]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
mm/sparse: cleanup the code surrounding memory_present()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 p += s->red_left_pad;
134
135 return p;
136 }
137
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142 #else
143 return false;
144 #endif
145 }
146
147 /*
148 * Issues still to be resolved:
149 *
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
152 * - Variable sizing of the per node arrays
153 */
154
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160
161 /*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
165 #define MIN_PARTIAL 5
166
167 /*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
170 * sort the partial list by the number of objects in use.
171 */
172 #define MAX_PARTIAL 10
173
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_STORE_USER)
176
177 /*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
185 /*
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
189 */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191
192 #define OO_SHIFT 16
193 #define OO_MASK ((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
195
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201
202 /*
203 * Tracking user of a slab.
204 */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 unsigned long addr; /* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210 #endif
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214 };
215
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 return ptr;
265 #endif
266 }
267
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271 {
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274 }
275
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 return freelist_dereference(s, object + s->offset);
279 }
280
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 prefetch(object + s->offset);
284 }
285
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 unsigned long freepointer_addr;
289 void *p;
290
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s, object);
293
294 freepointer_addr = (unsigned long)object + s->offset;
295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
297 }
298
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306
307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
315
316 static inline unsigned int order_objects(unsigned int order, unsigned int size)
317 {
318 return ((unsigned int)PAGE_SIZE << order) / size;
319 }
320
321 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
322 unsigned int size)
323 {
324 struct kmem_cache_order_objects x = {
325 (order << OO_SHIFT) + order_objects(order, size)
326 };
327
328 return x;
329 }
330
331 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
332 {
333 return x.x >> OO_SHIFT;
334 }
335
336 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
337 {
338 return x.x & OO_MASK;
339 }
340
341 /*
342 * Per slab locking using the pagelock
343 */
344 static __always_inline void slab_lock(struct page *page)
345 {
346 VM_BUG_ON_PAGE(PageTail(page), page);
347 bit_spin_lock(PG_locked, &page->flags);
348 }
349
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 VM_BUG_ON_PAGE(PageTail(page), page);
353 __bit_spin_unlock(PG_locked, &page->flags);
354 }
355
356 /* Interrupts must be disabled (for the fallback code to work right) */
357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361 {
362 VM_BUG_ON(!irqs_disabled());
363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
365 if (s->flags & __CMPXCHG_DOUBLE) {
366 if (cmpxchg_double(&page->freelist, &page->counters,
367 freelist_old, counters_old,
368 freelist_new, counters_new))
369 return true;
370 } else
371 #endif
372 {
373 slab_lock(page);
374 if (page->freelist == freelist_old &&
375 page->counters == counters_old) {
376 page->freelist = freelist_new;
377 page->counters = counters_new;
378 slab_unlock(page);
379 return true;
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387 #ifdef SLUB_DEBUG_CMPXCHG
388 pr_info("%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390
391 return false;
392 }
393
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 if (s->flags & __CMPXCHG_DOUBLE) {
402 if (cmpxchg_double(&page->freelist, &page->counters,
403 freelist_old, counters_old,
404 freelist_new, counters_new))
405 return true;
406 } else
407 #endif
408 {
409 unsigned long flags;
410
411 local_irq_save(flags);
412 slab_lock(page);
413 if (page->freelist == freelist_old &&
414 page->counters == counters_old) {
415 page->freelist = freelist_new;
416 page->counters = counters_new;
417 slab_unlock(page);
418 local_irq_restore(flags);
419 return true;
420 }
421 slab_unlock(page);
422 local_irq_restore(flags);
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428 #ifdef SLUB_DEBUG_CMPXCHG
429 pr_info("%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431
432 return false;
433 }
434
435 #ifdef CONFIG_SLUB_DEBUG
436 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437 static DEFINE_SPINLOCK(object_map_lock);
438
439 /*
440 * Determine a map of object in use on a page.
441 *
442 * Node listlock must be held to guarantee that the page does
443 * not vanish from under us.
444 */
445 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
446 __acquires(&object_map_lock)
447 {
448 void *p;
449 void *addr = page_address(page);
450
451 VM_BUG_ON(!irqs_disabled());
452
453 spin_lock(&object_map_lock);
454
455 bitmap_zero(object_map, page->objects);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(__obj_to_index(s, addr, p), object_map);
459
460 return object_map;
461 }
462
463 static void put_map(unsigned long *map) __releases(&object_map_lock)
464 {
465 VM_BUG_ON(map != object_map);
466 spin_unlock(&object_map_lock);
467 }
468
469 static inline unsigned int size_from_object(struct kmem_cache *s)
470 {
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475 }
476
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483 }
484
485 /*
486 * Debug settings:
487 */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493
494 static char *slub_debug_string;
495 static int disable_higher_order_debug;
496
497 /*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503 static inline void metadata_access_enable(void)
504 {
505 kasan_disable_current();
506 }
507
508 static inline void metadata_access_disable(void)
509 {
510 kasan_enable_current();
511 }
512
513 /*
514 * Object debugging
515 */
516
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520 {
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = kasan_reset_tag(object);
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
531 return 0;
532 }
533
534 return 1;
535 }
536
537 static void print_section(char *level, char *text, u8 *addr,
538 unsigned int length)
539 {
540 metadata_access_enable();
541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
542 length, 1);
543 metadata_access_disable();
544 }
545
546 /*
547 * See comment in calculate_sizes().
548 */
549 static inline bool freeptr_outside_object(struct kmem_cache *s)
550 {
551 return s->offset >= s->inuse;
552 }
553
554 /*
555 * Return offset of the end of info block which is inuse + free pointer if
556 * not overlapping with object.
557 */
558 static inline unsigned int get_info_end(struct kmem_cache *s)
559 {
560 if (freeptr_outside_object(s))
561 return s->inuse + sizeof(void *);
562 else
563 return s->inuse;
564 }
565
566 static struct track *get_track(struct kmem_cache *s, void *object,
567 enum track_item alloc)
568 {
569 struct track *p;
570
571 p = object + get_info_end(s);
572
573 return p + alloc;
574 }
575
576 static void set_track(struct kmem_cache *s, void *object,
577 enum track_item alloc, unsigned long addr)
578 {
579 struct track *p = get_track(s, object, alloc);
580
581 if (addr) {
582 #ifdef CONFIG_STACKTRACE
583 unsigned int nr_entries;
584
585 metadata_access_enable();
586 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
587 metadata_access_disable();
588
589 if (nr_entries < TRACK_ADDRS_COUNT)
590 p->addrs[nr_entries] = 0;
591 #endif
592 p->addr = addr;
593 p->cpu = smp_processor_id();
594 p->pid = current->pid;
595 p->when = jiffies;
596 } else {
597 memset(p, 0, sizeof(struct track));
598 }
599 }
600
601 static void init_tracking(struct kmem_cache *s, void *object)
602 {
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
606 set_track(s, object, TRACK_FREE, 0UL);
607 set_track(s, object, TRACK_ALLOC, 0UL);
608 }
609
610 static void print_track(const char *s, struct track *t, unsigned long pr_time)
611 {
612 if (!t->addr)
613 return;
614
615 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
616 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
617 #ifdef CONFIG_STACKTRACE
618 {
619 int i;
620 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 if (t->addrs[i])
622 pr_err("\t%pS\n", (void *)t->addrs[i]);
623 else
624 break;
625 }
626 #endif
627 }
628
629 void print_tracking(struct kmem_cache *s, void *object)
630 {
631 unsigned long pr_time = jiffies;
632 if (!(s->flags & SLAB_STORE_USER))
633 return;
634
635 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
637 }
638
639 static void print_page_info(struct page *page)
640 {
641 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
642 page, page->objects, page->inuse, page->freelist, page->flags);
643
644 }
645
646 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647 {
648 struct va_format vaf;
649 va_list args;
650
651 va_start(args, fmt);
652 vaf.fmt = fmt;
653 vaf.va = &args;
654 pr_err("=============================================================================\n");
655 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
656 pr_err("-----------------------------------------------------------------------------\n\n");
657
658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 va_end(args);
660 }
661
662 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663 {
664 struct va_format vaf;
665 va_list args;
666
667 va_start(args, fmt);
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 pr_err("FIX %s: %pV\n", s->name, &vaf);
671 va_end(args);
672 }
673
674 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
675 void *freelist, void *nextfree)
676 {
677 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
678 !check_valid_pointer(s, page, nextfree)) {
679 object_err(s, page, freelist, "Freechain corrupt");
680 freelist = NULL;
681 slab_fix(s, "Isolate corrupted freechain");
682 return true;
683 }
684
685 return false;
686 }
687
688 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
689 {
690 unsigned int off; /* Offset of last byte */
691 u8 *addr = page_address(page);
692
693 print_tracking(s, p);
694
695 print_page_info(page);
696
697 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 p, p - addr, get_freepointer(s, p));
699
700 if (s->flags & SLAB_RED_ZONE)
701 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 s->red_left_pad);
703 else if (p > addr + 16)
704 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
705
706 print_section(KERN_ERR, "Object ", p,
707 min_t(unsigned int, s->object_size, PAGE_SIZE));
708 if (s->flags & SLAB_RED_ZONE)
709 print_section(KERN_ERR, "Redzone ", p + s->object_size,
710 s->inuse - s->object_size);
711
712 off = get_info_end(s);
713
714 if (s->flags & SLAB_STORE_USER)
715 off += 2 * sizeof(struct track);
716
717 off += kasan_metadata_size(s);
718
719 if (off != size_from_object(s))
720 /* Beginning of the filler is the free pointer */
721 print_section(KERN_ERR, "Padding ", p + off,
722 size_from_object(s) - off);
723
724 dump_stack();
725 }
726
727 void object_err(struct kmem_cache *s, struct page *page,
728 u8 *object, char *reason)
729 {
730 slab_bug(s, "%s", reason);
731 print_trailer(s, page, object);
732 }
733
734 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
735 const char *fmt, ...)
736 {
737 va_list args;
738 char buf[100];
739
740 va_start(args, fmt);
741 vsnprintf(buf, sizeof(buf), fmt, args);
742 va_end(args);
743 slab_bug(s, "%s", buf);
744 print_page_info(page);
745 dump_stack();
746 }
747
748 static void init_object(struct kmem_cache *s, void *object, u8 val)
749 {
750 u8 *p = object;
751
752 if (s->flags & SLAB_RED_ZONE)
753 memset(p - s->red_left_pad, val, s->red_left_pad);
754
755 if (s->flags & __OBJECT_POISON) {
756 memset(p, POISON_FREE, s->object_size - 1);
757 p[s->object_size - 1] = POISON_END;
758 }
759
760 if (s->flags & SLAB_RED_ZONE)
761 memset(p + s->object_size, val, s->inuse - s->object_size);
762 }
763
764 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 void *from, void *to)
766 {
767 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 memset(from, data, to - from);
769 }
770
771 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 u8 *object, char *what,
773 u8 *start, unsigned int value, unsigned int bytes)
774 {
775 u8 *fault;
776 u8 *end;
777 u8 *addr = page_address(page);
778
779 metadata_access_enable();
780 fault = memchr_inv(start, value, bytes);
781 metadata_access_disable();
782 if (!fault)
783 return 1;
784
785 end = start + bytes;
786 while (end > fault && end[-1] == value)
787 end--;
788
789 slab_bug(s, "%s overwritten", what);
790 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 fault, end - 1, fault - addr,
792 fault[0], value);
793 print_trailer(s, page, object);
794
795 restore_bytes(s, what, value, fault, end);
796 return 0;
797 }
798
799 /*
800 * Object layout:
801 *
802 * object address
803 * Bytes of the object to be managed.
804 * If the freepointer may overlay the object then the free
805 * pointer is at the middle of the object.
806 *
807 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
808 * 0xa5 (POISON_END)
809 *
810 * object + s->object_size
811 * Padding to reach word boundary. This is also used for Redzoning.
812 * Padding is extended by another word if Redzoning is enabled and
813 * object_size == inuse.
814 *
815 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816 * 0xcc (RED_ACTIVE) for objects in use.
817 *
818 * object + s->inuse
819 * Meta data starts here.
820 *
821 * A. Free pointer (if we cannot overwrite object on free)
822 * B. Tracking data for SLAB_STORE_USER
823 * C. Padding to reach required alignment boundary or at mininum
824 * one word if debugging is on to be able to detect writes
825 * before the word boundary.
826 *
827 * Padding is done using 0x5a (POISON_INUSE)
828 *
829 * object + s->size
830 * Nothing is used beyond s->size.
831 *
832 * If slabcaches are merged then the object_size and inuse boundaries are mostly
833 * ignored. And therefore no slab options that rely on these boundaries
834 * may be used with merged slabcaches.
835 */
836
837 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838 {
839 unsigned long off = get_info_end(s); /* The end of info */
840
841 if (s->flags & SLAB_STORE_USER)
842 /* We also have user information there */
843 off += 2 * sizeof(struct track);
844
845 off += kasan_metadata_size(s);
846
847 if (size_from_object(s) == off)
848 return 1;
849
850 return check_bytes_and_report(s, page, p, "Object padding",
851 p + off, POISON_INUSE, size_from_object(s) - off);
852 }
853
854 /* Check the pad bytes at the end of a slab page */
855 static int slab_pad_check(struct kmem_cache *s, struct page *page)
856 {
857 u8 *start;
858 u8 *fault;
859 u8 *end;
860 u8 *pad;
861 int length;
862 int remainder;
863
864 if (!(s->flags & SLAB_POISON))
865 return 1;
866
867 start = page_address(page);
868 length = page_size(page);
869 end = start + length;
870 remainder = length % s->size;
871 if (!remainder)
872 return 1;
873
874 pad = end - remainder;
875 metadata_access_enable();
876 fault = memchr_inv(pad, POISON_INUSE, remainder);
877 metadata_access_disable();
878 if (!fault)
879 return 1;
880 while (end > fault && end[-1] == POISON_INUSE)
881 end--;
882
883 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 fault, end - 1, fault - start);
885 print_section(KERN_ERR, "Padding ", pad, remainder);
886
887 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
888 return 0;
889 }
890
891 static int check_object(struct kmem_cache *s, struct page *page,
892 void *object, u8 val)
893 {
894 u8 *p = object;
895 u8 *endobject = object + s->object_size;
896
897 if (s->flags & SLAB_RED_ZONE) {
898 if (!check_bytes_and_report(s, page, object, "Redzone",
899 object - s->red_left_pad, val, s->red_left_pad))
900 return 0;
901
902 if (!check_bytes_and_report(s, page, object, "Redzone",
903 endobject, val, s->inuse - s->object_size))
904 return 0;
905 } else {
906 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
907 check_bytes_and_report(s, page, p, "Alignment padding",
908 endobject, POISON_INUSE,
909 s->inuse - s->object_size);
910 }
911 }
912
913 if (s->flags & SLAB_POISON) {
914 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
915 (!check_bytes_and_report(s, page, p, "Poison", p,
916 POISON_FREE, s->object_size - 1) ||
917 !check_bytes_and_report(s, page, p, "Poison",
918 p + s->object_size - 1, POISON_END, 1)))
919 return 0;
920 /*
921 * check_pad_bytes cleans up on its own.
922 */
923 check_pad_bytes(s, page, p);
924 }
925
926 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
927 /*
928 * Object and freepointer overlap. Cannot check
929 * freepointer while object is allocated.
930 */
931 return 1;
932
933 /* Check free pointer validity */
934 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 object_err(s, page, p, "Freepointer corrupt");
936 /*
937 * No choice but to zap it and thus lose the remainder
938 * of the free objects in this slab. May cause
939 * another error because the object count is now wrong.
940 */
941 set_freepointer(s, p, NULL);
942 return 0;
943 }
944 return 1;
945 }
946
947 static int check_slab(struct kmem_cache *s, struct page *page)
948 {
949 int maxobj;
950
951 VM_BUG_ON(!irqs_disabled());
952
953 if (!PageSlab(page)) {
954 slab_err(s, page, "Not a valid slab page");
955 return 0;
956 }
957
958 maxobj = order_objects(compound_order(page), s->size);
959 if (page->objects > maxobj) {
960 slab_err(s, page, "objects %u > max %u",
961 page->objects, maxobj);
962 return 0;
963 }
964 if (page->inuse > page->objects) {
965 slab_err(s, page, "inuse %u > max %u",
966 page->inuse, page->objects);
967 return 0;
968 }
969 /* Slab_pad_check fixes things up after itself */
970 slab_pad_check(s, page);
971 return 1;
972 }
973
974 /*
975 * Determine if a certain object on a page is on the freelist. Must hold the
976 * slab lock to guarantee that the chains are in a consistent state.
977 */
978 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979 {
980 int nr = 0;
981 void *fp;
982 void *object = NULL;
983 int max_objects;
984
985 fp = page->freelist;
986 while (fp && nr <= page->objects) {
987 if (fp == search)
988 return 1;
989 if (!check_valid_pointer(s, page, fp)) {
990 if (object) {
991 object_err(s, page, object,
992 "Freechain corrupt");
993 set_freepointer(s, object, NULL);
994 } else {
995 slab_err(s, page, "Freepointer corrupt");
996 page->freelist = NULL;
997 page->inuse = page->objects;
998 slab_fix(s, "Freelist cleared");
999 return 0;
1000 }
1001 break;
1002 }
1003 object = fp;
1004 fp = get_freepointer(s, object);
1005 nr++;
1006 }
1007
1008 max_objects = order_objects(compound_order(page), s->size);
1009 if (max_objects > MAX_OBJS_PER_PAGE)
1010 max_objects = MAX_OBJS_PER_PAGE;
1011
1012 if (page->objects != max_objects) {
1013 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 page->objects, max_objects);
1015 page->objects = max_objects;
1016 slab_fix(s, "Number of objects adjusted.");
1017 }
1018 if (page->inuse != page->objects - nr) {
1019 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 page->inuse, page->objects - nr);
1021 page->inuse = page->objects - nr;
1022 slab_fix(s, "Object count adjusted.");
1023 }
1024 return search == NULL;
1025 }
1026
1027 static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 int alloc)
1029 {
1030 if (s->flags & SLAB_TRACE) {
1031 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1032 s->name,
1033 alloc ? "alloc" : "free",
1034 object, page->inuse,
1035 page->freelist);
1036
1037 if (!alloc)
1038 print_section(KERN_INFO, "Object ", (void *)object,
1039 s->object_size);
1040
1041 dump_stack();
1042 }
1043 }
1044
1045 /*
1046 * Tracking of fully allocated slabs for debugging purposes.
