]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
slub: make ->object_size unsigned int
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200 /*
201 * Tracking user of a slab.
202 */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212 };
213
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244 /*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
257 }
258
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262 {
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return freelist_dereference(s, object + s->offset);
270 }
271
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 unsigned long freepointer_addr;
281 void *p;
282
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
289 }
290
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
307
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
312
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 return (p - addr) / s->size;
317 }
318
319 static inline int order_objects(int order, unsigned long size, int reserved)
320 {
321 return ((PAGE_SIZE << order) - reserved) / size;
322 }
323
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
326 {
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
329 };
330
331 return x;
332 }
333
334 static inline int oo_order(struct kmem_cache_order_objects x)
335 {
336 return x.x >> OO_SHIFT;
337 }
338
339 static inline int oo_objects(struct kmem_cache_order_objects x)
340 {
341 return x.x & OO_MASK;
342 }
343
344 /*
345 * Per slab locking using the pagelock
346 */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return false;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return false;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 static inline int size_from_object(struct kmem_cache *s)
470 {
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475 }
476
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483 }
484
485 /*
486 * Debug settings:
487 */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
496
497 /*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503 static inline void metadata_access_enable(void)
504 {
505 kasan_disable_current();
506 }
507
508 static inline void metadata_access_disable(void)
509 {
510 kasan_enable_current();
511 }
512
513 /*
514 * Object debugging
515 */
516
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520 {
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534 }
535
536 static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
538 {
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
543 }
544
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547 {
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556 }
557
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
560 {
561 struct track *p = get_track(s, object, alloc);
562
563 if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583 #endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590 }
591
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600
601 static void print_track(const char *s, struct track *t, unsigned long pr_time)
602 {
603 if (!t->addr)
604 return;
605
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
616 }
617 #endif
618 }
619
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 unsigned long pr_time = jiffies;
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
628 }
629
630 static void print_page_info(struct page *page)
631 {
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page, page->objects, page->inuse, page->freelist, page->flags);
634
635 }
636
637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638 {
639 struct va_format vaf;
640 va_list args;
641
642 va_start(args, fmt);
643 vaf.fmt = fmt;
644 vaf.va = &args;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 pr_err("-----------------------------------------------------------------------------\n\n");
648
649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
650 va_end(args);
651 }
652
653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654 {
655 struct va_format vaf;
656 va_list args;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
662 va_end(args);
663 }
664
665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
666 {
667 unsigned int off; /* Offset of last byte */
668 u8 *addr = page_address(page);
669
670 print_tracking(s, p);
671
672 print_page_info(page);
673
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
676
677 if (s->flags & SLAB_RED_ZONE)
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
680 else if (p > addr + 16)
681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
682
683 print_section(KERN_ERR, "Object ", p,
684 min_t(unsigned int, s->object_size, PAGE_SIZE));
685 if (s->flags & SLAB_RED_ZONE)
686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 s->inuse - s->object_size);
688
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
693
694 if (s->flags & SLAB_STORE_USER)
695 off += 2 * sizeof(struct track);
696
697 off += kasan_metadata_size(s);
698
699 if (off != size_from_object(s))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
703
704 dump_stack();
705 }
706
707 void object_err(struct kmem_cache *s, struct page *page,
708 u8 *object, char *reason)
709 {
710 slab_bug(s, "%s", reason);
711 print_trailer(s, page, object);
712 }
713
714 static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
716 {
717 va_list args;
718 char buf[100];
719
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
722 va_end(args);
723 slab_bug(s, "%s", buf);
724 print_page_info(page);
725 dump_stack();
726 }
727
728 static void init_object(struct kmem_cache *s, void *object, u8 val)
729 {
730 u8 *p = object;
731
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
734
735 if (s->flags & __OBJECT_POISON) {
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
738 }
739
740 if (s->flags & SLAB_RED_ZONE)
741 memset(p + s->object_size, val, s->inuse - s->object_size);
742 }
743
744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
746 {
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
749 }
750
751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
753 u8 *start, unsigned int value, unsigned int bytes)
754 {
755 u8 *fault;
756 u8 *end;
757
758 metadata_access_enable();
759 fault = memchr_inv(start, value, bytes);
760 metadata_access_disable();
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
772
773 restore_bytes(s, what, value, fault, end);
774 return 0;
775 }
776
777 /*
778 * Object layout:
779 *
780 * object address
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
784 *
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * 0xa5 (POISON_END)
787 *
788 * object + s->object_size
789 * Padding to reach word boundary. This is also used for Redzoning.
790 * Padding is extended by another word if Redzoning is enabled and
791 * object_size == inuse.
792 *
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
795 *
796 * object + s->inuse
797 * Meta data starts here.
798 *
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
801 * C. Padding to reach required alignment boundary or at mininum
802 * one word if debugging is on to be able to detect writes
803 * before the word boundary.
804 *
805 * Padding is done using 0x5a (POISON_INUSE)
806 *
807 * object + s->size
808 * Nothing is used beyond s->size.
809 *
810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
811 * ignored. And therefore no slab options that rely on these boundaries
812 * may be used with merged slabcaches.
813 */
814
815 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816 {
817 unsigned long off = s->inuse; /* The end of info */
818
819 if (s->offset)
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
822
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
826
827 off += kasan_metadata_size(s);
828
829 if (size_from_object(s) == off)
830 return 1;
831
832 return check_bytes_and_report(s, page, p, "Object padding",
833 p + off, POISON_INUSE, size_from_object(s) - off);
834 }
835
836 /* Check the pad bytes at the end of a slab page */
837 static int slab_pad_check(struct kmem_cache *s, struct page *page)
838 {
839 u8 *start;
840 u8 *fault;
841 u8 *end;
842 u8 *pad;
843 int length;
844 int remainder;
845
846 if (!(s->flags & SLAB_POISON))
847 return 1;
848
849 start = page_address(page);
850 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
851 end = start + length;
852 remainder = length % s->size;
853 if (!remainder)
854 return 1;
855
856 pad = end - remainder;
857 metadata_access_enable();
858 fault = memchr_inv(pad, POISON_INUSE, remainder);
859 metadata_access_disable();
860 if (!fault)
861 return 1;
862 while (end > fault && end[-1] == POISON_INUSE)
863 end--;
864
865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
866 print_section(KERN_ERR, "Padding ", pad, remainder);
867
868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
869 return 0;
870 }
871
872 static int check_object(struct kmem_cache *s, struct page *page,
873 void *object, u8 val)
874 {
875 u8 *p = object;
876 u8 *endobject = object + s->object_size;
877
878 if (s->flags & SLAB_RED_ZONE) {
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 object - s->red_left_pad, val, s->red_left_pad))
881 return 0;
882
883 if (!check_bytes_and_report(s, page, object, "Redzone",
884 endobject, val, s->inuse - s->object_size))
885 return 0;
886 } else {
887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
888 check_bytes_and_report(s, page, p, "Alignment padding",
889 endobject, POISON_INUSE,
890 s->inuse - s->object_size);
891 }
892 }
893
894 if (s->flags & SLAB_POISON) {
895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
896 (!check_bytes_and_report(s, page, p, "Poison", p,
897 POISON_FREE, s->object_size - 1) ||
898 !check_bytes_and_report(s, page, p, "Poison",
899 p + s->object_size - 1, POISON_END, 1)))
900 return 0;
901 /*
902 * check_pad_bytes cleans up on its own.
903 */
904 check_pad_bytes(s, page, p);
905 }
906
907 if (!s->offset && val == SLUB_RED_ACTIVE)
908 /*
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
911 */
912 return 1;
913
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 object_err(s, page, p, "Freepointer corrupt");
917 /*
918 * No choice but to zap it and thus lose the remainder
919 * of the free objects in this slab. May cause
920 * another error because the object count is now wrong.
921 */
922 set_freepointer(s, p, NULL);
923 return 0;
924 }
925 return 1;
926 }
927
928 static int check_slab(struct kmem_cache *s, struct page *page)
929 {
930 int maxobj;
931
932 VM_BUG_ON(!irqs_disabled());
933
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Not a valid slab page");
936 return 0;
937 }
938
939 maxobj = order_objects(compound_order(page), s->size, s->reserved);
940 if (page->objects > maxobj) {
941 slab_err(s, page, "objects %u > max %u",
942 page->objects, maxobj);
943 return 0;
944 }
945 if (page->inuse > page->objects) {
946 slab_err(s, page, "inuse %u > max %u",
947 page->inuse, page->objects);
948 return 0;
949 }
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s, page);
952 return 1;
953 }
954
955 /*
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
958 */
959 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
960 {
961 int nr = 0;
962 void *fp;
963 void *object = NULL;
964 int max_objects;
965
966 fp = page->freelist;
967 while (fp && nr <= page->objects) {
968 if (fp == search)
969 return 1;
970 if (!check_valid_pointer(s, page, fp)) {
971 if (object) {
972 object_err(s, page, object,
973 "Freechain corrupt");
974 set_freepointer(s, object, NULL);
975 } else {
976 slab_err(s, page, "Freepointer corrupt");
977 page->freelist = NULL;
978 page->inuse = page->objects;
979 slab_fix(s, "Freelist cleared");
980 return 0;
981 }
982 break;
983 }
984 object = fp;
985 fp = get_freepointer(s, object);
986 nr++;
987 }
988
989 max_objects = order_objects(compound_order(page), s->size, s->reserved);
990 if (max_objects > MAX_OBJS_PER_PAGE)
991 max_objects = MAX_OBJS_PER_PAGE;
992
993 if (page->objects != max_objects) {
994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 page->objects, max_objects);
996 page->objects = max_objects;
997 slab_fix(s, "Number of objects adjusted.");
998 }
999 if (page->inuse != page->objects - nr) {
1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 page->inuse, page->objects - nr);
1002 page->inuse = page->objects - nr;
1003 slab_fix(s, "Object count adjusted.");
1004 }
1005 return search == NULL;
1006 }
1007
1008 static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 int alloc)
1010 {
1011 if (s->flags & SLAB_TRACE) {
1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013 s->name,
1014 alloc ? "alloc" : "free",
1015 object, page->inuse,
1016 page->freelist);
1017
1018 if (!alloc)
1019 print_section(KERN_INFO, "Object ", (void *)object,
1020 s->object_size);
1021
1022 dump_stack();
1023 }
1024 }
1025
1026 /*
1027 * Tracking of fully allocated slabs for debugging purposes.
