]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
4df2c0c337fb9ebd3fd0b8aead967b338a5b4453
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
35
36 #include <trace/events/kmem.h>
37
38 #include "internal.h"
39
40 /*
41 * Lock order:
42 * 1. slab_mutex (Global Mutex)
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
45 *
46 * slab_mutex
47 *
48 * The role of the slab_mutex is to protect the list of all the slabs
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
85 * freed then the slab will show up again on the partial lists.
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
107 * freelist that allows lockless access to
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
113 * the fast path and disables lockless freelists.
114 */
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void sysfs_slab_remove(struct kmem_cache *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210
211 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
212 #endif
213
214 static inline void stat(const struct kmem_cache *s, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 __this_cpu_inc(s->cpu_slab->stat[si]);
218 #endif
219 }
220
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226 {
227 return s->node[node];
228 }
229
230 /* Verify that a pointer has an address that is valid within a slab page */
231 static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233 {
234 void *base;
235
236 if (!object)
237 return 1;
238
239 base = page_address(page);
240 if (object < base || object >= base + page->objects * s->size ||
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246 }
247
248 static inline void *get_freepointer(struct kmem_cache *s, void *object)
249 {
250 return *(void **)(object + s->offset);
251 }
252
253 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254 {
255 prefetch(object + s->offset);
256 }
257
258 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259 {
260 void *p;
261
262 #ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264 #else
265 p = get_freepointer(s, object);
266 #endif
267 return p;
268 }
269
270 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271 {
272 *(void **)(object + s->offset) = fp;
273 }
274
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 __p += (__s)->size)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 /* Interrupts must be disabled (for the fallback code to work right) */
349 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353 {
354 VM_BUG_ON(!irqs_disabled());
355 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357 if (s->flags & __CMPXCHG_DOUBLE) {
358 if (cmpxchg_double(&page->freelist, &page->counters,
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363 #endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378 #ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380 #endif
381
382 return 0;
383 }
384
385 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389 {
390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392 if (s->flags & __CMPXCHG_DOUBLE) {
393 if (cmpxchg_double(&page->freelist, &page->counters,
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398 #endif
399 {
400 unsigned long flags;
401
402 local_irq_save(flags);
403 slab_lock(page);
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
407 slab_unlock(page);
408 local_irq_restore(flags);
409 return 1;
410 }
411 slab_unlock(page);
412 local_irq_restore(flags);
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418 #ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420 #endif
421
422 return 0;
423 }
424
425 #ifdef CONFIG_SLUB_DEBUG
426 /*
427 * Determine a map of object in use on a page.
428 *
429 * Node listlock must be held to guarantee that the page does
430 * not vanish from under us.
431 */
432 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433 {
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439 }
440
441 /*
442 * Debug settings:
443 */
444 #ifdef CONFIG_SLUB_DEBUG_ON
445 static int slub_debug = DEBUG_DEFAULT_FLAGS;
446 #else
447 static int slub_debug;
448 #endif
449
450 static char *slub_debug_slabs;
451 static int disable_higher_order_debug;
452
453 /*
454 * Object debugging
455 */
456 static void print_section(char *text, u8 *addr, unsigned int length)
457 {
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
460 }
461
462 static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464 {
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473 }
474
475 static void set_track(struct kmem_cache *s, void *object,
476 enum track_item alloc, unsigned long addr)
477 {
478 struct track *p = get_track(s, object, alloc);
479
480 if (addr) {
481 #ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498 #endif
499 p->addr = addr;
500 p->cpu = smp_processor_id();
501 p->pid = current->pid;
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505 }
506
507 static void init_tracking(struct kmem_cache *s, void *object)
508 {
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
514 }
515
516 static void print_track(const char *s, struct track *t)
517 {
518 if (!t->addr)
519 return;
520
521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
523 #ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532 #endif
533 }
534
535 static void print_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542 }
543
544 static void print_page_info(struct page *page)
545 {
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
548
549 }
550
551 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552 {
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
564
565 add_taint(TAINT_BAD_PAGE);
566 }
567
568 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569 {
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577 }
578
579 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
580 {
581 unsigned int off; /* Offset of last byte */
582 u8 *addr = page_address(page);
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
592 print_section("Bytes b4 ", p - 16, 16);
593
594 print_section("Object ", p, min_t(unsigned long, s->object_size,
595 PAGE_SIZE));
596 if (s->flags & SLAB_RED_ZONE)
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
599
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
605 if (s->flags & SLAB_STORE_USER)
606 off += 2 * sizeof(struct track);
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
610 print_section("Padding ", p + off, s->size - off);
611
612 dump_stack();
613 }
614
615 static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617 {
618 slab_bug(s, "%s", reason);
619 print_trailer(s, page, object);
620 }
621
622 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
623 {
624 va_list args;
625 char buf[100];
626
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
629 va_end(args);
630 slab_bug(s, "%s", buf);
631 print_page_info(page);
632 dump_stack();
633 }
634
635 static void init_object(struct kmem_cache *s, void *object, u8 val)
636 {
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
645 memset(p + s->object_size, val, s->inuse - s->object_size);
646 }
647
648 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650 {
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653 }
654
655 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
657 u8 *start, unsigned int value, unsigned int bytes)
658 {
659 u8 *fault;
660 u8 *end;
661
662 fault = memchr_inv(start, value, bytes);
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
677 }
678
679 /*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
686 *
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
690 * object + s->object_size
691 * Padding to reach word boundary. This is also used for Redzoning.
692 * Padding is extended by another word if Redzoning is enabled and
693 * object_size == inuse.
694 *
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
699 * Meta data starts here.
700 *
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
703 * C. Padding to reach required alignment boundary or at mininum
704 * one word if debugging is on to be able to detect writes
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
708 *
709 * object + s->size
710 * Nothing is used beyond s->size.
711 *
712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
713 * ignored. And therefore no slab options that rely on these boundaries
714 * may be used with merged slabcaches.
715 */
716
717 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718 {
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
734 }
735
736 /* Check the pad bytes at the end of a slab page */
737 static int slab_pad_check(struct kmem_cache *s, struct page *page)
738 {
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
748 start = page_address(page);
749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
750 end = start + length;
751 remainder = length % s->size;
752 if (!remainder)
753 return 1;
754
755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
762 print_section("Padding ", end - remainder, remainder);
763
764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
765 return 0;
766 }
767
768 static int check_object(struct kmem_cache *s, struct page *page,
769 void *object, u8 val)
770 {
771 u8 *p = object;
772 u8 *endobject = object + s->object_size;
773
774 if (s->flags & SLAB_RED_ZONE) {
775 if (!check_bytes_and_report(s, page, object, "Redzone",
776 endobject, val, s->inuse - s->object_size))
777 return 0;
778 } else {
779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
780 check_bytes_and_report(s, page, p, "Alignment padding",
781 endobject, POISON_INUSE, s->inuse - s->object_size);
782 }
783 }
784
785 if (s->flags & SLAB_POISON) {
786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
787 (!check_bytes_and_report(s, page, p, "Poison", p,
788 POISON_FREE, s->object_size - 1) ||
789 !check_bytes_and_report(s, page, p, "Poison",
790 p + s->object_size - 1, POISON_END, 1)))
791 return 0;
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
798 if (!s->offset && val == SLUB_RED_ACTIVE)
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
809 * No choice but to zap it and thus lose the remainder
810 * of the free objects in this slab. May cause
811 * another error because the object count is now wrong.
812 */
813 set_freepointer(s, p, NULL);
814 return 0;
815 }
816 return 1;
817 }
818
819 static int check_slab(struct kmem_cache *s, struct page *page)
820 {
821 int maxobj;
822
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
826 slab_err(s, page, "Not a valid slab page");
827 return 0;
828 }
829
830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
837 slab_err(s, page, "inuse %u > max %u",
838 s->name, page->inuse, page->objects);
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844 }
845
846 /*
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
849 */
850 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851 {
852 int nr = 0;
853 void *fp;
854 void *object = NULL;
855 unsigned long max_objects;
856
857 fp = page->freelist;
858 while (fp && nr <= page->objects) {
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
865 set_freepointer(s, object, NULL);
866 break;
867 } else {
868 slab_err(s, page, "Freepointer corrupt");
869 page->freelist = NULL;
870 page->inuse = page->objects;
871 slab_fix(s, "Freelist cleared");
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
891 if (page->inuse != page->objects - nr) {
892 slab_err(s, page, "Wrong object count. Counter is %d but "
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
895 slab_fix(s, "Object count adjusted.");
896 }
897 return search == NULL;
898 }
899
900 static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
902 {
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
911 print_section("Object ", (void *)object, s->object_size);
912
913 dump_stack();
914 }
915 }
916
917 /*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922 {
923 flags &= gfp_allowed_mask;
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
927 return should_failslab(s->object_size, flags, s->flags);
928 }
929
930 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931 {
932 flags &= gfp_allowed_mask;
933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
935 }
936
937 static inline void slab_free_hook(struct kmem_cache *s, void *x)
938 {
939 kmemleak_free_recursive(x, s->flags);
940
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
953 local_irq_restore(flags);
954 }
955 #endif
956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
957 debug_check_no_obj_freed(x, s->object_size);
958 }
959
960 /*
961 * Tracking of fully allocated slabs for debugging purposes.
962 *
963 * list_lock must be held.
964 */
965 static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
967 {
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
971 list_add(&page->lru, &n->full);
972 }
973
974 /*
975 * list_lock must be held.
976 */
977 static void remove_full(struct kmem_cache *s, struct page *page)
978 {
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (likely(n)) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1033 void *object, unsigned long addr)
1034 {
1035 if (!check_slab(s, page))
1036 goto bad;
1037
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
1040 goto bad;
1041 }
1042
1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1044 goto bad;
1045
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
1050 init_object(s, object, SLUB_RED_ACTIVE);
1051 return 1;
1052
1053 bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
1058 * as used avoids touching the remaining objects.
1059 */
1060 slab_fix(s, "Marking all objects used");
1061 page->inuse = page->objects;
1062 page->freelist = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
1070 {
1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072
1073 spin_lock_irqsave(&n->list_lock, *flags);
1074 slab_lock(page);
1075
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
1085 object_err(s, page, object, "Object already free");
1086 goto fail;
1087 }
1088
1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1090 goto out;
1091
1092 if (unlikely(s != page->slab_cache)) {
1093 if (!PageSlab(page)) {
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1096 } else if (!page->slab_cache) {
1097 printk(KERN_ERR
1098 "SLUB <none>: no slab for object 0x%p.\n",
1099 object);
1100 dump_stack();
1101 } else
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
1104 goto fail;
1105 }
1106
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 slab_unlock(page);
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
1118
1119 fail:
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
1122 slab_fix(s, "Object at 0x%p not freed", object);
1123 return NULL;
1124 }
1125
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
1161 for (; *str && *str != ','; str++) {
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
1183 "unknown. skipped\n", *str);
1184 }
1185 }
1186
1187 check_slabs:
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
1190 out:
1191 return 1;
1192 }
1193
1194 __setup("slub_debug", setup_slub_debug);
1195
1196 static unsigned long kmem_cache_flags(unsigned long object_size,
1197 unsigned long flags, const char *name,
1198 void (*ctor)(void *))
1199 {
1200 /*
1201 * Enable debugging if selected on the kernel commandline.
1202 */
1203 if (slub_debug && (!slub_debug_slabs ||
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
1206
1207 return flags;
1208 }
1209 #else
1210 static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
1212
1213 static inline int alloc_debug_processing(struct kmem_cache *s,
1214 struct page *page, void *object, unsigned long addr) { return 0; }
1215
1216 static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
1219
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 unsigned long flags, const char *name,
1229 void (*ctor)(void *))
1230 {
1231 return flags;
1232 }
1233 #define slub_debug 0
1234
1235 #define disable_higher_order_debug 0
1236
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
1254 #endif /* CONFIG_SLUB_DEBUG */
1255
1256 /*
1257 * Slab allocation and freeing
1258 */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261 {
1262 int order = oo_order(oo);
1263
1264 flags |= __GFP_NOTRACK;
1265
1266 if (node == NUMA_NO_NODE)
1267 return alloc_pages(flags, order);
1268 else
1269 return alloc_pages_exact_node(node, flags, order);
1270 }
1271
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 struct page *page;
1275 struct kmem_cache_order_objects oo = s->oo;
1276 gfp_t alloc_gfp;
1277
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
1283 flags |= s->allocflags;
1284
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
1299
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
1302 }
1303
1304 if (kmemcheck_enabled && page
1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
1318 }
1319
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
1325 page->objects = oo_objects(oo);
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 1 << oo_order(oo));
1330
1331 return page;
1332 }
1333
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336 {
1337 setup_object_debug(s, page, object);
1338 if (unlikely(s->ctor))
1339 s->ctor(object);
1340 }
1341
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 struct page *page;
1345 void *start;
1346 void *last;
1347 void *p;
1348 int order;
1349
1350 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1351
1352 page = allocate_slab(s,
1353 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1354 if (!page)
1355 goto out;
1356
1357 order = compound_order(page);
1358 inc_slabs_node(s, page_to_nid(page), page->objects);
1359 memcg_bind_pages(s, order);
1360 page->slab_cache = s;
1361 __SetPageSlab(page);
1362 if (page->pfmemalloc)
1363 SetPageSlabPfmemalloc(page);
1364
1365 start = page_address(page);
1366
1367 if (unlikely(s->flags & SLAB_POISON))
1368 memset(start, POISON_INUSE, PAGE_SIZE << order);
1369
1370 last = start;
1371 for_each_object(p, s, start, page->objects) {
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1374 last = p;
1375 }
1376 setup_object(s, page, last);
1377 set_freepointer(s, last, NULL);
1378
1379 page->freelist = start;
1380 page->inuse = page->objects;
1381 page->frozen = 1;
1382 out:
1383 return page;
1384 }
1385
1386 static void __free_slab(struct kmem_cache *s, struct page *page)
1387 {
1388 int order = compound_order(page);
1389 int pages = 1 << order;
1390
1391 if (kmem_cache_debug(s)) {
1392 void *p;
1393
1394 slab_pad_check(s, page);
1395 for_each_object(p, s, page_address(page),
1396 page->objects)
1397 check_object(s, page, p, SLUB_RED_INACTIVE);
1398 }
1399
1400 kmemcheck_free_shadow(page, compound_order(page));
1401
1402 mod_zone_page_state(page_zone(page),
1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1405 -pages);
1406
1407 __ClearPageSlabPfmemalloc(page);
1408 __ClearPageSlab(page);
1409
1410 memcg_release_pages(s, order);
1411 reset_page_mapcount(page);
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
1414 __free_memcg_kmem_pages(page, order);
1415 }
1416
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 struct page *page;
1423
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1429 __free_slab(page->slab_cache, page);
1430 }
1431
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453 }
1454
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 dec_slabs_node(s, page_to_nid(page), page->objects);
1458 free_slab(s, page);
1459 }
1460
1461 /*
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
1465 */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 struct page *page, int tail)
1468 {
1469 n->nr_partial++;
1470 if (tail == DEACTIVATE_TO_TAIL)
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
1474 }
1475
1476 /*
1477 * list_lock must be held.
1478 */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 struct page *page)
1481 {
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484 }
1485
1486 /*
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
1489 *
1490 * Returns a list of objects or NULL if it fails.
1491 *
1492 * Must hold list_lock since we modify the partial list.
