
2955 }
2956 EXPORT_SYMBOL(kmem_cache_alloc_node);
2957
2958 #ifdef CONFIG_TRACING
2959 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2960 gfp_t gfpflags,
2961 int node, size_t size)
2962 {
2963 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
2964
2965 trace_kmalloc_node(_RET_IP_, ret,
2966 size, s->size, gfpflags, node);
2967
2968 ret = kasan_kmalloc(s, ret, size, gfpflags);
2969 return ret;
2970 }
2971 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2972 #endif
2973 #endif /* CONFIG_NUMA */
2974
2975 /*
2976 * Slow path handling. This may still be called frequently since objects
2977 * have a longer lifetime than the cpu slabs in most processing loads.
2978 *
2979 * So we still attempt to reduce cache line usage. Just take the slab
2980 * lock and free the item. If there is no additional partial page
2981 * handling required then we can return immediately.
2982 */
2983 static void __slab_free(struct kmem_cache *s, struct page *page,
2984 void *head, void *tail, int cnt,
2985 unsigned long addr)
2986
2987 {
2988 void *prior;
2989 int was_frozen;
2990 struct page new;
2991 unsigned long counters;
2992 struct kmem_cache_node *n = NULL;
2993 unsigned long flags;
2994
2995 stat(s, FREE_SLOWPATH);
2996
2997 if (kfence_free(head))
2998 return;
2999
3000 if (kmem_cache_debug(s) &&
3001 !free_debug_processing(s, page, head, tail, cnt, addr))
3002 return;
3003
3004 do {
3005 if (unlikely(n)) {
3006 spin_unlock_irqrestore(&n->list_lock, flags);
3007 n = NULL;
3008 }
3009 prior = page->freelist;
3010 counters = page->counters;
3011 set_freepointer(s, tail, prior);
3012 new.counters = counters;
3013 was_frozen = new.frozen;
3014 new.inuse -= cnt;
3015 if ((!new.inuse || !prior) && !was_frozen) {
3016
3017 if (kmem_cache_has_cpu_partial(s) && !prior) {
3018
3019 /*
3020 * Slab was on no list before and will be
3021 * partially empty
3022 * We can defer the list move and instead
3023 * freeze it.
3024 */
3025 new.frozen = 1;
3026
3027 } else { /* Needs to be taken off a list */
3028
3029 n = get_node(s, page_to_nid(page));
3030 /*
3031 * Speculatively acquire the list_lock.
3032 * If the cmpxchg does not succeed then we may
3033 * drop the list_lock without any processing.
3034 *
3035 * Otherwise the list_lock will synchronize with
3036 * other processors updating the list of slabs.
3037 */
3038 spin_lock_irqsave(&n->list_lock, flags);
3039
3040 }
3041 }
3042
3043 } while (!cmpxchg_double_slab(s, page,
3044 prior, counters,
3045 head, new.counters,
3046 "__slab_free"));
3047
3048 if (likely(!n)) {
3049
3050 if (likely(was_frozen)) {
3051 /*
3052 * The list lock was not taken therefore no list
3053 * activity can be necessary.
3054 */
3055 stat(s, FREE_FROZEN);
3056 } else if (new.frozen) {
3057 /*
3058 * If we just froze the page then put it onto the
3059 * per cpu partial list.
3060 */
3061 put_cpu_partial(s, page, 1);
3062 stat(s, CPU_PARTIAL_FREE);
3063 }
3064
3065 return;
3066 }
3067
3068 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3069 goto slab_empty;
3070
3071 /*
3072 * Objects left in the slab. If it was not on the partial list before
3073 * then add it.
3074 */
3075 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3076 remove_full(s, n, page);
3077 add_partial(n, page, DEACTIVATE_TO_TAIL);
3078 stat(s, FREE_ADD_PARTIAL);
3079 }
3080 spin_unlock_irqrestore(&n->list_lock, flags);
3081 return;
3082
3083 slab_empty:
3084 if (prior) {
3085 /*
3086 * Slab on the partial list.
3087 */
3088 remove_partial(n, page);
3089 stat(s, FREE_REMOVE_PARTIAL);
3090 } else {
3091 /* Slab must be on the full list */
3092 remove_full(s, n, page);
3093 }
3094
3095 spin_unlock_irqrestore(&n->list_lock, flags);
3096 stat(s, FREE_SLAB);
3097 discard_slab(s, page);
3098 }
3099
3100 /*
3101 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3102 * can perform fastpath freeing without additional function calls.
3103 *
3104 * The fastpath is only possible if we are freeing to the current cpu slab
3105 * of this processor. This typically the case if we have just allocated
3106 * the item before.
3107 *
3108 * If fastpath is not possible then fall back to __slab_free where we deal
3109 * with all sorts of special processing.
3110 *
3111 * Bulk free of a freelist with several objects (all pointing to the
3112 * same page) possible by specifying head and tail ptr, plus objects
3113 * count (cnt). Bulk free indicated by tail pointer being set.
3114 */
3115 static __always_inline void do_slab_free(struct kmem_cache *s,
3116 struct page *page, void *head, void *tail,
3117 int cnt, unsigned long addr)
3118 {
3119 void *tail_obj = tail ? : head;
3120 struct kmem_cache_cpu *c;
3121 unsigned long tid;
3122
3123 memcg_slab_free_hook(s, &head, 1);
3124 redo:
3125 /*
3126 * Determine the currently cpus per cpu slab.
3127 * The cpu may change afterward. However that does not matter since
3128 * data is retrieved via this pointer. If we are on the same cpu
3129 * during the cmpxchg then the free will succeed.
3130 */
3131 do {
3132 tid = this_cpu_read(s->cpu_slab->tid);
3133 c = raw_cpu_ptr(s->cpu_slab);
3134 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3135 unlikely(tid != READ_ONCE(c->tid)));
3136
3137 /* Same with comment on barrier() in slab_alloc_node() */
3138 barrier();
3139
3140 if (likely(page == c->page)) {
3141 void **freelist = READ_ONCE(c->freelist);
3142
3143 set_freepointer(s, tail_obj, freelist);
3144
3145 if (unlikely(!this_cpu_cmpxchg_double(
3146 s->cpu_slab->freelist, s->cpu_slab->tid,
3147 freelist, tid,
3148 head, next_tid(tid)))) {
3149
3150 note_cmpxchg_failure("slab_free", s, tid);
3151 goto redo;
3152 }
3153 stat(s, FREE_FASTPATH);
3154 } else
3155 __slab_free(s, page, head, tail_obj, cnt, addr);
3156
3157 }
3158
3159 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3160 void *head, void *tail, int cnt,
3161 unsigned long addr)
3162 {
3163 /*
3164 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3165 * to remove objects, whose reuse must be delayed.
3166 */
3167 if (slab_free_freelist_hook(s, &head, &tail))
3168 do_slab_free(s, page, head, tail, cnt, addr);
3169 }
3170
3171 #ifdef CONFIG_KASAN_GENERIC
3172 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3173 {
3174 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3175 }
3176 #endif
3177
3178 void kmem_cache_free(struct kmem_cache *s, void *x)
3179 {
3180 s = cache_from_obj(s, x);
3181 if (!s)
3182 return;
3183 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3184 trace_kmem_cache_free(_RET_IP_, x, s->name);
3185 }
3186 EXPORT_SYMBOL(kmem_cache_free);
3187
3188 struct detached_freelist {
3189 struct page *page;
3190 void *tail;
3191 void *freelist;
3192 int cnt;
3193 struct kmem_cache *s;
3194 };
3195
3196 /*
3197 * This function progressively scans the array with free objects (with
3198 * a limited look ahead) and extract objects belonging to the same
3199 * page. It builds a detached freelist directly within the given
3200 * page/objects. This can happen without any need for
3201 * synchronization, because the objects are owned by running process.
3202 * The freelist is build up as a single linked list in the objects.
3203 * The idea is, that this detached freelist can then be bulk
3204 * transferred to the real freelist(s), but only requiring a single
3205 * synchronization primitive. Look ahead in the array is limited due
3206 * to performance reasons.
3207 */
3208 static inline
3209 int build_detached_freelist(struct kmem_cache *s, size_t size,
3210 void **p, struct detached_freelist *df)
3211 {
3212 size_t first_skipped_index = 0;
3213 int lookahead = 3;
3214 void *object;
3215 struct page *page;
3216
3217 /* Always re-init detached_freelist */
3218 df->page = NULL;
3219
3220 do {
3221 object = p[--size];
3222 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3223 } while (!object && size);
3224
3225 if (!object)
3226 return 0;
3227
3228 page = virt_to_head_page(object);
3229 if (!s) {
3230 /* Handle kalloc'ed objects */
3231 if (unlikely(!PageSlab(page))) {
3232 BUG_ON(!PageCompound(page));
3233 kfree_hook(object);
3234 __free_pages(page, compound_order(page));
3235 p[size] = NULL; /* mark object processed */
3236 return size;
3237 }
3238 /* Derive kmem_cache from object */
3239 df->s = page->slab_cache;
3240 } else {
3241 df->s = cache_from_obj(s, object); /* Support for memcg */
3242 }
3243
3244 if (is_kfence_address(object)) {
3245 slab_free_hook(df->s, object, false);
3246 __kfence_free(object);
3247 p[size] = NULL; /* mark object processed */
3248 return size;
3249 }
3250
3251 /* Start new detached freelist */
3252 df->page = page;
3253 set_freepointer(df->s, object, NULL);
3254 df->tail = object;
3255 df->freelist = object;
3256 p[size] = NULL; /* mark object processed */
3257 df->cnt = 1;
3258
3259 while (size) {
3260 object = p[--size];
3261 if (!object)
3262 continue; /* Skip processed objects */
3263
3264 /* df->page is always set at this point */
3265 if (df->page == virt_to_head_page(object)) {
3266 /* Opportunity build freelist */
3267 set_freepointer(df->s, object, df->freelist);
3268 df->freelist = object;
3269 df->cnt++;
3270 p[size] = NULL; /* mark object processed */
3271
3272 continue;
3273 }
3274
3275 /* Limit look ahead search */
3276 if (!--lookahead)
3277 break;
3278
3279 if (!first_skipped_index)
3280 first_skipped_index = size + 1;
3281 }
3282
3283 return first_skipped_index;
3284 }
3285
3286 /* Note that interrupts must be enabled when calling this function. */
3287 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3288 {
3289 if (WARN_ON(!size))
3290 return;
3291
3292 memcg_slab_free_hook(s, p, size);
3293 do {
3294 struct detached_freelist df;
3295
3296 size = build_detached_freelist(s, size, p, &df);
3297 if (!df.page)
3298 continue;
3299
3300 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3301 } while (likely(size));
3302 }
3303 EXPORT_SYMBOL(kmem_cache_free_bulk);
3304
3305 /* Note that interrupts must be enabled when calling this function. */
3306 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3307 void **p)
3308 {
3309 struct kmem_cache_cpu *c;
3310 int i;
3311 struct obj_cgroup *objcg = NULL;
3312
3313 /* memcg and kmem_cache debug support */
3314 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3315 if (unlikely(!s))
3316 return false;
3317 /*
3318 * Drain objects in the per cpu slab, while disabling local
3319 * IRQs, which protects against PREEMPT and interrupts
3320 * handlers invoking normal fastpath.