1028 */
1029 static void add_full(struct kmem_cache *s,
1030 struct kmem_cache_node *n, struct page *page)
1031 {
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
1035 lockdep_assert_held(&n->list_lock);
1036 list_add(&page->lru, &n->full);
1037 }
1038
1039 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1040 {
1041 if (!(s->flags & SLAB_STORE_USER))
1042 return;
1043
1044 lockdep_assert_held(&n->list_lock);
1045 list_del(&page->lru);
1046 }
1047
1048 /* Tracking of the number of slabs for debugging purposes */
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 {
1051 struct kmem_cache_node *n = get_node(s, node);
1052
1053 return atomic_long_read(&n->nr_slabs);
1054 }
1055
1056 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057 {
1058 return atomic_long_read(&n->nr_slabs);
1059 }
1060
1061 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1062 {
1063 struct kmem_cache_node *n = get_node(s, node);
1064
1065 /*
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1070 */
1071 if (likely(n)) {
1072 atomic_long_inc(&n->nr_slabs);
1073 atomic_long_add(objects, &n->total_objects);
1074 }
1075 }
1076 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1077 {
1078 struct kmem_cache_node *n = get_node(s, node);
1079
1080 atomic_long_dec(&n->nr_slabs);
1081 atomic_long_sub(objects, &n->total_objects);
1082 }
1083
1084 /* Object debug checks for alloc/free paths */
1085 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 void *object)
1087 {
1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 return;
1090
1091 init_object(s, object, SLUB_RED_INACTIVE);
1092 init_tracking(s, object);
1093 }
1094
1095 static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 struct page *page,
1097 void *object, unsigned long addr)
1098 {
1099 if (!check_slab(s, page))
1100 return 0;
1101
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
1104 return 0;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 return 0;
1109
1110 return 1;
1111 }
1112
1113 static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1116 {
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1120 }
1121
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
1126 init_object(s, object, SLUB_RED_ACTIVE);
1127 return 1;
1128
1129 bad:
1130 if (PageSlab(page)) {
1131 /*
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1135 */
1136 slab_fix(s, "Marking all objects used");
1137 page->inuse = page->objects;
1138 page->freelist = NULL;
1139 }
1140 return 0;
1141 }
1142
1143 static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
1145 {
1146 if (!check_valid_pointer(s, page, object)) {
1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 return 0;
1149 }
1150
1151 if (on_freelist(s, page, object)) {
1152 object_err(s, page, object, "Object already free");
1153 return 0;
1154 }
1155
1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 return 0;
1158
1159 if (unlikely(s != page->slab_cache)) {
1160 if (!PageSlab(page)) {
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1163 } else if (!page->slab_cache) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
1166 dump_stack();
1167 } else
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
1170 return 0;
1171 }
1172 return 1;
1173 }
1174
1175 /* Supports checking bulk free of a constructed freelist */
1176 static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1180 {
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1186
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1193 }
1194
1195 next_object:
1196 cnt++;
1197
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
1201 }
1202
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s, object, SLUB_RED_INACTIVE);
1208
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1213 }
1214 ret = 1;
1215
1216 out:
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1220
1221 slab_unlock(page);
1222 spin_unlock_irqrestore(&n->list_lock, flags);
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
1226 }
1227
1228 static int __init setup_slub_debug(char *str)
1229 {
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1232 /*
1233 * No options specified. Switch on full debugging.
1234 */
1235 goto out;
1236
1237 if (*str == ',')
1238 /*
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1241 */
1242 goto check_slabs;
1243
1244 slub_debug = 0;
1245 if (*str == '-')
1246 /*
1247 * Switch off all debugging measures.
1248 */
1249 goto out;
1250
1251 /*
1252 * Determine which debug features should be switched on
1253 */
1254 for (; *str && *str != ','; str++) {
1255 switch (tolower(*str)) {
1256 case 'f':
1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
1274 case 'o':
1275 /*
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1278 */
1279 disable_higher_order_debug = 1;
1280 break;
1281 default:
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
1284 }
1285 }
1286
1287 check_slabs:
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
1290 out:
1291 return 1;
1292 }
1293
1294 __setup("slub_debug", setup_slub_debug);
1295
1296 slab_flags_t kmem_cache_flags(unsigned long object_size,
1297 slab_flags_t flags, const char *name,
1298 void (*ctor)(void *))
1299 {
1300 /*
1301 * Enable debugging if selected on the kernel commandline.
1302 */
1303 if (slub_debug && (!slub_debug_slabs || (name &&
1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305 flags |= slub_debug;
1306
1307 return flags;
1308 }
1309 #else /* !CONFIG_SLUB_DEBUG */
1310 static inline void setup_object_debug(struct kmem_cache *s,
1311 struct page *page, void *object) {}
1312
1313 static inline int alloc_debug_processing(struct kmem_cache *s,
1314 struct page *page, void *object, unsigned long addr) { return 0; }
1315
1316 static inline int free_debug_processing(
1317 struct kmem_cache *s, struct page *page,
1318 void *head, void *tail, int bulk_cnt,
1319 unsigned long addr) { return 0; }
1320
1321 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322 { return 1; }
1323 static inline int check_object(struct kmem_cache *s, struct page *page,
1324 void *object, u8 val) { return 1; }
1325 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
1327 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 struct page *page) {}
1329 slab_flags_t kmem_cache_flags(unsigned long object_size,
1330 slab_flags_t flags, const char *name,
1331 void (*ctor)(void *))
1332 {
1333 return flags;
1334 }
1335 #define slub_debug 0
1336
1337 #define disable_higher_order_debug 0
1338
1339 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340 { return 0; }
1341 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342 { return 0; }
1343 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344 int objects) {}
1345 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 int objects) {}
1347
1348 #endif /* CONFIG_SLUB_DEBUG */
1349
1350 /*
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1353 */
1354 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355 {
1356 kmemleak_alloc(ptr, size, 1, flags);
1357 kasan_kmalloc_large(ptr, size, flags);
1358 }
1359
1360 static __always_inline void kfree_hook(void *x)
1361 {
1362 kmemleak_free(x);
1363 kasan_kfree_large(x, _RET_IP_);
1364 }
1365
1366 static __always_inline void *slab_free_hook(struct kmem_cache *s, void *x)
1367 {
1368 void *freeptr;
1369
1370 kmemleak_free_recursive(x, s->flags);
1371
1372 /*
1373 * Trouble is that we may no longer disable interrupts in the fast path
1374 * So in order to make the debug calls that expect irqs to be
1375 * disabled we need to disable interrupts temporarily.
1376 */
1377 #ifdef CONFIG_LOCKDEP
1378 {
1379 unsigned long flags;
1380
1381 local_irq_save(flags);
1382 debug_check_no_locks_freed(x, s->object_size);
1383 local_irq_restore(flags);
1384 }
1385 #endif
1386 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1387 debug_check_no_obj_freed(x, s->object_size);
1388
1389 freeptr = get_freepointer(s, x);
1390 /*
1391 * kasan_slab_free() may put x into memory quarantine, delaying its
1392 * reuse. In this case the object's freelist pointer is changed.
1393 */
1394 kasan_slab_free(s, x, _RET_IP_);
1395 return freeptr;
1396 }
1397
1398 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1399 void *head, void *tail)
1400 {
1401 /*
1402 * Compiler cannot detect this function can be removed if slab_free_hook()
1403 * evaluates to nothing. Thus, catch all relevant config debug options here.
1404 */
1405 #if defined(CONFIG_LOCKDEP) || \
1406 defined(CONFIG_DEBUG_KMEMLEAK) || \
1407 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1408 defined(CONFIG_KASAN)
1409
1410 void *object = head;
1411 void *tail_obj = tail ? : head;
1412 void *freeptr;
1413
1414 do {
1415 freeptr = slab_free_hook(s, object);
1416 } while ((object != tail_obj) && (object = freeptr));
1417 #endif
1418 }
1419
1420 static void setup_object(struct kmem_cache *s, struct page *page,
1421 void *object)
1422 {
1423 setup_object_debug(s, page, object);
1424 kasan_init_slab_obj(s, object);
1425 if (unlikely(s->ctor)) {
1426 kasan_unpoison_object_data(s, object);
1427 s->ctor(object);
1428 kasan_poison_object_data(s, object);
1429 }
1430 }
1431
1432 /*
1433 * Slab allocation and freeing
1434 */
1435 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1436 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1437 {
1438 struct page *page;
1439 int order = oo_order(oo);
1440
1441 if (node == NUMA_NO_NODE)
1442 page = alloc_pages(flags, order);
1443 else
1444 page = __alloc_pages_node(node, flags, order);
1445
1446 if (page && memcg_charge_slab(page, flags, order, s)) {
1447 __free_pages(page, order);
1448 page = NULL;
1449 }
1450
1451 return page;
1452 }
1453
1454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1455 /* Pre-initialize the random sequence cache */
1456 static int init_cache_random_seq(struct kmem_cache *s)
1457 {
1458 int err;
1459 unsigned long i, count = oo_objects(s->oo);
1460
1461 /* Bailout if already initialised */
1462 if (s->random_seq)
1463 return 0;
1464
1465 err = cache_random_seq_create(s, count, GFP_KERNEL);
1466 if (err) {
1467 pr_err("SLUB: Unable to initialize free list for %s\n",
1468 s->name);
1469 return err;
1470 }
1471
1472 /* Transform to an offset on the set of pages */
1473 if (s->random_seq) {
1474 for (i = 0; i < count; i++)
1475 s->random_seq[i] *= s->size;
1476 }
1477 return 0;
1478 }
1479
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init init_freelist_randomization(void)
1482 {
1483 struct kmem_cache *s;
1484
1485 mutex_lock(&slab_mutex);
1486
1487 list_for_each_entry(s, &slab_caches, list)
1488 init_cache_random_seq(s);
1489
1490 mutex_unlock(&slab_mutex);
1491 }
1492
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 unsigned long *pos, void *start,
1496 unsigned long page_limit,
1497 unsigned long freelist_count)
1498 {
1499 unsigned int idx;
1500
1501 /*
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1504 */
1505 do {
1506 idx = s->random_seq[*pos];
1507 *pos += 1;
1508 if (*pos >= freelist_count)
1509 *pos = 0;
1510 } while (unlikely(idx >= page_limit));
1511
1512 return (char *)start + idx;
1513 }
1514
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517 {
1518 void *start;
1519 void *cur;
1520 void *next;
1521 unsigned long idx, pos, page_limit, freelist_count;
1522
1523 if (page->objects < 2 || !s->random_seq)
1524 return false;
1525
1526 freelist_count = oo_objects(s->oo);
1527 pos = get_random_int() % freelist_count;
1528
1529 page_limit = page->objects * s->size;