1493 */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 struct kmem_cache_node *n, struct page *page,
1496 int mode, int *objects)
1497 {
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
1510 *objects = new.objects - new.inuse;
1511 if (mode) {
1512 new.inuse = page->objects;
1513 new.freelist = NULL;
1514 } else {
1515 new.freelist = freelist;
1516 }
1517
1518 VM_BUG_ON(new.frozen);
1519 new.frozen = 1;
1520
1521 if (!__cmpxchg_double_slab(s, page,
1522 freelist, counters,
1523 new.freelist, new.counters,
1524 "acquire_slab"))
1525 return NULL;
1526
1527 remove_partial(n, page);
1528 WARN_ON(!freelist);
1529 return freelist;
1530 }
1531
1532 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1534
1535 /*
1536 * Try to allocate a partial slab from a specific node.
1537 */
1538 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct kmem_cache_cpu *c, gfp_t flags)
1540 {
1541 struct page *page, *page2;
1542 void *object = NULL;
1543 int available = 0;
1544 int objects;
1545
1546 /*
1547 * Racy check. If we mistakenly see no partial slabs then we
1548 * just allocate an empty slab. If we mistakenly try to get a
1549 * partial slab and there is none available then get_partials()
1550 * will return NULL.
1551 */
1552 if (!n || !n->nr_partial)
1553 return NULL;
1554
1555 spin_lock(&n->list_lock);
1556 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1557 void *t;
1558
1559 if (!pfmemalloc_match(page, flags))
1560 continue;
1561
1562 t = acquire_slab(s, n, page, object == NULL, &objects);
1563 if (!t)
1564 break;
1565
1566 available += objects;
1567 if (!object) {
1568 c->page = page;
1569 stat(s, ALLOC_FROM_PARTIAL);
1570 object = t;
1571 } else {
1572 put_cpu_partial(s, page, 0);
1573 stat(s, CPU_PARTIAL_NODE);
1574 }
1575 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1576 break;
1577
1578 }
1579 spin_unlock(&n->list_lock);
1580 return object;
1581 }
1582
1583 /*
1584 * Get a page from somewhere. Search in increasing NUMA distances.
1585 */
1586 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1587 struct kmem_cache_cpu *c)
1588 {
1589 #ifdef CONFIG_NUMA
1590 struct zonelist *zonelist;
1591 struct zoneref *z;
1592 struct zone *zone;
1593 enum zone_type high_zoneidx = gfp_zone(flags);
1594 void *object;
1595 unsigned int cpuset_mems_cookie;
1596
1597 /*
1598 * The defrag ratio allows a configuration of the tradeoffs between
1599 * inter node defragmentation and node local allocations. A lower
1600 * defrag_ratio increases the tendency to do local allocations
1601 * instead of attempting to obtain partial slabs from other nodes.
1602 *
1603 * If the defrag_ratio is set to 0 then kmalloc() always
1604 * returns node local objects. If the ratio is higher then kmalloc()
1605 * may return off node objects because partial slabs are obtained
1606 * from other nodes and filled up.
1607 *
1608 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1609 * defrag_ratio = 1000) then every (well almost) allocation will
1610 * first attempt to defrag slab caches on other nodes. This means
1611 * scanning over all nodes to look for partial slabs which may be
1612 * expensive if we do it every time we are trying to find a slab
1613 * with available objects.
1614 */
1615 if (!s->remote_node_defrag_ratio ||
1616 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1617 return NULL;
1618
1619 do {
1620 cpuset_mems_cookie = get_mems_allowed();
1621 zonelist = node_zonelist(slab_node(), flags);
1622 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1623 struct kmem_cache_node *n;
1624
1625 n = get_node(s, zone_to_nid(zone));
1626
1627 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1628 n->nr_partial > s->min_partial) {
1629 object = get_partial_node(s, n, c, flags);
1630 if (object) {
1631 /*
1632 * Return the object even if
1633 * put_mems_allowed indicated that
1634 * the cpuset mems_allowed was
1635 * updated in parallel. It's a
1636 * harmless race between the alloc
1637 * and the cpuset update.
1638 */
1639 put_mems_allowed(cpuset_mems_cookie);
1640 return object;
1641 }
1642 }
1643 }
1644 } while (!put_mems_allowed(cpuset_mems_cookie));
1645 #endif
1646 return NULL;
1647 }
1648
1649 /*
1650 * Get a partial page, lock it and return it.
1651 */
1652 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1653 struct kmem_cache_cpu *c)
1654 {
1655 void *object;
1656 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1657
1658 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1659 if (object || node != NUMA_NO_NODE)
1660 return object;
1661
1662 return get_any_partial(s, flags, c);
1663 }
1664
1665 #ifdef CONFIG_PREEMPT
1666 /*
1667 * Calculate the next globally unique transaction for disambiguiation
1668 * during cmpxchg. The transactions start with the cpu number and are then
1669 * incremented by CONFIG_NR_CPUS.
1670 */
1671 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1672 #else
1673 /*
1674 * No preemption supported therefore also no need to check for
1675 * different cpus.
1676 */
1677 #define TID_STEP 1
1678 #endif
1679
1680 static inline unsigned long next_tid(unsigned long tid)
1681 {
1682 return tid + TID_STEP;
1683 }
1684
1685 static inline unsigned int tid_to_cpu(unsigned long tid)
1686 {
1687 return tid % TID_STEP;
1688 }
1689
1690 static inline unsigned long tid_to_event(unsigned long tid)
1691 {
1692 return tid / TID_STEP;
1693 }
1694
1695 static inline unsigned int init_tid(int cpu)
1696 {
1697 return cpu;
1698 }
1699
1700 static inline void note_cmpxchg_failure(const char *n,
1701 const struct kmem_cache *s, unsigned long tid)
1702 {
1703 #ifdef SLUB_DEBUG_CMPXCHG
1704 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1705
1706 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1707
1708 #ifdef CONFIG_PREEMPT
1709 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1710 printk("due to cpu change %d -> %d\n",
1711 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1712 else
1713 #endif
1714 if (tid_to_event(tid) != tid_to_event(actual_tid))
1715 printk("due to cpu running other code. Event %ld->%ld\n",
1716 tid_to_event(tid), tid_to_event(actual_tid));
1717 else
1718 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1719 actual_tid, tid, next_tid(tid));
1720 #endif
1721 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1722 }
1723
1724 static void init_kmem_cache_cpus(struct kmem_cache *s)
1725 {
1726 int cpu;
1727
1728 for_each_possible_cpu(cpu)
1729 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1730 }
1731
1732 /*
1733 * Remove the cpu slab
1734 */
1735 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1736 {
1737 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739 int lock = 0;
1740 enum slab_modes l = M_NONE, m = M_NONE;
1741 void *nextfree;
1742 int tail = DEACTIVATE_TO_HEAD;
1743 struct page new;
1744 struct page old;
1745
1746 if (page->freelist) {
1747 stat(s, DEACTIVATE_REMOTE_FREES);
1748 tail = DEACTIVATE_TO_TAIL;
1749 }
1750
1751 /*
1752 * Stage one: Free all available per cpu objects back
1753 * to the page freelist while it is still frozen. Leave the
1754 * last one.
1755 *
1756 * There is no need to take the list->lock because the page
1757 * is still frozen.
1758 */
1759 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1760 void *prior;
1761 unsigned long counters;
1762
1763 do {
1764 prior = page->freelist;
1765 counters = page->counters;
1766 set_freepointer(s, freelist, prior);
1767 new.counters = counters;
1768 new.inuse--;
1769 VM_BUG_ON(!new.frozen);
1770
1771 } while (!__cmpxchg_double_slab(s, page,
1772 prior, counters,
1773 freelist, new.counters,
1774 "drain percpu freelist"));
1775
1776 freelist = nextfree;
1777 }
1778
1779 /*
1780 * Stage two: Ensure that the page is unfrozen while the
1781 * list presence reflects the actual number of objects
1782 * during unfreeze.
1783 *
1784 * We setup the list membership and then perform a cmpxchg
1785 * with the count. If there is a mismatch then the page
1786 * is not unfrozen but the page is on the wrong list.
1787 *
1788 * Then we restart the process which may have to remove
1789 * the page from the list that we just put it on again
1790 * because the number of objects in the slab may have
1791 * changed.
1792 */
1793 redo:
1794
1795 old.freelist = page->freelist;
1796 old.counters = page->counters;
1797 VM_BUG_ON(!old.frozen);
1798
1799 /* Determine target state of the slab */
1800 new.counters = old.counters;
1801 if (freelist) {
1802 new.inuse--;
1803 set_freepointer(s, freelist, old.freelist);
1804 new.freelist = freelist;
1805 } else
1806 new.freelist = old.freelist;
1807
1808 new.frozen = 0;
1809
1810 if (!new.inuse && n->nr_partial > s->min_partial)
1811 m = M_FREE;
1812 else if (new.freelist) {
1813 m = M_PARTIAL;
1814 if (!lock) {
1815 lock = 1;
1816 /*
1817 * Taking the spinlock removes the possiblity
1818 * that acquire_slab() will see a slab page that
1819 * is frozen
1820 */
1821 spin_lock(&n->list_lock);
1822 }
1823 } else {
1824 m = M_FULL;
1825 if (kmem_cache_debug(s) && !lock) {
1826 lock = 1;
1827 /*
1828 * This also ensures that the scanning of full
1829 * slabs from diagnostic functions will not see
1830 * any frozen slabs.
1831 */
1832 spin_lock(&n->list_lock);
1833 }
1834 }
1835
1836 if (l != m) {
1837
1838 if (l == M_PARTIAL)
1839
1840 remove_partial(n, page);
1841
1842 else if (l == M_FULL)
1843
1844 remove_full(s, page);
1845
1846 if (m == M_PARTIAL) {
1847
1848 add_partial(n, page, tail);
1849 stat(s, tail);
1850
1851 } else if (m == M_FULL) {
1852
1853 stat(s, DEACTIVATE_FULL);
1854 add_full(s, n, page);
1855
1856 }
1857 }
1858
1859 l = m;
1860 if (!__cmpxchg_double_slab(s, page,
1861 old.freelist, old.counters,
1862 new.freelist, new.counters,
1863 "unfreezing slab"))
1864 goto redo;
1865
1866 if (lock)
1867 spin_unlock(&n->list_lock);
1868
1869 if (m == M_FREE) {
1870 stat(s, DEACTIVATE_EMPTY);
1871 discard_slab(s, page);
1872 stat(s, FREE_SLAB);
1873 }
1874 }
1875
1876 /*
1877 * Unfreeze all the cpu partial slabs.
1878 *
1879 * This function must be called with interrupts disabled
1880 * for the cpu using c (or some other guarantee must be there
1881 * to guarantee no concurrent accesses).
1882 */
1883 static void unfreeze_partials(struct kmem_cache *s,
1884 struct kmem_cache_cpu *c)
1885 {
1886 struct kmem_cache_node *n = NULL, *n2 = NULL;
1887 struct page *page, *discard_page = NULL;
1888
1889 while ((page = c->partial)) {
1890 struct page new;
1891 struct page old;
1892
1893 c->partial = page->next;
1894
1895 n2 = get_node(s, page_to_nid(page));
1896 if (n != n2) {
1897 if (n)
1898 spin_unlock(&n->list_lock);
1899
1900 n = n2;
1901 spin_lock(&n->list_lock);
1902 }
1903
1904 do {
1905
1906 old.freelist = page->freelist;
1907 old.counters = page->counters;
1908 VM_BUG_ON(!old.frozen);
1909
1910 new.counters = old.counters;
1911 new.freelist = old.freelist;
1912
1913 new.frozen = 0;
1914
1915 } while (!__cmpxchg_double_slab(s, page,
1916 old.freelist, old.counters,
1917 new.freelist, new.counters,
1918 "unfreezing slab"));
1919
1920 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1921 page->next = discard_page;
1922 discard_page = page;
1923 } else {
1924 add_partial(n, page, DEACTIVATE_TO_TAIL);
1925 stat(s, FREE_ADD_PARTIAL);
1926 }
1927 }
1928
1929 if (n)
1930 spin_unlock(&n->list_lock);
1931
1932 while (discard_page) {
1933 page = discard_page;
1934 discard_page = discard_page->next;
1935
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
1939 }
1940 }
1941
1942 /*
1943 * Put a page that was just frozen (in __slab_free) into a partial page
1944 * slot if available. This is done without interrupts disabled and without
1945 * preemption disabled. The cmpxchg is racy and may put the partial page
1946 * onto a random cpus partial slot.
1947 *
1948 * If we did not find a slot then simply move all the partials to the
1949 * per node partial list.
1950 */
1951 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1952 {
1953 struct page *oldpage;
1954 int pages;
1955 int pobjects;
1956
1957 do {
1958 pages = 0;
1959 pobjects = 0;
1960 oldpage = this_cpu_read(s->cpu_slab->partial);
1961
1962 if (oldpage) {
1963 pobjects = oldpage->pobjects;
1964 pages = oldpage->pages;
1965 if (drain && pobjects > s->cpu_partial) {
1966 unsigned long flags;
1967 /*
1968 * partial array is full. Move the existing
1969 * set to the per node partial list.
1970 */
1971 local_irq_save(flags);
1972 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1973 local_irq_restore(flags);
1974 oldpage = NULL;
1975 pobjects = 0;
1976 pages = 0;
1977 stat(s, CPU_PARTIAL_DRAIN);
1978 }
1979 }
1980
1981 pages++;
1982 pobjects += page->objects - page->inuse;
1983
1984 page->pages = pages;
1985 page->pobjects = pobjects;
1986 page->next = oldpage;
1987
1988 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1989 }
1990
1991 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1992 {
1993 stat(s, CPUSLAB_FLUSH);
1994 deactivate_slab(s, c->page, c->freelist);
1995
1996 c->tid = next_tid(c->tid);
1997 c->page = NULL;
1998 c->freelist = NULL;
1999 }
2000
2001 /*
2002 * Flush cpu slab.
2003 *
2004 * Called from IPI handler with interrupts disabled.
2005 */
2006 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2007 {
2008 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2009
2010 if (likely(c)) {
2011 if (c->page)
2012 flush_slab(s, c);
2013
2014 unfreeze_partials(s, c);
2015 }
2016 }
2017
2018 static void flush_cpu_slab(void *d)
2019 {
2020 struct kmem_cache *s = d;
2021
2022 __flush_cpu_slab(s, smp_processor_id());
2023 }
2024
2025 static bool has_cpu_slab(int cpu, void *info)
2026 {
2027 struct kmem_cache *s = info;
2028 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2029
2030 return c->page || c->partial;
2031 }
2032
2033 static void flush_all(struct kmem_cache *s)
2034 {
2035 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2036 }
2037
2038 /*
2039 * Check if the objects in a per cpu structure fit numa
2040 * locality expectations.