1047 */
1048 static void add_full(struct kmem_cache *s,
1049 struct kmem_cache_node *n, struct page *page)
1050 {
1051 if (!(s->flags & SLAB_STORE_USER))
1052 return;
1053
1054 lockdep_assert_held(&n->list_lock);
1055 list_add(&page->slab_list, &n->full);
1056 }
1057
1058 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1059 {
1060 if (!(s->flags & SLAB_STORE_USER))
1061 return;
1062
1063 lockdep_assert_held(&n->list_lock);
1064 list_del(&page->slab_list);
1065 }
1066
1067 /* Tracking of the number of slabs for debugging purposes */
1068 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069 {
1070 struct kmem_cache_node *n = get_node(s, node);
1071
1072 return atomic_long_read(&n->nr_slabs);
1073 }
1074
1075 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076 {
1077 return atomic_long_read(&n->nr_slabs);
1078 }
1079
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1081 {
1082 struct kmem_cache_node *n = get_node(s, node);
1083
1084 /*
1085 * May be called early in order to allocate a slab for the
1086 * kmem_cache_node structure. Solve the chicken-egg
1087 * dilemma by deferring the increment of the count during
1088 * bootstrap (see early_kmem_cache_node_alloc).
1089 */
1090 if (likely(n)) {
1091 atomic_long_inc(&n->nr_slabs);
1092 atomic_long_add(objects, &n->total_objects);
1093 }
1094 }
1095 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1096 {
1097 struct kmem_cache_node *n = get_node(s, node);
1098
1099 atomic_long_dec(&n->nr_slabs);
1100 atomic_long_sub(objects, &n->total_objects);
1101 }
1102
1103 /* Object debug checks for alloc/free paths */
1104 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 void *object)
1106 {
1107 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1108 return;
1109
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 init_tracking(s, object);
1112 }
1113
1114 static
1115 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1116 {
1117 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1118 return;
1119
1120 metadata_access_enable();
1121 memset(addr, POISON_INUSE, page_size(page));
1122 metadata_access_disable();
1123 }
1124
1125 static inline int alloc_consistency_checks(struct kmem_cache *s,
1126 struct page *page, void *object)
1127 {
1128 if (!check_slab(s, page))
1129 return 0;
1130
1131 if (!check_valid_pointer(s, page, object)) {
1132 object_err(s, page, object, "Freelist Pointer check fails");
1133 return 0;
1134 }
1135
1136 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1137 return 0;
1138
1139 return 1;
1140 }
1141
1142 static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 struct page *page,
1144 void *object, unsigned long addr)
1145 {
1146 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1147 if (!alloc_consistency_checks(s, page, object))
1148 goto bad;
1149 }
1150
1151 /* Success perform special debug activities for allocs */
1152 if (s->flags & SLAB_STORE_USER)
1153 set_track(s, object, TRACK_ALLOC, addr);
1154 trace(s, page, object, 1);
1155 init_object(s, object, SLUB_RED_ACTIVE);
1156 return 1;
1157
1158 bad:
1159 if (PageSlab(page)) {
1160 /*
1161 * If this is a slab page then lets do the best we can
1162 * to avoid issues in the future. Marking all objects
1163 * as used avoids touching the remaining objects.
1164 */
1165 slab_fix(s, "Marking all objects used");
1166 page->inuse = page->objects;
1167 page->freelist = NULL;
1168 }
1169 return 0;
1170 }
1171
1172 static inline int free_consistency_checks(struct kmem_cache *s,
1173 struct page *page, void *object, unsigned long addr)
1174 {
1175 if (!check_valid_pointer(s, page, object)) {
1176 slab_err(s, page, "Invalid object pointer 0x%p", object);
1177 return 0;
1178 }
1179
1180 if (on_freelist(s, page, object)) {
1181 object_err(s, page, object, "Object already free");
1182 return 0;
1183 }
1184
1185 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1186 return 0;
1187
1188 if (unlikely(s != page->slab_cache)) {
1189 if (!PageSlab(page)) {
1190 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 object);
1192 } else if (!page->slab_cache) {
1193 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 object);
1195 dump_stack();
1196 } else
1197 object_err(s, page, object,
1198 "page slab pointer corrupt.");
1199 return 0;
1200 }
1201 return 1;
1202 }
1203
1204 /* Supports checking bulk free of a constructed freelist */
1205 static noinline int free_debug_processing(
1206 struct kmem_cache *s, struct page *page,
1207 void *head, void *tail, int bulk_cnt,
1208 unsigned long addr)
1209 {
1210 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 void *object = head;
1212 int cnt = 0;
1213 unsigned long flags;
1214 int ret = 0;
1215
1216 spin_lock_irqsave(&n->list_lock, flags);
1217 slab_lock(page);
1218
1219 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 if (!check_slab(s, page))
1221 goto out;
1222 }
1223
1224 next_object:
1225 cnt++;
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!free_consistency_checks(s, page, object, addr))
1229 goto out;
1230 }
1231
1232 if (s->flags & SLAB_STORE_USER)
1233 set_track(s, object, TRACK_FREE, addr);
1234 trace(s, page, object, 0);
1235 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1236 init_object(s, object, SLUB_RED_INACTIVE);
1237
1238 /* Reached end of constructed freelist yet? */
1239 if (object != tail) {
1240 object = get_freepointer(s, object);
1241 goto next_object;
1242 }
1243 ret = 1;
1244
1245 out:
1246 if (cnt != bulk_cnt)
1247 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 bulk_cnt, cnt);
1249
1250 slab_unlock(page);
1251 spin_unlock_irqrestore(&n->list_lock, flags);
1252 if (!ret)
1253 slab_fix(s, "Object at 0x%p not freed", object);
1254 return ret;
1255 }
1256
1257 /*
1258 * Parse a block of slub_debug options. Blocks are delimited by ';'
1259 *
1260 * @str: start of block
1261 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262 * @slabs: return start of list of slabs, or NULL when there's no list
1263 * @init: assume this is initial parsing and not per-kmem-create parsing
1264 *
1265 * returns the start of next block if there's any, or NULL
1266 */
1267 static char *
1268 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1269 {
1270 bool higher_order_disable = false;
1271
1272 /* Skip any completely empty blocks */
1273 while (*str && *str == ';')
1274 str++;
1275
1276 if (*str == ',') {
1277 /*
1278 * No options but restriction on slabs. This means full
1279 * debugging for slabs matching a pattern.
1280 */
1281 *flags = DEBUG_DEFAULT_FLAGS;
1282 goto check_slabs;
1283 }
1284 *flags = 0;
1285
1286 /* Determine which debug features should be switched on */
1287 for (; *str && *str != ',' && *str != ';'; str++) {
1288 switch (tolower(*str)) {
1289 case '-':
1290 *flags = 0;
1291 break;
1292 case 'f':
1293 *flags |= SLAB_CONSISTENCY_CHECKS;
1294 break;
1295 case 'z':
1296 *flags |= SLAB_RED_ZONE;
1297 break;
1298 case 'p':
1299 *flags |= SLAB_POISON;
1300 break;
1301 case 'u':
1302 *flags |= SLAB_STORE_USER;
1303 break;
1304 case 't':
1305 *flags |= SLAB_TRACE;
1306 break;
1307 case 'a':
1308 *flags |= SLAB_FAILSLAB;
1309 break;
1310 case 'o':
1311 /*
1312 * Avoid enabling debugging on caches if its minimum
1313 * order would increase as a result.
1314 */
1315 higher_order_disable = true;
1316 break;
1317 default:
1318 if (init)
1319 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1320 }
1321 }
1322 check_slabs:
1323 if (*str == ',')
1324 *slabs = ++str;
1325 else
1326 *slabs = NULL;
1327
1328 /* Skip over the slab list */
1329 while (*str && *str != ';')
1330 str++;
1331
1332 /* Skip any completely empty blocks */
1333 while (*str && *str == ';')
1334 str++;
1335
1336 if (init && higher_order_disable)
1337 disable_higher_order_debug = 1;
1338
1339 if (*str)
1340 return str;
1341 else
1342 return NULL;
1343 }
1344
1345 static int __init setup_slub_debug(char *str)
1346 {
1347 slab_flags_t flags;
1348 char *saved_str;
1349 char *slab_list;
1350 bool global_slub_debug_changed = false;
1351 bool slab_list_specified = false;
1352
1353 slub_debug = DEBUG_DEFAULT_FLAGS;
1354 if (*str++ != '=' || !*str)
1355 /*
1356 * No options specified. Switch on full debugging.
1357 */
1358 goto out;
1359
1360 saved_str = str;
1361 while (str) {
1362 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363
1364 if (!slab_list) {
1365 slub_debug = flags;
1366 global_slub_debug_changed = true;
1367 } else {
1368 slab_list_specified = true;
1369 }
1370 }
1371
1372 /*
1373 * For backwards compatibility, a single list of flags with list of
1374 * slabs means debugging is only enabled for those slabs, so the global
1375 * slub_debug should be 0. We can extended that to multiple lists as
1376 * long as there is no option specifying flags without a slab list.
1377 */
1378 if (slab_list_specified) {
1379 if (!global_slub_debug_changed)
1380 slub_debug = 0;
1381 slub_debug_string = saved_str;
1382 }
1383 out:
1384 if (slub_debug != 0 || slub_debug_string)
1385 static_branch_enable(&slub_debug_enabled);
1386 if ((static_branch_unlikely(&init_on_alloc) ||
1387 static_branch_unlikely(&init_on_free)) &&
1388 (slub_debug & SLAB_POISON))
1389 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1390 return 1;
1391 }
1392
1393 __setup("slub_debug", setup_slub_debug);
1394
1395 /*
1396 * kmem_cache_flags - apply debugging options to the cache
1397 * @object_size: the size of an object without meta data
1398 * @flags: flags to set
1399 * @name: name of the cache
1400 * @ctor: constructor function
1401 *
1402 * Debug option(s) are applied to @flags. In addition to the debug
1403 * option(s), if a slab name (or multiple) is specified i.e.
1404 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405 * then only the select slabs will receive the debug option(s).
1406 */
1407 slab_flags_t kmem_cache_flags(unsigned int object_size,
1408 slab_flags_t flags, const char *name,
1409 void (*ctor)(void *))
1410 {
1411 char *iter;
1412 size_t len;
1413 char *next_block;
1414 slab_flags_t block_flags;
1415
1416 /* If slub_debug = 0, it folds into the if conditional. */
1417 if (!slub_debug_string)
1418 return flags | slub_debug;
1419
1420 len = strlen(name);
1421 next_block = slub_debug_string;
1422 /* Go through all blocks of debug options, see if any matches our slab's name */
1423 while (next_block) {
1424 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1425 if (!iter)
1426 continue;
1427 /* Found a block that has a slab list, search it */
1428 while (*iter) {
1429 char *end, *glob;
1430 size_t cmplen;
1431
1432 end = strchrnul(iter, ',');
1433 if (next_block && next_block < end)
1434 end = next_block - 1;
1435
1436 glob = strnchr(iter, end - iter, '*');
1437 if (glob)
1438 cmplen = glob - iter;
1439 else
1440 cmplen = max_t(size_t, len, (end - iter));
1441
1442 if (!strncmp(name, iter, cmplen)) {
1443 flags |= block_flags;
1444 return flags;
1445 }
1446
1447 if (!*end || *end == ';')
1448 break;
1449 iter = end + 1;
1450 }
1451 }
1452
1453 return slub_debug;
1454 }
1455 #else /* !CONFIG_SLUB_DEBUG */
1456 static inline void setup_object_debug(struct kmem_cache *s,
1457 struct page *page, void *object) {}
1458 static inline
1459 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1460
1461 static inline int alloc_debug_processing(struct kmem_cache *s,
1462 struct page *page, void *object, unsigned long addr) { return 0; }
1463
1464 static inline int free_debug_processing(
1465 struct kmem_cache *s, struct page *page,
1466 void *head, void *tail, int bulk_cnt,
1467 unsigned long addr) { return 0; }
1468
1469 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1470 { return 1; }
1471 static inline int check_object(struct kmem_cache *s, struct page *page,
1472 void *object, u8 val) { return 1; }
1473 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1474 struct page *page) {}
1475 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1476 struct page *page) {}
1477 slab_flags_t kmem_cache_flags(unsigned int object_size,
1478 slab_flags_t flags, const char *name,
1479 void (*ctor)(void *))
1480 {
1481 return flags;
1482 }
1483 #define slub_debug 0
1484
1485 #define disable_higher_order_debug 0
1486
1487 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1488 { return 0; }
1489 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1490 { return 0; }
1491 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1492 int objects) {}
1493 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1494 int objects) {}
1495
1496 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1497 void *freelist, void *nextfree)
1498 {
1499 return false;
1500 }
1501 #endif /* CONFIG_SLUB_DEBUG */
1502
1503 /*
1504 * Hooks for other subsystems that check memory allocations. In a typical
1505 * production configuration these hooks all should produce no code at all.
1506 */
1507 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1508 {
1509 ptr = kasan_kmalloc_large(ptr, size, flags);
1510 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1511 kmemleak_alloc(ptr, size, 1, flags);
1512 return ptr;
1513 }
1514
1515 static __always_inline void kfree_hook(void *x)
1516 {
1517 kmemleak_free(x);
1518 kasan_kfree_large(x, _RET_IP_);
1519 }
1520
1521 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1522 {
1523 kmemleak_free_recursive(x, s->flags);
1524
1525 /*
1526 * Trouble is that we may no longer disable interrupts in the fast path
1527 * So in order to make the debug calls that expect irqs to be
1528 * disabled we need to disable interrupts temporarily.
1529 */
1530 #ifdef CONFIG_LOCKDEP
1531 {
1532 unsigned long flags;
1533
1534 local_irq_save(flags);
1535 debug_check_no_locks_freed(x, s->object_size);
1536 local_irq_restore(flags);
1537 }
1538 #endif
1539 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1540 debug_check_no_obj_freed(x, s->object_size);
1541
1542 /* Use KCSAN to help debug racy use-after-free. */
1543 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1544 __kcsan_check_access(x, s->object_size,
1545 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1546
1547 /* KASAN might put x into memory quarantine, delaying its reuse */
1548 return kasan_slab_free(s, x, _RET_IP_);
1549 }
1550
1551 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1552 void **head, void **tail)
1553 {
1554
1555 void *object;
1556 void *next = *head;
1557 void *old_tail = *tail ? *tail : *head;
1558 int rsize;
1559
1560 /* Head and tail of the reconstructed freelist */
1561 *head = NULL;
1562 *tail = NULL;
1563
1564 do {
1565 object = next;
1566 next = get_freepointer(s, object);
1567
1568 if (slab_want_init_on_free(s)) {
1569 /*
1570 * Clear the object and the metadata, but don't touch
1571 * the redzone.
1572 */
1573 memset(object, 0, s->object_size);
1574 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1575 : 0;
1576 memset((char *)object + s->inuse, 0,
1577 s->size - s->inuse - rsize);
1578
1579 }
1580 /* If object's reuse doesn't have to be delayed */
1581 if (!slab_free_hook(s, object)) {
1582 /* Move object to the new freelist */
1583 set_freepointer(s, object, *head);
1584 *head = object;
1585 if (!*tail)
1586 *tail = object;
1587 }
1588 } while (object != old_tail);
1589
1590 if (*head == *tail)
1591 *tail = NULL;
1592
1593 return *head != NULL;
1594 }
1595
1596 static void *setup_object(struct kmem_cache *s, struct page *page,
1597 void *object)
1598 {
1599 setup_object_debug(s, page, object);
1600 object = kasan_init_slab_obj(s, object);
1601 if (unlikely(s->ctor)) {
1602 kasan_unpoison_object_data(s, object);
1603 s->ctor(object);
1604 kasan_poison_object_data(s, object);
1605 }
1606 return object;
1607 }
1608
1609 /*
1610 * Slab allocation and freeing
1611 */
1612 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1613 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1614 {
1615 struct page *page;
1616 unsigned int order = oo_order(oo);
1617
1618 if (node == NUMA_NO_NODE)
1619 page = alloc_pages(flags, order);
1620 else
1621 page = __alloc_pages_node(node, flags, order);
1622
1623 if (page)
1624 account_slab_page(page, order, s);
1625
1626 return page;
1627 }
1628
1629 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1630 /* Pre-initialize the random sequence cache */
1631 static int init_cache_random_seq(struct kmem_cache *s)
1632 {
1633 unsigned int count = oo_objects(s->oo);
1634 int err;
1635
1636 /* Bailout if already initialised */
1637 if (s->random_seq)
1638 return 0;
1639
1640 err = cache_random_seq_create(s, count, GFP_KERNEL);
1641 if (err) {
1642 pr_err("SLUB: Unable to initialize free list for %s\n",
1643 s->name);
1644 return err;
1645 }
1646
1647 /* Transform to an offset on the set of pages */
1648 if (s->random_seq) {
1649 unsigned int i;
1650
1651 for (i = 0; i < count; i++)
1652 s->random_seq[i] *= s->size;
1653 }
1654 return 0;
1655 }
1656
1657 /* Initialize each random sequence freelist per cache */
1658 static void __init init_freelist_randomization(void)
1659 {
1660 struct kmem_cache *s;
1661
1662 mutex_lock(&slab_mutex);
1663
1664 list_for_each_entry(s, &slab_caches, list)
1665 init_cache_random_seq(s);
1666
1667 mutex_unlock(&slab_mutex);
1668 }
1669
1670 /* Get the next entry on the pre-computed freelist randomized */
1671 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1672 unsigned long *pos, void *start,
1673 unsigned long page_limit,
1674 unsigned long freelist_count)
1675 {
1676 unsigned int idx;
1677
1678 /*
1679 * If the target page allocation failed, the number of objects on the
1680 * page might be smaller than the usual size defined by the cache.
1681 */
1682 do {
1683 idx = s->random_seq[*pos];
1684 *pos += 1;
1685 if (*pos >= freelist_count)
1686 *pos = 0;
1687 } while (unlikely(idx >= page_limit));
1688
1689 return (char *)start + idx;
1690 }
1691
1692 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1693 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1694 {
1695 void *start;
1696 void *cur;
1697 void *next;
1698 unsigned long idx, pos, page_limit, freelist_count;
1699
1700 if (page->objects < 2 || !s->random_seq)
1701 return false;
1702
1703 freelist_count = oo_objects(s->oo);
1704 pos = get_random_int() % freelist_count;
1705
1706 page_limit = page->objects * s->size;
1707 start = fixup_red_left(s, page_address(page));
1708
1709 /* First entry is used as the base of the freelist */
1710 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1711 freelist_count);
1712 cur = setup_object(s, page, cur);
1713 page->freelist = cur;
1714
1715 for (idx = 1; idx < page->objects; idx++) {
1716 next = next_freelist_entry(s, page, &pos, start, page_limit,
1717 freelist_count);
1718 next = setup_object(s, page, next);
1719 set_freepointer(s, cur, next);
1720 cur = next;
1721 }
1722 set_freepointer(s, cur, NULL);
1723
1724 return true;
1725 }
1726 #else
1727 static inline int init_cache_random_seq(struct kmem_cache *s)
1728 {
1729 return 0;
1730 }
1731 static inline void init_freelist_randomization(void) { }
1732 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1733 {
1734 return false;
1735 }
1736 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1737
1738 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1739 {
1740 struct page *page;
1741 struct kmem_cache_order_objects oo = s->oo;
1742 gfp_t alloc_gfp;
1743 void *start, *p, *next;
1744 int idx;
1745 bool shuffle;
1746
1747 flags &= gfp_allowed_mask;
1748
1749 if (gfpflags_allow_blocking(flags))
1750 local_irq_enable();
1751
1752 flags |= s->allocflags;
1753
1754 /*
1755 * Let the initial higher-order allocation fail under memory pressure
1756 * so we fall-back to the minimum order allocation.
