]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133 }
134
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
142 }
143
144 /*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157
158 /*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162 #define MIN_PARTIAL 5
163
164 /*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169 #define MAX_PARTIAL 10
170
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174 /*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182 /*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
196
197 /*
198 * Tracking user of a slab.
199 */
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205 #endif
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209 };
210
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
212
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 static void sysfs_slab_remove(struct kmem_cache *s);
218 #else
219 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 { return 0; }
222 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
223 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
224 #endif
225
226 static inline void stat(const struct kmem_cache *s, enum stat_item si)
227 {
228 #ifdef CONFIG_SLUB_STATS
229 /*
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
232 */
233 raw_cpu_inc(s->cpu_slab->stat[si]);
234 #endif
235 }
236
237 /********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
240
241 static inline void *get_freepointer(struct kmem_cache *s, void *object)
242 {
243 return *(void **)(object + s->offset);
244 }
245
246 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247 {
248 prefetch(object + s->offset);
249 }
250
251 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252 {
253 void *p;
254
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s, object);
257
258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
259 return p;
260 }
261
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 {
264 *(void **)(object + s->offset) = fp;
265 }
266
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
271 __p += (__s)->size)
272
273 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
277
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280 {
281 return (p - addr) / s->size;
282 }
283
284 static inline int order_objects(int order, unsigned long size, int reserved)
285 {
286 return ((PAGE_SIZE << order) - reserved) / size;
287 }
288
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size, int reserved)
291 {
292 struct kmem_cache_order_objects x = {
293 (order << OO_SHIFT) + order_objects(order, size, reserved)
294 };
295
296 return x;
297 }
298
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 return x.x >> OO_SHIFT;
302 }
303
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 return x.x & OO_MASK;
307 }
308
309 /*
310 * Per slab locking using the pagelock
311 */
312 static __always_inline void slab_lock(struct page *page)
313 {
314 VM_BUG_ON_PAGE(PageTail(page), page);
315 bit_spin_lock(PG_locked, &page->flags);
316 }
317
318 static __always_inline void slab_unlock(struct page *page)
319 {
320 VM_BUG_ON_PAGE(PageTail(page), page);
321 __bit_spin_unlock(PG_locked, &page->flags);
322 }
323
324 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325 {
326 struct page tmp;
327 tmp.counters = counters_new;
328 /*
329 * page->counters can cover frozen/inuse/objects as well
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
332 * be careful and only assign to the fields we need.
333 */
334 page->frozen = tmp.frozen;
335 page->inuse = tmp.inuse;
336 page->objects = tmp.objects;
337 }
338
339 /* Interrupts must be disabled (for the fallback code to work right) */
340 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 void *freelist_old, unsigned long counters_old,
342 void *freelist_new, unsigned long counters_new,
343 const char *n)
344 {
345 VM_BUG_ON(!irqs_disabled());
346 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
348 if (s->flags & __CMPXCHG_DOUBLE) {
349 if (cmpxchg_double(&page->freelist, &page->counters,
350 freelist_old, counters_old,
351 freelist_new, counters_new))
352 return true;
353 } else
354 #endif
355 {
356 slab_lock(page);
357 if (page->freelist == freelist_old &&
358 page->counters == counters_old) {
359 page->freelist = freelist_new;
360 set_page_slub_counters(page, counters_new);
361 slab_unlock(page);
362 return true;
363 }
364 slab_unlock(page);
365 }
366
367 cpu_relax();
368 stat(s, CMPXCHG_DOUBLE_FAIL);
369
370 #ifdef SLUB_DEBUG_CMPXCHG
371 pr_info("%s %s: cmpxchg double redo ", n, s->name);
372 #endif
373
374 return false;
375 }
376
377 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 void *freelist_old, unsigned long counters_old,
379 void *freelist_new, unsigned long counters_new,
380 const char *n)
381 {
382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
384 if (s->flags & __CMPXCHG_DOUBLE) {
385 if (cmpxchg_double(&page->freelist, &page->counters,
386 freelist_old, counters_old,
387 freelist_new, counters_new))
388 return true;
389 } else
390 #endif
391 {
392 unsigned long flags;
393
394 local_irq_save(flags);
395 slab_lock(page);
396 if (page->freelist == freelist_old &&
397 page->counters == counters_old) {
398 page->freelist = freelist_new;
399 set_page_slub_counters(page, counters_new);
400 slab_unlock(page);
401 local_irq_restore(flags);
402 return true;
403 }
404 slab_unlock(page);
405 local_irq_restore(flags);
406 }
407
408 cpu_relax();
409 stat(s, CMPXCHG_DOUBLE_FAIL);
410
411 #ifdef SLUB_DEBUG_CMPXCHG
412 pr_info("%s %s: cmpxchg double redo ", n, s->name);
413 #endif
414
415 return false;
416 }
417
418 #ifdef CONFIG_SLUB_DEBUG
419 /*
420 * Determine a map of object in use on a page.
421 *
422 * Node listlock must be held to guarantee that the page does
423 * not vanish from under us.
424 */
425 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426 {
427 void *p;
428 void *addr = page_address(page);
429
430 for (p = page->freelist; p; p = get_freepointer(s, p))
431 set_bit(slab_index(p, s, addr), map);
432 }
433
434 static inline int size_from_object(struct kmem_cache *s)
435 {
436 if (s->flags & SLAB_RED_ZONE)
437 return s->size - s->red_left_pad;
438
439 return s->size;
440 }
441
442 static inline void *restore_red_left(struct kmem_cache *s, void *p)
443 {
444 if (s->flags & SLAB_RED_ZONE)
445 p -= s->red_left_pad;
446
447 return p;
448 }
449
450 /*
451 * Debug settings:
452 */
453 #if defined(CONFIG_SLUB_DEBUG_ON)
454 static int slub_debug = DEBUG_DEFAULT_FLAGS;
455 #else
456 static int slub_debug;
457 #endif
458
459 static char *slub_debug_slabs;
460 static int disable_higher_order_debug;
461
462 /*
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
467 */
468 static inline void metadata_access_enable(void)
469 {
470 kasan_disable_current();
471 }
472
473 static inline void metadata_access_disable(void)
474 {
475 kasan_enable_current();
476 }
477
478 /*
479 * Object debugging
480 */
481
482 /* Verify that a pointer has an address that is valid within a slab page */
483 static inline int check_valid_pointer(struct kmem_cache *s,
484 struct page *page, void *object)
485 {
486 void *base;
487
488 if (!object)
489 return 1;
490
491 base = page_address(page);
492 object = restore_red_left(s, object);
493 if (object < base || object >= base + page->objects * s->size ||
494 (object - base) % s->size) {
495 return 0;
496 }
497
498 return 1;
499 }
500
501 static void print_section(char *level, char *text, u8 *addr,
502 unsigned int length)
503 {
504 metadata_access_enable();
505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
506 length, 1);
507 metadata_access_disable();
508 }
509
510 static struct track *get_track(struct kmem_cache *s, void *object,
511 enum track_item alloc)
512 {
513 struct track *p;
514
515 if (s->offset)
516 p = object + s->offset + sizeof(void *);
517 else
518 p = object + s->inuse;
519
520 return p + alloc;
521 }
522
523 static void set_track(struct kmem_cache *s, void *object,
524 enum track_item alloc, unsigned long addr)
525 {
526 struct track *p = get_track(s, object, alloc);
527
528 if (addr) {
529 #ifdef CONFIG_STACKTRACE
530 struct stack_trace trace;
531 int i;
532
533 trace.nr_entries = 0;
534 trace.max_entries = TRACK_ADDRS_COUNT;
535 trace.entries = p->addrs;
536 trace.skip = 3;
537 metadata_access_enable();
538 save_stack_trace(&trace);
539 metadata_access_disable();
540
541 /* See rant in lockdep.c */
542 if (trace.nr_entries != 0 &&
543 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 trace.nr_entries--;
545
546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 p->addrs[i] = 0;
548 #endif
549 p->addr = addr;
550 p->cpu = smp_processor_id();
551 p->pid = current->pid;
552 p->when = jiffies;
553 } else
554 memset(p, 0, sizeof(struct track));
555 }
556
557 static void init_tracking(struct kmem_cache *s, void *object)
558 {
559 if (!(s->flags & SLAB_STORE_USER))
560 return;
561
562 set_track(s, object, TRACK_FREE, 0UL);
563 set_track(s, object, TRACK_ALLOC, 0UL);
564 }
565
566 static void print_track(const char *s, struct track *t)
567 {
568 if (!t->addr)
569 return;
570
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
573 #ifdef CONFIG_STACKTRACE
574 {
575 int i;
576 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 if (t->addrs[i])
578 pr_err("\t%pS\n", (void *)t->addrs[i]);
579 else
580 break;
581 }
582 #endif
583 }
584
585 static void print_tracking(struct kmem_cache *s, void *object)
586 {
587 if (!(s->flags & SLAB_STORE_USER))
588 return;
589
590 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 print_track("Freed", get_track(s, object, TRACK_FREE));
592 }
593
594 static void print_page_info(struct page *page)
595 {
596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
597 page, page->objects, page->inuse, page->freelist, page->flags);
598
599 }
600
601 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602 {
603 struct va_format vaf;
604 va_list args;
605
606 va_start(args, fmt);
607 vaf.fmt = fmt;
608 vaf.va = &args;
609 pr_err("=============================================================================\n");
610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
611 pr_err("-----------------------------------------------------------------------------\n\n");
612
613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 va_end(args);
615 }
616
617 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618 {
619 struct va_format vaf;
620 va_list args;
621
622 va_start(args, fmt);
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("FIX %s: %pV\n", s->name, &vaf);
626 va_end(args);
627 }
628
629 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
630 {
631 unsigned int off; /* Offset of last byte */
632 u8 *addr = page_address(page);
633
634 print_tracking(s, p);
635
636 print_page_info(page);
637
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p, p - addr, get_freepointer(s, p));
640
641 if (s->flags & SLAB_RED_ZONE)
642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 s->red_left_pad);
644 else if (p > addr + 16)
645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
646
647 print_section(KERN_ERR, "Object ", p,
648 min_t(unsigned long, s->object_size, PAGE_SIZE));
649 if (s->flags & SLAB_RED_ZONE)
650 print_section(KERN_ERR, "Redzone ", p + s->object_size,
651 s->inuse - s->object_size);
652
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
658 if (s->flags & SLAB_STORE_USER)
659 off += 2 * sizeof(struct track);
660
661 off += kasan_metadata_size(s);
662
663 if (off != size_from_object(s))
664 /* Beginning of the filler is the free pointer */
665 print_section(KERN_ERR, "Padding ", p + off,
666 size_from_object(s) - off);
667
668 dump_stack();
669 }
670
671 void object_err(struct kmem_cache *s, struct page *page,
672 u8 *object, char *reason)
673 {
674 slab_bug(s, "%s", reason);
675 print_trailer(s, page, object);
676 }
677
678 static void slab_err(struct kmem_cache *s, struct page *page,
679 const char *fmt, ...)
680 {
681 va_list args;
682 char buf[100];
683
684 va_start(args, fmt);
685 vsnprintf(buf, sizeof(buf), fmt, args);
686 va_end(args);
687 slab_bug(s, "%s", buf);
688 print_page_info(page);
689 dump_stack();
690 }
691
692 static void init_object(struct kmem_cache *s, void *object, u8 val)
693 {
694 u8 *p = object;
695
696 if (s->flags & SLAB_RED_ZONE)
697 memset(p - s->red_left_pad, val, s->red_left_pad);
698
699 if (s->flags & __OBJECT_POISON) {
700 memset(p, POISON_FREE, s->object_size - 1);
701 p[s->object_size - 1] = POISON_END;
702 }
703
704 if (s->flags & SLAB_RED_ZONE)
705 memset(p + s->object_size, val, s->inuse - s->object_size);
706 }
707
708 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 void *from, void *to)
710 {
711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 memset(from, data, to - from);
713 }
714
715 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 u8 *object, char *what,
717 u8 *start, unsigned int value, unsigned int bytes)
718 {
719 u8 *fault;
720 u8 *end;
721
722 metadata_access_enable();
723 fault = memchr_inv(start, value, bytes);
724 metadata_access_disable();
725 if (!fault)
726 return 1;
727
728 end = start + bytes;
729 while (end > fault && end[-1] == value)
730 end--;
731
732 slab_bug(s, "%s overwritten", what);
733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
734 fault, end - 1, fault[0], value);
735 print_trailer(s, page, object);
736
737 restore_bytes(s, what, value, fault, end);
738 return 0;
739 }
740
741 /*
742 * Object layout:
743 *
744 * object address
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
748 *
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * 0xa5 (POISON_END)
751 *
752 * object + s->object_size
753 * Padding to reach word boundary. This is also used for Redzoning.
754 * Padding is extended by another word if Redzoning is enabled and
755 * object_size == inuse.
756 *
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
759 *
760 * object + s->inuse
761 * Meta data starts here.
762 *
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
765 * C. Padding to reach required alignment boundary or at mininum
766 * one word if debugging is on to be able to detect writes
767 * before the word boundary.
768 *
769 * Padding is done using 0x5a (POISON_INUSE)
770 *
771 * object + s->size
772 * Nothing is used beyond s->size.
773 *
774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
775 * ignored. And therefore no slab options that rely on these boundaries
776 * may be used with merged slabcaches.
777 */
778
779 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780 {
781 unsigned long off = s->inuse; /* The end of info */
782
783 if (s->offset)
784 /* Freepointer is placed after the object. */
785 off += sizeof(void *);
786
787 if (s->flags & SLAB_STORE_USER)
788 /* We also have user information there */
789 off += 2 * sizeof(struct track);
790
791 off += kasan_metadata_size(s);
792
793 if (size_from_object(s) == off)
794 return 1;
795
796 return check_bytes_and_report(s, page, p, "Object padding",
797 p + off, POISON_INUSE, size_from_object(s) - off);
798 }
799
800 /* Check the pad bytes at the end of a slab page */
801 static int slab_pad_check(struct kmem_cache *s, struct page *page)
802 {
803 u8 *start;
804 u8 *fault;
805 u8 *end;
806 int length;
807 int remainder;
808
809 if (!(s->flags & SLAB_POISON))
810 return 1;
811
812 start = page_address(page);
813 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
814 end = start + length;
815 remainder = length % s->size;
816 if (!remainder)
817 return 1;
818
819 metadata_access_enable();
820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
821 metadata_access_disable();
822 if (!fault)
823 return 1;
824 while (end > fault && end[-1] == POISON_INUSE)
825 end--;
826
827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
828 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
829
830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
831 return 0;
832 }
833
834 static int check_object(struct kmem_cache *s, struct page *page,
835 void *object, u8 val)
836 {
837 u8 *p = object;
838 u8 *endobject = object + s->object_size;
839
840 if (s->flags & SLAB_RED_ZONE) {
841 if (!check_bytes_and_report(s, page, object, "Redzone",
842 object - s->red_left_pad, val, s->red_left_pad))
843 return 0;
844
845 if (!check_bytes_and_report(s, page, object, "Redzone",
846 endobject, val, s->inuse - s->object_size))
847 return 0;
848 } else {
849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
850 check_bytes_and_report(s, page, p, "Alignment padding",
851 endobject, POISON_INUSE,
852 s->inuse - s->object_size);
853 }
854 }
855
856 if (s->flags & SLAB_POISON) {
857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
858 (!check_bytes_and_report(s, page, p, "Poison", p,
859 POISON_FREE, s->object_size - 1) ||
860 !check_bytes_and_report(s, page, p, "Poison",
861 p + s->object_size - 1, POISON_END, 1)))
862 return 0;
863 /*
864 * check_pad_bytes cleans up on its own.
865 */
866 check_pad_bytes(s, page, p);
867 }
868
869 if (!s->offset && val == SLUB_RED_ACTIVE)
870 /*
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
873 */
874 return 1;
875
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 object_err(s, page, p, "Freepointer corrupt");
879 /*
880 * No choice but to zap it and thus lose the remainder
881 * of the free objects in this slab. May cause
882 * another error because the object count is now wrong.
883 */
884 set_freepointer(s, p, NULL);
885 return 0;
886 }
887 return 1;
888 }
889
890 static int check_slab(struct kmem_cache *s, struct page *page)
891 {
892 int maxobj;
893
894 VM_BUG_ON(!irqs_disabled());
895
896 if (!PageSlab(page)) {
897 slab_err(s, page, "Not a valid slab page");
898 return 0;
899 }
900
901 maxobj = order_objects(compound_order(page), s->size, s->reserved);
902 if (page->objects > maxobj) {
903 slab_err(s, page, "objects %u > max %u",
904 page->objects, maxobj);
905 return 0;
906 }
907 if (page->inuse > page->objects) {
908 slab_err(s, page, "inuse %u > max %u",
909 page->inuse, page->objects);
910 return 0;
911 }
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s, page);
914 return 1;
915 }
916
917 /*
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
920 */
921 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922 {
923 int nr = 0;
924 void *fp;
925 void *object = NULL;
926 int max_objects;
927
928 fp = page->freelist;
929 while (fp && nr <= page->objects) {
930 if (fp == search)
931 return 1;
932 if (!check_valid_pointer(s, page, fp)) {
933 if (object) {
934 object_err(s, page, object,
935 "Freechain corrupt");
936 set_freepointer(s, object, NULL);
937 } else {
938 slab_err(s, page, "Freepointer corrupt");
939 page->freelist = NULL;
940 page->inuse = page->objects;
941 slab_fix(s, "Freelist cleared");
942 return 0;
943 }
944 break;
945 }
946 object = fp;
947 fp = get_freepointer(s, object);
948 nr++;
949 }
950
951 max_objects = order_objects(compound_order(page), s->size, s->reserved);
952 if (max_objects > MAX_OBJS_PER_PAGE)
953 max_objects = MAX_OBJS_PER_PAGE;
954
955 if (page->objects != max_objects) {
956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 page->objects, max_objects);
958 page->objects = max_objects;
959 slab_fix(s, "Number of objects adjusted.");
960 }
961 if (page->inuse != page->objects - nr) {
962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 page->inuse, page->objects - nr);
964 page->inuse = page->objects - nr;
965 slab_fix(s, "Object count adjusted.");
966 }
967 return search == NULL;
968 }
969
970 static void trace(struct kmem_cache *s, struct page *page, void *object,
971 int alloc)
972 {
973 if (s->flags & SLAB_TRACE) {
974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
975 s->name,
976 alloc ? "alloc" : "free",
977 object, page->inuse,
978 page->freelist);
979
980 if (!alloc)
981 print_section(KERN_INFO, "Object ", (void *)object,
982 s->object_size);
983
984 dump_stack();
985 }
986 }
987
988 /*
989 * Tracking of fully allocated slabs for debugging purposes.
