]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slub.c
powerpc/cacheinfo: Remove double free
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133 }
134
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
142 }
143
144 /*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157
158 /*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162 #define MIN_PARTIAL 5
163
164 /*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169 #define MAX_PARTIAL 10
170
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174 /*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182 /*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193 /* Internal SLUB flags */
194 /* Poison object */
195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
198
199 /*
200 * Tracking user of a slab.
201 */
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 unsigned long addr; /* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207 #endif
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
211 };
212
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
214
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
243 /*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 /*
253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 * Normally, this doesn't cause any issues, as both set_freepointer()
255 * and get_freepointer() are called with a pointer with the same tag.
256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 * example, when __free_slub() iterates over objects in a cache, it
258 * passes untagged pointers to check_object(). check_object() in turns
259 * calls get_freepointer() with an untagged pointer, which causes the
260 * freepointer to be restored incorrectly.
261 */
262 return (void *)((unsigned long)ptr ^ s->random ^
263 (unsigned long)kasan_reset_tag((void *)ptr_addr));
264 #else
265 return ptr;
266 #endif
267 }
268
269 /* Returns the freelist pointer recorded at location ptr_addr. */
270 static inline void *freelist_dereference(const struct kmem_cache *s,
271 void *ptr_addr)
272 {
273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 (unsigned long)ptr_addr);
275 }
276
277 static inline void *get_freepointer(struct kmem_cache *s, void *object)
278 {
279 return freelist_dereference(s, object + s->offset);
280 }
281
282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 prefetch(object + s->offset);
285 }
286
287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 unsigned long freepointer_addr;
290 void *p;
291
292 if (!debug_pagealloc_enabled())
293 return get_freepointer(s, object);
294
295 freepointer_addr = (unsigned long)object + s->offset;
296 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
297 return freelist_ptr(s, p, freepointer_addr);
298 }
299
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307
308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
309 }
310
311 /* Loop over all objects in a slab */
312 #define for_each_object(__p, __s, __addr, __objects) \
313 for (__p = fixup_red_left(__s, __addr); \
314 __p < (__addr) + (__objects) * (__s)->size; \
315 __p += (__s)->size)
316
317 /* Determine object index from a given position */
318 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
319 {
320 return (kasan_reset_tag(p) - addr) / s->size;
321 }
322
323 static inline unsigned int order_objects(unsigned int order, unsigned int size)
324 {
325 return ((unsigned int)PAGE_SIZE << order) / size;
326 }
327
328 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
329 unsigned int size)
330 {
331 struct kmem_cache_order_objects x = {
332 (order << OO_SHIFT) + order_objects(order, size)
333 };
334
335 return x;
336 }
337
338 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
339 {
340 return x.x >> OO_SHIFT;
341 }
342
343 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
344 {
345 return x.x & OO_MASK;
346 }
347
348 /*
349 * Per slab locking using the pagelock
350 */
351 static __always_inline void slab_lock(struct page *page)
352 {
353 VM_BUG_ON_PAGE(PageTail(page), page);
354 bit_spin_lock(PG_locked, &page->flags);
355 }
356
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 VM_BUG_ON_PAGE(PageTail(page), page);
360 __bit_spin_unlock(PG_locked, &page->flags);
361 }
362
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368 {
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return true;
377 } else
378 #endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 page->counters = counters_new;
385 slab_unlock(page);
386 return true;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397
398 return false;
399 }
400
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return true;
413 } else
414 #endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 page->counters = counters_new;
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return true;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438
439 return false;
440 }
441
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456 }
457
458 static inline unsigned int size_from_object(struct kmem_cache *s)
459 {
460 if (s->flags & SLAB_RED_ZONE)
461 return s->size - s->red_left_pad;
462
463 return s->size;
464 }
465
466 static inline void *restore_red_left(struct kmem_cache *s, void *p)
467 {
468 if (s->flags & SLAB_RED_ZONE)
469 p -= s->red_left_pad;
470
471 return p;
472 }
473
474 /*
475 * Debug settings:
476 */
477 #if defined(CONFIG_SLUB_DEBUG_ON)
478 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
479 #else
480 static slab_flags_t slub_debug;
481 #endif
482
483 static char *slub_debug_slabs;
484 static int disable_higher_order_debug;
485
486 /*
487 * slub is about to manipulate internal object metadata. This memory lies
488 * outside the range of the allocated object, so accessing it would normally
489 * be reported by kasan as a bounds error. metadata_access_enable() is used
490 * to tell kasan that these accesses are OK.
491 */
492 static inline void metadata_access_enable(void)
493 {
494 kasan_disable_current();
495 }
496
497 static inline void metadata_access_disable(void)
498 {
499 kasan_enable_current();
500 }
501
502 /*
503 * Object debugging
504 */
505
506 /* Verify that a pointer has an address that is valid within a slab page */
507 static inline int check_valid_pointer(struct kmem_cache *s,
508 struct page *page, void *object)
509 {
510 void *base;
511
512 if (!object)
513 return 1;
514
515 base = page_address(page);
516 object = kasan_reset_tag(object);
517 object = restore_red_left(s, object);
518 if (object < base || object >= base + page->objects * s->size ||
519 (object - base) % s->size) {
520 return 0;
521 }
522
523 return 1;
524 }
525
526 static void print_section(char *level, char *text, u8 *addr,
527 unsigned int length)
528 {
529 metadata_access_enable();
530 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
531 length, 1);
532 metadata_access_disable();
533 }
534
535 static struct track *get_track(struct kmem_cache *s, void *object,
536 enum track_item alloc)
537 {
538 struct track *p;
539
540 if (s->offset)
541 p = object + s->offset + sizeof(void *);
542 else
543 p = object + s->inuse;
544
545 return p + alloc;
546 }
547
548 static void set_track(struct kmem_cache *s, void *object,
549 enum track_item alloc, unsigned long addr)
550 {
551 struct track *p = get_track(s, object, alloc);
552
553 if (addr) {
554 #ifdef CONFIG_STACKTRACE
555 unsigned int nr_entries;
556
557 metadata_access_enable();
558 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
559 metadata_access_disable();
560
561 if (nr_entries < TRACK_ADDRS_COUNT)
562 p->addrs[nr_entries] = 0;
563 #endif
564 p->addr = addr;
565 p->cpu = smp_processor_id();
566 p->pid = current->pid;
567 p->when = jiffies;
568 } else {
569 memset(p, 0, sizeof(struct track));
570 }
571 }
572
573 static void init_tracking(struct kmem_cache *s, void *object)
574 {
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 set_track(s, object, TRACK_FREE, 0UL);
579 set_track(s, object, TRACK_ALLOC, 0UL);
580 }
581
582 static void print_track(const char *s, struct track *t, unsigned long pr_time)
583 {
584 if (!t->addr)
585 return;
586
587 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
588 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
589 #ifdef CONFIG_STACKTRACE
590 {
591 int i;
592 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
593 if (t->addrs[i])
594 pr_err("\t%pS\n", (void *)t->addrs[i]);
595 else
596 break;
597 }
598 #endif
599 }
600
601 static void print_tracking(struct kmem_cache *s, void *object)
602 {
603 unsigned long pr_time = jiffies;
604 if (!(s->flags & SLAB_STORE_USER))
605 return;
606
607 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
608 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
609 }
610
611 static void print_page_info(struct page *page)
612 {
613 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
614 page, page->objects, page->inuse, page->freelist, page->flags);
615
616 }
617
618 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
619 {
620 struct va_format vaf;
621 va_list args;
622
623 va_start(args, fmt);
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 pr_err("=============================================================================\n");
627 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
628 pr_err("-----------------------------------------------------------------------------\n\n");
629
630 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
631 va_end(args);
632 }
633
634 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
635 {
636 struct va_format vaf;
637 va_list args;
638
639 va_start(args, fmt);
640 vaf.fmt = fmt;
641 vaf.va = &args;
642 pr_err("FIX %s: %pV\n", s->name, &vaf);
643 va_end(args);
644 }
645
646 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
647 {
648 unsigned int off; /* Offset of last byte */
649 u8 *addr = page_address(page);
650
651 print_tracking(s, p);
652
653 print_page_info(page);
654
655 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
656 p, p - addr, get_freepointer(s, p));
657
658 if (s->flags & SLAB_RED_ZONE)
659 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
660 s->red_left_pad);
661 else if (p > addr + 16)
662 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
663
664 print_section(KERN_ERR, "Object ", p,
665 min_t(unsigned int, s->object_size, PAGE_SIZE));
666 if (s->flags & SLAB_RED_ZONE)
667 print_section(KERN_ERR, "Redzone ", p + s->object_size,
668 s->inuse - s->object_size);
669
670 if (s->offset)
671 off = s->offset + sizeof(void *);
672 else
673 off = s->inuse;
674
675 if (s->flags & SLAB_STORE_USER)
676 off += 2 * sizeof(struct track);
677
678 off += kasan_metadata_size(s);
679
680 if (off != size_from_object(s))
681 /* Beginning of the filler is the free pointer */
682 print_section(KERN_ERR, "Padding ", p + off,
683 size_from_object(s) - off);
684
685 dump_stack();
686 }
687
688 void object_err(struct kmem_cache *s, struct page *page,
689 u8 *object, char *reason)
690 {
691 slab_bug(s, "%s", reason);
692 print_trailer(s, page, object);
693 }
694
695 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
696 const char *fmt, ...)
697 {
698 va_list args;
699 char buf[100];
700
701 va_start(args, fmt);
702 vsnprintf(buf, sizeof(buf), fmt, args);
703 va_end(args);
704 slab_bug(s, "%s", buf);
705 print_page_info(page);
706 dump_stack();
707 }
708
709 static void init_object(struct kmem_cache *s, void *object, u8 val)
710 {
711 u8 *p = object;
712
713 if (s->flags & SLAB_RED_ZONE)
714 memset(p - s->red_left_pad, val, s->red_left_pad);
715
716 if (s->flags & __OBJECT_POISON) {
717 memset(p, POISON_FREE, s->object_size - 1);
718 p[s->object_size - 1] = POISON_END;
719 }
720
721 if (s->flags & SLAB_RED_ZONE)
722 memset(p + s->object_size, val, s->inuse - s->object_size);
723 }
724
725 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
726 void *from, void *to)
727 {
728 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
729 memset(from, data, to - from);
730 }
731
732 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
733 u8 *object, char *what,
734 u8 *start, unsigned int value, unsigned int bytes)
735 {
736 u8 *fault;
737 u8 *end;
738
739 metadata_access_enable();
740 fault = memchr_inv(start, value, bytes);
741 metadata_access_disable();
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
753
754 restore_bytes(s, what, value, fault, end);
755 return 0;
756 }
757
758 /*
759 * Object layout:
760 *
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
765 *
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
768 *
769 * object + s->object_size
770 * Padding to reach word boundary. This is also used for Redzoning.
771 * Padding is extended by another word if Redzoning is enabled and
772 * object_size == inuse.
773 *
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
778 * Meta data starts here.
779 *
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
782 * C. Padding to reach required alignment boundary or at mininum
783 * one word if debugging is on to be able to detect writes
784 * before the word boundary.
785 *
786 * Padding is done using 0x5a (POISON_INUSE)
787 *
788 * object + s->size
789 * Nothing is used beyond s->size.
790 *
791 * If slabcaches are merged then the object_size and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
793 * may be used with merged slabcaches.
794 */
795
796 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797 {
798 unsigned long off = s->inuse; /* The end of info */
799
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
803
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
807
808 off += kasan_metadata_size(s);
809
810 if (size_from_object(s) == off)
811 return 1;
812
813 return check_bytes_and_report(s, page, p, "Object padding",
814 p + off, POISON_INUSE, size_from_object(s) - off);
815 }
816
817 /* Check the pad bytes at the end of a slab page */
818 static int slab_pad_check(struct kmem_cache *s, struct page *page)
819 {
820 u8 *start;
821 u8 *fault;
822 u8 *end;
823 u8 *pad;
824 int length;
825 int remainder;
826
827 if (!(s->flags & SLAB_POISON))
828 return 1;
829
830 start = page_address(page);
831 length = PAGE_SIZE << compound_order(page);
832 end = start + length;
833 remainder = length % s->size;
834 if (!remainder)
835 return 1;
836
837 pad = end - remainder;
838 metadata_access_enable();
839 fault = memchr_inv(pad, POISON_INUSE, remainder);
840 metadata_access_disable();
841 if (!fault)
842 return 1;
843 while (end > fault && end[-1] == POISON_INUSE)
844 end--;
845
846 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
847 print_section(KERN_ERR, "Padding ", pad, remainder);
848
849 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
850 return 0;
851 }
852
853 static int check_object(struct kmem_cache *s, struct page *page,
854 void *object, u8 val)
855 {
856 u8 *p = object;
857 u8 *endobject = object + s->object_size;
858
859 if (s->flags & SLAB_RED_ZONE) {
860 if (!check_bytes_and_report(s, page, object, "Redzone",
861 object - s->red_left_pad, val, s->red_left_pad))
862 return 0;
863
864 if (!check_bytes_and_report(s, page, object, "Redzone",
865 endobject, val, s->inuse - s->object_size))
866 return 0;
867 } else {
868 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
869 check_bytes_and_report(s, page, p, "Alignment padding",
870 endobject, POISON_INUSE,
871 s->inuse - s->object_size);
872 }
873 }
874
875 if (s->flags & SLAB_POISON) {
876 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
877 (!check_bytes_and_report(s, page, p, "Poison", p,
878 POISON_FREE, s->object_size - 1) ||
879 !check_bytes_and_report(s, page, p, "Poison",
880 p + s->object_size - 1, POISON_END, 1)))
881 return 0;
882 /*
883 * check_pad_bytes cleans up on its own.
884 */
885 check_pad_bytes(s, page, p);
886 }
887
888 if (!s->offset && val == SLUB_RED_ACTIVE)
889 /*
890 * Object and freepointer overlap. Cannot check
891 * freepointer while object is allocated.
892 */
893 return 1;
894
895 /* Check free pointer validity */
896 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
897 object_err(s, page, p, "Freepointer corrupt");
898 /*
899 * No choice but to zap it and thus lose the remainder
900 * of the free objects in this slab. May cause
901 * another error because the object count is now wrong.
902 */
903 set_freepointer(s, p, NULL);
904 return 0;
905 }
906 return 1;
907 }
908
909 static int check_slab(struct kmem_cache *s, struct page *page)
910 {
911 int maxobj;
912
913 VM_BUG_ON(!irqs_disabled());
914
915 if (!PageSlab(page)) {
916 slab_err(s, page, "Not a valid slab page");
917 return 0;
918 }
919
920 maxobj = order_objects(compound_order(page), s->size);
921 if (page->objects > maxobj) {
922 slab_err(s, page, "objects %u > max %u",
923 page->objects, maxobj);
924 return 0;
925 }
926 if (page->inuse > page->objects) {
927 slab_err(s, page, "inuse %u > max %u",
928 page->inuse, page->objects);
929 return 0;
930 }
931 /* Slab_pad_check fixes things up after itself */
932 slab_pad_check(s, page);
933 return 1;
934 }
935
936 /*
937 * Determine if a certain object on a page is on the freelist. Must hold the
938 * slab lock to guarantee that the chains are in a consistent state.
939 */
940 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
941 {
942 int nr = 0;
943 void *fp;
944 void *object = NULL;
945 int max_objects;
946
947 fp = page->freelist;
948 while (fp && nr <= page->objects) {
949 if (fp == search)
950 return 1;
951 if (!check_valid_pointer(s, page, fp)) {
952 if (object) {
953 object_err(s, page, object,
954 "Freechain corrupt");
955 set_freepointer(s, object, NULL);
956 } else {
957 slab_err(s, page, "Freepointer corrupt");
958 page->freelist = NULL;
959 page->inuse = page->objects;
960 slab_fix(s, "Freelist cleared");
961 return 0;
962 }
963 break;
964 }
965 object = fp;
966 fp = get_freepointer(s, object);
967 nr++;
968 }
969
970 max_objects = order_objects(compound_order(page), s->size);
971 if (max_objects > MAX_OBJS_PER_PAGE)
972 max_objects = MAX_OBJS_PER_PAGE;
973
974 if (page->objects != max_objects) {
975 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
976 page->objects, max_objects);
977 page->objects = max_objects;
978 slab_fix(s, "Number of objects adjusted.");
979 }
980 if (page->inuse != page->objects - nr) {
981 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
982 page->inuse, page->objects - nr);
983 page->inuse = page->objects - nr;
984 slab_fix(s, "Object count adjusted.");
985 }
986 return search == NULL;
987 }
988
989 static void trace(struct kmem_cache *s, struct page *page, void *object,
990 int alloc)
991 {
992 if (s->flags & SLAB_TRACE) {
993 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
994 s->name,
995 alloc ? "alloc" : "free",
996 object, page->inuse,
997 page->freelist);
998
999 if (!alloc)
1000 print_section(KERN_INFO, "Object ", (void *)object,
1001 s->object_size);
1002
1003 dump_stack();
1004 }
1005 }
1006
1007 /*
1008 * Tracking of fully allocated slabs for debugging purposes.
1009 */
1010 static void add_full(struct kmem_cache *s,
1011 struct kmem_cache_node *n, struct page *page)
1012 {
1013 if (!(s->flags & SLAB_STORE_USER))
1014 return;
1015
1016 lockdep_assert_held(&n->list_lock);
1017 list_add(&page->lru, &n->full);
1018 }
1019
1020 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1021 {
1022 if (!(s->flags & SLAB_STORE_USER))
1023 return;
1024
1025 lockdep_assert_held(&n->list_lock);
1026 list_del(&page->lru);
1027 }
1028
1029 /* Tracking of the number of slabs for debugging purposes */
1030 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1031 {
1032 struct kmem_cache_node *n = get_node(s, node);
1033
1034 return atomic_long_read(&n->nr_slabs);
1035 }
1036
1037 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1038 {
1039 return atomic_long_read(&n->nr_slabs);
1040 }
1041
1042 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1043 {
1044 struct kmem_cache_node *n = get_node(s, node);
1045
1046 /*
1047 * May be called early in order to allocate a slab for the
1048 * kmem_cache_node structure. Solve the chicken-egg
1049 * dilemma by deferring the increment of the count during
1050 * bootstrap (see early_kmem_cache_node_alloc).
1051 */
1052 if (likely(n)) {
1053 atomic_long_inc(&n->nr_slabs);
1054 atomic_long_add(objects, &n->total_objects);
1055 }
1056 }
1057 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1058 {
1059 struct kmem_cache_node *n = get_node(s, node);
1060
1061 atomic_long_dec(&n->nr_slabs);
1062 atomic_long_sub(objects, &n->total_objects);
1063 }
1064
1065 /* Object debug checks for alloc/free paths */
1066 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1067 void *object)
1068 {
1069 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1070 return;
1071
1072 init_object(s, object, SLUB_RED_INACTIVE);
1073 init_tracking(s, object);
1074 }
1075
1076 static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1077 {
1078 if (!(s->flags & SLAB_POISON))
1079 return;
1080
1081 metadata_access_enable();
1082 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1083 metadata_access_disable();
1084 }
1085
1086 static inline int alloc_consistency_checks(struct kmem_cache *s,
1087 struct page *page, void *object)
1088 {
1089 if (!check_slab(s, page))
1090 return 0;
1091
1092 if (!check_valid_pointer(s, page, object)) {
1093 object_err(s, page, object, "Freelist Pointer check fails");
1094 return 0;
1095 }
1096
1097 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1098 return 0;
1099
1100 return 1;
1101 }
1102
1103 static noinline int alloc_debug_processing(struct kmem_cache *s,
1104 struct page *page,
1105 void *object, unsigned long addr)
1106 {
1107 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1108 if (!alloc_consistency_checks(s, page, object))
1109 goto bad;
1110 }
1111
1112 /* Success perform special debug activities for allocs */
1113 if (s->flags & SLAB_STORE_USER)
1114 set_track(s, object, TRACK_ALLOC, addr);
1115 trace(s, page, object, 1);
1116 init_object(s, object, SLUB_RED_ACTIVE);
1117 return 1;
1118
1119 bad:
1120 if (PageSlab(page)) {
1121 /*
1122 * If this is a slab page then lets do the best we can
1123 * to avoid issues in the future. Marking all objects
1124 * as used avoids touching the remaining objects.