1530 start = fixup_red_left(s, page_address(page));
1531
1532 /* First entry is used as the base of the freelist */
1533 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 freelist_count);
1535 page->freelist = cur;
1536
1537 for (idx = 1; idx < page->objects; idx++) {
1538 setup_object(s, page, cur);
1539 next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 freelist_count);
1541 set_freepointer(s, cur, next);
1542 cur = next;
1543 }
1544 setup_object(s, page, cur);
1545 set_freepointer(s, cur, NULL);
1546
1547 return true;
1548 }
1549 #else
1550 static inline int init_cache_random_seq(struct kmem_cache *s)
1551 {
1552 return 0;
1553 }
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1556 {
1557 return false;
1558 }
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560
1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1562 {
1563 struct page *page;
1564 struct kmem_cache_order_objects oo = s->oo;
1565 gfp_t alloc_gfp;
1566 void *start, *p;
1567 int idx, order;
1568 bool shuffle;
1569
1570 flags &= gfp_allowed_mask;
1571
1572 if (gfpflags_allow_blocking(flags))
1573 local_irq_enable();
1574
1575 flags |= s->allocflags;
1576
1577 /*
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1580 */
1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1584
1585 page = alloc_slab_page(s, alloc_gfp, node, oo);
1586 if (unlikely(!page)) {
1587 oo = s->min;
1588 alloc_gfp = flags;
1589 /*
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1592 */
1593 page = alloc_slab_page(s, alloc_gfp, node, oo);
1594 if (unlikely(!page))
1595 goto out;
1596 stat(s, ORDER_FALLBACK);
1597 }
1598
1599 page->objects = oo_objects(oo);
1600
1601 order = compound_order(page);
1602 page->slab_cache = s;
1603 __SetPageSlab(page);
1604 if (page_is_pfmemalloc(page))
1605 SetPageSlabPfmemalloc(page);
1606
1607 start = page_address(page);
1608
1609 if (unlikely(s->flags & SLAB_POISON))
1610 memset(start, POISON_INUSE, PAGE_SIZE << order);
1611
1612 kasan_poison_slab(page);
1613
1614 shuffle = shuffle_freelist(s, page);
1615
1616 if (!shuffle) {
1617 for_each_object_idx(p, idx, s, start, page->objects) {
1618 setup_object(s, page, p);
1619 if (likely(idx < page->objects))
1620 set_freepointer(s, p, p + s->size);
1621 else
1622 set_freepointer(s, p, NULL);
1623 }
1624 page->freelist = fixup_red_left(s, start);
1625 }
1626
1627 page->inuse = page->objects;
1628 page->frozen = 1;
1629
1630 out:
1631 if (gfpflags_allow_blocking(flags))
1632 local_irq_disable();
1633 if (!page)
1634 return NULL;
1635
1636 mod_lruvec_page_state(page,
1637 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1638 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1639 1 << oo_order(oo));
1640
1641 inc_slabs_node(s, page_to_nid(page), page->objects);
1642
1643 return page;
1644 }
1645
1646 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1647 {
1648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1650 flags &= ~GFP_SLAB_BUG_MASK;
1651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1652 invalid_mask, &invalid_mask, flags, &flags);
1653 dump_stack();
1654 }
1655
1656 return allocate_slab(s,
1657 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1658 }
1659
1660 static void __free_slab(struct kmem_cache *s, struct page *page)
1661 {
1662 int order = compound_order(page);
1663 int pages = 1 << order;
1664
1665 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1666 void *p;
1667
1668 slab_pad_check(s, page);
1669 for_each_object(p, s, page_address(page),
1670 page->objects)
1671 check_object(s, page, p, SLUB_RED_INACTIVE);
1672 }
1673
1674 mod_lruvec_page_state(page,
1675 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1676 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1677 -pages);
1678
1679 __ClearPageSlabPfmemalloc(page);
1680 __ClearPageSlab(page);
1681
1682 page_mapcount_reset(page);
1683 if (current->reclaim_state)
1684 current->reclaim_state->reclaimed_slab += pages;
1685 memcg_uncharge_slab(page, order, s);
1686 __free_pages(page, order);
1687 }
1688
1689 #define need_reserve_slab_rcu \
1690 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1691
1692 static void rcu_free_slab(struct rcu_head *h)
1693 {
1694 struct page *page;
1695
1696 if (need_reserve_slab_rcu)
1697 page = virt_to_head_page(h);
1698 else
1699 page = container_of((struct list_head *)h, struct page, lru);
1700
1701 __free_slab(page->slab_cache, page);
1702 }
1703
1704 static void free_slab(struct kmem_cache *s, struct page *page)
1705 {
1706 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1707 struct rcu_head *head;
1708
1709 if (need_reserve_slab_rcu) {
1710 int order = compound_order(page);
1711 int offset = (PAGE_SIZE << order) - s->reserved;
1712
1713 VM_BUG_ON(s->reserved != sizeof(*head));
1714 head = page_address(page) + offset;
1715 } else {
1716 head = &page->rcu_head;
1717 }
1718
1719 call_rcu(head, rcu_free_slab);
1720 } else
1721 __free_slab(s, page);
1722 }
1723
1724 static void discard_slab(struct kmem_cache *s, struct page *page)
1725 {
1726 dec_slabs_node(s, page_to_nid(page), page->objects);
1727 free_slab(s, page);
1728 }
1729
1730 /*
1731 * Management of partially allocated slabs.
1732 */
1733 static inline void
1734 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1735 {
1736 n->nr_partial++;
1737 if (tail == DEACTIVATE_TO_TAIL)
1738 list_add_tail(&page->lru, &n->partial);
1739 else
1740 list_add(&page->lru, &n->partial);
1741 }
1742
1743 static inline void add_partial(struct kmem_cache_node *n,
1744 struct page *page, int tail)
1745 {
1746 lockdep_assert_held(&n->list_lock);
1747 __add_partial(n, page, tail);
1748 }
1749
1750 static inline void remove_partial(struct kmem_cache_node *n,
1751 struct page *page)
1752 {
1753 lockdep_assert_held(&n->list_lock);
1754 list_del(&page->lru);
1755 n->nr_partial--;
1756 }
1757
1758 /*
1759 * Remove slab from the partial list, freeze it and
1760 * return the pointer to the freelist.
1761 *
1762 * Returns a list of objects or NULL if it fails.
1763 */
1764 static inline void *acquire_slab(struct kmem_cache *s,
1765 struct kmem_cache_node *n, struct page *page,
1766 int mode, int *objects)
1767 {
1768 void *freelist;
1769 unsigned long counters;
1770 struct page new;
1771
1772 lockdep_assert_held(&n->list_lock);
1773
1774 /*
1775 * Zap the freelist and set the frozen bit.
1776 * The old freelist is the list of objects for the
1777 * per cpu allocation list.
1778 */
1779 freelist = page->freelist;
1780 counters = page->counters;
1781 new.counters = counters;
1782 *objects = new.objects - new.inuse;
1783 if (mode) {
1784 new.inuse = page->objects;
1785 new.freelist = NULL;
1786 } else {
1787 new.freelist = freelist;
1788 }
1789
1790 VM_BUG_ON(new.frozen);
1791 new.frozen = 1;
1792
1793 if (!__cmpxchg_double_slab(s, page,
1794 freelist, counters,
1795 new.freelist, new.counters,
1796 "acquire_slab"))
1797 return NULL;
1798
1799 remove_partial(n, page);
1800 WARN_ON(!freelist);
1801 return freelist;
1802 }
1803
1804 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1805 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1806
1807 /*
1808 * Try to allocate a partial slab from a specific node.
1809 */
1810 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1811 struct kmem_cache_cpu *c, gfp_t flags)
1812 {
1813 struct page *page, *page2;
1814 void *object = NULL;
1815 unsigned int available = 0;
1816 int objects;
1817
1818 /*
1819 * Racy check. If we mistakenly see no partial slabs then we
1820 * just allocate an empty slab. If we mistakenly try to get a
1821 * partial slab and there is none available then get_partials()
1822 * will return NULL.
1823 */
1824 if (!n || !n->nr_partial)
1825 return NULL;
1826
1827 spin_lock(&n->list_lock);
1828 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1829 void *t;
1830
1831 if (!pfmemalloc_match(page, flags))
1832 continue;
1833
1834 t = acquire_slab(s, n, page, object == NULL, &objects);
1835 if (!t)
1836 break;
1837
1838 available += objects;
1839 if (!object) {
1840 c->page = page;
1841 stat(s, ALLOC_FROM_PARTIAL);
1842 object = t;
1843 } else {
1844 put_cpu_partial(s, page, 0);
1845 stat(s, CPU_PARTIAL_NODE);
1846 }
1847 if (!kmem_cache_has_cpu_partial(s)
1848 || available > slub_cpu_partial(s) / 2)
1849 break;
1850
1851 }
1852 spin_unlock(&n->list_lock);
1853 return object;
1854 }
1855
1856 /*
1857 * Get a page from somewhere. Search in increasing NUMA distances.
1858 */
1859 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1860 struct kmem_cache_cpu *c)
1861 {
1862 #ifdef CONFIG_NUMA
1863 struct zonelist *zonelist;
1864 struct zoneref *z;
1865 struct zone *zone;
1866 enum zone_type high_zoneidx = gfp_zone(flags);
1867 void *object;
1868 unsigned int cpuset_mems_cookie;
1869
1870 /*
1871 * The defrag ratio allows a configuration of the tradeoffs between
1872 * inter node defragmentation and node local allocations. A lower
1873 * defrag_ratio increases the tendency to do local allocations
1874 * instead of attempting to obtain partial slabs from other nodes.
1875 *
1876 * If the defrag_ratio is set to 0 then kmalloc() always
1877 * returns node local objects. If the ratio is higher then kmalloc()
1878 * may return off node objects because partial slabs are obtained
1879 * from other nodes and filled up.
1880 *
1881 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1882 * (which makes defrag_ratio = 1000) then every (well almost)
1883 * allocation will first attempt to defrag slab caches on other nodes.
1884 * This means scanning over all nodes to look for partial slabs which
1885 * may be expensive if we do it every time we are trying to find a slab
1886 * with available objects.
1887 */
1888 if (!s->remote_node_defrag_ratio ||
1889 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1890 return NULL;
1891
1892 do {
1893 cpuset_mems_cookie = read_mems_allowed_begin();
1894 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1895 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1896 struct kmem_cache_node *n;
1897
1898 n = get_node(s, zone_to_nid(zone));
1899
1900 if (n && cpuset_zone_allowed(zone, flags) &&
1901 n->nr_partial > s->min_partial) {
1902 object = get_partial_node(s, n, c, flags);
1903 if (object) {
1904 /*
1905 * Don't check read_mems_allowed_retry()
1906 * here - if mems_allowed was updated in
1907 * parallel, that was a harmless race
1908 * between allocation and the cpuset
1909 * update
1910 */
1911 return object;
1912 }
1913 }
1914 }
1915 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1916 #endif
1917 return NULL;
1918 }
1919
1920 /*
1921 * Get a partial page, lock it and return it.
1922 */
1923 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1924 struct kmem_cache_cpu *c)
1925 {
1926 void *object;
1927 int searchnode = node;
1928
1929 if (node == NUMA_NO_NODE)
1930 searchnode = numa_mem_id();
1931 else if (!node_present_pages(node))
1932 searchnode = node_to_mem_node(node);
1933
1934 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1935 if (object || node != NUMA_NO_NODE)
1936 return object;
1937
1938 return get_any_partial(s, flags, c);
1939 }
1940
1941 #ifdef CONFIG_PREEMPT
1942 /*
1943 * Calculate the next globally unique transaction for disambiguiation
1944 * during cmpxchg. The transactions start with the cpu number and are then
1945 * incremented by CONFIG_NR_CPUS.
1946 */
1947 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1948 #else
1949 /*
1950 * No preemption supported therefore also no need to check for
1951 * different cpus.