3321 */
3322 local_irq_disable();
3323 c = this_cpu_ptr(s->cpu_slab);
3324
3325 for (i = 0; i < size; i++) {
3326 void *object = kfence_alloc(s, s->object_size, flags);
3327
3328 if (unlikely(object)) {
3329 p[i] = object;
3330 continue;
3331 }
3332
3333 object = c->freelist;
3334 if (unlikely(!object)) {
3335 /*
3336 * We may have removed an object from c->freelist using
3337 * the fastpath in the previous iteration; in that case,
3338 * c->tid has not been bumped yet.
3339 * Since ___slab_alloc() may reenable interrupts while
3340 * allocating memory, we should bump c->tid now.
3341 */
3342 c->tid = next_tid(c->tid);
3343
3344 /*
3345 * Invoking slow path likely have side-effect
3346 * of re-populating per CPU c->freelist
3347 */
3348 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3349 _RET_IP_, c);
3350 if (unlikely(!p[i]))
3351 goto error;
3352
3353 c = this_cpu_ptr(s->cpu_slab);
3354 maybe_wipe_obj_freeptr(s, p[i]);
3355
3356 continue; /* goto for-loop */
3357 }
3358 c->freelist = get_freepointer(s, object);
3359 p[i] = object;
3360 maybe_wipe_obj_freeptr(s, p[i]);
3361 }
3362 c->tid = next_tid(c->tid);
3363 local_irq_enable();
3364
3365 /*
3366 * memcg and kmem_cache debug support and memory initialization.
3367 * Done outside of the IRQ disabled fastpath loop.
3368 */
3369 slab_post_alloc_hook(s, objcg, flags, size, p,
3370 slab_want_init_on_alloc(flags, s));
3371 return i;
3372 error:
3373 local_irq_enable();
3374 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3375 __kmem_cache_free_bulk(s, i, p);
3376 return 0;
3377 }
3378 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3379
3380
3381 /*
3382 * Object placement in a slab is made very easy because we always start at
3383 * offset 0. If we tune the size of the object to the alignment then we can
3384 * get the required alignment by putting one properly sized object after
3385 * another.
3386 *
3387 * Notice that the allocation order determines the sizes of the per cpu
3388 * caches. Each processor has always one slab available for allocations.
3389 * Increasing the allocation order reduces the number of times that slabs
3390 * must be moved on and off the partial lists and is therefore a factor in
3391 * locking overhead.
3392 */
3393
3394 /*
3395 * Minimum / Maximum order of slab pages. This influences locking overhead
3396 * and slab fragmentation. A higher order reduces the number of partial slabs
3397 * and increases the number of allocations possible without having to
3398 * take the list_lock.
3399 */
3400 static unsigned int slub_min_order;
3401 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3402 static unsigned int slub_min_objects;
3403
3404 /*
3405 * Calculate the order of allocation given an slab object size.
3406 *
3407 * The order of allocation has significant impact on performance and other
3408 * system components. Generally order 0 allocations should be preferred since
3409 * order 0 does not cause fragmentation in the page allocator. Larger objects
3410 * be problematic to put into order 0 slabs because there may be too much
3411 * unused space left. We go to a higher order if more than 1/16th of the slab
3412 * would be wasted.
3413 *
3414 * In order to reach satisfactory performance we must ensure that a minimum
3415 * number of objects is in one slab. Otherwise we may generate too much
3416 * activity on the partial lists which requires taking the list_lock. This is
3417 * less a concern for large slabs though which are rarely used.
3418 *
3419 * slub_max_order specifies the order where we begin to stop considering the
3420 * number of objects in a slab as critical. If we reach slub_max_order then
3421 * we try to keep the page order as low as possible. So we accept more waste
3422 * of space in favor of a small page order.
3423 *
3424 * Higher order allocations also allow the placement of more objects in a
3425 * slab and thereby reduce object handling overhead. If the user has
3426 * requested a higher minimum order then we start with that one instead of
3427 * the smallest order which will fit the object.
3428 */
3429 static inline unsigned int slab_order(unsigned int size,
3430 unsigned int min_objects, unsigned int max_order,
3431 unsigned int fract_leftover)
3432 {
3433 unsigned int min_order = slub_min_order;
3434 unsigned int order;
3435
3436 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3437 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3438
3439 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3440 order <= max_order; order++) {
3441
3442 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3443 unsigned int rem;
3444
3445 rem = slab_size % size;
3446
3447 if (rem <= slab_size / fract_leftover)
3448 break;
3449 }
3450
3451 return order;
3452 }
3453
3454 static inline int calculate_order(unsigned int size)
3455 {
3456 unsigned int order;
3457 unsigned int min_objects;
3458 unsigned int max_objects;
3459 unsigned int nr_cpus;
3460
3461 /*
3462 * Attempt to find best configuration for a slab. This
3463 * works by first attempting to generate a layout with
3464 * the best configuration and backing off gradually.
3465 *
3466 * First we increase the acceptable waste in a slab. Then
3467 * we reduce the minimum objects required in a slab.
3468 */
3469 min_objects = slub_min_objects;
3470 if (!min_objects) {
3471 /*
3472 * Some architectures will only update present cpus when
3473 * onlining them, so don't trust the number if it's just 1. But
3474 * we also don't want to use nr_cpu_ids always, as on some other
3475 * architectures, there can be many possible cpus, but never
3476 * onlined. Here we compromise between trying to avoid too high
3477 * order on systems that appear larger than they are, and too
3478 * low order on systems that appear smaller than they are.
3479 */
3480 nr_cpus = num_present_cpus();
3481 if (nr_cpus <= 1)
3482 nr_cpus = nr_cpu_ids;
3483 min_objects = 4 * (fls(nr_cpus) + 1);
3484 }
3485 max_objects = order_objects(slub_max_order, size);
3486 min_objects = min(min_objects, max_objects);
3487
3488 while (min_objects > 1) {
3489 unsigned int fraction;
3490
3491 fraction = 16;
3492 while (fraction >= 4) {
3493 order = slab_order(size, min_objects,
3494 slub_max_order, fraction);
3495 if (order <= slub_max_order)
3496 return order;
3497 fraction /= 2;
3498 }
3499 min_objects--;
3500 }
3501
3502 /*
3503 * We were unable to place multiple objects in a slab. Now
3504 * lets see if we can place a single object there.
3505 */
3506 order = slab_order(size, 1, slub_max_order, 1);
3507 if (order <= slub_max_order)
3508 return order;
3509
3510 /*
3511 * Doh this slab cannot be placed using slub_max_order.
3512 */
3513 order = slab_order(size, 1, MAX_ORDER, 1);
3514 if (order < MAX_ORDER)
3515 return order;
3516 return -ENOSYS;
3517 }
3518
3519 static void
3520 init_kmem_cache_node(struct kmem_cache_node *n)
3521 {
3522 n->nr_partial = 0;
3523 spin_lock_init(&n->list_lock);
3524 INIT_LIST_HEAD(&n->partial);
3525 #ifdef CONFIG_SLUB_DEBUG
3526 atomic_long_set(&n->nr_slabs, 0);
3527 atomic_long_set(&n->total_objects, 0);
3528 INIT_LIST_HEAD(&n->full);
3529 #endif
3530 }
3531
3532 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3533 {
3534 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3535 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3536
3537 /*
3538 * Must align to double word boundary for the double cmpxchg
3539 * instructions to work; see __pcpu_double_call_return_bool().
3540 */
3541 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3542 2 * sizeof(void *));
3543
3544 if (!s->cpu_slab)
3545 return 0;
3546
3547 init_kmem_cache_cpus(s);
3548
3549 return 1;
3550 }
3551
3552 static struct kmem_cache *kmem_cache_node;
3553
3554 /*
3555 * No kmalloc_node yet so do it by hand. We know that this is the first
3556 * slab on the node for this slabcache. There are no concurrent accesses
3557 * possible.
3558 *
3559 * Note that this function only works on the kmem_cache_node
3560 * when allocating for the kmem_cache_node. This is used for bootstrapping
3561 * memory on a fresh node that has no slab structures yet.
3562 */
3563 static void early_kmem_cache_node_alloc(int node)
3564 {
3565 struct page *page;
3566 struct kmem_cache_node *n;
3567
3568 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3569
3570 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3571
3572 BUG_ON(!page);
3573 if (page_to_nid(page) != node) {
3574 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3575 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3576 }
3577
3578 n = page->freelist;
3579 BUG_ON(!n);
3580 #ifdef CONFIG_SLUB_DEBUG
3581 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3582 init_tracking(kmem_cache_node, n);
3583 #endif
3584 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3585 page->freelist = get_freepointer(kmem_cache_node, n);
3586 page->inuse = 1;
3587 page->frozen = 0;
3588 kmem_cache_node->node[node] = n;
3589 init_kmem_cache_node(n);
3590 inc_slabs_node(kmem_cache_node, node, page->objects);
3591
3592 /*
3593 * No locks need to be taken here as it has just been
3594 * initialized and there is no concurrent access.
3595 */
3596 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3597 }
3598
3599 static void free_kmem_cache_nodes(struct kmem_cache *s)
3600 {
3601 int node;
3602 struct kmem_cache_node *n;
3603
3604 for_each_kmem_cache_node(s, node, n) {
3605 s->node[node] = NULL;
3606 kmem_cache_free(kmem_cache_node, n);
3607 }
3608 }
3609
3610 void __kmem_cache_release(struct kmem_cache *s)
3611 {
3612 cache_random_seq_destroy(s);
3613 free_percpu(s->cpu_slab);
3614 free_kmem_cache_nodes(s);
3615 }
3616
3617 static int init_kmem_cache_nodes(struct kmem_cache *s)
3618 {
3619 int node;
3620
3621 for_each_node_mask(node, slab_nodes) {
3622 struct kmem_cache_node *n;
3623
3624 if (slab_state == DOWN) {
3625 early_kmem_cache_node_alloc(node);
3626 continue;
3627 }
3628 n = kmem_cache_alloc_node(kmem_cache_node,
3629 GFP_KERNEL, node);
3630
3631 if (!n) {
3632 free_kmem_cache_nodes(s);
3633 return 0;
3634 }
3635
3636 init_kmem_cache_node(n);
3637 s->node[node] = n;
3638 }
3639 return 1;
3640 }
3641
3642 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3643 {
3644 if (min < MIN_PARTIAL)
3645 min = MIN_PARTIAL;
3646 else if (min > MAX_PARTIAL)
3647 min = MAX_PARTIAL;
3648 s->min_partial = min;
3649 }
3650
3651 static void set_cpu_partial(struct kmem_cache *s)
3652 {
3653 #ifdef CONFIG_SLUB_CPU_PARTIAL
3654 /*
3655 * cpu_partial determined the maximum number of objects kept in the
3656 * per cpu partial lists of a processor.