1125 */
1126 slab_fix(s, "Marking all objects used");
1127 page->inuse = page->objects;
1128 page->freelist = NULL;
1129 }
1130 return 0;
1131 }
1132
1133 static inline int free_consistency_checks(struct kmem_cache *s,
1134 struct page *page, void *object, unsigned long addr)
1135 {
1136 if (!check_valid_pointer(s, page, object)) {
1137 slab_err(s, page, "Invalid object pointer 0x%p", object);
1138 return 0;
1139 }
1140
1141 if (on_freelist(s, page, object)) {
1142 object_err(s, page, object, "Object already free");
1143 return 0;
1144 }
1145
1146 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1147 return 0;
1148
1149 if (unlikely(s != page->slab_cache)) {
1150 if (!PageSlab(page)) {
1151 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1152 object);
1153 } else if (!page->slab_cache) {
1154 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1155 object);
1156 dump_stack();
1157 } else
1158 object_err(s, page, object,
1159 "page slab pointer corrupt.");
1160 return 0;
1161 }
1162 return 1;
1163 }
1164
1165 /* Supports checking bulk free of a constructed freelist */
1166 static noinline int free_debug_processing(
1167 struct kmem_cache *s, struct page *page,
1168 void *head, void *tail, int bulk_cnt,
1169 unsigned long addr)
1170 {
1171 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1172 void *object = head;
1173 int cnt = 0;
1174 unsigned long uninitialized_var(flags);
1175 int ret = 0;
1176
1177 spin_lock_irqsave(&n->list_lock, flags);
1178 slab_lock(page);
1179
1180 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1181 if (!check_slab(s, page))
1182 goto out;
1183 }
1184
1185 next_object:
1186 cnt++;
1187
1188 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1189 if (!free_consistency_checks(s, page, object, addr))
1190 goto out;
1191 }
1192
1193 if (s->flags & SLAB_STORE_USER)
1194 set_track(s, object, TRACK_FREE, addr);
1195 trace(s, page, object, 0);
1196 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1197 init_object(s, object, SLUB_RED_INACTIVE);
1198
1199 /* Reached end of constructed freelist yet? */
1200 if (object != tail) {
1201 object = get_freepointer(s, object);
1202 goto next_object;
1203 }
1204 ret = 1;
1205
1206 out:
1207 if (cnt != bulk_cnt)
1208 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1209 bulk_cnt, cnt);
1210
1211 slab_unlock(page);
1212 spin_unlock_irqrestore(&n->list_lock, flags);
1213 if (!ret)
1214 slab_fix(s, "Object at 0x%p not freed", object);
1215 return ret;
1216 }
1217
1218 static int __init setup_slub_debug(char *str)
1219 {
1220 slub_debug = DEBUG_DEFAULT_FLAGS;
1221 if (*str++ != '=' || !*str)
1222 /*
1223 * No options specified. Switch on full debugging.
1224 */
1225 goto out;
1226
1227 if (*str == ',')
1228 /*
1229 * No options but restriction on slabs. This means full
1230 * debugging for slabs matching a pattern.
1231 */
1232 goto check_slabs;
1233
1234 slub_debug = 0;
1235 if (*str == '-')
1236 /*
1237 * Switch off all debugging measures.
1238 */
1239 goto out;
1240
1241 /*
1242 * Determine which debug features should be switched on
1243 */
1244 for (; *str && *str != ','; str++) {
1245 switch (tolower(*str)) {
1246 case 'f':
1247 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1248 break;
1249 case 'z':
1250 slub_debug |= SLAB_RED_ZONE;
1251 break;
1252 case 'p':
1253 slub_debug |= SLAB_POISON;
1254 break;
1255 case 'u':
1256 slub_debug |= SLAB_STORE_USER;
1257 break;
1258 case 't':
1259 slub_debug |= SLAB_TRACE;
1260 break;
1261 case 'a':
1262 slub_debug |= SLAB_FAILSLAB;
1263 break;
1264 case 'o':
1265 /*
1266 * Avoid enabling debugging on caches if its minimum
1267 * order would increase as a result.
1268 */
1269 disable_higher_order_debug = 1;
1270 break;
1271 default:
1272 pr_err("slub_debug option '%c' unknown. skipped\n",
1273 *str);
1274 }
1275 }
1276
1277 check_slabs:
1278 if (*str == ',')
1279 slub_debug_slabs = str + 1;
1280 out:
1281 return 1;
1282 }
1283
1284 __setup("slub_debug", setup_slub_debug);
1285
1286 /*
1287 * kmem_cache_flags - apply debugging options to the cache
1288 * @object_size: the size of an object without meta data
1289 * @flags: flags to set
1290 * @name: name of the cache
1291 * @ctor: constructor function
1292 *
1293 * Debug option(s) are applied to @flags. In addition to the debug
1294 * option(s), if a slab name (or multiple) is specified i.e.
1295 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1296 * then only the select slabs will receive the debug option(s).
1297 */
1298 slab_flags_t kmem_cache_flags(unsigned int object_size,
1299 slab_flags_t flags, const char *name,
1300 void (*ctor)(void *))
1301 {
1302 char *iter;
1303 size_t len;
1304
1305 /* If slub_debug = 0, it folds into the if conditional. */
1306 if (!slub_debug_slabs)
1307 return flags | slub_debug;
1308
1309 len = strlen(name);
1310 iter = slub_debug_slabs;
1311 while (*iter) {
1312 char *end, *glob;
1313 size_t cmplen;
1314
1315 end = strchr(iter, ',');
1316 if (!end)
1317 end = iter + strlen(iter);
1318
1319 glob = strnchr(iter, end - iter, '*');
1320 if (glob)
1321 cmplen = glob - iter;
1322 else
1323 cmplen = max_t(size_t, len, (end - iter));
1324
1325 if (!strncmp(name, iter, cmplen)) {
1326 flags |= slub_debug;
1327 break;
1328 }
1329
1330 if (!*end)
1331 break;
1332 iter = end + 1;
1333 }
1334
1335 return flags;
1336 }
1337 #else /* !CONFIG_SLUB_DEBUG */
1338 static inline void setup_object_debug(struct kmem_cache *s,
1339 struct page *page, void *object) {}
1340 static inline void setup_page_debug(struct kmem_cache *s,
1341 void *addr, int order) {}
1342
1343 static inline int alloc_debug_processing(struct kmem_cache *s,
1344 struct page *page, void *object, unsigned long addr) { return 0; }
1345
1346 static inline int free_debug_processing(
1347 struct kmem_cache *s, struct page *page,
1348 void *head, void *tail, int bulk_cnt,
1349 unsigned long addr) { return 0; }
1350
1351 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1352 { return 1; }
1353 static inline int check_object(struct kmem_cache *s, struct page *page,
1354 void *object, u8 val) { return 1; }
1355 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1356 struct page *page) {}
1357 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1358 struct page *page) {}
1359 slab_flags_t kmem_cache_flags(unsigned int object_size,
1360 slab_flags_t flags, const char *name,
1361 void (*ctor)(void *))
1362 {
1363 return flags;
1364 }
1365 #define slub_debug 0
1366
1367 #define disable_higher_order_debug 0
1368
1369 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1370 { return 0; }
1371 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1372 { return 0; }
1373 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1374 int objects) {}
1375 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1376 int objects) {}
1377
1378 #endif /* CONFIG_SLUB_DEBUG */
1379
1380 /*
1381 * Hooks for other subsystems that check memory allocations. In a typical
1382 * production configuration these hooks all should produce no code at all.
1383 */
1384 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1385 {
1386 ptr = kasan_kmalloc_large(ptr, size, flags);
1387 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1388 kmemleak_alloc(ptr, size, 1, flags);
1389 return ptr;
1390 }
1391
1392 static __always_inline void kfree_hook(void *x)
1393 {
1394 kmemleak_free(x);
1395 kasan_kfree_large(x, _RET_IP_);
1396 }
1397
1398 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1399 {
1400 kmemleak_free_recursive(x, s->flags);
1401
1402 /*
1403 * Trouble is that we may no longer disable interrupts in the fast path
1404 * So in order to make the debug calls that expect irqs to be
1405 * disabled we need to disable interrupts temporarily.
1406 */
1407 #ifdef CONFIG_LOCKDEP
1408 {
1409 unsigned long flags;
1410
1411 local_irq_save(flags);
1412 debug_check_no_locks_freed(x, s->object_size);
1413 local_irq_restore(flags);
1414 }
1415 #endif
1416 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1417 debug_check_no_obj_freed(x, s->object_size);
1418
1419 /* KASAN might put x into memory quarantine, delaying its reuse */
1420 return kasan_slab_free(s, x, _RET_IP_);
1421 }
1422
1423 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1424 void **head, void **tail)
1425 {
1426 /*
1427 * Compiler cannot detect this function can be removed if slab_free_hook()
1428 * evaluates to nothing. Thus, catch all relevant config debug options here.
1429 */
1430 #if defined(CONFIG_LOCKDEP) || \
1431 defined(CONFIG_DEBUG_KMEMLEAK) || \
1432 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1433 defined(CONFIG_KASAN)
1434
1435 void *object;
1436 void *next = *head;
1437 void *old_tail = *tail ? *tail : *head;
1438
1439 /* Head and tail of the reconstructed freelist */
1440 *head = NULL;
1441 *tail = NULL;
1442
1443 do {
1444 object = next;
1445 next = get_freepointer(s, object);
1446 /* If object's reuse doesn't have to be delayed */
1447 if (!slab_free_hook(s, object)) {
1448 /* Move object to the new freelist */
1449 set_freepointer(s, object, *head);
1450 *head = object;
1451 if (!*tail)
1452 *tail = object;
1453 }
1454 } while (object != old_tail);
1455
1456 if (*head == *tail)
1457 *tail = NULL;
1458
1459 return *head != NULL;
1460 #else
1461 return true;
1462 #endif
1463 }
1464
1465 static void *setup_object(struct kmem_cache *s, struct page *page,
1466 void *object)
1467 {
1468 setup_object_debug(s, page, object);
1469 object = kasan_init_slab_obj(s, object);
1470 if (unlikely(s->ctor)) {
1471 kasan_unpoison_object_data(s, object);
1472 s->ctor(object);
1473 kasan_poison_object_data(s, object);
1474 }
1475 return object;
1476 }
1477
1478 /*
1479 * Slab allocation and freeing
1480 */
1481 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1482 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1483 {
1484 struct page *page;
1485 unsigned int order = oo_order(oo);
1486
1487 if (node == NUMA_NO_NODE)
1488 page = alloc_pages(flags, order);
1489 else
1490 page = __alloc_pages_node(node, flags, order);
1491
1492 if (page && memcg_charge_slab(page, flags, order, s)) {
1493 __free_pages(page, order);
1494 page = NULL;
1495 }
1496
1497 return page;
1498 }
1499
1500 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1501 /* Pre-initialize the random sequence cache */
1502 static int init_cache_random_seq(struct kmem_cache *s)
1503 {
1504 unsigned int count = oo_objects(s->oo);
1505 int err;
1506
1507 /* Bailout if already initialised */
1508 if (s->random_seq)
1509 return 0;
1510
1511 err = cache_random_seq_create(s, count, GFP_KERNEL);
1512 if (err) {
1513 pr_err("SLUB: Unable to initialize free list for %s\n",
1514 s->name);
1515 return err;
1516 }
1517
1518 /* Transform to an offset on the set of pages */
1519 if (s->random_seq) {
1520 unsigned int i;
1521
1522 for (i = 0; i < count; i++)
1523 s->random_seq[i] *= s->size;
1524 }
1525 return 0;
1526 }
1527
1528 /* Initialize each random sequence freelist per cache */
1529 static void __init init_freelist_randomization(void)
1530 {
1531 struct kmem_cache *s;
1532
1533 mutex_lock(&slab_mutex);
1534
1535 list_for_each_entry(s, &slab_caches, list)
1536 init_cache_random_seq(s);
1537
1538 mutex_unlock(&slab_mutex);
1539 }
1540
1541 /* Get the next entry on the pre-computed freelist randomized */
1542 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1543 unsigned long *pos, void *start,
1544 unsigned long page_limit,
1545 unsigned long freelist_count)
1546 {
1547 unsigned int idx;
1548
1549 /*
1550 * If the target page allocation failed, the number of objects on the
1551 * page might be smaller than the usual size defined by the cache.
1552 */
1553 do {
1554 idx = s->random_seq[*pos];
1555 *pos += 1;
1556 if (*pos >= freelist_count)
1557 *pos = 0;
1558 } while (unlikely(idx >= page_limit));
1559
1560 return (char *)start + idx;
1561 }
1562
1563 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1564 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1565 {
1566 void *start;
1567 void *cur;
1568 void *next;
1569 unsigned long idx, pos, page_limit, freelist_count;
1570
1571 if (page->objects < 2 || !s->random_seq)
1572 return false;
1573
1574 freelist_count = oo_objects(s->oo);
1575 pos = get_random_int() % freelist_count;
1576
1577 page_limit = page->objects * s->size;
1578 start = fixup_red_left(s, page_address(page));
1579
1580 /* First entry is used as the base of the freelist */
1581 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1582 freelist_count);
1583 cur = setup_object(s, page, cur);
1584 page->freelist = cur;
1585
1586 for (idx = 1; idx < page->objects; idx++) {
1587 next = next_freelist_entry(s, page, &pos, start, page_limit,
1588 freelist_count);
1589 next = setup_object(s, page, next);
1590 set_freepointer(s, cur, next);
1591 cur = next;
1592 }
1593 set_freepointer(s, cur, NULL);
1594
1595 return true;
1596 }
1597 #else
1598 static inline int init_cache_random_seq(struct kmem_cache *s)
1599 {
1600 return 0;
1601 }
1602 static inline void init_freelist_randomization(void) { }
1603 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1604 {
1605 return false;
1606 }
1607 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1608
1609 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1610 {
1611 struct page *page;
1612 struct kmem_cache_order_objects oo = s->oo;
1613 gfp_t alloc_gfp;
1614 void *start, *p, *next;
1615 int idx, order;
1616 bool shuffle;
1617
1618 flags &= gfp_allowed_mask;
1619
1620 if (gfpflags_allow_blocking(flags))
1621 local_irq_enable();
1622
1623 flags |= s->allocflags;
1624
1625 /*
1626 * Let the initial higher-order allocation fail under memory pressure
1627 * so we fall-back to the minimum order allocation.
1628 */
1629 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1630 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1631 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1632
1633 page = alloc_slab_page(s, alloc_gfp, node, oo);
1634 if (unlikely(!page)) {
1635 oo = s->min;
1636 alloc_gfp = flags;
1637 /*
1638 * Allocation may have failed due to fragmentation.
1639 * Try a lower order alloc if possible
1640 */
1641 page = alloc_slab_page(s, alloc_gfp, node, oo);
1642 if (unlikely(!page))
1643 goto out;
1644 stat(s, ORDER_FALLBACK);
1645 }
1646
1647 page->objects = oo_objects(oo);
1648
1649 order = compound_order(page);
1650 page->slab_cache = s;
1651 __SetPageSlab(page);
1652 if (page_is_pfmemalloc(page))
1653 SetPageSlabPfmemalloc(page);
1654
1655 kasan_poison_slab(page);
1656
1657 start = page_address(page);
1658
1659 setup_page_debug(s, start, order);
1660
1661 shuffle = shuffle_freelist(s, page);
1662
1663 if (!shuffle) {
1664 start = fixup_red_left(s, start);
1665 start = setup_object(s, page, start);
1666 page->freelist = start;
1667 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1668 next = p + s->size;
1669 next = setup_object(s, page, next);
1670 set_freepointer(s, p, next);
1671 p = next;
1672 }
1673 set_freepointer(s, p, NULL);
1674 }
1675
1676 page->inuse = page->objects;
1677 page->frozen = 1;
1678
1679 out:
1680 if (gfpflags_allow_blocking(flags))
1681 local_irq_disable();
1682 if (!page)
1683 return NULL;
1684
1685 mod_lruvec_page_state(page,
1686 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1687 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1688 1 << oo_order(oo));
1689
1690 inc_slabs_node(s, page_to_nid(page), page->objects);
1691
1692 return page;
1693 }
1694
1695 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1696 {
1697 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1698 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1699 flags &= ~GFP_SLAB_BUG_MASK;
1700 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1701 invalid_mask, &invalid_mask, flags, &flags);
1702 dump_stack();
1703 }
1704
1705 return allocate_slab(s,
1706 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1707 }
1708
1709 static void __free_slab(struct kmem_cache *s, struct page *page)
1710 {
1711 int order = compound_order(page);
1712 int pages = 1 << order;
1713
1714 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1715 void *p;
1716
1717 slab_pad_check(s, page);
1718 for_each_object(p, s, page_address(page),
1719 page->objects)
1720 check_object(s, page, p, SLUB_RED_INACTIVE);
1721 }
1722
1723 mod_lruvec_page_state(page,
1724 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1725 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1726 -pages);
1727
1728 __ClearPageSlabPfmemalloc(page);
1729 __ClearPageSlab(page);
1730
1731 page->mapping = NULL;
1732 if (current->reclaim_state)
1733 current->reclaim_state->reclaimed_slab += pages;
1734 memcg_uncharge_slab(page, order, s);
1735 __free_pages(page, order);
1736 }
1737
1738 static void rcu_free_slab(struct rcu_head *h)
1739 {
1740 struct page *page = container_of(h, struct page, rcu_head);
1741
1742 __free_slab(page->slab_cache, page);
1743 }
1744
1745 static void free_slab(struct kmem_cache *s, struct page *page)
1746 {
1747 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1748 call_rcu(&page->rcu_head, rcu_free_slab);
1749 } else
1750 __free_slab(s, page);
1751 }
1752
1753 static void discard_slab(struct kmem_cache *s, struct page *page)
1754 {
1755 dec_slabs_node(s, page_to_nid(page), page->objects);
1756 free_slab(s, page);
1757 }
1758
1759 /*
1760 * Management of partially allocated slabs.
1761 */
1762 static inline void
1763 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1764 {
1765 n->nr_partial++;
1766 if (tail == DEACTIVATE_TO_TAIL)
1767 list_add_tail(&page->lru, &n->partial);
1768 else
1769 list_add(&page->lru, &n->partial);
1770 }
1771
1772 static inline void add_partial(struct kmem_cache_node *n,
1773 struct page *page, int tail)
1774 {
1775 lockdep_assert_held(&n->list_lock);
1776 __add_partial(n, page, tail);
1777 }
1778
1779 static inline void remove_partial(struct kmem_cache_node *n,
1780 struct page *page)
1781 {
1782 lockdep_assert_held(&n->list_lock);
1783 list_del(&page->lru);
1784 n->nr_partial--;
1785 }
1786
1787 /*
1788 * Remove slab from the partial list, freeze it and
1789 * return the pointer to the freelist.
1790 *
1791 * Returns a list of objects or NULL if it fails.
1792 */
1793 static inline void *acquire_slab(struct kmem_cache *s,
1794 struct kmem_cache_node *n, struct page *page,
1795 int mode, int *objects)
1796 {
1797 void *freelist;
1798 unsigned long counters;
1799 struct page new;
1800
1801 lockdep_assert_held(&n->list_lock);
1802
1803 /*
1804 * Zap the freelist and set the frozen bit.