1952 */
1953 #define TID_STEP 1
1954 #endif
1955
1956 static inline unsigned long next_tid(unsigned long tid)
1957 {
1958 return tid + TID_STEP;
1959 }
1960
1961 static inline unsigned int tid_to_cpu(unsigned long tid)
1962 {
1963 return tid % TID_STEP;
1964 }
1965
1966 static inline unsigned long tid_to_event(unsigned long tid)
1967 {
1968 return tid / TID_STEP;
1969 }
1970
1971 static inline unsigned int init_tid(int cpu)
1972 {
1973 return cpu;
1974 }
1975
1976 static inline void note_cmpxchg_failure(const char *n,
1977 const struct kmem_cache *s, unsigned long tid)
1978 {
1979 #ifdef SLUB_DEBUG_CMPXCHG
1980 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1981
1982 pr_info("%s %s: cmpxchg redo ", n, s->name);
1983
1984 #ifdef CONFIG_PREEMPT
1985 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1986 pr_warn("due to cpu change %d -> %d\n",
1987 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1988 else
1989 #endif
1990 if (tid_to_event(tid) != tid_to_event(actual_tid))
1991 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1992 tid_to_event(tid), tid_to_event(actual_tid));
1993 else
1994 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1995 actual_tid, tid, next_tid(tid));
1996 #endif
1997 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1998 }
1999
2000 static void init_kmem_cache_cpus(struct kmem_cache *s)
2001 {
2002 int cpu;
2003
2004 for_each_possible_cpu(cpu)
2005 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2006 }
2007
2008 /*
2009 * Remove the cpu slab
2010 */
2011 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2012 void *freelist, struct kmem_cache_cpu *c)
2013 {
2014 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2015 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2016 int lock = 0;
2017 enum slab_modes l = M_NONE, m = M_NONE;
2018 void *nextfree;
2019 int tail = DEACTIVATE_TO_HEAD;
2020 struct page new;
2021 struct page old;
2022
2023 if (page->freelist) {
2024 stat(s, DEACTIVATE_REMOTE_FREES);
2025 tail = DEACTIVATE_TO_TAIL;
2026 }
2027
2028 /*
2029 * Stage one: Free all available per cpu objects back
2030 * to the page freelist while it is still frozen. Leave the
2031 * last one.
2032 *
2033 * There is no need to take the list->lock because the page
2034 * is still frozen.
2035 */
2036 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2037 void *prior;
2038 unsigned long counters;
2039
2040 do {
2041 prior = page->freelist;
2042 counters = page->counters;
2043 set_freepointer(s, freelist, prior);
2044 new.counters = counters;
2045 new.inuse--;
2046 VM_BUG_ON(!new.frozen);
2047
2048 } while (!__cmpxchg_double_slab(s, page,
2049 prior, counters,
2050 freelist, new.counters,
2051 "drain percpu freelist"));
2052
2053 freelist = nextfree;
2054 }
2055
2056 /*
2057 * Stage two: Ensure that the page is unfrozen while the
2058 * list presence reflects the actual number of objects
2059 * during unfreeze.
2060 *
2061 * We setup the list membership and then perform a cmpxchg
2062 * with the count. If there is a mismatch then the page
2063 * is not unfrozen but the page is on the wrong list.
2064 *
2065 * Then we restart the process which may have to remove
2066 * the page from the list that we just put it on again
2067 * because the number of objects in the slab may have
2068 * changed.
2069 */
2070 redo:
2071
2072 old.freelist = page->freelist;
2073 old.counters = page->counters;
2074 VM_BUG_ON(!old.frozen);
2075
2076 /* Determine target state of the slab */
2077 new.counters = old.counters;
2078 if (freelist) {
2079 new.inuse--;
2080 set_freepointer(s, freelist, old.freelist);
2081 new.freelist = freelist;
2082 } else
2083 new.freelist = old.freelist;
2084
2085 new.frozen = 0;
2086
2087 if (!new.inuse && n->nr_partial >= s->min_partial)
2088 m = M_FREE;
2089 else if (new.freelist) {
2090 m = M_PARTIAL;
2091 if (!lock) {
2092 lock = 1;
2093 /*
2094 * Taking the spinlock removes the possiblity
2095 * that acquire_slab() will see a slab page that
2096 * is frozen
2097 */
2098 spin_lock(&n->list_lock);
2099 }
2100 } else {
2101 m = M_FULL;
2102 if (kmem_cache_debug(s) && !lock) {
2103 lock = 1;
2104 /*
2105 * This also ensures that the scanning of full
2106 * slabs from diagnostic functions will not see
2107 * any frozen slabs.
2108 */
2109 spin_lock(&n->list_lock);
2110 }
2111 }
2112
2113 if (l != m) {
2114
2115 if (l == M_PARTIAL)
2116
2117 remove_partial(n, page);
2118
2119 else if (l == M_FULL)
2120
2121 remove_full(s, n, page);
2122
2123 if (m == M_PARTIAL) {
2124
2125 add_partial(n, page, tail);
2126 stat(s, tail);
2127
2128 } else if (m == M_FULL) {
2129
2130 stat(s, DEACTIVATE_FULL);
2131 add_full(s, n, page);
2132
2133 }
2134 }
2135
2136 l = m;
2137 if (!__cmpxchg_double_slab(s, page,
2138 old.freelist, old.counters,
2139 new.freelist, new.counters,
2140 "unfreezing slab"))
2141 goto redo;
2142
2143 if (lock)
2144 spin_unlock(&n->list_lock);
2145
2146 if (m == M_FREE) {
2147 stat(s, DEACTIVATE_EMPTY);
2148 discard_slab(s, page);
2149 stat(s, FREE_SLAB);
2150 }
2151
2152 c->page = NULL;
2153 c->freelist = NULL;
2154 }
2155
2156 /*
2157 * Unfreeze all the cpu partial slabs.
2158 *
2159 * This function must be called with interrupts disabled
2160 * for the cpu using c (or some other guarantee must be there
2161 * to guarantee no concurrent accesses).
2162 */
2163 static void unfreeze_partials(struct kmem_cache *s,
2164 struct kmem_cache_cpu *c)
2165 {
2166 #ifdef CONFIG_SLUB_CPU_PARTIAL
2167 struct kmem_cache_node *n = NULL, *n2 = NULL;
2168 struct page *page, *discard_page = NULL;
2169
2170 while ((page = c->partial)) {
2171 struct page new;
2172 struct page old;
2173
2174 c->partial = page->next;
2175
2176 n2 = get_node(s, page_to_nid(page));
2177 if (n != n2) {
2178 if (n)
2179 spin_unlock(&n->list_lock);
2180
2181 n = n2;
2182 spin_lock(&n->list_lock);
2183 }
2184
2185 do {
2186
2187 old.freelist = page->freelist;
2188 old.counters = page->counters;
2189 VM_BUG_ON(!old.frozen);
2190
2191 new.counters = old.counters;
2192 new.freelist = old.freelist;
2193
2194 new.frozen = 0;
2195
2196 } while (!__cmpxchg_double_slab(s, page,
2197 old.freelist, old.counters,
2198 new.freelist, new.counters,
2199 "unfreezing slab"));
2200
2201 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2202 page->next = discard_page;
2203 discard_page = page;
2204 } else {
2205 add_partial(n, page, DEACTIVATE_TO_TAIL);
2206 stat(s, FREE_ADD_PARTIAL);
2207 }
2208 }
2209
2210 if (n)
2211 spin_unlock(&n->list_lock);
2212
2213 while (discard_page) {
2214 page = discard_page;
2215 discard_page = discard_page->next;
2216
2217 stat(s, DEACTIVATE_EMPTY);
2218 discard_slab(s, page);
2219 stat(s, FREE_SLAB);
2220 }
2221 #endif
2222 }
2223
2224 /*
2225 * Put a page that was just frozen (in __slab_free) into a partial page
2226 * slot if available.
2227 *
2228 * If we did not find a slot then simply move all the partials to the
2229 * per node partial list.
2230 */
2231 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2232 {
2233 #ifdef CONFIG_SLUB_CPU_PARTIAL
2234 struct page *oldpage;
2235 int pages;
2236 int pobjects;
2237
2238 preempt_disable();
2239 do {
2240 pages = 0;
2241 pobjects = 0;
2242 oldpage = this_cpu_read(s->cpu_slab->partial);
2243
2244 if (oldpage) {
2245 pobjects = oldpage->pobjects;
2246 pages = oldpage->pages;
2247 if (drain && pobjects > s->cpu_partial) {
2248 unsigned long flags;
2249 /*
2250 * partial array is full. Move the existing
2251 * set to the per node partial list.
2252 */
2253 local_irq_save(flags);
2254 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2255 local_irq_restore(flags);
2256 oldpage = NULL;
2257 pobjects = 0;
2258 pages = 0;
2259 stat(s, CPU_PARTIAL_DRAIN);
2260 }
2261 }
2262
2263 pages++;
2264 pobjects += page->objects - page->inuse;
2265
2266 page->pages = pages;
2267 page->pobjects = pobjects;
2268 page->next = oldpage;
2269
2270 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2271 != oldpage);
2272 if (unlikely(!s->cpu_partial)) {
2273 unsigned long flags;
2274
2275 local_irq_save(flags);
2276 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2277 local_irq_restore(flags);
2278 }
2279 preempt_enable();
2280 #endif
2281 }
2282
2283 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2284 {
2285 stat(s, CPUSLAB_FLUSH);
2286 deactivate_slab(s, c->page, c->freelist, c);
2287
2288 c->tid = next_tid(c->tid);
2289 }
2290
2291 /*
2292 * Flush cpu slab.
2293 *
2294 * Called from IPI handler with interrupts disabled.
2295 */
2296 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2297 {
2298 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2299
2300 if (likely(c)) {
2301 if (c->page)
2302 flush_slab(s, c);
2303
2304 unfreeze_partials(s, c);
2305 }
2306 }
2307
2308 static void flush_cpu_slab(void *d)
2309 {
2310 struct kmem_cache *s = d;
2311
2312 __flush_cpu_slab(s, smp_processor_id());
2313 }
2314
2315 static bool has_cpu_slab(int cpu, void *info)
2316 {
2317 struct kmem_cache *s = info;
2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2319
2320 return c->page || slub_percpu_partial(c);
2321 }
2322
2323 static void flush_all(struct kmem_cache *s)
2324 {
2325 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2326 }
2327
2328 /*
2329 * Use the cpu notifier to insure that the cpu slabs are flushed when
2330 * necessary.
2331 */
2332 static int slub_cpu_dead(unsigned int cpu)
2333 {
2334 struct kmem_cache *s;
2335 unsigned long flags;
2336
2337 mutex_lock(&slab_mutex);
2338 list_for_each_entry(s, &slab_caches, list) {
2339 local_irq_save(flags);
2340 __flush_cpu_slab(s, cpu);
2341 local_irq_restore(flags);
2342 }
2343 mutex_unlock(&slab_mutex);
2344 return 0;
2345 }
2346
2347 /*
2348 * Check if the objects in a per cpu structure fit numa
2349 * locality expectations.