3657 *
3658 * Per cpu partial lists mainly contain slabs that just have one
3659 * object freed. If they are used for allocation then they can be
3660 * filled up again with minimal effort. The slab will never hit the
3661 * per node partial lists and therefore no locking will be required.
3662 *
3663 * This setting also determines
3664 *
3665 * A) The number of objects from per cpu partial slabs dumped to the
3666 * per node list when we reach the limit.
3667 * B) The number of objects in cpu partial slabs to extract from the
3668 * per node list when we run out of per cpu objects. We only fetch
3669 * 50% to keep some capacity around for frees.
3670 */
3671 if (!kmem_cache_has_cpu_partial(s))
3672 slub_set_cpu_partial(s, 0);
3673 else if (s->size >= PAGE_SIZE)
3674 slub_set_cpu_partial(s, 2);
3675 else if (s->size >= 1024)
3676 slub_set_cpu_partial(s, 6);
3677 else if (s->size >= 256)
3678 slub_set_cpu_partial(s, 13);
3679 else
3680 slub_set_cpu_partial(s, 30);
3681 #endif
3682 }
3683
3684 /*
3685 * calculate_sizes() determines the order and the distribution of data within
3686 * a slab object.
3687 */
3688 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3689 {
3690 slab_flags_t flags = s->flags;
3691 unsigned int size = s->object_size;
3692 unsigned int freepointer_area;
3693 unsigned int order;
3694
3695 /*
3696 * Round up object size to the next word boundary. We can only
3697 * place the free pointer at word boundaries and this determines
3698 * the possible location of the free pointer.
3699 */
3700 size = ALIGN(size, sizeof(void *));
3701 /*
3702 * This is the area of the object where a freepointer can be
3703 * safely written. If redzoning adds more to the inuse size, we
3704 * can't use that portion for writing the freepointer, so
3705 * s->offset must be limited within this for the general case.
3706 */
3707 freepointer_area = size;
3708
3709 #ifdef CONFIG_SLUB_DEBUG
3710 /*
3711 * Determine if we can poison the object itself. If the user of
3712 * the slab may touch the object after free or before allocation
3713 * then we should never poison the object itself.
3714 */
3715 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3716 !s->ctor)
3717 s->flags |= __OBJECT_POISON;
3718 else
3719 s->flags &= ~__OBJECT_POISON;
3720
3721
3722 /*
3723 * If we are Redzoning then check if there is some space between the
3724 * end of the object and the free pointer. If not then add an
3725 * additional word to have some bytes to store Redzone information.
3726 */
3727 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3728 size += sizeof(void *);
3729 #endif
3730
3731 /*
3732 * With that we have determined the number of bytes in actual use
3733 * by the object. This is the potential offset to the free pointer.
3734 */
3735 s->inuse = size;
3736
3737 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3738 s->ctor)) {
3739 /*
3740 * Relocate free pointer after the object if it is not
3741 * permitted to overwrite the first word of the object on
3742 * kmem_cache_free.
3743 *
3744 * This is the case if we do RCU, have a constructor or
3745 * destructor or are poisoning the objects.
3746 *
3747 * The assumption that s->offset >= s->inuse means free
3748 * pointer is outside of the object is used in the
3749 * freeptr_outside_object() function. If that is no
3750 * longer true, the function needs to be modified.
3751 */
3752 s->offset = size;
3753 size += sizeof(void *);
3754 } else if (freepointer_area > sizeof(void *)) {
3755 /*
3756 * Store freelist pointer near middle of object to keep
3757 * it away from the edges of the object to avoid small
3758 * sized over/underflows from neighboring allocations.
3759 */
3760 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3761 }
3762
3763 #ifdef CONFIG_SLUB_DEBUG
3764 if (flags & SLAB_STORE_USER)
3765 /*
3766 * Need to store information about allocs and frees after
3767 * the object.
3768 */
3769 size += 2 * sizeof(struct track);
3770 #endif
3771
3772 kasan_cache_create(s, &size, &s->flags);
3773 #ifdef CONFIG_SLUB_DEBUG
3774 if (flags & SLAB_RED_ZONE) {
3775 /*
3776 * Add some empty padding so that we can catch
3777 * overwrites from earlier objects rather than let
3778 * tracking information or the free pointer be
3779 * corrupted if a user writes before the start
3780 * of the object.
3781 */
3782 size += sizeof(void *);
3783
3784 s->red_left_pad = sizeof(void *);
3785 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3786 size += s->red_left_pad;
3787 }
3788 #endif
3789
3790 /*
3791 * SLUB stores one object immediately after another beginning from
3792 * offset 0. In order to align the objects we have to simply size
3793 * each object to conform to the alignment.
3794 */
3795 size = ALIGN(size, s->align);
3796 s->size = size;
3797 s->reciprocal_size = reciprocal_value(size);
3798 if (forced_order >= 0)
3799 order = forced_order;
3800 else
3801 order = calculate_order(size);
3802
3803 if ((int)order < 0)
3804 return 0;
3805
3806 s->allocflags = 0;
3807 if (order)
3808 s->allocflags |= __GFP_COMP;
3809
3810 if (s->flags & SLAB_CACHE_DMA)
3811 s->allocflags |= GFP_DMA;
3812
3813 if (s->flags & SLAB_CACHE_DMA32)
3814 s->allocflags |= GFP_DMA32;
3815
3816 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3817 s->allocflags |= __GFP_RECLAIMABLE;
3818
3819 /*
3820 * Determine the number of objects per slab
3821 */
3822 s->oo = oo_make(order, size);
3823 s->min = oo_make(get_order(size), size);
3824 if (oo_objects(s->oo) > oo_objects(s->max))
3825 s->max = s->oo;
3826
3827 return !!oo_objects(s->oo);
3828 }
3829
3830 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3831 {
3832 s->flags = kmem_cache_flags(s->size, flags, s->name);
3833 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3834 s->random = get_random_long();
3835 #endif
3836
3837 if (!calculate_sizes(s, -1))
3838 goto error;
3839 if (disable_higher_order_debug) {
3840 /*
3841 * Disable debugging flags that store metadata if the min slab
3842 * order increased.
3843 */
3844 if (get_order(s->size) > get_order(s->object_size)) {
3845 s->flags &= ~DEBUG_METADATA_FLAGS;
3846 s->offset = 0;
3847 if (!calculate_sizes(s, -1))
3848 goto error;
3849 }
3850 }
3851
3852 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3853 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3854 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3855 /* Enable fast mode */
3856 s->flags |= __CMPXCHG_DOUBLE;
3857 #endif
3858
3859 /*
3860 * The larger the object size is, the more pages we want on the partial
3861 * list to avoid pounding the page allocator excessively.
3862 */
3863 set_min_partial(s, ilog2(s->size) / 2);
3864
3865 set_cpu_partial(s);
3866
3867 #ifdef CONFIG_NUMA
3868 s->remote_node_defrag_ratio = 1000;
3869 #endif
3870
3871 /* Initialize the pre-computed randomized freelist if slab is up */
3872 if (slab_state >= UP) {
3873 if (init_cache_random_seq(s))
3874 goto error;
3875 }
3876
3877 if (!init_kmem_cache_nodes(s))
3878 goto error;
3879
3880 if (alloc_kmem_cache_cpus(s))
3881 return 0;
3882
3883 free_kmem_cache_nodes(s);
3884 error:
3885 return -EINVAL;
3886 }
3887
3888 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3889 const char *text)
3890 {
3891 #ifdef CONFIG_SLUB_DEBUG
3892 void *addr = page_address(page);
3893 unsigned long *map;
3894 void *p;
3895
3896 slab_err(s, page, text, s->name);
3897 slab_lock(page);
3898
3899 map = get_map(s, page);
3900 for_each_object(p, s, addr, page->objects) {
3901
3902 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3903 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3904 print_tracking(s, p);
3905 }
3906 }
3907 put_map(map);
3908 slab_unlock(page);
3909 #endif
3910 }
3911
3912 /*
3913 * Attempt to free all partial slabs on a node.
3914 * This is called from __kmem_cache_shutdown(). We must take list_lock
3915 * because sysfs file might still access partial list after the shutdowning.
3916 */
3917 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3918 {
3919 LIST_HEAD(discard);
3920 struct page *page, *h;
3921
3922 BUG_ON(irqs_disabled());
3923 spin_lock_irq(&n->list_lock);
3924 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3925 if (!page->inuse) {
3926 remove_partial(n, page);
3927 list_add(&page->slab_list, &discard);
3928 } else {
3929 list_slab_objects(s, page,
3930 "Objects remaining in %s on __kmem_cache_shutdown()");
3931 }
3932 }
3933 spin_unlock_irq(&n->list_lock);
3934
3935 list_for_each_entry_safe(page, h, &discard, slab_list)
3936 discard_slab(s, page);
3937 }
3938
3939 bool __kmem_cache_empty(struct kmem_cache *s)
3940 {
3941 int node;
3942 struct kmem_cache_node *n;
3943
3944 for_each_kmem_cache_node(s, node, n)
3945 if (n->nr_partial || slabs_node(s, node))
3946 return false;
3947 return true;
3948 }
3949
3950 /*
3951 * Release all resources used by a slab cache.