1805 * The old freelist is the list of objects for the
1806 * per cpu allocation list.
1807 */
1808 freelist = page->freelist;
1809 counters = page->counters;
1810 new.counters = counters;
1811 *objects = new.objects - new.inuse;
1812 if (mode) {
1813 new.inuse = page->objects;
1814 new.freelist = NULL;
1815 } else {
1816 new.freelist = freelist;
1817 }
1818
1819 VM_BUG_ON(new.frozen);
1820 new.frozen = 1;
1821
1822 if (!__cmpxchg_double_slab(s, page,
1823 freelist, counters,
1824 new.freelist, new.counters,
1825 "acquire_slab"))
1826 return NULL;
1827
1828 remove_partial(n, page);
1829 WARN_ON(!freelist);
1830 return freelist;
1831 }
1832
1833 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1834 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1835
1836 /*
1837 * Try to allocate a partial slab from a specific node.
1838 */
1839 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1840 struct kmem_cache_cpu *c, gfp_t flags)
1841 {
1842 struct page *page, *page2;
1843 void *object = NULL;
1844 unsigned int available = 0;
1845 int objects;
1846
1847 /*
1848 * Racy check. If we mistakenly see no partial slabs then we
1849 * just allocate an empty slab. If we mistakenly try to get a
1850 * partial slab and there is none available then get_partials()
1851 * will return NULL.
1852 */
1853 if (!n || !n->nr_partial)
1854 return NULL;
1855
1856 spin_lock(&n->list_lock);
1857 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1858 void *t;
1859
1860 if (!pfmemalloc_match(page, flags))
1861 continue;
1862
1863 t = acquire_slab(s, n, page, object == NULL, &objects);
1864 if (!t)
1865 break;
1866
1867 available += objects;
1868 if (!object) {
1869 c->page = page;
1870 stat(s, ALLOC_FROM_PARTIAL);
1871 object = t;
1872 } else {
1873 put_cpu_partial(s, page, 0);
1874 stat(s, CPU_PARTIAL_NODE);
1875 }
1876 if (!kmem_cache_has_cpu_partial(s)
1877 || available > slub_cpu_partial(s) / 2)
1878 break;
1879
1880 }
1881 spin_unlock(&n->list_lock);
1882 return object;
1883 }
1884
1885 /*
1886 * Get a page from somewhere. Search in increasing NUMA distances.
1887 */
1888 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1889 struct kmem_cache_cpu *c)
1890 {
1891 #ifdef CONFIG_NUMA
1892 struct zonelist *zonelist;
1893 struct zoneref *z;
1894 struct zone *zone;
1895 enum zone_type high_zoneidx = gfp_zone(flags);
1896 void *object;
1897 unsigned int cpuset_mems_cookie;
1898
1899 /*
1900 * The defrag ratio allows a configuration of the tradeoffs between
1901 * inter node defragmentation and node local allocations. A lower
1902 * defrag_ratio increases the tendency to do local allocations
1903 * instead of attempting to obtain partial slabs from other nodes.
1904 *
1905 * If the defrag_ratio is set to 0 then kmalloc() always
1906 * returns node local objects. If the ratio is higher then kmalloc()
1907 * may return off node objects because partial slabs are obtained
1908 * from other nodes and filled up.
1909 *
1910 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1911 * (which makes defrag_ratio = 1000) then every (well almost)
1912 * allocation will first attempt to defrag slab caches on other nodes.
1913 * This means scanning over all nodes to look for partial slabs which
1914 * may be expensive if we do it every time we are trying to find a slab
1915 * with available objects.
1916 */
1917 if (!s->remote_node_defrag_ratio ||
1918 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1919 return NULL;
1920
1921 do {
1922 cpuset_mems_cookie = read_mems_allowed_begin();
1923 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1924 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1925 struct kmem_cache_node *n;
1926
1927 n = get_node(s, zone_to_nid(zone));
1928
1929 if (n && cpuset_zone_allowed(zone, flags) &&
1930 n->nr_partial > s->min_partial) {
1931 object = get_partial_node(s, n, c, flags);
1932 if (object) {
1933 /*
1934 * Don't check read_mems_allowed_retry()
1935 * here - if mems_allowed was updated in
1936 * parallel, that was a harmless race
1937 * between allocation and the cpuset
1938 * update
1939 */
1940 return object;
1941 }
1942 }
1943 }
1944 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1945 #endif
1946 return NULL;
1947 }
1948
1949 /*
1950 * Get a partial page, lock it and return it.
1951 */
1952 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1953 struct kmem_cache_cpu *c)
1954 {
1955 void *object;
1956 int searchnode = node;
1957
1958 if (node == NUMA_NO_NODE)
1959 searchnode = numa_mem_id();
1960 else if (!node_present_pages(node))
1961 searchnode = node_to_mem_node(node);
1962
1963 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1964 if (object || node != NUMA_NO_NODE)
1965 return object;
1966
1967 return get_any_partial(s, flags, c);
1968 }
1969
1970 #ifdef CONFIG_PREEMPT
1971 /*
1972 * Calculate the next globally unique transaction for disambiguiation
1973 * during cmpxchg. The transactions start with the cpu number and are then
1974 * incremented by CONFIG_NR_CPUS.
1975 */
1976 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1977 #else
1978 /*
1979 * No preemption supported therefore also no need to check for
1980 * different cpus.
1981 */
1982 #define TID_STEP 1
1983 #endif
1984
1985 static inline unsigned long next_tid(unsigned long tid)
1986 {
1987 return tid + TID_STEP;
1988 }
1989
1990 static inline unsigned int tid_to_cpu(unsigned long tid)
1991 {
1992 return tid % TID_STEP;
1993 }
1994
1995 static inline unsigned long tid_to_event(unsigned long tid)
1996 {
1997 return tid / TID_STEP;
1998 }
1999
2000 static inline unsigned int init_tid(int cpu)
2001 {
2002 return cpu;
2003 }
2004
2005 static inline void note_cmpxchg_failure(const char *n,
2006 const struct kmem_cache *s, unsigned long tid)
2007 {
2008 #ifdef SLUB_DEBUG_CMPXCHG
2009 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2010
2011 pr_info("%s %s: cmpxchg redo ", n, s->name);
2012
2013 #ifdef CONFIG_PREEMPT
2014 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2015 pr_warn("due to cpu change %d -> %d\n",
2016 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2017 else
2018 #endif
2019 if (tid_to_event(tid) != tid_to_event(actual_tid))
2020 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2021 tid_to_event(tid), tid_to_event(actual_tid));
2022 else
2023 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2024 actual_tid, tid, next_tid(tid));
2025 #endif
2026 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2027 }
2028
2029 static void init_kmem_cache_cpus(struct kmem_cache *s)
2030 {
2031 int cpu;
2032
2033 for_each_possible_cpu(cpu)
2034 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2035 }
2036
2037 /*
2038 * Remove the cpu slab
2039 */
2040 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2041 void *freelist, struct kmem_cache_cpu *c)
2042 {
2043 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2044 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2045 int lock = 0;
2046 enum slab_modes l = M_NONE, m = M_NONE;
2047 void *nextfree;
2048 int tail = DEACTIVATE_TO_HEAD;
2049 struct page new;
2050 struct page old;
2051
2052 if (page->freelist) {
2053 stat(s, DEACTIVATE_REMOTE_FREES);
2054 tail = DEACTIVATE_TO_TAIL;
2055 }
2056
2057 /*
2058 * Stage one: Free all available per cpu objects back
2059 * to the page freelist while it is still frozen. Leave the
2060 * last one.
2061 *
2062 * There is no need to take the list->lock because the page
2063 * is still frozen.
2064 */
2065 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2066 void *prior;
2067 unsigned long counters;
2068
2069 do {
2070 prior = page->freelist;
2071 counters = page->counters;
2072 set_freepointer(s, freelist, prior);
2073 new.counters = counters;
2074 new.inuse--;
2075 VM_BUG_ON(!new.frozen);
2076
2077 } while (!__cmpxchg_double_slab(s, page,
2078 prior, counters,
2079 freelist, new.counters,
2080 "drain percpu freelist"));
2081
2082 freelist = nextfree;
2083 }
2084
2085 /*
2086 * Stage two: Ensure that the page is unfrozen while the
2087 * list presence reflects the actual number of objects
2088 * during unfreeze.
2089 *
2090 * We setup the list membership and then perform a cmpxchg
2091 * with the count. If there is a mismatch then the page
2092 * is not unfrozen but the page is on the wrong list.
2093 *
2094 * Then we restart the process which may have to remove
2095 * the page from the list that we just put it on again
2096 * because the number of objects in the slab may have
2097 * changed.
2098 */
2099 redo:
2100
2101 old.freelist = page->freelist;
2102 old.counters = page->counters;
2103 VM_BUG_ON(!old.frozen);
2104
2105 /* Determine target state of the slab */
2106 new.counters = old.counters;
2107 if (freelist) {
2108 new.inuse--;
2109 set_freepointer(s, freelist, old.freelist);
2110 new.freelist = freelist;
2111 } else
2112 new.freelist = old.freelist;
2113
2114 new.frozen = 0;
2115
2116 if (!new.inuse && n->nr_partial >= s->min_partial)
2117 m = M_FREE;
2118 else if (new.freelist) {
2119 m = M_PARTIAL;
2120 if (!lock) {
2121 lock = 1;
2122 /*
2123 * Taking the spinlock removes the possibility
2124 * that acquire_slab() will see a slab page that
2125 * is frozen
2126 */
2127 spin_lock(&n->list_lock);
2128 }
2129 } else {
2130 m = M_FULL;
2131 if (kmem_cache_debug(s) && !lock) {
2132 lock = 1;
2133 /*
2134 * This also ensures that the scanning of full
2135 * slabs from diagnostic functions will not see
2136 * any frozen slabs.
2137 */
2138 spin_lock(&n->list_lock);
2139 }
2140 }
2141
2142 if (l != m) {
2143 if (l == M_PARTIAL)
2144 remove_partial(n, page);
2145 else if (l == M_FULL)
2146 remove_full(s, n, page);
2147
2148 if (m == M_PARTIAL)
2149 add_partial(n, page, tail);
2150 else if (m == M_FULL)
2151 add_full(s, n, page);
2152 }
2153
2154 l = m;
2155 if (!__cmpxchg_double_slab(s, page,
2156 old.freelist, old.counters,
2157 new.freelist, new.counters,
2158 "unfreezing slab"))
2159 goto redo;
2160
2161 if (lock)
2162 spin_unlock(&n->list_lock);
2163
2164 if (m == M_PARTIAL)
2165 stat(s, tail);
2166 else if (m == M_FULL)
2167 stat(s, DEACTIVATE_FULL);
2168 else if (m == M_FREE) {
2169 stat(s, DEACTIVATE_EMPTY);
2170 discard_slab(s, page);
2171 stat(s, FREE_SLAB);
2172 }
2173
2174 c->page = NULL;
2175 c->freelist = NULL;
2176 }
2177
2178 /*
2179 * Unfreeze all the cpu partial slabs.
2180 *
2181 * This function must be called with interrupts disabled
2182 * for the cpu using c (or some other guarantee must be there
2183 * to guarantee no concurrent accesses).
2184 */
2185 static void unfreeze_partials(struct kmem_cache *s,
2186 struct kmem_cache_cpu *c)
2187 {
2188 #ifdef CONFIG_SLUB_CPU_PARTIAL
2189 struct kmem_cache_node *n = NULL, *n2 = NULL;
2190 struct page *page, *discard_page = NULL;
2191
2192 while ((page = c->partial)) {
2193 struct page new;
2194 struct page old;
2195
2196 c->partial = page->next;
2197
2198 n2 = get_node(s, page_to_nid(page));
2199 if (n != n2) {
2200 if (n)
2201 spin_unlock(&n->list_lock);
2202
2203 n = n2;
2204 spin_lock(&n->list_lock);
2205 }
2206
2207 do {
2208
2209 old.freelist = page->freelist;
2210 old.counters = page->counters;
2211 VM_BUG_ON(!old.frozen);
2212
2213 new.counters = old.counters;
2214 new.freelist = old.freelist;
2215
2216 new.frozen = 0;
2217
2218 } while (!__cmpxchg_double_slab(s, page,
2219 old.freelist, old.counters,
2220 new.freelist, new.counters,
2221 "unfreezing slab"));
2222
2223 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2224 page->next = discard_page;
2225 discard_page = page;
2226 } else {
2227 add_partial(n, page, DEACTIVATE_TO_TAIL);
2228 stat(s, FREE_ADD_PARTIAL);
2229 }
2230 }
2231
2232 if (n)
2233 spin_unlock(&n->list_lock);
2234
2235 while (discard_page) {
2236 page = discard_page;
2237 discard_page = discard_page->next;
2238
2239 stat(s, DEACTIVATE_EMPTY);
2240 discard_slab(s, page);
2241 stat(s, FREE_SLAB);
2242 }
2243 #endif
2244 }
2245
2246 /*
2247 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2248 * partial page slot if available.
2249 *
2250 * If we did not find a slot then simply move all the partials to the
2251 * per node partial list.
2252 */
2253 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2254 {
2255 #ifdef CONFIG_SLUB_CPU_PARTIAL
2256 struct page *oldpage;
2257 int pages;
2258 int pobjects;
2259
2260 preempt_disable();
2261 do {
2262 pages = 0;
2263 pobjects = 0;
2264 oldpage = this_cpu_read(s->cpu_slab->partial);
2265
2266 if (oldpage) {
2267 pobjects = oldpage->pobjects;
2268 pages = oldpage->pages;
2269 if (drain && pobjects > s->cpu_partial) {
2270 unsigned long flags;
2271 /*
2272 * partial array is full. Move the existing
2273 * set to the per node partial list.
2274 */
2275 local_irq_save(flags);
2276 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2277 local_irq_restore(flags);
2278 oldpage = NULL;
2279 pobjects = 0;
2280 pages = 0;
2281 stat(s, CPU_PARTIAL_DRAIN);
2282 }
2283 }
2284
2285 pages++;
2286 pobjects += page->objects - page->inuse;
2287
2288 page->pages = pages;
2289 page->pobjects = pobjects;
2290 page->next = oldpage;
2291
2292 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2293 != oldpage);
2294 if (unlikely(!s->cpu_partial)) {
2295 unsigned long flags;
2296
2297 local_irq_save(flags);
2298 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2299 local_irq_restore(flags);
2300 }
2301 preempt_enable();
2302 #endif
2303 }
2304
2305 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2306 {
2307 stat(s, CPUSLAB_FLUSH);
2308 deactivate_slab(s, c->page, c->freelist, c);
2309
2310 c->tid = next_tid(c->tid);
2311 }
2312
2313 /*
2314 * Flush cpu slab.
2315 *
2316 * Called from IPI handler with interrupts disabled.
2317 */
2318 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2319 {
2320 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2321
2322 if (c->page)
2323 flush_slab(s, c);
2324
2325 unfreeze_partials(s, c);
2326 }
2327
2328 static void flush_cpu_slab(void *d)
2329 {
2330 struct kmem_cache *s = d;
2331
2332 __flush_cpu_slab(s, smp_processor_id());
2333 }
2334
2335 static bool has_cpu_slab(int cpu, void *info)
2336 {
2337 struct kmem_cache *s = info;
2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2339
2340 return c->page || slub_percpu_partial(c);
2341 }
2342
2343 static void flush_all(struct kmem_cache *s)
2344 {
2345 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2346 }
2347
2348 /*
2349 * Use the cpu notifier to insure that the cpu slabs are flushed when
2350 * necessary.
2351 */
2352 static int slub_cpu_dead(unsigned int cpu)
2353 {
2354 struct kmem_cache *s;
2355 unsigned long flags;
2356
2357 mutex_lock(&slab_mutex);
2358 list_for_each_entry(s, &slab_caches, list) {
2359 local_irq_save(flags);
2360 __flush_cpu_slab(s, cpu);
2361 local_irq_restore(flags);
2362 }
2363 mutex_unlock(&slab_mutex);
2364 return 0;
2365 }
2366
2367 /*
2368 * Check if the objects in a per cpu structure fit numa
2369 * locality expectations.
2370 */
2371 static inline int node_match(struct page *page, int node)
2372 {
2373 #ifdef CONFIG_NUMA
2374 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2375 return 0;
2376 #endif
2377 return 1;
2378 }
2379
2380 #ifdef CONFIG_SLUB_DEBUG
2381 static int count_free(struct page *page)
2382 {
2383 return page->objects - page->inuse;
2384 }
2385
2386 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2387 {
2388 return atomic_long_read(&n->total_objects);
2389 }
2390 #endif /* CONFIG_SLUB_DEBUG */
2391
2392 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2393 static unsigned long count_partial(struct kmem_cache_node *n,
2394 int (*get_count)(struct page *))
2395 {
2396 unsigned long flags;
2397 unsigned long x = 0;
2398 struct page *page;
2399
2400 spin_lock_irqsave(&n->list_lock, flags);
2401 list_for_each_entry(page, &n->partial, lru)
2402 x += get_count(page);
2403 spin_unlock_irqrestore(&n->list_lock, flags);
2404 return x;
2405 }
2406 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2407
2408 static noinline void
2409 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2410 {
2411 #ifdef CONFIG_SLUB_DEBUG
2412 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2413 DEFAULT_RATELIMIT_BURST);
2414 int node;
2415 struct kmem_cache_node *n;
2416
2417 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2418 return;
2419
2420 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2421 nid, gfpflags, &gfpflags);
2422 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2423 s->name, s->object_size, s->size, oo_order(s->oo),
2424 oo_order(s->min));
2425
2426 if (oo_order(s->min) > get_order(s->object_size))
2427 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2428 s->name);
2429
2430 for_each_kmem_cache_node(s, node, n) {
2431 unsigned long nr_slabs;
2432 unsigned long nr_objs;
2433 unsigned long nr_free;
2434
2435 nr_free = count_partial(n, count_free);
2436 nr_slabs = node_nr_slabs(n);
2437 nr_objs = node_nr_objs(n);
2438
2439 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2440 node, nr_slabs, nr_objs, nr_free);
2441 }
2442 #endif
2443 }
2444
2445 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2446 int node, struct kmem_cache_cpu **pc)
2447 {
2448 void *freelist;
2449 struct kmem_cache_cpu *c = *pc;
2450 struct page *page;
2451
2452 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2453
2454 freelist = get_partial(s, flags, node, c);
2455
2456 if (freelist)
2457 return freelist;
2458
2459 page = new_slab(s, flags, node);
2460 if (page) {
2461 c = raw_cpu_ptr(s->cpu_slab);
2462 if (c->page)
2463 flush_slab(s, c);
2464
2465 /*
2466 * No other reference to the page yet so we can
2467 * muck around with it freely without cmpxchg
2468 */
2469 freelist = page->freelist;
2470 page->freelist = NULL;
2471
2472 stat(s, ALLOC_SLAB);
2473 c->page = page;
2474 *pc = c;
2475 }
2476
2477 return freelist;
2478 }
2479
2480 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2481 {
2482 if (unlikely(PageSlabPfmemalloc(page)))
2483 return gfp_pfmemalloc_allowed(gfpflags);
2484
2485 return true;
2486 }
2487
2488 /*
2489 * Check the page->freelist of a page and either transfer the freelist to the
2490 * per cpu freelist or deactivate the page.
2491 *
2492 * The page is still frozen if the return value is not NULL.
2493 *
2494 * If this function returns NULL then the page has been unfrozen.
2495 *
2496 * This function must be called with interrupt disabled.