2350 */
2351 static inline int node_match(struct page *page, int node)
2352 {
2353 #ifdef CONFIG_NUMA
2354 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2355 return 0;
2356 #endif
2357 return 1;
2358 }
2359
2360 #ifdef CONFIG_SLUB_DEBUG
2361 static int count_free(struct page *page)
2362 {
2363 return page->objects - page->inuse;
2364 }
2365
2366 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2367 {
2368 return atomic_long_read(&n->total_objects);
2369 }
2370 #endif /* CONFIG_SLUB_DEBUG */
2371
2372 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2373 static unsigned long count_partial(struct kmem_cache_node *n,
2374 int (*get_count)(struct page *))
2375 {
2376 unsigned long flags;
2377 unsigned long x = 0;
2378 struct page *page;
2379
2380 spin_lock_irqsave(&n->list_lock, flags);
2381 list_for_each_entry(page, &n->partial, lru)
2382 x += get_count(page);
2383 spin_unlock_irqrestore(&n->list_lock, flags);
2384 return x;
2385 }
2386 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2387
2388 static noinline void
2389 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2390 {
2391 #ifdef CONFIG_SLUB_DEBUG
2392 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2393 DEFAULT_RATELIMIT_BURST);
2394 int node;
2395 struct kmem_cache_node *n;
2396
2397 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2398 return;
2399
2400 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2401 nid, gfpflags, &gfpflags);
2402 pr_warn(" cache: %s, object size: %u, buffer size: %d, default order: %d, min order: %d\n",
2403 s->name, s->object_size, s->size, oo_order(s->oo),
2404 oo_order(s->min));
2405
2406 if (oo_order(s->min) > get_order(s->object_size))
2407 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2408 s->name);
2409
2410 for_each_kmem_cache_node(s, node, n) {
2411 unsigned long nr_slabs;
2412 unsigned long nr_objs;
2413 unsigned long nr_free;
2414
2415 nr_free = count_partial(n, count_free);
2416 nr_slabs = node_nr_slabs(n);
2417 nr_objs = node_nr_objs(n);
2418
2419 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2420 node, nr_slabs, nr_objs, nr_free);
2421 }
2422 #endif
2423 }
2424
2425 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2426 int node, struct kmem_cache_cpu **pc)
2427 {
2428 void *freelist;
2429 struct kmem_cache_cpu *c = *pc;
2430 struct page *page;
2431
2432 freelist = get_partial(s, flags, node, c);
2433
2434 if (freelist)
2435 return freelist;
2436
2437 page = new_slab(s, flags, node);
2438 if (page) {
2439 c = raw_cpu_ptr(s->cpu_slab);
2440 if (c->page)
2441 flush_slab(s, c);
2442
2443 /*
2444 * No other reference to the page yet so we can
2445 * muck around with it freely without cmpxchg
2446 */
2447 freelist = page->freelist;
2448 page->freelist = NULL;
2449
2450 stat(s, ALLOC_SLAB);
2451 c->page = page;
2452 *pc = c;
2453 } else
2454 freelist = NULL;
2455
2456 return freelist;
2457 }
2458
2459 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2460 {
2461 if (unlikely(PageSlabPfmemalloc(page)))
2462 return gfp_pfmemalloc_allowed(gfpflags);
2463
2464 return true;
2465 }
2466
2467 /*
2468 * Check the page->freelist of a page and either transfer the freelist to the
2469 * per cpu freelist or deactivate the page.
2470 *
2471 * The page is still frozen if the return value is not NULL.
2472 *
2473 * If this function returns NULL then the page has been unfrozen.
2474 *
2475 * This function must be called with interrupt disabled.
2476 */
2477 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2478 {
2479 struct page new;
2480 unsigned long counters;
2481 void *freelist;
2482
2483 do {
2484 freelist = page->freelist;
2485 counters = page->counters;
2486
2487 new.counters = counters;
2488 VM_BUG_ON(!new.frozen);
2489
2490 new.inuse = page->objects;
2491 new.frozen = freelist != NULL;
2492
2493 } while (!__cmpxchg_double_slab(s, page,
2494 freelist, counters,
2495 NULL, new.counters,
2496 "get_freelist"));
2497
2498 return freelist;
2499 }
2500
2501 /*
2502 * Slow path. The lockless freelist is empty or we need to perform
2503 * debugging duties.
2504 *
2505 * Processing is still very fast if new objects have been freed to the
2506 * regular freelist. In that case we simply take over the regular freelist
2507 * as the lockless freelist and zap the regular freelist.
2508 *
2509 * If that is not working then we fall back to the partial lists. We take the
2510 * first element of the freelist as the object to allocate now and move the
2511 * rest of the freelist to the lockless freelist.
2512 *
2513 * And if we were unable to get a new slab from the partial slab lists then
2514 * we need to allocate a new slab. This is the slowest path since it involves
2515 * a call to the page allocator and the setup of a new slab.
2516 *
2517 * Version of __slab_alloc to use when we know that interrupts are
2518 * already disabled (which is the case for bulk allocation).
2519 */
2520 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2521 unsigned long addr, struct kmem_cache_cpu *c)
2522 {
2523 void *freelist;
2524 struct page *page;
2525
2526 page = c->page;
2527 if (!page)
2528 goto new_slab;
2529 redo:
2530
2531 if (unlikely(!node_match(page, node))) {
2532 int searchnode = node;
2533
2534 if (node != NUMA_NO_NODE && !node_present_pages(node))
2535 searchnode = node_to_mem_node(node);
2536
2537 if (unlikely(!node_match(page, searchnode))) {
2538 stat(s, ALLOC_NODE_MISMATCH);
2539 deactivate_slab(s, page, c->freelist, c);
2540 goto new_slab;
2541 }
2542 }
2543
2544 /*
2545 * By rights, we should be searching for a slab page that was
2546 * PFMEMALLOC but right now, we are losing the pfmemalloc
2547 * information when the page leaves the per-cpu allocator
2548 */
2549 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2550 deactivate_slab(s, page, c->freelist, c);
2551 goto new_slab;
2552 }
2553
2554 /* must check again c->freelist in case of cpu migration or IRQ */
2555 freelist = c->freelist;
2556 if (freelist)
2557 goto load_freelist;
2558
2559 freelist = get_freelist(s, page);
2560
2561 if (!freelist) {
2562 c->page = NULL;
2563 stat(s, DEACTIVATE_BYPASS);
2564 goto new_slab;
2565 }
2566
2567 stat(s, ALLOC_REFILL);
2568
2569 load_freelist:
2570 /*
2571 * freelist is pointing to the list of objects to be used.
2572 * page is pointing to the page from which the objects are obtained.
2573 * That page must be frozen for per cpu allocations to work.
2574 */
2575 VM_BUG_ON(!c->page->frozen);
2576 c->freelist = get_freepointer(s, freelist);
2577 c->tid = next_tid(c->tid);
2578 return freelist;
2579
2580 new_slab:
2581
2582 if (slub_percpu_partial(c)) {
2583 page = c->page = slub_percpu_partial(c);
2584 slub_set_percpu_partial(c, page);
2585 stat(s, CPU_PARTIAL_ALLOC);
2586 goto redo;
2587 }
2588
2589 freelist = new_slab_objects(s, gfpflags, node, &c);
2590
2591 if (unlikely(!freelist)) {
2592 slab_out_of_memory(s, gfpflags, node);
2593 return NULL;
2594 }
2595
2596 page = c->page;
2597 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2598 goto load_freelist;
2599
2600 /* Only entered in the debug case */
2601 if (kmem_cache_debug(s) &&
2602 !alloc_debug_processing(s, page, freelist, addr))
2603 goto new_slab; /* Slab failed checks. Next slab needed */
2604
2605 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2606 return freelist;
2607 }
2608
2609 /*
2610 * Another one that disabled interrupt and compensates for possible
2611 * cpu changes by refetching the per cpu area pointer.
2612 */
2613 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2614 unsigned long addr, struct kmem_cache_cpu *c)
2615 {
2616 void *p;
2617 unsigned long flags;
2618
2619 local_irq_save(flags);
2620 #ifdef CONFIG_PREEMPT
2621 /*
2622 * We may have been preempted and rescheduled on a different
2623 * cpu before disabling interrupts. Need to reload cpu area
2624 * pointer.
2625 */
2626 c = this_cpu_ptr(s->cpu_slab);
2627 #endif
2628
2629 p = ___slab_alloc(s, gfpflags, node, addr, c);
2630 local_irq_restore(flags);
2631 return p;
2632 }
2633
2634 /*
2635 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2636 * have the fastpath folded into their functions. So no function call
2637 * overhead for requests that can be satisfied on the fastpath.
2638 *
2639 * The fastpath works by first checking if the lockless freelist can be used.
2640 * If not then __slab_alloc is called for slow processing.
2641 *
2642 * Otherwise we can simply pick the next object from the lockless free list.
2643 */
2644 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2645 gfp_t gfpflags, int node, unsigned long addr)
2646 {
2647 void *object;
2648 struct kmem_cache_cpu *c;
2649 struct page *page;
2650 unsigned long tid;
2651
2652 s = slab_pre_alloc_hook(s, gfpflags);
2653 if (!s)
2654 return NULL;
2655 redo:
2656 /*
2657 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2658 * enabled. We may switch back and forth between cpus while
2659 * reading from one cpu area. That does not matter as long
2660 * as we end up on the original cpu again when doing the cmpxchg.
2661 *
2662 * We should guarantee that tid and kmem_cache are retrieved on
2663 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2664 * to check if it is matched or not.
2665 */
2666 do {
2667 tid = this_cpu_read(s->cpu_slab->tid);
2668 c = raw_cpu_ptr(s->cpu_slab);
2669 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2670 unlikely(tid != READ_ONCE(c->tid)));
2671
2672 /*
2673 * Irqless object alloc/free algorithm used here depends on sequence
2674 * of fetching cpu_slab's data. tid should be fetched before anything
2675 * on c to guarantee that object and page associated with previous tid
2676 * won't be used with current tid. If we fetch tid first, object and
2677 * page could be one associated with next tid and our alloc/free
2678 * request will be failed. In this case, we will retry. So, no problem.
2679 */
2680 barrier();
2681
2682 /*
2683 * The transaction ids are globally unique per cpu and per operation on
2684 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2685 * occurs on the right processor and that there was no operation on the
2686 * linked list in between.
2687 */
2688
2689 object = c->freelist;
2690 page = c->page;
2691 if (unlikely(!object || !node_match(page, node))) {
2692 object = __slab_alloc(s, gfpflags, node, addr, c);
2693 stat(s, ALLOC_SLOWPATH);
2694 } else {
2695 void *next_object = get_freepointer_safe(s, object);
2696
2697 /*
2698 * The cmpxchg will only match if there was no additional
2699 * operation and if we are on the right processor.
2700 *
2701 * The cmpxchg does the following atomically (without lock
2702 * semantics!)
2703 * 1. Relocate first pointer to the current per cpu area.
2704 * 2. Verify that tid and freelist have not been changed
2705 * 3. If they were not changed replace tid and freelist
2706 *
2707 * Since this is without lock semantics the protection is only
2708 * against code executing on this cpu *not* from access by
2709 * other cpus.