990 */
991 static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
993 {
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
997 lockdep_assert_held(&n->list_lock);
998 list_add(&page->lru, &n->full);
999 }
1000
1001 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1002 {
1003 if (!(s->flags & SLAB_STORE_USER))
1004 return;
1005
1006 lockdep_assert_held(&n->list_lock);
1007 list_del(&page->lru);
1008 }
1009
1010 /* Tracking of the number of slabs for debugging purposes */
1011 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016 }
1017
1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019 {
1020 return atomic_long_read(&n->nr_slabs);
1021 }
1022
1023 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
1033 if (likely(n)) {
1034 atomic_long_inc(&n->nr_slabs);
1035 atomic_long_add(objects, &n->total_objects);
1036 }
1037 }
1038 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039 {
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
1043 atomic_long_sub(objects, &n->total_objects);
1044 }
1045
1046 /* Object debug checks for alloc/free paths */
1047 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049 {
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
1053 init_object(s, object, SLUB_RED_INACTIVE);
1054 init_tracking(s, object);
1055 }
1056
1057 static inline int alloc_consistency_checks(struct kmem_cache *s,
1058 struct page *page,
1059 void *object, unsigned long addr)
1060 {
1061 if (!check_slab(s, page))
1062 return 0;
1063
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
1066 return 0;
1067 }
1068
1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1070 return 0;
1071
1072 return 1;
1073 }
1074
1075 static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 struct page *page,
1077 void *object, unsigned long addr)
1078 {
1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 if (!alloc_consistency_checks(s, page, object, addr))
1081 goto bad;
1082 }
1083
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
1088 init_object(s, object, SLUB_RED_ACTIVE);
1089 return 1;
1090
1091 bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
1096 * as used avoids touching the remaining objects.
1097 */
1098 slab_fix(s, "Marking all objects used");
1099 page->inuse = page->objects;
1100 page->freelist = NULL;
1101 }
1102 return 0;
1103 }
1104
1105 static inline int free_consistency_checks(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
1107 {
1108 if (!check_valid_pointer(s, page, object)) {
1109 slab_err(s, page, "Invalid object pointer 0x%p", object);
1110 return 0;
1111 }
1112
1113 if (on_freelist(s, page, object)) {
1114 object_err(s, page, object, "Object already free");
1115 return 0;
1116 }
1117
1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119 return 0;
1120
1121 if (unlikely(s != page->slab_cache)) {
1122 if (!PageSlab(page)) {
1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 object);
1125 } else if (!page->slab_cache) {
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object);
1128 dump_stack();
1129 } else
1130 object_err(s, page, object,
1131 "page slab pointer corrupt.");
1132 return 0;
1133 }
1134 return 1;
1135 }
1136
1137 /* Supports checking bulk free of a constructed freelist */
1138 static noinline int free_debug_processing(
1139 struct kmem_cache *s, struct page *page,
1140 void *head, void *tail, int bulk_cnt,
1141 unsigned long addr)
1142 {
1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 void *object = head;
1145 int cnt = 0;
1146 unsigned long uninitialized_var(flags);
1147 int ret = 0;
1148
1149 spin_lock_irqsave(&n->list_lock, flags);
1150 slab_lock(page);
1151
1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 if (!check_slab(s, page))
1154 goto out;
1155 }
1156
1157 next_object:
1158 cnt++;
1159
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!free_consistency_checks(s, page, object, addr))
1162 goto out;
1163 }
1164
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_FREE, addr);
1167 trace(s, page, object, 0);
1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1169 init_object(s, object, SLUB_RED_INACTIVE);
1170
1171 /* Reached end of constructed freelist yet? */
1172 if (object != tail) {
1173 object = get_freepointer(s, object);
1174 goto next_object;
1175 }
1176 ret = 1;
1177
1178 out:
1179 if (cnt != bulk_cnt)
1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 bulk_cnt, cnt);
1182
1183 slab_unlock(page);
1184 spin_unlock_irqrestore(&n->list_lock, flags);
1185 if (!ret)
1186 slab_fix(s, "Object at 0x%p not freed", object);
1187 return ret;
1188 }
1189
1190 static int __init setup_slub_debug(char *str)
1191 {
1192 slub_debug = DEBUG_DEFAULT_FLAGS;
1193 if (*str++ != '=' || !*str)
1194 /*
1195 * No options specified. Switch on full debugging.
1196 */
1197 goto out;
1198
1199 if (*str == ',')
1200 /*
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1203 */
1204 goto check_slabs;
1205
1206 slub_debug = 0;
1207 if (*str == '-')
1208 /*
1209 * Switch off all debugging measures.
1210 */
1211 goto out;
1212
1213 /*
1214 * Determine which debug features should be switched on
1215 */
1216 for (; *str && *str != ','; str++) {
1217 switch (tolower(*str)) {
1218 case 'f':
1219 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220 break;
1221 case 'z':
1222 slub_debug |= SLAB_RED_ZONE;
1223 break;
1224 case 'p':
1225 slub_debug |= SLAB_POISON;
1226 break;
1227 case 'u':
1228 slub_debug |= SLAB_STORE_USER;
1229 break;
1230 case 't':
1231 slub_debug |= SLAB_TRACE;
1232 break;
1233 case 'a':
1234 slub_debug |= SLAB_FAILSLAB;
1235 break;
1236 case 'o':
1237 /*
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1240 */
1241 disable_higher_order_debug = 1;
1242 break;
1243 default:
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1245 *str);
1246 }
1247 }
1248
1249 check_slabs:
1250 if (*str == ',')
1251 slub_debug_slabs = str + 1;
1252 out:
1253 return 1;
1254 }
1255
1256 __setup("slub_debug", setup_slub_debug);
1257
1258 unsigned long kmem_cache_flags(unsigned long object_size,
1259 unsigned long flags, const char *name,
1260 void (*ctor)(void *))
1261 {
1262 /*
1263 * Enable debugging if selected on the kernel commandline.
1264 */
1265 if (slub_debug && (!slub_debug_slabs || (name &&
1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1267 flags |= slub_debug;
1268
1269 return flags;
1270 }
1271 #else /* !CONFIG_SLUB_DEBUG */
1272 static inline void setup_object_debug(struct kmem_cache *s,
1273 struct page *page, void *object) {}
1274
1275 static inline int alloc_debug_processing(struct kmem_cache *s,
1276 struct page *page, void *object, unsigned long addr) { return 0; }
1277
1278 static inline int free_debug_processing(
1279 struct kmem_cache *s, struct page *page,
1280 void *head, void *tail, int bulk_cnt,
1281 unsigned long addr) { return 0; }
1282
1283 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 { return 1; }
1285 static inline int check_object(struct kmem_cache *s, struct page *page,
1286 void *object, u8 val) { return 1; }
1287 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
1289 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 struct page *page) {}
1291 unsigned long kmem_cache_flags(unsigned long object_size,
1292 unsigned long flags, const char *name,
1293 void (*ctor)(void *))
1294 {
1295 return flags;
1296 }
1297 #define slub_debug 0
1298
1299 #define disable_higher_order_debug 0
1300
1301 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 { return 0; }
1303 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 { return 0; }
1305 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 int objects) {}
1309
1310 #endif /* CONFIG_SLUB_DEBUG */
1311
1312 /*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
1316 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317 {
1318 kmemleak_alloc(ptr, size, 1, flags);
1319 kasan_kmalloc_large(ptr, size, flags);
1320 }
1321
1322 static inline void kfree_hook(const void *x)
1323 {
1324 kmemleak_free(x);
1325 kasan_kfree_large(x);
1326 }
1327
1328 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1329 {
1330 void *freeptr;
1331
1332 kmemleak_free_recursive(x, s->flags);
1333
1334 /*
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1338 */
1339 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 {
1341 unsigned long flags;
1342
1343 local_irq_save(flags);
1344 kmemcheck_slab_free(s, x, s->object_size);
1345 debug_check_no_locks_freed(x, s->object_size);
1346 local_irq_restore(flags);
1347 }
1348 #endif
1349 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 debug_check_no_obj_freed(x, s->object_size);
1351
1352 freeptr = get_freepointer(s, x);
1353 /*
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1356 */
1357 kasan_slab_free(s, x);
1358 return freeptr;
1359 }
1360
1361 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 void *head, void *tail)
1363 {
1364 /*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1367 */
1368 #if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1373
1374 void *object = head;
1375 void *tail_obj = tail ? : head;
1376 void *freeptr;
1377
1378 do {
1379 freeptr = slab_free_hook(s, object);
1380 } while ((object != tail_obj) && (object = freeptr));
1381 #endif
1382 }
1383
1384 static void setup_object(struct kmem_cache *s, struct page *page,
1385 void *object)
1386 {
1387 setup_object_debug(s, page, object);
1388 kasan_init_slab_obj(s, object);
1389 if (unlikely(s->ctor)) {
1390 kasan_unpoison_object_data(s, object);
1391 s->ctor(object);
1392 kasan_poison_object_data(s, object);
1393 }
1394 }
1395
1396 /*
1397 * Slab allocation and freeing
1398 */
1399 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401 {
1402 struct page *page;
1403 int order = oo_order(oo);
1404
1405 flags |= __GFP_NOTRACK;
1406
1407 if (node == NUMA_NO_NODE)
1408 page = alloc_pages(flags, order);
1409 else
1410 page = __alloc_pages_node(node, flags, order);
1411
1412 if (page && memcg_charge_slab(page, flags, order, s)) {
1413 __free_pages(page, order);
1414 page = NULL;
1415 }
1416
1417 return page;
1418 }
1419
1420 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1421 /* Pre-initialize the random sequence cache */
1422 static int init_cache_random_seq(struct kmem_cache *s)
1423 {
1424 int err;
1425 unsigned long i, count = oo_objects(s->oo);
1426
1427 /* Bailout if already initialised */
1428 if (s->random_seq)
1429 return 0;
1430
1431 err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 if (err) {
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1434 s->name);
1435 return err;
1436 }
1437
1438 /* Transform to an offset on the set of pages */
1439 if (s->random_seq) {
1440 for (i = 0; i < count; i++)
1441 s->random_seq[i] *= s->size;
1442 }
1443 return 0;
1444 }
1445
1446 /* Initialize each random sequence freelist per cache */
1447 static void __init init_freelist_randomization(void)
1448 {
1449 struct kmem_cache *s;
1450
1451 mutex_lock(&slab_mutex);
1452
1453 list_for_each_entry(s, &slab_caches, list)
1454 init_cache_random_seq(s);
1455
1456 mutex_unlock(&slab_mutex);
1457 }
1458
1459 /* Get the next entry on the pre-computed freelist randomized */
1460 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 unsigned long *pos, void *start,
1462 unsigned long page_limit,
1463 unsigned long freelist_count)
1464 {
1465 unsigned int idx;
1466
1467 /*
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1470 */
1471 do {
1472 idx = s->random_seq[*pos];
1473 *pos += 1;
1474 if (*pos >= freelist_count)
1475 *pos = 0;
1476 } while (unlikely(idx >= page_limit));
1477
1478 return (char *)start + idx;
1479 }
1480
1481 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1482 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483 {
1484 void *start;
1485 void *cur;
1486 void *next;
1487 unsigned long idx, pos, page_limit, freelist_count;
1488
1489 if (page->objects < 2 || !s->random_seq)
1490 return false;
1491
1492 freelist_count = oo_objects(s->oo);
1493 pos = get_random_int() % freelist_count;
1494
1495 page_limit = page->objects * s->size;
1496 start = fixup_red_left(s, page_address(page));
1497
1498 /* First entry is used as the base of the freelist */
1499 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 page->freelist = cur;
1502
1503 for (idx = 1; idx < page->objects; idx++) {
1504 setup_object(s, page, cur);
1505 next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 freelist_count);
1507 set_freepointer(s, cur, next);
1508 cur = next;
1509 }
1510 setup_object(s, page, cur);
1511 set_freepointer(s, cur, NULL);
1512
1513 return true;
1514 }
1515 #else
1516 static inline int init_cache_random_seq(struct kmem_cache *s)
1517 {
1518 return 0;
1519 }
1520 static inline void init_freelist_randomization(void) { }
1521 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522 {
1523 return false;
1524 }
1525 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
1527 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528 {
1529 struct page *page;
1530 struct kmem_cache_order_objects oo = s->oo;
1531 gfp_t alloc_gfp;
1532 void *start, *p;
1533 int idx, order;
1534 bool shuffle;
1535
1536 flags &= gfp_allowed_mask;
1537
1538 if (gfpflags_allow_blocking(flags))
1539 local_irq_enable();
1540
1541 flags |= s->allocflags;
1542
1543 /*
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1546 */
1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1550
1551 page = alloc_slab_page(s, alloc_gfp, node, oo);
1552 if (unlikely(!page)) {
1553 oo = s->min;
1554 alloc_gfp = flags;
1555 /*
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1558 */
1559 page = alloc_slab_page(s, alloc_gfp, node, oo);
1560 if (unlikely(!page))
1561 goto out;
1562 stat(s, ORDER_FALLBACK);
1563 }
1564
1565 if (kmemcheck_enabled &&
1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1567 int pages = 1 << oo_order(oo);
1568
1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570
1571 /*
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1574 */
1575 if (s->ctor)
1576 kmemcheck_mark_uninitialized_pages(page, pages);
1577 else
1578 kmemcheck_mark_unallocated_pages(page, pages);
1579 }
1580
1581 page->objects = oo_objects(oo);
1582
1583 order = compound_order(page);
1584 page->slab_cache = s;
1585 __SetPageSlab(page);
1586 if (page_is_pfmemalloc(page))
1587 SetPageSlabPfmemalloc(page);
1588
1589 start = page_address(page);
1590
1591 if (unlikely(s->flags & SLAB_POISON))
1592 memset(start, POISON_INUSE, PAGE_SIZE << order);
1593
1594 kasan_poison_slab(page);
1595
1596 shuffle = shuffle_freelist(s, page);
1597
1598 if (!shuffle) {
1599 for_each_object_idx(p, idx, s, start, page->objects) {
1600 setup_object(s, page, p);
1601 if (likely(idx < page->objects))
1602 set_freepointer(s, p, p + s->size);
1603 else
1604 set_freepointer(s, p, NULL);
1605 }
1606 page->freelist = fixup_red_left(s, start);
1607 }
1608
1609 page->inuse = page->objects;
1610 page->frozen = 1;
1611
1612 out:
1613 if (gfpflags_allow_blocking(flags))
1614 local_irq_disable();
1615 if (!page)
1616 return NULL;
1617
1618 mod_zone_page_state(page_zone(page),
1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 1 << oo_order(oo));
1622
1623 inc_slabs_node(s, page_to_nid(page), page->objects);
1624
1625 return page;
1626 }
1627
1628 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629 {
1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1632 flags &= ~GFP_SLAB_BUG_MASK;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask, &invalid_mask, flags, &flags);
1635 dump_stack();
1636 }
1637
1638 return allocate_slab(s,
1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640 }
1641
1642 static void __free_slab(struct kmem_cache *s, struct page *page)
1643 {
1644 int order = compound_order(page);
1645 int pages = 1 << order;
1646
1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1648 void *p;
1649
1650 slab_pad_check(s, page);
1651 for_each_object(p, s, page_address(page),
1652 page->objects)
1653 check_object(s, page, p, SLUB_RED_INACTIVE);
1654 }
1655
1656 kmemcheck_free_shadow(page, compound_order(page));
1657
1658 mod_zone_page_state(page_zone(page),
1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1661 -pages);
1662
1663 __ClearPageSlabPfmemalloc(page);
1664 __ClearPageSlab(page);
1665
1666 page_mapcount_reset(page);
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += pages;
1669 memcg_uncharge_slab(page, order, s);
1670 __free_pages(page, order);
1671 }
1672
1673 #define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
1676 static void rcu_free_slab(struct rcu_head *h)
1677 {
1678 struct page *page;
1679
1680 if (need_reserve_slab_rcu)
1681 page = virt_to_head_page(h);
1682 else
1683 page = container_of((struct list_head *)h, struct page, lru);
1684
1685 __free_slab(page->slab_cache, page);
1686 }
1687
1688 static void free_slab(struct kmem_cache *s, struct page *page)
1689 {
1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1691 struct rcu_head *head;
1692
1693 if (need_reserve_slab_rcu) {
1694 int order = compound_order(page);
1695 int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697 VM_BUG_ON(s->reserved != sizeof(*head));
1698 head = page_address(page) + offset;
1699 } else {
1700 head = &page->rcu_head;
1701 }
1702
1703 call_rcu(head, rcu_free_slab);
1704 } else
1705 __free_slab(s, page);
1706 }
1707
1708 static void discard_slab(struct kmem_cache *s, struct page *page)
1709 {
1710 dec_slabs_node(s, page_to_nid(page), page->objects);
1711 free_slab(s, page);
1712 }
1713
1714 /*
1715 * Management of partially allocated slabs.
1716 */
1717 static inline void
1718 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1719 {
1720 n->nr_partial++;
1721 if (tail == DEACTIVATE_TO_TAIL)
1722 list_add_tail(&page->lru, &n->partial);
1723 else
1724 list_add(&page->lru, &n->partial);
1725 }
1726
1727 static inline void add_partial(struct kmem_cache_node *n,
1728 struct page *page, int tail)
1729 {
1730 lockdep_assert_held(&n->list_lock);
1731 __add_partial(n, page, tail);
1732 }
1733
1734 static inline void remove_partial(struct kmem_cache_node *n,
1735 struct page *page)
1736 {
1737 lockdep_assert_held(&n->list_lock);
1738 list_del(&page->lru);
1739 n->nr_partial--;
1740 }
1741
1742 /*
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
1745 *
1746 * Returns a list of objects or NULL if it fails.
1747 */
1748 static inline void *acquire_slab(struct kmem_cache *s,
1749 struct kmem_cache_node *n, struct page *page,
1750 int mode, int *objects)
1751 {
1752 void *freelist;
1753 unsigned long counters;
1754 struct page new;
1755
1756 lockdep_assert_held(&n->list_lock);
1757
1758 /*
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1762 */
1763 freelist = page->freelist;
1764 counters = page->counters;
1765 new.counters = counters;
1766 *objects = new.objects - new.inuse;
1767 if (mode) {
1768 new.inuse = page->objects;
1769 new.freelist = NULL;
1770 } else {
1771 new.freelist = freelist;
1772 }
1773
1774 VM_BUG_ON(new.frozen);
1775 new.frozen = 1;
1776
1777 if (!__cmpxchg_double_slab(s, page,
1778 freelist, counters,
1779 new.freelist, new.counters,
1780 "acquire_slab"))
1781 return NULL;
1782
1783 remove_partial(n, page);
1784 WARN_ON(!freelist);
1785 return freelist;
1786 }
1787
1788 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1789 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1790
1791 /*
1792 * Try to allocate a partial slab from a specific node.
1793 */
1794 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 struct kmem_cache_cpu *c, gfp_t flags)
1796 {
1797 struct page *page, *page2;
1798 void *object = NULL;
1799 int available = 0;
1800 int objects;
1801
1802 /*
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
1805 * partial slab and there is none available then get_partials()
1806 * will return NULL.