3952 */
3953 int __kmem_cache_shutdown(struct kmem_cache *s)
3954 {
3955 int node;
3956 struct kmem_cache_node *n;
3957
3958 flush_all(s);
3959 /* Attempt to free all objects */
3960 for_each_kmem_cache_node(s, node, n) {
3961 free_partial(s, n);
3962 if (n->nr_partial || slabs_node(s, node))
3963 return 1;
3964 }
3965 return 0;
3966 }
3967
3968 #ifdef CONFIG_PRINTK
3969 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3970 {
3971 void *base;
3972 int __maybe_unused i;
3973 unsigned int objnr;
3974 void *objp;
3975 void *objp0;
3976 struct kmem_cache *s = page->slab_cache;
3977 struct track __maybe_unused *trackp;
3978
3979 kpp->kp_ptr = object;
3980 kpp->kp_page = page;
3981 kpp->kp_slab_cache = s;
3982 base = page_address(page);
3983 objp0 = kasan_reset_tag(object);
3984 #ifdef CONFIG_SLUB_DEBUG
3985 objp = restore_red_left(s, objp0);
3986 #else
3987 objp = objp0;
3988 #endif
3989 objnr = obj_to_index(s, page, objp);
3990 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3991 objp = base + s->size * objnr;
3992 kpp->kp_objp = objp;
3993 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3994 !(s->flags & SLAB_STORE_USER))
3995 return;
3996 #ifdef CONFIG_SLUB_DEBUG
3997 trackp = get_track(s, objp, TRACK_ALLOC);
3998 kpp->kp_ret = (void *)trackp->addr;
3999 #ifdef CONFIG_STACKTRACE
4000 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4001 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4002 if (!kpp->kp_stack[i])
4003 break;
4004 }
4005 #endif
4006 #endif
4007 }
4008 #endif
4009
4010 /********************************************************************
4011 * Kmalloc subsystem
4012 *******************************************************************/
4013
4014 static int __init setup_slub_min_order(char *str)
4015 {
4016 get_option(&str, (int *)&slub_min_order);
4017
4018 return 1;
4019 }
4020
4021 __setup("slub_min_order=", setup_slub_min_order);
4022
4023 static int __init setup_slub_max_order(char *str)
4024 {
4025 get_option(&str, (int *)&slub_max_order);
4026 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4027
4028 return 1;
4029 }
4030
4031 __setup("slub_max_order=", setup_slub_max_order);
4032
4033 static int __init setup_slub_min_objects(char *str)
4034 {
4035 get_option(&str, (int *)&slub_min_objects);
4036
4037 return 1;
4038 }
4039
4040 __setup("slub_min_objects=", setup_slub_min_objects);
4041
4042 void *__kmalloc(size_t size, gfp_t flags)
4043 {
4044 struct kmem_cache *s;
4045 void *ret;
4046
4047 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4048 return kmalloc_large(size, flags);
4049
4050 s = kmalloc_slab(size, flags);
4051
4052 if (unlikely(ZERO_OR_NULL_PTR(s)))
4053 return s;
4054
4055 ret = slab_alloc(s, flags, _RET_IP_, size);
4056
4057 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4058
4059 ret = kasan_kmalloc(s, ret, size, flags);
4060
4061 return ret;
4062 }
4063 EXPORT_SYMBOL(__kmalloc);
4064
4065 #ifdef CONFIG_NUMA
4066 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4067 {
4068 struct page *page;
4069 void *ptr = NULL;
4070 unsigned int order = get_order(size);
4071
4072 flags |= __GFP_COMP;
4073 page = alloc_pages_node(node, flags, order);
4074 if (page) {
4075 ptr = page_address(page);
4076 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4077 PAGE_SIZE << order);
4078 }
4079
4080 return kmalloc_large_node_hook(ptr, size, flags);
4081 }
4082
4083 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4084 {
4085 struct kmem_cache *s;
4086 void *ret;
4087
4088 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4089 ret = kmalloc_large_node(size, flags, node);
4090
4091 trace_kmalloc_node(_RET_IP_, ret,
4092 size, PAGE_SIZE << get_order(size),
4093 flags, node);
4094
4095 return ret;
4096 }
4097
4098 s = kmalloc_slab(size, flags);
4099
4100 if (unlikely(ZERO_OR_NULL_PTR(s)))
4101 return s;
4102
4103 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4104
4105 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4106
4107 ret = kasan_kmalloc(s, ret, size, flags);
4108
4109 return ret;
4110 }
4111 EXPORT_SYMBOL(__kmalloc_node);
4112 #endif /* CONFIG_NUMA */
4113
4114 #ifdef CONFIG_HARDENED_USERCOPY
4115 /*
4116 * Rejects incorrectly sized objects and objects that are to be copied
4117 * to/from userspace but do not fall entirely within the containing slab
4118 * cache's usercopy region.
4119 *
4120 * Returns NULL if check passes, otherwise const char * to name of cache
4121 * to indicate an error.
4122 */
4123 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4124 bool to_user)
4125 {
4126 struct kmem_cache *s;
4127 unsigned int offset;
4128 size_t object_size;
4129 bool is_kfence = is_kfence_address(ptr);
4130
4131 ptr = kasan_reset_tag(ptr);
4132
4133 /* Find object and usable object size. */
4134 s = page->slab_cache;
4135
4136 /* Reject impossible pointers. */
4137 if (ptr < page_address(page))
4138 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4139 to_user, 0, n);
4140
4141 /* Find offset within object. */
4142 if (is_kfence)
4143 offset = ptr - kfence_object_start(ptr);
4144 else
4145 offset = (ptr - page_address(page)) % s->size;
4146
4147 /* Adjust for redzone and reject if within the redzone. */
4148 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4149 if (offset < s->red_left_pad)
4150 usercopy_abort("SLUB object in left red zone",
4151 s->name, to_user, offset, n);
4152 offset -= s->red_left_pad;
4153 }
4154
4155 /* Allow address range falling entirely within usercopy region. */
4156 if (offset >= s->useroffset &&
4157 offset - s->useroffset <= s->usersize &&
4158 n <= s->useroffset - offset + s->usersize)
4159 return;
4160
4161 /*
4162 * If the copy is still within the allocated object, produce
4163 * a warning instead of rejecting the copy. This is intended
4164 * to be a temporary method to find any missing usercopy
4165 * whitelists.
4166 */
4167 object_size = slab_ksize(s);
4168 if (usercopy_fallback &&
4169 offset <= object_size && n <= object_size - offset) {
4170 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4171 return;
4172 }
4173
4174 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4175 }
4176 #endif /* CONFIG_HARDENED_USERCOPY */
4177
4178 size_t __ksize(const void *object)
4179 {
4180 struct page *page;
4181
4182 if (unlikely(object == ZERO_SIZE_PTR))
4183 return 0;
4184
4185 page = virt_to_head_page(object);
4186
4187 if (unlikely(!PageSlab(page))) {
4188 WARN_ON(!PageCompound(page));
4189 return page_size(page);
4190 }
4191
4192 return slab_ksize(page->slab_cache);
4193 }
4194 EXPORT_SYMBOL(__ksize);
4195
4196 void kfree(const void *x)
4197 {
4198 struct page *page;
4199 void *object = (void *)x;
4200
4201 trace_kfree(_RET_IP_, x);
4202
4203 if (unlikely(ZERO_OR_NULL_PTR(x)))
4204 return;
4205
4206 page = virt_to_head_page(x);
4207 if (unlikely(!PageSlab(page))) {
4208 unsigned int order = compound_order(page);
4209
4210 BUG_ON(!PageCompound(page));
4211 kfree_hook(object);
4212 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4213 -(PAGE_SIZE << order));
4214 __free_pages(page, order);
4215 return;
4216 }
4217 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4218 }
4219 EXPORT_SYMBOL(kfree);
4220
4221 #define SHRINK_PROMOTE_MAX 32
4222
4223 /*
4224 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4225 * up most to the head of the partial lists. New allocations will then
4226 * fill those up and thus they can be removed from the partial lists.
4227 *
4228 * The slabs with the least items are placed last. This results in them
4229 * being allocated from last increasing the chance that the last objects
4230 * are freed in them.
4231 */
4232 int __kmem_cache_shrink(struct kmem_cache *s)
4233 {
4234 int node;
4235 int i;
4236 struct kmem_cache_node *n;
4237 struct page *page;
4238 struct page *t;
4239 struct list_head discard;
4240 struct list_head promote[SHRINK_PROMOTE_MAX];
4241 unsigned long flags;
4242 int ret = 0;
4243
4244 flush_all(s);
4245 for_each_kmem_cache_node(s, node, n) {
4246 INIT_LIST_HEAD(&discard);
4247 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4248 INIT_LIST_HEAD(promote + i);
4249
4250 spin_lock_irqsave(&n->list_lock, flags);
4251
4252 /*
4253 * Build lists of slabs to discard or promote.
4254 *
4255 * Note that concurrent frees may occur while we hold the
4256 * list_lock. page->inuse here is the upper limit.
4257 */
4258 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4259 int free = page->objects - page->inuse;
4260
4261 /* Do not reread page->inuse */
4262 barrier();
4263
4264 /* We do not keep full slabs on the list */
4265 BUG_ON(free <= 0);
4266
4267 if (free == page->objects) {
4268 list_move(&page->slab_list, &discard);
4269 n->nr_partial--;
4270 } else if (free <= SHRINK_PROMOTE_MAX)
4271 list_move(&page->slab_list, promote + free - 1);
4272 }
4273
4274 /*
4275 * Promote the slabs filled up most to the head of the
4276 * partial list.
4277 */
4278 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4279 list_splice(promote + i, &n->partial);
4280
4281 spin_unlock_irqrestore(&n->list_lock, flags);
4282
4283 /* Release empty slabs */
4284 list_for_each_entry_safe(page, t, &discard, slab_list)
4285 discard_slab(s, page);
4286
4287 if (slabs_node(s, node))
4288 ret = 1;
4289 }
4290
4291 return ret;
4292 }
4293
4294 static int slab_mem_going_offline_callback(void *arg)
4295 {
4296 struct kmem_cache *s;
4297
4298 mutex_lock(&slab_mutex);
4299 list_for_each_entry(s, &slab_caches, list)
4300 __kmem_cache_shrink(s);
4301 mutex_unlock(&slab_mutex);
4302
4303 return 0;
4304 }
4305
4306 static void slab_mem_offline_callback(void *arg)
4307 {
4308 struct memory_notify *marg = arg;
4309 int offline_node;
4310
4311 offline_node = marg->status_change_nid_normal;
4312
4313 /*
4314 * If the node still has available memory. we need kmem_cache_node
4315 * for it yet.
4316 */
4317 if (offline_node < 0)
4318 return;
4319
4320 mutex_lock(&slab_mutex);
4321 node_clear(offline_node, slab_nodes);
4322 /*
4323 * We no longer free kmem_cache_node structures here, as it would be
4324 * racy with all get_node() users, and infeasible to protect them with
4325 * slab_mutex.