2497 */
2498 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2499 {
2500 struct page new;
2501 unsigned long counters;
2502 void *freelist;
2503
2504 do {
2505 freelist = page->freelist;
2506 counters = page->counters;
2507
2508 new.counters = counters;
2509 VM_BUG_ON(!new.frozen);
2510
2511 new.inuse = page->objects;
2512 new.frozen = freelist != NULL;
2513
2514 } while (!__cmpxchg_double_slab(s, page,
2515 freelist, counters,
2516 NULL, new.counters,
2517 "get_freelist"));
2518
2519 return freelist;
2520 }
2521
2522 /*
2523 * Slow path. The lockless freelist is empty or we need to perform
2524 * debugging duties.
2525 *
2526 * Processing is still very fast if new objects have been freed to the
2527 * regular freelist. In that case we simply take over the regular freelist
2528 * as the lockless freelist and zap the regular freelist.
2529 *
2530 * If that is not working then we fall back to the partial lists. We take the
2531 * first element of the freelist as the object to allocate now and move the
2532 * rest of the freelist to the lockless freelist.
2533 *
2534 * And if we were unable to get a new slab from the partial slab lists then
2535 * we need to allocate a new slab. This is the slowest path since it involves
2536 * a call to the page allocator and the setup of a new slab.
2537 *
2538 * Version of __slab_alloc to use when we know that interrupts are
2539 * already disabled (which is the case for bulk allocation).
2540 */
2541 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2542 unsigned long addr, struct kmem_cache_cpu *c)
2543 {
2544 void *freelist;
2545 struct page *page;
2546
2547 page = c->page;
2548 if (!page)
2549 goto new_slab;
2550 redo:
2551
2552 if (unlikely(!node_match(page, node))) {
2553 int searchnode = node;
2554
2555 if (node != NUMA_NO_NODE && !node_present_pages(node))
2556 searchnode = node_to_mem_node(node);
2557
2558 if (unlikely(!node_match(page, searchnode))) {
2559 stat(s, ALLOC_NODE_MISMATCH);
2560 deactivate_slab(s, page, c->freelist, c);
2561 goto new_slab;
2562 }
2563 }
2564
2565 /*
2566 * By rights, we should be searching for a slab page that was
2567 * PFMEMALLOC but right now, we are losing the pfmemalloc
2568 * information when the page leaves the per-cpu allocator
2569 */
2570 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2571 deactivate_slab(s, page, c->freelist, c);
2572 goto new_slab;
2573 }
2574
2575 /* must check again c->freelist in case of cpu migration or IRQ */
2576 freelist = c->freelist;
2577 if (freelist)
2578 goto load_freelist;
2579
2580 freelist = get_freelist(s, page);
2581
2582 if (!freelist) {
2583 c->page = NULL;
2584 stat(s, DEACTIVATE_BYPASS);
2585 goto new_slab;
2586 }
2587
2588 stat(s, ALLOC_REFILL);
2589
2590 load_freelist:
2591 /*
2592 * freelist is pointing to the list of objects to be used.
2593 * page is pointing to the page from which the objects are obtained.
2594 * That page must be frozen for per cpu allocations to work.
2595 */
2596 VM_BUG_ON(!c->page->frozen);
2597 c->freelist = get_freepointer(s, freelist);
2598 c->tid = next_tid(c->tid);
2599 return freelist;
2600
2601 new_slab:
2602
2603 if (slub_percpu_partial(c)) {
2604 page = c->page = slub_percpu_partial(c);
2605 slub_set_percpu_partial(c, page);
2606 stat(s, CPU_PARTIAL_ALLOC);
2607 goto redo;
2608 }
2609
2610 freelist = new_slab_objects(s, gfpflags, node, &c);
2611
2612 if (unlikely(!freelist)) {
2613 slab_out_of_memory(s, gfpflags, node);
2614 return NULL;
2615 }
2616
2617 page = c->page;
2618 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2619 goto load_freelist;
2620
2621 /* Only entered in the debug case */
2622 if (kmem_cache_debug(s) &&
2623 !alloc_debug_processing(s, page, freelist, addr))
2624 goto new_slab; /* Slab failed checks. Next slab needed */
2625
2626 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2627 return freelist;
2628 }
2629
2630 /*
2631 * Another one that disabled interrupt and compensates for possible
2632 * cpu changes by refetching the per cpu area pointer.
2633 */
2634 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2635 unsigned long addr, struct kmem_cache_cpu *c)
2636 {
2637 void *p;
2638 unsigned long flags;
2639
2640 local_irq_save(flags);
2641 #ifdef CONFIG_PREEMPT
2642 /*
2643 * We may have been preempted and rescheduled on a different
2644 * cpu before disabling interrupts. Need to reload cpu area
2645 * pointer.
2646 */
2647 c = this_cpu_ptr(s->cpu_slab);
2648 #endif
2649
2650 p = ___slab_alloc(s, gfpflags, node, addr, c);
2651 local_irq_restore(flags);
2652 return p;
2653 }
2654
2655 /*
2656 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2657 * have the fastpath folded into their functions. So no function call
2658 * overhead for requests that can be satisfied on the fastpath.
2659 *
2660 * The fastpath works by first checking if the lockless freelist can be used.
2661 * If not then __slab_alloc is called for slow processing.
2662 *
2663 * Otherwise we can simply pick the next object from the lockless free list.
2664 */
2665 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2666 gfp_t gfpflags, int node, unsigned long addr)
2667 {
2668 void *object;
2669 struct kmem_cache_cpu *c;
2670 struct page *page;
2671 unsigned long tid;
2672
2673 s = slab_pre_alloc_hook(s, gfpflags);
2674 if (!s)
2675 return NULL;
2676 redo:
2677 /*
2678 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2679 * enabled. We may switch back and forth between cpus while
2680 * reading from one cpu area. That does not matter as long
2681 * as we end up on the original cpu again when doing the cmpxchg.
2682 *
2683 * We should guarantee that tid and kmem_cache are retrieved on
2684 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2685 * to check if it is matched or not.
2686 */
2687 do {
2688 tid = this_cpu_read(s->cpu_slab->tid);
2689 c = raw_cpu_ptr(s->cpu_slab);
2690 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2691 unlikely(tid != READ_ONCE(c->tid)));
2692
2693 /*
2694 * Irqless object alloc/free algorithm used here depends on sequence
2695 * of fetching cpu_slab's data. tid should be fetched before anything
2696 * on c to guarantee that object and page associated with previous tid
2697 * won't be used with current tid. If we fetch tid first, object and
2698 * page could be one associated with next tid and our alloc/free
2699 * request will be failed. In this case, we will retry. So, no problem.
2700 */
2701 barrier();
2702
2703 /*
2704 * The transaction ids are globally unique per cpu and per operation on
2705 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2706 * occurs on the right processor and that there was no operation on the
2707 * linked list in between.
2708 */
2709
2710 object = c->freelist;
2711 page = c->page;
2712 if (unlikely(!object || !node_match(page, node))) {
2713 object = __slab_alloc(s, gfpflags, node, addr, c);
2714 stat(s, ALLOC_SLOWPATH);
2715 } else {
2716 void *next_object = get_freepointer_safe(s, object);
2717
2718 /*
2719 * The cmpxchg will only match if there was no additional
2720 * operation and if we are on the right processor.
2721 *
2722 * The cmpxchg does the following atomically (without lock
2723 * semantics!)
2724 * 1. Relocate first pointer to the current per cpu area.
2725 * 2. Verify that tid and freelist have not been changed
2726 * 3. If they were not changed replace tid and freelist
2727 *
2728 * Since this is without lock semantics the protection is only
2729 * against code executing on this cpu *not* from access by
2730 * other cpus.
2731 */
2732 if (unlikely(!this_cpu_cmpxchg_double(
2733 s->cpu_slab->freelist, s->cpu_slab->tid,
2734 object, tid,
2735 next_object, next_tid(tid)))) {
2736
2737 note_cmpxchg_failure("slab_alloc", s, tid);
2738 goto redo;
2739 }
2740 prefetch_freepointer(s, next_object);
2741 stat(s, ALLOC_FASTPATH);
2742 }
2743
2744 if (unlikely(gfpflags & __GFP_ZERO) && object)
2745 memset(object, 0, s->object_size);
2746
2747 slab_post_alloc_hook(s, gfpflags, 1, &object);
2748
2749 return object;
2750 }
2751
2752 static __always_inline void *slab_alloc(struct kmem_cache *s,
2753 gfp_t gfpflags, unsigned long addr)
2754 {
2755 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2756 }
2757
2758 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2759 {
2760 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2761
2762 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2763 s->size, gfpflags);
2764
2765 return ret;
2766 }
2767 EXPORT_SYMBOL(kmem_cache_alloc);
2768
2769 #ifdef CONFIG_TRACING
2770 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2771 {
2772 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2773 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2774 ret = kasan_kmalloc(s, ret, size, gfpflags);
2775 return ret;
2776 }
2777 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2778 #endif
2779
2780 #ifdef CONFIG_NUMA
2781 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2782 {
2783 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2784
2785 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2786 s->object_size, s->size, gfpflags, node);
2787
2788 return ret;
2789 }
2790 EXPORT_SYMBOL(kmem_cache_alloc_node);
2791
2792 #ifdef CONFIG_TRACING
2793 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2794 gfp_t gfpflags,
2795 int node, size_t size)
2796 {
2797 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2798
2799 trace_kmalloc_node(_RET_IP_, ret,
2800 size, s->size, gfpflags, node);
2801
2802 ret = kasan_kmalloc(s, ret, size, gfpflags);
2803 return ret;
2804 }
2805 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2806 #endif
2807 #endif
2808
2809 /*
2810 * Slow path handling. This may still be called frequently since objects
2811 * have a longer lifetime than the cpu slabs in most processing loads.
2812 *
2813 * So we still attempt to reduce cache line usage. Just take the slab
2814 * lock and free the item. If there is no additional partial page
2815 * handling required then we can return immediately.
2816 */
2817 static void __slab_free(struct kmem_cache *s, struct page *page,
2818 void *head, void *tail, int cnt,
2819 unsigned long addr)
2820
2821 {
2822 void *prior;
2823 int was_frozen;
2824 struct page new;
2825 unsigned long counters;
2826 struct kmem_cache_node *n = NULL;
2827 unsigned long uninitialized_var(flags);
2828
2829 stat(s, FREE_SLOWPATH);
2830
2831 if (kmem_cache_debug(s) &&
2832 !free_debug_processing(s, page, head, tail, cnt, addr))
2833 return;
2834
2835 do {
2836 if (unlikely(n)) {
2837 spin_unlock_irqrestore(&n->list_lock, flags);
2838 n = NULL;
2839 }
2840 prior = page->freelist;
2841 counters = page->counters;
2842 set_freepointer(s, tail, prior);
2843 new.counters = counters;
2844 was_frozen = new.frozen;
2845 new.inuse -= cnt;
2846 if ((!new.inuse || !prior) && !was_frozen) {
2847
2848 if (kmem_cache_has_cpu_partial(s) && !prior) {
2849
2850 /*
2851 * Slab was on no list before and will be
2852 * partially empty
2853 * We can defer the list move and instead
2854 * freeze it.
2855 */
2856 new.frozen = 1;
2857
2858 } else { /* Needs to be taken off a list */
2859
2860 n = get_node(s, page_to_nid(page));
2861 /*
2862 * Speculatively acquire the list_lock.
2863 * If the cmpxchg does not succeed then we may
2864 * drop the list_lock without any processing.
2865 *
2866 * Otherwise the list_lock will synchronize with
2867 * other processors updating the list of slabs.
2868 */
2869 spin_lock_irqsave(&n->list_lock, flags);
2870
2871 }
2872 }
2873
2874 } while (!cmpxchg_double_slab(s, page,
2875 prior, counters,
2876 head, new.counters,
2877 "__slab_free"));
2878
2879 if (likely(!n)) {
2880
2881 /*
2882 * If we just froze the page then put it onto the
2883 * per cpu partial list.
2884 */
2885 if (new.frozen && !was_frozen) {
2886 put_cpu_partial(s, page, 1);
2887 stat(s, CPU_PARTIAL_FREE);
2888 }
2889 /*
2890 * The list lock was not taken therefore no list
2891 * activity can be necessary.
2892 */
2893 if (was_frozen)
2894 stat(s, FREE_FROZEN);
2895 return;
2896 }
2897
2898 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2899 goto slab_empty;
2900
2901 /*
2902 * Objects left in the slab. If it was not on the partial list before
2903 * then add it.
2904 */
2905 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2906 if (kmem_cache_debug(s))
2907 remove_full(s, n, page);
2908 add_partial(n, page, DEACTIVATE_TO_TAIL);
2909 stat(s, FREE_ADD_PARTIAL);
2910 }
2911 spin_unlock_irqrestore(&n->list_lock, flags);
2912 return;
2913
2914 slab_empty:
2915 if (prior) {
2916 /*
2917 * Slab on the partial list.
2918 */
2919 remove_partial(n, page);
2920 stat(s, FREE_REMOVE_PARTIAL);
2921 } else {
2922 /* Slab must be on the full list */
2923 remove_full(s, n, page);
2924 }
2925
2926 spin_unlock_irqrestore(&n->list_lock, flags);
2927 stat(s, FREE_SLAB);
2928 discard_slab(s, page);
2929 }
2930
2931 /*
2932 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2933 * can perform fastpath freeing without additional function calls.
2934 *
2935 * The fastpath is only possible if we are freeing to the current cpu slab
2936 * of this processor. This typically the case if we have just allocated
2937 * the item before.
2938 *
2939 * If fastpath is not possible then fall back to __slab_free where we deal
2940 * with all sorts of special processing.
2941 *
2942 * Bulk free of a freelist with several objects (all pointing to the
2943 * same page) possible by specifying head and tail ptr, plus objects
2944 * count (cnt). Bulk free indicated by tail pointer being set.
2945 */
2946 static __always_inline void do_slab_free(struct kmem_cache *s,
2947 struct page *page, void *head, void *tail,
2948 int cnt, unsigned long addr)
2949 {
2950 void *tail_obj = tail ? : head;
2951 struct kmem_cache_cpu *c;
2952 unsigned long tid;
2953 redo:
2954 /*
2955 * Determine the currently cpus per cpu slab.
2956 * The cpu may change afterward. However that does not matter since
2957 * data is retrieved via this pointer. If we are on the same cpu
2958 * during the cmpxchg then the free will succeed.
2959 */
2960 do {
2961 tid = this_cpu_read(s->cpu_slab->tid);
2962 c = raw_cpu_ptr(s->cpu_slab);
2963 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2964 unlikely(tid != READ_ONCE(c->tid)));
2965
2966 /* Same with comment on barrier() in slab_alloc_node() */
2967 barrier();
2968
2969 if (likely(page == c->page)) {
2970 set_freepointer(s, tail_obj, c->freelist);
2971
2972 if (unlikely(!this_cpu_cmpxchg_double(
2973 s->cpu_slab->freelist, s->cpu_slab->tid,
2974 c->freelist, tid,
2975 head, next_tid(tid)))) {
2976
2977 note_cmpxchg_failure("slab_free", s, tid);
2978 goto redo;
2979 }
2980 stat(s, FREE_FASTPATH);
2981 } else
2982 __slab_free(s, page, head, tail_obj, cnt, addr);
2983
2984 }
2985
2986 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2987 void *head, void *tail, int cnt,
2988 unsigned long addr)
2989 {
2990 /*
2991 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2992 * to remove objects, whose reuse must be delayed.
2993 */
2994 if (slab_free_freelist_hook(s, &head, &tail))
2995 do_slab_free(s, page, head, tail, cnt, addr);
2996 }
2997
2998 #ifdef CONFIG_KASAN_GENERIC
2999 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3000 {
3001 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3002 }
3003 #endif
3004
3005 void kmem_cache_free(struct kmem_cache *s, void *x)
3006 {
3007 s = cache_from_obj(s, x);
3008 if (!s)
3009 return;
3010 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3011 trace_kmem_cache_free(_RET_IP_, x);
3012 }
3013 EXPORT_SYMBOL(kmem_cache_free);
3014
3015 struct detached_freelist {
3016 struct page *page;
3017 void *tail;
3018 void *freelist;
3019 int cnt;
3020 struct kmem_cache *s;
3021 };
3022
3023 /*
3024 * This function progressively scans the array with free objects (with
3025 * a limited look ahead) and extract objects belonging to the same
3026 * page. It builds a detached freelist directly within the given
3027 * page/objects. This can happen without any need for
3028 * synchronization, because the objects are owned by running process.
3029 * The freelist is build up as a single linked list in the objects.
3030 * The idea is, that this detached freelist can then be bulk
3031 * transferred to the real freelist(s), but only requiring a single
3032 * synchronization primitive. Look ahead in the array is limited due
3033 * to performance reasons.
3034 */
3035 static inline
3036 int build_detached_freelist(struct kmem_cache *s, size_t size,
3037 void **p, struct detached_freelist *df)
3038 {
3039 size_t first_skipped_index = 0;
3040 int lookahead = 3;
3041 void *object;
3042 struct page *page;
3043
3044 /* Always re-init detached_freelist */
3045 df->page = NULL;
3046
3047 do {
3048 object = p[--size];
3049 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3050 } while (!object && size);
3051
3052 if (!object)
3053 return 0;
3054
3055 page = virt_to_head_page(object);
3056 if (!s) {
3057 /* Handle kalloc'ed objects */
3058 if (unlikely(!PageSlab(page))) {
3059 BUG_ON(!PageCompound(page));
3060 kfree_hook(object);
3061 __free_pages(page, compound_order(page));
3062 p[size] = NULL; /* mark object processed */
3063 return size;
3064 }
3065 /* Derive kmem_cache from object */
3066 df->s = page->slab_cache;
3067 } else {
3068 df->s = cache_from_obj(s, object); /* Support for memcg */
3069 }
3070
3071 /* Start new detached freelist */
3072 df->page = page;
3073 set_freepointer(df->s, object, NULL);
3074 df->tail = object;
3075 df->freelist = object;
3076 p[size] = NULL; /* mark object processed */
3077 df->cnt = 1;
3078
3079 while (size) {
3080 object = p[--size];
3081 if (!object)
3082 continue; /* Skip processed objects */
3083
3084 /* df->page is always set at this point */
3085 if (df->page == virt_to_head_page(object)) {
3086 /* Opportunity build freelist */
3087 set_freepointer(df->s, object, df->freelist);
3088 df->freelist = object;
3089 df->cnt++;
3090 p[size] = NULL; /* mark object processed */
3091
3092 continue;
3093 }
3094
3095 /* Limit look ahead search */
3096 if (!--lookahead)
3097 break;
3098
3099 if (!first_skipped_index)
3100 first_skipped_index = size + 1;
3101 }
3102
3103 return first_skipped_index;
3104 }
3105
3106 /* Note that interrupts must be enabled when calling this function. */
3107 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3108 {
3109 if (WARN_ON(!size))
3110 return;
3111
3112 do {
3113 struct detached_freelist df;
3114
3115 size = build_detached_freelist(s, size, p, &df);
3116 if (!df.page)
3117 continue;
3118
3119 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3120 } while (likely(size));
3121 }
3122 EXPORT_SYMBOL(kmem_cache_free_bulk);
3123
3124 /* Note that interrupts must be enabled when calling this function. */
3125 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3126 void **p)
3127 {
3128 struct kmem_cache_cpu *c;
3129 int i;
3130
3131 /* memcg and kmem_cache debug support */
3132 s = slab_pre_alloc_hook(s, flags);
3133 if (unlikely(!s))
3134 return false;
3135 /*
3136 * Drain objects in the per cpu slab, while disabling local
3137 * IRQs, which protects against PREEMPT and interrupts
3138 * handlers invoking normal fastpath.