1807 */
1808 if (!n || !n->nr_partial)
1809 return NULL;
1810
1811 spin_lock(&n->list_lock);
1812 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1813 void *t;
1814
1815 if (!pfmemalloc_match(page, flags))
1816 continue;
1817
1818 t = acquire_slab(s, n, page, object == NULL, &objects);
1819 if (!t)
1820 break;
1821
1822 available += objects;
1823 if (!object) {
1824 c->page = page;
1825 stat(s, ALLOC_FROM_PARTIAL);
1826 object = t;
1827 } else {
1828 put_cpu_partial(s, page, 0);
1829 stat(s, CPU_PARTIAL_NODE);
1830 }
1831 if (!kmem_cache_has_cpu_partial(s)
1832 || available > s->cpu_partial / 2)
1833 break;
1834
1835 }
1836 spin_unlock(&n->list_lock);
1837 return object;
1838 }
1839
1840 /*
1841 * Get a page from somewhere. Search in increasing NUMA distances.
1842 */
1843 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1844 struct kmem_cache_cpu *c)
1845 {
1846 #ifdef CONFIG_NUMA
1847 struct zonelist *zonelist;
1848 struct zoneref *z;
1849 struct zone *zone;
1850 enum zone_type high_zoneidx = gfp_zone(flags);
1851 void *object;
1852 unsigned int cpuset_mems_cookie;
1853
1854 /*
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
1859 *
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
1864 *
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
1870 * with available objects.
1871 */
1872 if (!s->remote_node_defrag_ratio ||
1873 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1874 return NULL;
1875
1876 do {
1877 cpuset_mems_cookie = read_mems_allowed_begin();
1878 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 struct kmem_cache_node *n;
1881
1882 n = get_node(s, zone_to_nid(zone));
1883
1884 if (n && cpuset_zone_allowed(zone, flags) &&
1885 n->nr_partial > s->min_partial) {
1886 object = get_partial_node(s, n, c, flags);
1887 if (object) {
1888 /*
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1893 * update
1894 */
1895 return object;
1896 }
1897 }
1898 }
1899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1900 #endif
1901 return NULL;
1902 }
1903
1904 /*
1905 * Get a partial page, lock it and return it.
1906 */
1907 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1908 struct kmem_cache_cpu *c)
1909 {
1910 void *object;
1911 int searchnode = node;
1912
1913 if (node == NUMA_NO_NODE)
1914 searchnode = numa_mem_id();
1915 else if (!node_present_pages(node))
1916 searchnode = node_to_mem_node(node);
1917
1918 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1919 if (object || node != NUMA_NO_NODE)
1920 return object;
1921
1922 return get_any_partial(s, flags, c);
1923 }
1924
1925 #ifdef CONFIG_PREEMPT
1926 /*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932 #else
1933 /*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937 #define TID_STEP 1
1938 #endif
1939
1940 static inline unsigned long next_tid(unsigned long tid)
1941 {
1942 return tid + TID_STEP;
1943 }
1944
1945 static inline unsigned int tid_to_cpu(unsigned long tid)
1946 {
1947 return tid % TID_STEP;
1948 }
1949
1950 static inline unsigned long tid_to_event(unsigned long tid)
1951 {
1952 return tid / TID_STEP;
1953 }
1954
1955 static inline unsigned int init_tid(int cpu)
1956 {
1957 return cpu;
1958 }
1959
1960 static inline void note_cmpxchg_failure(const char *n,
1961 const struct kmem_cache *s, unsigned long tid)
1962 {
1963 #ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
1966 pr_info("%s %s: cmpxchg redo ", n, s->name);
1967
1968 #ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1970 pr_warn("due to cpu change %d -> %d\n",
1971 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 else
1973 #endif
1974 if (tid_to_event(tid) != tid_to_event(actual_tid))
1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1976 tid_to_event(tid), tid_to_event(actual_tid));
1977 else
1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1979 actual_tid, tid, next_tid(tid));
1980 #endif
1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1982 }
1983
1984 static void init_kmem_cache_cpus(struct kmem_cache *s)
1985 {
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1990 }
1991
1992 /*
1993 * Remove the cpu slab
1994 */
1995 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996 void *freelist)
1997 {
1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 int lock = 0;
2001 enum slab_modes l = M_NONE, m = M_NONE;
2002 void *nextfree;
2003 int tail = DEACTIVATE_TO_HEAD;
2004 struct page new;
2005 struct page old;
2006
2007 if (page->freelist) {
2008 stat(s, DEACTIVATE_REMOTE_FREES);
2009 tail = DEACTIVATE_TO_TAIL;
2010 }
2011
2012 /*
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2015 * last one.
2016 *
2017 * There is no need to take the list->lock because the page
2018 * is still frozen.
2019 */
2020 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 void *prior;
2022 unsigned long counters;
2023
2024 do {
2025 prior = page->freelist;
2026 counters = page->counters;
2027 set_freepointer(s, freelist, prior);
2028 new.counters = counters;
2029 new.inuse--;
2030 VM_BUG_ON(!new.frozen);
2031
2032 } while (!__cmpxchg_double_slab(s, page,
2033 prior, counters,
2034 freelist, new.counters,
2035 "drain percpu freelist"));
2036
2037 freelist = nextfree;
2038 }
2039
2040 /*
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2043 * during unfreeze.
2044 *
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2048 *
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2052 * changed.
2053 */
2054 redo:
2055
2056 old.freelist = page->freelist;
2057 old.counters = page->counters;
2058 VM_BUG_ON(!old.frozen);
2059
2060 /* Determine target state of the slab */
2061 new.counters = old.counters;
2062 if (freelist) {
2063 new.inuse--;
2064 set_freepointer(s, freelist, old.freelist);
2065 new.freelist = freelist;
2066 } else
2067 new.freelist = old.freelist;
2068
2069 new.frozen = 0;
2070
2071 if (!new.inuse && n->nr_partial >= s->min_partial)
2072 m = M_FREE;
2073 else if (new.freelist) {
2074 m = M_PARTIAL;
2075 if (!lock) {
2076 lock = 1;
2077 /*
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2080 * is frozen
2081 */
2082 spin_lock(&n->list_lock);
2083 }
2084 } else {
2085 m = M_FULL;
2086 if (kmem_cache_debug(s) && !lock) {
2087 lock = 1;
2088 /*
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2091 * any frozen slabs.
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 }
2096
2097 if (l != m) {
2098
2099 if (l == M_PARTIAL)
2100
2101 remove_partial(n, page);
2102
2103 else if (l == M_FULL)
2104
2105 remove_full(s, n, page);
2106
2107 if (m == M_PARTIAL) {
2108
2109 add_partial(n, page, tail);
2110 stat(s, tail);
2111
2112 } else if (m == M_FULL) {
2113
2114 stat(s, DEACTIVATE_FULL);
2115 add_full(s, n, page);
2116
2117 }
2118 }
2119
2120 l = m;
2121 if (!__cmpxchg_double_slab(s, page,
2122 old.freelist, old.counters,
2123 new.freelist, new.counters,
2124 "unfreezing slab"))
2125 goto redo;
2126
2127 if (lock)
2128 spin_unlock(&n->list_lock);
2129
2130 if (m == M_FREE) {
2131 stat(s, DEACTIVATE_EMPTY);
2132 discard_slab(s, page);
2133 stat(s, FREE_SLAB);
2134 }
2135 }
2136
2137 /*
2138 * Unfreeze all the cpu partial slabs.
2139 *
2140 * This function must be called with interrupts disabled
2141 * for the cpu using c (or some other guarantee must be there
2142 * to guarantee no concurrent accesses).
2143 */
2144 static void unfreeze_partials(struct kmem_cache *s,
2145 struct kmem_cache_cpu *c)
2146 {
2147 #ifdef CONFIG_SLUB_CPU_PARTIAL
2148 struct kmem_cache_node *n = NULL, *n2 = NULL;
2149 struct page *page, *discard_page = NULL;
2150
2151 while ((page = c->partial)) {
2152 struct page new;
2153 struct page old;
2154
2155 c->partial = page->next;
2156
2157 n2 = get_node(s, page_to_nid(page));
2158 if (n != n2) {
2159 if (n)
2160 spin_unlock(&n->list_lock);
2161
2162 n = n2;
2163 spin_lock(&n->list_lock);
2164 }
2165
2166 do {
2167
2168 old.freelist = page->freelist;
2169 old.counters = page->counters;
2170 VM_BUG_ON(!old.frozen);
2171
2172 new.counters = old.counters;
2173 new.freelist = old.freelist;
2174
2175 new.frozen = 0;
2176
2177 } while (!__cmpxchg_double_slab(s, page,
2178 old.freelist, old.counters,
2179 new.freelist, new.counters,
2180 "unfreezing slab"));
2181
2182 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2183 page->next = discard_page;
2184 discard_page = page;
2185 } else {
2186 add_partial(n, page, DEACTIVATE_TO_TAIL);
2187 stat(s, FREE_ADD_PARTIAL);
2188 }
2189 }
2190
2191 if (n)
2192 spin_unlock(&n->list_lock);
2193
2194 while (discard_page) {
2195 page = discard_page;
2196 discard_page = discard_page->next;
2197
2198 stat(s, DEACTIVATE_EMPTY);
2199 discard_slab(s, page);
2200 stat(s, FREE_SLAB);
2201 }
2202 #endif
2203 }
2204
2205 /*
2206 * Put a page that was just frozen (in __slab_free) into a partial page
2207 * slot if available. This is done without interrupts disabled and without
2208 * preemption disabled. The cmpxchg is racy and may put the partial page
2209 * onto a random cpus partial slot.
2210 *
2211 * If we did not find a slot then simply move all the partials to the
2212 * per node partial list.
2213 */
2214 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2215 {
2216 #ifdef CONFIG_SLUB_CPU_PARTIAL
2217 struct page *oldpage;
2218 int pages;
2219 int pobjects;
2220
2221 preempt_disable();
2222 do {
2223 pages = 0;
2224 pobjects = 0;
2225 oldpage = this_cpu_read(s->cpu_slab->partial);
2226
2227 if (oldpage) {
2228 pobjects = oldpage->pobjects;
2229 pages = oldpage->pages;
2230 if (drain && pobjects > s->cpu_partial) {
2231 unsigned long flags;
2232 /*
2233 * partial array is full. Move the existing
2234 * set to the per node partial list.
2235 */
2236 local_irq_save(flags);
2237 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2238 local_irq_restore(flags);
2239 oldpage = NULL;
2240 pobjects = 0;
2241 pages = 0;
2242 stat(s, CPU_PARTIAL_DRAIN);
2243 }
2244 }
2245
2246 pages++;
2247 pobjects += page->objects - page->inuse;
2248
2249 page->pages = pages;
2250 page->pobjects = pobjects;
2251 page->next = oldpage;
2252
2253 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2254 != oldpage);
2255 if (unlikely(!s->cpu_partial)) {
2256 unsigned long flags;
2257
2258 local_irq_save(flags);
2259 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2260 local_irq_restore(flags);
2261 }
2262 preempt_enable();
2263 #endif
2264 }
2265
2266 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2267 {
2268 stat(s, CPUSLAB_FLUSH);
2269 deactivate_slab(s, c->page, c->freelist);
2270
2271 c->tid = next_tid(c->tid);
2272 c->page = NULL;
2273 c->freelist = NULL;
2274 }
2275
2276 /*
2277 * Flush cpu slab.
2278 *
2279 * Called from IPI handler with interrupts disabled.
2280 */
2281 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2282 {
2283 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2284
2285 if (likely(c)) {
2286 if (c->page)
2287 flush_slab(s, c);
2288
2289 unfreeze_partials(s, c);
2290 }
2291 }
2292
2293 static void flush_cpu_slab(void *d)
2294 {
2295 struct kmem_cache *s = d;
2296
2297 __flush_cpu_slab(s, smp_processor_id());
2298 }
2299
2300 static bool has_cpu_slab(int cpu, void *info)
2301 {
2302 struct kmem_cache *s = info;
2303 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2304
2305 return c->page || c->partial;
2306 }
2307
2308 static void flush_all(struct kmem_cache *s)
2309 {
2310 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2311 }
2312
2313 /*
2314 * Use the cpu notifier to insure that the cpu slabs are flushed when
2315 * necessary.
2316 */
2317 static int slub_cpu_dead(unsigned int cpu)
2318 {
2319 struct kmem_cache *s;
2320 unsigned long flags;
2321
2322 mutex_lock(&slab_mutex);
2323 list_for_each_entry(s, &slab_caches, list) {
2324 local_irq_save(flags);
2325 __flush_cpu_slab(s, cpu);
2326 local_irq_restore(flags);
2327 }
2328 mutex_unlock(&slab_mutex);
2329 return 0;
2330 }
2331
2332 /*
2333 * Check if the objects in a per cpu structure fit numa
2334 * locality expectations.
2335 */
2336 static inline int node_match(struct page *page, int node)
2337 {
2338 #ifdef CONFIG_NUMA
2339 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2340 return 0;
2341 #endif
2342 return 1;
2343 }
2344
2345 #ifdef CONFIG_SLUB_DEBUG
2346 static int count_free(struct page *page)
2347 {
2348 return page->objects - page->inuse;
2349 }
2350
2351 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2352 {
2353 return atomic_long_read(&n->total_objects);
2354 }
2355 #endif /* CONFIG_SLUB_DEBUG */
2356
2357 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2358 static unsigned long count_partial(struct kmem_cache_node *n,
2359 int (*get_count)(struct page *))
2360 {
2361 unsigned long flags;
2362 unsigned long x = 0;
2363 struct page *page;
2364
2365 spin_lock_irqsave(&n->list_lock, flags);
2366 list_for_each_entry(page, &n->partial, lru)
2367 x += get_count(page);
2368 spin_unlock_irqrestore(&n->list_lock, flags);
2369 return x;
2370 }
2371 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2372
2373 static noinline void
2374 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2375 {
2376 #ifdef CONFIG_SLUB_DEBUG
2377 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2378 DEFAULT_RATELIMIT_BURST);
2379 int node;
2380 struct kmem_cache_node *n;
2381
2382 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2383 return;
2384
2385 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2386 nid, gfpflags, &gfpflags);
2387 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2388 s->name, s->object_size, s->size, oo_order(s->oo),
2389 oo_order(s->min));
2390
2391 if (oo_order(s->min) > get_order(s->object_size))
2392 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2393 s->name);
2394
2395 for_each_kmem_cache_node(s, node, n) {
2396 unsigned long nr_slabs;
2397 unsigned long nr_objs;
2398 unsigned long nr_free;
2399
2400 nr_free = count_partial(n, count_free);
2401 nr_slabs = node_nr_slabs(n);
2402 nr_objs = node_nr_objs(n);
2403
2404 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2405 node, nr_slabs, nr_objs, nr_free);
2406 }
2407 #endif
2408 }
2409
2410 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2411 int node, struct kmem_cache_cpu **pc)
2412 {
2413 void *freelist;
2414 struct kmem_cache_cpu *c = *pc;
2415 struct page *page;
2416
2417 freelist = get_partial(s, flags, node, c);
2418
2419 if (freelist)
2420 return freelist;
2421
2422 page = new_slab(s, flags, node);
2423 if (page) {
2424 c = raw_cpu_ptr(s->cpu_slab);
2425 if (c->page)
2426 flush_slab(s, c);
2427
2428 /*
2429 * No other reference to the page yet so we can
2430 * muck around with it freely without cmpxchg
2431 */
2432 freelist = page->freelist;
2433 page->freelist = NULL;
2434
2435 stat(s, ALLOC_SLAB);
2436 c->page = page;
2437 *pc = c;
2438 } else
2439 freelist = NULL;
2440
2441 return freelist;
2442 }
2443
2444 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2445 {
2446 if (unlikely(PageSlabPfmemalloc(page)))
2447 return gfp_pfmemalloc_allowed(gfpflags);
2448
2449 return true;
2450 }
2451
2452 /*
2453 * Check the page->freelist of a page and either transfer the freelist to the
2454 * per cpu freelist or deactivate the page.
2455 *
2456 * The page is still frozen if the return value is not NULL.
2457 *
2458 * If this function returns NULL then the page has been unfrozen.
2459 *
2460 * This function must be called with interrupt disabled.
2461 */
2462 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2463 {
2464 struct page new;
2465 unsigned long counters;
2466 void *freelist;
2467
2468 do {
2469 freelist = page->freelist;
2470 counters = page->counters;
2471
2472 new.counters = counters;
2473 VM_BUG_ON(!new.frozen);
2474
2475 new.inuse = page->objects;
2476 new.frozen = freelist != NULL;
2477
2478 } while (!__cmpxchg_double_slab(s, page,
2479 freelist, counters,
2480 NULL, new.counters,
2481 "get_freelist"));
2482
2483 return freelist;
2484 }
2485
2486 /*
2487 * Slow path. The lockless freelist is empty or we need to perform
2488 * debugging duties.
2489 *
2490 * Processing is still very fast if new objects have been freed to the
2491 * regular freelist. In that case we simply take over the regular freelist
2492 * as the lockless freelist and zap the regular freelist.
2493 *
2494 * If that is not working then we fall back to the partial lists. We take the
2495 * first element of the freelist as the object to allocate now and move the
2496 * rest of the freelist to the lockless freelist.
2497 *
2498 * And if we were unable to get a new slab from the partial slab lists then
2499 * we need to allocate a new slab. This is the slowest path since it involves
2500 * a call to the page allocator and the setup of a new slab.
2501 *
2502 * Version of __slab_alloc to use when we know that interrupts are
2503 * already disabled (which is the case for bulk allocation).
2504 */
2505 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2506 unsigned long addr, struct kmem_cache_cpu *c)
2507 {
2508 void *freelist;
2509 struct page *page;
2510
2511 page = c->page;
2512 if (!page)
2513 goto new_slab;
2514 redo:
2515
2516 if (unlikely(!node_match(page, node))) {
2517 int searchnode = node;
2518
2519 if (node != NUMA_NO_NODE && !node_present_pages(node))
2520 searchnode = node_to_mem_node(node);
2521
2522 if (unlikely(!node_match(page, searchnode))) {
2523 stat(s, ALLOC_NODE_MISMATCH);
2524 deactivate_slab(s, page, c->freelist);
2525 c->page = NULL;
2526 c->freelist = NULL;
2527 goto new_slab;
2528 }
2529 }
2530
2531 /*
2532 * By rights, we should be searching for a slab page that was
2533 * PFMEMALLOC but right now, we are losing the pfmemalloc
2534 * information when the page leaves the per-cpu allocator
2535 */
2536 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2537 deactivate_slab(s, page, c->freelist);
2538 c->page = NULL;
2539 c->freelist = NULL;
2540 goto new_slab;
2541 }
2542
2543 /* must check again c->freelist in case of cpu migration or IRQ */
2544 freelist = c->freelist;
2545 if (freelist)
2546 goto load_freelist;
2547
2548 freelist = get_freelist(s, page);
2549
2550 if (!freelist) {
2551 c->page = NULL;
2552 stat(s, DEACTIVATE_BYPASS);
2553 goto new_slab;
2554 }
2555
2556 stat(s, ALLOC_REFILL);
2557
2558 load_freelist:
2559 /*
2560 * freelist is pointing to the list of objects to be used.