2710 */
2711 if (unlikely(!this_cpu_cmpxchg_double(
2712 s->cpu_slab->freelist, s->cpu_slab->tid,
2713 object, tid,
2714 next_object, next_tid(tid)))) {
2715
2716 note_cmpxchg_failure("slab_alloc", s, tid);
2717 goto redo;
2718 }
2719 prefetch_freepointer(s, next_object);
2720 stat(s, ALLOC_FASTPATH);
2721 }
2722
2723 if (unlikely(gfpflags & __GFP_ZERO) && object)
2724 memset(object, 0, s->object_size);
2725
2726 slab_post_alloc_hook(s, gfpflags, 1, &object);
2727
2728 return object;
2729 }
2730
2731 static __always_inline void *slab_alloc(struct kmem_cache *s,
2732 gfp_t gfpflags, unsigned long addr)
2733 {
2734 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2735 }
2736
2737 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2738 {
2739 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2740
2741 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2742 s->size, gfpflags);
2743
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(kmem_cache_alloc);
2747
2748 #ifdef CONFIG_TRACING
2749 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2750 {
2751 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2752 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2753 kasan_kmalloc(s, ret, size, gfpflags);
2754 return ret;
2755 }
2756 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2757 #endif
2758
2759 #ifdef CONFIG_NUMA
2760 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2761 {
2762 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2763
2764 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2765 s->object_size, s->size, gfpflags, node);
2766
2767 return ret;
2768 }
2769 EXPORT_SYMBOL(kmem_cache_alloc_node);
2770
2771 #ifdef CONFIG_TRACING
2772 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2773 gfp_t gfpflags,
2774 int node, size_t size)
2775 {
2776 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2777
2778 trace_kmalloc_node(_RET_IP_, ret,
2779 size, s->size, gfpflags, node);
2780
2781 kasan_kmalloc(s, ret, size, gfpflags);
2782 return ret;
2783 }
2784 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2785 #endif
2786 #endif
2787
2788 /*
2789 * Slow path handling. This may still be called frequently since objects
2790 * have a longer lifetime than the cpu slabs in most processing loads.
2791 *
2792 * So we still attempt to reduce cache line usage. Just take the slab
2793 * lock and free the item. If there is no additional partial page
2794 * handling required then we can return immediately.
2795 */
2796 static void __slab_free(struct kmem_cache *s, struct page *page,
2797 void *head, void *tail, int cnt,
2798 unsigned long addr)
2799
2800 {
2801 void *prior;
2802 int was_frozen;
2803 struct page new;
2804 unsigned long counters;
2805 struct kmem_cache_node *n = NULL;
2806 unsigned long uninitialized_var(flags);
2807
2808 stat(s, FREE_SLOWPATH);
2809
2810 if (kmem_cache_debug(s) &&
2811 !free_debug_processing(s, page, head, tail, cnt, addr))
2812 return;
2813
2814 do {
2815 if (unlikely(n)) {
2816 spin_unlock_irqrestore(&n->list_lock, flags);
2817 n = NULL;
2818 }
2819 prior = page->freelist;
2820 counters = page->counters;
2821 set_freepointer(s, tail, prior);
2822 new.counters = counters;
2823 was_frozen = new.frozen;
2824 new.inuse -= cnt;
2825 if ((!new.inuse || !prior) && !was_frozen) {
2826
2827 if (kmem_cache_has_cpu_partial(s) && !prior) {
2828
2829 /*
2830 * Slab was on no list before and will be
2831 * partially empty
2832 * We can defer the list move and instead
2833 * freeze it.
2834 */
2835 new.frozen = 1;
2836
2837 } else { /* Needs to be taken off a list */
2838
2839 n = get_node(s, page_to_nid(page));
2840 /*
2841 * Speculatively acquire the list_lock.
2842 * If the cmpxchg does not succeed then we may
2843 * drop the list_lock without any processing.
2844 *
2845 * Otherwise the list_lock will synchronize with
2846 * other processors updating the list of slabs.
2847 */
2848 spin_lock_irqsave(&n->list_lock, flags);
2849
2850 }
2851 }
2852
2853 } while (!cmpxchg_double_slab(s, page,
2854 prior, counters,
2855 head, new.counters,
2856 "__slab_free"));
2857
2858 if (likely(!n)) {
2859
2860 /*
2861 * If we just froze the page then put it onto the
2862 * per cpu partial list.
2863 */
2864 if (new.frozen && !was_frozen) {
2865 put_cpu_partial(s, page, 1);
2866 stat(s, CPU_PARTIAL_FREE);
2867 }
2868 /*
2869 * The list lock was not taken therefore no list
2870 * activity can be necessary.
2871 */
2872 if (was_frozen)
2873 stat(s, FREE_FROZEN);
2874 return;
2875 }
2876
2877 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2878 goto slab_empty;
2879
2880 /*
2881 * Objects left in the slab. If it was not on the partial list before
2882 * then add it.
2883 */
2884 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2885 if (kmem_cache_debug(s))
2886 remove_full(s, n, page);
2887 add_partial(n, page, DEACTIVATE_TO_TAIL);
2888 stat(s, FREE_ADD_PARTIAL);
2889 }
2890 spin_unlock_irqrestore(&n->list_lock, flags);
2891 return;
2892
2893 slab_empty:
2894 if (prior) {
2895 /*
2896 * Slab on the partial list.
2897 */
2898 remove_partial(n, page);
2899 stat(s, FREE_REMOVE_PARTIAL);
2900 } else {
2901 /* Slab must be on the full list */
2902 remove_full(s, n, page);
2903 }
2904
2905 spin_unlock_irqrestore(&n->list_lock, flags);
2906 stat(s, FREE_SLAB);
2907 discard_slab(s, page);
2908 }
2909
2910 /*
2911 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2912 * can perform fastpath freeing without additional function calls.
2913 *
2914 * The fastpath is only possible if we are freeing to the current cpu slab
2915 * of this processor. This typically the case if we have just allocated
2916 * the item before.
2917 *
2918 * If fastpath is not possible then fall back to __slab_free where we deal
2919 * with all sorts of special processing.
2920 *
2921 * Bulk free of a freelist with several objects (all pointing to the
2922 * same page) possible by specifying head and tail ptr, plus objects
2923 * count (cnt). Bulk free indicated by tail pointer being set.
2924 */
2925 static __always_inline void do_slab_free(struct kmem_cache *s,
2926 struct page *page, void *head, void *tail,
2927 int cnt, unsigned long addr)
2928 {
2929 void *tail_obj = tail ? : head;
2930 struct kmem_cache_cpu *c;
2931 unsigned long tid;
2932 redo:
2933 /*
2934 * Determine the currently cpus per cpu slab.
2935 * The cpu may change afterward. However that does not matter since
2936 * data is retrieved via this pointer. If we are on the same cpu
2937 * during the cmpxchg then the free will succeed.
2938 */
2939 do {
2940 tid = this_cpu_read(s->cpu_slab->tid);
2941 c = raw_cpu_ptr(s->cpu_slab);
2942 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2943 unlikely(tid != READ_ONCE(c->tid)));
2944
2945 /* Same with comment on barrier() in slab_alloc_node() */
2946 barrier();
2947
2948 if (likely(page == c->page)) {
2949 set_freepointer(s, tail_obj, c->freelist);
2950
2951 if (unlikely(!this_cpu_cmpxchg_double(
2952 s->cpu_slab->freelist, s->cpu_slab->tid,
2953 c->freelist, tid,
2954 head, next_tid(tid)))) {
2955
2956 note_cmpxchg_failure("slab_free", s, tid);
2957 goto redo;
2958 }
2959 stat(s, FREE_FASTPATH);
2960 } else
2961 __slab_free(s, page, head, tail_obj, cnt, addr);
2962
2963 }
2964
2965 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2966 void *head, void *tail, int cnt,
2967 unsigned long addr)
2968 {
2969 slab_free_freelist_hook(s, head, tail);
2970 /*
2971 * slab_free_freelist_hook() could have put the items into quarantine.
2972 * If so, no need to free them.
2973 */
2974 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2975 return;
2976 do_slab_free(s, page, head, tail, cnt, addr);
2977 }
2978
2979 #ifdef CONFIG_KASAN
2980 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2981 {
2982 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2983 }
2984 #endif
2985
2986 void kmem_cache_free(struct kmem_cache *s, void *x)
2987 {
2988 s = cache_from_obj(s, x);
2989 if (!s)
2990 return;
2991 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2992 trace_kmem_cache_free(_RET_IP_, x);
2993 }
2994 EXPORT_SYMBOL(kmem_cache_free);
2995
2996 struct detached_freelist {
2997 struct page *page;
2998 void *tail;
2999 void *freelist;
3000 int cnt;
3001 struct kmem_cache *s;
3002 };
3003
3004 /*
3005 * This function progressively scans the array with free objects (with
3006 * a limited look ahead) and extract objects belonging to the same
3007 * page. It builds a detached freelist directly within the given
3008 * page/objects. This can happen without any need for
3009 * synchronization, because the objects are owned by running process.
3010 * The freelist is build up as a single linked list in the objects.
3011 * The idea is, that this detached freelist can then be bulk
3012 * transferred to the real freelist(s), but only requiring a single
3013 * synchronization primitive. Look ahead in the array is limited due
3014 * to performance reasons.
3015 */
3016 static inline
3017 int build_detached_freelist(struct kmem_cache *s, size_t size,
3018 void **p, struct detached_freelist *df)
3019 {
3020 size_t first_skipped_index = 0;
3021 int lookahead = 3;
3022 void *object;
3023 struct page *page;
3024
3025 /* Always re-init detached_freelist */
3026 df->page = NULL;
3027
3028 do {
3029 object = p[--size];
3030 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3031 } while (!object && size);
3032
3033 if (!object)
3034 return 0;
3035
3036 page = virt_to_head_page(object);
3037 if (!s) {
3038 /* Handle kalloc'ed objects */
3039 if (unlikely(!PageSlab(page))) {
3040 BUG_ON(!PageCompound(page));
3041 kfree_hook(object);
3042 __free_pages(page, compound_order(page));
3043 p[size] = NULL; /* mark object processed */
3044 return size;
3045 }
3046 /* Derive kmem_cache from object */
3047 df->s = page->slab_cache;
3048 } else {
3049 df->s = cache_from_obj(s, object); /* Support for memcg */
3050 }
3051
3052 /* Start new detached freelist */
3053 df->page = page;
3054 set_freepointer(df->s, object, NULL);
3055 df->tail = object;
3056 df->freelist = object;
3057 p[size] = NULL; /* mark object processed */
3058 df->cnt = 1;
3059
3060 while (size) {
3061 object = p[--size];
3062 if (!object)
3063 continue; /* Skip processed objects */
3064
3065 /* df->page is always set at this point */
3066 if (df->page == virt_to_head_page(object)) {
3067 /* Opportunity build freelist */
3068 set_freepointer(df->s, object, df->freelist);
3069 df->freelist = object;
3070 df->cnt++;
3071 p[size] = NULL; /* mark object processed */
3072
3073 continue;
3074 }
3075
3076 /* Limit look ahead search */
3077 if (!--lookahead)
3078 break;
3079
3080 if (!first_skipped_index)
3081 first_skipped_index = size + 1;
3082 }
3083
3084 return first_skipped_index;
3085 }
3086
3087 /* Note that interrupts must be enabled when calling this function. */
3088 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3089 {
3090 if (WARN_ON(!size))
3091 return;
3092
3093 do {
3094 struct detached_freelist df;
3095
3096 size = build_detached_freelist(s, size, p, &df);
3097 if (!df.page)
3098 continue;
3099
3100 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3101 } while (likely(size));
3102 }
3103 EXPORT_SYMBOL(kmem_cache_free_bulk);
3104
3105 /* Note that interrupts must be enabled when calling this function. */
3106 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3107 void **p)
3108 {
3109 struct kmem_cache_cpu *c;
3110 int i;
3111
3112 /* memcg and kmem_cache debug support */
3113 s = slab_pre_alloc_hook(s, flags);
3114 if (unlikely(!s))
3115 return false;
3116 /*
3117 * Drain objects in the per cpu slab, while disabling local
3118 * IRQs, which protects against PREEMPT and interrupts
3119 * handlers invoking normal fastpath.