3139 */
3140 local_irq_disable();
3141 c = this_cpu_ptr(s->cpu_slab);
3142
3143 for (i = 0; i < size; i++) {
3144 void *object = c->freelist;
3145
3146 if (unlikely(!object)) {
3147 /*
3148 * Invoking slow path likely have side-effect
3149 * of re-populating per CPU c->freelist
3150 */
3151 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3152 _RET_IP_, c);
3153 if (unlikely(!p[i]))
3154 goto error;
3155
3156 c = this_cpu_ptr(s->cpu_slab);
3157 continue; /* goto for-loop */
3158 }
3159 c->freelist = get_freepointer(s, object);
3160 p[i] = object;
3161 }
3162 c->tid = next_tid(c->tid);
3163 local_irq_enable();
3164
3165 /* Clear memory outside IRQ disabled fastpath loop */
3166 if (unlikely(flags & __GFP_ZERO)) {
3167 int j;
3168
3169 for (j = 0; j < i; j++)
3170 memset(p[j], 0, s->object_size);
3171 }
3172
3173 /* memcg and kmem_cache debug support */
3174 slab_post_alloc_hook(s, flags, size, p);
3175 return i;
3176 error:
3177 local_irq_enable();
3178 slab_post_alloc_hook(s, flags, i, p);
3179 __kmem_cache_free_bulk(s, i, p);
3180 return 0;
3181 }
3182 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3183
3184
3185 /*
3186 * Object placement in a slab is made very easy because we always start at
3187 * offset 0. If we tune the size of the object to the alignment then we can
3188 * get the required alignment by putting one properly sized object after
3189 * another.
3190 *
3191 * Notice that the allocation order determines the sizes of the per cpu
3192 * caches. Each processor has always one slab available for allocations.
3193 * Increasing the allocation order reduces the number of times that slabs
3194 * must be moved on and off the partial lists and is therefore a factor in
3195 * locking overhead.
3196 */
3197
3198 /*
3199 * Mininum / Maximum order of slab pages. This influences locking overhead
3200 * and slab fragmentation. A higher order reduces the number of partial slabs
3201 * and increases the number of allocations possible without having to
3202 * take the list_lock.
3203 */
3204 static unsigned int slub_min_order;
3205 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3206 static unsigned int slub_min_objects;
3207
3208 /*
3209 * Calculate the order of allocation given an slab object size.
3210 *
3211 * The order of allocation has significant impact on performance and other
3212 * system components. Generally order 0 allocations should be preferred since
3213 * order 0 does not cause fragmentation in the page allocator. Larger objects
3214 * be problematic to put into order 0 slabs because there may be too much
3215 * unused space left. We go to a higher order if more than 1/16th of the slab
3216 * would be wasted.
3217 *
3218 * In order to reach satisfactory performance we must ensure that a minimum
3219 * number of objects is in one slab. Otherwise we may generate too much
3220 * activity on the partial lists which requires taking the list_lock. This is
3221 * less a concern for large slabs though which are rarely used.
3222 *
3223 * slub_max_order specifies the order where we begin to stop considering the
3224 * number of objects in a slab as critical. If we reach slub_max_order then
3225 * we try to keep the page order as low as possible. So we accept more waste
3226 * of space in favor of a small page order.
3227 *
3228 * Higher order allocations also allow the placement of more objects in a
3229 * slab and thereby reduce object handling overhead. If the user has
3230 * requested a higher mininum order then we start with that one instead of
3231 * the smallest order which will fit the object.
3232 */
3233 static inline unsigned int slab_order(unsigned int size,
3234 unsigned int min_objects, unsigned int max_order,
3235 unsigned int fract_leftover)
3236 {
3237 unsigned int min_order = slub_min_order;
3238 unsigned int order;
3239
3240 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3241 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3242
3243 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3244 order <= max_order; order++) {
3245
3246 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3247 unsigned int rem;
3248
3249 rem = slab_size % size;
3250
3251 if (rem <= slab_size / fract_leftover)
3252 break;
3253 }
3254
3255 return order;
3256 }
3257
3258 static inline int calculate_order(unsigned int size)
3259 {
3260 unsigned int order;
3261 unsigned int min_objects;
3262 unsigned int max_objects;
3263
3264 /*
3265 * Attempt to find best configuration for a slab. This
3266 * works by first attempting to generate a layout with
3267 * the best configuration and backing off gradually.
3268 *
3269 * First we increase the acceptable waste in a slab. Then
3270 * we reduce the minimum objects required in a slab.
3271 */
3272 min_objects = slub_min_objects;
3273 if (!min_objects)
3274 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3275 max_objects = order_objects(slub_max_order, size);
3276 min_objects = min(min_objects, max_objects);
3277
3278 while (min_objects > 1) {
3279 unsigned int fraction;
3280
3281 fraction = 16;
3282 while (fraction >= 4) {
3283 order = slab_order(size, min_objects,
3284 slub_max_order, fraction);
3285 if (order <= slub_max_order)
3286 return order;
3287 fraction /= 2;
3288 }
3289 min_objects--;
3290 }
3291
3292 /*
3293 * We were unable to place multiple objects in a slab. Now
3294 * lets see if we can place a single object there.
3295 */
3296 order = slab_order(size, 1, slub_max_order, 1);
3297 if (order <= slub_max_order)
3298 return order;
3299
3300 /*
3301 * Doh this slab cannot be placed using slub_max_order.
3302 */
3303 order = slab_order(size, 1, MAX_ORDER, 1);
3304 if (order < MAX_ORDER)
3305 return order;
3306 return -ENOSYS;
3307 }
3308
3309 static void
3310 init_kmem_cache_node(struct kmem_cache_node *n)
3311 {
3312 n->nr_partial = 0;
3313 spin_lock_init(&n->list_lock);
3314 INIT_LIST_HEAD(&n->partial);
3315 #ifdef CONFIG_SLUB_DEBUG
3316 atomic_long_set(&n->nr_slabs, 0);
3317 atomic_long_set(&n->total_objects, 0);
3318 INIT_LIST_HEAD(&n->full);
3319 #endif
3320 }
3321
3322 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3323 {
3324 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3325 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3326
3327 /*
3328 * Must align to double word boundary for the double cmpxchg
3329 * instructions to work; see __pcpu_double_call_return_bool().
3330 */
3331 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3332 2 * sizeof(void *));
3333
3334 if (!s->cpu_slab)
3335 return 0;
3336
3337 init_kmem_cache_cpus(s);
3338
3339 return 1;
3340 }
3341
3342 static struct kmem_cache *kmem_cache_node;
3343
3344 /*
3345 * No kmalloc_node yet so do it by hand. We know that this is the first
3346 * slab on the node for this slabcache. There are no concurrent accesses
3347 * possible.
3348 *
3349 * Note that this function only works on the kmem_cache_node
3350 * when allocating for the kmem_cache_node. This is used for bootstrapping
3351 * memory on a fresh node that has no slab structures yet.
3352 */
3353 static void early_kmem_cache_node_alloc(int node)
3354 {
3355 struct page *page;
3356 struct kmem_cache_node *n;
3357
3358 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3359
3360 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3361
3362 BUG_ON(!page);
3363 if (page_to_nid(page) != node) {
3364 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3365 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3366 }
3367
3368 n = page->freelist;
3369 BUG_ON(!n);
3370 #ifdef CONFIG_SLUB_DEBUG
3371 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3372 init_tracking(kmem_cache_node, n);
3373 #endif
3374 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3375 GFP_KERNEL);
3376 page->freelist = get_freepointer(kmem_cache_node, n);
3377 page->inuse = 1;
3378 page->frozen = 0;
3379 kmem_cache_node->node[node] = n;
3380 init_kmem_cache_node(n);
3381 inc_slabs_node(kmem_cache_node, node, page->objects);
3382
3383 /*
3384 * No locks need to be taken here as it has just been
3385 * initialized and there is no concurrent access.
3386 */
3387 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3388 }
3389
3390 static void free_kmem_cache_nodes(struct kmem_cache *s)
3391 {
3392 int node;
3393 struct kmem_cache_node *n;
3394
3395 for_each_kmem_cache_node(s, node, n) {
3396 s->node[node] = NULL;
3397 kmem_cache_free(kmem_cache_node, n);
3398 }
3399 }
3400
3401 void __kmem_cache_release(struct kmem_cache *s)
3402 {
3403 cache_random_seq_destroy(s);
3404 free_percpu(s->cpu_slab);
3405 free_kmem_cache_nodes(s);
3406 }
3407
3408 static int init_kmem_cache_nodes(struct kmem_cache *s)
3409 {
3410 int node;
3411
3412 for_each_node_state(node, N_NORMAL_MEMORY) {
3413 struct kmem_cache_node *n;
3414
3415 if (slab_state == DOWN) {
3416 early_kmem_cache_node_alloc(node);
3417 continue;
3418 }
3419 n = kmem_cache_alloc_node(kmem_cache_node,
3420 GFP_KERNEL, node);
3421
3422 if (!n) {
3423 free_kmem_cache_nodes(s);
3424 return 0;
3425 }
3426
3427 init_kmem_cache_node(n);
3428 s->node[node] = n;
3429 }
3430 return 1;
3431 }
3432
3433 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3434 {
3435 if (min < MIN_PARTIAL)
3436 min = MIN_PARTIAL;
3437 else if (min > MAX_PARTIAL)
3438 min = MAX_PARTIAL;
3439 s->min_partial = min;
3440 }
3441
3442 static void set_cpu_partial(struct kmem_cache *s)
3443 {
3444 #ifdef CONFIG_SLUB_CPU_PARTIAL
3445 /*
3446 * cpu_partial determined the maximum number of objects kept in the
3447 * per cpu partial lists of a processor.
3448 *
3449 * Per cpu partial lists mainly contain slabs that just have one
3450 * object freed. If they are used for allocation then they can be
3451 * filled up again with minimal effort. The slab will never hit the
3452 * per node partial lists and therefore no locking will be required.
3453 *
3454 * This setting also determines
3455 *
3456 * A) The number of objects from per cpu partial slabs dumped to the
3457 * per node list when we reach the limit.
3458 * B) The number of objects in cpu partial slabs to extract from the
3459 * per node list when we run out of per cpu objects. We only fetch
3460 * 50% to keep some capacity around for frees.
3461 */
3462 if (!kmem_cache_has_cpu_partial(s))
3463 s->cpu_partial = 0;
3464 else if (s->size >= PAGE_SIZE)
3465 s->cpu_partial = 2;
3466 else if (s->size >= 1024)
3467 s->cpu_partial = 6;
3468 else if (s->size >= 256)
3469 s->cpu_partial = 13;
3470 else
3471 s->cpu_partial = 30;
3472 #endif
3473 }
3474
3475 /*
3476 * calculate_sizes() determines the order and the distribution of data within
3477 * a slab object.
3478 */
3479 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3480 {
3481 slab_flags_t flags = s->flags;
3482 unsigned int size = s->object_size;
3483 unsigned int order;
3484
3485 /*
3486 * Round up object size to the next word boundary. We can only
3487 * place the free pointer at word boundaries and this determines
3488 * the possible location of the free pointer.
3489 */
3490 size = ALIGN(size, sizeof(void *));
3491
3492 #ifdef CONFIG_SLUB_DEBUG
3493 /*
3494 * Determine if we can poison the object itself. If the user of
3495 * the slab may touch the object after free or before allocation
3496 * then we should never poison the object itself.
3497 */
3498 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3499 !s->ctor)
3500 s->flags |= __OBJECT_POISON;
3501 else
3502 s->flags &= ~__OBJECT_POISON;
3503
3504
3505 /*
3506 * If we are Redzoning then check if there is some space between the
3507 * end of the object and the free pointer. If not then add an
3508 * additional word to have some bytes to store Redzone information.
3509 */
3510 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3511 size += sizeof(void *);
3512 #endif
3513
3514 /*
3515 * With that we have determined the number of bytes in actual use
3516 * by the object. This is the potential offset to the free pointer.
3517 */
3518 s->inuse = size;
3519
3520 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3521 s->ctor)) {
3522 /*
3523 * Relocate free pointer after the object if it is not
3524 * permitted to overwrite the first word of the object on
3525 * kmem_cache_free.
3526 *
3527 * This is the case if we do RCU, have a constructor or
3528 * destructor or are poisoning the objects.
3529 */
3530 s->offset = size;
3531 size += sizeof(void *);
3532 }
3533
3534 #ifdef CONFIG_SLUB_DEBUG
3535 if (flags & SLAB_STORE_USER)
3536 /*
3537 * Need to store information about allocs and frees after
3538 * the object.
3539 */
3540 size += 2 * sizeof(struct track);
3541 #endif
3542
3543 kasan_cache_create(s, &size, &s->flags);
3544 #ifdef CONFIG_SLUB_DEBUG
3545 if (flags & SLAB_RED_ZONE) {
3546 /*
3547 * Add some empty padding so that we can catch
3548 * overwrites from earlier objects rather than let
3549 * tracking information or the free pointer be
3550 * corrupted if a user writes before the start
3551 * of the object.
3552 */
3553 size += sizeof(void *);
3554
3555 s->red_left_pad = sizeof(void *);
3556 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3557 size += s->red_left_pad;
3558 }
3559 #endif
3560
3561 /*
3562 * SLUB stores one object immediately after another beginning from
3563 * offset 0. In order to align the objects we have to simply size
3564 * each object to conform to the alignment.
3565 */
3566 size = ALIGN(size, s->align);
3567 s->size = size;
3568 if (forced_order >= 0)
3569 order = forced_order;
3570 else
3571 order = calculate_order(size);
3572
3573 if ((int)order < 0)
3574 return 0;
3575
3576 s->allocflags = 0;
3577 if (order)
3578 s->allocflags |= __GFP_COMP;
3579
3580 if (s->flags & SLAB_CACHE_DMA)
3581 s->allocflags |= GFP_DMA;
3582
3583 if (s->flags & SLAB_CACHE_DMA32)
3584 s->allocflags |= GFP_DMA32;
3585
3586 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3587 s->allocflags |= __GFP_RECLAIMABLE;
3588
3589 /*
3590 * Determine the number of objects per slab
3591 */
3592 s->oo = oo_make(order, size);
3593 s->min = oo_make(get_order(size), size);
3594 if (oo_objects(s->oo) > oo_objects(s->max))
3595 s->max = s->oo;
3596
3597 return !!oo_objects(s->oo);
3598 }
3599
3600 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3601 {
3602 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3603 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3604 s->random = get_random_long();
3605 #endif
3606
3607 if (!calculate_sizes(s, -1))
3608 goto error;
3609 if (disable_higher_order_debug) {
3610 /*
3611 * Disable debugging flags that store metadata if the min slab
3612 * order increased.
3613 */
3614 if (get_order(s->size) > get_order(s->object_size)) {
3615 s->flags &= ~DEBUG_METADATA_FLAGS;
3616 s->offset = 0;
3617 if (!calculate_sizes(s, -1))
3618 goto error;
3619 }
3620 }
3621
3622 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3625 /* Enable fast mode */
3626 s->flags |= __CMPXCHG_DOUBLE;
3627 #endif
3628
3629 /*
3630 * The larger the object size is, the more pages we want on the partial
3631 * list to avoid pounding the page allocator excessively.
3632 */
3633 set_min_partial(s, ilog2(s->size) / 2);
3634
3635 set_cpu_partial(s);
3636
3637 #ifdef CONFIG_NUMA
3638 s->remote_node_defrag_ratio = 1000;
3639 #endif
3640
3641 /* Initialize the pre-computed randomized freelist if slab is up */
3642 if (slab_state >= UP) {
3643 if (init_cache_random_seq(s))
3644 goto error;
3645 }
3646
3647 if (!init_kmem_cache_nodes(s))
3648 goto error;
3649
3650 if (alloc_kmem_cache_cpus(s))
3651 return 0;
3652
3653 free_kmem_cache_nodes(s);
3654 error:
3655 if (flags & SLAB_PANIC)
3656 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3657 s->name, s->size, s->size,
3658 oo_order(s->oo), s->offset, (unsigned long)flags);
3659 return -EINVAL;
3660 }
3661
3662 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663 const char *text)
3664 {
3665 #ifdef CONFIG_SLUB_DEBUG
3666 void *addr = page_address(page);
3667 void *p;
3668 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3669 if (!map)
3670 return;
3671 slab_err(s, page, text, s->name);
3672 slab_lock(page);
3673
3674 get_map(s, page, map);
3675 for_each_object(p, s, addr, page->objects) {
3676
3677 if (!test_bit(slab_index(p, s, addr), map)) {
3678 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3679 print_tracking(s, p);
3680 }
3681 }
3682 slab_unlock(page);
3683 bitmap_free(map);
3684 #endif
3685 }
3686
3687 /*
3688 * Attempt to free all partial slabs on a node.
3689 * This is called from __kmem_cache_shutdown(). We must take list_lock
3690 * because sysfs file might still access partial list after the shutdowning.
3691 */
3692 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3693 {
3694 LIST_HEAD(discard);
3695 struct page *page, *h;
3696
3697 BUG_ON(irqs_disabled());
3698 spin_lock_irq(&n->list_lock);
3699 list_for_each_entry_safe(page, h, &n->partial, lru) {
3700 if (!page->inuse) {
3701 remove_partial(n, page);
3702 list_add(&page->lru, &discard);
3703 } else {
3704 list_slab_objects(s, page,
3705 "Objects remaining in %s on __kmem_cache_shutdown()");
3706 }
3707 }
3708 spin_unlock_irq(&n->list_lock);
3709
3710 list_for_each_entry_safe(page, h, &discard, lru)
3711 discard_slab(s, page);
3712 }
3713
3714 bool __kmem_cache_empty(struct kmem_cache *s)
3715 {
3716 int node;
3717 struct kmem_cache_node *n;
3718
3719 for_each_kmem_cache_node(s, node, n)
3720 if (n->nr_partial || slabs_node(s, node))
3721 return false;
3722 return true;
3723 }
3724
3725 /*
3726 * Release all resources used by a slab cache.
3727 */
3728 int __kmem_cache_shutdown(struct kmem_cache *s)
3729 {
3730 int node;
3731 struct kmem_cache_node *n;
3732
3733 flush_all(s);
3734 /* Attempt to free all objects */
3735 for_each_kmem_cache_node(s, node, n) {
3736 free_partial(s, n);
3737 if (n->nr_partial || slabs_node(s, node))
3738 return 1;
3739 }
3740 sysfs_slab_remove(s);
3741 return 0;
3742 }
3743
3744 /********************************************************************
3745 * Kmalloc subsystem
3746 *******************************************************************/
3747
3748 static int __init setup_slub_min_order(char *str)
3749 {
3750 get_option(&str, (int *)&slub_min_order);
3751
3752 return 1;
3753 }
3754
3755 __setup("slub_min_order=", setup_slub_min_order);
3756
3757 static int __init setup_slub_max_order(char *str)
3758 {
3759 get_option(&str, (int *)&slub_max_order);
3760 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3761
3762 return 1;
3763 }
3764
3765 __setup("slub_max_order=", setup_slub_max_order);
3766
3767 static int __init setup_slub_min_objects(char *str)
3768 {
3769 get_option(&str, (int *)&slub_min_objects);
3770
3771 return 1;
3772 }
3773
3774 __setup("slub_min_objects=", setup_slub_min_objects);
3775
3776 void *__kmalloc(size_t size, gfp_t flags)
3777 {
3778 struct kmem_cache *s;
3779 void *ret;
3780
3781 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3782 return kmalloc_large(size, flags);
3783
3784 s = kmalloc_slab(size, flags);
3785
3786 if (unlikely(ZERO_OR_NULL_PTR(s)))
3787 return s;
3788
3789 ret = slab_alloc(s, flags, _RET_IP_);
3790
3791 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3792
3793 ret = kasan_kmalloc(s, ret, size, flags);
3794
3795 return ret;
3796 }
3797 EXPORT_SYMBOL(__kmalloc);
3798
3799 #ifdef CONFIG_NUMA
3800 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3801 {
3802 struct page *page;
3803 void *ptr = NULL;
3804
3805 flags |= __GFP_COMP;
3806 page = alloc_pages_node(node, flags, get_order(size));
3807 if (page)
3808 ptr = page_address(page);
3809
3810 return kmalloc_large_node_hook(ptr, size, flags);
3811 }
3812
3813 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3814 {
3815 struct kmem_cache *s;
3816 void *ret;
3817
3818 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3819 ret = kmalloc_large_node(size, flags, node);
3820
3821 trace_kmalloc_node(_RET_IP_, ret,
3822 size, PAGE_SIZE << get_order(size),
3823 flags, node);
3824
3825 return ret;
3826 }
3827
3828 s = kmalloc_slab(size, flags);
3829
3830 if (unlikely(ZERO_OR_NULL_PTR(s)))
3831 return s;
3832
3833 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3834
3835 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3836
3837 ret = kasan_kmalloc(s, ret, size, flags);
3838
3839 return ret;
3840 }
3841 EXPORT_SYMBOL(__kmalloc_node);
3842 #endif
3843
3844 #ifdef CONFIG_HARDENED_USERCOPY
3845 /*
3846 * Rejects incorrectly sized objects and objects that are to be copied
3847 * to/from userspace but do not fall entirely within the containing slab
3848 * cache's usercopy region.