2561 * page is pointing to the page from which the objects are obtained.
2562 * That page must be frozen for per cpu allocations to work.
2563 */
2564 VM_BUG_ON(!c->page->frozen);
2565 c->freelist = get_freepointer(s, freelist);
2566 c->tid = next_tid(c->tid);
2567 return freelist;
2568
2569 new_slab:
2570
2571 if (c->partial) {
2572 page = c->page = c->partial;
2573 c->partial = page->next;
2574 stat(s, CPU_PARTIAL_ALLOC);
2575 c->freelist = NULL;
2576 goto redo;
2577 }
2578
2579 freelist = new_slab_objects(s, gfpflags, node, &c);
2580
2581 if (unlikely(!freelist)) {
2582 slab_out_of_memory(s, gfpflags, node);
2583 return NULL;
2584 }
2585
2586 page = c->page;
2587 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2588 goto load_freelist;
2589
2590 /* Only entered in the debug case */
2591 if (kmem_cache_debug(s) &&
2592 !alloc_debug_processing(s, page, freelist, addr))
2593 goto new_slab; /* Slab failed checks. Next slab needed */
2594
2595 deactivate_slab(s, page, get_freepointer(s, freelist));
2596 c->page = NULL;
2597 c->freelist = NULL;
2598 return freelist;
2599 }
2600
2601 /*
2602 * Another one that disabled interrupt and compensates for possible
2603 * cpu changes by refetching the per cpu area pointer.
2604 */
2605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2606 unsigned long addr, struct kmem_cache_cpu *c)
2607 {
2608 void *p;
2609 unsigned long flags;
2610
2611 local_irq_save(flags);
2612 #ifdef CONFIG_PREEMPT
2613 /*
2614 * We may have been preempted and rescheduled on a different
2615 * cpu before disabling interrupts. Need to reload cpu area
2616 * pointer.
2617 */
2618 c = this_cpu_ptr(s->cpu_slab);
2619 #endif
2620
2621 p = ___slab_alloc(s, gfpflags, node, addr, c);
2622 local_irq_restore(flags);
2623 return p;
2624 }
2625
2626 /*
2627 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2628 * have the fastpath folded into their functions. So no function call
2629 * overhead for requests that can be satisfied on the fastpath.
2630 *
2631 * The fastpath works by first checking if the lockless freelist can be used.
2632 * If not then __slab_alloc is called for slow processing.
2633 *
2634 * Otherwise we can simply pick the next object from the lockless free list.
2635 */
2636 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2637 gfp_t gfpflags, int node, unsigned long addr)
2638 {
2639 void *object;
2640 struct kmem_cache_cpu *c;
2641 struct page *page;
2642 unsigned long tid;
2643
2644 s = slab_pre_alloc_hook(s, gfpflags);
2645 if (!s)
2646 return NULL;
2647 redo:
2648 /*
2649 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2650 * enabled. We may switch back and forth between cpus while
2651 * reading from one cpu area. That does not matter as long
2652 * as we end up on the original cpu again when doing the cmpxchg.
2653 *
2654 * We should guarantee that tid and kmem_cache are retrieved on
2655 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2656 * to check if it is matched or not.
2657 */
2658 do {
2659 tid = this_cpu_read(s->cpu_slab->tid);
2660 c = raw_cpu_ptr(s->cpu_slab);
2661 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2662 unlikely(tid != READ_ONCE(c->tid)));
2663
2664 /*
2665 * Irqless object alloc/free algorithm used here depends on sequence
2666 * of fetching cpu_slab's data. tid should be fetched before anything
2667 * on c to guarantee that object and page associated with previous tid
2668 * won't be used with current tid. If we fetch tid first, object and
2669 * page could be one associated with next tid and our alloc/free
2670 * request will be failed. In this case, we will retry. So, no problem.
2671 */
2672 barrier();
2673
2674 /*
2675 * The transaction ids are globally unique per cpu and per operation on
2676 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2677 * occurs on the right processor and that there was no operation on the
2678 * linked list in between.
2679 */
2680
2681 object = c->freelist;
2682 page = c->page;
2683 if (unlikely(!object || !node_match(page, node))) {
2684 object = __slab_alloc(s, gfpflags, node, addr, c);
2685 stat(s, ALLOC_SLOWPATH);
2686 } else {
2687 void *next_object = get_freepointer_safe(s, object);
2688
2689 /*
2690 * The cmpxchg will only match if there was no additional
2691 * operation and if we are on the right processor.
2692 *
2693 * The cmpxchg does the following atomically (without lock
2694 * semantics!)
2695 * 1. Relocate first pointer to the current per cpu area.
2696 * 2. Verify that tid and freelist have not been changed
2697 * 3. If they were not changed replace tid and freelist
2698 *
2699 * Since this is without lock semantics the protection is only
2700 * against code executing on this cpu *not* from access by
2701 * other cpus.
2702 */
2703 if (unlikely(!this_cpu_cmpxchg_double(
2704 s->cpu_slab->freelist, s->cpu_slab->tid,
2705 object, tid,
2706 next_object, next_tid(tid)))) {
2707
2708 note_cmpxchg_failure("slab_alloc", s, tid);
2709 goto redo;
2710 }
2711 prefetch_freepointer(s, next_object);
2712 stat(s, ALLOC_FASTPATH);
2713 }
2714
2715 if (unlikely(gfpflags & __GFP_ZERO) && object)
2716 memset(object, 0, s->object_size);
2717
2718 slab_post_alloc_hook(s, gfpflags, 1, &object);
2719
2720 return object;
2721 }
2722
2723 static __always_inline void *slab_alloc(struct kmem_cache *s,
2724 gfp_t gfpflags, unsigned long addr)
2725 {
2726 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2727 }
2728
2729 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2730 {
2731 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2732
2733 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2734 s->size, gfpflags);
2735
2736 return ret;
2737 }
2738 EXPORT_SYMBOL(kmem_cache_alloc);
2739
2740 #ifdef CONFIG_TRACING
2741 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2742 {
2743 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2744 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2745 kasan_kmalloc(s, ret, size, gfpflags);
2746 return ret;
2747 }
2748 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2749 #endif
2750
2751 #ifdef CONFIG_NUMA
2752 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2753 {
2754 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2755
2756 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2757 s->object_size, s->size, gfpflags, node);
2758
2759 return ret;
2760 }
2761 EXPORT_SYMBOL(kmem_cache_alloc_node);
2762
2763 #ifdef CONFIG_TRACING
2764 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2765 gfp_t gfpflags,
2766 int node, size_t size)
2767 {
2768 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2769
2770 trace_kmalloc_node(_RET_IP_, ret,
2771 size, s->size, gfpflags, node);
2772
2773 kasan_kmalloc(s, ret, size, gfpflags);
2774 return ret;
2775 }
2776 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2777 #endif
2778 #endif
2779
2780 /*
2781 * Slow path handling. This may still be called frequently since objects
2782 * have a longer lifetime than the cpu slabs in most processing loads.
2783 *
2784 * So we still attempt to reduce cache line usage. Just take the slab
2785 * lock and free the item. If there is no additional partial page
2786 * handling required then we can return immediately.
2787 */
2788 static void __slab_free(struct kmem_cache *s, struct page *page,
2789 void *head, void *tail, int cnt,
2790 unsigned long addr)
2791
2792 {
2793 void *prior;
2794 int was_frozen;
2795 struct page new;
2796 unsigned long counters;
2797 struct kmem_cache_node *n = NULL;
2798 unsigned long uninitialized_var(flags);
2799
2800 stat(s, FREE_SLOWPATH);
2801
2802 if (kmem_cache_debug(s) &&
2803 !free_debug_processing(s, page, head, tail, cnt, addr))
2804 return;
2805
2806 do {
2807 if (unlikely(n)) {
2808 spin_unlock_irqrestore(&n->list_lock, flags);
2809 n = NULL;
2810 }
2811 prior = page->freelist;
2812 counters = page->counters;
2813 set_freepointer(s, tail, prior);
2814 new.counters = counters;
2815 was_frozen = new.frozen;
2816 new.inuse -= cnt;
2817 if ((!new.inuse || !prior) && !was_frozen) {
2818
2819 if (kmem_cache_has_cpu_partial(s) && !prior) {
2820
2821 /*
2822 * Slab was on no list before and will be
2823 * partially empty
2824 * We can defer the list move and instead
2825 * freeze it.
2826 */
2827 new.frozen = 1;
2828
2829 } else { /* Needs to be taken off a list */
2830
2831 n = get_node(s, page_to_nid(page));
2832 /*
2833 * Speculatively acquire the list_lock.
2834 * If the cmpxchg does not succeed then we may
2835 * drop the list_lock without any processing.
2836 *
2837 * Otherwise the list_lock will synchronize with
2838 * other processors updating the list of slabs.
2839 */
2840 spin_lock_irqsave(&n->list_lock, flags);
2841
2842 }
2843 }
2844
2845 } while (!cmpxchg_double_slab(s, page,
2846 prior, counters,
2847 head, new.counters,
2848 "__slab_free"));
2849
2850 if (likely(!n)) {
2851
2852 /*
2853 * If we just froze the page then put it onto the
2854 * per cpu partial list.
2855 */
2856 if (new.frozen && !was_frozen) {
2857 put_cpu_partial(s, page, 1);
2858 stat(s, CPU_PARTIAL_FREE);
2859 }
2860 /*
2861 * The list lock was not taken therefore no list
2862 * activity can be necessary.
2863 */
2864 if (was_frozen)
2865 stat(s, FREE_FROZEN);
2866 return;
2867 }
2868
2869 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2870 goto slab_empty;
2871
2872 /*
2873 * Objects left in the slab. If it was not on the partial list before
2874 * then add it.
2875 */
2876 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2877 if (kmem_cache_debug(s))
2878 remove_full(s, n, page);
2879 add_partial(n, page, DEACTIVATE_TO_TAIL);
2880 stat(s, FREE_ADD_PARTIAL);
2881 }
2882 spin_unlock_irqrestore(&n->list_lock, flags);
2883 return;
2884
2885 slab_empty:
2886 if (prior) {
2887 /*
2888 * Slab on the partial list.
2889 */
2890 remove_partial(n, page);
2891 stat(s, FREE_REMOVE_PARTIAL);
2892 } else {
2893 /* Slab must be on the full list */
2894 remove_full(s, n, page);
2895 }
2896
2897 spin_unlock_irqrestore(&n->list_lock, flags);
2898 stat(s, FREE_SLAB);
2899 discard_slab(s, page);
2900 }
2901
2902 /*
2903 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2904 * can perform fastpath freeing without additional function calls.
2905 *
2906 * The fastpath is only possible if we are freeing to the current cpu slab
2907 * of this processor. This typically the case if we have just allocated
2908 * the item before.
2909 *
2910 * If fastpath is not possible then fall back to __slab_free where we deal
2911 * with all sorts of special processing.
2912 *
2913 * Bulk free of a freelist with several objects (all pointing to the
2914 * same page) possible by specifying head and tail ptr, plus objects
2915 * count (cnt). Bulk free indicated by tail pointer being set.
2916 */
2917 static __always_inline void do_slab_free(struct kmem_cache *s,
2918 struct page *page, void *head, void *tail,
2919 int cnt, unsigned long addr)
2920 {
2921 void *tail_obj = tail ? : head;
2922 struct kmem_cache_cpu *c;
2923 unsigned long tid;
2924 redo:
2925 /*
2926 * Determine the currently cpus per cpu slab.
2927 * The cpu may change afterward. However that does not matter since
2928 * data is retrieved via this pointer. If we are on the same cpu
2929 * during the cmpxchg then the free will succeed.
2930 */
2931 do {
2932 tid = this_cpu_read(s->cpu_slab->tid);
2933 c = raw_cpu_ptr(s->cpu_slab);
2934 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2935 unlikely(tid != READ_ONCE(c->tid)));
2936
2937 /* Same with comment on barrier() in slab_alloc_node() */
2938 barrier();
2939
2940 if (likely(page == c->page)) {
2941 set_freepointer(s, tail_obj, c->freelist);
2942
2943 if (unlikely(!this_cpu_cmpxchg_double(
2944 s->cpu_slab->freelist, s->cpu_slab->tid,
2945 c->freelist, tid,
2946 head, next_tid(tid)))) {
2947
2948 note_cmpxchg_failure("slab_free", s, tid);
2949 goto redo;
2950 }
2951 stat(s, FREE_FASTPATH);
2952 } else
2953 __slab_free(s, page, head, tail_obj, cnt, addr);
2954
2955 }
2956
2957 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2958 void *head, void *tail, int cnt,
2959 unsigned long addr)
2960 {
2961 slab_free_freelist_hook(s, head, tail);
2962 /*
2963 * slab_free_freelist_hook() could have put the items into quarantine.
2964 * If so, no need to free them.
2965 */
2966 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2967 return;
2968 do_slab_free(s, page, head, tail, cnt, addr);
2969 }
2970
2971 #ifdef CONFIG_KASAN
2972 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2973 {
2974 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2975 }
2976 #endif
2977
2978 void kmem_cache_free(struct kmem_cache *s, void *x)
2979 {
2980 s = cache_from_obj(s, x);
2981 if (!s)
2982 return;
2983 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2984 trace_kmem_cache_free(_RET_IP_, x);
2985 }
2986 EXPORT_SYMBOL(kmem_cache_free);
2987
2988 struct detached_freelist {
2989 struct page *page;
2990 void *tail;
2991 void *freelist;
2992 int cnt;
2993 struct kmem_cache *s;
2994 };
2995
2996 /*
2997 * This function progressively scans the array with free objects (with
2998 * a limited look ahead) and extract objects belonging to the same
2999 * page. It builds a detached freelist directly within the given
3000 * page/objects. This can happen without any need for
3001 * synchronization, because the objects are owned by running process.
3002 * The freelist is build up as a single linked list in the objects.
3003 * The idea is, that this detached freelist can then be bulk
3004 * transferred to the real freelist(s), but only requiring a single
3005 * synchronization primitive. Look ahead in the array is limited due
3006 * to performance reasons.
3007 */
3008 static inline
3009 int build_detached_freelist(struct kmem_cache *s, size_t size,
3010 void **p, struct detached_freelist *df)
3011 {
3012 size_t first_skipped_index = 0;
3013 int lookahead = 3;
3014 void *object;
3015 struct page *page;
3016
3017 /* Always re-init detached_freelist */
3018 df->page = NULL;
3019
3020 do {
3021 object = p[--size];
3022 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3023 } while (!object && size);
3024
3025 if (!object)
3026 return 0;
3027
3028 page = virt_to_head_page(object);
3029 if (!s) {
3030 /* Handle kalloc'ed objects */
3031 if (unlikely(!PageSlab(page))) {
3032 BUG_ON(!PageCompound(page));
3033 kfree_hook(object);
3034 __free_pages(page, compound_order(page));
3035 p[size] = NULL; /* mark object processed */
3036 return size;
3037 }
3038 /* Derive kmem_cache from object */
3039 df->s = page->slab_cache;
3040 } else {
3041 df->s = cache_from_obj(s, object); /* Support for memcg */
3042 }
3043
3044 /* Start new detached freelist */
3045 df->page = page;
3046 set_freepointer(df->s, object, NULL);
3047 df->tail = object;
3048 df->freelist = object;
3049 p[size] = NULL; /* mark object processed */
3050 df->cnt = 1;
3051
3052 while (size) {
3053 object = p[--size];
3054 if (!object)
3055 continue; /* Skip processed objects */
3056
3057 /* df->page is always set at this point */
3058 if (df->page == virt_to_head_page(object)) {
3059 /* Opportunity build freelist */
3060 set_freepointer(df->s, object, df->freelist);
3061 df->freelist = object;
3062 df->cnt++;
3063 p[size] = NULL; /* mark object processed */
3064
3065 continue;
3066 }
3067
3068 /* Limit look ahead search */
3069 if (!--lookahead)
3070 break;
3071
3072 if (!first_skipped_index)
3073 first_skipped_index = size + 1;
3074 }
3075
3076 return first_skipped_index;
3077 }
3078
3079 /* Note that interrupts must be enabled when calling this function. */
3080 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3081 {
3082 if (WARN_ON(!size))
3083 return;
3084
3085 do {
3086 struct detached_freelist df;
3087
3088 size = build_detached_freelist(s, size, p, &df);
3089 if (!df.page)
3090 continue;
3091
3092 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3093 } while (likely(size));
3094 }
3095 EXPORT_SYMBOL(kmem_cache_free_bulk);
3096
3097 /* Note that interrupts must be enabled when calling this function. */
3098 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3099 void **p)
3100 {
3101 struct kmem_cache_cpu *c;
3102 int i;
3103
3104 /* memcg and kmem_cache debug support */
3105 s = slab_pre_alloc_hook(s, flags);
3106 if (unlikely(!s))
3107 return false;
3108 /*
3109 * Drain objects in the per cpu slab, while disabling local
3110 * IRQs, which protects against PREEMPT and interrupts
3111 * handlers invoking normal fastpath.
3112 */
3113 local_irq_disable();
3114 c = this_cpu_ptr(s->cpu_slab);
3115
3116 for (i = 0; i < size; i++) {
3117 void *object = c->freelist;
3118
3119 if (unlikely(!object)) {
3120 /*
3121 * Invoking slow path likely have side-effect
3122 * of re-populating per CPU c->freelist
3123 */
3124 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3125 _RET_IP_, c);
3126 if (unlikely(!p[i]))
3127 goto error;
3128
3129 c = this_cpu_ptr(s->cpu_slab);
3130 continue; /* goto for-loop */
3131 }
3132 c->freelist = get_freepointer(s, object);
3133 p[i] = object;
3134 }
3135 c->tid = next_tid(c->tid);
3136 local_irq_enable();
3137
3138 /* Clear memory outside IRQ disabled fastpath loop */
3139 if (unlikely(flags & __GFP_ZERO)) {
3140 int j;
3141
3142 for (j = 0; j < i; j++)
3143 memset(p[j], 0, s->object_size);
3144 }
3145
3146 /* memcg and kmem_cache debug support */
3147 slab_post_alloc_hook(s, flags, size, p);
3148 return i;
3149 error:
3150 local_irq_enable();
3151 slab_post_alloc_hook(s, flags, i, p);
3152 __kmem_cache_free_bulk(s, i, p);
3153 return 0;
3154 }
3155 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3156
3157
3158 /*
3159 * Object placement in a slab is made very easy because we always start at
3160 * offset 0. If we tune the size of the object to the alignment then we can
3161 * get the required alignment by putting one properly sized object after
3162 * another.
3163 *
3164 * Notice that the allocation order determines the sizes of the per cpu
3165 * caches. Each processor has always one slab available for allocations.
3166 * Increasing the allocation order reduces the number of times that slabs
3167 * must be moved on and off the partial lists and is therefore a factor in
3168 * locking overhead.
3169 */
3170
3171 /*
3172 * Mininum / Maximum order of slab pages. This influences locking overhead
3173 * and slab fragmentation. A higher order reduces the number of partial slabs
3174 * and increases the number of allocations possible without having to
3175 * take the list_lock.