2041 */
2042 static inline int node_match(struct page *page, int node)
2043 {
2044 #ifdef CONFIG_NUMA
2045 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2046 return 0;
2047 #endif
2048 return 1;
2049 }
2050
2051 static int count_free(struct page *page)
2052 {
2053 return page->objects - page->inuse;
2054 }
2055
2056 static unsigned long count_partial(struct kmem_cache_node *n,
2057 int (*get_count)(struct page *))
2058 {
2059 unsigned long flags;
2060 unsigned long x = 0;
2061 struct page *page;
2062
2063 spin_lock_irqsave(&n->list_lock, flags);
2064 list_for_each_entry(page, &n->partial, lru)
2065 x += get_count(page);
2066 spin_unlock_irqrestore(&n->list_lock, flags);
2067 return x;
2068 }
2069
2070 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2071 {
2072 #ifdef CONFIG_SLUB_DEBUG
2073 return atomic_long_read(&n->total_objects);
2074 #else
2075 return 0;
2076 #endif
2077 }
2078
2079 static noinline void
2080 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2081 {
2082 int node;
2083
2084 printk(KERN_WARNING
2085 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2086 nid, gfpflags);
2087 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2088 "default order: %d, min order: %d\n", s->name, s->object_size,
2089 s->size, oo_order(s->oo), oo_order(s->min));
2090
2091 if (oo_order(s->min) > get_order(s->object_size))
2092 printk(KERN_WARNING " %s debugging increased min order, use "
2093 "slub_debug=O to disable.\n", s->name);
2094
2095 for_each_online_node(node) {
2096 struct kmem_cache_node *n = get_node(s, node);
2097 unsigned long nr_slabs;
2098 unsigned long nr_objs;
2099 unsigned long nr_free;
2100
2101 if (!n)
2102 continue;
2103
2104 nr_free = count_partial(n, count_free);
2105 nr_slabs = node_nr_slabs(n);
2106 nr_objs = node_nr_objs(n);
2107
2108 printk(KERN_WARNING
2109 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2110 node, nr_slabs, nr_objs, nr_free);
2111 }
2112 }
2113
2114 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2115 int node, struct kmem_cache_cpu **pc)
2116 {
2117 void *freelist;
2118 struct kmem_cache_cpu *c = *pc;
2119 struct page *page;
2120
2121 freelist = get_partial(s, flags, node, c);
2122
2123 if (freelist)
2124 return freelist;
2125
2126 page = new_slab(s, flags, node);
2127 if (page) {
2128 c = __this_cpu_ptr(s->cpu_slab);
2129 if (c->page)
2130 flush_slab(s, c);
2131
2132 /*
2133 * No other reference to the page yet so we can
2134 * muck around with it freely without cmpxchg
2135 */
2136 freelist = page->freelist;
2137 page->freelist = NULL;
2138
2139 stat(s, ALLOC_SLAB);
2140 c->page = page;
2141 *pc = c;
2142 } else
2143 freelist = NULL;
2144
2145 return freelist;
2146 }
2147
2148 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2149 {
2150 if (unlikely(PageSlabPfmemalloc(page)))
2151 return gfp_pfmemalloc_allowed(gfpflags);
2152
2153 return true;
2154 }
2155
2156 /*
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2159 *
2160 * The page is still frozen if the return value is not NULL.
2161 *
2162 * If this function returns NULL then the page has been unfrozen.
2163 *
2164 * This function must be called with interrupt disabled.
2165 */
2166 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2167 {
2168 struct page new;
2169 unsigned long counters;
2170 void *freelist;
2171
2172 do {
2173 freelist = page->freelist;
2174 counters = page->counters;
2175
2176 new.counters = counters;
2177 VM_BUG_ON(!new.frozen);
2178
2179 new.inuse = page->objects;
2180 new.frozen = freelist != NULL;
2181
2182 } while (!__cmpxchg_double_slab(s, page,
2183 freelist, counters,
2184 NULL, new.counters,
2185 "get_freelist"));
2186
2187 return freelist;
2188 }
2189
2190 /*
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2193 *
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
2197 *
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
2201 *
2202 * And if we were unable to get a new slab from the partial slab lists then
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
2205 */
2206 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207 unsigned long addr, struct kmem_cache_cpu *c)
2208 {
2209 void *freelist;
2210 struct page *page;
2211 unsigned long flags;
2212
2213 local_irq_save(flags);
2214 #ifdef CONFIG_PREEMPT
2215 /*
2216 * We may have been preempted and rescheduled on a different
2217 * cpu before disabling interrupts. Need to reload cpu area
2218 * pointer.
2219 */
2220 c = this_cpu_ptr(s->cpu_slab);
2221 #endif
2222
2223 page = c->page;
2224 if (!page)
2225 goto new_slab;
2226 redo:
2227
2228 if (unlikely(!node_match(page, node))) {
2229 stat(s, ALLOC_NODE_MISMATCH);
2230 deactivate_slab(s, page, c->freelist);
2231 c->page = NULL;
2232 c->freelist = NULL;
2233 goto new_slab;
2234 }
2235
2236 /*
2237 * By rights, we should be searching for a slab page that was
2238 * PFMEMALLOC but right now, we are losing the pfmemalloc
2239 * information when the page leaves the per-cpu allocator
2240 */
2241 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2242 deactivate_slab(s, page, c->freelist);
2243 c->page = NULL;
2244 c->freelist = NULL;
2245 goto new_slab;
2246 }
2247
2248 /* must check again c->freelist in case of cpu migration or IRQ */
2249 freelist = c->freelist;
2250 if (freelist)
2251 goto load_freelist;
2252
2253 stat(s, ALLOC_SLOWPATH);
2254
2255 freelist = get_freelist(s, page);
2256
2257 if (!freelist) {
2258 c->page = NULL;
2259 stat(s, DEACTIVATE_BYPASS);
2260 goto new_slab;
2261 }
2262
2263 stat(s, ALLOC_REFILL);
2264
2265 load_freelist:
2266 /*
2267 * freelist is pointing to the list of objects to be used.
2268 * page is pointing to the page from which the objects are obtained.
2269 * That page must be frozen for per cpu allocations to work.
2270 */
2271 VM_BUG_ON(!c->page->frozen);
2272 c->freelist = get_freepointer(s, freelist);
2273 c->tid = next_tid(c->tid);
2274 local_irq_restore(flags);
2275 return freelist;
2276
2277 new_slab:
2278
2279 if (c->partial) {
2280 page = c->page = c->partial;
2281 c->partial = page->next;
2282 stat(s, CPU_PARTIAL_ALLOC);
2283 c->freelist = NULL;
2284 goto redo;
2285 }
2286
2287 freelist = new_slab_objects(s, gfpflags, node, &c);
2288
2289 if (unlikely(!freelist)) {
2290 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2291 slab_out_of_memory(s, gfpflags, node);
2292
2293 local_irq_restore(flags);
2294 return NULL;
2295 }
2296
2297 page = c->page;
2298 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2299 goto load_freelist;
2300
2301 /* Only entered in the debug case */
2302 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2303 goto new_slab; /* Slab failed checks. Next slab needed */
2304
2305 deactivate_slab(s, page, get_freepointer(s, freelist));
2306 c->page = NULL;
2307 c->freelist = NULL;
2308 local_irq_restore(flags);
2309 return freelist;
2310 }
2311
2312 /*
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2316 *
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2319 *
2320 * Otherwise we can simply pick the next object from the lockless free list.
2321 */
2322 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2323 gfp_t gfpflags, int node, unsigned long addr)
2324 {
2325 void **object;
2326 struct kmem_cache_cpu *c;
2327 struct page *page;
2328 unsigned long tid;
2329
2330 if (slab_pre_alloc_hook(s, gfpflags))
2331 return NULL;
2332
2333 s = memcg_kmem_get_cache(s, gfpflags);
2334 redo:
2335 /*
2336 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2337 * enabled. We may switch back and forth between cpus while
2338 * reading from one cpu area. That does not matter as long
2339 * as we end up on the original cpu again when doing the cmpxchg.
2340 *
2341 * Preemption is disabled for the retrieval of the tid because that
2342 * must occur from the current processor. We cannot allow rescheduling
2343 * on a different processor between the determination of the pointer
2344 * and the retrieval of the tid.
2345 */
2346 preempt_disable();
2347 c = __this_cpu_ptr(s->cpu_slab);
2348
2349 /*
2350 * The transaction ids are globally unique per cpu and per operation on
2351 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2352 * occurs on the right processor and that there was no operation on the
2353 * linked list in between.
2354 */
2355 tid = c->tid;
2356 preempt_enable();
2357
2358 object = c->freelist;
2359 page = c->page;
2360 if (unlikely(!object || !node_match(page, node)))
2361 object = __slab_alloc(s, gfpflags, node, addr, c);
2362
2363 else {
2364 void *next_object = get_freepointer_safe(s, object);
2365
2366 /*
2367 * The cmpxchg will only match if there was no additional
2368 * operation and if we are on the right processor.
2369 *
2370 * The cmpxchg does the following atomically (without lock semantics!)
2371 * 1. Relocate first pointer to the current per cpu area.
2372 * 2. Verify that tid and freelist have not been changed
2373 * 3. If they were not changed replace tid and freelist
2374 *
2375 * Since this is without lock semantics the protection is only against
2376 * code executing on this cpu *not* from access by other cpus.
2377 */
2378 if (unlikely(!this_cpu_cmpxchg_double(
2379 s->cpu_slab->freelist, s->cpu_slab->tid,
2380 object, tid,
2381 next_object, next_tid(tid)))) {
2382
2383 note_cmpxchg_failure("slab_alloc", s, tid);
2384 goto redo;
2385 }
2386 prefetch_freepointer(s, next_object);
2387 stat(s, ALLOC_FASTPATH);
2388 }
2389
2390 if (unlikely(gfpflags & __GFP_ZERO) && object)
2391 memset(object, 0, s->object_size);
2392
2393 slab_post_alloc_hook(s, gfpflags, object);
2394
2395 return object;
2396 }
2397
2398 static __always_inline void *slab_alloc(struct kmem_cache *s,
2399 gfp_t gfpflags, unsigned long addr)
2400 {
2401 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2402 }
2403
2404 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2405 {
2406 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2407
2408 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2409
2410 return ret;
2411 }
2412 EXPORT_SYMBOL(kmem_cache_alloc);
2413
2414 #ifdef CONFIG_TRACING
2415 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2416 {
2417 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2418 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2419 return ret;
2420 }
2421 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2422
2423 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2424 {
2425 void *ret = kmalloc_order(size, flags, order);
2426 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2427 return ret;
2428 }
2429 EXPORT_SYMBOL(kmalloc_order_trace);
2430 #endif
2431
2432 #ifdef CONFIG_NUMA
2433 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2434 {
2435 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2436
2437 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2438 s->object_size, s->size, gfpflags, node);
2439
2440 return ret;
2441 }
2442 EXPORT_SYMBOL(kmem_cache_alloc_node);
2443
2444 #ifdef CONFIG_TRACING
2445 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2446 gfp_t gfpflags,
2447 int node, size_t size)
2448 {
2449 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2450
2451 trace_kmalloc_node(_RET_IP_, ret,
2452 size, s->size, gfpflags, node);
2453 return ret;
2454 }
2455 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2456 #endif
2457 #endif
2458
2459 /*
2460 * Slow patch handling. This may still be called frequently since objects
2461 * have a longer lifetime than the cpu slabs in most processing loads.
2462 *
2463 * So we still attempt to reduce cache line usage. Just take the slab
2464 * lock and free the item. If there is no additional partial page
2465 * handling required then we can return immediately.
2466 */
2467 static void __slab_free(struct kmem_cache *s, struct page *page,
2468 void *x, unsigned long addr)
2469 {
2470 void *prior;
2471 void **object = (void *)x;
2472 int was_frozen;
2473 struct page new;
2474 unsigned long counters;
2475 struct kmem_cache_node *n = NULL;
2476 unsigned long uninitialized_var(flags);
2477
2478 stat(s, FREE_SLOWPATH);
2479
2480 if (kmem_cache_debug(s) &&
2481 !(n = free_debug_processing(s, page, x, addr, &flags)))
2482 return;
2483
2484 do {
2485 if (unlikely(n)) {
2486 spin_unlock_irqrestore(&n->list_lock, flags);
2487 n = NULL;
2488 }
2489 prior = page->freelist;
2490 counters = page->counters;
2491 set_freepointer(s, object, prior);
2492 new.counters = counters;
2493 was_frozen = new.frozen;
2494 new.inuse--;
2495 if ((!new.inuse || !prior) && !was_frozen) {
2496
2497 if (!kmem_cache_debug(s) && !prior)
2498
2499 /*
2500 * Slab was on no list before and will be partially empty
2501 * We can defer the list move and instead freeze it.
2502 */
2503 new.frozen = 1;
2504
2505 else { /* Needs to be taken off a list */
2506
2507 n = get_node(s, page_to_nid(page));
2508 /*
2509 * Speculatively acquire the list_lock.
2510 * If the cmpxchg does not succeed then we may
2511 * drop the list_lock without any processing.
2512 *
2513 * Otherwise the list_lock will synchronize with
2514 * other processors updating the list of slabs.
2515 */
2516 spin_lock_irqsave(&n->list_lock, flags);
2517
2518 }
2519 }
2520
2521 } while (!cmpxchg_double_slab(s, page,
2522 prior, counters,
2523 object, new.counters,
2524 "__slab_free"));
2525
2526 if (likely(!n)) {
2527
2528 /*
2529 * If we just froze the page then put it onto the
2530 * per cpu partial list.
2531 */
2532 if (new.frozen && !was_frozen) {
2533 put_cpu_partial(s, page, 1);
2534 stat(s, CPU_PARTIAL_FREE);
2535 }
2536 /*
2537 * The list lock was not taken therefore no list
2538 * activity can be necessary.
2539 */
2540 if (was_frozen)
2541 stat(s, FREE_FROZEN);
2542 return;
2543 }
2544
2545 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2546 goto slab_empty;
2547
2548 /*
2549 * Objects left in the slab. If it was not on the partial list before
2550 * then add it.
2551 */
2552 if (kmem_cache_debug(s) && unlikely(!prior)) {
2553 remove_full(s, page);
2554 add_partial(n, page, DEACTIVATE_TO_TAIL);
2555 stat(s, FREE_ADD_PARTIAL);
2556 }
2557 spin_unlock_irqrestore(&n->list_lock, flags);
2558 return;
2559
2560 slab_empty:
2561 if (prior) {
2562 /*
2563 * Slab on the partial list.
2564 */
2565 remove_partial(n, page);
2566 stat(s, FREE_REMOVE_PARTIAL);
2567 } else
2568 /* Slab must be on the full list */
2569 remove_full(s, page);
2570
2571 spin_unlock_irqrestore(&n->list_lock, flags);
2572 stat(s, FREE_SLAB);
2573 discard_slab(s, page);
2574 }
2575
2576 /*
2577 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2578 * can perform fastpath freeing without additional function calls.
2579 *
2580 * The fastpath is only possible if we are freeing to the current cpu slab
2581 * of this processor. This typically the case if we have just allocated
2582 * the item before.
2583 *
2584 * If fastpath is not possible then fall back to __slab_free where we deal
2585 * with all sorts of special processing.
2586 */
2587 static __always_inline void slab_free(struct kmem_cache *s,
2588 struct page *page, void *x, unsigned long addr)
2589 {
2590 void **object = (void *)x;
2591 struct kmem_cache_cpu *c;
2592 unsigned long tid;
2593
2594 slab_free_hook(s, x);
2595
2596 redo:
2597 /*
2598 * Determine the currently cpus per cpu slab.
2599 * The cpu may change afterward. However that does not matter since
2600 * data is retrieved via this pointer. If we are on the same cpu
2601 * during the cmpxchg then the free will succedd.