3849 *
3850 * Returns NULL if check passes, otherwise const char * to name of cache
3851 * to indicate an error.
3852 */
3853 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3854 bool to_user)
3855 {
3856 struct kmem_cache *s;
3857 unsigned int offset;
3858 size_t object_size;
3859
3860 ptr = kasan_reset_tag(ptr);
3861
3862 /* Find object and usable object size. */
3863 s = page->slab_cache;
3864
3865 /* Reject impossible pointers. */
3866 if (ptr < page_address(page))
3867 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3868 to_user, 0, n);
3869
3870 /* Find offset within object. */
3871 offset = (ptr - page_address(page)) % s->size;
3872
3873 /* Adjust for redzone and reject if within the redzone. */
3874 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3875 if (offset < s->red_left_pad)
3876 usercopy_abort("SLUB object in left red zone",
3877 s->name, to_user, offset, n);
3878 offset -= s->red_left_pad;
3879 }
3880
3881 /* Allow address range falling entirely within usercopy region. */
3882 if (offset >= s->useroffset &&
3883 offset - s->useroffset <= s->usersize &&
3884 n <= s->useroffset - offset + s->usersize)
3885 return;
3886
3887 /*
3888 * If the copy is still within the allocated object, produce
3889 * a warning instead of rejecting the copy. This is intended
3890 * to be a temporary method to find any missing usercopy
3891 * whitelists.
3892 */
3893 object_size = slab_ksize(s);
3894 if (usercopy_fallback &&
3895 offset <= object_size && n <= object_size - offset) {
3896 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3897 return;
3898 }
3899
3900 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3901 }
3902 #endif /* CONFIG_HARDENED_USERCOPY */
3903
3904 static size_t __ksize(const void *object)
3905 {
3906 struct page *page;
3907
3908 if (unlikely(object == ZERO_SIZE_PTR))
3909 return 0;
3910
3911 page = virt_to_head_page(object);
3912
3913 if (unlikely(!PageSlab(page))) {
3914 WARN_ON(!PageCompound(page));
3915 return PAGE_SIZE << compound_order(page);
3916 }
3917
3918 return slab_ksize(page->slab_cache);
3919 }
3920
3921 size_t ksize(const void *object)
3922 {
3923 size_t size = __ksize(object);
3924 /* We assume that ksize callers could use whole allocated area,
3925 * so we need to unpoison this area.
3926 */
3927 kasan_unpoison_shadow(object, size);
3928 return size;
3929 }
3930 EXPORT_SYMBOL(ksize);
3931
3932 void kfree(const void *x)
3933 {
3934 struct page *page;
3935 void *object = (void *)x;
3936
3937 trace_kfree(_RET_IP_, x);
3938
3939 if (unlikely(ZERO_OR_NULL_PTR(x)))
3940 return;
3941
3942 page = virt_to_head_page(x);
3943 if (unlikely(!PageSlab(page))) {
3944 BUG_ON(!PageCompound(page));
3945 kfree_hook(object);
3946 __free_pages(page, compound_order(page));
3947 return;
3948 }
3949 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3950 }
3951 EXPORT_SYMBOL(kfree);
3952
3953 #define SHRINK_PROMOTE_MAX 32
3954
3955 /*
3956 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3957 * up most to the head of the partial lists. New allocations will then
3958 * fill those up and thus they can be removed from the partial lists.
3959 *
3960 * The slabs with the least items are placed last. This results in them
3961 * being allocated from last increasing the chance that the last objects
3962 * are freed in them.
3963 */
3964 int __kmem_cache_shrink(struct kmem_cache *s)
3965 {
3966 int node;
3967 int i;
3968 struct kmem_cache_node *n;
3969 struct page *page;
3970 struct page *t;
3971 struct list_head discard;
3972 struct list_head promote[SHRINK_PROMOTE_MAX];
3973 unsigned long flags;
3974 int ret = 0;
3975
3976 flush_all(s);
3977 for_each_kmem_cache_node(s, node, n) {
3978 INIT_LIST_HEAD(&discard);
3979 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3980 INIT_LIST_HEAD(promote + i);
3981
3982 spin_lock_irqsave(&n->list_lock, flags);
3983
3984 /*
3985 * Build lists of slabs to discard or promote.
3986 *
3987 * Note that concurrent frees may occur while we hold the
3988 * list_lock. page->inuse here is the upper limit.
3989 */
3990 list_for_each_entry_safe(page, t, &n->partial, lru) {
3991 int free = page->objects - page->inuse;
3992
3993 /* Do not reread page->inuse */
3994 barrier();
3995
3996 /* We do not keep full slabs on the list */
3997 BUG_ON(free <= 0);
3998
3999 if (free == page->objects) {
4000 list_move(&page->lru, &discard);
4001 n->nr_partial--;
4002 } else if (free <= SHRINK_PROMOTE_MAX)
4003 list_move(&page->lru, promote + free - 1);
4004 }
4005
4006 /*
4007 * Promote the slabs filled up most to the head of the
4008 * partial list.
4009 */
4010 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4011 list_splice(promote + i, &n->partial);
4012
4013 spin_unlock_irqrestore(&n->list_lock, flags);
4014
4015 /* Release empty slabs */
4016 list_for_each_entry_safe(page, t, &discard, lru)
4017 discard_slab(s, page);
4018
4019 if (slabs_node(s, node))
4020 ret = 1;
4021 }
4022
4023 return ret;
4024 }
4025
4026 #ifdef CONFIG_MEMCG
4027 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4028 {
4029 /*
4030 * Called with all the locks held after a sched RCU grace period.
4031 * Even if @s becomes empty after shrinking, we can't know that @s
4032 * doesn't have allocations already in-flight and thus can't
4033 * destroy @s until the associated memcg is released.
4034 *
4035 * However, let's remove the sysfs files for empty caches here.
4036 * Each cache has a lot of interface files which aren't
4037 * particularly useful for empty draining caches; otherwise, we can
4038 * easily end up with millions of unnecessary sysfs files on
4039 * systems which have a lot of memory and transient cgroups.
4040 */
4041 if (!__kmem_cache_shrink(s))
4042 sysfs_slab_remove(s);
4043 }
4044
4045 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4046 {
4047 /*
4048 * Disable empty slabs caching. Used to avoid pinning offline
4049 * memory cgroups by kmem pages that can be freed.
4050 */
4051 slub_set_cpu_partial(s, 0);
4052 s->min_partial = 0;
4053
4054 /*
4055 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4056 * we have to make sure the change is visible before shrinking.
4057 */
4058 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4059 }
4060 #endif
4061
4062 static int slab_mem_going_offline_callback(void *arg)
4063 {
4064 struct kmem_cache *s;
4065
4066 mutex_lock(&slab_mutex);
4067 list_for_each_entry(s, &slab_caches, list)
4068 __kmem_cache_shrink(s);
4069 mutex_unlock(&slab_mutex);
4070
4071 return 0;
4072 }
4073
4074 static void slab_mem_offline_callback(void *arg)
4075 {
4076 struct kmem_cache_node *n;
4077 struct kmem_cache *s;
4078 struct memory_notify *marg = arg;
4079 int offline_node;
4080
4081 offline_node = marg->status_change_nid_normal;
4082
4083 /*
4084 * If the node still has available memory. we need kmem_cache_node
4085 * for it yet.
4086 */
4087 if (offline_node < 0)
4088 return;
4089
4090 mutex_lock(&slab_mutex);
4091 list_for_each_entry(s, &slab_caches, list) {
4092 n = get_node(s, offline_node);
4093 if (n) {
4094 /*
4095 * if n->nr_slabs > 0, slabs still exist on the node
4096 * that is going down. We were unable to free them,
4097 * and offline_pages() function shouldn't call this
4098 * callback. So, we must fail.
4099 */
4100 BUG_ON(slabs_node(s, offline_node));
4101
4102 s->node[offline_node] = NULL;
4103 kmem_cache_free(kmem_cache_node, n);
4104 }
4105 }
4106 mutex_unlock(&slab_mutex);
4107 }
4108
4109 static int slab_mem_going_online_callback(void *arg)
4110 {
4111 struct kmem_cache_node *n;
4112 struct kmem_cache *s;
4113 struct memory_notify *marg = arg;
4114 int nid = marg->status_change_nid_normal;
4115 int ret = 0;
4116
4117 /*
4118 * If the node's memory is already available, then kmem_cache_node is
4119 * already created. Nothing to do.
4120 */
4121 if (nid < 0)
4122 return 0;
4123
4124 /*
4125 * We are bringing a node online. No memory is available yet. We must
4126 * allocate a kmem_cache_node structure in order to bring the node
4127 * online.
4128 */
4129 mutex_lock(&slab_mutex);
4130 list_for_each_entry(s, &slab_caches, list) {
4131 /*
4132 * XXX: kmem_cache_alloc_node will fallback to other nodes
4133 * since memory is not yet available from the node that
4134 * is brought up.
4135 */
4136 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4137 if (!n) {
4138 ret = -ENOMEM;
4139 goto out;
4140 }
4141 init_kmem_cache_node(n);
4142 s->node[nid] = n;
4143 }
4144 out:
4145 mutex_unlock(&slab_mutex);
4146 return ret;
4147 }
4148
4149 static int slab_memory_callback(struct notifier_block *self,
4150 unsigned long action, void *arg)
4151 {
4152 int ret = 0;
4153
4154 switch (action) {
4155 case MEM_GOING_ONLINE:
4156 ret = slab_mem_going_online_callback(arg);
4157 break;
4158 case MEM_GOING_OFFLINE:
4159 ret = slab_mem_going_offline_callback(arg);
4160 break;
4161 case MEM_OFFLINE:
4162 case MEM_CANCEL_ONLINE:
4163 slab_mem_offline_callback(arg);
4164 break;
4165 case MEM_ONLINE:
4166 case MEM_CANCEL_OFFLINE:
4167 break;
4168 }
4169 if (ret)
4170 ret = notifier_from_errno(ret);
4171 else
4172 ret = NOTIFY_OK;
4173 return ret;
4174 }
4175
4176 static struct notifier_block slab_memory_callback_nb = {
4177 .notifier_call = slab_memory_callback,
4178 .priority = SLAB_CALLBACK_PRI,
4179 };
4180
4181 /********************************************************************
4182 * Basic setup of slabs
4183 *******************************************************************/
4184
4185 /*
4186 * Used for early kmem_cache structures that were allocated using
4187 * the page allocator. Allocate them properly then fix up the pointers
4188 * that may be pointing to the wrong kmem_cache structure.
4189 */
4190
4191 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4192 {
4193 int node;
4194 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4195 struct kmem_cache_node *n;
4196
4197 memcpy(s, static_cache, kmem_cache->object_size);
4198
4199 /*
4200 * This runs very early, and only the boot processor is supposed to be
4201 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4202 * IPIs around.
4203 */
4204 __flush_cpu_slab(s, smp_processor_id());
4205 for_each_kmem_cache_node(s, node, n) {
4206 struct page *p;
4207
4208 list_for_each_entry(p, &n->partial, lru)
4209 p->slab_cache = s;
4210
4211 #ifdef CONFIG_SLUB_DEBUG
4212 list_for_each_entry(p, &n->full, lru)
4213 p->slab_cache = s;
4214 #endif
4215 }
4216 slab_init_memcg_params(s);
4217 list_add(&s->list, &slab_caches);
4218 memcg_link_cache(s);
4219 return s;
4220 }
4221
4222 void __init kmem_cache_init(void)
4223 {
4224 static __initdata struct kmem_cache boot_kmem_cache,
4225 boot_kmem_cache_node;
4226
4227 if (debug_guardpage_minorder())
4228 slub_max_order = 0;
4229
4230 kmem_cache_node = &boot_kmem_cache_node;
4231 kmem_cache = &boot_kmem_cache;
4232
4233 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4234 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4235
4236 register_hotmemory_notifier(&slab_memory_callback_nb);
4237
4238 /* Able to allocate the per node structures */
4239 slab_state = PARTIAL;
4240
4241 create_boot_cache(kmem_cache, "kmem_cache",
4242 offsetof(struct kmem_cache, node) +
4243 nr_node_ids * sizeof(struct kmem_cache_node *),
4244 SLAB_HWCACHE_ALIGN, 0, 0);
4245
4246 kmem_cache = bootstrap(&boot_kmem_cache);
4247 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4248
4249 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4250 setup_kmalloc_cache_index_table();
4251 create_kmalloc_caches(0);
4252
4253 /* Setup random freelists for each cache */
4254 init_freelist_randomization();
4255
4256 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4257 slub_cpu_dead);
4258
4259 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4260 cache_line_size(),
4261 slub_min_order, slub_max_order, slub_min_objects,
4262 nr_cpu_ids, nr_node_ids);
4263 }
4264
4265 void __init kmem_cache_init_late(void)
4266 {
4267 }
4268
4269 struct kmem_cache *
4270 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4271 slab_flags_t flags, void (*ctor)(void *))
4272 {
4273 struct kmem_cache *s, *c;
4274
4275 s = find_mergeable(size, align, flags, name, ctor);
4276 if (s) {
4277 s->refcount++;
4278
4279 /*
4280 * Adjust the object sizes so that we clear
4281 * the complete object on kzalloc.
4282 */
4283 s->object_size = max(s->object_size, size);
4284 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4285
4286 for_each_memcg_cache(c, s) {
4287 c->object_size = s->object_size;
4288 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4289 }
4290
4291 if (sysfs_slab_alias(s, name)) {
4292 s->refcount--;
4293 s = NULL;
4294 }
4295 }
4296
4297 return s;
4298 }
4299
4300 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4301 {
4302 int err;
4303
4304 err = kmem_cache_open(s, flags);
4305 if (err)
4306 return err;
4307
4308 /* Mutex is not taken during early boot */
4309 if (slab_state <= UP)
4310 return 0;
4311
4312 memcg_propagate_slab_attrs(s);
4313 err = sysfs_slab_add(s);
4314 if (err)
4315 __kmem_cache_release(s);
4316
4317 return err;
4318 }
4319
4320 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4321 {
4322 struct kmem_cache *s;
4323 void *ret;
4324
4325 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4326 return kmalloc_large(size, gfpflags);
4327
4328 s = kmalloc_slab(size, gfpflags);
4329
4330 if (unlikely(ZERO_OR_NULL_PTR(s)))
4331 return s;
4332
4333 ret = slab_alloc(s, gfpflags, caller);
4334
4335 /* Honor the call site pointer we received. */
4336 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4337
4338 return ret;
4339 }
4340
4341 #ifdef CONFIG_NUMA
4342 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4343 int node, unsigned long caller)
4344 {
4345 struct kmem_cache *s;
4346 void *ret;
4347
4348 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4349 ret = kmalloc_large_node(size, gfpflags, node);
4350
4351 trace_kmalloc_node(caller, ret,
4352 size, PAGE_SIZE << get_order(size),
4353 gfpflags, node);
4354
4355 return ret;
4356 }
4357
4358 s = kmalloc_slab(size, gfpflags);
4359
4360 if (unlikely(ZERO_OR_NULL_PTR(s)))
4361 return s;
4362
4363 ret = slab_alloc_node(s, gfpflags, node, caller);
4364
4365 /* Honor the call site pointer we received. */
4366 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4367
4368 return ret;
4369 }
4370 #endif
4371
4372 #ifdef CONFIG_SYSFS
4373 static int count_inuse(struct page *page)
4374 {
4375 return page->inuse;
4376 }
4377
4378 static int count_total(struct page *page)
4379 {
4380 return page->objects;
4381 }
4382 #endif
4383
4384 #ifdef CONFIG_SLUB_DEBUG
4385 static int validate_slab(struct kmem_cache *s, struct page *page,
4386 unsigned long *map)
4387 {
4388 void *p;
4389 void *addr = page_address(page);
4390
4391 if (!check_slab(s, page) ||
4392 !on_freelist(s, page, NULL))
4393 return 0;
4394
4395 /* Now we know that a valid freelist exists */
4396 bitmap_zero(map, page->objects);
4397
4398 get_map(s, page, map);
4399 for_each_object(p, s, addr, page->objects) {
4400 if (test_bit(slab_index(p, s, addr), map))
4401 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4402 return 0;
4403 }
4404
4405 for_each_object(p, s, addr, page->objects)
4406 if (!test_bit(slab_index(p, s, addr), map))
4407 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4408 return 0;
4409 return 1;
4410 }
4411
4412 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4413 unsigned long *map)
4414 {
4415 slab_lock(page);
4416 validate_slab(s, page, map);
4417 slab_unlock(page);
4418 }
4419
4420 static int validate_slab_node(struct kmem_cache *s,
4421 struct kmem_cache_node *n, unsigned long *map)
4422 {
4423 unsigned long count = 0;
4424 struct page *page;
4425 unsigned long flags;
4426
4427 spin_lock_irqsave(&n->list_lock, flags);
4428
4429 list_for_each_entry(page, &n->partial, lru) {
4430 validate_slab_slab(s, page, map);
4431 count++;
4432 }
4433 if (count != n->nr_partial)
4434 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4435 s->name, count, n->nr_partial);
4436
4437 if (!(s->flags & SLAB_STORE_USER))
4438 goto out;
4439
4440 list_for_each_entry(page, &n->full, lru) {
4441 validate_slab_slab(s, page, map);
4442 count++;
4443 }
4444 if (count != atomic_long_read(&n->nr_slabs))
4445 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4446 s->name, count, atomic_long_read(&n->nr_slabs));
4447
4448 out:
4449 spin_unlock_irqrestore(&n->list_lock, flags);
4450 return count;
4451 }
4452
4453 static long validate_slab_cache(struct kmem_cache *s)
4454 {
4455 int node;
4456 unsigned long count = 0;
4457 struct kmem_cache_node *n;
4458 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4459
4460 if (!map)
4461 return -ENOMEM;
4462
4463 flush_all(s);
4464 for_each_kmem_cache_node(s, node, n)
4465 count += validate_slab_node(s, n, map);
4466 bitmap_free(map);
4467 return count;
4468 }
4469 /*
4470 * Generate lists of code addresses where slabcache objects are allocated
4471 * and freed.