4326 */
4327 mutex_unlock(&slab_mutex);
4328 }
4329
4330 static int slab_mem_going_online_callback(void *arg)
4331 {
4332 struct kmem_cache_node *n;
4333 struct kmem_cache *s;
4334 struct memory_notify *marg = arg;
4335 int nid = marg->status_change_nid_normal;
4336 int ret = 0;
4337
4338 /*
4339 * If the node's memory is already available, then kmem_cache_node is
4340 * already created. Nothing to do.
4341 */
4342 if (nid < 0)
4343 return 0;
4344
4345 /*
4346 * We are bringing a node online. No memory is available yet. We must
4347 * allocate a kmem_cache_node structure in order to bring the node
4348 * online.
4349 */
4350 mutex_lock(&slab_mutex);
4351 list_for_each_entry(s, &slab_caches, list) {
4352 /*
4353 * The structure may already exist if the node was previously
4354 * onlined and offlined.
4355 */
4356 if (get_node(s, nid))
4357 continue;
4358 /*
4359 * XXX: kmem_cache_alloc_node will fallback to other nodes
4360 * since memory is not yet available from the node that
4361 * is brought up.
4362 */
4363 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4364 if (!n) {
4365 ret = -ENOMEM;
4366 goto out;
4367 }
4368 init_kmem_cache_node(n);
4369 s->node[nid] = n;
4370 }
4371 /*
4372 * Any cache created after this point will also have kmem_cache_node
4373 * initialized for the new node.
4374 */
4375 node_set(nid, slab_nodes);
4376 out:
4377 mutex_unlock(&slab_mutex);
4378 return ret;
4379 }
4380
4381 static int slab_memory_callback(struct notifier_block *self,
4382 unsigned long action, void *arg)
4383 {
4384 int ret = 0;
4385
4386 switch (action) {
4387 case MEM_GOING_ONLINE:
4388 ret = slab_mem_going_online_callback(arg);
4389 break;
4390 case MEM_GOING_OFFLINE:
4391 ret = slab_mem_going_offline_callback(arg);
4392 break;
4393 case MEM_OFFLINE:
4394 case MEM_CANCEL_ONLINE:
4395 slab_mem_offline_callback(arg);
4396 break;
4397 case MEM_ONLINE:
4398 case MEM_CANCEL_OFFLINE:
4399 break;
4400 }
4401 if (ret)
4402 ret = notifier_from_errno(ret);
4403 else
4404 ret = NOTIFY_OK;
4405 return ret;
4406 }
4407
4408 static struct notifier_block slab_memory_callback_nb = {
4409 .notifier_call = slab_memory_callback,
4410 .priority = SLAB_CALLBACK_PRI,
4411 };
4412
4413 /********************************************************************
4414 * Basic setup of slabs
4415 *******************************************************************/
4416
4417 /*
4418 * Used for early kmem_cache structures that were allocated using
4419 * the page allocator. Allocate them properly then fix up the pointers
4420 * that may be pointing to the wrong kmem_cache structure.
4421 */
4422
4423 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4424 {
4425 int node;
4426 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4427 struct kmem_cache_node *n;
4428
4429 memcpy(s, static_cache, kmem_cache->object_size);
4430
4431 /*
4432 * This runs very early, and only the boot processor is supposed to be
4433 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4434 * IPIs around.
4435 */
4436 __flush_cpu_slab(s, smp_processor_id());
4437 for_each_kmem_cache_node(s, node, n) {
4438 struct page *p;
4439
4440 list_for_each_entry(p, &n->partial, slab_list)
4441 p->slab_cache = s;
4442
4443 #ifdef CONFIG_SLUB_DEBUG
4444 list_for_each_entry(p, &n->full, slab_list)
4445 p->slab_cache = s;
4446 #endif
4447 }
4448 list_add(&s->list, &slab_caches);
4449 return s;
4450 }
4451
4452 void __init kmem_cache_init(void)
4453 {
4454 static __initdata struct kmem_cache boot_kmem_cache,
4455 boot_kmem_cache_node;
4456 int node;
4457
4458 if (debug_guardpage_minorder())
4459 slub_max_order = 0;
4460
4461 kmem_cache_node = &boot_kmem_cache_node;
4462 kmem_cache = &boot_kmem_cache;
4463
4464 /*
4465 * Initialize the nodemask for which we will allocate per node
4466 * structures. Here we don't need taking slab_mutex yet.
4467 */
4468 for_each_node_state(node, N_NORMAL_MEMORY)
4469 node_set(node, slab_nodes);
4470
4471 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4472 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4473
4474 register_hotmemory_notifier(&slab_memory_callback_nb);
4475
4476 /* Able to allocate the per node structures */
4477 slab_state = PARTIAL;
4478
4479 create_boot_cache(kmem_cache, "kmem_cache",
4480 offsetof(struct kmem_cache, node) +
4481 nr_node_ids * sizeof(struct kmem_cache_node *),
4482 SLAB_HWCACHE_ALIGN, 0, 0);
4483
4484 kmem_cache = bootstrap(&boot_kmem_cache);
4485 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4486
4487 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4488 setup_kmalloc_cache_index_table();
4489 create_kmalloc_caches(0);
4490
4491 /* Setup random freelists for each cache */
4492 init_freelist_randomization();
4493
4494 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4495 slub_cpu_dead);
4496
4497 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4498 cache_line_size(),
4499 slub_min_order, slub_max_order, slub_min_objects,
4500 nr_cpu_ids, nr_node_ids);
4501 }
4502
4503 void __init kmem_cache_init_late(void)
4504 {
4505 }
4506
4507 struct kmem_cache *
4508 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4509 slab_flags_t flags, void (*ctor)(void *))
4510 {
4511 struct kmem_cache *s;
4512
4513 s = find_mergeable(size, align, flags, name, ctor);
4514 if (s) {
4515 s->refcount++;
4516
4517 /*
4518 * Adjust the object sizes so that we clear
4519 * the complete object on kzalloc.
4520 */
4521 s->object_size = max(s->object_size, size);
4522 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4523
4524 if (sysfs_slab_alias(s, name)) {
4525 s->refcount--;
4526 s = NULL;
4527 }
4528 }
4529
4530 return s;
4531 }
4532
4533 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4534 {
4535 int err;
4536
4537 err = kmem_cache_open(s, flags);
4538 if (err)
4539 return err;
4540
4541 /* Mutex is not taken during early boot */
4542 if (slab_state <= UP)
4543 return 0;
4544
4545 err = sysfs_slab_add(s);
4546 if (err)
4547 __kmem_cache_release(s);
4548
4549 return err;
4550 }
4551
4552 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4553 {
4554 struct kmem_cache *s;
4555 void *ret;
4556
4557 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4558 return kmalloc_large(size, gfpflags);
4559
4560 s = kmalloc_slab(size, gfpflags);
4561
4562 if (unlikely(ZERO_OR_NULL_PTR(s)))
4563 return s;
4564
4565 ret = slab_alloc(s, gfpflags, caller, size);
4566
4567 /* Honor the call site pointer we received. */
4568 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4569
4570 return ret;
4571 }
4572 EXPORT_SYMBOL(__kmalloc_track_caller);
4573
4574 #ifdef CONFIG_NUMA
4575 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4576 int node, unsigned long caller)
4577 {
4578 struct kmem_cache *s;
4579 void *ret;
4580
4581 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4582 ret = kmalloc_large_node(size, gfpflags, node);
4583
4584 trace_kmalloc_node(caller, ret,
4585 size, PAGE_SIZE << get_order(size),
4586 gfpflags, node);
4587
4588 return ret;
4589 }
4590
4591 s = kmalloc_slab(size, gfpflags);
4592
4593 if (unlikely(ZERO_OR_NULL_PTR(s)))
4594 return s;
4595
4596 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4597
4598 /* Honor the call site pointer we received. */
4599 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4600
4601 return ret;
4602 }
4603 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4604 #endif
4605
4606 #ifdef CONFIG_SYSFS
4607 static int count_inuse(struct page *page)
4608 {
4609 return page->inuse;
4610 }
4611
4612 static int count_total(struct page *page)
4613 {
4614 return page->objects;
4615 }
4616 #endif
4617
4618 #ifdef CONFIG_SLUB_DEBUG
4619 static void validate_slab(struct kmem_cache *s, struct page *page)
4620 {
4621 void *p;
4622 void *addr = page_address(page);
4623 unsigned long *map;
4624
4625 slab_lock(page);
4626
4627 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4628 goto unlock;
4629
4630 /* Now we know that a valid freelist exists */
4631 map = get_map(s, page);
4632 for_each_object(p, s, addr, page->objects) {
4633 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4634 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4635
4636 if (!check_object(s, page, p, val))
4637 break;
4638 }
4639 put_map(map);
4640 unlock:
4641 slab_unlock(page);
4642 }
4643
4644 static int validate_slab_node(struct kmem_cache *s,
4645 struct kmem_cache_node *n)
4646 {
4647 unsigned long count = 0;
4648 struct page *page;
4649 unsigned long flags;
4650
4651 spin_lock_irqsave(&n->list_lock, flags);
4652
4653 list_for_each_entry(page, &n->partial, slab_list) {
4654 validate_slab(s, page);
4655 count++;
4656 }
4657 if (count != n->nr_partial)
4658 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4659 s->name, count, n->nr_partial);
4660
4661 if (!(s->flags & SLAB_STORE_USER))
4662 goto out;
4663
4664 list_for_each_entry(page, &n->full, slab_list) {
4665 validate_slab(s, page);
4666 count++;
4667 }
4668 if (count != atomic_long_read(&n->nr_slabs))
4669 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4670 s->name, count, atomic_long_read(&n->nr_slabs));
4671
4672 out:
4673 spin_unlock_irqrestore(&n->list_lock, flags);
4674 return count;
4675 }
4676
4677 static long validate_slab_cache(struct kmem_cache *s)
4678 {
4679 int node;
4680 unsigned long count = 0;
4681 struct kmem_cache_node *n;
4682
4683 flush_all(s);
4684 for_each_kmem_cache_node(s, node, n)
4685 count += validate_slab_node(s, n);
4686
4687 return count;
4688 }
4689 /*
4690 * Generate lists of code addresses where slabcache objects are allocated
4691 * and freed.