2602 */
2603 preempt_disable();
2604 c = __this_cpu_ptr(s->cpu_slab);
2605
2606 tid = c->tid;
2607 preempt_enable();
2608
2609 if (likely(page == c->page)) {
2610 set_freepointer(s, object, c->freelist);
2611
2612 if (unlikely(!this_cpu_cmpxchg_double(
2613 s->cpu_slab->freelist, s->cpu_slab->tid,
2614 c->freelist, tid,
2615 object, next_tid(tid)))) {
2616
2617 note_cmpxchg_failure("slab_free", s, tid);
2618 goto redo;
2619 }
2620 stat(s, FREE_FASTPATH);
2621 } else
2622 __slab_free(s, page, x, addr);
2623
2624 }
2625
2626 void kmem_cache_free(struct kmem_cache *s, void *x)
2627 {
2628 s = cache_from_obj(s, x);
2629 if (!s)
2630 return;
2631 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2632 trace_kmem_cache_free(_RET_IP_, x);
2633 }
2634 EXPORT_SYMBOL(kmem_cache_free);
2635
2636 /*
2637 * Object placement in a slab is made very easy because we always start at
2638 * offset 0. If we tune the size of the object to the alignment then we can
2639 * get the required alignment by putting one properly sized object after
2640 * another.
2641 *
2642 * Notice that the allocation order determines the sizes of the per cpu
2643 * caches. Each processor has always one slab available for allocations.
2644 * Increasing the allocation order reduces the number of times that slabs
2645 * must be moved on and off the partial lists and is therefore a factor in
2646 * locking overhead.
2647 */
2648
2649 /*
2650 * Mininum / Maximum order of slab pages. This influences locking overhead
2651 * and slab fragmentation. A higher order reduces the number of partial slabs
2652 * and increases the number of allocations possible without having to
2653 * take the list_lock.
2654 */
2655 static int slub_min_order;
2656 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2657 static int slub_min_objects;
2658
2659 /*
2660 * Merge control. If this is set then no merging of slab caches will occur.
2661 * (Could be removed. This was introduced to pacify the merge skeptics.)
2662 */
2663 static int slub_nomerge;
2664
2665 /*
2666 * Calculate the order of allocation given an slab object size.
2667 *
2668 * The order of allocation has significant impact on performance and other
2669 * system components. Generally order 0 allocations should be preferred since
2670 * order 0 does not cause fragmentation in the page allocator. Larger objects
2671 * be problematic to put into order 0 slabs because there may be too much
2672 * unused space left. We go to a higher order if more than 1/16th of the slab
2673 * would be wasted.
2674 *
2675 * In order to reach satisfactory performance we must ensure that a minimum
2676 * number of objects is in one slab. Otherwise we may generate too much
2677 * activity on the partial lists which requires taking the list_lock. This is
2678 * less a concern for large slabs though which are rarely used.
2679 *
2680 * slub_max_order specifies the order where we begin to stop considering the
2681 * number of objects in a slab as critical. If we reach slub_max_order then
2682 * we try to keep the page order as low as possible. So we accept more waste
2683 * of space in favor of a small page order.
2684 *
2685 * Higher order allocations also allow the placement of more objects in a
2686 * slab and thereby reduce object handling overhead. If the user has
2687 * requested a higher mininum order then we start with that one instead of
2688 * the smallest order which will fit the object.
2689 */
2690 static inline int slab_order(int size, int min_objects,
2691 int max_order, int fract_leftover, int reserved)
2692 {
2693 int order;
2694 int rem;
2695 int min_order = slub_min_order;
2696
2697 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2698 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2699
2700 for (order = max(min_order,
2701 fls(min_objects * size - 1) - PAGE_SHIFT);
2702 order <= max_order; order++) {
2703
2704 unsigned long slab_size = PAGE_SIZE << order;
2705
2706 if (slab_size < min_objects * size + reserved)
2707 continue;
2708
2709 rem = (slab_size - reserved) % size;
2710
2711 if (rem <= slab_size / fract_leftover)
2712 break;
2713
2714 }
2715
2716 return order;
2717 }
2718
2719 static inline int calculate_order(int size, int reserved)
2720 {
2721 int order;
2722 int min_objects;
2723 int fraction;
2724 int max_objects;
2725
2726 /*
2727 * Attempt to find best configuration for a slab. This
2728 * works by first attempting to generate a layout with
2729 * the best configuration and backing off gradually.
2730 *
2731 * First we reduce the acceptable waste in a slab. Then
2732 * we reduce the minimum objects required in a slab.
2733 */
2734 min_objects = slub_min_objects;
2735 if (!min_objects)
2736 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2737 max_objects = order_objects(slub_max_order, size, reserved);
2738 min_objects = min(min_objects, max_objects);
2739
2740 while (min_objects > 1) {
2741 fraction = 16;
2742 while (fraction >= 4) {
2743 order = slab_order(size, min_objects,
2744 slub_max_order, fraction, reserved);
2745 if (order <= slub_max_order)
2746 return order;
2747 fraction /= 2;
2748 }
2749 min_objects--;
2750 }
2751
2752 /*
2753 * We were unable to place multiple objects in a slab. Now
2754 * lets see if we can place a single object there.
2755 */
2756 order = slab_order(size, 1, slub_max_order, 1, reserved);
2757 if (order <= slub_max_order)
2758 return order;
2759
2760 /*
2761 * Doh this slab cannot be placed using slub_max_order.
2762 */
2763 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2764 if (order < MAX_ORDER)
2765 return order;
2766 return -ENOSYS;
2767 }
2768
2769 static void
2770 init_kmem_cache_node(struct kmem_cache_node *n)
2771 {
2772 n->nr_partial = 0;
2773 spin_lock_init(&n->list_lock);
2774 INIT_LIST_HEAD(&n->partial);
2775 #ifdef CONFIG_SLUB_DEBUG
2776 atomic_long_set(&n->nr_slabs, 0);
2777 atomic_long_set(&n->total_objects, 0);
2778 INIT_LIST_HEAD(&n->full);
2779 #endif
2780 }
2781
2782 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2783 {
2784 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2785 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2786
2787 /*
2788 * Must align to double word boundary for the double cmpxchg
2789 * instructions to work; see __pcpu_double_call_return_bool().
2790 */
2791 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2792 2 * sizeof(void *));
2793
2794 if (!s->cpu_slab)
2795 return 0;
2796
2797 init_kmem_cache_cpus(s);
2798
2799 return 1;
2800 }
2801
2802 static struct kmem_cache *kmem_cache_node;
2803
2804 /*
2805 * No kmalloc_node yet so do it by hand. We know that this is the first
2806 * slab on the node for this slabcache. There are no concurrent accesses
2807 * possible.
2808 *
2809 * Note that this function only works on the kmalloc_node_cache
2810 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2811 * memory on a fresh node that has no slab structures yet.
2812 */
2813 static void early_kmem_cache_node_alloc(int node)
2814 {
2815 struct page *page;
2816 struct kmem_cache_node *n;
2817
2818 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2819
2820 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2821
2822 BUG_ON(!page);
2823 if (page_to_nid(page) != node) {
2824 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2825 "node %d\n", node);
2826 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2827 "in order to be able to continue\n");
2828 }
2829
2830 n = page->freelist;
2831 BUG_ON(!n);
2832 page->freelist = get_freepointer(kmem_cache_node, n);
2833 page->inuse = 1;
2834 page->frozen = 0;
2835 kmem_cache_node->node[node] = n;
2836 #ifdef CONFIG_SLUB_DEBUG
2837 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2838 init_tracking(kmem_cache_node, n);
2839 #endif
2840 init_kmem_cache_node(n);
2841 inc_slabs_node(kmem_cache_node, node, page->objects);
2842
2843 add_partial(n, page, DEACTIVATE_TO_HEAD);
2844 }
2845
2846 static void free_kmem_cache_nodes(struct kmem_cache *s)
2847 {
2848 int node;
2849
2850 for_each_node_state(node, N_NORMAL_MEMORY) {
2851 struct kmem_cache_node *n = s->node[node];
2852
2853 if (n)
2854 kmem_cache_free(kmem_cache_node, n);
2855
2856 s->node[node] = NULL;
2857 }
2858 }
2859
2860 static int init_kmem_cache_nodes(struct kmem_cache *s)
2861 {
2862 int node;
2863
2864 for_each_node_state(node, N_NORMAL_MEMORY) {
2865 struct kmem_cache_node *n;
2866
2867 if (slab_state == DOWN) {
2868 early_kmem_cache_node_alloc(node);
2869 continue;
2870 }
2871 n = kmem_cache_alloc_node(kmem_cache_node,
2872 GFP_KERNEL, node);
2873
2874 if (!n) {
2875 free_kmem_cache_nodes(s);
2876 return 0;
2877 }
2878
2879 s->node[node] = n;
2880 init_kmem_cache_node(n);
2881 }
2882 return 1;
2883 }
2884
2885 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2886 {
2887 if (min < MIN_PARTIAL)
2888 min = MIN_PARTIAL;
2889 else if (min > MAX_PARTIAL)
2890 min = MAX_PARTIAL;
2891 s->min_partial = min;
2892 }
2893
2894 /*
2895 * calculate_sizes() determines the order and the distribution of data within
2896 * a slab object.
2897 */
2898 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2899 {
2900 unsigned long flags = s->flags;
2901 unsigned long size = s->object_size;
2902 int order;
2903
2904 /*
2905 * Round up object size to the next word boundary. We can only
2906 * place the free pointer at word boundaries and this determines
2907 * the possible location of the free pointer.
2908 */
2909 size = ALIGN(size, sizeof(void *));
2910
2911 #ifdef CONFIG_SLUB_DEBUG
2912 /*
2913 * Determine if we can poison the object itself. If the user of
2914 * the slab may touch the object after free or before allocation
2915 * then we should never poison the object itself.
2916 */
2917 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2918 !s->ctor)
2919 s->flags |= __OBJECT_POISON;
2920 else
2921 s->flags &= ~__OBJECT_POISON;
2922
2923
2924 /*
2925 * If we are Redzoning then check if there is some space between the
2926 * end of the object and the free pointer. If not then add an
2927 * additional word to have some bytes to store Redzone information.
2928 */
2929 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2930 size += sizeof(void *);
2931 #endif
2932
2933 /*
2934 * With that we have determined the number of bytes in actual use
2935 * by the object. This is the potential offset to the free pointer.
2936 */
2937 s->inuse = size;
2938
2939 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2940 s->ctor)) {
2941 /*
2942 * Relocate free pointer after the object if it is not
2943 * permitted to overwrite the first word of the object on
2944 * kmem_cache_free.
2945 *
2946 * This is the case if we do RCU, have a constructor or
2947 * destructor or are poisoning the objects.
2948 */
2949 s->offset = size;
2950 size += sizeof(void *);
2951 }
2952
2953 #ifdef CONFIG_SLUB_DEBUG
2954 if (flags & SLAB_STORE_USER)
2955 /*
2956 * Need to store information about allocs and frees after
2957 * the object.
2958 */
2959 size += 2 * sizeof(struct track);
2960
2961 if (flags & SLAB_RED_ZONE)
2962 /*
2963 * Add some empty padding so that we can catch
2964 * overwrites from earlier objects rather than let
2965 * tracking information or the free pointer be
2966 * corrupted if a user writes before the start
2967 * of the object.
2968 */
2969 size += sizeof(void *);
2970 #endif
2971
2972 /*
2973 * SLUB stores one object immediately after another beginning from
2974 * offset 0. In order to align the objects we have to simply size
2975 * each object to conform to the alignment.
2976 */
2977 size = ALIGN(size, s->align);
2978 s->size = size;
2979 if (forced_order >= 0)
2980 order = forced_order;
2981 else
2982 order = calculate_order(size, s->reserved);
2983
2984 if (order < 0)
2985 return 0;
2986
2987 s->allocflags = 0;
2988 if (order)
2989 s->allocflags |= __GFP_COMP;
2990
2991 if (s->flags & SLAB_CACHE_DMA)
2992 s->allocflags |= GFP_DMA;
2993
2994 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2995 s->allocflags |= __GFP_RECLAIMABLE;
2996
2997 /*
2998 * Determine the number of objects per slab
2999 */
3000 s->oo = oo_make(order, size, s->reserved);
3001 s->min = oo_make(get_order(size), size, s->reserved);
3002 if (oo_objects(s->oo) > oo_objects(s->max))
3003 s->max = s->oo;
3004
3005 return !!oo_objects(s->oo);
3006 }
3007
3008 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3009 {
3010 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3011 s->reserved = 0;
3012
3013 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3014 s->reserved = sizeof(struct rcu_head);
3015
3016 if (!calculate_sizes(s, -1))
3017 goto error;
3018 if (disable_higher_order_debug) {
3019 /*
3020 * Disable debugging flags that store metadata if the min slab
3021 * order increased.
3022 */
3023 if (get_order(s->size) > get_order(s->object_size)) {
3024 s->flags &= ~DEBUG_METADATA_FLAGS;
3025 s->offset = 0;
3026 if (!calculate_sizes(s, -1))
3027 goto error;
3028 }
3029 }
3030
3031 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3032 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3033 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3034 /* Enable fast mode */
3035 s->flags |= __CMPXCHG_DOUBLE;
3036 #endif
3037
3038 /*
3039 * The larger the object size is, the more pages we want on the partial
3040 * list to avoid pounding the page allocator excessively.
3041 */
3042 set_min_partial(s, ilog2(s->size) / 2);
3043
3044 /*
3045 * cpu_partial determined the maximum number of objects kept in the
3046 * per cpu partial lists of a processor.
3047 *
3048 * Per cpu partial lists mainly contain slabs that just have one
3049 * object freed. If they are used for allocation then they can be
3050 * filled up again with minimal effort. The slab will never hit the
3051 * per node partial lists and therefore no locking will be required.
3052 *
3053 * This setting also determines
3054 *
3055 * A) The number of objects from per cpu partial slabs dumped to the
3056 * per node list when we reach the limit.
3057 * B) The number of objects in cpu partial slabs to extract from the
3058 * per node list when we run out of per cpu objects. We only fetch 50%
3059 * to keep some capacity around for frees.
3060 */
3061 if (kmem_cache_debug(s))
3062 s->cpu_partial = 0;
3063 else if (s->size >= PAGE_SIZE)
3064 s->cpu_partial = 2;
3065 else if (s->size >= 1024)
3066 s->cpu_partial = 6;
3067 else if (s->size >= 256)
3068 s->cpu_partial = 13;
3069 else
3070 s->cpu_partial = 30;
3071
3072 #ifdef CONFIG_NUMA
3073 s->remote_node_defrag_ratio = 1000;
3074 #endif
3075 if (!init_kmem_cache_nodes(s))
3076 goto error;
3077
3078 if (alloc_kmem_cache_cpus(s))
3079 return 0;
3080
3081 free_kmem_cache_nodes(s);
3082 error:
3083 if (flags & SLAB_PANIC)
3084 panic("Cannot create slab %s size=%lu realsize=%u "
3085 "order=%u offset=%u flags=%lx\n",
3086 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3087 s->offset, flags);
3088 return -EINVAL;
3089 }
3090
3091 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3092 const char *text)
3093 {
3094 #ifdef CONFIG_SLUB_DEBUG
3095 void *addr = page_address(page);
3096 void *p;
3097 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3098 sizeof(long), GFP_ATOMIC);
3099 if (!map)
3100 return;
3101 slab_err(s, page, text, s->name);
3102 slab_lock(page);
3103
3104 get_map(s, page, map);
3105 for_each_object(p, s, addr, page->objects) {
3106
3107 if (!test_bit(slab_index(p, s, addr), map)) {
3108 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3109 p, p - addr);
3110 print_tracking(s, p);
3111 }
3112 }
3113 slab_unlock(page);
3114 kfree(map);
3115 #endif
3116 }
3117
3118 /*
3119 * Attempt to free all partial slabs on a node.
3120 * This is called from kmem_cache_close(). We must be the last thread
3121 * using the cache and therefore we do not need to lock anymore.