3176 */
3177 static int slub_min_order;
3178 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3179 static int slub_min_objects;
3180
3181 /*
3182 * Calculate the order of allocation given an slab object size.
3183 *
3184 * The order of allocation has significant impact on performance and other
3185 * system components. Generally order 0 allocations should be preferred since
3186 * order 0 does not cause fragmentation in the page allocator. Larger objects
3187 * be problematic to put into order 0 slabs because there may be too much
3188 * unused space left. We go to a higher order if more than 1/16th of the slab
3189 * would be wasted.
3190 *
3191 * In order to reach satisfactory performance we must ensure that a minimum
3192 * number of objects is in one slab. Otherwise we may generate too much
3193 * activity on the partial lists which requires taking the list_lock. This is
3194 * less a concern for large slabs though which are rarely used.
3195 *
3196 * slub_max_order specifies the order where we begin to stop considering the
3197 * number of objects in a slab as critical. If we reach slub_max_order then
3198 * we try to keep the page order as low as possible. So we accept more waste
3199 * of space in favor of a small page order.
3200 *
3201 * Higher order allocations also allow the placement of more objects in a
3202 * slab and thereby reduce object handling overhead. If the user has
3203 * requested a higher mininum order then we start with that one instead of
3204 * the smallest order which will fit the object.
3205 */
3206 static inline int slab_order(int size, int min_objects,
3207 int max_order, int fract_leftover, int reserved)
3208 {
3209 int order;
3210 int rem;
3211 int min_order = slub_min_order;
3212
3213 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3214 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3215
3216 for (order = max(min_order, get_order(min_objects * size + reserved));
3217 order <= max_order; order++) {
3218
3219 unsigned long slab_size = PAGE_SIZE << order;
3220
3221 rem = (slab_size - reserved) % size;
3222
3223 if (rem <= slab_size / fract_leftover)
3224 break;
3225 }
3226
3227 return order;
3228 }
3229
3230 static inline int calculate_order(int size, int reserved)
3231 {
3232 int order;
3233 int min_objects;
3234 int fraction;
3235 int max_objects;
3236
3237 /*
3238 * Attempt to find best configuration for a slab. This
3239 * works by first attempting to generate a layout with
3240 * the best configuration and backing off gradually.
3241 *
3242 * First we increase the acceptable waste in a slab. Then
3243 * we reduce the minimum objects required in a slab.
3244 */
3245 min_objects = slub_min_objects;
3246 if (!min_objects)
3247 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3248 max_objects = order_objects(slub_max_order, size, reserved);
3249 min_objects = min(min_objects, max_objects);
3250
3251 while (min_objects > 1) {
3252 fraction = 16;
3253 while (fraction >= 4) {
3254 order = slab_order(size, min_objects,
3255 slub_max_order, fraction, reserved);
3256 if (order <= slub_max_order)
3257 return order;
3258 fraction /= 2;
3259 }
3260 min_objects--;
3261 }
3262
3263 /*
3264 * We were unable to place multiple objects in a slab. Now
3265 * lets see if we can place a single object there.
3266 */
3267 order = slab_order(size, 1, slub_max_order, 1, reserved);
3268 if (order <= slub_max_order)
3269 return order;
3270
3271 /*
3272 * Doh this slab cannot be placed using slub_max_order.
3273 */
3274 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3275 if (order < MAX_ORDER)
3276 return order;
3277 return -ENOSYS;
3278 }
3279
3280 static void
3281 init_kmem_cache_node(struct kmem_cache_node *n)
3282 {
3283 n->nr_partial = 0;
3284 spin_lock_init(&n->list_lock);
3285 INIT_LIST_HEAD(&n->partial);
3286 #ifdef CONFIG_SLUB_DEBUG
3287 atomic_long_set(&n->nr_slabs, 0);
3288 atomic_long_set(&n->total_objects, 0);
3289 INIT_LIST_HEAD(&n->full);
3290 #endif
3291 }
3292
3293 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3294 {
3295 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3296 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3297
3298 /*
3299 * Must align to double word boundary for the double cmpxchg
3300 * instructions to work; see __pcpu_double_call_return_bool().
3301 */
3302 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3303 2 * sizeof(void *));
3304
3305 if (!s->cpu_slab)
3306 return 0;
3307
3308 init_kmem_cache_cpus(s);
3309
3310 return 1;
3311 }
3312
3313 static struct kmem_cache *kmem_cache_node;
3314
3315 /*
3316 * No kmalloc_node yet so do it by hand. We know that this is the first
3317 * slab on the node for this slabcache. There are no concurrent accesses
3318 * possible.
3319 *
3320 * Note that this function only works on the kmem_cache_node
3321 * when allocating for the kmem_cache_node. This is used for bootstrapping
3322 * memory on a fresh node that has no slab structures yet.
3323 */
3324 static void early_kmem_cache_node_alloc(int node)
3325 {
3326 struct page *page;
3327 struct kmem_cache_node *n;
3328
3329 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3330
3331 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3332
3333 BUG_ON(!page);
3334 if (page_to_nid(page) != node) {
3335 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3336 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3337 }
3338
3339 n = page->freelist;
3340 BUG_ON(!n);
3341 page->freelist = get_freepointer(kmem_cache_node, n);
3342 page->inuse = 1;
3343 page->frozen = 0;
3344 kmem_cache_node->node[node] = n;
3345 #ifdef CONFIG_SLUB_DEBUG
3346 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3347 init_tracking(kmem_cache_node, n);
3348 #endif
3349 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3350 GFP_KERNEL);
3351 init_kmem_cache_node(n);
3352 inc_slabs_node(kmem_cache_node, node, page->objects);
3353
3354 /*
3355 * No locks need to be taken here as it has just been
3356 * initialized and there is no concurrent access.
3357 */
3358 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3359 }
3360
3361 static void free_kmem_cache_nodes(struct kmem_cache *s)
3362 {
3363 int node;
3364 struct kmem_cache_node *n;
3365
3366 for_each_kmem_cache_node(s, node, n) {
3367 kmem_cache_free(kmem_cache_node, n);
3368 s->node[node] = NULL;
3369 }
3370 }
3371
3372 void __kmem_cache_release(struct kmem_cache *s)
3373 {
3374 cache_random_seq_destroy(s);
3375 free_percpu(s->cpu_slab);
3376 free_kmem_cache_nodes(s);
3377 }
3378
3379 static int init_kmem_cache_nodes(struct kmem_cache *s)
3380 {
3381 int node;
3382
3383 for_each_node_state(node, N_NORMAL_MEMORY) {
3384 struct kmem_cache_node *n;
3385
3386 if (slab_state == DOWN) {
3387 early_kmem_cache_node_alloc(node);
3388 continue;
3389 }
3390 n = kmem_cache_alloc_node(kmem_cache_node,
3391 GFP_KERNEL, node);
3392
3393 if (!n) {
3394 free_kmem_cache_nodes(s);
3395 return 0;
3396 }
3397
3398 s->node[node] = n;
3399 init_kmem_cache_node(n);
3400 }
3401 return 1;
3402 }
3403
3404 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3405 {
3406 if (min < MIN_PARTIAL)
3407 min = MIN_PARTIAL;
3408 else if (min > MAX_PARTIAL)
3409 min = MAX_PARTIAL;
3410 s->min_partial = min;
3411 }
3412
3413 /*
3414 * calculate_sizes() determines the order and the distribution of data within
3415 * a slab object.
3416 */
3417 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3418 {
3419 unsigned long flags = s->flags;
3420 size_t size = s->object_size;
3421 int order;
3422
3423 /*
3424 * Round up object size to the next word boundary. We can only
3425 * place the free pointer at word boundaries and this determines
3426 * the possible location of the free pointer.
3427 */
3428 size = ALIGN(size, sizeof(void *));
3429
3430 #ifdef CONFIG_SLUB_DEBUG
3431 /*
3432 * Determine if we can poison the object itself. If the user of
3433 * the slab may touch the object after free or before allocation
3434 * then we should never poison the object itself.
3435 */
3436 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3437 !s->ctor)
3438 s->flags |= __OBJECT_POISON;
3439 else
3440 s->flags &= ~__OBJECT_POISON;
3441
3442
3443 /*
3444 * If we are Redzoning then check if there is some space between the
3445 * end of the object and the free pointer. If not then add an
3446 * additional word to have some bytes to store Redzone information.
3447 */
3448 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3449 size += sizeof(void *);
3450 #endif
3451
3452 /*
3453 * With that we have determined the number of bytes in actual use
3454 * by the object. This is the potential offset to the free pointer.
3455 */
3456 s->inuse = size;
3457
3458 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3459 s->ctor)) {
3460 /*
3461 * Relocate free pointer after the object if it is not
3462 * permitted to overwrite the first word of the object on
3463 * kmem_cache_free.
3464 *
3465 * This is the case if we do RCU, have a constructor or
3466 * destructor or are poisoning the objects.
3467 */
3468 s->offset = size;
3469 size += sizeof(void *);
3470 }
3471
3472 #ifdef CONFIG_SLUB_DEBUG
3473 if (flags & SLAB_STORE_USER)
3474 /*
3475 * Need to store information about allocs and frees after
3476 * the object.
3477 */
3478 size += 2 * sizeof(struct track);
3479 #endif
3480
3481 kasan_cache_create(s, &size, &s->flags);
3482 #ifdef CONFIG_SLUB_DEBUG
3483 if (flags & SLAB_RED_ZONE) {
3484 /*
3485 * Add some empty padding so that we can catch
3486 * overwrites from earlier objects rather than let
3487 * tracking information or the free pointer be
3488 * corrupted if a user writes before the start
3489 * of the object.
3490 */
3491 size += sizeof(void *);
3492
3493 s->red_left_pad = sizeof(void *);
3494 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3495 size += s->red_left_pad;
3496 }
3497 #endif
3498
3499 /*
3500 * SLUB stores one object immediately after another beginning from
3501 * offset 0. In order to align the objects we have to simply size
3502 * each object to conform to the alignment.
3503 */
3504 size = ALIGN(size, s->align);
3505 s->size = size;
3506 if (forced_order >= 0)
3507 order = forced_order;
3508 else
3509 order = calculate_order(size, s->reserved);
3510
3511 if (order < 0)
3512 return 0;
3513
3514 s->allocflags = 0;
3515 if (order)
3516 s->allocflags |= __GFP_COMP;
3517
3518 if (s->flags & SLAB_CACHE_DMA)
3519 s->allocflags |= GFP_DMA;
3520
3521 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3522 s->allocflags |= __GFP_RECLAIMABLE;
3523
3524 /*
3525 * Determine the number of objects per slab
3526 */
3527 s->oo = oo_make(order, size, s->reserved);
3528 s->min = oo_make(get_order(size), size, s->reserved);
3529 if (oo_objects(s->oo) > oo_objects(s->max))
3530 s->max = s->oo;
3531
3532 return !!oo_objects(s->oo);
3533 }
3534
3535 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3536 {
3537 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3538 s->reserved = 0;
3539
3540 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3541 s->reserved = sizeof(struct rcu_head);
3542
3543 if (!calculate_sizes(s, -1))
3544 goto error;
3545 if (disable_higher_order_debug) {
3546 /*
3547 * Disable debugging flags that store metadata if the min slab
3548 * order increased.
3549 */
3550 if (get_order(s->size) > get_order(s->object_size)) {
3551 s->flags &= ~DEBUG_METADATA_FLAGS;
3552 s->offset = 0;
3553 if (!calculate_sizes(s, -1))
3554 goto error;
3555 }
3556 }
3557
3558 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3559 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3560 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3561 /* Enable fast mode */
3562 s->flags |= __CMPXCHG_DOUBLE;
3563 #endif
3564
3565 /*
3566 * The larger the object size is, the more pages we want on the partial
3567 * list to avoid pounding the page allocator excessively.
3568 */
3569 set_min_partial(s, ilog2(s->size) / 2);
3570
3571 /*
3572 * cpu_partial determined the maximum number of objects kept in the
3573 * per cpu partial lists of a processor.
3574 *
3575 * Per cpu partial lists mainly contain slabs that just have one
3576 * object freed. If they are used for allocation then they can be
3577 * filled up again with minimal effort. The slab will never hit the
3578 * per node partial lists and therefore no locking will be required.
3579 *
3580 * This setting also determines
3581 *
3582 * A) The number of objects from per cpu partial slabs dumped to the
3583 * per node list when we reach the limit.
3584 * B) The number of objects in cpu partial slabs to extract from the
3585 * per node list when we run out of per cpu objects. We only fetch
3586 * 50% to keep some capacity around for frees.
3587 */
3588 if (!kmem_cache_has_cpu_partial(s))
3589 s->cpu_partial = 0;
3590 else if (s->size >= PAGE_SIZE)
3591 s->cpu_partial = 2;
3592 else if (s->size >= 1024)
3593 s->cpu_partial = 6;
3594 else if (s->size >= 256)
3595 s->cpu_partial = 13;
3596 else
3597 s->cpu_partial = 30;
3598
3599 #ifdef CONFIG_NUMA
3600 s->remote_node_defrag_ratio = 1000;
3601 #endif
3602
3603 /* Initialize the pre-computed randomized freelist if slab is up */
3604 if (slab_state >= UP) {
3605 if (init_cache_random_seq(s))
3606 goto error;
3607 }
3608
3609 if (!init_kmem_cache_nodes(s))
3610 goto error;
3611
3612 if (alloc_kmem_cache_cpus(s))
3613 return 0;
3614
3615 free_kmem_cache_nodes(s);
3616 error:
3617 if (flags & SLAB_PANIC)
3618 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3619 s->name, (unsigned long)s->size, s->size,
3620 oo_order(s->oo), s->offset, flags);
3621 return -EINVAL;
3622 }
3623
3624 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3625 const char *text)
3626 {
3627 #ifdef CONFIG_SLUB_DEBUG
3628 void *addr = page_address(page);
3629 void *p;
3630 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3631 sizeof(long), GFP_ATOMIC);
3632 if (!map)
3633 return;
3634 slab_err(s, page, text, s->name);
3635 slab_lock(page);
3636
3637 get_map(s, page, map);
3638 for_each_object(p, s, addr, page->objects) {
3639
3640 if (!test_bit(slab_index(p, s, addr), map)) {
3641 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3642 print_tracking(s, p);
3643 }
3644 }
3645 slab_unlock(page);
3646 kfree(map);
3647 #endif
3648 }
3649
3650 /*
3651 * Attempt to free all partial slabs on a node.
3652 * This is called from __kmem_cache_shutdown(). We must take list_lock
3653 * because sysfs file might still access partial list after the shutdowning.
3654 */
3655 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3656 {
3657 LIST_HEAD(discard);
3658 struct page *page, *h;
3659
3660 BUG_ON(irqs_disabled());
3661 spin_lock_irq(&n->list_lock);
3662 list_for_each_entry_safe(page, h, &n->partial, lru) {
3663 if (!page->inuse) {
3664 remove_partial(n, page);
3665 list_add(&page->lru, &discard);
3666 } else {
3667 list_slab_objects(s, page,
3668 "Objects remaining in %s on __kmem_cache_shutdown()");
3669 }
3670 }
3671 spin_unlock_irq(&n->list_lock);
3672
3673 list_for_each_entry_safe(page, h, &discard, lru)
3674 discard_slab(s, page);
3675 }
3676
3677 /*
3678 * Release all resources used by a slab cache.
3679 */
3680 int __kmem_cache_shutdown(struct kmem_cache *s)
3681 {
3682 int node;
3683 struct kmem_cache_node *n;
3684
3685 flush_all(s);
3686 /* Attempt to free all objects */
3687 for_each_kmem_cache_node(s, node, n) {
3688 free_partial(s, n);
3689 if (n->nr_partial || slabs_node(s, node))
3690 return 1;
3691 }
3692 sysfs_slab_remove(s);
3693 return 0;
3694 }
3695
3696 /********************************************************************
3697 * Kmalloc subsystem
3698 *******************************************************************/
3699
3700 static int __init setup_slub_min_order(char *str)
3701 {
3702 get_option(&str, &slub_min_order);
3703
3704 return 1;
3705 }
3706
3707 __setup("slub_min_order=", setup_slub_min_order);
3708
3709 static int __init setup_slub_max_order(char *str)
3710 {
3711 get_option(&str, &slub_max_order);
3712 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3713
3714 return 1;
3715 }
3716
3717 __setup("slub_max_order=", setup_slub_max_order);
3718
3719 static int __init setup_slub_min_objects(char *str)
3720 {
3721 get_option(&str, &slub_min_objects);
3722
3723 return 1;
3724 }
3725
3726 __setup("slub_min_objects=", setup_slub_min_objects);
3727
3728 void *__kmalloc(size_t size, gfp_t flags)
3729 {
3730 struct kmem_cache *s;
3731 void *ret;
3732
3733 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3734 return kmalloc_large(size, flags);
3735
3736 s = kmalloc_slab(size, flags);
3737
3738 if (unlikely(ZERO_OR_NULL_PTR(s)))
3739 return s;
3740
3741 ret = slab_alloc(s, flags, _RET_IP_);
3742
3743 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3744
3745 kasan_kmalloc(s, ret, size, flags);
3746
3747 return ret;
3748 }
3749 EXPORT_SYMBOL(__kmalloc);
3750
3751 #ifdef CONFIG_NUMA
3752 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3753 {
3754 struct page *page;
3755 void *ptr = NULL;
3756
3757 flags |= __GFP_COMP | __GFP_NOTRACK;
3758 page = alloc_pages_node(node, flags, get_order(size));
3759 if (page)
3760 ptr = page_address(page);
3761
3762 kmalloc_large_node_hook(ptr, size, flags);
3763 return ptr;
3764 }
3765
3766 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3767 {
3768 struct kmem_cache *s;
3769 void *ret;
3770
3771 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3772 ret = kmalloc_large_node(size, flags, node);
3773
3774 trace_kmalloc_node(_RET_IP_, ret,
3775 size, PAGE_SIZE << get_order(size),
3776 flags, node);
3777
3778 return ret;
3779 }
3780
3781 s = kmalloc_slab(size, flags);
3782
3783 if (unlikely(ZERO_OR_NULL_PTR(s)))
3784 return s;
3785
3786 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3787
3788 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3789
3790 kasan_kmalloc(s, ret, size, flags);
3791
3792 return ret;
3793 }
3794 EXPORT_SYMBOL(__kmalloc_node);
3795 #endif
3796
3797 #ifdef CONFIG_HARDENED_USERCOPY
3798 /*
3799 * Rejects objects that are incorrectly sized.
3800 *
3801 * Returns NULL if check passes, otherwise const char * to name of cache
3802 * to indicate an error.