4692 */
4693
4694 struct location {
4695 unsigned long count;
4696 unsigned long addr;
4697 long long sum_time;
4698 long min_time;
4699 long max_time;
4700 long min_pid;
4701 long max_pid;
4702 DECLARE_BITMAP(cpus, NR_CPUS);
4703 nodemask_t nodes;
4704 };
4705
4706 struct loc_track {
4707 unsigned long max;
4708 unsigned long count;
4709 struct location *loc;
4710 };
4711
4712 static void free_loc_track(struct loc_track *t)
4713 {
4714 if (t->max)
4715 free_pages((unsigned long)t->loc,
4716 get_order(sizeof(struct location) * t->max));
4717 }
4718
4719 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4720 {
4721 struct location *l;
4722 int order;
4723
4724 order = get_order(sizeof(struct location) * max);
4725
4726 l = (void *)__get_free_pages(flags, order);
4727 if (!l)
4728 return 0;
4729
4730 if (t->count) {
4731 memcpy(l, t->loc, sizeof(struct location) * t->count);
4732 free_loc_track(t);
4733 }
4734 t->max = max;
4735 t->loc = l;
4736 return 1;
4737 }
4738
4739 static int add_location(struct loc_track *t, struct kmem_cache *s,
4740 const struct track *track)
4741 {
4742 long start, end, pos;
4743 struct location *l;
4744 unsigned long caddr;
4745 unsigned long age = jiffies - track->when;
4746
4747 start = -1;
4748 end = t->count;
4749
4750 for ( ; ; ) {
4751 pos = start + (end - start + 1) / 2;
4752
4753 /*
4754 * There is nothing at "end". If we end up there
4755 * we need to add something to before end.
4756 */
4757 if (pos == end)
4758 break;
4759
4760 caddr = t->loc[pos].addr;
4761 if (track->addr == caddr) {
4762
4763 l = &t->loc[pos];
4764 l->count++;
4765 if (track->when) {
4766 l->sum_time += age;
4767 if (age < l->min_time)
4768 l->min_time = age;
4769 if (age > l->max_time)
4770 l->max_time = age;
4771
4772 if (track->pid < l->min_pid)
4773 l->min_pid = track->pid;
4774 if (track->pid > l->max_pid)
4775 l->max_pid = track->pid;
4776
4777 cpumask_set_cpu(track->cpu,
4778 to_cpumask(l->cpus));
4779 }
4780 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4781 return 1;
4782 }
4783
4784 if (track->addr < caddr)
4785 end = pos;
4786 else
4787 start = pos;
4788 }
4789
4790 /*
4791 * Not found. Insert new tracking element.
4792 */
4793 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4794 return 0;
4795
4796 l = t->loc + pos;
4797 if (pos < t->count)
4798 memmove(l + 1, l,
4799 (t->count - pos) * sizeof(struct location));
4800 t->count++;
4801 l->count = 1;
4802 l->addr = track->addr;
4803 l->sum_time = age;
4804 l->min_time = age;
4805 l->max_time = age;
4806 l->min_pid = track->pid;
4807 l->max_pid = track->pid;
4808 cpumask_clear(to_cpumask(l->cpus));
4809 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4810 nodes_clear(l->nodes);
4811 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4812 return 1;
4813 }
4814
4815 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4816 struct page *page, enum track_item alloc)
4817 {
4818 void *addr = page_address(page);
4819 void *p;
4820 unsigned long *map;
4821
4822 map = get_map(s, page);
4823 for_each_object(p, s, addr, page->objects)
4824 if (!test_bit(__obj_to_index(s, addr, p), map))
4825 add_location(t, s, get_track(s, p, alloc));
4826 put_map(map);
4827 }
4828
4829 static int list_locations(struct kmem_cache *s, char *buf,
4830 enum track_item alloc)
4831 {
4832 int len = 0;
4833 unsigned long i;
4834 struct loc_track t = { 0, 0, NULL };
4835 int node;
4836 struct kmem_cache_node *n;
4837
4838 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4839 GFP_KERNEL)) {
4840 return sysfs_emit(buf, "Out of memory\n");
4841 }
4842 /* Push back cpu slabs */
4843 flush_all(s);
4844
4845 for_each_kmem_cache_node(s, node, n) {
4846 unsigned long flags;
4847 struct page *page;
4848
4849 if (!atomic_long_read(&n->nr_slabs))
4850 continue;
4851
4852 spin_lock_irqsave(&n->list_lock, flags);
4853 list_for_each_entry(page, &n->partial, slab_list)
4854 process_slab(&t, s, page, alloc);
4855 list_for_each_entry(page, &n->full, slab_list)
4856 process_slab(&t, s, page, alloc);
4857 spin_unlock_irqrestore(&n->list_lock, flags);
4858 }
4859
4860 for (i = 0; i < t.count; i++) {
4861 struct location *l = &t.loc[i];
4862
4863 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4864
4865 if (l->addr)
4866 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4867 else
4868 len += sysfs_emit_at(buf, len, "<not-available>");
4869
4870 if (l->sum_time != l->min_time)
4871 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4872 l->min_time,
4873 (long)div_u64(l->sum_time,
4874 l->count),
4875 l->max_time);
4876 else
4877 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4878
4879 if (l->min_pid != l->max_pid)
4880 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4881 l->min_pid, l->max_pid);
4882 else
4883 len += sysfs_emit_at(buf, len, " pid=%ld",
4884 l->min_pid);
4885
4886 if (num_online_cpus() > 1 &&
4887 !cpumask_empty(to_cpumask(l->cpus)))
4888 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4889 cpumask_pr_args(to_cpumask(l->cpus)));
4890
4891 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4892 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4893 nodemask_pr_args(&l->nodes));
4894
4895 len += sysfs_emit_at(buf, len, "\n");
4896 }
4897
4898 free_loc_track(&t);
4899 if (!t.count)
4900 len += sysfs_emit_at(buf, len, "No data\n");
4901
4902 return len;
4903 }
4904 #endif /* CONFIG_SLUB_DEBUG */
4905
4906 #ifdef SLUB_RESILIENCY_TEST
4907 static void __init resiliency_test(void)
4908 {
4909 u8 *p;
4910 int type = KMALLOC_NORMAL;
4911
4912 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4913
4914 pr_err("SLUB resiliency testing\n");
4915 pr_err("-----------------------\n");
4916 pr_err("A. Corruption after allocation\n");
4917
4918 p = kzalloc(16, GFP_KERNEL);
4919 p[16] = 0x12;
4920 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4921 p + 16);
4922
4923 validate_slab_cache(kmalloc_caches[type][4]);
4924
4925 /* Hmmm... The next two are dangerous */
4926 p = kzalloc(32, GFP_KERNEL);
4927 p[32 + sizeof(void *)] = 0x34;
4928 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4929 p);
4930 pr_err("If allocated object is overwritten then not detectable\n\n");
4931
4932 validate_slab_cache(kmalloc_caches[type][5]);
4933 p = kzalloc(64, GFP_KERNEL);
4934 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4935 *p = 0x56;
4936 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4937 p);
4938 pr_err("If allocated object is overwritten then not detectable\n\n");
4939 validate_slab_cache(kmalloc_caches[type][6]);
4940
4941 pr_err("\nB. Corruption after free\n");
4942 p = kzalloc(128, GFP_KERNEL);
4943 kfree(p);
4944 *p = 0x78;
4945 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4946 validate_slab_cache(kmalloc_caches[type][7]);
4947
4948 p = kzalloc(256, GFP_KERNEL);
4949 kfree(p);
4950 p[50] = 0x9a;
4951 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4952 validate_slab_cache(kmalloc_caches[type][8]);
4953
4954 p = kzalloc(512, GFP_KERNEL);
4955 kfree(p);
4956 p[512] = 0xab;
4957 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4958 validate_slab_cache(kmalloc_caches[type][9]);
4959 }
4960 #else
4961 #ifdef CONFIG_SYSFS
4962 static void resiliency_test(void) {};
4963 #endif
4964 #endif /* SLUB_RESILIENCY_TEST */
4965
4966 #ifdef CONFIG_SYSFS
4967 enum slab_stat_type {
4968 SL_ALL, /* All slabs */
4969 SL_PARTIAL, /* Only partially allocated slabs */
4970 SL_CPU, /* Only slabs used for cpu caches */
4971 SL_OBJECTS, /* Determine allocated objects not slabs */
4972 SL_TOTAL /* Determine object capacity not slabs */
4973 };
4974
4975 #define SO_ALL (1 << SL_ALL)
4976 #define SO_PARTIAL (1 << SL_PARTIAL)
4977 #define SO_CPU (1 << SL_CPU)
4978 #define SO_OBJECTS (1 << SL_OBJECTS)
4979 #define SO_TOTAL (1 << SL_TOTAL)
4980
4981 static ssize_t show_slab_objects(struct kmem_cache *s,
4982 char *buf, unsigned long flags)
4983 {
4984 unsigned long total = 0;
4985 int node;
4986 int x;
4987 unsigned long *nodes;
4988 int len = 0;
4989
4990 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4991 if (!nodes)
4992 return -ENOMEM;
4993
4994 if (flags & SO_CPU) {
4995 int cpu;
4996
4997 for_each_possible_cpu(cpu) {
4998 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4999 cpu);
5000 int node;
5001 struct page *page;
5002
5003 page = READ_ONCE(c->page);
5004 if (!page)
5005 continue;
5006
5007 node = page_to_nid(page);
5008 if (flags & SO_TOTAL)
5009 x = page->objects;
5010 else if (flags & SO_OBJECTS)
5011 x = page->inuse;
5012 else
5013 x = 1;
5014
5015 total += x;
5016 nodes[node] += x;
5017
5018 page = slub_percpu_partial_read_once(c);
5019 if (page) {
5020 node = page_to_nid(page);
5021 if (flags & SO_TOTAL)
5022 WARN_ON_ONCE(1);
5023 else if (flags & SO_OBJECTS)
5024 WARN_ON_ONCE(1);
5025 else
5026 x = page->pages;
5027 total += x;
5028 nodes[node] += x;
5029 }
5030 }
5031 }
5032
5033 /*
5034 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5035 * already held which will conflict with an existing lock order:
5036 *
5037 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5038 *
5039 * We don't really need mem_hotplug_lock (to hold off
5040 * slab_mem_going_offline_callback) here because slab's memory hot
5041 * unplug code doesn't destroy the kmem_cache->node[] data.