3120 */
3121 local_irq_disable();
3122 c = this_cpu_ptr(s->cpu_slab);
3123
3124 for (i = 0; i < size; i++) {
3125 void *object = c->freelist;
3126
3127 if (unlikely(!object)) {
3128 /*
3129 * Invoking slow path likely have side-effect
3130 * of re-populating per CPU c->freelist
3131 */
3132 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3133 _RET_IP_, c);
3134 if (unlikely(!p[i]))
3135 goto error;
3136
3137 c = this_cpu_ptr(s->cpu_slab);
3138 continue; /* goto for-loop */
3139 }
3140 c->freelist = get_freepointer(s, object);
3141 p[i] = object;
3142 }
3143 c->tid = next_tid(c->tid);
3144 local_irq_enable();
3145
3146 /* Clear memory outside IRQ disabled fastpath loop */
3147 if (unlikely(flags & __GFP_ZERO)) {
3148 int j;
3149
3150 for (j = 0; j < i; j++)
3151 memset(p[j], 0, s->object_size);
3152 }
3153
3154 /* memcg and kmem_cache debug support */
3155 slab_post_alloc_hook(s, flags, size, p);
3156 return i;
3157 error:
3158 local_irq_enable();
3159 slab_post_alloc_hook(s, flags, i, p);
3160 __kmem_cache_free_bulk(s, i, p);
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3164
3165
3166 /*
3167 * Object placement in a slab is made very easy because we always start at
3168 * offset 0. If we tune the size of the object to the alignment then we can
3169 * get the required alignment by putting one properly sized object after
3170 * another.
3171 *
3172 * Notice that the allocation order determines the sizes of the per cpu
3173 * caches. Each processor has always one slab available for allocations.
3174 * Increasing the allocation order reduces the number of times that slabs
3175 * must be moved on and off the partial lists and is therefore a factor in
3176 * locking overhead.
3177 */
3178
3179 /*
3180 * Mininum / Maximum order of slab pages. This influences locking overhead
3181 * and slab fragmentation. A higher order reduces the number of partial slabs
3182 * and increases the number of allocations possible without having to
3183 * take the list_lock.
3184 */
3185 static int slub_min_order;
3186 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3187 static int slub_min_objects;
3188
3189 /*
3190 * Calculate the order of allocation given an slab object size.
3191 *
3192 * The order of allocation has significant impact on performance and other
3193 * system components. Generally order 0 allocations should be preferred since
3194 * order 0 does not cause fragmentation in the page allocator. Larger objects
3195 * be problematic to put into order 0 slabs because there may be too much
3196 * unused space left. We go to a higher order if more than 1/16th of the slab
3197 * would be wasted.
3198 *
3199 * In order to reach satisfactory performance we must ensure that a minimum
3200 * number of objects is in one slab. Otherwise we may generate too much
3201 * activity on the partial lists which requires taking the list_lock. This is
3202 * less a concern for large slabs though which are rarely used.
3203 *
3204 * slub_max_order specifies the order where we begin to stop considering the
3205 * number of objects in a slab as critical. If we reach slub_max_order then
3206 * we try to keep the page order as low as possible. So we accept more waste
3207 * of space in favor of a small page order.
3208 *
3209 * Higher order allocations also allow the placement of more objects in a
3210 * slab and thereby reduce object handling overhead. If the user has
3211 * requested a higher mininum order then we start with that one instead of
3212 * the smallest order which will fit the object.
3213 */
3214 static inline int slab_order(int size, int min_objects,
3215 int max_order, int fract_leftover, int reserved)
3216 {
3217 int order;
3218 int rem;
3219 int min_order = slub_min_order;
3220
3221 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3222 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3223
3224 for (order = max(min_order, get_order(min_objects * size + reserved));
3225 order <= max_order; order++) {
3226
3227 unsigned long slab_size = PAGE_SIZE << order;
3228
3229 rem = (slab_size - reserved) % size;
3230
3231 if (rem <= slab_size / fract_leftover)
3232 break;
3233 }
3234
3235 return order;
3236 }
3237
3238 static inline int calculate_order(int size, int reserved)
3239 {
3240 int order;
3241 int min_objects;
3242 int fraction;
3243 int max_objects;
3244
3245 /*
3246 * Attempt to find best configuration for a slab. This
3247 * works by first attempting to generate a layout with
3248 * the best configuration and backing off gradually.
3249 *
3250 * First we increase the acceptable waste in a slab. Then
3251 * we reduce the minimum objects required in a slab.
3252 */
3253 min_objects = slub_min_objects;
3254 if (!min_objects)
3255 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3256 max_objects = order_objects(slub_max_order, size, reserved);
3257 min_objects = min(min_objects, max_objects);
3258
3259 while (min_objects > 1) {
3260 fraction = 16;
3261 while (fraction >= 4) {
3262 order = slab_order(size, min_objects,
3263 slub_max_order, fraction, reserved);
3264 if (order <= slub_max_order)
3265 return order;
3266 fraction /= 2;
3267 }
3268 min_objects--;
3269 }
3270
3271 /*
3272 * We were unable to place multiple objects in a slab. Now
3273 * lets see if we can place a single object there.
3274 */
3275 order = slab_order(size, 1, slub_max_order, 1, reserved);
3276 if (order <= slub_max_order)
3277 return order;
3278
3279 /*
3280 * Doh this slab cannot be placed using slub_max_order.
3281 */
3282 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3283 if (order < MAX_ORDER)
3284 return order;
3285 return -ENOSYS;
3286 }
3287
3288 static void
3289 init_kmem_cache_node(struct kmem_cache_node *n)
3290 {
3291 n->nr_partial = 0;
3292 spin_lock_init(&n->list_lock);
3293 INIT_LIST_HEAD(&n->partial);
3294 #ifdef CONFIG_SLUB_DEBUG
3295 atomic_long_set(&n->nr_slabs, 0);
3296 atomic_long_set(&n->total_objects, 0);
3297 INIT_LIST_HEAD(&n->full);
3298 #endif
3299 }
3300
3301 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3302 {
3303 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3304 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3305
3306 /*
3307 * Must align to double word boundary for the double cmpxchg
3308 * instructions to work; see __pcpu_double_call_return_bool().
3309 */
3310 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3311 2 * sizeof(void *));
3312
3313 if (!s->cpu_slab)
3314 return 0;
3315
3316 init_kmem_cache_cpus(s);
3317
3318 return 1;
3319 }
3320
3321 static struct kmem_cache *kmem_cache_node;
3322
3323 /*
3324 * No kmalloc_node yet so do it by hand. We know that this is the first
3325 * slab on the node for this slabcache. There are no concurrent accesses
3326 * possible.
3327 *
3328 * Note that this function only works on the kmem_cache_node
3329 * when allocating for the kmem_cache_node. This is used for bootstrapping
3330 * memory on a fresh node that has no slab structures yet.
3331 */
3332 static void early_kmem_cache_node_alloc(int node)
3333 {
3334 struct page *page;
3335 struct kmem_cache_node *n;
3336
3337 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3338
3339 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3340
3341 BUG_ON(!page);
3342 if (page_to_nid(page) != node) {
3343 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3344 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3345 }
3346
3347 n = page->freelist;
3348 BUG_ON(!n);
3349 page->freelist = get_freepointer(kmem_cache_node, n);
3350 page->inuse = 1;
3351 page->frozen = 0;
3352 kmem_cache_node->node[node] = n;
3353 #ifdef CONFIG_SLUB_DEBUG
3354 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3355 init_tracking(kmem_cache_node, n);
3356 #endif
3357 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3358 GFP_KERNEL);
3359 init_kmem_cache_node(n);
3360 inc_slabs_node(kmem_cache_node, node, page->objects);
3361
3362 /*
3363 * No locks need to be taken here as it has just been
3364 * initialized and there is no concurrent access.
3365 */
3366 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3367 }
3368
3369 static void free_kmem_cache_nodes(struct kmem_cache *s)
3370 {
3371 int node;
3372 struct kmem_cache_node *n;
3373
3374 for_each_kmem_cache_node(s, node, n) {
3375 s->node[node] = NULL;
3376 kmem_cache_free(kmem_cache_node, n);
3377 }
3378 }
3379
3380 void __kmem_cache_release(struct kmem_cache *s)
3381 {
3382 cache_random_seq_destroy(s);
3383 free_percpu(s->cpu_slab);
3384 free_kmem_cache_nodes(s);
3385 }
3386
3387 static int init_kmem_cache_nodes(struct kmem_cache *s)
3388 {
3389 int node;
3390
3391 for_each_node_state(node, N_NORMAL_MEMORY) {
3392 struct kmem_cache_node *n;
3393
3394 if (slab_state == DOWN) {
3395 early_kmem_cache_node_alloc(node);
3396 continue;
3397 }
3398 n = kmem_cache_alloc_node(kmem_cache_node,
3399 GFP_KERNEL, node);
3400
3401 if (!n) {
3402 free_kmem_cache_nodes(s);
3403 return 0;
3404 }
3405
3406 init_kmem_cache_node(n);
3407 s->node[node] = n;
3408 }
3409 return 1;
3410 }
3411
3412 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3413 {
3414 if (min < MIN_PARTIAL)
3415 min = MIN_PARTIAL;
3416 else if (min > MAX_PARTIAL)
3417 min = MAX_PARTIAL;
3418 s->min_partial = min;
3419 }
3420
3421 static void set_cpu_partial(struct kmem_cache *s)
3422 {
3423 #ifdef CONFIG_SLUB_CPU_PARTIAL
3424 /*
3425 * cpu_partial determined the maximum number of objects kept in the
3426 * per cpu partial lists of a processor.
3427 *
3428 * Per cpu partial lists mainly contain slabs that just have one
3429 * object freed. If they are used for allocation then they can be
3430 * filled up again with minimal effort. The slab will never hit the
3431 * per node partial lists and therefore no locking will be required.
3432 *
3433 * This setting also determines
3434 *
3435 * A) The number of objects from per cpu partial slabs dumped to the
3436 * per node list when we reach the limit.