1757 */
1758 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1759 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1760 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1761
1762 page = alloc_slab_page(s, alloc_gfp, node, oo);
1763 if (unlikely(!page)) {
1764 oo = s->min;
1765 alloc_gfp = flags;
1766 /*
1767 * Allocation may have failed due to fragmentation.
1768 * Try a lower order alloc if possible
1769 */
1770 page = alloc_slab_page(s, alloc_gfp, node, oo);
1771 if (unlikely(!page))
1772 goto out;
1773 stat(s, ORDER_FALLBACK);
1774 }
1775
1776 page->objects = oo_objects(oo);
1777
1778 page->slab_cache = s;
1779 __SetPageSlab(page);
1780 if (page_is_pfmemalloc(page))
1781 SetPageSlabPfmemalloc(page);
1782
1783 kasan_poison_slab(page);
1784
1785 start = page_address(page);
1786
1787 setup_page_debug(s, page, start);
1788
1789 shuffle = shuffle_freelist(s, page);
1790
1791 if (!shuffle) {
1792 start = fixup_red_left(s, start);
1793 start = setup_object(s, page, start);
1794 page->freelist = start;
1795 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1796 next = p + s->size;
1797 next = setup_object(s, page, next);
1798 set_freepointer(s, p, next);
1799 p = next;
1800 }
1801 set_freepointer(s, p, NULL);
1802 }
1803
1804 page->inuse = page->objects;
1805 page->frozen = 1;
1806
1807 out:
1808 if (gfpflags_allow_blocking(flags))
1809 local_irq_disable();
1810 if (!page)
1811 return NULL;
1812
1813 inc_slabs_node(s, page_to_nid(page), page->objects);
1814
1815 return page;
1816 }
1817
1818 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1819 {
1820 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1821 flags = kmalloc_fix_flags(flags);
1822
1823 return allocate_slab(s,
1824 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1825 }
1826
1827 static void __free_slab(struct kmem_cache *s, struct page *page)
1828 {
1829 int order = compound_order(page);
1830 int pages = 1 << order;
1831
1832 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1833 void *p;
1834
1835 slab_pad_check(s, page);
1836 for_each_object(p, s, page_address(page),
1837 page->objects)
1838 check_object(s, page, p, SLUB_RED_INACTIVE);
1839 }
1840
1841 __ClearPageSlabPfmemalloc(page);
1842 __ClearPageSlab(page);
1843
1844 page->mapping = NULL;
1845 if (current->reclaim_state)
1846 current->reclaim_state->reclaimed_slab += pages;
1847 unaccount_slab_page(page, order, s);
1848 __free_pages(page, order);
1849 }
1850
1851 static void rcu_free_slab(struct rcu_head *h)
1852 {
1853 struct page *page = container_of(h, struct page, rcu_head);
1854
1855 __free_slab(page->slab_cache, page);
1856 }
1857
1858 static void free_slab(struct kmem_cache *s, struct page *page)
1859 {
1860 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1861 call_rcu(&page->rcu_head, rcu_free_slab);
1862 } else
1863 __free_slab(s, page);
1864 }
1865
1866 static void discard_slab(struct kmem_cache *s, struct page *page)
1867 {
1868 dec_slabs_node(s, page_to_nid(page), page->objects);
1869 free_slab(s, page);
1870 }
1871
1872 /*
1873 * Management of partially allocated slabs.
1874 */
1875 static inline void
1876 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1877 {
1878 n->nr_partial++;
1879 if (tail == DEACTIVATE_TO_TAIL)
1880 list_add_tail(&page->slab_list, &n->partial);
1881 else
1882 list_add(&page->slab_list, &n->partial);
1883 }
1884
1885 static inline void add_partial(struct kmem_cache_node *n,
1886 struct page *page, int tail)
1887 {
1888 lockdep_assert_held(&n->list_lock);
1889 __add_partial(n, page, tail);
1890 }
1891
1892 static inline void remove_partial(struct kmem_cache_node *n,
1893 struct page *page)
1894 {
1895 lockdep_assert_held(&n->list_lock);
1896 list_del(&page->slab_list);
1897 n->nr_partial--;
1898 }
1899
1900 /*
1901 * Remove slab from the partial list, freeze it and
1902 * return the pointer to the freelist.
1903 *
1904 * Returns a list of objects or NULL if it fails.
1905 */
1906 static inline void *acquire_slab(struct kmem_cache *s,
1907 struct kmem_cache_node *n, struct page *page,
1908 int mode, int *objects)
1909 {
1910 void *freelist;
1911 unsigned long counters;
1912 struct page new;
1913
1914 lockdep_assert_held(&n->list_lock);
1915
1916 /*
1917 * Zap the freelist and set the frozen bit.
1918 * The old freelist is the list of objects for the
1919 * per cpu allocation list.
1920 */
1921 freelist = page->freelist;
1922 counters = page->counters;
1923 new.counters = counters;
1924 *objects = new.objects - new.inuse;
1925 if (mode) {
1926 new.inuse = page->objects;
1927 new.freelist = NULL;
1928 } else {
1929 new.freelist = freelist;
1930 }
1931
1932 VM_BUG_ON(new.frozen);
1933 new.frozen = 1;
1934
1935 if (!__cmpxchg_double_slab(s, page,
1936 freelist, counters,
1937 new.freelist, new.counters,
1938 "acquire_slab"))
1939 return NULL;
1940
1941 remove_partial(n, page);
1942 WARN_ON(!freelist);
1943 return freelist;
1944 }
1945
1946 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1947 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1948
1949 /*
1950 * Try to allocate a partial slab from a specific node.
1951 */
1952 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1953 struct kmem_cache_cpu *c, gfp_t flags)
1954 {
1955 struct page *page, *page2;
1956 void *object = NULL;
1957 unsigned int available = 0;
1958 int objects;
1959
1960 /*
1961 * Racy check. If we mistakenly see no partial slabs then we
1962 * just allocate an empty slab. If we mistakenly try to get a
1963 * partial slab and there is none available then get_partials()
1964 * will return NULL.
1965 */
1966 if (!n || !n->nr_partial)
1967 return NULL;
1968
1969 spin_lock(&n->list_lock);
1970 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1971 void *t;
1972
1973 if (!pfmemalloc_match(page, flags))
1974 continue;
1975
1976 t = acquire_slab(s, n, page, object == NULL, &objects);
1977 if (!t)
1978 break;
1979
1980 available += objects;
1981 if (!object) {
1982 c->page = page;
1983 stat(s, ALLOC_FROM_PARTIAL);
1984 object = t;
1985 } else {
1986 put_cpu_partial(s, page, 0);
1987 stat(s, CPU_PARTIAL_NODE);
1988 }
1989 if (!kmem_cache_has_cpu_partial(s)
1990 || available > slub_cpu_partial(s) / 2)
1991 break;
1992
1993 }
1994 spin_unlock(&n->list_lock);
1995 return object;
1996 }
1997
1998 /*
1999 * Get a page from somewhere. Search in increasing NUMA distances.
2000 */
2001 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2002 struct kmem_cache_cpu *c)
2003 {
2004 #ifdef CONFIG_NUMA
2005 struct zonelist *zonelist;
2006 struct zoneref *z;
2007 struct zone *zone;
2008 enum zone_type highest_zoneidx = gfp_zone(flags);
2009 void *object;
2010 unsigned int cpuset_mems_cookie;
2011
2012 /*
2013 * The defrag ratio allows a configuration of the tradeoffs between
2014 * inter node defragmentation and node local allocations. A lower
2015 * defrag_ratio increases the tendency to do local allocations
2016 * instead of attempting to obtain partial slabs from other nodes.
2017 *
2018 * If the defrag_ratio is set to 0 then kmalloc() always
2019 * returns node local objects. If the ratio is higher then kmalloc()
2020 * may return off node objects because partial slabs are obtained
2021 * from other nodes and filled up.
2022 *
2023 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2024 * (which makes defrag_ratio = 1000) then every (well almost)
2025 * allocation will first attempt to defrag slab caches on other nodes.
2026 * This means scanning over all nodes to look for partial slabs which
2027 * may be expensive if we do it every time we are trying to find a slab
2028 * with available objects.
2029 */
2030 if (!s->remote_node_defrag_ratio ||
2031 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2032 return NULL;
2033
2034 do {
2035 cpuset_mems_cookie = read_mems_allowed_begin();
2036 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2037 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2038 struct kmem_cache_node *n;
2039
2040 n = get_node(s, zone_to_nid(zone));
2041
2042 if (n && cpuset_zone_allowed(zone, flags) &&
2043 n->nr_partial > s->min_partial) {
2044 object = get_partial_node(s, n, c, flags);
2045 if (object) {
2046 /*
2047 * Don't check read_mems_allowed_retry()
2048 * here - if mems_allowed was updated in
2049 * parallel, that was a harmless race
2050 * between allocation and the cpuset
2051 * update
2052 */
2053 return object;
2054 }
2055 }
2056 }
2057 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2058 #endif /* CONFIG_NUMA */
2059 return NULL;
2060 }
2061
2062 /*
2063 * Get a partial page, lock it and return it.
2064 */
2065 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2066 struct kmem_cache_cpu *c)
2067 {
2068 void *object;
2069 int searchnode = node;
2070
2071 if (node == NUMA_NO_NODE)
2072 searchnode = numa_mem_id();
2073
2074 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2075 if (object || node != NUMA_NO_NODE)
2076 return object;
2077
2078 return get_any_partial(s, flags, c);
2079 }
2080
2081 #ifdef CONFIG_PREEMPTION
2082 /*
2083 * Calculate the next globally unique transaction for disambiguation
2084 * during cmpxchg. The transactions start with the cpu number and are then
2085 * incremented by CONFIG_NR_CPUS.
2086 */
2087 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2088 #else
2089 /*
2090 * No preemption supported therefore also no need to check for
2091 * different cpus.
2092 */
2093 #define TID_STEP 1
2094 #endif
2095
2096 static inline unsigned long next_tid(unsigned long tid)
2097 {
2098 return tid + TID_STEP;
2099 }
2100
2101 #ifdef SLUB_DEBUG_CMPXCHG
2102 static inline unsigned int tid_to_cpu(unsigned long tid)
2103 {
2104 return tid % TID_STEP;
2105 }
2106
2107 static inline unsigned long tid_to_event(unsigned long tid)
2108 {
2109 return tid / TID_STEP;
2110 }
2111 #endif
2112
2113 static inline unsigned int init_tid(int cpu)
2114 {
2115 return cpu;
2116 }
2117
2118 static inline void note_cmpxchg_failure(const char *n,
2119 const struct kmem_cache *s, unsigned long tid)
2120 {
2121 #ifdef SLUB_DEBUG_CMPXCHG
2122 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2123
2124 pr_info("%s %s: cmpxchg redo ", n, s->name);
2125
2126 #ifdef CONFIG_PREEMPTION
2127 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2128 pr_warn("due to cpu change %d -> %d\n",
2129 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2130 else
2131 #endif
2132 if (tid_to_event(tid) != tid_to_event(actual_tid))
2133 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2134 tid_to_event(tid), tid_to_event(actual_tid));
2135 else
2136 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2137 actual_tid, tid, next_tid(tid));
2138 #endif
2139 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2140 }
2141
2142 static void init_kmem_cache_cpus(struct kmem_cache *s)
2143 {
2144 int cpu;
2145
2146 for_each_possible_cpu(cpu)
2147 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2148 }
2149
2150 /*
2151 * Remove the cpu slab
2152 */
2153 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2154 void *freelist, struct kmem_cache_cpu *c)
2155 {
2156 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2157 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2158 int lock = 0;
2159 enum slab_modes l = M_NONE, m = M_NONE;
2160 void *nextfree;
2161 int tail = DEACTIVATE_TO_HEAD;
2162 struct page new;
2163 struct page old;
2164
2165 if (page->freelist) {
2166 stat(s, DEACTIVATE_REMOTE_FREES);
2167 tail = DEACTIVATE_TO_TAIL;
2168 }
2169
2170 /*
2171 * Stage one: Free all available per cpu objects back
2172 * to the page freelist while it is still frozen. Leave the
2173 * last one.
2174 *
2175 * There is no need to take the list->lock because the page
2176 * is still frozen.
2177 */
2178 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2179 void *prior;
2180 unsigned long counters;
2181
2182 /*
2183 * If 'nextfree' is invalid, it is possible that the object at
2184 * 'freelist' is already corrupted. So isolate all objects
2185 * starting at 'freelist'.
2186 */
2187 if (freelist_corrupted(s, page, freelist, nextfree))
2188 break;
2189
2190 do {
2191 prior = page->freelist;
2192 counters = page->counters;
2193 set_freepointer(s, freelist, prior);
2194 new.counters = counters;
2195 new.inuse--;
2196 VM_BUG_ON(!new.frozen);
2197
2198 } while (!__cmpxchg_double_slab(s, page,
2199 prior, counters,
2200 freelist, new.counters,
2201 "drain percpu freelist"));
2202
2203 freelist = nextfree;
2204 }
2205
2206 /*
2207 * Stage two: Ensure that the page is unfrozen while the
2208 * list presence reflects the actual number of objects
2209 * during unfreeze.
2210 *
2211 * We setup the list membership and then perform a cmpxchg
2212 * with the count. If there is a mismatch then the page
2213 * is not unfrozen but the page is on the wrong list.
2214 *
2215 * Then we restart the process which may have to remove
2216 * the page from the list that we just put it on again
2217 * because the number of objects in the slab may have
2218 * changed.
2219 */
2220 redo:
2221
2222 old.freelist = page->freelist;
2223 old.counters = page->counters;
2224 VM_BUG_ON(!old.frozen);
2225
2226 /* Determine target state of the slab */
2227 new.counters = old.counters;
2228 if (freelist) {
2229 new.inuse--;
2230 set_freepointer(s, freelist, old.freelist);
2231 new.freelist = freelist;
2232 } else
2233 new.freelist = old.freelist;
2234
2235 new.frozen = 0;
2236
2237 if (!new.inuse && n->nr_partial >= s->min_partial)
2238 m = M_FREE;
2239 else if (new.freelist) {
2240 m = M_PARTIAL;
2241 if (!lock) {
2242 lock = 1;
2243 /*
2244 * Taking the spinlock removes the possibility
2245 * that acquire_slab() will see a slab page that
2246 * is frozen
2247 */
2248 spin_lock(&n->list_lock);
2249 }
2250 } else {
2251 m = M_FULL;
2252 if (kmem_cache_debug(s) && !lock) {
2253 lock = 1;
2254 /*
2255 * This also ensures that the scanning of full
2256 * slabs from diagnostic functions will not see
2257 * any frozen slabs.
2258 */
2259 spin_lock(&n->list_lock);
2260 }
2261 }
2262
2263 if (l != m) {
2264 if (l == M_PARTIAL)
2265 remove_partial(n, page);
2266 else if (l == M_FULL)
2267 remove_full(s, n, page);
2268
2269 if (m == M_PARTIAL)
2270 add_partial(n, page, tail);
2271 else if (m == M_FULL)
2272 add_full(s, n, page);
2273 }
2274
2275 l = m;
2276 if (!__cmpxchg_double_slab(s, page,
2277 old.freelist, old.counters,
2278 new.freelist, new.counters,
2279 "unfreezing slab"))
2280 goto redo;
2281
2282 if (lock)
2283 spin_unlock(&n->list_lock);
2284
2285 if (m == M_PARTIAL)
2286 stat(s, tail);
2287 else if (m == M_FULL)
2288 stat(s, DEACTIVATE_FULL);
2289 else if (m == M_FREE) {
2290 stat(s, DEACTIVATE_EMPTY);
2291 discard_slab(s, page);
2292 stat(s, FREE_SLAB);
2293 }
2294
2295 c->page = NULL;
2296 c->freelist = NULL;
2297 }
2298
2299 /*
2300 * Unfreeze all the cpu partial slabs.
2301 *
2302 * This function must be called with interrupts disabled
2303 * for the cpu using c (or some other guarantee must be there
2304 * to guarantee no concurrent accesses).
2305 */
2306 static void unfreeze_partials(struct kmem_cache *s,
2307 struct kmem_cache_cpu *c)
2308 {
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 struct kmem_cache_node *n = NULL, *n2 = NULL;
2311 struct page *page, *discard_page = NULL;
2312
2313 while ((page = slub_percpu_partial(c))) {
2314 struct page new;
2315 struct page old;
2316
2317 slub_set_percpu_partial(c, page);
2318
2319 n2 = get_node(s, page_to_nid(page));
2320 if (n != n2) {
2321 if (n)
2322 spin_unlock(&n->list_lock);
2323
2324 n = n2;
2325 spin_lock(&n->list_lock);
2326 }
2327
2328 do {
2329
2330 old.freelist = page->freelist;
2331 old.counters = page->counters;
2332 VM_BUG_ON(!old.frozen);
2333
2334 new.counters = old.counters;
2335 new.freelist = old.freelist;
2336
2337 new.frozen = 0;
2338
2339 } while (!__cmpxchg_double_slab(s, page,
2340 old.freelist, old.counters,
2341 new.freelist, new.counters,
2342 "unfreezing slab"));
2343
2344 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2345 page->next = discard_page;
2346 discard_page = page;
2347 } else {
2348 add_partial(n, page, DEACTIVATE_TO_TAIL);
2349 stat(s, FREE_ADD_PARTIAL);
2350 }
2351 }
2352
2353 if (n)
2354 spin_unlock(&n->list_lock);
2355
2356 while (discard_page) {
2357 page = discard_page;
2358 discard_page = discard_page->next;
2359
2360 stat(s, DEACTIVATE_EMPTY);
2361 discard_slab(s, page);
2362 stat(s, FREE_SLAB);
2363 }
2364 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2365 }
2366
2367 /*
2368 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2369 * partial page slot if available.
2370 *
2371 * If we did not find a slot then simply move all the partials to the
2372 * per node partial list.
2373 */
2374 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2375 {
2376 #ifdef CONFIG_SLUB_CPU_PARTIAL
2377 struct page *oldpage;
2378 int pages;
2379 int pobjects;
2380
2381 preempt_disable();
2382 do {
2383 pages = 0;
2384 pobjects = 0;
2385 oldpage = this_cpu_read(s->cpu_slab->partial);
2386
2387 if (oldpage) {
2388 pobjects = oldpage->pobjects;
2389 pages = oldpage->pages;
2390 if (drain && pobjects > slub_cpu_partial(s)) {
2391 unsigned long flags;
2392 /*
2393 * partial array is full. Move the existing
2394 * set to the per node partial list.