4472 */
4473
4474 struct location {
4475 unsigned long count;
4476 unsigned long addr;
4477 long long sum_time;
4478 long min_time;
4479 long max_time;
4480 long min_pid;
4481 long max_pid;
4482 DECLARE_BITMAP(cpus, NR_CPUS);
4483 nodemask_t nodes;
4484 };
4485
4486 struct loc_track {
4487 unsigned long max;
4488 unsigned long count;
4489 struct location *loc;
4490 };
4491
4492 static void free_loc_track(struct loc_track *t)
4493 {
4494 if (t->max)
4495 free_pages((unsigned long)t->loc,
4496 get_order(sizeof(struct location) * t->max));
4497 }
4498
4499 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4500 {
4501 struct location *l;
4502 int order;
4503
4504 order = get_order(sizeof(struct location) * max);
4505
4506 l = (void *)__get_free_pages(flags, order);
4507 if (!l)
4508 return 0;
4509
4510 if (t->count) {
4511 memcpy(l, t->loc, sizeof(struct location) * t->count);
4512 free_loc_track(t);
4513 }
4514 t->max = max;
4515 t->loc = l;
4516 return 1;
4517 }
4518
4519 static int add_location(struct loc_track *t, struct kmem_cache *s,
4520 const struct track *track)
4521 {
4522 long start, end, pos;
4523 struct location *l;
4524 unsigned long caddr;
4525 unsigned long age = jiffies - track->when;
4526
4527 start = -1;
4528 end = t->count;
4529
4530 for ( ; ; ) {
4531 pos = start + (end - start + 1) / 2;
4532
4533 /*
4534 * There is nothing at "end". If we end up there
4535 * we need to add something to before end.
4536 */
4537 if (pos == end)
4538 break;
4539
4540 caddr = t->loc[pos].addr;
4541 if (track->addr == caddr) {
4542
4543 l = &t->loc[pos];
4544 l->count++;
4545 if (track->when) {
4546 l->sum_time += age;
4547 if (age < l->min_time)
4548 l->min_time = age;
4549 if (age > l->max_time)
4550 l->max_time = age;
4551
4552 if (track->pid < l->min_pid)
4553 l->min_pid = track->pid;
4554 if (track->pid > l->max_pid)
4555 l->max_pid = track->pid;
4556
4557 cpumask_set_cpu(track->cpu,
4558 to_cpumask(l->cpus));
4559 }
4560 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4561 return 1;
4562 }
4563
4564 if (track->addr < caddr)
4565 end = pos;
4566 else
4567 start = pos;
4568 }
4569
4570 /*
4571 * Not found. Insert new tracking element.
4572 */
4573 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4574 return 0;
4575
4576 l = t->loc + pos;
4577 if (pos < t->count)
4578 memmove(l + 1, l,
4579 (t->count - pos) * sizeof(struct location));
4580 t->count++;
4581 l->count = 1;
4582 l->addr = track->addr;
4583 l->sum_time = age;
4584 l->min_time = age;
4585 l->max_time = age;
4586 l->min_pid = track->pid;
4587 l->max_pid = track->pid;
4588 cpumask_clear(to_cpumask(l->cpus));
4589 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4590 nodes_clear(l->nodes);
4591 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4592 return 1;
4593 }
4594
4595 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4596 struct page *page, enum track_item alloc,
4597 unsigned long *map)
4598 {
4599 void *addr = page_address(page);
4600 void *p;
4601
4602 bitmap_zero(map, page->objects);
4603 get_map(s, page, map);
4604
4605 for_each_object(p, s, addr, page->objects)
4606 if (!test_bit(slab_index(p, s, addr), map))
4607 add_location(t, s, get_track(s, p, alloc));
4608 }
4609
4610 static int list_locations(struct kmem_cache *s, char *buf,
4611 enum track_item alloc)
4612 {
4613 int len = 0;
4614 unsigned long i;
4615 struct loc_track t = { 0, 0, NULL };
4616 int node;
4617 struct kmem_cache_node *n;
4618 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4619
4620 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4621 GFP_KERNEL)) {
4622 bitmap_free(map);
4623 return sprintf(buf, "Out of memory\n");
4624 }
4625 /* Push back cpu slabs */
4626 flush_all(s);
4627
4628 for_each_kmem_cache_node(s, node, n) {
4629 unsigned long flags;
4630 struct page *page;
4631
4632 if (!atomic_long_read(&n->nr_slabs))
4633 continue;
4634
4635 spin_lock_irqsave(&n->list_lock, flags);
4636 list_for_each_entry(page, &n->partial, lru)
4637 process_slab(&t, s, page, alloc, map);
4638 list_for_each_entry(page, &n->full, lru)
4639 process_slab(&t, s, page, alloc, map);
4640 spin_unlock_irqrestore(&n->list_lock, flags);
4641 }
4642
4643 for (i = 0; i < t.count; i++) {
4644 struct location *l = &t.loc[i];
4645
4646 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4647 break;
4648 len += sprintf(buf + len, "%7ld ", l->count);
4649
4650 if (l->addr)
4651 len += sprintf(buf + len, "%pS", (void *)l->addr);
4652 else
4653 len += sprintf(buf + len, "<not-available>");
4654
4655 if (l->sum_time != l->min_time) {
4656 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4657 l->min_time,
4658 (long)div_u64(l->sum_time, l->count),
4659 l->max_time);
4660 } else
4661 len += sprintf(buf + len, " age=%ld",
4662 l->min_time);
4663
4664 if (l->min_pid != l->max_pid)
4665 len += sprintf(buf + len, " pid=%ld-%ld",
4666 l->min_pid, l->max_pid);
4667 else
4668 len += sprintf(buf + len, " pid=%ld",
4669 l->min_pid);
4670
4671 if (num_online_cpus() > 1 &&
4672 !cpumask_empty(to_cpumask(l->cpus)) &&
4673 len < PAGE_SIZE - 60)
4674 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4675 " cpus=%*pbl",
4676 cpumask_pr_args(to_cpumask(l->cpus)));
4677
4678 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4679 len < PAGE_SIZE - 60)
4680 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4681 " nodes=%*pbl",
4682 nodemask_pr_args(&l->nodes));
4683
4684 len += sprintf(buf + len, "\n");
4685 }
4686
4687 free_loc_track(&t);
4688 bitmap_free(map);
4689 if (!t.count)
4690 len += sprintf(buf, "No data\n");
4691 return len;
4692 }
4693 #endif
4694
4695 #ifdef SLUB_RESILIENCY_TEST
4696 static void __init resiliency_test(void)
4697 {
4698 u8 *p;
4699 int type = KMALLOC_NORMAL;
4700
4701 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4702
4703 pr_err("SLUB resiliency testing\n");
4704 pr_err("-----------------------\n");
4705 pr_err("A. Corruption after allocation\n");
4706
4707 p = kzalloc(16, GFP_KERNEL);
4708 p[16] = 0x12;
4709 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4710 p + 16);
4711
4712 validate_slab_cache(kmalloc_caches[type][4]);
4713
4714 /* Hmmm... The next two are dangerous */
4715 p = kzalloc(32, GFP_KERNEL);
4716 p[32 + sizeof(void *)] = 0x34;
4717 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4718 p);
4719 pr_err("If allocated object is overwritten then not detectable\n\n");
4720
4721 validate_slab_cache(kmalloc_caches[type][5]);
4722 p = kzalloc(64, GFP_KERNEL);
4723 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4724 *p = 0x56;
4725 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4726 p);
4727 pr_err("If allocated object is overwritten then not detectable\n\n");
4728 validate_slab_cache(kmalloc_caches[type][6]);
4729
4730 pr_err("\nB. Corruption after free\n");
4731 p = kzalloc(128, GFP_KERNEL);
4732 kfree(p);
4733 *p = 0x78;
4734 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4735 validate_slab_cache(kmalloc_caches[type][7]);
4736
4737 p = kzalloc(256, GFP_KERNEL);
4738 kfree(p);
4739 p[50] = 0x9a;
4740 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4741 validate_slab_cache(kmalloc_caches[type][8]);
4742
4743 p = kzalloc(512, GFP_KERNEL);
4744 kfree(p);
4745 p[512] = 0xab;
4746 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4747 validate_slab_cache(kmalloc_caches[type][9]);
4748 }
4749 #else
4750 #ifdef CONFIG_SYSFS
4751 static void resiliency_test(void) {};
4752 #endif
4753 #endif
4754
4755 #ifdef CONFIG_SYSFS
4756 enum slab_stat_type {
4757 SL_ALL, /* All slabs */
4758 SL_PARTIAL, /* Only partially allocated slabs */
4759 SL_CPU, /* Only slabs used for cpu caches */
4760 SL_OBJECTS, /* Determine allocated objects not slabs */
4761 SL_TOTAL /* Determine object capacity not slabs */
4762 };
4763
4764 #define SO_ALL (1 << SL_ALL)
4765 #define SO_PARTIAL (1 << SL_PARTIAL)
4766 #define SO_CPU (1 << SL_CPU)
4767 #define SO_OBJECTS (1 << SL_OBJECTS)
4768 #define SO_TOTAL (1 << SL_TOTAL)
4769
4770 #ifdef CONFIG_MEMCG
4771 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4772
4773 static int __init setup_slub_memcg_sysfs(char *str)
4774 {
4775 int v;
4776
4777 if (get_option(&str, &v) > 0)
4778 memcg_sysfs_enabled = v;
4779
4780 return 1;
4781 }
4782
4783 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4784 #endif
4785
4786 static ssize_t show_slab_objects(struct kmem_cache *s,
4787 char *buf, unsigned long flags)
4788 {
4789 unsigned long total = 0;
4790 int node;
4791 int x;
4792 unsigned long *nodes;
4793
4794 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4795 if (!nodes)
4796 return -ENOMEM;
4797
4798 if (flags & SO_CPU) {
4799 int cpu;
4800
4801 for_each_possible_cpu(cpu) {
4802 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4803 cpu);
4804 int node;
4805 struct page *page;
4806
4807 page = READ_ONCE(c->page);
4808 if (!page)
4809 continue;
4810
4811 node = page_to_nid(page);
4812 if (flags & SO_TOTAL)
4813 x = page->objects;
4814 else if (flags & SO_OBJECTS)
4815 x = page->inuse;
4816 else
4817 x = 1;
4818
4819 total += x;
4820 nodes[node] += x;
4821
4822 page = slub_percpu_partial_read_once(c);
4823 if (page) {
4824 node = page_to_nid(page);
4825 if (flags & SO_TOTAL)
4826 WARN_ON_ONCE(1);
4827 else if (flags & SO_OBJECTS)
4828 WARN_ON_ONCE(1);
4829 else
4830 x = page->pages;
4831 total += x;
4832 nodes[node] += x;
4833 }
4834 }
4835 }
4836
4837 get_online_mems();
4838 #ifdef CONFIG_SLUB_DEBUG
4839 if (flags & SO_ALL) {
4840 struct kmem_cache_node *n;
4841
4842 for_each_kmem_cache_node(s, node, n) {
4843
4844 if (flags & SO_TOTAL)
4845 x = atomic_long_read(&n->total_objects);
4846 else if (flags & SO_OBJECTS)
4847 x = atomic_long_read(&n->total_objects) -
4848 count_partial(n, count_free);
4849 else
4850 x = atomic_long_read(&n->nr_slabs);
4851 total += x;
4852 nodes[node] += x;
4853 }
4854
4855 } else
4856 #endif
4857 if (flags & SO_PARTIAL) {
4858 struct kmem_cache_node *n;
4859
4860 for_each_kmem_cache_node(s, node, n) {
4861 if (flags & SO_TOTAL)
4862 x = count_partial(n, count_total);
4863 else if (flags & SO_OBJECTS)
4864 x = count_partial(n, count_inuse);
4865 else
4866 x = n->nr_partial;
4867 total += x;
4868 nodes[node] += x;
4869 }
4870 }
4871 x = sprintf(buf, "%lu", total);
4872 #ifdef CONFIG_NUMA
4873 for (node = 0; node < nr_node_ids; node++)
4874 if (nodes[node])
4875 x += sprintf(buf + x, " N%d=%lu",
4876 node, nodes[node]);
4877 #endif
4878 put_online_mems();
4879 kfree(nodes);
4880 return x + sprintf(buf + x, "\n");
4881 }
4882
4883 #ifdef CONFIG_SLUB_DEBUG
4884 static int any_slab_objects(struct kmem_cache *s)
4885 {
4886 int node;
4887 struct kmem_cache_node *n;
4888
4889 for_each_kmem_cache_node(s, node, n)
4890 if (atomic_long_read(&n->total_objects))
4891 return 1;
4892
4893 return 0;
4894 }
4895 #endif
4896
4897 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4898 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4899
4900 struct slab_attribute {
4901 struct attribute attr;
4902 ssize_t (*show)(struct kmem_cache *s, char *buf);
4903 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4904 };
4905
4906 #define SLAB_ATTR_RO(_name) \
4907 static struct slab_attribute _name##_attr = \
4908 __ATTR(_name, 0400, _name##_show, NULL)
4909
4910 #define SLAB_ATTR(_name) \
4911 static struct slab_attribute _name##_attr = \
4912 __ATTR(_name, 0600, _name##_show, _name##_store)
4913
4914 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4915 {
4916 return sprintf(buf, "%u\n", s->size);
4917 }
4918 SLAB_ATTR_RO(slab_size);
4919
4920 static ssize_t align_show(struct kmem_cache *s, char *buf)
4921 {
4922 return sprintf(buf, "%u\n", s->align);
4923 }
4924 SLAB_ATTR_RO(align);
4925
4926 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4927 {
4928 return sprintf(buf, "%u\n", s->object_size);
4929 }
4930 SLAB_ATTR_RO(object_size);
4931
4932 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4933 {
4934 return sprintf(buf, "%u\n", oo_objects(s->oo));
4935 }
4936 SLAB_ATTR_RO(objs_per_slab);
4937
4938 static ssize_t order_store(struct kmem_cache *s,
4939 const char *buf, size_t length)
4940 {
4941 unsigned int order;
4942 int err;
4943
4944 err = kstrtouint(buf, 10, &order);
4945 if (err)
4946 return err;
4947
4948 if (order > slub_max_order || order < slub_min_order)
4949 return -EINVAL;
4950
4951 calculate_sizes(s, order);
4952 return length;
4953 }
4954
4955 static ssize_t order_show(struct kmem_cache *s, char *buf)
4956 {
4957 return sprintf(buf, "%u\n", oo_order(s->oo));
4958 }
4959 SLAB_ATTR(order);
4960
4961 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4962 {
4963 return sprintf(buf, "%lu\n", s->min_partial);
4964 }
4965
4966 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4967 size_t length)
4968 {
4969 unsigned long min;
4970 int err;
4971
4972 err = kstrtoul(buf, 10, &min);
4973 if (err)
4974 return err;
4975
4976 set_min_partial(s, min);
4977 return length;
4978 }
4979 SLAB_ATTR(min_partial);
4980
4981 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4982 {
4983 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4984 }
4985
4986 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4987 size_t length)
4988 {
4989 unsigned int objects;
4990 int err;
4991
4992 err = kstrtouint(buf, 10, &objects);
4993 if (err)
4994 return err;
4995 if (objects && !kmem_cache_has_cpu_partial(s))
4996 return -EINVAL;
4997
4998 slub_set_cpu_partial(s, objects);
4999 flush_all(s);
5000 return length;
5001 }
5002 SLAB_ATTR(cpu_partial);
5003
5004 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5005 {
5006 if (!s->ctor)
5007 return 0;
5008 return sprintf(buf, "%pS\n", s->ctor);
5009 }
5010 SLAB_ATTR_RO(ctor);
5011
5012 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5013 {
5014 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5015 }
5016 SLAB_ATTR_RO(aliases);
5017
5018 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5019 {
5020 return show_slab_objects(s, buf, SO_PARTIAL);
5021 }
5022 SLAB_ATTR_RO(partial);
5023
5024 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5025 {
5026 return show_slab_objects(s, buf, SO_CPU);
5027 }
5028 SLAB_ATTR_RO(cpu_slabs);
5029
5030 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5031 {
5032 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5033 }
5034 SLAB_ATTR_RO(objects);
5035
5036 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5037 {
5038 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5039 }
5040 SLAB_ATTR_RO(objects_partial);
5041
5042 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5043 {
5044 int objects = 0;
5045 int pages = 0;
5046 int cpu;
5047 int len;
5048
5049 for_each_online_cpu(cpu) {
5050 struct page *page;
5051
5052 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5053
5054 if (page) {
5055 pages += page->pages;
5056 objects += page->pobjects;
5057 }
5058 }
5059
5060 len = sprintf(buf, "%d(%d)", objects, pages);
5061
5062 #ifdef CONFIG_SMP
5063 for_each_online_cpu(cpu) {
5064 struct page *page;
5065
5066 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5067
5068 if (page && len < PAGE_SIZE - 20)
5069 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5070 page->pobjects, page->pages);
5071 }
5072 #endif
5073 return len + sprintf(buf + len, "\n");
5074 }
5075 SLAB_ATTR_RO(slabs_cpu_partial);
5076
5077 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5078 {
5079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5080 }
5081
5082 static ssize_t reclaim_account_store(struct kmem_cache *s,
5083 const char *buf, size_t length)
5084 {
5085 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5086 if (buf[0] == '1')
5087 s->flags |= SLAB_RECLAIM_ACCOUNT;
5088 return length;
5089 }
5090 SLAB_ATTR(reclaim_account);
5091
5092 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5093 {
5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5095 }
5096 SLAB_ATTR_RO(hwcache_align);
5097
5098 #ifdef CONFIG_ZONE_DMA
5099 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5100 {
5101 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5102 }
5103 SLAB_ATTR_RO(cache_dma);
5104 #endif
5105
5106 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5107 {
5108 return sprintf(buf, "%u\n", s->usersize);
5109 }
5110 SLAB_ATTR_RO(usersize);
5111
5112 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5113 {
5114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5115 }
5116 SLAB_ATTR_RO(destroy_by_rcu);
5117
5118 #ifdef CONFIG_SLUB_DEBUG
5119 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5120 {
5121 return show_slab_objects(s, buf, SO_ALL);
5122 }
5123 SLAB_ATTR_RO(slabs);
5124
5125 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5126 {
5127 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5128 }
5129 SLAB_ATTR_RO(total_objects);
5130
5131 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5132 {
5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5134 }
5135
5136 static ssize_t sanity_checks_store(struct kmem_cache *s,
5137 const char *buf, size_t length)
5138 {
5139 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5140 if (buf[0] == '1') {
5141 s->flags &= ~__CMPXCHG_DOUBLE;
5142 s->flags |= SLAB_CONSISTENCY_CHECKS;
5143 }
5144 return length;
5145 }
5146 SLAB_ATTR(sanity_checks);
5147
5148 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5149 {
5150 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5151 }
5152
5153 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5154 size_t length)
5155 {
5156 /*
5157 * Tracing a merged cache is going to give confusing results
5158 * as well as cause other issues like converting a mergeable
5159 * cache into an umergeable one.