3803 */
3804 const char *__check_heap_object(const void *ptr, unsigned long n,
3805 struct page *page)
3806 {
3807 struct kmem_cache *s;
3808 unsigned long offset;
3809 size_t object_size;
3810
3811 /* Find object and usable object size. */
3812 s = page->slab_cache;
3813 object_size = slab_ksize(s);
3814
3815 /* Reject impossible pointers. */
3816 if (ptr < page_address(page))
3817 return s->name;
3818
3819 /* Find offset within object. */
3820 offset = (ptr - page_address(page)) % s->size;
3821
3822 /* Adjust for redzone and reject if within the redzone. */
3823 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3824 if (offset < s->red_left_pad)
3825 return s->name;
3826 offset -= s->red_left_pad;
3827 }
3828
3829 /* Allow address range falling entirely within object size. */
3830 if (offset <= object_size && n <= object_size - offset)
3831 return NULL;
3832
3833 return s->name;
3834 }
3835 #endif /* CONFIG_HARDENED_USERCOPY */
3836
3837 static size_t __ksize(const void *object)
3838 {
3839 struct page *page;
3840
3841 if (unlikely(object == ZERO_SIZE_PTR))
3842 return 0;
3843
3844 page = virt_to_head_page(object);
3845
3846 if (unlikely(!PageSlab(page))) {
3847 WARN_ON(!PageCompound(page));
3848 return PAGE_SIZE << compound_order(page);
3849 }
3850
3851 return slab_ksize(page->slab_cache);
3852 }
3853
3854 size_t ksize(const void *object)
3855 {
3856 size_t size = __ksize(object);
3857 /* We assume that ksize callers could use whole allocated area,
3858 * so we need to unpoison this area.
3859 */
3860 kasan_unpoison_shadow(object, size);
3861 return size;
3862 }
3863 EXPORT_SYMBOL(ksize);
3864
3865 void kfree(const void *x)
3866 {
3867 struct page *page;
3868 void *object = (void *)x;
3869
3870 trace_kfree(_RET_IP_, x);
3871
3872 if (unlikely(ZERO_OR_NULL_PTR(x)))
3873 return;
3874
3875 page = virt_to_head_page(x);
3876 if (unlikely(!PageSlab(page))) {
3877 BUG_ON(!PageCompound(page));
3878 kfree_hook(x);
3879 __free_pages(page, compound_order(page));
3880 return;
3881 }
3882 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3883 }
3884 EXPORT_SYMBOL(kfree);
3885
3886 #define SHRINK_PROMOTE_MAX 32
3887
3888 /*
3889 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3890 * up most to the head of the partial lists. New allocations will then
3891 * fill those up and thus they can be removed from the partial lists.
3892 *
3893 * The slabs with the least items are placed last. This results in them
3894 * being allocated from last increasing the chance that the last objects
3895 * are freed in them.
3896 */
3897 int __kmem_cache_shrink(struct kmem_cache *s)
3898 {
3899 int node;
3900 int i;
3901 struct kmem_cache_node *n;
3902 struct page *page;
3903 struct page *t;
3904 struct list_head discard;
3905 struct list_head promote[SHRINK_PROMOTE_MAX];
3906 unsigned long flags;
3907 int ret = 0;
3908
3909 flush_all(s);
3910 for_each_kmem_cache_node(s, node, n) {
3911 INIT_LIST_HEAD(&discard);
3912 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3913 INIT_LIST_HEAD(promote + i);
3914
3915 spin_lock_irqsave(&n->list_lock, flags);
3916
3917 /*
3918 * Build lists of slabs to discard or promote.
3919 *
3920 * Note that concurrent frees may occur while we hold the
3921 * list_lock. page->inuse here is the upper limit.
3922 */
3923 list_for_each_entry_safe(page, t, &n->partial, lru) {
3924 int free = page->objects - page->inuse;
3925
3926 /* Do not reread page->inuse */
3927 barrier();
3928
3929 /* We do not keep full slabs on the list */
3930 BUG_ON(free <= 0);
3931
3932 if (free == page->objects) {
3933 list_move(&page->lru, &discard);
3934 n->nr_partial--;
3935 } else if (free <= SHRINK_PROMOTE_MAX)
3936 list_move(&page->lru, promote + free - 1);
3937 }
3938
3939 /*
3940 * Promote the slabs filled up most to the head of the
3941 * partial list.
3942 */
3943 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3944 list_splice(promote + i, &n->partial);
3945
3946 spin_unlock_irqrestore(&n->list_lock, flags);
3947
3948 /* Release empty slabs */
3949 list_for_each_entry_safe(page, t, &discard, lru)
3950 discard_slab(s, page);
3951
3952 if (slabs_node(s, node))
3953 ret = 1;
3954 }
3955
3956 return ret;
3957 }
3958
3959 #ifdef CONFIG_MEMCG
3960 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3961 {
3962 /*
3963 * Called with all the locks held after a sched RCU grace period.
3964 * Even if @s becomes empty after shrinking, we can't know that @s
3965 * doesn't have allocations already in-flight and thus can't
3966 * destroy @s until the associated memcg is released.
3967 *
3968 * However, let's remove the sysfs files for empty caches here.
3969 * Each cache has a lot of interface files which aren't
3970 * particularly useful for empty draining caches; otherwise, we can
3971 * easily end up with millions of unnecessary sysfs files on
3972 * systems which have a lot of memory and transient cgroups.
3973 */
3974 if (!__kmem_cache_shrink(s))
3975 sysfs_slab_remove(s);
3976 }
3977
3978 void __kmemcg_cache_deactivate(struct kmem_cache *s)
3979 {
3980 /*
3981 * Disable empty slabs caching. Used to avoid pinning offline
3982 * memory cgroups by kmem pages that can be freed.
3983 */
3984 s->cpu_partial = 0;
3985 s->min_partial = 0;
3986
3987 /*
3988 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
3989 * we have to make sure the change is visible before shrinking.
3990 */
3991 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
3992 }
3993 #endif
3994
3995 static int slab_mem_going_offline_callback(void *arg)
3996 {
3997 struct kmem_cache *s;
3998
3999 mutex_lock(&slab_mutex);
4000 list_for_each_entry(s, &slab_caches, list)
4001 __kmem_cache_shrink(s);
4002 mutex_unlock(&slab_mutex);
4003
4004 return 0;
4005 }
4006
4007 static void slab_mem_offline_callback(void *arg)
4008 {
4009 struct kmem_cache_node *n;
4010 struct kmem_cache *s;
4011 struct memory_notify *marg = arg;
4012 int offline_node;
4013
4014 offline_node = marg->status_change_nid_normal;
4015
4016 /*
4017 * If the node still has available memory. we need kmem_cache_node
4018 * for it yet.
4019 */
4020 if (offline_node < 0)
4021 return;
4022
4023 mutex_lock(&slab_mutex);
4024 list_for_each_entry(s, &slab_caches, list) {
4025 n = get_node(s, offline_node);
4026 if (n) {
4027 /*
4028 * if n->nr_slabs > 0, slabs still exist on the node
4029 * that is going down. We were unable to free them,
4030 * and offline_pages() function shouldn't call this
4031 * callback. So, we must fail.
4032 */
4033 BUG_ON(slabs_node(s, offline_node));
4034
4035 s->node[offline_node] = NULL;
4036 kmem_cache_free(kmem_cache_node, n);
4037 }
4038 }
4039 mutex_unlock(&slab_mutex);
4040 }
4041
4042 static int slab_mem_going_online_callback(void *arg)
4043 {
4044 struct kmem_cache_node *n;
4045 struct kmem_cache *s;
4046 struct memory_notify *marg = arg;
4047 int nid = marg->status_change_nid_normal;
4048 int ret = 0;
4049
4050 /*
4051 * If the node's memory is already available, then kmem_cache_node is
4052 * already created. Nothing to do.
4053 */
4054 if (nid < 0)
4055 return 0;
4056
4057 /*
4058 * We are bringing a node online. No memory is available yet. We must
4059 * allocate a kmem_cache_node structure in order to bring the node
4060 * online.
4061 */
4062 mutex_lock(&slab_mutex);
4063 list_for_each_entry(s, &slab_caches, list) {
4064 /*
4065 * XXX: kmem_cache_alloc_node will fallback to other nodes
4066 * since memory is not yet available from the node that
4067 * is brought up.
4068 */
4069 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4070 if (!n) {
4071 ret = -ENOMEM;
4072 goto out;
4073 }
4074 init_kmem_cache_node(n);
4075 s->node[nid] = n;
4076 }
4077 out:
4078 mutex_unlock(&slab_mutex);
4079 return ret;
4080 }
4081
4082 static int slab_memory_callback(struct notifier_block *self,
4083 unsigned long action, void *arg)
4084 {
4085 int ret = 0;
4086
4087 switch (action) {
4088 case MEM_GOING_ONLINE:
4089 ret = slab_mem_going_online_callback(arg);
4090 break;
4091 case MEM_GOING_OFFLINE:
4092 ret = slab_mem_going_offline_callback(arg);
4093 break;
4094 case MEM_OFFLINE:
4095 case MEM_CANCEL_ONLINE:
4096 slab_mem_offline_callback(arg);
4097 break;
4098 case MEM_ONLINE:
4099 case MEM_CANCEL_OFFLINE:
4100 break;
4101 }
4102 if (ret)
4103 ret = notifier_from_errno(ret);
4104 else
4105 ret = NOTIFY_OK;
4106 return ret;
4107 }
4108
4109 static struct notifier_block slab_memory_callback_nb = {
4110 .notifier_call = slab_memory_callback,
4111 .priority = SLAB_CALLBACK_PRI,
4112 };
4113
4114 /********************************************************************
4115 * Basic setup of slabs
4116 *******************************************************************/
4117
4118 /*
4119 * Used for early kmem_cache structures that were allocated using
4120 * the page allocator. Allocate them properly then fix up the pointers
4121 * that may be pointing to the wrong kmem_cache structure.
4122 */
4123
4124 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4125 {
4126 int node;
4127 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4128 struct kmem_cache_node *n;
4129
4130 memcpy(s, static_cache, kmem_cache->object_size);
4131
4132 /*
4133 * This runs very early, and only the boot processor is supposed to be
4134 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4135 * IPIs around.
4136 */
4137 __flush_cpu_slab(s, smp_processor_id());
4138 for_each_kmem_cache_node(s, node, n) {
4139 struct page *p;
4140
4141 list_for_each_entry(p, &n->partial, lru)
4142 p->slab_cache = s;
4143
4144 #ifdef CONFIG_SLUB_DEBUG
4145 list_for_each_entry(p, &n->full, lru)
4146 p->slab_cache = s;
4147 #endif
4148 }
4149 slab_init_memcg_params(s);
4150 list_add(&s->list, &slab_caches);
4151 memcg_link_cache(s);
4152 return s;
4153 }
4154
4155 void __init kmem_cache_init(void)
4156 {
4157 static __initdata struct kmem_cache boot_kmem_cache,
4158 boot_kmem_cache_node;
4159
4160 if (debug_guardpage_minorder())
4161 slub_max_order = 0;
4162
4163 kmem_cache_node = &boot_kmem_cache_node;
4164 kmem_cache = &boot_kmem_cache;
4165
4166 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4167 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4168
4169 register_hotmemory_notifier(&slab_memory_callback_nb);
4170
4171 /* Able to allocate the per node structures */
4172 slab_state = PARTIAL;
4173
4174 create_boot_cache(kmem_cache, "kmem_cache",
4175 offsetof(struct kmem_cache, node) +
4176 nr_node_ids * sizeof(struct kmem_cache_node *),
4177 SLAB_HWCACHE_ALIGN);
4178
4179 kmem_cache = bootstrap(&boot_kmem_cache);
4180
4181 /*
4182 * Allocate kmem_cache_node properly from the kmem_cache slab.
4183 * kmem_cache_node is separately allocated so no need to
4184 * update any list pointers.
4185 */
4186 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4187
4188 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4189 setup_kmalloc_cache_index_table();
4190 create_kmalloc_caches(0);
4191
4192 /* Setup random freelists for each cache */
4193 init_freelist_randomization();
4194
4195 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4196 slub_cpu_dead);
4197
4198 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4199 cache_line_size(),
4200 slub_min_order, slub_max_order, slub_min_objects,
4201 nr_cpu_ids, nr_node_ids);
4202 }
4203
4204 void __init kmem_cache_init_late(void)
4205 {
4206 }
4207
4208 struct kmem_cache *
4209 __kmem_cache_alias(const char *name, size_t size, size_t align,
4210 unsigned long flags, void (*ctor)(void *))
4211 {
4212 struct kmem_cache *s, *c;
4213
4214 s = find_mergeable(size, align, flags, name, ctor);
4215 if (s) {
4216 s->refcount++;
4217
4218 /*
4219 * Adjust the object sizes so that we clear
4220 * the complete object on kzalloc.
4221 */
4222 s->object_size = max(s->object_size, (int)size);
4223 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4224
4225 for_each_memcg_cache(c, s) {
4226 c->object_size = s->object_size;
4227 c->inuse = max_t(int, c->inuse,
4228 ALIGN(size, sizeof(void *)));
4229 }
4230
4231 if (sysfs_slab_alias(s, name)) {
4232 s->refcount--;
4233 s = NULL;
4234 }
4235 }
4236
4237 return s;
4238 }
4239
4240 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4241 {
4242 int err;
4243
4244 err = kmem_cache_open(s, flags);
4245 if (err)
4246 return err;
4247
4248 /* Mutex is not taken during early boot */
4249 if (slab_state <= UP)
4250 return 0;
4251
4252 memcg_propagate_slab_attrs(s);
4253 err = sysfs_slab_add(s);
4254 if (err)
4255 __kmem_cache_release(s);
4256
4257 return err;
4258 }
4259
4260 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4261 {
4262 struct kmem_cache *s;
4263 void *ret;
4264
4265 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4266 return kmalloc_large(size, gfpflags);
4267
4268 s = kmalloc_slab(size, gfpflags);
4269
4270 if (unlikely(ZERO_OR_NULL_PTR(s)))
4271 return s;
4272
4273 ret = slab_alloc(s, gfpflags, caller);
4274
4275 /* Honor the call site pointer we received. */
4276 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4277
4278 return ret;
4279 }
4280
4281 #ifdef CONFIG_NUMA
4282 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4283 int node, unsigned long caller)
4284 {
4285 struct kmem_cache *s;
4286 void *ret;
4287
4288 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4289 ret = kmalloc_large_node(size, gfpflags, node);
4290
4291 trace_kmalloc_node(caller, ret,
4292 size, PAGE_SIZE << get_order(size),
4293 gfpflags, node);
4294
4295 return ret;
4296 }
4297
4298 s = kmalloc_slab(size, gfpflags);
4299
4300 if (unlikely(ZERO_OR_NULL_PTR(s)))
4301 return s;
4302
4303 ret = slab_alloc_node(s, gfpflags, node, caller);
4304
4305 /* Honor the call site pointer we received. */
4306 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4307
4308 return ret;
4309 }
4310 #endif
4311
4312 #ifdef CONFIG_SYSFS
4313 static int count_inuse(struct page *page)
4314 {
4315 return page->inuse;
4316 }
4317
4318 static int count_total(struct page *page)
4319 {
4320 return page->objects;
4321 }
4322 #endif
4323
4324 #ifdef CONFIG_SLUB_DEBUG
4325 static int validate_slab(struct kmem_cache *s, struct page *page,
4326 unsigned long *map)
4327 {
4328 void *p;
4329 void *addr = page_address(page);
4330
4331 if (!check_slab(s, page) ||
4332 !on_freelist(s, page, NULL))
4333 return 0;
4334
4335 /* Now we know that a valid freelist exists */
4336 bitmap_zero(map, page->objects);
4337
4338 get_map(s, page, map);
4339 for_each_object(p, s, addr, page->objects) {
4340 if (test_bit(slab_index(p, s, addr), map))
4341 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4342 return 0;
4343 }
4344
4345 for_each_object(p, s, addr, page->objects)
4346 if (!test_bit(slab_index(p, s, addr), map))
4347 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4348 return 0;
4349 return 1;
4350 }
4351
4352 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4353 unsigned long *map)
4354 {
4355 slab_lock(page);
4356 validate_slab(s, page, map);
4357 slab_unlock(page);
4358 }
4359
4360 static int validate_slab_node(struct kmem_cache *s,
4361 struct kmem_cache_node *n, unsigned long *map)
4362 {
4363 unsigned long count = 0;
4364 struct page *page;
4365 unsigned long flags;
4366
4367 spin_lock_irqsave(&n->list_lock, flags);
4368
4369 list_for_each_entry(page, &n->partial, lru) {
4370 validate_slab_slab(s, page, map);
4371 count++;
4372 }
4373 if (count != n->nr_partial)
4374 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4375 s->name, count, n->nr_partial);
4376
4377 if (!(s->flags & SLAB_STORE_USER))
4378 goto out;
4379
4380 list_for_each_entry(page, &n->full, lru) {
4381 validate_slab_slab(s, page, map);
4382 count++;
4383 }
4384 if (count != atomic_long_read(&n->nr_slabs))
4385 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4386 s->name, count, atomic_long_read(&n->nr_slabs));
4387
4388 out:
4389 spin_unlock_irqrestore(&n->list_lock, flags);
4390 return count;
4391 }
4392
4393 static long validate_slab_cache(struct kmem_cache *s)
4394 {
4395 int node;
4396 unsigned long count = 0;
4397 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4398 sizeof(unsigned long), GFP_KERNEL);
4399 struct kmem_cache_node *n;
4400
4401 if (!map)
4402 return -ENOMEM;
4403
4404 flush_all(s);
4405 for_each_kmem_cache_node(s, node, n)
4406 count += validate_slab_node(s, n, map);
4407 kfree(map);
4408 return count;
4409 }
4410 /*
4411 * Generate lists of code addresses where slabcache objects are allocated
4412 * and freed.
4413 */
4414
4415 struct location {
4416 unsigned long count;
4417 unsigned long addr;
4418 long long sum_time;
4419 long min_time;
4420 long max_time;
4421 long min_pid;
4422 long max_pid;
4423 DECLARE_BITMAP(cpus, NR_CPUS);
4424 nodemask_t nodes;
4425 };
4426
4427 struct loc_track {
4428 unsigned long max;
4429 unsigned long count;
4430 struct location *loc;
4431 };
4432
4433 static void free_loc_track(struct loc_track *t)
4434 {
4435 if (t->max)
4436 free_pages((unsigned long)t->loc,
4437 get_order(sizeof(struct location) * t->max));
4438 }
4439
4440 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4441 {
4442 struct location *l;
4443 int order;
4444
4445 order = get_order(sizeof(struct location) * max);
4446
4447 l = (void *)__get_free_pages(flags, order);
4448 if (!l)
4449 return 0;
4450
4451 if (t->count) {
4452 memcpy(l, t->loc, sizeof(struct location) * t->count);
4453 free_loc_track(t);
4454 }
4455 t->max = max;
4456 t->loc = l;
4457 return 1;
4458 }
4459
4460 static int add_location(struct loc_track *t, struct kmem_cache *s,
4461 const struct track *track)
4462 {
4463 long start, end, pos;
4464 struct location *l;
4465 unsigned long caddr;
4466 unsigned long age = jiffies - track->when;
4467
4468 start = -1;
4469 end = t->count;
4470
4471 for ( ; ; ) {
4472 pos = start + (end - start + 1) / 2;
4473
4474 /*
4475 * There is nothing at "end". If we end up there
4476 * we need to add something to before end.