2395 */
2396 local_irq_save(flags);
2397 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2398 local_irq_restore(flags);
2399 oldpage = NULL;
2400 pobjects = 0;
2401 pages = 0;
2402 stat(s, CPU_PARTIAL_DRAIN);
2403 }
2404 }
2405
2406 pages++;
2407 pobjects += page->objects - page->inuse;
2408
2409 page->pages = pages;
2410 page->pobjects = pobjects;
2411 page->next = oldpage;
2412
2413 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2414 != oldpage);
2415 if (unlikely(!slub_cpu_partial(s))) {
2416 unsigned long flags;
2417
2418 local_irq_save(flags);
2419 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2420 local_irq_restore(flags);
2421 }
2422 preempt_enable();
2423 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2424 }
2425
2426 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2427 {
2428 stat(s, CPUSLAB_FLUSH);
2429 deactivate_slab(s, c->page, c->freelist, c);
2430
2431 c->tid = next_tid(c->tid);
2432 }
2433
2434 /*
2435 * Flush cpu slab.
2436 *
2437 * Called from IPI handler with interrupts disabled.
2438 */
2439 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2440 {
2441 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2442
2443 if (c->page)
2444 flush_slab(s, c);
2445
2446 unfreeze_partials(s, c);
2447 }
2448
2449 static void flush_cpu_slab(void *d)
2450 {
2451 struct kmem_cache *s = d;
2452
2453 __flush_cpu_slab(s, smp_processor_id());
2454 }
2455
2456 static bool has_cpu_slab(int cpu, void *info)
2457 {
2458 struct kmem_cache *s = info;
2459 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2460
2461 return c->page || slub_percpu_partial(c);
2462 }
2463
2464 static void flush_all(struct kmem_cache *s)
2465 {
2466 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2467 }
2468
2469 /*
2470 * Use the cpu notifier to insure that the cpu slabs are flushed when
2471 * necessary.
2472 */
2473 static int slub_cpu_dead(unsigned int cpu)
2474 {
2475 struct kmem_cache *s;
2476 unsigned long flags;
2477
2478 mutex_lock(&slab_mutex);
2479 list_for_each_entry(s, &slab_caches, list) {
2480 local_irq_save(flags);
2481 __flush_cpu_slab(s, cpu);
2482 local_irq_restore(flags);
2483 }
2484 mutex_unlock(&slab_mutex);
2485 return 0;
2486 }
2487
2488 /*
2489 * Check if the objects in a per cpu structure fit numa
2490 * locality expectations.
2491 */
2492 static inline int node_match(struct page *page, int node)
2493 {
2494 #ifdef CONFIG_NUMA
2495 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2496 return 0;
2497 #endif
2498 return 1;
2499 }
2500
2501 #ifdef CONFIG_SLUB_DEBUG
2502 static int count_free(struct page *page)
2503 {
2504 return page->objects - page->inuse;
2505 }
2506
2507 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2508 {
2509 return atomic_long_read(&n->total_objects);
2510 }
2511 #endif /* CONFIG_SLUB_DEBUG */
2512
2513 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2514 static unsigned long count_partial(struct kmem_cache_node *n,
2515 int (*get_count)(struct page *))
2516 {
2517 unsigned long flags;
2518 unsigned long x = 0;
2519 struct page *page;
2520
2521 spin_lock_irqsave(&n->list_lock, flags);
2522 list_for_each_entry(page, &n->partial, slab_list)
2523 x += get_count(page);
2524 spin_unlock_irqrestore(&n->list_lock, flags);
2525 return x;
2526 }
2527 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2528
2529 static noinline void
2530 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2531 {
2532 #ifdef CONFIG_SLUB_DEBUG
2533 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2534 DEFAULT_RATELIMIT_BURST);
2535 int node;
2536 struct kmem_cache_node *n;
2537
2538 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2539 return;
2540
2541 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2542 nid, gfpflags, &gfpflags);
2543 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2544 s->name, s->object_size, s->size, oo_order(s->oo),
2545 oo_order(s->min));
2546
2547 if (oo_order(s->min) > get_order(s->object_size))
2548 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2549 s->name);
2550
2551 for_each_kmem_cache_node(s, node, n) {
2552 unsigned long nr_slabs;
2553 unsigned long nr_objs;
2554 unsigned long nr_free;
2555
2556 nr_free = count_partial(n, count_free);
2557 nr_slabs = node_nr_slabs(n);
2558 nr_objs = node_nr_objs(n);
2559
2560 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2561 node, nr_slabs, nr_objs, nr_free);
2562 }
2563 #endif
2564 }
2565
2566 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2567 int node, struct kmem_cache_cpu **pc)
2568 {
2569 void *freelist;
2570 struct kmem_cache_cpu *c = *pc;
2571 struct page *page;
2572
2573 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2574
2575 freelist = get_partial(s, flags, node, c);
2576
2577 if (freelist)
2578 return freelist;
2579
2580 page = new_slab(s, flags, node);
2581 if (page) {
2582 c = raw_cpu_ptr(s->cpu_slab);
2583 if (c->page)
2584 flush_slab(s, c);
2585
2586 /*
2587 * No other reference to the page yet so we can
2588 * muck around with it freely without cmpxchg
2589 */
2590 freelist = page->freelist;
2591 page->freelist = NULL;
2592
2593 stat(s, ALLOC_SLAB);
2594 c->page = page;
2595 *pc = c;
2596 }
2597
2598 return freelist;
2599 }
2600
2601 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2602 {
2603 if (unlikely(PageSlabPfmemalloc(page)))
2604 return gfp_pfmemalloc_allowed(gfpflags);
2605
2606 return true;
2607 }
2608
2609 /*
2610 * Check the page->freelist of a page and either transfer the freelist to the
2611 * per cpu freelist or deactivate the page.
2612 *
2613 * The page is still frozen if the return value is not NULL.
2614 *
2615 * If this function returns NULL then the page has been unfrozen.
2616 *
2617 * This function must be called with interrupt disabled.
2618 */
2619 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2620 {
2621 struct page new;
2622 unsigned long counters;
2623 void *freelist;
2624
2625 do {
2626 freelist = page->freelist;
2627 counters = page->counters;
2628
2629 new.counters = counters;
2630 VM_BUG_ON(!new.frozen);
2631
2632 new.inuse = page->objects;
2633 new.frozen = freelist != NULL;
2634
2635 } while (!__cmpxchg_double_slab(s, page,
2636 freelist, counters,
2637 NULL, new.counters,
2638 "get_freelist"));
2639
2640 return freelist;
2641 }
2642
2643 /*
2644 * Slow path. The lockless freelist is empty or we need to perform
2645 * debugging duties.
2646 *
2647 * Processing is still very fast if new objects have been freed to the
2648 * regular freelist. In that case we simply take over the regular freelist
2649 * as the lockless freelist and zap the regular freelist.
2650 *
2651 * If that is not working then we fall back to the partial lists. We take the
2652 * first element of the freelist as the object to allocate now and move the
2653 * rest of the freelist to the lockless freelist.
2654 *
2655 * And if we were unable to get a new slab from the partial slab lists then
2656 * we need to allocate a new slab. This is the slowest path since it involves
2657 * a call to the page allocator and the setup of a new slab.
2658 *
2659 * Version of __slab_alloc to use when we know that interrupts are
2660 * already disabled (which is the case for bulk allocation).
2661 */
2662 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2663 unsigned long addr, struct kmem_cache_cpu *c)
2664 {
2665 void *freelist;
2666 struct page *page;
2667
2668 page = c->page;
2669 if (!page) {
2670 /*
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2673 */
2674 if (unlikely(node != NUMA_NO_NODE &&
2675 !node_state(node, N_NORMAL_MEMORY)))
2676 node = NUMA_NO_NODE;
2677 goto new_slab;
2678 }
2679 redo:
2680
2681 if (unlikely(!node_match(page, node))) {
2682 /*
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2685 */
2686 if (!node_state(node, N_NORMAL_MEMORY)) {
2687 node = NUMA_NO_NODE;
2688 goto redo;
2689 } else {
2690 stat(s, ALLOC_NODE_MISMATCH);
2691 deactivate_slab(s, page, c->freelist, c);
2692 goto new_slab;
2693 }
2694 }
2695
2696 /*
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2700 */
2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2702 deactivate_slab(s, page, c->freelist, c);
2703 goto new_slab;
2704 }
2705
2706 /* must check again c->freelist in case of cpu migration or IRQ */
2707 freelist = c->freelist;
2708 if (freelist)
2709 goto load_freelist;
2710
2711 freelist = get_freelist(s, page);
2712
2713 if (!freelist) {
2714 c->page = NULL;
2715 stat(s, DEACTIVATE_BYPASS);
2716 goto new_slab;
2717 }
2718
2719 stat(s, ALLOC_REFILL);
2720
2721 load_freelist:
2722 /*
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2726 */
2727 VM_BUG_ON(!c->page->frozen);
2728 c->freelist = get_freepointer(s, freelist);
2729 c->tid = next_tid(c->tid);
2730 return freelist;
2731
2732 new_slab:
2733
2734 if (slub_percpu_partial(c)) {
2735 page = c->page = slub_percpu_partial(c);
2736 slub_set_percpu_partial(c, page);
2737 stat(s, CPU_PARTIAL_ALLOC);
2738 goto redo;
2739 }
2740
2741 freelist = new_slab_objects(s, gfpflags, node, &c);
2742
2743 if (unlikely(!freelist)) {
2744 slab_out_of_memory(s, gfpflags, node);
2745 return NULL;
2746 }
2747
2748 page = c->page;
2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2750 goto load_freelist;
2751
2752 /* Only entered in the debug case */
2753 if (kmem_cache_debug(s) &&
2754 !alloc_debug_processing(s, page, freelist, addr))
2755 goto new_slab; /* Slab failed checks. Next slab needed */
2756
2757 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2758 return freelist;
2759 }
2760
2761 /*
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2764 */
2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 unsigned long addr, struct kmem_cache_cpu *c)
2767 {
2768 void *p;
2769 unsigned long flags;
2770
2771 local_irq_save(flags);
2772 #ifdef CONFIG_PREEMPTION
2773 /*
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2776 * pointer.
2777 */
2778 c = this_cpu_ptr(s->cpu_slab);
2779 #endif
2780
2781 p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 local_irq_restore(flags);
2783 return p;
2784 }
2785
2786 /*
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2789 */
2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 void *obj)
2792 {
2793 if (unlikely(slab_want_init_on_free(s)) && obj)
2794 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2795 }
2796
2797 /*
2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799 * have the fastpath folded into their functions. So no function call
2800 * overhead for requests that can be satisfied on the fastpath.
2801 *
2802 * The fastpath works by first checking if the lockless freelist can be used.
2803 * If not then __slab_alloc is called for slow processing.
2804 *
2805 * Otherwise we can simply pick the next object from the lockless free list.
2806 */
2807 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2808 gfp_t gfpflags, int node, unsigned long addr)
2809 {
2810 void *object;
2811 struct kmem_cache_cpu *c;
2812 struct page *page;
2813 unsigned long tid;
2814 struct obj_cgroup *objcg = NULL;
2815
2816 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2817 if (!s)
2818 return NULL;
2819 redo:
2820 /*
2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 * enabled. We may switch back and forth between cpus while
2823 * reading from one cpu area. That does not matter as long
2824 * as we end up on the original cpu again when doing the cmpxchg.
2825 *
2826 * We should guarantee that tid and kmem_cache are retrieved on
2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2828 * to check if it is matched or not.
2829 */
2830 do {
2831 tid = this_cpu_read(s->cpu_slab->tid);
2832 c = raw_cpu_ptr(s->cpu_slab);
2833 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2834 unlikely(tid != READ_ONCE(c->tid)));
2835
2836 /*
2837 * Irqless object alloc/free algorithm used here depends on sequence
2838 * of fetching cpu_slab's data. tid should be fetched before anything
2839 * on c to guarantee that object and page associated with previous tid
2840 * won't be used with current tid. If we fetch tid first, object and
2841 * page could be one associated with next tid and our alloc/free
2842 * request will be failed. In this case, we will retry. So, no problem.
2843 */
2844 barrier();
2845
2846 /*
2847 * The transaction ids are globally unique per cpu and per operation on
2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 * occurs on the right processor and that there was no operation on the
2850 * linked list in between.
2851 */
2852
2853 object = c->freelist;
2854 page = c->page;
2855 if (unlikely(!object || !node_match(page, node))) {
2856 object = __slab_alloc(s, gfpflags, node, addr, c);
2857 stat(s, ALLOC_SLOWPATH);
2858 } else {
2859 void *next_object = get_freepointer_safe(s, object);
2860
2861 /*
2862 * The cmpxchg will only match if there was no additional
2863 * operation and if we are on the right processor.
2864 *
2865 * The cmpxchg does the following atomically (without lock
2866 * semantics!)
2867 * 1. Relocate first pointer to the current per cpu area.
2868 * 2. Verify that tid and freelist have not been changed
2869 * 3. If they were not changed replace tid and freelist
2870 *
2871 * Since this is without lock semantics the protection is only
2872 * against code executing on this cpu *not* from access by
2873 * other cpus.
2874 */
2875 if (unlikely(!this_cpu_cmpxchg_double(
2876 s->cpu_slab->freelist, s->cpu_slab->tid,
2877 object, tid,
2878 next_object, next_tid(tid)))) {
2879
2880 note_cmpxchg_failure("slab_alloc", s, tid);
2881 goto redo;
2882 }
2883 prefetch_freepointer(s, next_object);
2884 stat(s, ALLOC_FASTPATH);
2885 }
2886
2887 maybe_wipe_obj_freeptr(s, object);
2888
2889 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2890 memset(object, 0, s->object_size);
2891
2892 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2893
2894 return object;
2895 }
2896
2897 static __always_inline void *slab_alloc(struct kmem_cache *s,
2898 gfp_t gfpflags, unsigned long addr)
2899 {
2900 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2901 }
2902
2903 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2904 {
2905 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2906
2907 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2908 s->size, gfpflags);
2909
2910 return ret;
2911 }
2912 EXPORT_SYMBOL(kmem_cache_alloc);
2913
2914 #ifdef CONFIG_TRACING
2915 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2916 {
2917 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2918 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2919 ret = kasan_kmalloc(s, ret, size, gfpflags);
2920 return ret;
2921 }
2922 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2923 #endif
2924
2925 #ifdef CONFIG_NUMA
2926 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2927 {
2928 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2929
2930 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2931 s->object_size, s->size, gfpflags, node);
2932
2933 return ret;
2934 }
2935 EXPORT_SYMBOL(kmem_cache_alloc_node);
2936
2937 #ifdef CONFIG_TRACING
2938 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2939 gfp_t gfpflags,
2940 int node, size_t size)
2941 {
2942 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2943
2944 trace_kmalloc_node(_RET_IP_, ret,
2945 size, s->size, gfpflags, node);
2946
2947 ret = kasan_kmalloc(s, ret, size, gfpflags);
2948 return ret;
2949 }
2950 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2951 #endif
2952 #endif /* CONFIG_NUMA */
2953
2954 /*
2955 * Slow path handling. This may still be called frequently since objects
2956 * have a longer lifetime than the cpu slabs in most processing loads.
2957 *
2958 * So we still attempt to reduce cache line usage. Just take the slab
2959 * lock and free the item. If there is no additional partial page
2960 * handling required then we can return immediately.
2961 */
2962 static void __slab_free(struct kmem_cache *s, struct page *page,
2963 void *head, void *tail, int cnt,
2964 unsigned long addr)
2965
2966 {
2967 void *prior;
2968 int was_frozen;
2969 struct page new;
2970 unsigned long counters;
2971 struct kmem_cache_node *n = NULL;
2972 unsigned long flags;
2973
2974 stat(s, FREE_SLOWPATH);
2975
2976 if (kmem_cache_debug(s) &&
2977 !free_debug_processing(s, page, head, tail, cnt, addr))
2978 return;
2979
2980 do {
2981 if (unlikely(n)) {
2982 spin_unlock_irqrestore(&n->list_lock, flags);
2983 n = NULL;
2984 }
2985 prior = page->freelist;
2986 counters = page->counters;
2987 set_freepointer(s, tail, prior);
2988 new.counters = counters;
2989 was_frozen = new.frozen;
2990 new.inuse -= cnt;
2991 if ((!new.inuse || !prior) && !was_frozen) {
2992
2993 if (kmem_cache_has_cpu_partial(s) && !prior) {
2994
2995 /*
2996 * Slab was on no list before and will be
2997 * partially empty
2998 * We can defer the list move and instead
2999 * freeze it.
3000 */
3001 new.frozen = 1;
3002
3003 } else { /* Needs to be taken off a list */
3004
3005 n = get_node(s, page_to_nid(page));
3006 /*
3007 * Speculatively acquire the list_lock.
3008 * If the cmpxchg does not succeed then we may
3009 * drop the list_lock without any processing.
3010 *
3011 * Otherwise the list_lock will synchronize with
3012 * other processors updating the list of slabs.
3013 */
3014 spin_lock_irqsave(&n->list_lock, flags);
3015
3016 }
3017 }
3018
3019 } while (!cmpxchg_double_slab(s, page,
3020 prior, counters,
3021 head, new.counters,
3022 "__slab_free"));
3023
3024 if (likely(!n)) {
3025
3026 /*
3027 * If we just froze the page then put it onto the
3028 * per cpu partial list.
3029 */
3030 if (new.frozen && !was_frozen) {
3031 put_cpu_partial(s, page, 1);
3032 stat(s, CPU_PARTIAL_FREE);
3033 }
3034 /*
3035 * The list lock was not taken therefore no list
3036 * activity can be necessary.
3037 */
3038 if (was_frozen)
3039 stat(s, FREE_FROZEN);
3040 return;
3041 }
3042
3043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3044 goto slab_empty;
3045
3046 /*
3047 * Objects left in the slab. If it was not on the partial list before
3048 * then add it.
3049 */
3050 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3051 remove_full(s, n, page);
3052 add_partial(n, page, DEACTIVATE_TO_TAIL);
3053 stat(s, FREE_ADD_PARTIAL);
3054 }
3055 spin_unlock_irqrestore(&n->list_lock, flags);
3056 return;
3057
3058 slab_empty:
3059 if (prior) {
3060 /*
3061 * Slab on the partial list.
3062 */
3063 remove_partial(n, page);
3064 stat(s, FREE_REMOVE_PARTIAL);
3065 } else {
3066 /* Slab must be on the full list */
3067 remove_full(s, n, page);
3068 }
3069
3070 spin_unlock_irqrestore(&n->list_lock, flags);
3071 stat(s, FREE_SLAB);
3072 discard_slab(s, page);
3073 }
3074
3075 /*
3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077 * can perform fastpath freeing without additional function calls.
3078 *
3079 * The fastpath is only possible if we are freeing to the current cpu slab
3080 * of this processor. This typically the case if we have just allocated
3081 * the item before.
3082 *
3083 * If fastpath is not possible then fall back to __slab_free where we deal
3084 * with all sorts of special processing.
3085 *
3086 * Bulk free of a freelist with several objects (all pointing to the
3087 * same page) possible by specifying head and tail ptr, plus objects
3088 * count (cnt). Bulk free indicated by tail pointer being set.