5042 */
5043
5044 #ifdef CONFIG_SLUB_DEBUG
5045 if (flags & SO_ALL) {
5046 struct kmem_cache_node *n;
5047
5048 for_each_kmem_cache_node(s, node, n) {
5049
5050 if (flags & SO_TOTAL)
5051 x = atomic_long_read(&n->total_objects);
5052 else if (flags & SO_OBJECTS)
5053 x = atomic_long_read(&n->total_objects) -
5054 count_partial(n, count_free);
5055 else
5056 x = atomic_long_read(&n->nr_slabs);
5057 total += x;
5058 nodes[node] += x;
5059 }
5060
5061 } else
5062 #endif
5063 if (flags & SO_PARTIAL) {
5064 struct kmem_cache_node *n;
5065
5066 for_each_kmem_cache_node(s, node, n) {
5067 if (flags & SO_TOTAL)
5068 x = count_partial(n, count_total);
5069 else if (flags & SO_OBJECTS)
5070 x = count_partial(n, count_inuse);
5071 else
5072 x = n->nr_partial;
5073 total += x;
5074 nodes[node] += x;
5075 }
5076 }
5077
5078 len += sysfs_emit_at(buf, len, "%lu", total);
5079 #ifdef CONFIG_NUMA
5080 for (node = 0; node < nr_node_ids; node++) {
5081 if (nodes[node])
5082 len += sysfs_emit_at(buf, len, " N%d=%lu",
5083 node, nodes[node]);
5084 }
5085 #endif
5086 len += sysfs_emit_at(buf, len, "\n");
5087 kfree(nodes);
5088
5089 return len;
5090 }
5091
5092 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5093 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5094
5095 struct slab_attribute {
5096 struct attribute attr;
5097 ssize_t (*show)(struct kmem_cache *s, char *buf);
5098 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5099 };
5100
5101 #define SLAB_ATTR_RO(_name) \
5102 static struct slab_attribute _name##_attr = \
5103 __ATTR(_name, 0400, _name##_show, NULL)
5104
5105 #define SLAB_ATTR(_name) \
5106 static struct slab_attribute _name##_attr = \
5107 __ATTR(_name, 0600, _name##_show, _name##_store)
5108
5109 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5110 {
5111 return sysfs_emit(buf, "%u\n", s->size);
5112 }
5113 SLAB_ATTR_RO(slab_size);
5114
5115 static ssize_t align_show(struct kmem_cache *s, char *buf)
5116 {
5117 return sysfs_emit(buf, "%u\n", s->align);
5118 }
5119 SLAB_ATTR_RO(align);
5120
5121 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5122 {
5123 return sysfs_emit(buf, "%u\n", s->object_size);
5124 }
5125 SLAB_ATTR_RO(object_size);
5126
5127 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5128 {
5129 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5130 }
5131 SLAB_ATTR_RO(objs_per_slab);
5132
5133 static ssize_t order_show(struct kmem_cache *s, char *buf)
5134 {
5135 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5136 }
5137 SLAB_ATTR_RO(order);
5138
5139 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5140 {
5141 return sysfs_emit(buf, "%lu\n", s->min_partial);
5142 }
5143
5144 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5145 size_t length)
5146 {
5147 unsigned long min;
5148 int err;
5149
5150 err = kstrtoul(buf, 10, &min);
5151 if (err)
5152 return err;
5153
5154 set_min_partial(s, min);
5155 return length;
5156 }
5157 SLAB_ATTR(min_partial);
5158
5159 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5160 {
5161 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5162 }
5163
5164 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5165 size_t length)
5166 {
5167 unsigned int objects;
5168 int err;
5169
5170 err = kstrtouint(buf, 10, &objects);
5171 if (err)
5172 return err;
5173 if (objects && !kmem_cache_has_cpu_partial(s))
5174 return -EINVAL;
5175
5176 slub_set_cpu_partial(s, objects);
5177 flush_all(s);
5178 return length;
5179 }
5180 SLAB_ATTR(cpu_partial);
5181
5182 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5183 {
5184 if (!s->ctor)
5185 return 0;
5186 return sysfs_emit(buf, "%pS\n", s->ctor);
5187 }
5188 SLAB_ATTR_RO(ctor);
5189
5190 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5191 {
5192 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5193 }
5194 SLAB_ATTR_RO(aliases);
5195
5196 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5197 {
5198 return show_slab_objects(s, buf, SO_PARTIAL);
5199 }
5200 SLAB_ATTR_RO(partial);
5201
5202 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5203 {
5204 return show_slab_objects(s, buf, SO_CPU);
5205 }
5206 SLAB_ATTR_RO(cpu_slabs);
5207
5208 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5209 {
5210 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5211 }
5212 SLAB_ATTR_RO(objects);
5213
5214 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5215 {
5216 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5217 }
5218 SLAB_ATTR_RO(objects_partial);
5219
5220 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5221 {
5222 int objects = 0;
5223 int pages = 0;
5224 int cpu;
5225 int len = 0;
5226
5227 for_each_online_cpu(cpu) {
5228 struct page *page;
5229
5230 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5231
5232 if (page) {
5233 pages += page->pages;
5234 objects += page->pobjects;
5235 }
5236 }
5237
5238 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5239
5240 #ifdef CONFIG_SMP
5241 for_each_online_cpu(cpu) {
5242 struct page *page;
5243
5244 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5245 if (page)
5246 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5247 cpu, page->pobjects, page->pages);
5248 }
5249 #endif
5250 len += sysfs_emit_at(buf, len, "\n");
5251
5252 return len;
5253 }
5254 SLAB_ATTR_RO(slabs_cpu_partial);
5255
5256 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5257 {
5258 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5259 }
5260 SLAB_ATTR_RO(reclaim_account);
5261
5262 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5263 {
5264 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5265 }
5266 SLAB_ATTR_RO(hwcache_align);
5267
5268 #ifdef CONFIG_ZONE_DMA
5269 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5270 {
5271 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5272 }
5273 SLAB_ATTR_RO(cache_dma);
5274 #endif
5275
5276 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5277 {
5278 return sysfs_emit(buf, "%u\n", s->usersize);
5279 }
5280 SLAB_ATTR_RO(usersize);
5281
5282 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5283 {
5284 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5285 }
5286 SLAB_ATTR_RO(destroy_by_rcu);
5287
5288 #ifdef CONFIG_SLUB_DEBUG
5289 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5290 {
5291 return show_slab_objects(s, buf, SO_ALL);
5292 }
5293 SLAB_ATTR_RO(slabs);
5294
5295 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5296 {
5297 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5298 }
5299 SLAB_ATTR_RO(total_objects);
5300
5301 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5302 {
5303 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5304 }
5305 SLAB_ATTR_RO(sanity_checks);
5306
5307 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5308 {
5309 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5310 }
5311 SLAB_ATTR_RO(trace);
5312
5313 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5314 {
5315 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5316 }
5317
5318 SLAB_ATTR_RO(red_zone);
5319
5320 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5321 {
5322 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5323 }
5324
5325 SLAB_ATTR_RO(poison);
5326
5327 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5328 {
5329 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5330 }
5331
5332 SLAB_ATTR_RO(store_user);
5333
5334 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5335 {
5336 return 0;
5337 }
5338
5339 static ssize_t validate_store(struct kmem_cache *s,
5340 const char *buf, size_t length)
5341 {
5342 int ret = -EINVAL;
5343
5344 if (buf[0] == '1') {
5345 ret = validate_slab_cache(s);
5346 if (ret >= 0)
5347 ret = length;
5348 }
5349 return ret;
5350 }
5351 SLAB_ATTR(validate);
5352
5353 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5354 {
5355 if (!(s->flags & SLAB_STORE_USER))
5356 return -ENOSYS;
5357 return list_locations(s, buf, TRACK_ALLOC);
5358 }
5359 SLAB_ATTR_RO(alloc_calls);
5360
5361 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5362 {
5363 if (!(s->flags & SLAB_STORE_USER))
5364 return -ENOSYS;
5365 return list_locations(s, buf, TRACK_FREE);
5366 }
5367 SLAB_ATTR_RO(free_calls);
5368 #endif /* CONFIG_SLUB_DEBUG */
5369
5370 #ifdef CONFIG_FAILSLAB
5371 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5372 {
5373 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5374 }
5375 SLAB_ATTR_RO(failslab);
5376 #endif
5377
5378 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5379 {
5380 return 0;
5381 }
5382
5383 static ssize_t shrink_store(struct kmem_cache *s,
5384 const char *buf, size_t length)
5385 {
5386 if (buf[0] == '1')
5387 kmem_cache_shrink(s);
5388 else
5389 return -EINVAL;
5390 return length;
5391 }
5392 SLAB_ATTR(shrink);
5393
5394 #ifdef CONFIG_NUMA
5395 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5396 {
5397 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5398 }
5399
5400 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5401 const char *buf, size_t length)
5402 {
5403 unsigned int ratio;
5404 int err;
5405
5406 err = kstrtouint(buf, 10, &ratio);
5407 if (err)
5408 return err;
5409 if (ratio > 100)
5410 return -ERANGE;
5411
5412 s->remote_node_defrag_ratio = ratio * 10;
5413
5414 return length;
5415 }
5416 SLAB_ATTR(remote_node_defrag_ratio);
5417 #endif
5418
5419 #ifdef CONFIG_SLUB_STATS
5420 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5421 {
5422 unsigned long sum = 0;
5423 int cpu;
5424 int len = 0;
5425 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5426
5427 if (!data)
5428 return -ENOMEM;
5429
5430 for_each_online_cpu(cpu) {
5431 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5432
5433 data[cpu] = x;
5434 sum += x;
5435 }
5436
5437 len += sysfs_emit_at(buf, len, "%lu", sum);
5438
5439 #ifdef CONFIG_SMP
5440 for_each_online_cpu(cpu) {
5441 if (data[cpu])
5442 len += sysfs_emit_at(buf, len, " C%d=%u",
5443 cpu, data[cpu]);
5444 }
5445 #endif
5446 kfree(data);
5447 len += sysfs_emit_at(buf, len, "\n");
5448
5449 return len;
5450 }
5451
5452 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5453 {
5454 int cpu;
5455
5456 for_each_online_cpu(cpu)
5457 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5458 }
5459
5460 #define STAT_ATTR(si, text) \
5461 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5462 { \
5463 return show_stat(s, buf, si); \
5464 } \
5465 static ssize_t text##_store(struct kmem_cache *s, \
5466 const char *buf, size_t length) \