4477 */
4478 if (pos == end)
4479 break;
4480
4481 caddr = t->loc[pos].addr;
4482 if (track->addr == caddr) {
4483
4484 l = &t->loc[pos];
4485 l->count++;
4486 if (track->when) {
4487 l->sum_time += age;
4488 if (age < l->min_time)
4489 l->min_time = age;
4490 if (age > l->max_time)
4491 l->max_time = age;
4492
4493 if (track->pid < l->min_pid)
4494 l->min_pid = track->pid;
4495 if (track->pid > l->max_pid)
4496 l->max_pid = track->pid;
4497
4498 cpumask_set_cpu(track->cpu,
4499 to_cpumask(l->cpus));
4500 }
4501 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4502 return 1;
4503 }
4504
4505 if (track->addr < caddr)
4506 end = pos;
4507 else
4508 start = pos;
4509 }
4510
4511 /*
4512 * Not found. Insert new tracking element.
4513 */
4514 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4515 return 0;
4516
4517 l = t->loc + pos;
4518 if (pos < t->count)
4519 memmove(l + 1, l,
4520 (t->count - pos) * sizeof(struct location));
4521 t->count++;
4522 l->count = 1;
4523 l->addr = track->addr;
4524 l->sum_time = age;
4525 l->min_time = age;
4526 l->max_time = age;
4527 l->min_pid = track->pid;
4528 l->max_pid = track->pid;
4529 cpumask_clear(to_cpumask(l->cpus));
4530 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4531 nodes_clear(l->nodes);
4532 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4533 return 1;
4534 }
4535
4536 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4537 struct page *page, enum track_item alloc,
4538 unsigned long *map)
4539 {
4540 void *addr = page_address(page);
4541 void *p;
4542
4543 bitmap_zero(map, page->objects);
4544 get_map(s, page, map);
4545
4546 for_each_object(p, s, addr, page->objects)
4547 if (!test_bit(slab_index(p, s, addr), map))
4548 add_location(t, s, get_track(s, p, alloc));
4549 }
4550
4551 static int list_locations(struct kmem_cache *s, char *buf,
4552 enum track_item alloc)
4553 {
4554 int len = 0;
4555 unsigned long i;
4556 struct loc_track t = { 0, 0, NULL };
4557 int node;
4558 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4559 sizeof(unsigned long), GFP_KERNEL);
4560 struct kmem_cache_node *n;
4561
4562 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4563 GFP_TEMPORARY)) {
4564 kfree(map);
4565 return sprintf(buf, "Out of memory\n");
4566 }
4567 /* Push back cpu slabs */
4568 flush_all(s);
4569
4570 for_each_kmem_cache_node(s, node, n) {
4571 unsigned long flags;
4572 struct page *page;
4573
4574 if (!atomic_long_read(&n->nr_slabs))
4575 continue;
4576
4577 spin_lock_irqsave(&n->list_lock, flags);
4578 list_for_each_entry(page, &n->partial, lru)
4579 process_slab(&t, s, page, alloc, map);
4580 list_for_each_entry(page, &n->full, lru)
4581 process_slab(&t, s, page, alloc, map);
4582 spin_unlock_irqrestore(&n->list_lock, flags);
4583 }
4584
4585 for (i = 0; i < t.count; i++) {
4586 struct location *l = &t.loc[i];
4587
4588 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4589 break;
4590 len += sprintf(buf + len, "%7ld ", l->count);
4591
4592 if (l->addr)
4593 len += sprintf(buf + len, "%pS", (void *)l->addr);
4594 else
4595 len += sprintf(buf + len, "<not-available>");
4596
4597 if (l->sum_time != l->min_time) {
4598 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4599 l->min_time,
4600 (long)div_u64(l->sum_time, l->count),
4601 l->max_time);
4602 } else
4603 len += sprintf(buf + len, " age=%ld",
4604 l->min_time);
4605
4606 if (l->min_pid != l->max_pid)
4607 len += sprintf(buf + len, " pid=%ld-%ld",
4608 l->min_pid, l->max_pid);
4609 else
4610 len += sprintf(buf + len, " pid=%ld",
4611 l->min_pid);
4612
4613 if (num_online_cpus() > 1 &&
4614 !cpumask_empty(to_cpumask(l->cpus)) &&
4615 len < PAGE_SIZE - 60)
4616 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4617 " cpus=%*pbl",
4618 cpumask_pr_args(to_cpumask(l->cpus)));
4619
4620 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4621 len < PAGE_SIZE - 60)
4622 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4623 " nodes=%*pbl",
4624 nodemask_pr_args(&l->nodes));
4625
4626 len += sprintf(buf + len, "\n");
4627 }
4628
4629 free_loc_track(&t);
4630 kfree(map);
4631 if (!t.count)
4632 len += sprintf(buf, "No data\n");
4633 return len;
4634 }
4635 #endif
4636
4637 #ifdef SLUB_RESILIENCY_TEST
4638 static void __init resiliency_test(void)
4639 {
4640 u8 *p;
4641
4642 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4643
4644 pr_err("SLUB resiliency testing\n");
4645 pr_err("-----------------------\n");
4646 pr_err("A. Corruption after allocation\n");
4647
4648 p = kzalloc(16, GFP_KERNEL);
4649 p[16] = 0x12;
4650 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4651 p + 16);
4652
4653 validate_slab_cache(kmalloc_caches[4]);
4654
4655 /* Hmmm... The next two are dangerous */
4656 p = kzalloc(32, GFP_KERNEL);
4657 p[32 + sizeof(void *)] = 0x34;
4658 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4659 p);
4660 pr_err("If allocated object is overwritten then not detectable\n\n");
4661
4662 validate_slab_cache(kmalloc_caches[5]);
4663 p = kzalloc(64, GFP_KERNEL);
4664 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4665 *p = 0x56;
4666 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4667 p);
4668 pr_err("If allocated object is overwritten then not detectable\n\n");
4669 validate_slab_cache(kmalloc_caches[6]);
4670
4671 pr_err("\nB. Corruption after free\n");
4672 p = kzalloc(128, GFP_KERNEL);
4673 kfree(p);
4674 *p = 0x78;
4675 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4676 validate_slab_cache(kmalloc_caches[7]);
4677
4678 p = kzalloc(256, GFP_KERNEL);
4679 kfree(p);
4680 p[50] = 0x9a;
4681 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4682 validate_slab_cache(kmalloc_caches[8]);
4683
4684 p = kzalloc(512, GFP_KERNEL);
4685 kfree(p);
4686 p[512] = 0xab;
4687 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4688 validate_slab_cache(kmalloc_caches[9]);
4689 }
4690 #else
4691 #ifdef CONFIG_SYSFS
4692 static void resiliency_test(void) {};
4693 #endif
4694 #endif
4695
4696 #ifdef CONFIG_SYSFS
4697 enum slab_stat_type {
4698 SL_ALL, /* All slabs */
4699 SL_PARTIAL, /* Only partially allocated slabs */
4700 SL_CPU, /* Only slabs used for cpu caches */
4701 SL_OBJECTS, /* Determine allocated objects not slabs */
4702 SL_TOTAL /* Determine object capacity not slabs */
4703 };
4704
4705 #define SO_ALL (1 << SL_ALL)
4706 #define SO_PARTIAL (1 << SL_PARTIAL)
4707 #define SO_CPU (1 << SL_CPU)
4708 #define SO_OBJECTS (1 << SL_OBJECTS)
4709 #define SO_TOTAL (1 << SL_TOTAL)
4710
4711 #ifdef CONFIG_MEMCG
4712 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4713
4714 static int __init setup_slub_memcg_sysfs(char *str)
4715 {
4716 int v;
4717
4718 if (get_option(&str, &v) > 0)
4719 memcg_sysfs_enabled = v;
4720
4721 return 1;
4722 }
4723
4724 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4725 #endif
4726
4727 static ssize_t show_slab_objects(struct kmem_cache *s,
4728 char *buf, unsigned long flags)
4729 {
4730 unsigned long total = 0;
4731 int node;
4732 int x;
4733 unsigned long *nodes;
4734
4735 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4736 if (!nodes)
4737 return -ENOMEM;
4738
4739 if (flags & SO_CPU) {
4740 int cpu;
4741
4742 for_each_possible_cpu(cpu) {
4743 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4744 cpu);
4745 int node;
4746 struct page *page;
4747
4748 page = READ_ONCE(c->page);
4749 if (!page)
4750 continue;
4751
4752 node = page_to_nid(page);
4753 if (flags & SO_TOTAL)
4754 x = page->objects;
4755 else if (flags & SO_OBJECTS)
4756 x = page->inuse;
4757 else
4758 x = 1;
4759
4760 total += x;
4761 nodes[node] += x;
4762
4763 page = READ_ONCE(c->partial);
4764 if (page) {
4765 node = page_to_nid(page);
4766 if (flags & SO_TOTAL)
4767 WARN_ON_ONCE(1);
4768 else if (flags & SO_OBJECTS)
4769 WARN_ON_ONCE(1);
4770 else
4771 x = page->pages;
4772 total += x;
4773 nodes[node] += x;
4774 }
4775 }
4776 }
4777
4778 get_online_mems();
4779 #ifdef CONFIG_SLUB_DEBUG
4780 if (flags & SO_ALL) {
4781 struct kmem_cache_node *n;
4782
4783 for_each_kmem_cache_node(s, node, n) {
4784
4785 if (flags & SO_TOTAL)
4786 x = atomic_long_read(&n->total_objects);
4787 else if (flags & SO_OBJECTS)
4788 x = atomic_long_read(&n->total_objects) -
4789 count_partial(n, count_free);
4790 else
4791 x = atomic_long_read(&n->nr_slabs);
4792 total += x;
4793 nodes[node] += x;
4794 }
4795
4796 } else
4797 #endif
4798 if (flags & SO_PARTIAL) {
4799 struct kmem_cache_node *n;
4800
4801 for_each_kmem_cache_node(s, node, n) {
4802 if (flags & SO_TOTAL)
4803 x = count_partial(n, count_total);
4804 else if (flags & SO_OBJECTS)
4805 x = count_partial(n, count_inuse);
4806 else
4807 x = n->nr_partial;
4808 total += x;
4809 nodes[node] += x;
4810 }
4811 }
4812 x = sprintf(buf, "%lu", total);
4813 #ifdef CONFIG_NUMA
4814 for (node = 0; node < nr_node_ids; node++)
4815 if (nodes[node])
4816 x += sprintf(buf + x, " N%d=%lu",
4817 node, nodes[node]);
4818 #endif
4819 put_online_mems();
4820 kfree(nodes);
4821 return x + sprintf(buf + x, "\n");
4822 }
4823
4824 #ifdef CONFIG_SLUB_DEBUG
4825 static int any_slab_objects(struct kmem_cache *s)
4826 {
4827 int node;
4828 struct kmem_cache_node *n;
4829
4830 for_each_kmem_cache_node(s, node, n)
4831 if (atomic_long_read(&n->total_objects))
4832 return 1;
4833
4834 return 0;
4835 }
4836 #endif
4837
4838 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4839 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4840
4841 struct slab_attribute {
4842 struct attribute attr;
4843 ssize_t (*show)(struct kmem_cache *s, char *buf);
4844 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4845 };
4846
4847 #define SLAB_ATTR_RO(_name) \
4848 static struct slab_attribute _name##_attr = \
4849 __ATTR(_name, 0400, _name##_show, NULL)
4850
4851 #define SLAB_ATTR(_name) \
4852 static struct slab_attribute _name##_attr = \
4853 __ATTR(_name, 0600, _name##_show, _name##_store)
4854
4855 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4856 {
4857 return sprintf(buf, "%d\n", s->size);
4858 }
4859 SLAB_ATTR_RO(slab_size);
4860
4861 static ssize_t align_show(struct kmem_cache *s, char *buf)
4862 {
4863 return sprintf(buf, "%d\n", s->align);
4864 }
4865 SLAB_ATTR_RO(align);
4866
4867 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4868 {
4869 return sprintf(buf, "%d\n", s->object_size);
4870 }
4871 SLAB_ATTR_RO(object_size);
4872
4873 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4874 {
4875 return sprintf(buf, "%d\n", oo_objects(s->oo));
4876 }
4877 SLAB_ATTR_RO(objs_per_slab);
4878
4879 static ssize_t order_store(struct kmem_cache *s,
4880 const char *buf, size_t length)
4881 {
4882 unsigned long order;
4883 int err;
4884
4885 err = kstrtoul(buf, 10, &order);
4886 if (err)
4887 return err;
4888
4889 if (order > slub_max_order || order < slub_min_order)
4890 return -EINVAL;
4891
4892 calculate_sizes(s, order);
4893 return length;
4894 }
4895
4896 static ssize_t order_show(struct kmem_cache *s, char *buf)
4897 {
4898 return sprintf(buf, "%d\n", oo_order(s->oo));
4899 }
4900 SLAB_ATTR(order);
4901
4902 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4903 {
4904 return sprintf(buf, "%lu\n", s->min_partial);
4905 }
4906
4907 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4908 size_t length)
4909 {
4910 unsigned long min;
4911 int err;
4912
4913 err = kstrtoul(buf, 10, &min);
4914 if (err)
4915 return err;
4916
4917 set_min_partial(s, min);
4918 return length;
4919 }
4920 SLAB_ATTR(min_partial);
4921
4922 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4923 {
4924 return sprintf(buf, "%u\n", s->cpu_partial);
4925 }
4926
4927 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4928 size_t length)
4929 {
4930 unsigned long objects;
4931 int err;
4932
4933 err = kstrtoul(buf, 10, &objects);
4934 if (err)
4935 return err;
4936 if (objects && !kmem_cache_has_cpu_partial(s))
4937 return -EINVAL;
4938
4939 s->cpu_partial = objects;
4940 flush_all(s);
4941 return length;
4942 }
4943 SLAB_ATTR(cpu_partial);
4944
4945 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4946 {
4947 if (!s->ctor)
4948 return 0;
4949 return sprintf(buf, "%pS\n", s->ctor);
4950 }
4951 SLAB_ATTR_RO(ctor);
4952
4953 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4954 {
4955 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4956 }
4957 SLAB_ATTR_RO(aliases);
4958
4959 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4960 {
4961 return show_slab_objects(s, buf, SO_PARTIAL);
4962 }
4963 SLAB_ATTR_RO(partial);
4964
4965 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4966 {
4967 return show_slab_objects(s, buf, SO_CPU);
4968 }
4969 SLAB_ATTR_RO(cpu_slabs);
4970
4971 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4972 {
4973 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4974 }
4975 SLAB_ATTR_RO(objects);
4976
4977 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4978 {
4979 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4980 }
4981 SLAB_ATTR_RO(objects_partial);
4982
4983 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4984 {
4985 int objects = 0;
4986 int pages = 0;
4987 int cpu;
4988 int len;
4989
4990 for_each_online_cpu(cpu) {
4991 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4992
4993 if (page) {
4994 pages += page->pages;
4995 objects += page->pobjects;
4996 }
4997 }
4998
4999 len = sprintf(buf, "%d(%d)", objects, pages);
5000
5001 #ifdef CONFIG_SMP
5002 for_each_online_cpu(cpu) {
5003 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
5004
5005 if (page && len < PAGE_SIZE - 20)
5006 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5007 page->pobjects, page->pages);
5008 }
5009 #endif
5010 return len + sprintf(buf + len, "\n");
5011 }
5012 SLAB_ATTR_RO(slabs_cpu_partial);
5013
5014 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5015 {
5016 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5017 }
5018
5019 static ssize_t reclaim_account_store(struct kmem_cache *s,
5020 const char *buf, size_t length)
5021 {
5022 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5023 if (buf[0] == '1')
5024 s->flags |= SLAB_RECLAIM_ACCOUNT;
5025 return length;
5026 }
5027 SLAB_ATTR(reclaim_account);
5028
5029 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5030 {
5031 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5032 }
5033 SLAB_ATTR_RO(hwcache_align);
5034
5035 #ifdef CONFIG_ZONE_DMA
5036 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5037 {
5038 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5039 }
5040 SLAB_ATTR_RO(cache_dma);
5041 #endif
5042
5043 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5044 {
5045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5046 }
5047 SLAB_ATTR_RO(destroy_by_rcu);
5048
5049 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5050 {
5051 return sprintf(buf, "%d\n", s->reserved);
5052 }
5053 SLAB_ATTR_RO(reserved);
5054
5055 #ifdef CONFIG_SLUB_DEBUG
5056 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5057 {
5058 return show_slab_objects(s, buf, SO_ALL);
5059 }
5060 SLAB_ATTR_RO(slabs);
5061
5062 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5063 {
5064 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5065 }
5066 SLAB_ATTR_RO(total_objects);
5067
5068 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5069 {
5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5071 }
5072
5073 static ssize_t sanity_checks_store(struct kmem_cache *s,
5074 const char *buf, size_t length)
5075 {
5076 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5077 if (buf[0] == '1') {
5078 s->flags &= ~__CMPXCHG_DOUBLE;
5079 s->flags |= SLAB_CONSISTENCY_CHECKS;
5080 }
5081 return length;
5082 }
5083 SLAB_ATTR(sanity_checks);
5084
5085 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5086 {
5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5088 }
5089
5090 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5091 size_t length)
5092 {
5093 /*
5094 * Tracing a merged cache is going to give confusing results
5095 * as well as cause other issues like converting a mergeable
5096 * cache into an umergeable one.