3089 */
3090 static __always_inline void do_slab_free(struct kmem_cache *s,
3091 struct page *page, void *head, void *tail,
3092 int cnt, unsigned long addr)
3093 {
3094 void *tail_obj = tail ? : head;
3095 struct kmem_cache_cpu *c;
3096 unsigned long tid;
3097
3098 memcg_slab_free_hook(s, page, head);
3099 redo:
3100 /*
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
3104 * during the cmpxchg then the free will succeed.
3105 */
3106 do {
3107 tid = this_cpu_read(s->cpu_slab->tid);
3108 c = raw_cpu_ptr(s->cpu_slab);
3109 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3110 unlikely(tid != READ_ONCE(c->tid)));
3111
3112 /* Same with comment on barrier() in slab_alloc_node() */
3113 barrier();
3114
3115 if (likely(page == c->page)) {
3116 void **freelist = READ_ONCE(c->freelist);
3117
3118 set_freepointer(s, tail_obj, freelist);
3119
3120 if (unlikely(!this_cpu_cmpxchg_double(
3121 s->cpu_slab->freelist, s->cpu_slab->tid,
3122 freelist, tid,
3123 head, next_tid(tid)))) {
3124
3125 note_cmpxchg_failure("slab_free", s, tid);
3126 goto redo;
3127 }
3128 stat(s, FREE_FASTPATH);
3129 } else
3130 __slab_free(s, page, head, tail_obj, cnt, addr);
3131
3132 }
3133
3134 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 void *head, void *tail, int cnt,
3136 unsigned long addr)
3137 {
3138 /*
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
3141 */
3142 if (slab_free_freelist_hook(s, &head, &tail))
3143 do_slab_free(s, page, head, tail, cnt, addr);
3144 }
3145
3146 #ifdef CONFIG_KASAN_GENERIC
3147 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148 {
3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150 }
3151 #endif
3152
3153 void kmem_cache_free(struct kmem_cache *s, void *x)
3154 {
3155 s = cache_from_obj(s, x);
3156 if (!s)
3157 return;
3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3159 trace_kmem_cache_free(_RET_IP_, x);
3160 }
3161 EXPORT_SYMBOL(kmem_cache_free);
3162
3163 struct detached_freelist {
3164 struct page *page;
3165 void *tail;
3166 void *freelist;
3167 int cnt;
3168 struct kmem_cache *s;
3169 };
3170
3171 /*
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3182 */
3183 static inline
3184 int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 void **p, struct detached_freelist *df)
3186 {
3187 size_t first_skipped_index = 0;
3188 int lookahead = 3;
3189 void *object;
3190 struct page *page;
3191
3192 /* Always re-init detached_freelist */
3193 df->page = NULL;
3194
3195 do {
3196 object = p[--size];
3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3198 } while (!object && size);
3199
3200 if (!object)
3201 return 0;
3202
3203 page = virt_to_head_page(object);
3204 if (!s) {
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page))) {
3207 BUG_ON(!PageCompound(page));
3208 kfree_hook(object);
3209 __free_pages(page, compound_order(page));
3210 p[size] = NULL; /* mark object processed */
3211 return size;
3212 }
3213 /* Derive kmem_cache from object */
3214 df->s = page->slab_cache;
3215 } else {
3216 df->s = cache_from_obj(s, object); /* Support for memcg */
3217 }
3218
3219 /* Start new detached freelist */
3220 df->page = page;
3221 set_freepointer(df->s, object, NULL);
3222 df->tail = object;
3223 df->freelist = object;
3224 p[size] = NULL; /* mark object processed */
3225 df->cnt = 1;
3226
3227 while (size) {
3228 object = p[--size];
3229 if (!object)
3230 continue; /* Skip processed objects */
3231
3232 /* df->page is always set at this point */
3233 if (df->page == virt_to_head_page(object)) {
3234 /* Opportunity build freelist */
3235 set_freepointer(df->s, object, df->freelist);
3236 df->freelist = object;
3237 df->cnt++;
3238 p[size] = NULL; /* mark object processed */
3239
3240 continue;
3241 }
3242
3243 /* Limit look ahead search */
3244 if (!--lookahead)
3245 break;
3246
3247 if (!first_skipped_index)
3248 first_skipped_index = size + 1;
3249 }
3250
3251 return first_skipped_index;
3252 }
3253
3254 /* Note that interrupts must be enabled when calling this function. */
3255 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3256 {
3257 if (WARN_ON(!size))
3258 return;
3259
3260 do {
3261 struct detached_freelist df;
3262
3263 size = build_detached_freelist(s, size, p, &df);
3264 if (!df.page)
3265 continue;
3266
3267 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3268 } while (likely(size));
3269 }
3270 EXPORT_SYMBOL(kmem_cache_free_bulk);
3271
3272 /* Note that interrupts must be enabled when calling this function. */
3273 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3274 void **p)
3275 {
3276 struct kmem_cache_cpu *c;
3277 int i;
3278 struct obj_cgroup *objcg = NULL;
3279
3280 /* memcg and kmem_cache debug support */
3281 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3282 if (unlikely(!s))
3283 return false;
3284 /*
3285 * Drain objects in the per cpu slab, while disabling local
3286 * IRQs, which protects against PREEMPT and interrupts
3287 * handlers invoking normal fastpath.
3288 */
3289 local_irq_disable();
3290 c = this_cpu_ptr(s->cpu_slab);
3291
3292 for (i = 0; i < size; i++) {
3293 void *object = c->freelist;
3294
3295 if (unlikely(!object)) {
3296 /*
3297 * We may have removed an object from c->freelist using
3298 * the fastpath in the previous iteration; in that case,
3299 * c->tid has not been bumped yet.
3300 * Since ___slab_alloc() may reenable interrupts while
3301 * allocating memory, we should bump c->tid now.
3302 */
3303 c->tid = next_tid(c->tid);
3304
3305 /*
3306 * Invoking slow path likely have side-effect
3307 * of re-populating per CPU c->freelist
3308 */
3309 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3310 _RET_IP_, c);
3311 if (unlikely(!p[i]))
3312 goto error;
3313
3314 c = this_cpu_ptr(s->cpu_slab);
3315 maybe_wipe_obj_freeptr(s, p[i]);
3316
3317 continue; /* goto for-loop */
3318 }
3319 c->freelist = get_freepointer(s, object);
3320 p[i] = object;
3321 maybe_wipe_obj_freeptr(s, p[i]);
3322 }
3323 c->tid = next_tid(c->tid);
3324 local_irq_enable();
3325
3326 /* Clear memory outside IRQ disabled fastpath loop */
3327 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3328 int j;
3329
3330 for (j = 0; j < i; j++)
3331 memset(p[j], 0, s->object_size);
3332 }
3333
3334 /* memcg and kmem_cache debug support */
3335 slab_post_alloc_hook(s, objcg, flags, size, p);
3336 return i;
3337 error:
3338 local_irq_enable();
3339 slab_post_alloc_hook(s, objcg, flags, i, p);
3340 __kmem_cache_free_bulk(s, i, p);
3341 return 0;
3342 }
3343 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3344
3345
3346 /*
3347 * Object placement in a slab is made very easy because we always start at
3348 * offset 0. If we tune the size of the object to the alignment then we can
3349 * get the required alignment by putting one properly sized object after
3350 * another.
3351 *
3352 * Notice that the allocation order determines the sizes of the per cpu
3353 * caches. Each processor has always one slab available for allocations.
3354 * Increasing the allocation order reduces the number of times that slabs
3355 * must be moved on and off the partial lists and is therefore a factor in
3356 * locking overhead.
3357 */
3358
3359 /*
3360 * Mininum / Maximum order of slab pages. This influences locking overhead
3361 * and slab fragmentation. A higher order reduces the number of partial slabs
3362 * and increases the number of allocations possible without having to
3363 * take the list_lock.
3364 */
3365 static unsigned int slub_min_order;
3366 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3367 static unsigned int slub_min_objects;
3368
3369 /*
3370 * Calculate the order of allocation given an slab object size.
3371 *
3372 * The order of allocation has significant impact on performance and other
3373 * system components. Generally order 0 allocations should be preferred since
3374 * order 0 does not cause fragmentation in the page allocator. Larger objects
3375 * be problematic to put into order 0 slabs because there may be too much
3376 * unused space left. We go to a higher order if more than 1/16th of the slab
3377 * would be wasted.
3378 *
3379 * In order to reach satisfactory performance we must ensure that a minimum
3380 * number of objects is in one slab. Otherwise we may generate too much
3381 * activity on the partial lists which requires taking the list_lock. This is
3382 * less a concern for large slabs though which are rarely used.
3383 *
3384 * slub_max_order specifies the order where we begin to stop considering the
3385 * number of objects in a slab as critical. If we reach slub_max_order then
3386 * we try to keep the page order as low as possible. So we accept more waste
3387 * of space in favor of a small page order.
3388 *
3389 * Higher order allocations also allow the placement of more objects in a
3390 * slab and thereby reduce object handling overhead. If the user has
3391 * requested a higher mininum order then we start with that one instead of
3392 * the smallest order which will fit the object.
3393 */
3394 static inline unsigned int slab_order(unsigned int size,
3395 unsigned int min_objects, unsigned int max_order,
3396 unsigned int fract_leftover)
3397 {
3398 unsigned int min_order = slub_min_order;
3399 unsigned int order;
3400
3401 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3402 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3403
3404 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3405 order <= max_order; order++) {
3406
3407 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3408 unsigned int rem;
3409
3410 rem = slab_size % size;
3411
3412 if (rem <= slab_size / fract_leftover)
3413 break;
3414 }
3415
3416 return order;
3417 }
3418
3419 static inline int calculate_order(unsigned int size)
3420 {
3421 unsigned int order;
3422 unsigned int min_objects;
3423 unsigned int max_objects;
3424
3425 /*
3426 * Attempt to find best configuration for a slab. This
3427 * works by first attempting to generate a layout with
3428 * the best configuration and backing off gradually.
3429 *
3430 * First we increase the acceptable waste in a slab. Then
3431 * we reduce the minimum objects required in a slab.
3432 */
3433 min_objects = slub_min_objects;
3434 if (!min_objects)
3435 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3436 max_objects = order_objects(slub_max_order, size);
3437 min_objects = min(min_objects, max_objects);
3438
3439 while (min_objects > 1) {
3440 unsigned int fraction;
3441
3442 fraction = 16;
3443 while (fraction >= 4) {
3444 order = slab_order(size, min_objects,
3445 slub_max_order, fraction);
3446 if (order <= slub_max_order)
3447 return order;
3448 fraction /= 2;
3449 }
3450 min_objects--;
3451 }
3452
3453 /*
3454 * We were unable to place multiple objects in a slab. Now
3455 * lets see if we can place a single object there.
3456 */
3457 order = slab_order(size, 1, slub_max_order, 1);
3458 if (order <= slub_max_order)
3459 return order;
3460
3461 /*
3462 * Doh this slab cannot be placed using slub_max_order.
3463 */
3464 order = slab_order(size, 1, MAX_ORDER, 1);
3465 if (order < MAX_ORDER)
3466 return order;
3467 return -ENOSYS;
3468 }
3469
3470 static void
3471 init_kmem_cache_node(struct kmem_cache_node *n)
3472 {
3473 n->nr_partial = 0;
3474 spin_lock_init(&n->list_lock);
3475 INIT_LIST_HEAD(&n->partial);
3476 #ifdef CONFIG_SLUB_DEBUG
3477 atomic_long_set(&n->nr_slabs, 0);
3478 atomic_long_set(&n->total_objects, 0);
3479 INIT_LIST_HEAD(&n->full);
3480 #endif
3481 }
3482
3483 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3484 {
3485 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3486 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3487
3488 /*
3489 * Must align to double word boundary for the double cmpxchg
3490 * instructions to work; see __pcpu_double_call_return_bool().
3491 */
3492 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3493 2 * sizeof(void *));
3494
3495 if (!s->cpu_slab)
3496 return 0;
3497
3498 init_kmem_cache_cpus(s);
3499
3500 return 1;
3501 }
3502
3503 static struct kmem_cache *kmem_cache_node;
3504
3505 /*
3506 * No kmalloc_node yet so do it by hand. We know that this is the first
3507 * slab on the node for this slabcache. There are no concurrent accesses
3508 * possible.
3509 *
3510 * Note that this function only works on the kmem_cache_node
3511 * when allocating for the kmem_cache_node. This is used for bootstrapping
3512 * memory on a fresh node that has no slab structures yet.
3513 */
3514 static void early_kmem_cache_node_alloc(int node)
3515 {
3516 struct page *page;
3517 struct kmem_cache_node *n;
3518
3519 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3520
3521 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3522
3523 BUG_ON(!page);
3524 if (page_to_nid(page) != node) {
3525 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3526 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3527 }
3528
3529 n = page->freelist;
3530 BUG_ON(!n);
3531 #ifdef CONFIG_SLUB_DEBUG
3532 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3533 init_tracking(kmem_cache_node, n);
3534 #endif
3535 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3536 GFP_KERNEL);
3537 page->freelist = get_freepointer(kmem_cache_node, n);
3538 page->inuse = 1;
3539 page->frozen = 0;
3540 kmem_cache_node->node[node] = n;
3541 init_kmem_cache_node(n);
3542 inc_slabs_node(kmem_cache_node, node, page->objects);
3543
3544 /*
3545 * No locks need to be taken here as it has just been
3546 * initialized and there is no concurrent access.
3547 */
3548 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3549 }
3550
3551 static void free_kmem_cache_nodes(struct kmem_cache *s)
3552 {
3553 int node;
3554 struct kmem_cache_node *n;
3555
3556 for_each_kmem_cache_node(s, node, n) {
3557 s->node[node] = NULL;
3558 kmem_cache_free(kmem_cache_node, n);
3559 }
3560 }
3561
3562 void __kmem_cache_release(struct kmem_cache *s)
3563 {
3564 cache_random_seq_destroy(s);
3565 free_percpu(s->cpu_slab);
3566 free_kmem_cache_nodes(s);
3567 }
3568
3569 static int init_kmem_cache_nodes(struct kmem_cache *s)
3570 {
3571 int node;
3572
3573 for_each_node_state(node, N_NORMAL_MEMORY) {
3574 struct kmem_cache_node *n;
3575
3576 if (slab_state == DOWN) {
3577 early_kmem_cache_node_alloc(node);
3578 continue;
3579 }
3580 n = kmem_cache_alloc_node(kmem_cache_node,
3581 GFP_KERNEL, node);
3582
3583 if (!n) {
3584 free_kmem_cache_nodes(s);
3585 return 0;
3586 }
3587
3588 init_kmem_cache_node(n);
3589 s->node[node] = n;
3590 }
3591 return 1;
3592 }
3593
3594 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3595 {
3596 if (min < MIN_PARTIAL)
3597 min = MIN_PARTIAL;
3598 else if (min > MAX_PARTIAL)
3599 min = MAX_PARTIAL;
3600 s->min_partial = min;
3601 }
3602
3603 static void set_cpu_partial(struct kmem_cache *s)
3604 {
3605 #ifdef CONFIG_SLUB_CPU_PARTIAL
3606 /*
3607 * cpu_partial determined the maximum number of objects kept in the
3608 * per cpu partial lists of a processor.
3609 *
3610 * Per cpu partial lists mainly contain slabs that just have one
3611 * object freed. If they are used for allocation then they can be
3612 * filled up again with minimal effort. The slab will never hit the
3613 * per node partial lists and therefore no locking will be required.
3614 *
3615 * This setting also determines
3616 *
3617 * A) The number of objects from per cpu partial slabs dumped to the
3618 * per node list when we reach the limit.
3619 * B) The number of objects in cpu partial slabs to extract from the
3620 * per node list when we run out of per cpu objects. We only fetch
3621 * 50% to keep some capacity around for frees.
3622 */
3623 if (!kmem_cache_has_cpu_partial(s))
3624 slub_set_cpu_partial(s, 0);
3625 else if (s->size >= PAGE_SIZE)
3626 slub_set_cpu_partial(s, 2);
3627 else if (s->size >= 1024)
3628 slub_set_cpu_partial(s, 6);
3629 else if (s->size >= 256)
3630 slub_set_cpu_partial(s, 13);
3631 else
3632 slub_set_cpu_partial(s, 30);
3633 #endif
3634 }
3635
3636 /*
3637 * calculate_sizes() determines the order and the distribution of data within
3638 * a slab object.
3639 */
3640 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3641 {
3642 slab_flags_t flags = s->flags;
3643 unsigned int size = s->object_size;
3644 unsigned int freepointer_area;
3645 unsigned int order;
3646
3647 /*
3648 * Round up object size to the next word boundary. We can only
3649 * place the free pointer at word boundaries and this determines
3650 * the possible location of the free pointer.
3651 */
3652 size = ALIGN(size, sizeof(void *));
3653 /*
3654 * This is the area of the object where a freepointer can be
3655 * safely written. If redzoning adds more to the inuse size, we
3656 * can't use that portion for writing the freepointer, so
3657 * s->offset must be limited within this for the general case.
3658 */
3659 freepointer_area = size;
3660
3661 #ifdef CONFIG_SLUB_DEBUG
3662 /*
3663 * Determine if we can poison the object itself. If the user of
3664 * the slab may touch the object after free or before allocation
3665 * then we should never poison the object itself.
3666 */
3667 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3668 !s->ctor)
3669 s->flags |= __OBJECT_POISON;
3670 else
3671 s->flags &= ~__OBJECT_POISON;
3672
3673
3674 /*
3675 * If we are Redzoning then check if there is some space between the
3676 * end of the object and the free pointer. If not then add an
3677 * additional word to have some bytes to store Redzone information.
3678 */
3679 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3680 size += sizeof(void *);
3681 #endif
3682
3683 /*
3684 * With that we have determined the number of bytes in actual use
3685 * by the object. This is the potential offset to the free pointer.
3686 */
3687 s->inuse = size;
3688
3689 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3690 s->ctor)) {
3691 /*
3692 * Relocate free pointer after the object if it is not
3693 * permitted to overwrite the first word of the object on
3694 * kmem_cache_free.
3695 *
3696 * This is the case if we do RCU, have a constructor or
3697 * destructor or are poisoning the objects.
3698 *
3699 * The assumption that s->offset >= s->inuse means free
3700 * pointer is outside of the object is used in the
3701 * freeptr_outside_object() function. If that is no
3702 * longer true, the function needs to be modified.
3703 */
3704 s->offset = size;
3705 size += sizeof(void *);
3706 } else if (freepointer_area > sizeof(void *)) {
3707 /*
3708 * Store freelist pointer near middle of object to keep
3709 * it away from the edges of the object to avoid small
3710 * sized over/underflows from neighboring allocations.
3711 */
3712 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3713 }
3714
3715 #ifdef CONFIG_SLUB_DEBUG
3716 if (flags & SLAB_STORE_USER)
3717 /*
3718 * Need to store information about allocs and frees after
3719 * the object.
3720 */
3721 size += 2 * sizeof(struct track);
3722 #endif
3723
3724 kasan_cache_create(s, &size, &s->flags);
3725 #ifdef CONFIG_SLUB_DEBUG
3726 if (flags & SLAB_RED_ZONE) {
3727 /*
3728 * Add some empty padding so that we can catch
3729 * overwrites from earlier objects rather than let
3730 * tracking information or the free pointer be
3731 * corrupted if a user writes before the start
3732 * of the object.