3122 */
3123 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3124 {
3125 struct page *page, *h;
3126
3127 list_for_each_entry_safe(page, h, &n->partial, lru) {
3128 if (!page->inuse) {
3129 remove_partial(n, page);
3130 discard_slab(s, page);
3131 } else {
3132 list_slab_objects(s, page,
3133 "Objects remaining in %s on kmem_cache_close()");
3134 }
3135 }
3136 }
3137
3138 /*
3139 * Release all resources used by a slab cache.
3140 */
3141 static inline int kmem_cache_close(struct kmem_cache *s)
3142 {
3143 int node;
3144
3145 flush_all(s);
3146 /* Attempt to free all objects */
3147 for_each_node_state(node, N_NORMAL_MEMORY) {
3148 struct kmem_cache_node *n = get_node(s, node);
3149
3150 free_partial(s, n);
3151 if (n->nr_partial || slabs_node(s, node))
3152 return 1;
3153 }
3154 free_percpu(s->cpu_slab);
3155 free_kmem_cache_nodes(s);
3156 return 0;
3157 }
3158
3159 int __kmem_cache_shutdown(struct kmem_cache *s)
3160 {
3161 int rc = kmem_cache_close(s);
3162
3163 if (!rc) {
3164 /*
3165 * We do the same lock strategy around sysfs_slab_add, see
3166 * __kmem_cache_create. Because this is pretty much the last
3167 * operation we do and the lock will be released shortly after
3168 * that in slab_common.c, we could just move sysfs_slab_remove
3169 * to a later point in common code. We should do that when we
3170 * have a common sysfs framework for all allocators.
3171 */
3172 mutex_unlock(&slab_mutex);
3173 sysfs_slab_remove(s);
3174 mutex_lock(&slab_mutex);
3175 }
3176
3177 return rc;
3178 }
3179
3180 /********************************************************************
3181 * Kmalloc subsystem
3182 *******************************************************************/
3183
3184 static int __init setup_slub_min_order(char *str)
3185 {
3186 get_option(&str, &slub_min_order);
3187
3188 return 1;
3189 }
3190
3191 __setup("slub_min_order=", setup_slub_min_order);
3192
3193 static int __init setup_slub_max_order(char *str)
3194 {
3195 get_option(&str, &slub_max_order);
3196 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3197
3198 return 1;
3199 }
3200
3201 __setup("slub_max_order=", setup_slub_max_order);
3202
3203 static int __init setup_slub_min_objects(char *str)
3204 {
3205 get_option(&str, &slub_min_objects);
3206
3207 return 1;
3208 }
3209
3210 __setup("slub_min_objects=", setup_slub_min_objects);
3211
3212 static int __init setup_slub_nomerge(char *str)
3213 {
3214 slub_nomerge = 1;
3215 return 1;
3216 }
3217
3218 __setup("slub_nomerge", setup_slub_nomerge);
3219
3220 void *__kmalloc(size_t size, gfp_t flags)
3221 {
3222 struct kmem_cache *s;
3223 void *ret;
3224
3225 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3226 return kmalloc_large(size, flags);
3227
3228 s = kmalloc_slab(size, flags);
3229
3230 if (unlikely(ZERO_OR_NULL_PTR(s)))
3231 return s;
3232
3233 ret = slab_alloc(s, flags, _RET_IP_);
3234
3235 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3236
3237 return ret;
3238 }
3239 EXPORT_SYMBOL(__kmalloc);
3240
3241 #ifdef CONFIG_NUMA
3242 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3243 {
3244 struct page *page;
3245 void *ptr = NULL;
3246
3247 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3248 page = alloc_pages_node(node, flags, get_order(size));
3249 if (page)
3250 ptr = page_address(page);
3251
3252 kmemleak_alloc(ptr, size, 1, flags);
3253 return ptr;
3254 }
3255
3256 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3257 {
3258 struct kmem_cache *s;
3259 void *ret;
3260
3261 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3262 ret = kmalloc_large_node(size, flags, node);
3263
3264 trace_kmalloc_node(_RET_IP_, ret,
3265 size, PAGE_SIZE << get_order(size),
3266 flags, node);
3267
3268 return ret;
3269 }
3270
3271 s = kmalloc_slab(size, flags);
3272
3273 if (unlikely(ZERO_OR_NULL_PTR(s)))
3274 return s;
3275
3276 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3277
3278 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3279
3280 return ret;
3281 }
3282 EXPORT_SYMBOL(__kmalloc_node);
3283 #endif
3284
3285 size_t ksize(const void *object)
3286 {
3287 struct page *page;
3288
3289 if (unlikely(object == ZERO_SIZE_PTR))
3290 return 0;
3291
3292 page = virt_to_head_page(object);
3293
3294 if (unlikely(!PageSlab(page))) {
3295 WARN_ON(!PageCompound(page));
3296 return PAGE_SIZE << compound_order(page);
3297 }
3298
3299 return slab_ksize(page->slab_cache);
3300 }
3301 EXPORT_SYMBOL(ksize);
3302
3303 #ifdef CONFIG_SLUB_DEBUG
3304 bool verify_mem_not_deleted(const void *x)
3305 {
3306 struct page *page;
3307 void *object = (void *)x;
3308 unsigned long flags;
3309 bool rv;
3310
3311 if (unlikely(ZERO_OR_NULL_PTR(x)))
3312 return false;
3313
3314 local_irq_save(flags);
3315
3316 page = virt_to_head_page(x);
3317 if (unlikely(!PageSlab(page))) {
3318 /* maybe it was from stack? */
3319 rv = true;
3320 goto out_unlock;
3321 }
3322
3323 slab_lock(page);
3324 if (on_freelist(page->slab_cache, page, object)) {
3325 object_err(page->slab_cache, page, object, "Object is on free-list");
3326 rv = false;
3327 } else {
3328 rv = true;
3329 }
3330 slab_unlock(page);
3331
3332 out_unlock:
3333 local_irq_restore(flags);
3334 return rv;
3335 }
3336 EXPORT_SYMBOL(verify_mem_not_deleted);
3337 #endif
3338
3339 void kfree(const void *x)
3340 {
3341 struct page *page;
3342 void *object = (void *)x;
3343
3344 trace_kfree(_RET_IP_, x);
3345
3346 if (unlikely(ZERO_OR_NULL_PTR(x)))
3347 return;
3348
3349 page = virt_to_head_page(x);
3350 if (unlikely(!PageSlab(page))) {
3351 BUG_ON(!PageCompound(page));
3352 kmemleak_free(x);
3353 __free_memcg_kmem_pages(page, compound_order(page));
3354 return;
3355 }
3356 slab_free(page->slab_cache, page, object, _RET_IP_);
3357 }
3358 EXPORT_SYMBOL(kfree);
3359
3360 /*
3361 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3362 * the remaining slabs by the number of items in use. The slabs with the
3363 * most items in use come first. New allocations will then fill those up
3364 * and thus they can be removed from the partial lists.
3365 *
3366 * The slabs with the least items are placed last. This results in them
3367 * being allocated from last increasing the chance that the last objects
3368 * are freed in them.
3369 */
3370 int kmem_cache_shrink(struct kmem_cache *s)
3371 {
3372 int node;
3373 int i;
3374 struct kmem_cache_node *n;
3375 struct page *page;
3376 struct page *t;
3377 int objects = oo_objects(s->max);
3378 struct list_head *slabs_by_inuse =
3379 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3380 unsigned long flags;
3381
3382 if (!slabs_by_inuse)
3383 return -ENOMEM;
3384
3385 flush_all(s);
3386 for_each_node_state(node, N_NORMAL_MEMORY) {
3387 n = get_node(s, node);
3388
3389 if (!n->nr_partial)
3390 continue;
3391
3392 for (i = 0; i < objects; i++)
3393 INIT_LIST_HEAD(slabs_by_inuse + i);
3394
3395 spin_lock_irqsave(&n->list_lock, flags);
3396
3397 /*
3398 * Build lists indexed by the items in use in each slab.
3399 *
3400 * Note that concurrent frees may occur while we hold the
3401 * list_lock. page->inuse here is the upper limit.
3402 */
3403 list_for_each_entry_safe(page, t, &n->partial, lru) {
3404 list_move(&page->lru, slabs_by_inuse + page->inuse);
3405 if (!page->inuse)
3406 n->nr_partial--;
3407 }
3408
3409 /*
3410 * Rebuild the partial list with the slabs filled up most
3411 * first and the least used slabs at the end.
3412 */
3413 for (i = objects - 1; i > 0; i--)
3414 list_splice(slabs_by_inuse + i, n->partial.prev);
3415
3416 spin_unlock_irqrestore(&n->list_lock, flags);
3417
3418 /* Release empty slabs */
3419 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3420 discard_slab(s, page);
3421 }
3422
3423 kfree(slabs_by_inuse);
3424 return 0;
3425 }
3426 EXPORT_SYMBOL(kmem_cache_shrink);
3427
3428 #if defined(CONFIG_MEMORY_HOTPLUG)
3429 static int slab_mem_going_offline_callback(void *arg)
3430 {
3431 struct kmem_cache *s;
3432
3433 mutex_lock(&slab_mutex);
3434 list_for_each_entry(s, &slab_caches, list)
3435 kmem_cache_shrink(s);
3436 mutex_unlock(&slab_mutex);
3437
3438 return 0;
3439 }
3440
3441 static void slab_mem_offline_callback(void *arg)
3442 {
3443 struct kmem_cache_node *n;
3444 struct kmem_cache *s;
3445 struct memory_notify *marg = arg;
3446 int offline_node;
3447
3448 offline_node = marg->status_change_nid_normal;
3449
3450 /*
3451 * If the node still has available memory. we need kmem_cache_node
3452 * for it yet.
3453 */
3454 if (offline_node < 0)
3455 return;
3456
3457 mutex_lock(&slab_mutex);
3458 list_for_each_entry(s, &slab_caches, list) {
3459 n = get_node(s, offline_node);
3460 if (n) {
3461 /*
3462 * if n->nr_slabs > 0, slabs still exist on the node
3463 * that is going down. We were unable to free them,
3464 * and offline_pages() function shouldn't call this
3465 * callback. So, we must fail.
3466 */
3467 BUG_ON(slabs_node(s, offline_node));
3468
3469 s->node[offline_node] = NULL;
3470 kmem_cache_free(kmem_cache_node, n);
3471 }
3472 }
3473 mutex_unlock(&slab_mutex);
3474 }
3475
3476 static int slab_mem_going_online_callback(void *arg)
3477 {
3478 struct kmem_cache_node *n;
3479 struct kmem_cache *s;
3480 struct memory_notify *marg = arg;
3481 int nid = marg->status_change_nid_normal;
3482 int ret = 0;
3483
3484 /*
3485 * If the node's memory is already available, then kmem_cache_node is
3486 * already created. Nothing to do.
3487 */
3488 if (nid < 0)
3489 return 0;
3490
3491 /*
3492 * We are bringing a node online. No memory is available yet. We must
3493 * allocate a kmem_cache_node structure in order to bring the node
3494 * online.
3495 */
3496 mutex_lock(&slab_mutex);
3497 list_for_each_entry(s, &slab_caches, list) {
3498 /*
3499 * XXX: kmem_cache_alloc_node will fallback to other nodes
3500 * since memory is not yet available from the node that
3501 * is brought up.
3502 */
3503 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3504 if (!n) {
3505 ret = -ENOMEM;
3506 goto out;
3507 }
3508 init_kmem_cache_node(n);
3509 s->node[nid] = n;
3510 }
3511 out:
3512 mutex_unlock(&slab_mutex);
3513 return ret;
3514 }
3515
3516 static int slab_memory_callback(struct notifier_block *self,
3517 unsigned long action, void *arg)
3518 {
3519 int ret = 0;
3520
3521 switch (action) {
3522 case MEM_GOING_ONLINE:
3523 ret = slab_mem_going_online_callback(arg);
3524 break;
3525 case MEM_GOING_OFFLINE:
3526 ret = slab_mem_going_offline_callback(arg);
3527 break;
3528 case MEM_OFFLINE:
3529 case MEM_CANCEL_ONLINE:
3530 slab_mem_offline_callback(arg);
3531 break;
3532 case MEM_ONLINE:
3533 case MEM_CANCEL_OFFLINE:
3534 break;
3535 }
3536 if (ret)
3537 ret = notifier_from_errno(ret);
3538 else
3539 ret = NOTIFY_OK;
3540 return ret;
3541 }
3542
3543 #endif /* CONFIG_MEMORY_HOTPLUG */
3544
3545 /********************************************************************
3546 * Basic setup of slabs
3547 *******************************************************************/
3548
3549 /*
3550 * Used for early kmem_cache structures that were allocated using
3551 * the page allocator. Allocate them properly then fix up the pointers
3552 * that may be pointing to the wrong kmem_cache structure.
3553 */
3554
3555 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3556 {
3557 int node;
3558 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3559
3560 memcpy(s, static_cache, kmem_cache->object_size);
3561
3562 /*
3563 * This runs very early, and only the boot processor is supposed to be
3564 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3565 * IPIs around.
3566 */
3567 __flush_cpu_slab(s, smp_processor_id());
3568 for_each_node_state(node, N_NORMAL_MEMORY) {
3569 struct kmem_cache_node *n = get_node(s, node);
3570 struct page *p;
3571
3572 if (n) {
3573 list_for_each_entry(p, &n->partial, lru)
3574 p->slab_cache = s;
3575
3576 #ifdef CONFIG_SLUB_DEBUG
3577 list_for_each_entry(p, &n->full, lru)
3578 p->slab_cache = s;
3579 #endif
3580 }
3581 }
3582 list_add(&s->list, &slab_caches);
3583 return s;
3584 }
3585
3586 void __init kmem_cache_init(void)
3587 {
3588 static __initdata struct kmem_cache boot_kmem_cache,
3589 boot_kmem_cache_node;
3590
3591 if (debug_guardpage_minorder())
3592 slub_max_order = 0;
3593
3594 kmem_cache_node = &boot_kmem_cache_node;
3595 kmem_cache = &boot_kmem_cache;
3596
3597 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3598 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3599
3600 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3601
3602 /* Able to allocate the per node structures */
3603 slab_state = PARTIAL;
3604
3605 create_boot_cache(kmem_cache, "kmem_cache",
3606 offsetof(struct kmem_cache, node) +
3607 nr_node_ids * sizeof(struct kmem_cache_node *),
3608 SLAB_HWCACHE_ALIGN);
3609
3610 kmem_cache = bootstrap(&boot_kmem_cache);
3611
3612 /*
3613 * Allocate kmem_cache_node properly from the kmem_cache slab.
3614 * kmem_cache_node is separately allocated so no need to
3615 * update any list pointers.
3616 */
3617 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3618
3619 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3620 create_kmalloc_caches(0);
3621
3622 #ifdef CONFIG_SMP
3623 register_cpu_notifier(&slab_notifier);
3624 #endif
3625
3626 printk(KERN_INFO
3627 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3628 " CPUs=%d, Nodes=%d\n",
3629 cache_line_size(),
3630 slub_min_order, slub_max_order, slub_min_objects,
3631 nr_cpu_ids, nr_node_ids);
3632 }
3633
3634 void __init kmem_cache_init_late(void)
3635 {
3636 }
3637
3638 /*
3639 * Find a mergeable slab cache
3640 */
3641 static int slab_unmergeable(struct kmem_cache *s)
3642 {
3643 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3644 return 1;
3645
3646 if (s->ctor)
3647 return 1;
3648
3649 /*
3650 * We may have set a slab to be unmergeable during bootstrap.