5097 */
5098 if (s->refcount > 1)
5099 return -EINVAL;
5100
5101 s->flags &= ~SLAB_TRACE;
5102 if (buf[0] == '1') {
5103 s->flags &= ~__CMPXCHG_DOUBLE;
5104 s->flags |= SLAB_TRACE;
5105 }
5106 return length;
5107 }
5108 SLAB_ATTR(trace);
5109
5110 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5111 {
5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5113 }
5114
5115 static ssize_t red_zone_store(struct kmem_cache *s,
5116 const char *buf, size_t length)
5117 {
5118 if (any_slab_objects(s))
5119 return -EBUSY;
5120
5121 s->flags &= ~SLAB_RED_ZONE;
5122 if (buf[0] == '1') {
5123 s->flags |= SLAB_RED_ZONE;
5124 }
5125 calculate_sizes(s, -1);
5126 return length;
5127 }
5128 SLAB_ATTR(red_zone);
5129
5130 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5131 {
5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5133 }
5134
5135 static ssize_t poison_store(struct kmem_cache *s,
5136 const char *buf, size_t length)
5137 {
5138 if (any_slab_objects(s))
5139 return -EBUSY;
5140
5141 s->flags &= ~SLAB_POISON;
5142 if (buf[0] == '1') {
5143 s->flags |= SLAB_POISON;
5144 }
5145 calculate_sizes(s, -1);
5146 return length;
5147 }
5148 SLAB_ATTR(poison);
5149
5150 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5151 {
5152 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5153 }
5154
5155 static ssize_t store_user_store(struct kmem_cache *s,
5156 const char *buf, size_t length)
5157 {
5158 if (any_slab_objects(s))
5159 return -EBUSY;
5160
5161 s->flags &= ~SLAB_STORE_USER;
5162 if (buf[0] == '1') {
5163 s->flags &= ~__CMPXCHG_DOUBLE;
5164 s->flags |= SLAB_STORE_USER;
5165 }
5166 calculate_sizes(s, -1);
5167 return length;
5168 }
5169 SLAB_ATTR(store_user);
5170
5171 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5172 {
5173 return 0;
5174 }
5175
5176 static ssize_t validate_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178 {
5179 int ret = -EINVAL;
5180
5181 if (buf[0] == '1') {
5182 ret = validate_slab_cache(s);
5183 if (ret >= 0)
5184 ret = length;
5185 }
5186 return ret;
5187 }
5188 SLAB_ATTR(validate);
5189
5190 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5191 {
5192 if (!(s->flags & SLAB_STORE_USER))
5193 return -ENOSYS;
5194 return list_locations(s, buf, TRACK_ALLOC);
5195 }
5196 SLAB_ATTR_RO(alloc_calls);
5197
5198 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5199 {
5200 if (!(s->flags & SLAB_STORE_USER))
5201 return -ENOSYS;
5202 return list_locations(s, buf, TRACK_FREE);
5203 }
5204 SLAB_ATTR_RO(free_calls);
5205 #endif /* CONFIG_SLUB_DEBUG */
5206
5207 #ifdef CONFIG_FAILSLAB
5208 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5209 {
5210 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5211 }
5212
5213 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5214 size_t length)
5215 {
5216 if (s->refcount > 1)
5217 return -EINVAL;
5218
5219 s->flags &= ~SLAB_FAILSLAB;
5220 if (buf[0] == '1')
5221 s->flags |= SLAB_FAILSLAB;
5222 return length;
5223 }
5224 SLAB_ATTR(failslab);
5225 #endif
5226
5227 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5228 {
5229 return 0;
5230 }
5231
5232 static ssize_t shrink_store(struct kmem_cache *s,
5233 const char *buf, size_t length)
5234 {
5235 if (buf[0] == '1')
5236 kmem_cache_shrink(s);
5237 else
5238 return -EINVAL;
5239 return length;
5240 }
5241 SLAB_ATTR(shrink);
5242
5243 #ifdef CONFIG_NUMA
5244 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5245 {
5246 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5247 }
5248
5249 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5250 const char *buf, size_t length)
5251 {
5252 unsigned long ratio;
5253 int err;
5254
5255 err = kstrtoul(buf, 10, &ratio);
5256 if (err)
5257 return err;
5258
5259 if (ratio <= 100)
5260 s->remote_node_defrag_ratio = ratio * 10;
5261
5262 return length;
5263 }
5264 SLAB_ATTR(remote_node_defrag_ratio);
5265 #endif
5266
5267 #ifdef CONFIG_SLUB_STATS
5268 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5269 {
5270 unsigned long sum = 0;
5271 int cpu;
5272 int len;
5273 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5274
5275 if (!data)
5276 return -ENOMEM;
5277
5278 for_each_online_cpu(cpu) {
5279 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5280
5281 data[cpu] = x;
5282 sum += x;
5283 }
5284
5285 len = sprintf(buf, "%lu", sum);
5286
5287 #ifdef CONFIG_SMP
5288 for_each_online_cpu(cpu) {
5289 if (data[cpu] && len < PAGE_SIZE - 20)
5290 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5291 }
5292 #endif
5293 kfree(data);
5294 return len + sprintf(buf + len, "\n");
5295 }
5296
5297 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5298 {
5299 int cpu;
5300
5301 for_each_online_cpu(cpu)
5302 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5303 }
5304
5305 #define STAT_ATTR(si, text) \
5306 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5307 { \
5308 return show_stat(s, buf, si); \
5309 } \
5310 static ssize_t text##_store(struct kmem_cache *s, \
5311 const char *buf, size_t length) \
5312 { \
5313 if (buf[0] != '0') \
5314 return -EINVAL; \
5315 clear_stat(s, si); \
5316 return length; \
5317 } \
5318 SLAB_ATTR(text); \
5319
5320 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5321 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5322 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5323 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5324 STAT_ATTR(FREE_FROZEN, free_frozen);
5325 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5326 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5327 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5328 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5329 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5330 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5331 STAT_ATTR(FREE_SLAB, free_slab);
5332 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5333 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5334 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5335 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5336 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5337 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5338 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5339 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5340 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5341 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5342 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5343 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5344 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5345 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5346 #endif
5347
5348 static struct attribute *slab_attrs[] = {
5349 &slab_size_attr.attr,
5350 &object_size_attr.attr,
5351 &objs_per_slab_attr.attr,
5352 &order_attr.attr,
5353 &min_partial_attr.attr,
5354 &cpu_partial_attr.attr,
5355 &objects_attr.attr,
5356 &objects_partial_attr.attr,
5357 &partial_attr.attr,
5358 &cpu_slabs_attr.attr,
5359 &ctor_attr.attr,
5360 &aliases_attr.attr,
5361 &align_attr.attr,
5362 &hwcache_align_attr.attr,
5363 &reclaim_account_attr.attr,
5364 &destroy_by_rcu_attr.attr,
5365 &shrink_attr.attr,
5366 &reserved_attr.attr,
5367 &slabs_cpu_partial_attr.attr,
5368 #ifdef CONFIG_SLUB_DEBUG
5369 &total_objects_attr.attr,
5370 &slabs_attr.attr,
5371 &sanity_checks_attr.attr,
5372 &trace_attr.attr,
5373 &red_zone_attr.attr,
5374 &poison_attr.attr,
5375 &store_user_attr.attr,
5376 &validate_attr.attr,
5377 &alloc_calls_attr.attr,
5378 &free_calls_attr.attr,
5379 #endif
5380 #ifdef CONFIG_ZONE_DMA
5381 &cache_dma_attr.attr,
5382 #endif
5383 #ifdef CONFIG_NUMA
5384 &remote_node_defrag_ratio_attr.attr,
5385 #endif
5386 #ifdef CONFIG_SLUB_STATS
5387 &alloc_fastpath_attr.attr,
5388 &alloc_slowpath_attr.attr,
5389 &free_fastpath_attr.attr,
5390 &free_slowpath_attr.attr,
5391 &free_frozen_attr.attr,
5392 &free_add_partial_attr.attr,
5393 &free_remove_partial_attr.attr,
5394 &alloc_from_partial_attr.attr,
5395 &alloc_slab_attr.attr,
5396 &alloc_refill_attr.attr,
5397 &alloc_node_mismatch_attr.attr,
5398 &free_slab_attr.attr,
5399 &cpuslab_flush_attr.attr,
5400 &deactivate_full_attr.attr,
5401 &deactivate_empty_attr.attr,
5402 &deactivate_to_head_attr.attr,
5403 &deactivate_to_tail_attr.attr,
5404 &deactivate_remote_frees_attr.attr,
5405 &deactivate_bypass_attr.attr,
5406 &order_fallback_attr.attr,
5407 &cmpxchg_double_fail_attr.attr,
5408 &cmpxchg_double_cpu_fail_attr.attr,
5409 &cpu_partial_alloc_attr.attr,
5410 &cpu_partial_free_attr.attr,
5411 &cpu_partial_node_attr.attr,
5412 &cpu_partial_drain_attr.attr,
5413 #endif
5414 #ifdef CONFIG_FAILSLAB
5415 &failslab_attr.attr,
5416 #endif
5417
5418 NULL
5419 };
5420
5421 static struct attribute_group slab_attr_group = {
5422 .attrs = slab_attrs,
5423 };
5424
5425 static ssize_t slab_attr_show(struct kobject *kobj,
5426 struct attribute *attr,
5427 char *buf)
5428 {
5429 struct slab_attribute *attribute;
5430 struct kmem_cache *s;
5431 int err;
5432
5433 attribute = to_slab_attr(attr);
5434 s = to_slab(kobj);
5435
5436 if (!attribute->show)
5437 return -EIO;
5438
5439 err = attribute->show(s, buf);
5440
5441 return err;
5442 }
5443
5444 static ssize_t slab_attr_store(struct kobject *kobj,
5445 struct attribute *attr,
5446 const char *buf, size_t len)
5447 {
5448 struct slab_attribute *attribute;
5449 struct kmem_cache *s;
5450 int err;
5451
5452 attribute = to_slab_attr(attr);
5453 s = to_slab(kobj);
5454
5455 if (!attribute->store)
5456 return -EIO;
5457
5458 err = attribute->store(s, buf, len);
5459 #ifdef CONFIG_MEMCG
5460 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5461 struct kmem_cache *c;
5462
5463 mutex_lock(&slab_mutex);
5464 if (s->max_attr_size < len)
5465 s->max_attr_size = len;
5466
5467 /*
5468 * This is a best effort propagation, so this function's return
5469 * value will be determined by the parent cache only. This is
5470 * basically because not all attributes will have a well
5471 * defined semantics for rollbacks - most of the actions will
5472 * have permanent effects.
5473 *
5474 * Returning the error value of any of the children that fail
5475 * is not 100 % defined, in the sense that users seeing the
5476 * error code won't be able to know anything about the state of
5477 * the cache.
5478 *
5479 * Only returning the error code for the parent cache at least
5480 * has well defined semantics. The cache being written to
5481 * directly either failed or succeeded, in which case we loop
5482 * through the descendants with best-effort propagation.
5483 */
5484 for_each_memcg_cache(c, s)
5485 attribute->store(c, buf, len);
5486 mutex_unlock(&slab_mutex);
5487 }
5488 #endif
5489 return err;
5490 }
5491
5492 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5493 {
5494 #ifdef CONFIG_MEMCG
5495 int i;
5496 char *buffer = NULL;
5497 struct kmem_cache *root_cache;
5498
5499 if (is_root_cache(s))
5500 return;
5501
5502 root_cache = s->memcg_params.root_cache;
5503
5504 /*
5505 * This mean this cache had no attribute written. Therefore, no point
5506 * in copying default values around
5507 */
5508 if (!root_cache->max_attr_size)
5509 return;
5510
5511 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5512 char mbuf[64];
5513 char *buf;
5514 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5515
5516 if (!attr || !attr->store || !attr->show)
5517 continue;
5518
5519 /*
5520 * It is really bad that we have to allocate here, so we will
5521 * do it only as a fallback. If we actually allocate, though,
5522 * we can just use the allocated buffer until the end.
5523 *
5524 * Most of the slub attributes will tend to be very small in
5525 * size, but sysfs allows buffers up to a page, so they can
5526 * theoretically happen.
5527 */
5528 if (buffer)
5529 buf = buffer;
5530 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5531 buf = mbuf;
5532 else {
5533 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5534 if (WARN_ON(!buffer))
5535 continue;
5536 buf = buffer;
5537 }
5538
5539 attr->show(root_cache, buf);
5540 attr->store(s, buf, strlen(buf));
5541 }
5542
5543 if (buffer)
5544 free_page((unsigned long)buffer);
5545 #endif
5546 }
5547
5548 static void kmem_cache_release(struct kobject *k)
5549 {
5550 slab_kmem_cache_release(to_slab(k));
5551 }
5552
5553 static const struct sysfs_ops slab_sysfs_ops = {
5554 .show = slab_attr_show,
5555 .store = slab_attr_store,
5556 };
5557
5558 static struct kobj_type slab_ktype = {
5559 .sysfs_ops = &slab_sysfs_ops,
5560 .release = kmem_cache_release,
5561 };
5562
5563 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5564 {
5565 struct kobj_type *ktype = get_ktype(kobj);
5566
5567 if (ktype == &slab_ktype)
5568 return 1;
5569 return 0;
5570 }
5571
5572 static const struct kset_uevent_ops slab_uevent_ops = {
5573 .filter = uevent_filter,
5574 };
5575
5576 static struct kset *slab_kset;
5577
5578 static inline struct kset *cache_kset(struct kmem_cache *s)
5579 {
5580 #ifdef CONFIG_MEMCG
5581 if (!is_root_cache(s))
5582 return s->memcg_params.root_cache->memcg_kset;
5583 #endif
5584 return slab_kset;
5585 }
5586
5587 #define ID_STR_LENGTH 64
5588
5589 /* Create a unique string id for a slab cache:
5590 *
5591 * Format :[flags-]size
5592 */
5593 static char *create_unique_id(struct kmem_cache *s)
5594 {
5595 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5596 char *p = name;
5597
5598 BUG_ON(!name);
5599
5600 *p++ = ':';
5601 /*
5602 * First flags affecting slabcache operations. We will only
5603 * get here for aliasable slabs so we do not need to support
5604 * too many flags. The flags here must cover all flags that
5605 * are matched during merging to guarantee that the id is
5606 * unique.
5607 */
5608 if (s->flags & SLAB_CACHE_DMA)
5609 *p++ = 'd';
5610 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5611 *p++ = 'a';
5612 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5613 *p++ = 'F';
5614 if (!(s->flags & SLAB_NOTRACK))
5615 *p++ = 't';
5616 if (s->flags & SLAB_ACCOUNT)
5617 *p++ = 'A';
5618 if (p != name + 1)
5619 *p++ = '-';
5620 p += sprintf(p, "%07d", s->size);
5621
5622 BUG_ON(p > name + ID_STR_LENGTH - 1);
5623 return name;
5624 }
5625
5626 static int sysfs_slab_add(struct kmem_cache *s)
5627 {
5628 int err;
5629 const char *name;
5630 struct kset *kset = cache_kset(s);
5631 int unmergeable = slab_unmergeable(s);
5632
5633 if (!kset) {
5634 kobject_init(&s->kobj, &slab_ktype);
5635 return 0;
5636 }
5637
5638 if (unmergeable) {
5639 /*
5640 * Slabcache can never be merged so we can use the name proper.
5641 * This is typically the case for debug situations. In that
5642 * case we can catch duplicate names easily.
5643 */
5644 sysfs_remove_link(&slab_kset->kobj, s->name);
5645 name = s->name;
5646 } else {
5647 /*
5648 * Create a unique name for the slab as a target
5649 * for the symlinks.
5650 */
5651 name = create_unique_id(s);
5652 }
5653
5654 s->kobj.kset = kset;
5655 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5656 if (err)
5657 goto out;
5658
5659 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5660 if (err)
5661 goto out_del_kobj;
5662
5663 #ifdef CONFIG_MEMCG
5664 if (is_root_cache(s) && memcg_sysfs_enabled) {
5665 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5666 if (!s->memcg_kset) {
5667 err = -ENOMEM;
5668 goto out_del_kobj;
5669 }
5670 }
5671 #endif
5672
5673 kobject_uevent(&s->kobj, KOBJ_ADD);
5674 if (!unmergeable) {
5675 /* Setup first alias */
5676 sysfs_slab_alias(s, s->name);
5677 }
5678 out:
5679 if (!unmergeable)
5680 kfree(name);
5681 return err;
5682 out_del_kobj:
5683 kobject_del(&s->kobj);
5684 goto out;
5685 }
5686
5687 static void sysfs_slab_remove(struct kmem_cache *s)
5688 {
5689 if (slab_state < FULL)
5690 /*
5691 * Sysfs has not been setup yet so no need to remove the
5692 * cache from sysfs.
5693 */
5694 return;
5695
5696 if (!s->kobj.state_in_sysfs)
5697 /*
5698 * For a memcg cache, this may be called during
5699 * deactivation and again on shutdown. Remove only once.
5700 * A cache is never shut down before deactivation is
5701 * complete, so no need to worry about synchronization.
5702 */
5703 return;
5704
5705 #ifdef CONFIG_MEMCG
5706 kset_unregister(s->memcg_kset);
5707 #endif
5708 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5709 kobject_del(&s->kobj);
5710 }
5711
5712 void sysfs_slab_release(struct kmem_cache *s)
5713 {
5714 if (slab_state >= FULL)
5715 kobject_put(&s->kobj);
5716 }
5717
5718 /*
5719 * Need to buffer aliases during bootup until sysfs becomes
5720 * available lest we lose that information.
5721 */
5722 struct saved_alias {
5723 struct kmem_cache *s;
5724 const char *name;
5725 struct saved_alias *next;
5726 };
5727
5728 static struct saved_alias *alias_list;
5729
5730 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5731 {
5732 struct saved_alias *al;
5733
5734 if (slab_state == FULL) {
5735 /*
5736 * If we have a leftover link then remove it.
5737 */
5738 sysfs_remove_link(&slab_kset->kobj, name);
5739 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5740 }
5741
5742 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5743 if (!al)
5744 return -ENOMEM;
5745
5746 al->s = s;
5747 al->name = name;
5748 al->next = alias_list;
5749 alias_list = al;
5750 return 0;
5751 }
5752
5753 static int __init slab_sysfs_init(void)
5754 {
5755 struct kmem_cache *s;
5756 int err;
5757
5758 mutex_lock(&slab_mutex);
5759
5760 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5761 if (!slab_kset) {
5762 mutex_unlock(&slab_mutex);
5763 pr_err("Cannot register slab subsystem.\n");
5764 return -ENOSYS;
5765 }
5766
5767 slab_state = FULL;
5768
5769 list_for_each_entry(s, &slab_caches, list) {
5770 err = sysfs_slab_add(s);
5771 if (err)
5772 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5773 s->name);
5774 }
5775
5776 while (alias_list) {
5777 struct saved_alias *al = alias_list;
5778
5779 alias_list = alias_list->next;
5780 err = sysfs_slab_alias(al->s, al->name);
5781 if (err)
5782 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5783 al->name);
5784 kfree(al);
5785 }
5786
5787 mutex_unlock(&slab_mutex);
5788 resiliency_test();
5789 return 0;
5790 }
5791
5792 __initcall(slab_sysfs_init);
5793 #endif /* CONFIG_SYSFS */
5794
5795 /*
5796 * The /proc/slabinfo ABI
5797 */
5798 #ifdef CONFIG_SLABINFO
5799 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5800 {
5801 unsigned long nr_slabs = 0;
5802 unsigned long nr_objs = 0;
5803 unsigned long nr_free = 0;
5804 int node;
5805 struct kmem_cache_node *n;
5806
5807 for_each_kmem_cache_node(s, node, n) {
5808 nr_slabs += node_nr_slabs(n);
5809 nr_objs += node_nr_objs(n);
5810 nr_free += count_partial(n, count_free);
5811 }
5812
5813 sinfo->active_objs = nr_objs - nr_free;
5814 sinfo->num_objs = nr_objs;
5815 sinfo->active_slabs = nr_slabs;
5816 sinfo->num_slabs = nr_slabs;
5817 sinfo->objects_per_slab = oo_objects(s->oo);
5818 sinfo->cache_order = oo_order(s->oo);
5819 }
5820
5821 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5822 {
5823 }
5824
5825 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5826 size_t count, loff_t *ppos)
5827 {
5828 return -EIO;
5829 }
5830 #endif /* CONFIG_SLABINFO */