3733 */
3734 size += sizeof(void *);
3735
3736 s->red_left_pad = sizeof(void *);
3737 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3738 size += s->red_left_pad;
3739 }
3740 #endif
3741
3742 /*
3743 * SLUB stores one object immediately after another beginning from
3744 * offset 0. In order to align the objects we have to simply size
3745 * each object to conform to the alignment.
3746 */
3747 size = ALIGN(size, s->align);
3748 s->size = size;
3749 s->reciprocal_size = reciprocal_value(size);
3750 if (forced_order >= 0)
3751 order = forced_order;
3752 else
3753 order = calculate_order(size);
3754
3755 if ((int)order < 0)
3756 return 0;
3757
3758 s->allocflags = 0;
3759 if (order)
3760 s->allocflags |= __GFP_COMP;
3761
3762 if (s->flags & SLAB_CACHE_DMA)
3763 s->allocflags |= GFP_DMA;
3764
3765 if (s->flags & SLAB_CACHE_DMA32)
3766 s->allocflags |= GFP_DMA32;
3767
3768 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3769 s->allocflags |= __GFP_RECLAIMABLE;
3770
3771 /*
3772 * Determine the number of objects per slab
3773 */
3774 s->oo = oo_make(order, size);
3775 s->min = oo_make(get_order(size), size);
3776 if (oo_objects(s->oo) > oo_objects(s->max))
3777 s->max = s->oo;
3778
3779 return !!oo_objects(s->oo);
3780 }
3781
3782 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3783 {
3784 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3785 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3786 s->random = get_random_long();
3787 #endif
3788
3789 if (!calculate_sizes(s, -1))
3790 goto error;
3791 if (disable_higher_order_debug) {
3792 /*
3793 * Disable debugging flags that store metadata if the min slab
3794 * order increased.
3795 */
3796 if (get_order(s->size) > get_order(s->object_size)) {
3797 s->flags &= ~DEBUG_METADATA_FLAGS;
3798 s->offset = 0;
3799 if (!calculate_sizes(s, -1))
3800 goto error;
3801 }
3802 }
3803
3804 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3805 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3806 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3807 /* Enable fast mode */
3808 s->flags |= __CMPXCHG_DOUBLE;
3809 #endif
3810
3811 /*
3812 * The larger the object size is, the more pages we want on the partial
3813 * list to avoid pounding the page allocator excessively.
3814 */
3815 set_min_partial(s, ilog2(s->size) / 2);
3816
3817 set_cpu_partial(s);
3818
3819 #ifdef CONFIG_NUMA
3820 s->remote_node_defrag_ratio = 1000;
3821 #endif
3822
3823 /* Initialize the pre-computed randomized freelist if slab is up */
3824 if (slab_state >= UP) {
3825 if (init_cache_random_seq(s))
3826 goto error;
3827 }
3828
3829 if (!init_kmem_cache_nodes(s))
3830 goto error;
3831
3832 if (alloc_kmem_cache_cpus(s))
3833 return 0;
3834
3835 free_kmem_cache_nodes(s);
3836 error:
3837 return -EINVAL;
3838 }
3839
3840 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3841 const char *text)
3842 {
3843 #ifdef CONFIG_SLUB_DEBUG
3844 void *addr = page_address(page);
3845 unsigned long *map;
3846 void *p;
3847
3848 slab_err(s, page, text, s->name);
3849 slab_lock(page);
3850
3851 map = get_map(s, page);
3852 for_each_object(p, s, addr, page->objects) {
3853
3854 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3855 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3856 print_tracking(s, p);
3857 }
3858 }
3859 put_map(map);
3860 slab_unlock(page);
3861 #endif
3862 }
3863
3864 /*
3865 * Attempt to free all partial slabs on a node.
3866 * This is called from __kmem_cache_shutdown(). We must take list_lock
3867 * because sysfs file might still access partial list after the shutdowning.
3868 */
3869 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3870 {
3871 LIST_HEAD(discard);
3872 struct page *page, *h;
3873
3874 BUG_ON(irqs_disabled());
3875 spin_lock_irq(&n->list_lock);
3876 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3877 if (!page->inuse) {
3878 remove_partial(n, page);
3879 list_add(&page->slab_list, &discard);
3880 } else {
3881 list_slab_objects(s, page,
3882 "Objects remaining in %s on __kmem_cache_shutdown()");
3883 }
3884 }
3885 spin_unlock_irq(&n->list_lock);
3886
3887 list_for_each_entry_safe(page, h, &discard, slab_list)
3888 discard_slab(s, page);
3889 }
3890
3891 bool __kmem_cache_empty(struct kmem_cache *s)
3892 {
3893 int node;
3894 struct kmem_cache_node *n;
3895
3896 for_each_kmem_cache_node(s, node, n)
3897 if (n->nr_partial || slabs_node(s, node))
3898 return false;
3899 return true;
3900 }
3901
3902 /*
3903 * Release all resources used by a slab cache.
3904 */
3905 int __kmem_cache_shutdown(struct kmem_cache *s)
3906 {
3907 int node;
3908 struct kmem_cache_node *n;
3909
3910 flush_all(s);
3911 /* Attempt to free all objects */
3912 for_each_kmem_cache_node(s, node, n) {
3913 free_partial(s, n);
3914 if (n->nr_partial || slabs_node(s, node))
3915 return 1;
3916 }
3917 return 0;
3918 }
3919
3920 /********************************************************************
3921 * Kmalloc subsystem
3922 *******************************************************************/
3923
3924 static int __init setup_slub_min_order(char *str)
3925 {
3926 get_option(&str, (int *)&slub_min_order);
3927
3928 return 1;
3929 }
3930
3931 __setup("slub_min_order=", setup_slub_min_order);
3932
3933 static int __init setup_slub_max_order(char *str)
3934 {
3935 get_option(&str, (int *)&slub_max_order);
3936 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3937
3938 return 1;
3939 }
3940
3941 __setup("slub_max_order=", setup_slub_max_order);
3942
3943 static int __init setup_slub_min_objects(char *str)
3944 {
3945 get_option(&str, (int *)&slub_min_objects);
3946
3947 return 1;
3948 }
3949
3950 __setup("slub_min_objects=", setup_slub_min_objects);
3951
3952 void *__kmalloc(size_t size, gfp_t flags)
3953 {
3954 struct kmem_cache *s;
3955 void *ret;
3956
3957 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3958 return kmalloc_large(size, flags);
3959
3960 s = kmalloc_slab(size, flags);
3961
3962 if (unlikely(ZERO_OR_NULL_PTR(s)))
3963 return s;
3964
3965 ret = slab_alloc(s, flags, _RET_IP_);
3966
3967 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3968
3969 ret = kasan_kmalloc(s, ret, size, flags);
3970
3971 return ret;
3972 }
3973 EXPORT_SYMBOL(__kmalloc);
3974
3975 #ifdef CONFIG_NUMA
3976 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3977 {
3978 struct page *page;
3979 void *ptr = NULL;
3980 unsigned int order = get_order(size);
3981
3982 flags |= __GFP_COMP;
3983 page = alloc_pages_node(node, flags, order);
3984 if (page) {
3985 ptr = page_address(page);
3986 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3987 PAGE_SIZE << order);
3988 }
3989
3990 return kmalloc_large_node_hook(ptr, size, flags);
3991 }
3992
3993 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3994 {
3995 struct kmem_cache *s;
3996 void *ret;
3997
3998 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3999 ret = kmalloc_large_node(size, flags, node);
4000
4001 trace_kmalloc_node(_RET_IP_, ret,
4002 size, PAGE_SIZE << get_order(size),
4003 flags, node);
4004
4005 return ret;
4006 }
4007
4008 s = kmalloc_slab(size, flags);
4009
4010 if (unlikely(ZERO_OR_NULL_PTR(s)))
4011 return s;
4012
4013 ret = slab_alloc_node(s, flags, node, _RET_IP_);
4014
4015 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4016
4017 ret = kasan_kmalloc(s, ret, size, flags);
4018
4019 return ret;
4020 }
4021 EXPORT_SYMBOL(__kmalloc_node);
4022 #endif /* CONFIG_NUMA */
4023
4024 #ifdef CONFIG_HARDENED_USERCOPY
4025 /*
4026 * Rejects incorrectly sized objects and objects that are to be copied
4027 * to/from userspace but do not fall entirely within the containing slab
4028 * cache's usercopy region.
4029 *
4030 * Returns NULL if check passes, otherwise const char * to name of cache
4031 * to indicate an error.
4032 */
4033 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4034 bool to_user)
4035 {
4036 struct kmem_cache *s;
4037 unsigned int offset;
4038 size_t object_size;
4039
4040 ptr = kasan_reset_tag(ptr);
4041
4042 /* Find object and usable object size. */
4043 s = page->slab_cache;
4044
4045 /* Reject impossible pointers. */
4046 if (ptr < page_address(page))
4047 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4048 to_user, 0, n);
4049
4050 /* Find offset within object. */
4051 offset = (ptr - page_address(page)) % s->size;
4052
4053 /* Adjust for redzone and reject if within the redzone. */
4054 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4055 if (offset < s->red_left_pad)
4056 usercopy_abort("SLUB object in left red zone",
4057 s->name, to_user, offset, n);
4058 offset -= s->red_left_pad;
4059 }
4060
4061 /* Allow address range falling entirely within usercopy region. */
4062 if (offset >= s->useroffset &&
4063 offset - s->useroffset <= s->usersize &&
4064 n <= s->useroffset - offset + s->usersize)
4065 return;
4066
4067 /*
4068 * If the copy is still within the allocated object, produce
4069 * a warning instead of rejecting the copy. This is intended
4070 * to be a temporary method to find any missing usercopy
4071 * whitelists.
4072 */
4073 object_size = slab_ksize(s);
4074 if (usercopy_fallback &&
4075 offset <= object_size && n <= object_size - offset) {
4076 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4077 return;
4078 }
4079
4080 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4081 }
4082 #endif /* CONFIG_HARDENED_USERCOPY */
4083
4084 size_t __ksize(const void *object)
4085 {
4086 struct page *page;
4087
4088 if (unlikely(object == ZERO_SIZE_PTR))
4089 return 0;
4090
4091 page = virt_to_head_page(object);
4092
4093 if (unlikely(!PageSlab(page))) {
4094 WARN_ON(!PageCompound(page));
4095 return page_size(page);
4096 }
4097
4098 return slab_ksize(page->slab_cache);
4099 }
4100 EXPORT_SYMBOL(__ksize);
4101
4102 void kfree(const void *x)
4103 {
4104 struct page *page;
4105 void *object = (void *)x;
4106
4107 trace_kfree(_RET_IP_, x);
4108
4109 if (unlikely(ZERO_OR_NULL_PTR(x)))
4110 return;
4111
4112 page = virt_to_head_page(x);
4113 if (unlikely(!PageSlab(page))) {
4114 unsigned int order = compound_order(page);
4115
4116 BUG_ON(!PageCompound(page));
4117 kfree_hook(object);
4118 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4119 -(PAGE_SIZE << order));
4120 __free_pages(page, order);
4121 return;
4122 }
4123 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4124 }
4125 EXPORT_SYMBOL(kfree);
4126
4127 #define SHRINK_PROMOTE_MAX 32
4128
4129 /*
4130 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4131 * up most to the head of the partial lists. New allocations will then
4132 * fill those up and thus they can be removed from the partial lists.
4133 *
4134 * The slabs with the least items are placed last. This results in them
4135 * being allocated from last increasing the chance that the last objects
4136 * are freed in them.
4137 */
4138 int __kmem_cache_shrink(struct kmem_cache *s)
4139 {
4140 int node;
4141 int i;
4142 struct kmem_cache_node *n;
4143 struct page *page;
4144 struct page *t;
4145 struct list_head discard;
4146 struct list_head promote[SHRINK_PROMOTE_MAX];
4147 unsigned long flags;
4148 int ret = 0;
4149
4150 flush_all(s);
4151 for_each_kmem_cache_node(s, node, n) {
4152 INIT_LIST_HEAD(&discard);
4153 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4154 INIT_LIST_HEAD(promote + i);
4155
4156 spin_lock_irqsave(&n->list_lock, flags);
4157
4158 /*
4159 * Build lists of slabs to discard or promote.
4160 *
4161 * Note that concurrent frees may occur while we hold the
4162 * list_lock. page->inuse here is the upper limit.
4163 */
4164 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4165 int free = page->objects - page->inuse;
4166
4167 /* Do not reread page->inuse */
4168 barrier();
4169
4170 /* We do not keep full slabs on the list */
4171 BUG_ON(free <= 0);
4172
4173 if (free == page->objects) {
4174 list_move(&page->slab_list, &discard);
4175 n->nr_partial--;
4176 } else if (free <= SHRINK_PROMOTE_MAX)
4177 list_move(&page->slab_list, promote + free - 1);
4178 }
4179
4180 /*
4181 * Promote the slabs filled up most to the head of the
4182 * partial list.
4183 */
4184 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4185 list_splice(promote + i, &n->partial);
4186
4187 spin_unlock_irqrestore(&n->list_lock, flags);
4188
4189 /* Release empty slabs */
4190 list_for_each_entry_safe(page, t, &discard, slab_list)
4191 discard_slab(s, page);
4192
4193 if (slabs_node(s, node))
4194 ret = 1;
4195 }
4196
4197 return ret;
4198 }
4199
4200 static int slab_mem_going_offline_callback(void *arg)
4201 {
4202 struct kmem_cache *s;
4203
4204 mutex_lock(&slab_mutex);
4205 list_for_each_entry(s, &slab_caches, list)
4206 __kmem_cache_shrink(s);
4207 mutex_unlock(&slab_mutex);
4208
4209 return 0;
4210 }
4211
4212 static void slab_mem_offline_callback(void *arg)
4213 {
4214 struct kmem_cache_node *n;
4215 struct kmem_cache *s;
4216 struct memory_notify *marg = arg;
4217 int offline_node;
4218
4219 offline_node = marg->status_change_nid_normal;
4220
4221 /*
4222 * If the node still has available memory. we need kmem_cache_node
4223 * for it yet.
4224 */
4225 if (offline_node < 0)
4226 return;
4227
4228 mutex_lock(&slab_mutex);
4229 list_for_each_entry(s, &slab_caches, list) {
4230 n = get_node(s, offline_node);
4231 if (n) {
4232 /*
4233 * if n->nr_slabs > 0, slabs still exist on the node
4234 * that is going down. We were unable to free them,
4235 * and offline_pages() function shouldn't call this
4236 * callback. So, we must fail.
4237 */
4238 BUG_ON(slabs_node(s, offline_node));
4239
4240 s->node[offline_node] = NULL;
4241 kmem_cache_free(kmem_cache_node, n);
4242 }
4243 }
4244 mutex_unlock(&slab_mutex);
4245 }
4246
4247 static int slab_mem_going_online_callback(void *arg)
4248 {
4249 struct kmem_cache_node *n;
4250 struct kmem_cache *s;
4251 struct memory_notify *marg = arg;
4252 int nid = marg->status_change_nid_normal;
4253 int ret = 0;
4254
4255 /*
4256 * If the node's memory is already available, then kmem_cache_node is
4257 * already created. Nothing to do.
4258 */
4259 if (nid < 0)
4260 return 0;
4261
4262 /*
4263 * We are bringing a node online. No memory is available yet. We must
4264 * allocate a kmem_cache_node structure in order to bring the node
4265 * online.
4266 */
4267 mutex_lock(&slab_mutex);
4268 list_for_each_entry(s, &slab_caches, list) {
4269 /*
4270 * XXX: kmem_cache_alloc_node will fallback to other nodes
4271 * since memory is not yet available from the node that
4272 * is brought up.
4273 */
4274 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4275 if (!n) {
4276 ret = -ENOMEM;
4277 goto out;
4278 }
4279 init_kmem_cache_node(n);
4280 s->node[nid] = n;
4281 }
4282 out:
4283 mutex_unlock(&slab_mutex);
4284 return ret;
4285 }
4286
4287 static int slab_memory_callback(struct notifier_block *self,
4288 unsigned long action, void *arg)
4289 {
4290 int ret = 0;
4291
4292 switch (action) {
4293 case MEM_GOING_ONLINE:
4294 ret = slab_mem_going_online_callback(arg);
4295 break;
4296 case MEM_GOING_OFFLINE:
4297 ret = slab_mem_going_offline_callback(arg);
4298 break;
4299 case MEM_OFFLINE:
4300 case MEM_CANCEL_ONLINE:
4301 slab_mem_offline_callback(arg);
4302 break;
4303 case MEM_ONLINE:
4304 case MEM_CANCEL_OFFLINE:
4305 break;
4306 }
4307 if (ret)
4308 ret = notifier_from_errno(ret);
4309 else
4310 ret = NOTIFY_OK;
4311 return ret;
4312 }
4313
4314 static struct notifier_block slab_memory_callback_nb = {
4315 .notifier_call = slab_memory_callback,
4316 .priority = SLAB_CALLBACK_PRI,
4317 };
4318
4319 /********************************************************************
4320 * Basic setup of slabs
4321 *******************************************************************/
4322
4323 /*
4324 * Used for early kmem_cache structures that were allocated using
4325 * the page allocator. Allocate them properly then fix up the pointers
4326 * that may be pointing to the wrong kmem_cache structure.
4327 */
4328
4329 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4330 {
4331 int node;
4332 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4333 struct kmem_cache_node *n;
4334
4335 memcpy(s, static_cache, kmem_cache->object_size);
4336
4337 /*
4338 * This runs very early, and only the boot processor is supposed to be
4339 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4340 * IPIs around.
4341 */
4342 __flush_cpu_slab(s, smp_processor_id());
4343 for_each_kmem_cache_node(s, node, n) {
4344 struct page *p;
4345
4346 list_for_each_entry(p, &n->partial, slab_list)
4347 p->slab_cache = s;
4348
4349 #ifdef CONFIG_SLUB_DEBUG
4350 list_for_each_entry(p, &n->full, slab_list)
4351 p->slab_cache = s;
4352 #endif
4353 }
4354 list_add(&s->list, &slab_caches);
4355 return s;
4356 }
4357
4358 void __init kmem_cache_init(void)
4359 {
4360 static __initdata struct kmem_cache boot_kmem_cache,
4361 boot_kmem_cache_node;
4362
4363 if (debug_guardpage_minorder())
4364 slub_max_order = 0;
4365
4366 kmem_cache_node = &boot_kmem_cache_node;
4367 kmem_cache = &boot_kmem_cache;
4368
4369 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4370 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4371
4372 register_hotmemory_notifier(&slab_memory_callback_nb);
4373
4374 /* Able to allocate the per node structures */
4375 slab_state = PARTIAL;
4376
4377 create_boot_cache(kmem_cache, "kmem_cache",
4378 offsetof(struct kmem_cache, node) +
4379 nr_node_ids * sizeof(struct kmem_cache_node *),
4380 SLAB_HWCACHE_ALIGN, 0, 0);
4381
4382 kmem_cache = bootstrap(&boot_kmem_cache);
4383 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4384
4385 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4386 setup_kmalloc_cache_index_table();
4387 create_kmalloc_caches(0);
4388
4389 /* Setup random freelists for each cache */
4390 init_freelist_randomization();
4391
4392 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4393 slub_cpu_dead);
4394
4395 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4396 cache_line_size(),
4397 slub_min_order, slub_max_order, slub_min_objects,
4398 nr_cpu_ids, nr_node_ids);
4399 }
4400
4401 void __init kmem_cache_init_late(void)
4402 {
4403 }
4404
4405 struct kmem_cache *
4406 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4407 slab_flags_t flags, void (*ctor)(void *))
4408 {
4409 struct kmem_cache *s;
4410
4411 s = find_mergeable(size, align, flags, name, ctor);
4412 if (s) {
4413 s->refcount++;
4414
4415 /*
4416 * Adjust the object sizes so that we clear
4417 * the complete object on kzalloc.