3651 */
3652 if (s->refcount < 0)
3653 return 1;
3654
3655 return 0;
3656 }
3657
3658 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3659 size_t align, unsigned long flags, const char *name,
3660 void (*ctor)(void *))
3661 {
3662 struct kmem_cache *s;
3663
3664 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3665 return NULL;
3666
3667 if (ctor)
3668 return NULL;
3669
3670 size = ALIGN(size, sizeof(void *));
3671 align = calculate_alignment(flags, align, size);
3672 size = ALIGN(size, align);
3673 flags = kmem_cache_flags(size, flags, name, NULL);
3674
3675 list_for_each_entry(s, &slab_caches, list) {
3676 if (slab_unmergeable(s))
3677 continue;
3678
3679 if (size > s->size)
3680 continue;
3681
3682 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3683 continue;
3684 /*
3685 * Check if alignment is compatible.
3686 * Courtesy of Adrian Drzewiecki
3687 */
3688 if ((s->size & ~(align - 1)) != s->size)
3689 continue;
3690
3691 if (s->size - size >= sizeof(void *))
3692 continue;
3693
3694 if (!cache_match_memcg(s, memcg))
3695 continue;
3696
3697 return s;
3698 }
3699 return NULL;
3700 }
3701
3702 struct kmem_cache *
3703 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3704 size_t align, unsigned long flags, void (*ctor)(void *))
3705 {
3706 struct kmem_cache *s;
3707
3708 s = find_mergeable(memcg, size, align, flags, name, ctor);
3709 if (s) {
3710 s->refcount++;
3711 /*
3712 * Adjust the object sizes so that we clear
3713 * the complete object on kzalloc.
3714 */
3715 s->object_size = max(s->object_size, (int)size);
3716 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3717
3718 if (sysfs_slab_alias(s, name)) {
3719 s->refcount--;
3720 s = NULL;
3721 }
3722 }
3723
3724 return s;
3725 }
3726
3727 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3728 {
3729 int err;
3730
3731 err = kmem_cache_open(s, flags);
3732 if (err)
3733 return err;
3734
3735 /* Mutex is not taken during early boot */
3736 if (slab_state <= UP)
3737 return 0;
3738
3739 memcg_propagate_slab_attrs(s);
3740 mutex_unlock(&slab_mutex);
3741 err = sysfs_slab_add(s);
3742 mutex_lock(&slab_mutex);
3743
3744 if (err)
3745 kmem_cache_close(s);
3746
3747 return err;
3748 }
3749
3750 #ifdef CONFIG_SMP
3751 /*
3752 * Use the cpu notifier to insure that the cpu slabs are flushed when
3753 * necessary.
3754 */
3755 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3756 unsigned long action, void *hcpu)
3757 {
3758 long cpu = (long)hcpu;
3759 struct kmem_cache *s;
3760 unsigned long flags;
3761
3762 switch (action) {
3763 case CPU_UP_CANCELED:
3764 case CPU_UP_CANCELED_FROZEN:
3765 case CPU_DEAD:
3766 case CPU_DEAD_FROZEN:
3767 mutex_lock(&slab_mutex);
3768 list_for_each_entry(s, &slab_caches, list) {
3769 local_irq_save(flags);
3770 __flush_cpu_slab(s, cpu);
3771 local_irq_restore(flags);
3772 }
3773 mutex_unlock(&slab_mutex);
3774 break;
3775 default:
3776 break;
3777 }
3778 return NOTIFY_OK;
3779 }
3780
3781 static struct notifier_block __cpuinitdata slab_notifier = {
3782 .notifier_call = slab_cpuup_callback
3783 };
3784
3785 #endif
3786
3787 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3788 {
3789 struct kmem_cache *s;
3790 void *ret;
3791
3792 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3793 return kmalloc_large(size, gfpflags);
3794
3795 s = kmalloc_slab(size, gfpflags);
3796
3797 if (unlikely(ZERO_OR_NULL_PTR(s)))
3798 return s;
3799
3800 ret = slab_alloc(s, gfpflags, caller);
3801
3802 /* Honor the call site pointer we received. */
3803 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3804
3805 return ret;
3806 }
3807
3808 #ifdef CONFIG_NUMA
3809 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3810 int node, unsigned long caller)
3811 {
3812 struct kmem_cache *s;
3813 void *ret;
3814
3815 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3816 ret = kmalloc_large_node(size, gfpflags, node);
3817
3818 trace_kmalloc_node(caller, ret,
3819 size, PAGE_SIZE << get_order(size),
3820 gfpflags, node);
3821
3822 return ret;
3823 }
3824
3825 s = kmalloc_slab(size, gfpflags);
3826
3827 if (unlikely(ZERO_OR_NULL_PTR(s)))
3828 return s;
3829
3830 ret = slab_alloc_node(s, gfpflags, node, caller);
3831
3832 /* Honor the call site pointer we received. */
3833 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3834
3835 return ret;
3836 }
3837 #endif
3838
3839 #ifdef CONFIG_SYSFS
3840 static int count_inuse(struct page *page)
3841 {
3842 return page->inuse;
3843 }
3844
3845 static int count_total(struct page *page)
3846 {
3847 return page->objects;
3848 }
3849 #endif
3850
3851 #ifdef CONFIG_SLUB_DEBUG
3852 static int validate_slab(struct kmem_cache *s, struct page *page,
3853 unsigned long *map)
3854 {
3855 void *p;
3856 void *addr = page_address(page);
3857
3858 if (!check_slab(s, page) ||
3859 !on_freelist(s, page, NULL))
3860 return 0;
3861
3862 /* Now we know that a valid freelist exists */
3863 bitmap_zero(map, page->objects);
3864
3865 get_map(s, page, map);
3866 for_each_object(p, s, addr, page->objects) {
3867 if (test_bit(slab_index(p, s, addr), map))
3868 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3869 return 0;
3870 }
3871
3872 for_each_object(p, s, addr, page->objects)
3873 if (!test_bit(slab_index(p, s, addr), map))
3874 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3875 return 0;
3876 return 1;
3877 }
3878
3879 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3880 unsigned long *map)
3881 {
3882 slab_lock(page);
3883 validate_slab(s, page, map);
3884 slab_unlock(page);
3885 }
3886
3887 static int validate_slab_node(struct kmem_cache *s,
3888 struct kmem_cache_node *n, unsigned long *map)
3889 {
3890 unsigned long count = 0;
3891 struct page *page;
3892 unsigned long flags;
3893
3894 spin_lock_irqsave(&n->list_lock, flags);
3895
3896 list_for_each_entry(page, &n->partial, lru) {
3897 validate_slab_slab(s, page, map);
3898 count++;
3899 }
3900 if (count != n->nr_partial)
3901 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3902 "counter=%ld\n", s->name, count, n->nr_partial);
3903
3904 if (!(s->flags & SLAB_STORE_USER))
3905 goto out;
3906
3907 list_for_each_entry(page, &n->full, lru) {
3908 validate_slab_slab(s, page, map);
3909 count++;
3910 }
3911 if (count != atomic_long_read(&n->nr_slabs))
3912 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3913 "counter=%ld\n", s->name, count,
3914 atomic_long_read(&n->nr_slabs));
3915
3916 out:
3917 spin_unlock_irqrestore(&n->list_lock, flags);
3918 return count;
3919 }
3920
3921 static long validate_slab_cache(struct kmem_cache *s)
3922 {
3923 int node;
3924 unsigned long count = 0;
3925 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3926 sizeof(unsigned long), GFP_KERNEL);
3927
3928 if (!map)
3929 return -ENOMEM;
3930
3931 flush_all(s);
3932 for_each_node_state(node, N_NORMAL_MEMORY) {
3933 struct kmem_cache_node *n = get_node(s, node);
3934
3935 count += validate_slab_node(s, n, map);
3936 }
3937 kfree(map);
3938 return count;
3939 }
3940 /*
3941 * Generate lists of code addresses where slabcache objects are allocated
3942 * and freed.
3943 */
3944
3945 struct location {
3946 unsigned long count;
3947 unsigned long addr;
3948 long long sum_time;
3949 long min_time;
3950 long max_time;
3951 long min_pid;
3952 long max_pid;
3953 DECLARE_BITMAP(cpus, NR_CPUS);
3954 nodemask_t nodes;
3955 };
3956
3957 struct loc_track {
3958 unsigned long max;
3959 unsigned long count;
3960 struct location *loc;
3961 };
3962
3963 static void free_loc_track(struct loc_track *t)
3964 {
3965 if (t->max)
3966 free_pages((unsigned long)t->loc,
3967 get_order(sizeof(struct location) * t->max));
3968 }
3969
3970 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3971 {
3972 struct location *l;
3973 int order;
3974
3975 order = get_order(sizeof(struct location) * max);
3976
3977 l = (void *)__get_free_pages(flags, order);
3978 if (!l)
3979 return 0;
3980
3981 if (t->count) {
3982 memcpy(l, t->loc, sizeof(struct location) * t->count);
3983 free_loc_track(t);
3984 }
3985 t->max = max;
3986 t->loc = l;
3987 return 1;
3988 }
3989
3990 static int add_location(struct loc_track *t, struct kmem_cache *s,
3991 const struct track *track)
3992 {
3993 long start, end, pos;
3994 struct location *l;
3995 unsigned long caddr;
3996 unsigned long age = jiffies - track->when;
3997
3998 start = -1;
3999 end = t->count;
4000
4001 for ( ; ; ) {
4002 pos = start + (end - start + 1) / 2;
4003
4004 /*
4005 * There is nothing at "end". If we end up there
4006 * we need to add something to before end.
4007 */
4008 if (pos == end)
4009 break;
4010
4011 caddr = t->loc[pos].addr;
4012 if (track->addr == caddr) {
4013
4014 l = &t->loc[pos];
4015 l->count++;
4016 if (track->when) {
4017 l->sum_time += age;
4018 if (age < l->min_time)
4019 l->min_time = age;
4020 if (age > l->max_time)
4021 l->max_time = age;
4022
4023 if (track->pid < l->min_pid)
4024 l->min_pid = track->pid;
4025 if (track->pid > l->max_pid)
4026 l->max_pid = track->pid;
4027
4028 cpumask_set_cpu(track->cpu,
4029 to_cpumask(l->cpus));
4030 }
4031 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4032 return 1;
4033 }
4034
4035 if (track->addr < caddr)
4036 end = pos;
4037 else
4038 start = pos;
4039 }
4040
4041 /*
4042 * Not found. Insert new tracking element.
4043 */
4044 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4045 return 0;
4046
4047 l = t->loc + pos;
4048 if (pos < t->count)
4049 memmove(l + 1, l,
4050 (t->count - pos) * sizeof(struct location));
4051 t->count++;
4052 l->count = 1;
4053 l->addr = track->addr;
4054 l->sum_time = age;
4055 l->min_time = age;
4056 l->max_time = age;
4057 l->min_pid = track->pid;
4058 l->max_pid = track->pid;
4059 cpumask_clear(to_cpumask(l->cpus));
4060 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4061 nodes_clear(l->nodes);
4062 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4063 return 1;
4064 }
4065
4066 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4067 struct page *page, enum track_item alloc,
4068 unsigned long *map)
4069 {
4070 void *addr = page_address(page);
4071 void *p;
4072
4073 bitmap_zero(map, page->objects);
4074 get_map(s, page, map);
4075
4076 for_each_object(p, s, addr, page->objects)
4077 if (!test_bit(slab_index(p, s, addr), map))
4078 add_location(t, s, get_track(s, p, alloc));
4079 }
4080
4081 static int list_locations(struct kmem_cache *s, char *buf,
4082 enum track_item alloc)
4083 {
4084 int len = 0;
4085 unsigned long i;
4086 struct loc_track t = { 0, 0, NULL };
4087 int node;
4088 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4089 sizeof(unsigned long), GFP_KERNEL);
4090
4091 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4092 GFP_TEMPORARY)) {
4093 kfree(map);
4094 return sprintf(buf, "Out of memory\n");
4095 }
4096 /* Push back cpu slabs */
4097 flush_all(s);
4098
4099 for_each_node_state(node, N_NORMAL_MEMORY) {
4100 struct kmem_cache_node *n = get_node(s, node);
4101 unsigned long flags;
4102 struct page *page;
4103
4104 if (!atomic_long_read(&n->nr_slabs))
4105 continue;
4106
4107 spin_lock_irqsave(&n->list_lock, flags);
4108 list_for_each_entry(page, &n->partial, lru)
4109 process_slab(&t, s, page, alloc, map);
4110 list_for_each_entry(page, &n->full, lru)
4111 process_slab(&t, s, page, alloc, map);
4112 spin_unlock_irqrestore(&n->list_lock, flags);
4113 }
4114
4115 for (i = 0; i < t.count; i++) {
4116 struct location *l = &t.loc[i];
4117
4118 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4119 break;
4120 len += sprintf(buf + len, "%7ld ", l->count);
4121
4122 if (l->addr)
4123 len += sprintf(buf + len, "%pS", (void *)l->addr);
4124 else
4125 len += sprintf(buf + len, "<not-available>");
4126
4127 if (l->sum_time != l->min_time) {
4128 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4129 l->min_time,
4130 (long)div_u64(l->sum_time, l->count),
4131 l->max_time);
4132 } else
4133 len += sprintf(buf + len, " age=%ld",
4134 l->min_time);
4135
4136 if (l->min_pid != l->max_pid)
4137 len += sprintf(buf + len, " pid=%ld-%ld",
4138 l->min_pid, l->max_pid);
4139 else
4140 len += sprintf(buf + len, " pid=%ld",
4141 l->min_pid);
4142
4143 if (num_online_cpus() > 1 &&
4144 !cpumask_empty(to_cpumask(l->cpus)) &&
4145 len < PAGE_SIZE - 60) {
4146 len += sprintf(buf + len, " cpus=");
4147 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4148 to_cpumask(l->cpus));
4149 }
4150
4151 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4152 len < PAGE_SIZE - 60) {
4153 len += sprintf(buf + len, " nodes=");
4154 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4155 l->nodes);
4156 }
4157
4158 len += sprintf(buf + len, "\n");
4159 }
4160
4161 free_loc_track(&t);
4162 kfree(map);
4163 if (!t.count)
4164 len += sprintf(buf, "No data\n");
4165 return len;
4166 }
4167 #endif
4168
4169 #ifdef SLUB_RESILIENCY_TEST
4170 static void resiliency_test(void)
4171 {
4172 u8 *p;
4173
4174 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4175
4176 printk(KERN_ERR "SLUB resiliency testing\n");
4177 printk(KERN_ERR "-----------------------\n");
4178 printk(KERN_ERR "A. Corruption after allocation\n");
4179
4180 p = kzalloc(16, GFP_KERNEL);
4181 p[16] = 0x12;
4182 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4183 " 0x12->0x%p\n\n", p + 16);
4184
4185 validate_slab_cache(kmalloc_caches[4]);
4186
4187 /* Hmmm... The next two are dangerous */
4188 p = kzalloc(32, GFP_KERNEL);
4189 p[32 + sizeof(void *)] = 0x34;
4190 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4191 " 0x34 -> -0x%p\n", p);
4192 printk(KERN_ERR
4193 "If allocated object is overwritten then not detectable\n\n");
4194
4195 validate_slab_cache(kmalloc_caches[5]);
4196 p = kzalloc(64, GFP_KERNEL);
4197 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4198 *p = 0x56;
4199 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4200 p);
4201 printk(KERN_ERR
4202 "If allocated object is overwritten then not detectable\n\n");
4203 validate_slab_cache(kmalloc_caches[6]);
4204
4205 printk(KERN_ERR "\nB. Corruption after free\n");
4206 p = kzalloc(128, GFP_KERNEL);
4207 kfree(p);
4208 *p = 0x78;
4209 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4210 validate_slab_cache(kmalloc_caches[7]);