5160 */
5161 if (s->refcount > 1)
5162 return -EINVAL;
5163
5164 s->flags &= ~SLAB_TRACE;
5165 if (buf[0] == '1') {
5166 s->flags &= ~__CMPXCHG_DOUBLE;
5167 s->flags |= SLAB_TRACE;
5168 }
5169 return length;
5170 }
5171 SLAB_ATTR(trace);
5172
5173 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5174 {
5175 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5176 }
5177
5178 static ssize_t red_zone_store(struct kmem_cache *s,
5179 const char *buf, size_t length)
5180 {
5181 if (any_slab_objects(s))
5182 return -EBUSY;
5183
5184 s->flags &= ~SLAB_RED_ZONE;
5185 if (buf[0] == '1') {
5186 s->flags |= SLAB_RED_ZONE;
5187 }
5188 calculate_sizes(s, -1);
5189 return length;
5190 }
5191 SLAB_ATTR(red_zone);
5192
5193 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5194 {
5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5196 }
5197
5198 static ssize_t poison_store(struct kmem_cache *s,
5199 const char *buf, size_t length)
5200 {
5201 if (any_slab_objects(s))
5202 return -EBUSY;
5203
5204 s->flags &= ~SLAB_POISON;
5205 if (buf[0] == '1') {
5206 s->flags |= SLAB_POISON;
5207 }
5208 calculate_sizes(s, -1);
5209 return length;
5210 }
5211 SLAB_ATTR(poison);
5212
5213 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5214 {
5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5216 }
5217
5218 static ssize_t store_user_store(struct kmem_cache *s,
5219 const char *buf, size_t length)
5220 {
5221 if (any_slab_objects(s))
5222 return -EBUSY;
5223
5224 s->flags &= ~SLAB_STORE_USER;
5225 if (buf[0] == '1') {
5226 s->flags &= ~__CMPXCHG_DOUBLE;
5227 s->flags |= SLAB_STORE_USER;
5228 }
5229 calculate_sizes(s, -1);
5230 return length;
5231 }
5232 SLAB_ATTR(store_user);
5233
5234 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5235 {
5236 return 0;
5237 }
5238
5239 static ssize_t validate_store(struct kmem_cache *s,
5240 const char *buf, size_t length)
5241 {
5242 int ret = -EINVAL;
5243
5244 if (buf[0] == '1') {
5245 ret = validate_slab_cache(s);
5246 if (ret >= 0)
5247 ret = length;
5248 }
5249 return ret;
5250 }
5251 SLAB_ATTR(validate);
5252
5253 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5254 {
5255 if (!(s->flags & SLAB_STORE_USER))
5256 return -ENOSYS;
5257 return list_locations(s, buf, TRACK_ALLOC);
5258 }
5259 SLAB_ATTR_RO(alloc_calls);
5260
5261 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5262 {
5263 if (!(s->flags & SLAB_STORE_USER))
5264 return -ENOSYS;
5265 return list_locations(s, buf, TRACK_FREE);
5266 }
5267 SLAB_ATTR_RO(free_calls);
5268 #endif /* CONFIG_SLUB_DEBUG */
5269
5270 #ifdef CONFIG_FAILSLAB
5271 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5272 {
5273 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5274 }
5275
5276 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5277 size_t length)
5278 {
5279 if (s->refcount > 1)
5280 return -EINVAL;
5281
5282 s->flags &= ~SLAB_FAILSLAB;
5283 if (buf[0] == '1')
5284 s->flags |= SLAB_FAILSLAB;
5285 return length;
5286 }
5287 SLAB_ATTR(failslab);
5288 #endif
5289
5290 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5291 {
5292 return 0;
5293 }
5294
5295 static ssize_t shrink_store(struct kmem_cache *s,
5296 const char *buf, size_t length)
5297 {
5298 if (buf[0] == '1')
5299 kmem_cache_shrink(s);
5300 else
5301 return -EINVAL;
5302 return length;
5303 }
5304 SLAB_ATTR(shrink);
5305
5306 #ifdef CONFIG_NUMA
5307 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5308 {
5309 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5310 }
5311
5312 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5313 const char *buf, size_t length)
5314 {
5315 unsigned int ratio;
5316 int err;
5317
5318 err = kstrtouint(buf, 10, &ratio);
5319 if (err)
5320 return err;
5321 if (ratio > 100)
5322 return -ERANGE;
5323
5324 s->remote_node_defrag_ratio = ratio * 10;
5325
5326 return length;
5327 }
5328 SLAB_ATTR(remote_node_defrag_ratio);
5329 #endif
5330
5331 #ifdef CONFIG_SLUB_STATS
5332 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5333 {
5334 unsigned long sum = 0;
5335 int cpu;
5336 int len;
5337 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5338
5339 if (!data)
5340 return -ENOMEM;
5341
5342 for_each_online_cpu(cpu) {
5343 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5344
5345 data[cpu] = x;
5346 sum += x;
5347 }
5348
5349 len = sprintf(buf, "%lu", sum);
5350
5351 #ifdef CONFIG_SMP
5352 for_each_online_cpu(cpu) {
5353 if (data[cpu] && len < PAGE_SIZE - 20)
5354 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5355 }
5356 #endif
5357 kfree(data);
5358 return len + sprintf(buf + len, "\n");
5359 }
5360
5361 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362 {
5363 int cpu;
5364
5365 for_each_online_cpu(cpu)
5366 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5367 }
5368
5369 #define STAT_ATTR(si, text) \
5370 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5371 { \
5372 return show_stat(s, buf, si); \
5373 } \
5374 static ssize_t text##_store(struct kmem_cache *s, \
5375 const char *buf, size_t length) \
5376 { \
5377 if (buf[0] != '0') \
5378 return -EINVAL; \
5379 clear_stat(s, si); \
5380 return length; \
5381 } \
5382 SLAB_ATTR(text); \
5383
5384 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388 STAT_ATTR(FREE_FROZEN, free_frozen);
5389 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5394 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5395 STAT_ATTR(FREE_SLAB, free_slab);
5396 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5402 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5403 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5404 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5406 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5408 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5410 #endif
5411
5412 static struct attribute *slab_attrs[] = {
5413 &slab_size_attr.attr,
5414 &object_size_attr.attr,
5415 &objs_per_slab_attr.attr,
5416 &order_attr.attr,
5417 &min_partial_attr.attr,
5418 &cpu_partial_attr.attr,
5419 &objects_attr.attr,
5420 &objects_partial_attr.attr,
5421 &partial_attr.attr,
5422 &cpu_slabs_attr.attr,
5423 &ctor_attr.attr,
5424 &aliases_attr.attr,
5425 &align_attr.attr,
5426 &hwcache_align_attr.attr,
5427 &reclaim_account_attr.attr,
5428 &destroy_by_rcu_attr.attr,
5429 &shrink_attr.attr,
5430 &slabs_cpu_partial_attr.attr,
5431 #ifdef CONFIG_SLUB_DEBUG
5432 &total_objects_attr.attr,
5433 &slabs_attr.attr,
5434 &sanity_checks_attr.attr,
5435 &trace_attr.attr,
5436 &red_zone_attr.attr,
5437 &poison_attr.attr,
5438 &store_user_attr.attr,
5439 &validate_attr.attr,
5440 &alloc_calls_attr.attr,
5441 &free_calls_attr.attr,
5442 #endif
5443 #ifdef CONFIG_ZONE_DMA
5444 &cache_dma_attr.attr,
5445 #endif
5446 #ifdef CONFIG_NUMA
5447 &remote_node_defrag_ratio_attr.attr,
5448 #endif
5449 #ifdef CONFIG_SLUB_STATS
5450 &alloc_fastpath_attr.attr,
5451 &alloc_slowpath_attr.attr,
5452 &free_fastpath_attr.attr,
5453 &free_slowpath_attr.attr,
5454 &free_frozen_attr.attr,
5455 &free_add_partial_attr.attr,
5456 &free_remove_partial_attr.attr,
5457 &alloc_from_partial_attr.attr,
5458 &alloc_slab_attr.attr,
5459 &alloc_refill_attr.attr,
5460 &alloc_node_mismatch_attr.attr,
5461 &free_slab_attr.attr,
5462 &cpuslab_flush_attr.attr,
5463 &deactivate_full_attr.attr,
5464 &deactivate_empty_attr.attr,
5465 &deactivate_to_head_attr.attr,
5466 &deactivate_to_tail_attr.attr,
5467 &deactivate_remote_frees_attr.attr,
5468 &deactivate_bypass_attr.attr,
5469 &order_fallback_attr.attr,
5470 &cmpxchg_double_fail_attr.attr,
5471 &cmpxchg_double_cpu_fail_attr.attr,
5472 &cpu_partial_alloc_attr.attr,
5473 &cpu_partial_free_attr.attr,
5474 &cpu_partial_node_attr.attr,
5475 &cpu_partial_drain_attr.attr,
5476 #endif
5477 #ifdef CONFIG_FAILSLAB
5478 &failslab_attr.attr,
5479 #endif
5480 &usersize_attr.attr,
5481
5482 NULL
5483 };
5484
5485 static const struct attribute_group slab_attr_group = {
5486 .attrs = slab_attrs,
5487 };
5488
5489 static ssize_t slab_attr_show(struct kobject *kobj,
5490 struct attribute *attr,
5491 char *buf)
5492 {
5493 struct slab_attribute *attribute;
5494 struct kmem_cache *s;
5495 int err;
5496
5497 attribute = to_slab_attr(attr);
5498 s = to_slab(kobj);
5499
5500 if (!attribute->show)
5501 return -EIO;
5502
5503 err = attribute->show(s, buf);
5504
5505 return err;
5506 }
5507
5508 static ssize_t slab_attr_store(struct kobject *kobj,
5509 struct attribute *attr,
5510 const char *buf, size_t len)
5511 {
5512 struct slab_attribute *attribute;
5513 struct kmem_cache *s;
5514 int err;
5515
5516 attribute = to_slab_attr(attr);
5517 s = to_slab(kobj);
5518
5519 if (!attribute->store)
5520 return -EIO;
5521
5522 err = attribute->store(s, buf, len);
5523 #ifdef CONFIG_MEMCG
5524 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5525 struct kmem_cache *c;
5526
5527 mutex_lock(&slab_mutex);
5528 if (s->max_attr_size < len)
5529 s->max_attr_size = len;
5530
5531 /*
5532 * This is a best effort propagation, so this function's return
5533 * value will be determined by the parent cache only. This is
5534 * basically because not all attributes will have a well
5535 * defined semantics for rollbacks - most of the actions will
5536 * have permanent effects.
5537 *
5538 * Returning the error value of any of the children that fail
5539 * is not 100 % defined, in the sense that users seeing the
5540 * error code won't be able to know anything about the state of
5541 * the cache.
5542 *
5543 * Only returning the error code for the parent cache at least
5544 * has well defined semantics. The cache being written to
5545 * directly either failed or succeeded, in which case we loop
5546 * through the descendants with best-effort propagation.
5547 */
5548 for_each_memcg_cache(c, s)
5549 attribute->store(c, buf, len);
5550 mutex_unlock(&slab_mutex);
5551 }
5552 #endif
5553 return err;
5554 }
5555
5556 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5557 {
5558 #ifdef CONFIG_MEMCG
5559 int i;
5560 char *buffer = NULL;
5561 struct kmem_cache *root_cache;
5562
5563 if (is_root_cache(s))
5564 return;
5565
5566 root_cache = s->memcg_params.root_cache;
5567
5568 /*
5569 * This mean this cache had no attribute written. Therefore, no point
5570 * in copying default values around
5571 */
5572 if (!root_cache->max_attr_size)
5573 return;
5574
5575 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5576 char mbuf[64];
5577 char *buf;
5578 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5579 ssize_t len;
5580
5581 if (!attr || !attr->store || !attr->show)
5582 continue;
5583
5584 /*
5585 * It is really bad that we have to allocate here, so we will
5586 * do it only as a fallback. If we actually allocate, though,
5587 * we can just use the allocated buffer until the end.
5588 *
5589 * Most of the slub attributes will tend to be very small in
5590 * size, but sysfs allows buffers up to a page, so they can
5591 * theoretically happen.
5592 */
5593 if (buffer)
5594 buf = buffer;
5595 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5596 buf = mbuf;
5597 else {
5598 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5599 if (WARN_ON(!buffer))
5600 continue;
5601 buf = buffer;
5602 }
5603
5604 len = attr->show(root_cache, buf);
5605 if (len > 0)
5606 attr->store(s, buf, len);
5607 }
5608
5609 if (buffer)
5610 free_page((unsigned long)buffer);
5611 #endif
5612 }
5613
5614 static void kmem_cache_release(struct kobject *k)
5615 {
5616 slab_kmem_cache_release(to_slab(k));
5617 }
5618
5619 static const struct sysfs_ops slab_sysfs_ops = {
5620 .show = slab_attr_show,
5621 .store = slab_attr_store,
5622 };
5623
5624 static struct kobj_type slab_ktype = {
5625 .sysfs_ops = &slab_sysfs_ops,
5626 .release = kmem_cache_release,
5627 };
5628
5629 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5630 {
5631 struct kobj_type *ktype = get_ktype(kobj);
5632
5633 if (ktype == &slab_ktype)
5634 return 1;
5635 return 0;
5636 }
5637
5638 static const struct kset_uevent_ops slab_uevent_ops = {
5639 .filter = uevent_filter,
5640 };
5641
5642 static struct kset *slab_kset;
5643
5644 static inline struct kset *cache_kset(struct kmem_cache *s)
5645 {
5646 #ifdef CONFIG_MEMCG
5647 if (!is_root_cache(s))
5648 return s->memcg_params.root_cache->memcg_kset;
5649 #endif
5650 return slab_kset;
5651 }
5652
5653 #define ID_STR_LENGTH 64
5654
5655 /* Create a unique string id for a slab cache:
5656 *
5657 * Format :[flags-]size
5658 */
5659 static char *create_unique_id(struct kmem_cache *s)
5660 {
5661 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5662 char *p = name;
5663
5664 BUG_ON(!name);
5665
5666 *p++ = ':';
5667 /*
5668 * First flags affecting slabcache operations. We will only
5669 * get here for aliasable slabs so we do not need to support
5670 * too many flags. The flags here must cover all flags that
5671 * are matched during merging to guarantee that the id is
5672 * unique.
5673 */
5674 if (s->flags & SLAB_CACHE_DMA)
5675 *p++ = 'd';
5676 if (s->flags & SLAB_CACHE_DMA32)
5677 *p++ = 'D';
5678 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5679 *p++ = 'a';
5680 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5681 *p++ = 'F';
5682 if (s->flags & SLAB_ACCOUNT)
5683 *p++ = 'A';
5684 if (p != name + 1)
5685 *p++ = '-';
5686 p += sprintf(p, "%07u", s->size);
5687
5688 BUG_ON(p > name + ID_STR_LENGTH - 1);
5689 return name;
5690 }
5691
5692 static void sysfs_slab_remove_workfn(struct work_struct *work)
5693 {
5694 struct kmem_cache *s =
5695 container_of(work, struct kmem_cache, kobj_remove_work);
5696
5697 if (!s->kobj.state_in_sysfs)
5698 /*
5699 * For a memcg cache, this may be called during
5700 * deactivation and again on shutdown. Remove only once.
5701 * A cache is never shut down before deactivation is
5702 * complete, so no need to worry about synchronization.
5703 */
5704 goto out;
5705
5706 #ifdef CONFIG_MEMCG
5707 kset_unregister(s->memcg_kset);
5708 #endif
5709 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5710 out:
5711 kobject_put(&s->kobj);
5712 }
5713
5714 static int sysfs_slab_add(struct kmem_cache *s)
5715 {
5716 int err;
5717 const char *name;
5718 struct kset *kset = cache_kset(s);
5719 int unmergeable = slab_unmergeable(s);
5720
5721 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5722
5723 if (!kset) {
5724 kobject_init(&s->kobj, &slab_ktype);
5725 return 0;
5726 }
5727
5728 if (!unmergeable && disable_higher_order_debug &&
5729 (slub_debug & DEBUG_METADATA_FLAGS))
5730 unmergeable = 1;
5731
5732 if (unmergeable) {
5733 /*
5734 * Slabcache can never be merged so we can use the name proper.
5735 * This is typically the case for debug situations. In that
5736 * case we can catch duplicate names easily.
5737 */
5738 sysfs_remove_link(&slab_kset->kobj, s->name);
5739 name = s->name;
5740 } else {
5741 /*
5742 * Create a unique name for the slab as a target
5743 * for the symlinks.
5744 */
5745 name = create_unique_id(s);
5746 }
5747
5748 s->kobj.kset = kset;
5749 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5750 if (err)
5751 goto out;
5752
5753 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5754 if (err)
5755 goto out_del_kobj;
5756
5757 #ifdef CONFIG_MEMCG
5758 if (is_root_cache(s) && memcg_sysfs_enabled) {
5759 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5760 if (!s->memcg_kset) {
5761 err = -ENOMEM;
5762 goto out_del_kobj;
5763 }
5764 }
5765 #endif
5766
5767 kobject_uevent(&s->kobj, KOBJ_ADD);
5768 if (!unmergeable) {
5769 /* Setup first alias */
5770 sysfs_slab_alias(s, s->name);
5771 }
5772 out:
5773 if (!unmergeable)
5774 kfree(name);
5775 return err;
5776 out_del_kobj:
5777 kobject_del(&s->kobj);
5778 goto out;
5779 }
5780
5781 static void sysfs_slab_remove(struct kmem_cache *s)
5782 {
5783 if (slab_state < FULL)
5784 /*
5785 * Sysfs has not been setup yet so no need to remove the
5786 * cache from sysfs.
5787 */
5788 return;
5789
5790 kobject_get(&s->kobj);
5791 schedule_work(&s->kobj_remove_work);
5792 }
5793
5794 void sysfs_slab_unlink(struct kmem_cache *s)
5795 {
5796 if (slab_state >= FULL)
5797 kobject_del(&s->kobj);
5798 }
5799
5800 void sysfs_slab_release(struct kmem_cache *s)
5801 {
5802 if (slab_state >= FULL)
5803 kobject_put(&s->kobj);
5804 }
5805
5806 /*
5807 * Need to buffer aliases during bootup until sysfs becomes
5808 * available lest we lose that information.
5809 */
5810 struct saved_alias {
5811 struct kmem_cache *s;
5812 const char *name;
5813 struct saved_alias *next;
5814 };
5815
5816 static struct saved_alias *alias_list;
5817
5818 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5819 {
5820 struct saved_alias *al;
5821
5822 if (slab_state == FULL) {
5823 /*
5824 * If we have a leftover link then remove it.
5825 */
5826 sysfs_remove_link(&slab_kset->kobj, name);
5827 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5828 }
5829
5830 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5831 if (!al)
5832 return -ENOMEM;
5833
5834 al->s = s;
5835 al->name = name;
5836 al->next = alias_list;
5837 alias_list = al;
5838 return 0;
5839 }
5840
5841 static int __init slab_sysfs_init(void)
5842 {
5843 struct kmem_cache *s;
5844 int err;
5845
5846 mutex_lock(&slab_mutex);
5847
5848 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5849 if (!slab_kset) {
5850 mutex_unlock(&slab_mutex);
5851 pr_err("Cannot register slab subsystem.\n");
5852 return -ENOSYS;
5853 }
5854
5855 slab_state = FULL;
5856
5857 list_for_each_entry(s, &slab_caches, list) {
5858 err = sysfs_slab_add(s);
5859 if (err)
5860 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5861 s->name);
5862 }
5863
5864 while (alias_list) {
5865 struct saved_alias *al = alias_list;
5866
5867 alias_list = alias_list->next;
5868 err = sysfs_slab_alias(al->s, al->name);
5869 if (err)
5870 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5871 al->name);
5872 kfree(al);
5873 }
5874
5875 mutex_unlock(&slab_mutex);
5876 resiliency_test();
5877 return 0;
5878 }
5879
5880 __initcall(slab_sysfs_init);
5881 #endif /* CONFIG_SYSFS */
5882
5883 /*
5884 * The /proc/slabinfo ABI
5885 */
5886 #ifdef CONFIG_SLUB_DEBUG
5887 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5888 {
5889 unsigned long nr_slabs = 0;
5890 unsigned long nr_objs = 0;
5891 unsigned long nr_free = 0;
5892 int node;
5893 struct kmem_cache_node *n;
5894
5895 for_each_kmem_cache_node(s, node, n) {
5896 nr_slabs += node_nr_slabs(n);
5897 nr_objs += node_nr_objs(n);
5898 nr_free += count_partial(n, count_free);
5899 }
5900
5901 sinfo->active_objs = nr_objs - nr_free;
5902 sinfo->num_objs = nr_objs;
5903 sinfo->active_slabs = nr_slabs;
5904 sinfo->num_slabs = nr_slabs;
5905 sinfo->objects_per_slab = oo_objects(s->oo);
5906 sinfo->cache_order = oo_order(s->oo);
5907 }
5908
5909 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5910 {
5911 }
5912
5913 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5914 size_t count, loff_t *ppos)
5915 {
5916 return -EIO;
5917 }
5918 #endif /* CONFIG_SLUB_DEBUG */