5467 { \
5468 if (buf[0] != '0') \
5469 return -EINVAL; \
5470 clear_stat(s, si); \
5471 return length; \
5472 } \
5473 SLAB_ATTR(text); \
5474
5475 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5476 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5477 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5478 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5479 STAT_ATTR(FREE_FROZEN, free_frozen);
5480 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5481 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5482 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5483 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5484 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5485 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5486 STAT_ATTR(FREE_SLAB, free_slab);
5487 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5488 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5489 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5490 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5491 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5492 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5493 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5494 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5495 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5496 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5497 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5498 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5499 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5500 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5501 #endif /* CONFIG_SLUB_STATS */
5502
5503 static struct attribute *slab_attrs[] = {
5504 &slab_size_attr.attr,
5505 &object_size_attr.attr,
5506 &objs_per_slab_attr.attr,
5507 &order_attr.attr,
5508 &min_partial_attr.attr,
5509 &cpu_partial_attr.attr,
5510 &objects_attr.attr,
5511 &objects_partial_attr.attr,
5512 &partial_attr.attr,
5513 &cpu_slabs_attr.attr,
5514 &ctor_attr.attr,
5515 &aliases_attr.attr,
5516 &align_attr.attr,
5517 &hwcache_align_attr.attr,
5518 &reclaim_account_attr.attr,
5519 &destroy_by_rcu_attr.attr,
5520 &shrink_attr.attr,
5521 &slabs_cpu_partial_attr.attr,
5522 #ifdef CONFIG_SLUB_DEBUG
5523 &total_objects_attr.attr,
5524 &slabs_attr.attr,
5525 &sanity_checks_attr.attr,
5526 &trace_attr.attr,
5527 &red_zone_attr.attr,
5528 &poison_attr.attr,
5529 &store_user_attr.attr,
5530 &validate_attr.attr,
5531 &alloc_calls_attr.attr,
5532 &free_calls_attr.attr,
5533 #endif
5534 #ifdef CONFIG_ZONE_DMA
5535 &cache_dma_attr.attr,
5536 #endif
5537 #ifdef CONFIG_NUMA
5538 &remote_node_defrag_ratio_attr.attr,
5539 #endif
5540 #ifdef CONFIG_SLUB_STATS
5541 &alloc_fastpath_attr.attr,
5542 &alloc_slowpath_attr.attr,
5543 &free_fastpath_attr.attr,
5544 &free_slowpath_attr.attr,
5545 &free_frozen_attr.attr,
5546 &free_add_partial_attr.attr,
5547 &free_remove_partial_attr.attr,
5548 &alloc_from_partial_attr.attr,
5549 &alloc_slab_attr.attr,
5550 &alloc_refill_attr.attr,
5551 &alloc_node_mismatch_attr.attr,
5552 &free_slab_attr.attr,
5553 &cpuslab_flush_attr.attr,
5554 &deactivate_full_attr.attr,
5555 &deactivate_empty_attr.attr,
5556 &deactivate_to_head_attr.attr,
5557 &deactivate_to_tail_attr.attr,
5558 &deactivate_remote_frees_attr.attr,
5559 &deactivate_bypass_attr.attr,
5560 &order_fallback_attr.attr,
5561 &cmpxchg_double_fail_attr.attr,
5562 &cmpxchg_double_cpu_fail_attr.attr,
5563 &cpu_partial_alloc_attr.attr,
5564 &cpu_partial_free_attr.attr,
5565 &cpu_partial_node_attr.attr,
5566 &cpu_partial_drain_attr.attr,
5567 #endif
5568 #ifdef CONFIG_FAILSLAB
5569 &failslab_attr.attr,
5570 #endif
5571 &usersize_attr.attr,
5572
5573 NULL
5574 };
5575
5576 static const struct attribute_group slab_attr_group = {
5577 .attrs = slab_attrs,
5578 };
5579
5580 static ssize_t slab_attr_show(struct kobject *kobj,
5581 struct attribute *attr,
5582 char *buf)
5583 {
5584 struct slab_attribute *attribute;
5585 struct kmem_cache *s;
5586 int err;
5587
5588 attribute = to_slab_attr(attr);
5589 s = to_slab(kobj);
5590
5591 if (!attribute->show)
5592 return -EIO;
5593
5594 err = attribute->show(s, buf);
5595
5596 return err;
5597 }
5598
5599 static ssize_t slab_attr_store(struct kobject *kobj,
5600 struct attribute *attr,
5601 const char *buf, size_t len)
5602 {
5603 struct slab_attribute *attribute;
5604 struct kmem_cache *s;
5605 int err;
5606
5607 attribute = to_slab_attr(attr);
5608 s = to_slab(kobj);
5609
5610 if (!attribute->store)
5611 return -EIO;
5612
5613 err = attribute->store(s, buf, len);
5614 return err;
5615 }
5616
5617 static void kmem_cache_release(struct kobject *k)
5618 {
5619 slab_kmem_cache_release(to_slab(k));
5620 }
5621
5622 static const struct sysfs_ops slab_sysfs_ops = {
5623 .show = slab_attr_show,
5624 .store = slab_attr_store,
5625 };
5626
5627 static struct kobj_type slab_ktype = {
5628 .sysfs_ops = &slab_sysfs_ops,
5629 .release = kmem_cache_release,
5630 };
5631
5632 static struct kset *slab_kset;
5633
5634 static inline struct kset *cache_kset(struct kmem_cache *s)
5635 {
5636 return slab_kset;
5637 }
5638
5639 #define ID_STR_LENGTH 64
5640
5641 /* Create a unique string id for a slab cache:
5642 *
5643 * Format :[flags-]size
5644 */
5645 static char *create_unique_id(struct kmem_cache *s)
5646 {
5647 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5648 char *p = name;
5649
5650 BUG_ON(!name);
5651
5652 *p++ = ':';
5653 /*
5654 * First flags affecting slabcache operations. We will only
5655 * get here for aliasable slabs so we do not need to support
5656 * too many flags. The flags here must cover all flags that
5657 * are matched during merging to guarantee that the id is
5658 * unique.
5659 */
5660 if (s->flags & SLAB_CACHE_DMA)
5661 *p++ = 'd';
5662 if (s->flags & SLAB_CACHE_DMA32)
5663 *p++ = 'D';
5664 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5665 *p++ = 'a';
5666 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5667 *p++ = 'F';
5668 if (s->flags & SLAB_ACCOUNT)
5669 *p++ = 'A';
5670 if (p != name + 1)
5671 *p++ = '-';
5672 p += sprintf(p, "%07u", s->size);
5673
5674 BUG_ON(p > name + ID_STR_LENGTH - 1);
5675 return name;
5676 }
5677
5678 static int sysfs_slab_add(struct kmem_cache *s)
5679 {
5680 int err;
5681 const char *name;
5682 struct kset *kset = cache_kset(s);
5683 int unmergeable = slab_unmergeable(s);
5684
5685 if (!kset) {
5686 kobject_init(&s->kobj, &slab_ktype);
5687 return 0;
5688 }
5689
5690 if (!unmergeable && disable_higher_order_debug &&
5691 (slub_debug & DEBUG_METADATA_FLAGS))
5692 unmergeable = 1;
5693
5694 if (unmergeable) {
5695 /*
5696 * Slabcache can never be merged so we can use the name proper.
5697 * This is typically the case for debug situations. In that
5698 * case we can catch duplicate names easily.
5699 */
5700 sysfs_remove_link(&slab_kset->kobj, s->name);
5701 name = s->name;
5702 } else {
5703 /*
5704 * Create a unique name for the slab as a target
5705 * for the symlinks.
5706 */
5707 name = create_unique_id(s);
5708 }
5709
5710 s->kobj.kset = kset;
5711 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5712 if (err)
5713 goto out;
5714
5715 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5716 if (err)
5717 goto out_del_kobj;
5718
5719 if (!unmergeable) {
5720 /* Setup first alias */
5721 sysfs_slab_alias(s, s->name);
5722 }
5723 out:
5724 if (!unmergeable)
5725 kfree(name);
5726 return err;
5727 out_del_kobj:
5728 kobject_del(&s->kobj);
5729 goto out;
5730 }
5731
5732 void sysfs_slab_unlink(struct kmem_cache *s)
5733 {
5734 if (slab_state >= FULL)
5735 kobject_del(&s->kobj);
5736 }
5737
5738 void sysfs_slab_release(struct kmem_cache *s)
5739 {
5740 if (slab_state >= FULL)
5741 kobject_put(&s->kobj);
5742 }
5743
5744 /*
5745 * Need to buffer aliases during bootup until sysfs becomes
5746 * available lest we lose that information.
5747 */
5748 struct saved_alias {
5749 struct kmem_cache *s;
5750 const char *name;
5751 struct saved_alias *next;
5752 };
5753
5754 static struct saved_alias *alias_list;
5755
5756 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5757 {
5758 struct saved_alias *al;
5759
5760 if (slab_state == FULL) {
5761 /*
5762 * If we have a leftover link then remove it.
5763 */
5764 sysfs_remove_link(&slab_kset->kobj, name);
5765 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5766 }
5767
5768 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5769 if (!al)
5770 return -ENOMEM;
5771
5772 al->s = s;
5773 al->name = name;
5774 al->next = alias_list;
5775 alias_list = al;
5776 return 0;
5777 }
5778
5779 static int __init slab_sysfs_init(void)
5780 {
5781 struct kmem_cache *s;
5782 int err;
5783
5784 mutex_lock(&slab_mutex);
5785
5786 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5787 if (!slab_kset) {
5788 mutex_unlock(&slab_mutex);
5789 pr_err("Cannot register slab subsystem.\n");
5790 return -ENOSYS;
5791 }
5792
5793 slab_state = FULL;
5794
5795 list_for_each_entry(s, &slab_caches, list) {
5796 err = sysfs_slab_add(s);
5797 if (err)
5798 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5799 s->name);
5800 }
5801
5802 while (alias_list) {
5803 struct saved_alias *al = alias_list;
5804
5805 alias_list = alias_list->next;
5806 err = sysfs_slab_alias(al->s, al->name);
5807 if (err)
5808 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5809 al->name);
5810 kfree(al);
5811 }
5812
5813 mutex_unlock(&slab_mutex);
5814 resiliency_test();
5815 return 0;
5816 }
5817
5818 __initcall(slab_sysfs_init);
5819 #endif /* CONFIG_SYSFS */
5820
5821 /*
5822 * The /proc/slabinfo ABI
5823 */
5824 #ifdef CONFIG_SLUB_DEBUG
5825 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5826 {
5827 unsigned long nr_slabs = 0;
5828 unsigned long nr_objs = 0;
5829 unsigned long nr_free = 0;
5830 int node;
5831 struct kmem_cache_node *n;
5832
5833 for_each_kmem_cache_node(s, node, n) {
5834 nr_slabs += node_nr_slabs(n);
5835 nr_objs += node_nr_objs(n);
5836 nr_free += count_partial(n, count_free);
5837 }
5838
5839 sinfo->active_objs = nr_objs - nr_free;
5840 sinfo->num_objs = nr_objs;
5841 sinfo->active_slabs = nr_slabs;
5842 sinfo->num_slabs = nr_slabs;
5843 sinfo->objects_per_slab = oo_objects(s->oo);
5844 sinfo->cache_order = oo_order(s->oo);
5845 }
5846
5847 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5848 {
5849 }
5850
5851 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5852 size_t count, loff_t *ppos)
5853 {
5854 return -EIO;
5855 }
5856 #endif /* CONFIG_SLUB_DEBUG */