4211
4212 p = kzalloc(256, GFP_KERNEL);
4213 kfree(p);
4214 p[50] = 0x9a;
4215 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4216 p);
4217 validate_slab_cache(kmalloc_caches[8]);
4218
4219 p = kzalloc(512, GFP_KERNEL);
4220 kfree(p);
4221 p[512] = 0xab;
4222 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4223 validate_slab_cache(kmalloc_caches[9]);
4224 }
4225 #else
4226 #ifdef CONFIG_SYSFS
4227 static void resiliency_test(void) {};
4228 #endif
4229 #endif
4230
4231 #ifdef CONFIG_SYSFS
4232 enum slab_stat_type {
4233 SL_ALL, /* All slabs */
4234 SL_PARTIAL, /* Only partially allocated slabs */
4235 SL_CPU, /* Only slabs used for cpu caches */
4236 SL_OBJECTS, /* Determine allocated objects not slabs */
4237 SL_TOTAL /* Determine object capacity not slabs */
4238 };
4239
4240 #define SO_ALL (1 << SL_ALL)
4241 #define SO_PARTIAL (1 << SL_PARTIAL)
4242 #define SO_CPU (1 << SL_CPU)
4243 #define SO_OBJECTS (1 << SL_OBJECTS)
4244 #define SO_TOTAL (1 << SL_TOTAL)
4245
4246 static ssize_t show_slab_objects(struct kmem_cache *s,
4247 char *buf, unsigned long flags)
4248 {
4249 unsigned long total = 0;
4250 int node;
4251 int x;
4252 unsigned long *nodes;
4253 unsigned long *per_cpu;
4254
4255 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4256 if (!nodes)
4257 return -ENOMEM;
4258 per_cpu = nodes + nr_node_ids;
4259
4260 if (flags & SO_CPU) {
4261 int cpu;
4262
4263 for_each_possible_cpu(cpu) {
4264 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4265 int node;
4266 struct page *page;
4267
4268 page = ACCESS_ONCE(c->page);
4269 if (!page)
4270 continue;
4271
4272 node = page_to_nid(page);
4273 if (flags & SO_TOTAL)
4274 x = page->objects;
4275 else if (flags & SO_OBJECTS)
4276 x = page->inuse;
4277 else
4278 x = 1;
4279
4280 total += x;
4281 nodes[node] += x;
4282
4283 page = ACCESS_ONCE(c->partial);
4284 if (page) {
4285 x = page->pobjects;
4286 total += x;
4287 nodes[node] += x;
4288 }
4289
4290 per_cpu[node]++;
4291 }
4292 }
4293
4294 lock_memory_hotplug();
4295 #ifdef CONFIG_SLUB_DEBUG
4296 if (flags & SO_ALL) {
4297 for_each_node_state(node, N_NORMAL_MEMORY) {
4298 struct kmem_cache_node *n = get_node(s, node);
4299
4300 if (flags & SO_TOTAL)
4301 x = atomic_long_read(&n->total_objects);
4302 else if (flags & SO_OBJECTS)
4303 x = atomic_long_read(&n->total_objects) -
4304 count_partial(n, count_free);
4305
4306 else
4307 x = atomic_long_read(&n->nr_slabs);
4308 total += x;
4309 nodes[node] += x;
4310 }
4311
4312 } else
4313 #endif
4314 if (flags & SO_PARTIAL) {
4315 for_each_node_state(node, N_NORMAL_MEMORY) {
4316 struct kmem_cache_node *n = get_node(s, node);
4317
4318 if (flags & SO_TOTAL)
4319 x = count_partial(n, count_total);
4320 else if (flags & SO_OBJECTS)
4321 x = count_partial(n, count_inuse);
4322 else
4323 x = n->nr_partial;
4324 total += x;
4325 nodes[node] += x;
4326 }
4327 }
4328 x = sprintf(buf, "%lu", total);
4329 #ifdef CONFIG_NUMA
4330 for_each_node_state(node, N_NORMAL_MEMORY)
4331 if (nodes[node])
4332 x += sprintf(buf + x, " N%d=%lu",
4333 node, nodes[node]);
4334 #endif
4335 unlock_memory_hotplug();
4336 kfree(nodes);
4337 return x + sprintf(buf + x, "\n");
4338 }
4339
4340 #ifdef CONFIG_SLUB_DEBUG
4341 static int any_slab_objects(struct kmem_cache *s)
4342 {
4343 int node;
4344
4345 for_each_online_node(node) {
4346 struct kmem_cache_node *n = get_node(s, node);
4347
4348 if (!n)
4349 continue;
4350
4351 if (atomic_long_read(&n->total_objects))
4352 return 1;
4353 }
4354 return 0;
4355 }
4356 #endif
4357
4358 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4359 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4360
4361 struct slab_attribute {
4362 struct attribute attr;
4363 ssize_t (*show)(struct kmem_cache *s, char *buf);
4364 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4365 };
4366
4367 #define SLAB_ATTR_RO(_name) \
4368 static struct slab_attribute _name##_attr = \
4369 __ATTR(_name, 0400, _name##_show, NULL)
4370
4371 #define SLAB_ATTR(_name) \
4372 static struct slab_attribute _name##_attr = \
4373 __ATTR(_name, 0600, _name##_show, _name##_store)
4374
4375 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4376 {
4377 return sprintf(buf, "%d\n", s->size);
4378 }
4379 SLAB_ATTR_RO(slab_size);
4380
4381 static ssize_t align_show(struct kmem_cache *s, char *buf)
4382 {
4383 return sprintf(buf, "%d\n", s->align);
4384 }
4385 SLAB_ATTR_RO(align);
4386
4387 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4388 {
4389 return sprintf(buf, "%d\n", s->object_size);
4390 }
4391 SLAB_ATTR_RO(object_size);
4392
4393 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4394 {
4395 return sprintf(buf, "%d\n", oo_objects(s->oo));
4396 }
4397 SLAB_ATTR_RO(objs_per_slab);
4398
4399 static ssize_t order_store(struct kmem_cache *s,
4400 const char *buf, size_t length)
4401 {
4402 unsigned long order;
4403 int err;
4404
4405 err = strict_strtoul(buf, 10, &order);
4406 if (err)
4407 return err;
4408
4409 if (order > slub_max_order || order < slub_min_order)
4410 return -EINVAL;
4411
4412 calculate_sizes(s, order);
4413 return length;
4414 }
4415
4416 static ssize_t order_show(struct kmem_cache *s, char *buf)
4417 {
4418 return sprintf(buf, "%d\n", oo_order(s->oo));
4419 }
4420 SLAB_ATTR(order);
4421
4422 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4423 {
4424 return sprintf(buf, "%lu\n", s->min_partial);
4425 }
4426
4427 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4428 size_t length)
4429 {
4430 unsigned long min;
4431 int err;
4432
4433 err = strict_strtoul(buf, 10, &min);
4434 if (err)
4435 return err;
4436
4437 set_min_partial(s, min);
4438 return length;
4439 }
4440 SLAB_ATTR(min_partial);
4441
4442 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4443 {
4444 return sprintf(buf, "%u\n", s->cpu_partial);
4445 }
4446
4447 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4448 size_t length)
4449 {
4450 unsigned long objects;
4451 int err;
4452
4453 err = strict_strtoul(buf, 10, &objects);
4454 if (err)
4455 return err;
4456 if (objects && kmem_cache_debug(s))
4457 return -EINVAL;
4458
4459 s->cpu_partial = objects;
4460 flush_all(s);
4461 return length;
4462 }
4463 SLAB_ATTR(cpu_partial);
4464
4465 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4466 {
4467 if (!s->ctor)
4468 return 0;
4469 return sprintf(buf, "%pS\n", s->ctor);
4470 }
4471 SLAB_ATTR_RO(ctor);
4472
4473 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4474 {
4475 return sprintf(buf, "%d\n", s->refcount - 1);
4476 }
4477 SLAB_ATTR_RO(aliases);
4478
4479 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4480 {
4481 return show_slab_objects(s, buf, SO_PARTIAL);
4482 }
4483 SLAB_ATTR_RO(partial);
4484
4485 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4486 {
4487 return show_slab_objects(s, buf, SO_CPU);
4488 }
4489 SLAB_ATTR_RO(cpu_slabs);
4490
4491 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4492 {
4493 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4494 }
4495 SLAB_ATTR_RO(objects);
4496
4497 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4498 {
4499 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4500 }
4501 SLAB_ATTR_RO(objects_partial);
4502
4503 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4504 {
4505 int objects = 0;
4506 int pages = 0;
4507 int cpu;
4508 int len;
4509
4510 for_each_online_cpu(cpu) {
4511 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4512
4513 if (page) {
4514 pages += page->pages;
4515 objects += page->pobjects;
4516 }
4517 }
4518
4519 len = sprintf(buf, "%d(%d)", objects, pages);
4520
4521 #ifdef CONFIG_SMP
4522 for_each_online_cpu(cpu) {
4523 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4524
4525 if (page && len < PAGE_SIZE - 20)
4526 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4527 page->pobjects, page->pages);
4528 }
4529 #endif
4530 return len + sprintf(buf + len, "\n");
4531 }
4532 SLAB_ATTR_RO(slabs_cpu_partial);
4533
4534 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4535 {
4536 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4537 }
4538
4539 static ssize_t reclaim_account_store(struct kmem_cache *s,
4540 const char *buf, size_t length)
4541 {
4542 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4543 if (buf[0] == '1')
4544 s->flags |= SLAB_RECLAIM_ACCOUNT;
4545 return length;
4546 }
4547 SLAB_ATTR(reclaim_account);
4548
4549 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4550 {
4551 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4552 }
4553 SLAB_ATTR_RO(hwcache_align);
4554
4555 #ifdef CONFIG_ZONE_DMA
4556 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4557 {
4558 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4559 }
4560 SLAB_ATTR_RO(cache_dma);
4561 #endif
4562
4563 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4564 {
4565 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4566 }
4567 SLAB_ATTR_RO(destroy_by_rcu);
4568
4569 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4570 {
4571 return sprintf(buf, "%d\n", s->reserved);
4572 }
4573 SLAB_ATTR_RO(reserved);
4574
4575 #ifdef CONFIG_SLUB_DEBUG
4576 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4577 {
4578 return show_slab_objects(s, buf, SO_ALL);
4579 }
4580 SLAB_ATTR_RO(slabs);
4581
4582 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4583 {
4584 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4585 }
4586 SLAB_ATTR_RO(total_objects);
4587
4588 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4589 {
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4591 }
4592
4593 static ssize_t sanity_checks_store(struct kmem_cache *s,
4594 const char *buf, size_t length)
4595 {
4596 s->flags &= ~SLAB_DEBUG_FREE;
4597 if (buf[0] == '1') {
4598 s->flags &= ~__CMPXCHG_DOUBLE;
4599 s->flags |= SLAB_DEBUG_FREE;
4600 }
4601 return length;
4602 }
4603 SLAB_ATTR(sanity_checks);
4604
4605 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4606 {
4607 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4608 }
4609
4610 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4611 size_t length)
4612 {
4613 s->flags &= ~SLAB_TRACE;
4614 if (buf[0] == '1') {
4615 s->flags &= ~__CMPXCHG_DOUBLE;
4616 s->flags |= SLAB_TRACE;
4617 }
4618 return length;
4619 }
4620 SLAB_ATTR(trace);
4621
4622 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4623 {
4624 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4625 }
4626
4627 static ssize_t red_zone_store(struct kmem_cache *s,
4628 const char *buf, size_t length)
4629 {
4630 if (any_slab_objects(s))
4631 return -EBUSY;
4632
4633 s->flags &= ~SLAB_RED_ZONE;
4634 if (buf[0] == '1') {
4635 s->flags &= ~__CMPXCHG_DOUBLE;
4636 s->flags |= SLAB_RED_ZONE;
4637 }
4638 calculate_sizes(s, -1);
4639 return length;
4640 }
4641 SLAB_ATTR(red_zone);
4642
4643 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4644 {
4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4646 }
4647
4648 static ssize_t poison_store(struct kmem_cache *s,
4649 const char *buf, size_t length)
4650 {
4651 if (any_slab_objects(s))
4652 return -EBUSY;
4653
4654 s->flags &= ~SLAB_POISON;
4655 if (buf[0] == '1') {
4656 s->flags &= ~__CMPXCHG_DOUBLE;
4657 s->flags |= SLAB_POISON;
4658 }
4659 calculate_sizes(s, -1);
4660 return length;
4661 }
4662 SLAB_ATTR(poison);
4663
4664 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4665 {
4666 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4667 }
4668
4669 static ssize_t store_user_store(struct kmem_cache *s,
4670 const char *buf, size_t length)
4671 {
4672 if (any_slab_objects(s))
4673 return -EBUSY;
4674
4675 s->flags &= ~SLAB_STORE_USER;
4676 if (buf[0] == '1') {
4677 s->flags &= ~__CMPXCHG_DOUBLE;
4678 s->flags |= SLAB_STORE_USER;
4679 }
4680 calculate_sizes(s, -1);
4681 return length;
4682 }
4683 SLAB_ATTR(store_user);
4684
4685 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4686 {
4687 return 0;
4688 }
4689
4690 static ssize_t validate_store(struct kmem_cache *s,
4691 const char *buf, size_t length)
4692 {
4693 int ret = -EINVAL;
4694
4695 if (buf[0] == '1') {
4696 ret = validate_slab_cache(s);
4697 if (ret >= 0)
4698 ret = length;
4699 }
4700 return ret;
4701 }
4702 SLAB_ATTR(validate);
4703
4704 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4705 {
4706 if (!(s->flags & SLAB_STORE_USER))
4707 return -ENOSYS;
4708 return list_locations(s, buf, TRACK_ALLOC);
4709 }
4710 SLAB_ATTR_RO(alloc_calls);
4711
4712 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4713 {
4714 if (!(s->flags & SLAB_STORE_USER))
4715 return -ENOSYS;
4716 return list_locations(s, buf, TRACK_FREE);
4717 }
4718 SLAB_ATTR_RO(free_calls);
4719 #endif /* CONFIG_SLUB_DEBUG */
4720
4721 #ifdef CONFIG_FAILSLAB
4722 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4723 {
4724 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4725 }
4726
4727 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4728 size_t length)
4729 {
4730 s->flags &= ~SLAB_FAILSLAB;
4731 if (buf[0] == '1')
4732 s->flags |= SLAB_FAILSLAB;
4733 return length;
4734 }
4735 SLAB_ATTR(failslab);
4736 #endif
4737
4738 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4739 {
4740 return 0;
4741 }
4742
4743 static ssize_t shrink_store(struct kmem_cache *s,
4744 const char *buf, size_t length)
4745 {
4746 if (buf[0] == '1') {
4747 int rc = kmem_cache_shrink(s);
4748
4749 if (rc)
4750 return rc;
4751 } else
4752 return -EINVAL;
4753 return length;
4754 }
4755 SLAB_ATTR(shrink);
4756
4757 #ifdef CONFIG_NUMA
4758 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4759 {
4760 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4761 }
4762
4763 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4764 const char *buf, size_t length)
4765 {
4766 unsigned long ratio;
4767 int err;
4768
4769 err = strict_strtoul(buf, 10, &ratio);
4770 if (err)
4771 return err;
4772
4773 if (ratio <= 100)
4774 s->remote_node_defrag_ratio = ratio * 10;
4775
4776 return length;
4777 }
4778 SLAB_ATTR(remote_node_defrag_ratio);
4779 #endif
4780
4781 #ifdef CONFIG_SLUB_STATS
4782 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4783 {
4784 unsigned long sum = 0;
4785 int cpu;
4786 int len;