4418 */
4419 s->object_size = max(s->object_size, size);
4420 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4421
4422 if (sysfs_slab_alias(s, name)) {
4423 s->refcount--;
4424 s = NULL;
4425 }
4426 }
4427
4428 return s;
4429 }
4430
4431 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4432 {
4433 int err;
4434
4435 err = kmem_cache_open(s, flags);
4436 if (err)
4437 return err;
4438
4439 /* Mutex is not taken during early boot */
4440 if (slab_state <= UP)
4441 return 0;
4442
4443 err = sysfs_slab_add(s);
4444 if (err)
4445 __kmem_cache_release(s);
4446
4447 return err;
4448 }
4449
4450 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4451 {
4452 struct kmem_cache *s;
4453 void *ret;
4454
4455 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4456 return kmalloc_large(size, gfpflags);
4457
4458 s = kmalloc_slab(size, gfpflags);
4459
4460 if (unlikely(ZERO_OR_NULL_PTR(s)))
4461 return s;
4462
4463 ret = slab_alloc(s, gfpflags, caller);
4464
4465 /* Honor the call site pointer we received. */
4466 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4467
4468 return ret;
4469 }
4470 EXPORT_SYMBOL(__kmalloc_track_caller);
4471
4472 #ifdef CONFIG_NUMA
4473 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4474 int node, unsigned long caller)
4475 {
4476 struct kmem_cache *s;
4477 void *ret;
4478
4479 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4480 ret = kmalloc_large_node(size, gfpflags, node);
4481
4482 trace_kmalloc_node(caller, ret,
4483 size, PAGE_SIZE << get_order(size),
4484 gfpflags, node);
4485
4486 return ret;
4487 }
4488
4489 s = kmalloc_slab(size, gfpflags);
4490
4491 if (unlikely(ZERO_OR_NULL_PTR(s)))
4492 return s;
4493
4494 ret = slab_alloc_node(s, gfpflags, node, caller);
4495
4496 /* Honor the call site pointer we received. */
4497 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4498
4499 return ret;
4500 }
4501 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4502 #endif
4503
4504 #ifdef CONFIG_SYSFS
4505 static int count_inuse(struct page *page)
4506 {
4507 return page->inuse;
4508 }
4509
4510 static int count_total(struct page *page)
4511 {
4512 return page->objects;
4513 }
4514 #endif
4515
4516 #ifdef CONFIG_SLUB_DEBUG
4517 static void validate_slab(struct kmem_cache *s, struct page *page)
4518 {
4519 void *p;
4520 void *addr = page_address(page);
4521 unsigned long *map;
4522
4523 slab_lock(page);
4524
4525 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4526 goto unlock;
4527
4528 /* Now we know that a valid freelist exists */
4529 map = get_map(s, page);
4530 for_each_object(p, s, addr, page->objects) {
4531 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4532 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4533
4534 if (!check_object(s, page, p, val))
4535 break;
4536 }
4537 put_map(map);
4538 unlock:
4539 slab_unlock(page);
4540 }
4541
4542 static int validate_slab_node(struct kmem_cache *s,
4543 struct kmem_cache_node *n)
4544 {
4545 unsigned long count = 0;
4546 struct page *page;
4547 unsigned long flags;
4548
4549 spin_lock_irqsave(&n->list_lock, flags);
4550
4551 list_for_each_entry(page, &n->partial, slab_list) {
4552 validate_slab(s, page);
4553 count++;
4554 }
4555 if (count != n->nr_partial)
4556 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4557 s->name, count, n->nr_partial);
4558
4559 if (!(s->flags & SLAB_STORE_USER))
4560 goto out;
4561
4562 list_for_each_entry(page, &n->full, slab_list) {
4563 validate_slab(s, page);
4564 count++;
4565 }
4566 if (count != atomic_long_read(&n->nr_slabs))
4567 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4568 s->name, count, atomic_long_read(&n->nr_slabs));
4569
4570 out:
4571 spin_unlock_irqrestore(&n->list_lock, flags);
4572 return count;
4573 }
4574
4575 static long validate_slab_cache(struct kmem_cache *s)
4576 {
4577 int node;
4578 unsigned long count = 0;
4579 struct kmem_cache_node *n;
4580
4581 flush_all(s);
4582 for_each_kmem_cache_node(s, node, n)
4583 count += validate_slab_node(s, n);
4584
4585 return count;
4586 }
4587 /*
4588 * Generate lists of code addresses where slabcache objects are allocated
4589 * and freed.
4590 */
4591
4592 struct location {
4593 unsigned long count;
4594 unsigned long addr;
4595 long long sum_time;
4596 long min_time;
4597 long max_time;
4598 long min_pid;
4599 long max_pid;
4600 DECLARE_BITMAP(cpus, NR_CPUS);
4601 nodemask_t nodes;
4602 };
4603
4604 struct loc_track {
4605 unsigned long max;
4606 unsigned long count;
4607 struct location *loc;
4608 };
4609
4610 static void free_loc_track(struct loc_track *t)
4611 {
4612 if (t->max)
4613 free_pages((unsigned long)t->loc,
4614 get_order(sizeof(struct location) * t->max));
4615 }
4616
4617 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4618 {
4619 struct location *l;
4620 int order;
4621
4622 order = get_order(sizeof(struct location) * max);
4623
4624 l = (void *)__get_free_pages(flags, order);
4625 if (!l)
4626 return 0;
4627
4628 if (t->count) {
4629 memcpy(l, t->loc, sizeof(struct location) * t->count);
4630 free_loc_track(t);
4631 }
4632 t->max = max;
4633 t->loc = l;
4634 return 1;
4635 }
4636
4637 static int add_location(struct loc_track *t, struct kmem_cache *s,
4638 const struct track *track)
4639 {
4640 long start, end, pos;
4641 struct location *l;
4642 unsigned long caddr;
4643 unsigned long age = jiffies - track->when;
4644
4645 start = -1;
4646 end = t->count;
4647
4648 for ( ; ; ) {
4649 pos = start + (end - start + 1) / 2;
4650
4651 /*
4652 * There is nothing at "end". If we end up there
4653 * we need to add something to before end.
4654 */
4655 if (pos == end)
4656 break;
4657
4658 caddr = t->loc[pos].addr;
4659 if (track->addr == caddr) {
4660
4661 l = &t->loc[pos];
4662 l->count++;
4663 if (track->when) {
4664 l->sum_time += age;
4665 if (age < l->min_time)
4666 l->min_time = age;
4667 if (age > l->max_time)
4668 l->max_time = age;
4669
4670 if (track->pid < l->min_pid)
4671 l->min_pid = track->pid;
4672 if (track->pid > l->max_pid)
4673 l->max_pid = track->pid;
4674
4675 cpumask_set_cpu(track->cpu,
4676 to_cpumask(l->cpus));
4677 }
4678 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4679 return 1;
4680 }
4681
4682 if (track->addr < caddr)
4683 end = pos;
4684 else
4685 start = pos;
4686 }
4687
4688 /*
4689 * Not found. Insert new tracking element.
4690 */
4691 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4692 return 0;
4693
4694 l = t->loc + pos;
4695 if (pos < t->count)
4696 memmove(l + 1, l,
4697 (t->count - pos) * sizeof(struct location));
4698 t->count++;
4699 l->count = 1;
4700 l->addr = track->addr;
4701 l->sum_time = age;
4702 l->min_time = age;
4703 l->max_time = age;
4704 l->min_pid = track->pid;
4705 l->max_pid = track->pid;
4706 cpumask_clear(to_cpumask(l->cpus));
4707 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4708 nodes_clear(l->nodes);
4709 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4710 return 1;
4711 }
4712
4713 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4714 struct page *page, enum track_item alloc)
4715 {
4716 void *addr = page_address(page);
4717 void *p;
4718 unsigned long *map;
4719
4720 map = get_map(s, page);
4721 for_each_object(p, s, addr, page->objects)
4722 if (!test_bit(__obj_to_index(s, addr, p), map))
4723 add_location(t, s, get_track(s, p, alloc));
4724 put_map(map);
4725 }
4726
4727 static int list_locations(struct kmem_cache *s, char *buf,
4728 enum track_item alloc)
4729 {
4730 int len = 0;
4731 unsigned long i;
4732 struct loc_track t = { 0, 0, NULL };
4733 int node;
4734 struct kmem_cache_node *n;
4735
4736 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4737 GFP_KERNEL)) {
4738 return sprintf(buf, "Out of memory\n");
4739 }
4740 /* Push back cpu slabs */
4741 flush_all(s);
4742
4743 for_each_kmem_cache_node(s, node, n) {
4744 unsigned long flags;
4745 struct page *page;
4746
4747 if (!atomic_long_read(&n->nr_slabs))
4748 continue;
4749
4750 spin_lock_irqsave(&n->list_lock, flags);
4751 list_for_each_entry(page, &n->partial, slab_list)
4752 process_slab(&t, s, page, alloc);
4753 list_for_each_entry(page, &n->full, slab_list)
4754 process_slab(&t, s, page, alloc);
4755 spin_unlock_irqrestore(&n->list_lock, flags);
4756 }
4757
4758 for (i = 0; i < t.count; i++) {
4759 struct location *l = &t.loc[i];
4760
4761 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4762 break;
4763 len += sprintf(buf + len, "%7ld ", l->count);
4764
4765 if (l->addr)
4766 len += sprintf(buf + len, "%pS", (void *)l->addr);
4767 else
4768 len += sprintf(buf + len, "<not-available>");
4769
4770 if (l->sum_time != l->min_time) {
4771 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4772 l->min_time,
4773 (long)div_u64(l->sum_time, l->count),
4774 l->max_time);
4775 } else
4776 len += sprintf(buf + len, " age=%ld",
4777 l->min_time);
4778
4779 if (l->min_pid != l->max_pid)
4780 len += sprintf(buf + len, " pid=%ld-%ld",
4781 l->min_pid, l->max_pid);
4782 else
4783 len += sprintf(buf + len, " pid=%ld",
4784 l->min_pid);
4785
4786 if (num_online_cpus() > 1 &&
4787 !cpumask_empty(to_cpumask(l->cpus)) &&
4788 len < PAGE_SIZE - 60)
4789 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4790 " cpus=%*pbl",
4791 cpumask_pr_args(to_cpumask(l->cpus)));
4792
4793 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4794 len < PAGE_SIZE - 60)
4795 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4796 " nodes=%*pbl",
4797 nodemask_pr_args(&l->nodes));
4798
4799 len += sprintf(buf + len, "\n");
4800 }
4801
4802 free_loc_track(&t);
4803 if (!t.count)
4804 len += sprintf(buf, "No data\n");
4805 return len;
4806 }
4807 #endif /* CONFIG_SLUB_DEBUG */
4808
4809 #ifdef SLUB_RESILIENCY_TEST
4810 static void __init resiliency_test(void)
4811 {
4812 u8 *p;
4813 int type = KMALLOC_NORMAL;
4814
4815 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4816
4817 pr_err("SLUB resiliency testing\n");
4818 pr_err("-----------------------\n");
4819 pr_err("A. Corruption after allocation\n");
4820
4821 p = kzalloc(16, GFP_KERNEL);
4822 p[16] = 0x12;
4823 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4824 p + 16);
4825
4826 validate_slab_cache(kmalloc_caches[type][4]);
4827
4828 /* Hmmm... The next two are dangerous */
4829 p = kzalloc(32, GFP_KERNEL);
4830 p[32 + sizeof(void *)] = 0x34;
4831 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4832 p);
4833 pr_err("If allocated object is overwritten then not detectable\n\n");
4834
4835 validate_slab_cache(kmalloc_caches[type][5]);
4836 p = kzalloc(64, GFP_KERNEL);
4837 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4838 *p = 0x56;
4839 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4840 p);
4841 pr_err("If allocated object is overwritten then not detectable\n\n");
4842 validate_slab_cache(kmalloc_caches[type][6]);
4843
4844 pr_err("\nB. Corruption after free\n");
4845 p = kzalloc(128, GFP_KERNEL);
4846 kfree(p);
4847 *p = 0x78;
4848 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4849 validate_slab_cache(kmalloc_caches[type][7]);
4850
4851 p = kzalloc(256, GFP_KERNEL);
4852 kfree(p);
4853 p[50] = 0x9a;
4854 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4855 validate_slab_cache(kmalloc_caches[type][8]);
4856
4857 p = kzalloc(512, GFP_KERNEL);
4858 kfree(p);
4859 p[512] = 0xab;
4860 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4861 validate_slab_cache(kmalloc_caches[type][9]);
4862 }
4863 #else
4864 #ifdef CONFIG_SYSFS
4865 static void resiliency_test(void) {};
4866 #endif
4867 #endif /* SLUB_RESILIENCY_TEST */
4868
4869 #ifdef CONFIG_SYSFS
4870 enum slab_stat_type {
4871 SL_ALL, /* All slabs */
4872 SL_PARTIAL, /* Only partially allocated slabs */
4873 SL_CPU, /* Only slabs used for cpu caches */
4874 SL_OBJECTS, /* Determine allocated objects not slabs */
4875 SL_TOTAL /* Determine object capacity not slabs */
4876 };
4877
4878 #define SO_ALL (1 << SL_ALL)
4879 #define SO_PARTIAL (1 << SL_PARTIAL)
4880 #define SO_CPU (1 << SL_CPU)
4881 #define SO_OBJECTS (1 << SL_OBJECTS)
4882 #define SO_TOTAL (1 << SL_TOTAL)
4883
4884 #ifdef CONFIG_MEMCG
4885 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4886
4887 static int __init setup_slub_memcg_sysfs(char *str)
4888 {
4889 int v;
4890
4891 if (get_option(&str, &v) > 0)
4892 memcg_sysfs_enabled = v;
4893
4894 return 1;
4895 }
4896
4897 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4898 #endif
4899
4900 static ssize_t show_slab_objects(struct kmem_cache *s,
4901 char *buf, unsigned long flags)
4902 {
4903 unsigned long total = 0;
4904 int node;
4905 int x;
4906 unsigned long *nodes;
4907
4908 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4909 if (!nodes)
4910 return -ENOMEM;
4911
4912 if (flags & SO_CPU) {
4913 int cpu;
4914
4915 for_each_possible_cpu(cpu) {
4916 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4917 cpu);
4918 int node;
4919 struct page *page;
4920
4921 page = READ_ONCE(c->page);
4922 if (!page)
4923 continue;
4924
4925 node = page_to_nid(page);
4926 if (flags & SO_TOTAL)
4927 x = page->objects;
4928 else if (flags & SO_OBJECTS)
4929 x = page->inuse;
4930 else
4931 x = 1;
4932
4933 total += x;
4934 nodes[node] += x;
4935
4936 page = slub_percpu_partial_read_once(c);
4937 if (page) {
4938 node = page_to_nid(page);
4939 if (flags & SO_TOTAL)
4940 WARN_ON_ONCE(1);
4941 else if (flags & SO_OBJECTS)
4942 WARN_ON_ONCE(1);
4943 else
4944 x = page->pages;
4945 total += x;
4946 nodes[node] += x;
4947 }
4948 }
4949 }
4950
4951 /*
4952 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4953 * already held which will conflict with an existing lock order:
4954 *
4955 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4956 *
4957 * We don't really need mem_hotplug_lock (to hold off
4958 * slab_mem_going_offline_callback) here because slab's memory hot
4959 * unplug code doesn't destroy the kmem_cache->node[] data.