4787 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4788
4789 if (!data)
4790 return -ENOMEM;
4791
4792 for_each_online_cpu(cpu) {
4793 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4794
4795 data[cpu] = x;
4796 sum += x;
4797 }
4798
4799 len = sprintf(buf, "%lu", sum);
4800
4801 #ifdef CONFIG_SMP
4802 for_each_online_cpu(cpu) {
4803 if (data[cpu] && len < PAGE_SIZE - 20)
4804 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4805 }
4806 #endif
4807 kfree(data);
4808 return len + sprintf(buf + len, "\n");
4809 }
4810
4811 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4812 {
4813 int cpu;
4814
4815 for_each_online_cpu(cpu)
4816 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4817 }
4818
4819 #define STAT_ATTR(si, text) \
4820 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4821 { \
4822 return show_stat(s, buf, si); \
4823 } \
4824 static ssize_t text##_store(struct kmem_cache *s, \
4825 const char *buf, size_t length) \
4826 { \
4827 if (buf[0] != '0') \
4828 return -EINVAL; \
4829 clear_stat(s, si); \
4830 return length; \
4831 } \
4832 SLAB_ATTR(text); \
4833
4834 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4835 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4836 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4837 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4838 STAT_ATTR(FREE_FROZEN, free_frozen);
4839 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4840 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4841 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4842 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4843 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4844 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4845 STAT_ATTR(FREE_SLAB, free_slab);
4846 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4847 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4848 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4849 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4850 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4851 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4852 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4853 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4854 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4855 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4856 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4857 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4858 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4859 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4860 #endif
4861
4862 static struct attribute *slab_attrs[] = {
4863 &slab_size_attr.attr,
4864 &object_size_attr.attr,
4865 &objs_per_slab_attr.attr,
4866 &order_attr.attr,
4867 &min_partial_attr.attr,
4868 &cpu_partial_attr.attr,
4869 &objects_attr.attr,
4870 &objects_partial_attr.attr,
4871 &partial_attr.attr,
4872 &cpu_slabs_attr.attr,
4873 &ctor_attr.attr,
4874 &aliases_attr.attr,
4875 &align_attr.attr,
4876 &hwcache_align_attr.attr,
4877 &reclaim_account_attr.attr,
4878 &destroy_by_rcu_attr.attr,
4879 &shrink_attr.attr,
4880 &reserved_attr.attr,
4881 &slabs_cpu_partial_attr.attr,
4882 #ifdef CONFIG_SLUB_DEBUG
4883 &total_objects_attr.attr,
4884 &slabs_attr.attr,
4885 &sanity_checks_attr.attr,
4886 &trace_attr.attr,
4887 &red_zone_attr.attr,
4888 &poison_attr.attr,
4889 &store_user_attr.attr,
4890 &validate_attr.attr,
4891 &alloc_calls_attr.attr,
4892 &free_calls_attr.attr,
4893 #endif
4894 #ifdef CONFIG_ZONE_DMA
4895 &cache_dma_attr.attr,
4896 #endif
4897 #ifdef CONFIG_NUMA
4898 &remote_node_defrag_ratio_attr.attr,
4899 #endif
4900 #ifdef CONFIG_SLUB_STATS
4901 &alloc_fastpath_attr.attr,
4902 &alloc_slowpath_attr.attr,
4903 &free_fastpath_attr.attr,
4904 &free_slowpath_attr.attr,
4905 &free_frozen_attr.attr,
4906 &free_add_partial_attr.attr,
4907 &free_remove_partial_attr.attr,
4908 &alloc_from_partial_attr.attr,
4909 &alloc_slab_attr.attr,
4910 &alloc_refill_attr.attr,
4911 &alloc_node_mismatch_attr.attr,
4912 &free_slab_attr.attr,
4913 &cpuslab_flush_attr.attr,
4914 &deactivate_full_attr.attr,
4915 &deactivate_empty_attr.attr,
4916 &deactivate_to_head_attr.attr,
4917 &deactivate_to_tail_attr.attr,
4918 &deactivate_remote_frees_attr.attr,
4919 &deactivate_bypass_attr.attr,
4920 &order_fallback_attr.attr,
4921 &cmpxchg_double_fail_attr.attr,
4922 &cmpxchg_double_cpu_fail_attr.attr,
4923 &cpu_partial_alloc_attr.attr,
4924 &cpu_partial_free_attr.attr,
4925 &cpu_partial_node_attr.attr,
4926 &cpu_partial_drain_attr.attr,
4927 #endif
4928 #ifdef CONFIG_FAILSLAB
4929 &failslab_attr.attr,
4930 #endif
4931
4932 NULL
4933 };
4934
4935 static struct attribute_group slab_attr_group = {
4936 .attrs = slab_attrs,
4937 };
4938
4939 static ssize_t slab_attr_show(struct kobject *kobj,
4940 struct attribute *attr,
4941 char *buf)
4942 {
4943 struct slab_attribute *attribute;
4944 struct kmem_cache *s;
4945 int err;
4946
4947 attribute = to_slab_attr(attr);
4948 s = to_slab(kobj);
4949
4950 if (!attribute->show)
4951 return -EIO;
4952
4953 err = attribute->show(s, buf);
4954
4955 return err;
4956 }
4957
4958 static ssize_t slab_attr_store(struct kobject *kobj,
4959 struct attribute *attr,
4960 const char *buf, size_t len)
4961 {
4962 struct slab_attribute *attribute;
4963 struct kmem_cache *s;
4964 int err;
4965
4966 attribute = to_slab_attr(attr);
4967 s = to_slab(kobj);
4968
4969 if (!attribute->store)
4970 return -EIO;
4971
4972 err = attribute->store(s, buf, len);
4973 #ifdef CONFIG_MEMCG_KMEM
4974 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4975 int i;
4976
4977 mutex_lock(&slab_mutex);
4978 if (s->max_attr_size < len)
4979 s->max_attr_size = len;
4980
4981 /*
4982 * This is a best effort propagation, so this function's return
4983 * value will be determined by the parent cache only. This is
4984 * basically because not all attributes will have a well
4985 * defined semantics for rollbacks - most of the actions will
4986 * have permanent effects.
4987 *
4988 * Returning the error value of any of the children that fail
4989 * is not 100 % defined, in the sense that users seeing the
4990 * error code won't be able to know anything about the state of
4991 * the cache.
4992 *
4993 * Only returning the error code for the parent cache at least
4994 * has well defined semantics. The cache being written to
4995 * directly either failed or succeeded, in which case we loop
4996 * through the descendants with best-effort propagation.
4997 */
4998 for_each_memcg_cache_index(i) {
4999 struct kmem_cache *c = cache_from_memcg(s, i);
5000 if (c)
5001 attribute->store(c, buf, len);
5002 }
5003 mutex_unlock(&slab_mutex);
5004 }
5005 #endif
5006 return err;
5007 }
5008
5009 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5010 {
5011 #ifdef CONFIG_MEMCG_KMEM
5012 int i;
5013 char *buffer = NULL;
5014
5015 if (!is_root_cache(s))
5016 return;
5017
5018 /*
5019 * This mean this cache had no attribute written. Therefore, no point
5020 * in copying default values around
5021 */
5022 if (!s->max_attr_size)
5023 return;
5024
5025 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5026 char mbuf[64];
5027 char *buf;
5028 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5029
5030 if (!attr || !attr->store || !attr->show)
5031 continue;
5032
5033 /*
5034 * It is really bad that we have to allocate here, so we will
5035 * do it only as a fallback. If we actually allocate, though,
5036 * we can just use the allocated buffer until the end.
5037 *
5038 * Most of the slub attributes will tend to be very small in
5039 * size, but sysfs allows buffers up to a page, so they can
5040 * theoretically happen.
5041 */
5042 if (buffer)
5043 buf = buffer;
5044 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5045 buf = mbuf;
5046 else {
5047 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5048 if (WARN_ON(!buffer))
5049 continue;
5050 buf = buffer;
5051 }
5052
5053 attr->show(s->memcg_params->root_cache, buf);
5054 attr->store(s, buf, strlen(buf));
5055 }
5056
5057 if (buffer)
5058 free_page((unsigned long)buffer);
5059 #endif
5060 }
5061
5062 static const struct sysfs_ops slab_sysfs_ops = {
5063 .show = slab_attr_show,
5064 .store = slab_attr_store,
5065 };
5066
5067 static struct kobj_type slab_ktype = {
5068 .sysfs_ops = &slab_sysfs_ops,
5069 };
5070
5071 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5072 {
5073 struct kobj_type *ktype = get_ktype(kobj);
5074
5075 if (ktype == &slab_ktype)
5076 return 1;
5077 return 0;
5078 }
5079
5080 static const struct kset_uevent_ops slab_uevent_ops = {
5081 .filter = uevent_filter,
5082 };
5083
5084 static struct kset *slab_kset;
5085
5086 #define ID_STR_LENGTH 64
5087
5088 /* Create a unique string id for a slab cache:
5089 *
5090 * Format :[flags-]size
5091 */
5092 static char *create_unique_id(struct kmem_cache *s)
5093 {
5094 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5095 char *p = name;
5096
5097 BUG_ON(!name);
5098
5099 *p++ = ':';
5100 /*
5101 * First flags affecting slabcache operations. We will only
5102 * get here for aliasable slabs so we do not need to support
5103 * too many flags. The flags here must cover all flags that
5104 * are matched during merging to guarantee that the id is
5105 * unique.
5106 */
5107 if (s->flags & SLAB_CACHE_DMA)
5108 *p++ = 'd';
5109 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5110 *p++ = 'a';
5111 if (s->flags & SLAB_DEBUG_FREE)
5112 *p++ = 'F';
5113 if (!(s->flags & SLAB_NOTRACK))
5114 *p++ = 't';
5115 if (p != name + 1)
5116 *p++ = '-';
5117 p += sprintf(p, "%07d", s->size);
5118
5119 #ifdef CONFIG_MEMCG_KMEM
5120 if (!is_root_cache(s))
5121 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5122 #endif
5123
5124 BUG_ON(p > name + ID_STR_LENGTH - 1);
5125 return name;
5126 }
5127
5128 static int sysfs_slab_add(struct kmem_cache *s)
5129 {
5130 int err;
5131 const char *name;
5132 int unmergeable = slab_unmergeable(s);
5133
5134 if (unmergeable) {
5135 /*
5136 * Slabcache can never be merged so we can use the name proper.
5137 * This is typically the case for debug situations. In that
5138 * case we can catch duplicate names easily.
5139 */
5140 sysfs_remove_link(&slab_kset->kobj, s->name);
5141 name = s->name;
5142 } else {
5143 /*
5144 * Create a unique name for the slab as a target
5145 * for the symlinks.
5146 */
5147 name = create_unique_id(s);
5148 }
5149
5150 s->kobj.kset = slab_kset;
5151 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5152 if (err) {
5153 kobject_put(&s->kobj);
5154 return err;
5155 }
5156
5157 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5158 if (err) {
5159 kobject_del(&s->kobj);
5160 kobject_put(&s->kobj);
5161 return err;
5162 }
5163 kobject_uevent(&s->kobj, KOBJ_ADD);
5164 if (!unmergeable) {
5165 /* Setup first alias */
5166 sysfs_slab_alias(s, s->name);
5167 kfree(name);
5168 }
5169 return 0;
5170 }
5171
5172 static void sysfs_slab_remove(struct kmem_cache *s)
5173 {
5174 if (slab_state < FULL)
5175 /*
5176 * Sysfs has not been setup yet so no need to remove the
5177 * cache from sysfs.
5178 */
5179 return;
5180
5181 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5182 kobject_del(&s->kobj);
5183 kobject_put(&s->kobj);
5184 }
5185
5186 /*
5187 * Need to buffer aliases during bootup until sysfs becomes
5188 * available lest we lose that information.
5189 */
5190 struct saved_alias {
5191 struct kmem_cache *s;
5192 const char *name;
5193 struct saved_alias *next;
5194 };
5195
5196 static struct saved_alias *alias_list;
5197
5198 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5199 {
5200 struct saved_alias *al;
5201
5202 if (slab_state == FULL) {
5203 /*
5204 * If we have a leftover link then remove it.
5205 */
5206 sysfs_remove_link(&slab_kset->kobj, name);
5207 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5208 }
5209
5210 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5211 if (!al)
5212 return -ENOMEM;
5213
5214 al->s = s;
5215 al->name = name;
5216 al->next = alias_list;
5217 alias_list = al;
5218 return 0;
5219 }
5220
5221 static int __init slab_sysfs_init(void)
5222 {
5223 struct kmem_cache *s;
5224 int err;
5225
5226 mutex_lock(&slab_mutex);
5227
5228 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5229 if (!slab_kset) {
5230 mutex_unlock(&slab_mutex);
5231 printk(KERN_ERR "Cannot register slab subsystem.\n");
5232 return -ENOSYS;
5233 }
5234
5235 slab_state = FULL;
5236
5237 list_for_each_entry(s, &slab_caches, list) {
5238 err = sysfs_slab_add(s);
5239 if (err)
5240 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5241 " to sysfs\n", s->name);
5242 }
5243
5244 while (alias_list) {
5245 struct saved_alias *al = alias_list;
5246
5247 alias_list = alias_list->next;
5248 err = sysfs_slab_alias(al->s, al->name);
5249 if (err)
5250 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5251 " %s to sysfs\n", al->name);
5252 kfree(al);
5253 }
5254
5255 mutex_unlock(&slab_mutex);
5256 resiliency_test();
5257 return 0;
5258 }
5259
5260 __initcall(slab_sysfs_init);
5261 #endif /* CONFIG_SYSFS */
5262
5263 /*
5264 * The /proc/slabinfo ABI
5265 */
5266 #ifdef CONFIG_SLABINFO
5267 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5268 {
5269 unsigned long nr_partials = 0;
5270 unsigned long nr_slabs = 0;
5271 unsigned long nr_objs = 0;
5272 unsigned long nr_free = 0;
5273 int node;
5274
5275 for_each_online_node(node) {
5276 struct kmem_cache_node *n = get_node(s, node);
5277
5278 if (!n)
5279 continue;
5280
5281 nr_partials += n->nr_partial;
5282 nr_slabs += atomic_long_read(&n->nr_slabs);
5283 nr_objs += atomic_long_read(&n->total_objects);
5284 nr_free += count_partial(n, count_free);
5285 }
5286
5287 sinfo->active_objs = nr_objs - nr_free;
5288 sinfo->num_objs = nr_objs;
5289 sinfo->active_slabs = nr_slabs;
5290 sinfo->num_slabs = nr_slabs;
5291 sinfo->objects_per_slab = oo_objects(s->oo);
5292 sinfo->cache_order = oo_order(s->oo);
5293 }
5294
5295 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5296 {
5297 }
5298
5299 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5300 size_t count, loff_t *ppos)
5301 {
5302 return -EIO;
5303 }
5304 #endif /* CONFIG_SLABINFO */