4960 */
4961
4962 #ifdef CONFIG_SLUB_DEBUG
4963 if (flags & SO_ALL) {
4964 struct kmem_cache_node *n;
4965
4966 for_each_kmem_cache_node(s, node, n) {
4967
4968 if (flags & SO_TOTAL)
4969 x = atomic_long_read(&n->total_objects);
4970 else if (flags & SO_OBJECTS)
4971 x = atomic_long_read(&n->total_objects) -
4972 count_partial(n, count_free);
4973 else
4974 x = atomic_long_read(&n->nr_slabs);
4975 total += x;
4976 nodes[node] += x;
4977 }
4978
4979 } else
4980 #endif
4981 if (flags & SO_PARTIAL) {
4982 struct kmem_cache_node *n;
4983
4984 for_each_kmem_cache_node(s, node, n) {
4985 if (flags & SO_TOTAL)
4986 x = count_partial(n, count_total);
4987 else if (flags & SO_OBJECTS)
4988 x = count_partial(n, count_inuse);
4989 else
4990 x = n->nr_partial;
4991 total += x;
4992 nodes[node] += x;
4993 }
4994 }
4995 x = sprintf(buf, "%lu", total);
4996 #ifdef CONFIG_NUMA
4997 for (node = 0; node < nr_node_ids; node++)
4998 if (nodes[node])
4999 x += sprintf(buf + x, " N%d=%lu",
5000 node, nodes[node]);
5001 #endif
5002 kfree(nodes);
5003 return x + sprintf(buf + x, "\n");
5004 }
5005
5006 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5007 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5008
5009 struct slab_attribute {
5010 struct attribute attr;
5011 ssize_t (*show)(struct kmem_cache *s, char *buf);
5012 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5013 };
5014
5015 #define SLAB_ATTR_RO(_name) \
5016 static struct slab_attribute _name##_attr = \
5017 __ATTR(_name, 0400, _name##_show, NULL)
5018
5019 #define SLAB_ATTR(_name) \
5020 static struct slab_attribute _name##_attr = \
5021 __ATTR(_name, 0600, _name##_show, _name##_store)
5022
5023 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5024 {
5025 return sprintf(buf, "%u\n", s->size);
5026 }
5027 SLAB_ATTR_RO(slab_size);
5028
5029 static ssize_t align_show(struct kmem_cache *s, char *buf)
5030 {
5031 return sprintf(buf, "%u\n", s->align);
5032 }
5033 SLAB_ATTR_RO(align);
5034
5035 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5036 {
5037 return sprintf(buf, "%u\n", s->object_size);
5038 }
5039 SLAB_ATTR_RO(object_size);
5040
5041 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5042 {
5043 return sprintf(buf, "%u\n", oo_objects(s->oo));
5044 }
5045 SLAB_ATTR_RO(objs_per_slab);
5046
5047 static ssize_t order_show(struct kmem_cache *s, char *buf)
5048 {
5049 return sprintf(buf, "%u\n", oo_order(s->oo));
5050 }
5051 SLAB_ATTR_RO(order);
5052
5053 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5054 {
5055 return sprintf(buf, "%lu\n", s->min_partial);
5056 }
5057
5058 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5059 size_t length)
5060 {
5061 unsigned long min;
5062 int err;
5063
5064 err = kstrtoul(buf, 10, &min);
5065 if (err)
5066 return err;
5067
5068 set_min_partial(s, min);
5069 return length;
5070 }
5071 SLAB_ATTR(min_partial);
5072
5073 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5074 {
5075 return sprintf(buf, "%u\n", slub_cpu_partial(s));
5076 }
5077
5078 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5079 size_t length)
5080 {
5081 unsigned int objects;
5082 int err;
5083
5084 err = kstrtouint(buf, 10, &objects);
5085 if (err)
5086 return err;
5087 if (objects && !kmem_cache_has_cpu_partial(s))
5088 return -EINVAL;
5089
5090 slub_set_cpu_partial(s, objects);
5091 flush_all(s);
5092 return length;
5093 }
5094 SLAB_ATTR(cpu_partial);
5095
5096 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5097 {
5098 if (!s->ctor)
5099 return 0;
5100 return sprintf(buf, "%pS\n", s->ctor);
5101 }
5102 SLAB_ATTR_RO(ctor);
5103
5104 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5105 {
5106 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5107 }
5108 SLAB_ATTR_RO(aliases);
5109
5110 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5111 {
5112 return show_slab_objects(s, buf, SO_PARTIAL);
5113 }
5114 SLAB_ATTR_RO(partial);
5115
5116 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5117 {
5118 return show_slab_objects(s, buf, SO_CPU);
5119 }
5120 SLAB_ATTR_RO(cpu_slabs);
5121
5122 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5123 {
5124 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5125 }
5126 SLAB_ATTR_RO(objects);
5127
5128 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5129 {
5130 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5131 }
5132 SLAB_ATTR_RO(objects_partial);
5133
5134 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5135 {
5136 int objects = 0;
5137 int pages = 0;
5138 int cpu;
5139 int len;
5140
5141 for_each_online_cpu(cpu) {
5142 struct page *page;
5143
5144 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5145
5146 if (page) {
5147 pages += page->pages;
5148 objects += page->pobjects;
5149 }
5150 }
5151
5152 len = sprintf(buf, "%d(%d)", objects, pages);
5153
5154 #ifdef CONFIG_SMP
5155 for_each_online_cpu(cpu) {
5156 struct page *page;
5157
5158 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5159
5160 if (page && len < PAGE_SIZE - 20)
5161 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5162 page->pobjects, page->pages);
5163 }
5164 #endif
5165 return len + sprintf(buf + len, "\n");
5166 }
5167 SLAB_ATTR_RO(slabs_cpu_partial);
5168
5169 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5170 {
5171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5172 }
5173 SLAB_ATTR_RO(reclaim_account);
5174
5175 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5176 {
5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5178 }
5179 SLAB_ATTR_RO(hwcache_align);
5180
5181 #ifdef CONFIG_ZONE_DMA
5182 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5183 {
5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5185 }
5186 SLAB_ATTR_RO(cache_dma);
5187 #endif
5188
5189 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5190 {
5191 return sprintf(buf, "%u\n", s->usersize);
5192 }
5193 SLAB_ATTR_RO(usersize);
5194
5195 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5196 {
5197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5198 }
5199 SLAB_ATTR_RO(destroy_by_rcu);
5200
5201 #ifdef CONFIG_SLUB_DEBUG
5202 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5203 {
5204 return show_slab_objects(s, buf, SO_ALL);
5205 }
5206 SLAB_ATTR_RO(slabs);
5207
5208 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5209 {
5210 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5211 }
5212 SLAB_ATTR_RO(total_objects);
5213
5214 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5215 {
5216 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5217 }
5218 SLAB_ATTR_RO(sanity_checks);
5219
5220 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5221 {
5222 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5223 }
5224 SLAB_ATTR_RO(trace);
5225
5226 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5227 {
5228 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5229 }
5230
5231 SLAB_ATTR_RO(red_zone);
5232
5233 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5234 {
5235 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5236 }
5237
5238 SLAB_ATTR_RO(poison);
5239
5240 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5241 {
5242 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5243 }
5244
5245 SLAB_ATTR_RO(store_user);
5246
5247 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5248 {
5249 return 0;
5250 }
5251
5252 static ssize_t validate_store(struct kmem_cache *s,
5253 const char *buf, size_t length)
5254 {
5255 int ret = -EINVAL;
5256
5257 if (buf[0] == '1') {
5258 ret = validate_slab_cache(s);
5259 if (ret >= 0)
5260 ret = length;
5261 }
5262 return ret;
5263 }
5264 SLAB_ATTR(validate);
5265
5266 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5267 {
5268 if (!(s->flags & SLAB_STORE_USER))
5269 return -ENOSYS;
5270 return list_locations(s, buf, TRACK_ALLOC);
5271 }
5272 SLAB_ATTR_RO(alloc_calls);
5273
5274 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5275 {
5276 if (!(s->flags & SLAB_STORE_USER))
5277 return -ENOSYS;
5278 return list_locations(s, buf, TRACK_FREE);
5279 }
5280 SLAB_ATTR_RO(free_calls);
5281 #endif /* CONFIG_SLUB_DEBUG */
5282
5283 #ifdef CONFIG_FAILSLAB
5284 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5285 {
5286 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5287 }
5288 SLAB_ATTR_RO(failslab);
5289 #endif
5290
5291 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5292 {
5293 return 0;
5294 }
5295
5296 static ssize_t shrink_store(struct kmem_cache *s,
5297 const char *buf, size_t length)
5298 {
5299 if (buf[0] == '1')
5300 kmem_cache_shrink(s);
5301 else
5302 return -EINVAL;
5303 return length;
5304 }
5305 SLAB_ATTR(shrink);
5306
5307 #ifdef CONFIG_NUMA
5308 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5309 {
5310 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5311 }
5312
5313 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5314 const char *buf, size_t length)
5315 {
5316 unsigned int ratio;
5317 int err;
5318
5319 err = kstrtouint(buf, 10, &ratio);
5320 if (err)
5321 return err;
5322 if (ratio > 100)
5323 return -ERANGE;
5324
5325 s->remote_node_defrag_ratio = ratio * 10;
5326
5327 return length;
5328 }
5329 SLAB_ATTR(remote_node_defrag_ratio);
5330 #endif
5331
5332 #ifdef CONFIG_SLUB_STATS
5333 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5334 {
5335 unsigned long sum = 0;
5336 int cpu;
5337 int len;
5338 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5339
5340 if (!data)
5341 return -ENOMEM;
5342
5343 for_each_online_cpu(cpu) {
5344 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5345
5346 data[cpu] = x;
5347 sum += x;
5348 }
5349
5350 len = sprintf(buf, "%lu", sum);
5351
5352 #ifdef CONFIG_SMP
5353 for_each_online_cpu(cpu) {
5354 if (data[cpu] && len < PAGE_SIZE - 20)
5355 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5356 }
5357 #endif
5358 kfree(data);
5359 return len + sprintf(buf + len, "\n");
5360 }
5361
5362 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5363 {
5364 int cpu;
5365
5366 for_each_online_cpu(cpu)
5367 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5368 }
5369
5370 #define STAT_ATTR(si, text) \
5371 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5372 { \
5373 return show_stat(s, buf, si); \
5374 } \
5375 static ssize_t text##_store(struct kmem_cache *s, \
5376 const char *buf, size_t length) \
5377 { \
5378 if (buf[0] != '0') \
5379 return -EINVAL; \
5380 clear_stat(s, si); \
5381 return length; \
5382 } \
5383 SLAB_ATTR(text); \
5384
5385 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5386 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5387 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5388 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5389 STAT_ATTR(FREE_FROZEN, free_frozen);
5390 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5391 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5392 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5393 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5394 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5395 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5396 STAT_ATTR(FREE_SLAB, free_slab);
5397 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5398 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5399 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5400 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5401 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5402 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5403 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5404 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5405 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5406 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5407 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5408 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5409 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5410 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5411 #endif /* CONFIG_SLUB_STATS */
5412
5413 static struct attribute *slab_attrs[] = {
5414 &slab_size_attr.attr,
5415 &object_size_attr.attr,
5416 &objs_per_slab_attr.attr,
5417 &order_attr.attr,
5418 &min_partial_attr.attr,
5419 &cpu_partial_attr.attr,
5420 &objects_attr.attr,
5421 &objects_partial_attr.attr,
5422 &partial_attr.attr,
5423 &cpu_slabs_attr.attr,
5424 &ctor_attr.attr,
5425 &aliases_attr.attr,
5426 &align_attr.attr,
5427 &hwcache_align_attr.attr,
5428 &reclaim_account_attr.attr,
5429 &destroy_by_rcu_attr.attr,
5430 &shrink_attr.attr,
5431 &slabs_cpu_partial_attr.attr,
5432 #ifdef CONFIG_SLUB_DEBUG
5433 &total_objects_attr.attr,
5434 &slabs_attr.attr,
5435 &sanity_checks_attr.attr,
5436 &trace_attr.attr,
5437 &red_zone_attr.attr,
5438 &poison_attr.attr,
5439 &store_user_attr.attr,
5440 &validate_attr.attr,
5441 &alloc_calls_attr.attr,
5442 &free_calls_attr.attr,
5443 #endif
5444 #ifdef CONFIG_ZONE_DMA
5445 &cache_dma_attr.attr,
5446 #endif
5447 #ifdef CONFIG_NUMA
5448 &remote_node_defrag_ratio_attr.attr,
5449 #endif
5450 #ifdef CONFIG_SLUB_STATS
5451 &alloc_fastpath_attr.attr,
5452 &alloc_slowpath_attr.attr,
5453 &free_fastpath_attr.attr,
5454 &free_slowpath_attr.attr,
5455 &free_frozen_attr.attr,
5456 &free_add_partial_attr.attr,
5457 &free_remove_partial_attr.attr,
5458 &alloc_from_partial_attr.attr,
5459 &alloc_slab_attr.attr,
5460 &alloc_refill_attr.attr,
5461 &alloc_node_mismatch_attr.attr,
5462 &free_slab_attr.attr,
5463 &cpuslab_flush_attr.attr,
5464 &deactivate_full_attr.attr,
5465 &deactivate_empty_attr.attr,
5466 &deactivate_to_head_attr.attr,
5467 &deactivate_to_tail_attr.attr,
5468 &deactivate_remote_frees_attr.attr,
5469 &deactivate_bypass_attr.attr,
5470 &order_fallback_attr.attr,
5471 &cmpxchg_double_fail_attr.attr,
5472 &cmpxchg_double_cpu_fail_attr.attr,
5473 &cpu_partial_alloc_attr.attr,
5474 &cpu_partial_free_attr.attr,
5475 &cpu_partial_node_attr.attr,
5476 &cpu_partial_drain_attr.attr,
5477 #endif
5478 #ifdef CONFIG_FAILSLAB
5479 &failslab_attr.attr,
5480 #endif
5481 &usersize_attr.attr,
5482
5483 NULL
5484 };
5485
5486 static const struct attribute_group slab_attr_group = {
5487 .attrs = slab_attrs,
5488 };
5489
5490 static ssize_t slab_attr_show(struct kobject *kobj,
5491 struct attribute *attr,
5492 char *buf)
5493 {
5494 struct slab_attribute *attribute;
5495 struct kmem_cache *s;
5496 int err;
5497
5498 attribute = to_slab_attr(attr);
5499 s = to_slab(kobj);
5500
5501 if (!attribute->show)
5502 return -EIO;
5503
5504 err = attribute->show(s, buf);
5505
5506 return err;
5507 }
5508
5509 static ssize_t slab_attr_store(struct kobject *kobj,
5510 struct attribute *attr,
5511 const char *buf, size_t len)
5512 {
5513 struct slab_attribute *attribute;
5514 struct kmem_cache *s;
5515 int err;
5516
5517 attribute = to_slab_attr(attr);
5518 s = to_slab(kobj);
5519
5520 if (!attribute->store)
5521 return -EIO;
5522
5523 err = attribute->store(s, buf, len);
5524 return err;
5525 }
5526
5527 static void kmem_cache_release(struct kobject *k)
5528 {
5529 slab_kmem_cache_release(to_slab(k));
5530 }
5531
5532 static const struct sysfs_ops slab_sysfs_ops = {
5533 .show = slab_attr_show,
5534 .store = slab_attr_store,
5535 };
5536
5537 static struct kobj_type slab_ktype = {
5538 .sysfs_ops = &slab_sysfs_ops,
5539 .release = kmem_cache_release,
5540 };
5541
5542 static struct kset *slab_kset;
5543
5544 static inline struct kset *cache_kset(struct kmem_cache *s)
5545 {
5546 return slab_kset;
5547 }
5548
5549 #define ID_STR_LENGTH 64
5550
5551 /* Create a unique string id for a slab cache:
5552 *
5553 * Format :[flags-]size
5554 */
5555 static char *create_unique_id(struct kmem_cache *s)
5556 {
5557 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5558 char *p = name;
5559
5560 BUG_ON(!name);
5561
5562 *p++ = ':';
5563 /*
5564 * First flags affecting slabcache operations. We will only
5565 * get here for aliasable slabs so we do not need to support
5566 * too many flags. The flags here must cover all flags that
5567 * are matched during merging to guarantee that the id is
5568 * unique.
5569 */
5570 if (s->flags & SLAB_CACHE_DMA)
5571 *p++ = 'd';
5572 if (s->flags & SLAB_CACHE_DMA32)
5573 *p++ = 'D';
5574 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5575 *p++ = 'a';
5576 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5577 *p++ = 'F';
5578 if (s->flags & SLAB_ACCOUNT)
5579 *p++ = 'A';
5580 if (p != name + 1)
5581 *p++ = '-';
5582 p += sprintf(p, "%07u", s->size);
5583
5584 BUG_ON(p > name + ID_STR_LENGTH - 1);
5585 return name;
5586 }
5587
5588 static int sysfs_slab_add(struct kmem_cache *s)
5589 {
5590 int err;
5591 const char *name;
5592 struct kset *kset = cache_kset(s);
5593 int unmergeable = slab_unmergeable(s);
5594
5595 if (!kset) {
5596 kobject_init(&s->kobj, &slab_ktype);
5597 return 0;
5598 }
5599
5600 if (!unmergeable && disable_higher_order_debug &&
5601 (slub_debug & DEBUG_METADATA_FLAGS))
5602 unmergeable = 1;
5603
5604 if (unmergeable) {
5605 /*
5606 * Slabcache can never be merged so we can use the name proper.
5607 * This is typically the case for debug situations. In that
5608 * case we can catch duplicate names easily.
5609 */
5610 sysfs_remove_link(&slab_kset->kobj, s->name);
5611 name = s->name;
5612 } else {
5613 /*
5614 * Create a unique name for the slab as a target
5615 * for the symlinks.
5616 */
5617 name = create_unique_id(s);
5618 }
5619
5620 s->kobj.kset = kset;
5621 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5622 if (err) {
5623 kobject_put(&s->kobj);
5624 goto out;
5625 }
5626
5627 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5628 if (err)
5629 goto out_del_kobj;
5630
5631 if (!unmergeable) {
5632 /* Setup first alias */
5633 sysfs_slab_alias(s, s->name);
5634 }
5635 out:
5636 if (!unmergeable)
5637 kfree(name);
5638 return err;
5639 out_del_kobj:
5640 kobject_del(&s->kobj);
5641 goto out;
5642 }
5643
5644 void sysfs_slab_unlink(struct kmem_cache *s)
5645 {
5646 if (slab_state >= FULL)
5647 kobject_del(&s->kobj);
5648 }
5649
5650 void sysfs_slab_release(struct kmem_cache *s)
5651 {
5652 if (slab_state >= FULL)
5653 kobject_put(&s->kobj);
5654 }
5655
5656 /*
5657 * Need to buffer aliases during bootup until sysfs becomes
5658 * available lest we lose that information.
5659 */
5660 struct saved_alias {
5661 struct kmem_cache *s;
5662 const char *name;
5663 struct saved_alias *next;
5664 };
5665
5666 static struct saved_alias *alias_list;
5667
5668 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5669 {
5670 struct saved_alias *al;
5671
5672 if (slab_state == FULL) {
5673 /*
5674 * If we have a leftover link then remove it.
5675 */
5676 sysfs_remove_link(&slab_kset->kobj, name);
5677 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5678 }
5679
5680 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5681 if (!al)
5682 return -ENOMEM;
5683
5684 al->s = s;
5685 al->name = name;
5686 al->next = alias_list;
5687 alias_list = al;
5688 return 0;
5689 }
5690
5691 static int __init slab_sysfs_init(void)
5692 {
5693 struct kmem_cache *s;
5694 int err;
5695
5696 mutex_lock(&slab_mutex);
5697
5698 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5699 if (!slab_kset) {
5700 mutex_unlock(&slab_mutex);
5701 pr_err("Cannot register slab subsystem.\n");
5702 return -ENOSYS;
5703 }
5704
5705 slab_state = FULL;
5706
5707 list_for_each_entry(s, &slab_caches, list) {
5708 err = sysfs_slab_add(s);
5709 if (err)
5710 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5711 s->name);
5712 }
5713
5714 while (alias_list) {
5715 struct saved_alias *al = alias_list;
5716
5717 alias_list = alias_list->next;
5718 err = sysfs_slab_alias(al->s, al->name);
5719 if (err)
5720 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5721 al->name);
5722 kfree(al);
5723 }
5724
5725 mutex_unlock(&slab_mutex);
5726 resiliency_test();
5727 return 0;
5728 }
5729
5730 __initcall(slab_sysfs_init);
5731 #endif /* CONFIG_SYSFS */
5732
5733 /*
5734 * The /proc/slabinfo ABI
5735 */
5736 #ifdef CONFIG_SLUB_DEBUG
5737 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5738 {
5739 unsigned long nr_slabs = 0;
5740 unsigned long nr_objs = 0;
5741 unsigned long nr_free = 0;
5742 int node;
5743 struct kmem_cache_node *n;
5744
5745 for_each_kmem_cache_node(s, node, n) {
5746 nr_slabs += node_nr_slabs(n);
5747 nr_objs += node_nr_objs(n);
5748 nr_free += count_partial(n, count_free);
5749 }
5750
5751 sinfo->active_objs = nr_objs - nr_free;
5752 sinfo->num_objs = nr_objs;
5753 sinfo->active_slabs = nr_slabs;
5754 sinfo->num_slabs = nr_slabs;
5755 sinfo->objects_per_slab = oo_objects(s->oo);
5756 sinfo->cache_order = oo_order(s->oo);
5757 }
5758
5759 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5760 {
5761 }
5762
5763 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5764 size_t count, loff_t *ppos)
5765 {
5766 return -EIO;
5767 }
5768 #endif /* CONFIG_SLUB_DEBUG */