3437 * B) The number of objects in cpu partial slabs to extract from the
3438 * per node list when we run out of per cpu objects. We only fetch
3439 * 50% to keep some capacity around for frees.
3440 */
3441 if (!kmem_cache_has_cpu_partial(s))
3442 s->cpu_partial = 0;
3443 else if (s->size >= PAGE_SIZE)
3444 s->cpu_partial = 2;
3445 else if (s->size >= 1024)
3446 s->cpu_partial = 6;
3447 else if (s->size >= 256)
3448 s->cpu_partial = 13;
3449 else
3450 s->cpu_partial = 30;
3451 #endif
3452 }
3453
3454 /*
3455 * calculate_sizes() determines the order and the distribution of data within
3456 * a slab object.
3457 */
3458 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3459 {
3460 slab_flags_t flags = s->flags;
3461 size_t size = s->object_size;
3462 int order;
3463
3464 /*
3465 * Round up object size to the next word boundary. We can only
3466 * place the free pointer at word boundaries and this determines
3467 * the possible location of the free pointer.
3468 */
3469 size = ALIGN(size, sizeof(void *));
3470
3471 #ifdef CONFIG_SLUB_DEBUG
3472 /*
3473 * Determine if we can poison the object itself. If the user of
3474 * the slab may touch the object after free or before allocation
3475 * then we should never poison the object itself.
3476 */
3477 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3478 !s->ctor)
3479 s->flags |= __OBJECT_POISON;
3480 else
3481 s->flags &= ~__OBJECT_POISON;
3482
3483
3484 /*
3485 * If we are Redzoning then check if there is some space between the
3486 * end of the object and the free pointer. If not then add an
3487 * additional word to have some bytes to store Redzone information.
3488 */
3489 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3490 size += sizeof(void *);
3491 #endif
3492
3493 /*
3494 * With that we have determined the number of bytes in actual use
3495 * by the object. This is the potential offset to the free pointer.
3496 */
3497 s->inuse = size;
3498
3499 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3500 s->ctor)) {
3501 /*
3502 * Relocate free pointer after the object if it is not
3503 * permitted to overwrite the first word of the object on
3504 * kmem_cache_free.
3505 *
3506 * This is the case if we do RCU, have a constructor or
3507 * destructor or are poisoning the objects.
3508 */
3509 s->offset = size;
3510 size += sizeof(void *);
3511 }
3512
3513 #ifdef CONFIG_SLUB_DEBUG
3514 if (flags & SLAB_STORE_USER)
3515 /*
3516 * Need to store information about allocs and frees after
3517 * the object.
3518 */
3519 size += 2 * sizeof(struct track);
3520 #endif
3521
3522 kasan_cache_create(s, &size, &s->flags);
3523 #ifdef CONFIG_SLUB_DEBUG
3524 if (flags & SLAB_RED_ZONE) {
3525 /*
3526 * Add some empty padding so that we can catch
3527 * overwrites from earlier objects rather than let
3528 * tracking information or the free pointer be
3529 * corrupted if a user writes before the start
3530 * of the object.
3531 */
3532 size += sizeof(void *);
3533
3534 s->red_left_pad = sizeof(void *);
3535 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3536 size += s->red_left_pad;
3537 }
3538 #endif
3539
3540 /*
3541 * SLUB stores one object immediately after another beginning from
3542 * offset 0. In order to align the objects we have to simply size
3543 * each object to conform to the alignment.
3544 */
3545 size = ALIGN(size, s->align);
3546 s->size = size;
3547 if (forced_order >= 0)
3548 order = forced_order;
3549 else
3550 order = calculate_order(size, s->reserved);
3551
3552 if (order < 0)
3553 return 0;
3554
3555 s->allocflags = 0;
3556 if (order)
3557 s->allocflags |= __GFP_COMP;
3558
3559 if (s->flags & SLAB_CACHE_DMA)
3560 s->allocflags |= GFP_DMA;
3561
3562 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3563 s->allocflags |= __GFP_RECLAIMABLE;
3564
3565 /*
3566 * Determine the number of objects per slab
3567 */
3568 s->oo = oo_make(order, size, s->reserved);
3569 s->min = oo_make(get_order(size), size, s->reserved);
3570 if (oo_objects(s->oo) > oo_objects(s->max))
3571 s->max = s->oo;
3572
3573 return !!oo_objects(s->oo);
3574 }
3575
3576 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3577 {
3578 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3579 s->reserved = 0;
3580 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3581 s->random = get_random_long();
3582 #endif
3583
3584 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3585 s->reserved = sizeof(struct rcu_head);
3586
3587 if (!calculate_sizes(s, -1))
3588 goto error;
3589 if (disable_higher_order_debug) {
3590 /*
3591 * Disable debugging flags that store metadata if the min slab
3592 * order increased.
3593 */
3594 if (get_order(s->size) > get_order(s->object_size)) {
3595 s->flags &= ~DEBUG_METADATA_FLAGS;
3596 s->offset = 0;
3597 if (!calculate_sizes(s, -1))
3598 goto error;
3599 }
3600 }
3601
3602 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3603 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3604 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3605 /* Enable fast mode */
3606 s->flags |= __CMPXCHG_DOUBLE;
3607 #endif
3608
3609 /*
3610 * The larger the object size is, the more pages we want on the partial
3611 * list to avoid pounding the page allocator excessively.
3612 */
3613 set_min_partial(s, ilog2(s->size) / 2);
3614
3615 set_cpu_partial(s);
3616
3617 #ifdef CONFIG_NUMA
3618 s->remote_node_defrag_ratio = 1000;
3619 #endif
3620
3621 /* Initialize the pre-computed randomized freelist if slab is up */
3622 if (slab_state >= UP) {
3623 if (init_cache_random_seq(s))
3624 goto error;
3625 }
3626
3627 if (!init_kmem_cache_nodes(s))
3628 goto error;
3629
3630 if (alloc_kmem_cache_cpus(s))
3631 return 0;
3632
3633 free_kmem_cache_nodes(s);
3634 error:
3635 if (flags & SLAB_PANIC)
3636 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3637 s->name, (unsigned long)s->size, s->size,
3638 oo_order(s->oo), s->offset, (unsigned long)flags);
3639 return -EINVAL;
3640 }
3641
3642 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3643 const char *text)
3644 {
3645 #ifdef CONFIG_SLUB_DEBUG
3646 void *addr = page_address(page);
3647 void *p;
3648 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3649 sizeof(long), GFP_ATOMIC);
3650 if (!map)
3651 return;
3652 slab_err(s, page, text, s->name);
3653 slab_lock(page);
3654
3655 get_map(s, page, map);
3656 for_each_object(p, s, addr, page->objects) {
3657
3658 if (!test_bit(slab_index(p, s, addr), map)) {
3659 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3660 print_tracking(s, p);
3661 }
3662 }
3663 slab_unlock(page);
3664 kfree(map);
3665 #endif
3666 }
3667
3668 /*
3669 * Attempt to free all partial slabs on a node.
3670 * This is called from __kmem_cache_shutdown(). We must take list_lock
3671 * because sysfs file might still access partial list after the shutdowning.
3672 */
3673 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3674 {
3675 LIST_HEAD(discard);
3676 struct page *page, *h;
3677
3678 BUG_ON(irqs_disabled());
3679 spin_lock_irq(&n->list_lock);
3680 list_for_each_entry_safe(page, h, &n->partial, lru) {
3681 if (!page->inuse) {
3682 remove_partial(n, page);
3683 list_add(&page->lru, &discard);
3684 } else {
3685 list_slab_objects(s, page,
3686 "Objects remaining in %s on __kmem_cache_shutdown()");
3687 }
3688 }
3689 spin_unlock_irq(&n->list_lock);
3690
3691 list_for_each_entry_safe(page, h, &discard, lru)
3692 discard_slab(s, page);
3693 }
3694
3695 /*
3696 * Release all resources used by a slab cache.
3697 */
3698 int __kmem_cache_shutdown(struct kmem_cache *s)
3699 {
3700 int node;
3701 struct kmem_cache_node *n;
3702
3703 flush_all(s);
3704 /* Attempt to free all objects */
3705 for_each_kmem_cache_node(s, node, n) {
3706 free_partial(s, n);
3707 if (n->nr_partial || slabs_node(s, node))
3708 return 1;
3709 }
3710 sysfs_slab_remove(s);
3711 return 0;
3712 }
3713
3714 /********************************************************************
3715 * Kmalloc subsystem
3716 *******************************************************************/
3717
3718 static int __init setup_slub_min_order(char *str)
3719 {
3720 get_option(&str, &slub_min_order);
3721
3722 return 1;
3723 }
3724
3725 __setup("slub_min_order=", setup_slub_min_order);
3726
3727 static int __init setup_slub_max_order(char *str)
3728 {
3729 get_option(&str, &slub_max_order);
3730 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3731
3732 return 1;
3733 }
3734
3735 __setup("slub_max_order=", setup_slub_max_order);
3736
3737 static int __init setup_slub_min_objects(char *str)
3738 {
3739 get_option(&str, &slub_min_objects);
3740
3741 return 1;
3742 }
3743
3744 __setup("slub_min_objects=", setup_slub_min_objects);
3745
3746 void *__kmalloc(size_t size, gfp_t flags)
3747 {
3748 struct kmem_cache *s;
3749 void *ret;
3750
3751 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3752 return kmalloc_large(size, flags);
3753
3754 s = kmalloc_slab(size, flags);
3755
3756 if (unlikely(ZERO_OR_NULL_PTR(s)))
3757 return s;
3758
3759 ret = slab_alloc(s, flags, _RET_IP_);
3760
3761 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3762
3763 kasan_kmalloc(s, ret, size, flags);
3764
3765 return ret;
3766 }
3767 EXPORT_SYMBOL(__kmalloc);
3768
3769 #ifdef CONFIG_NUMA
3770 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3771 {
3772 struct page *page;
3773 void *ptr = NULL;
3774
3775 flags |= __GFP_COMP;
3776 page = alloc_pages_node(node, flags, get_order(size));
3777 if (page)
3778 ptr = page_address(page);
3779
3780 kmalloc_large_node_hook(ptr, size, flags);
3781 return ptr;
3782 }
3783
3784 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3785 {
3786 struct kmem_cache *s;
3787 void *ret;
3788
3789 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3790 ret = kmalloc_large_node(size, flags, node);
3791
3792 trace_kmalloc_node(_RET_IP_, ret,
3793 size, PAGE_SIZE << get_order(size),
3794 flags, node);
3795
3796 return ret;
3797 }
3798
3799 s = kmalloc_slab(size, flags);
3800
3801 if (unlikely(ZERO_OR_NULL_PTR(s)))
3802 return s;
3803
3804 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3805
3806 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3807
3808 kasan_kmalloc(s, ret, size, flags);
3809
3810 return ret;
3811 }
3812 EXPORT_SYMBOL(__kmalloc_node);
3813 #endif
3814
3815 #ifdef CONFIG_HARDENED_USERCOPY
3816 /*
3817 * Rejects incorrectly sized objects and objects that are to be copied
3818 * to/from userspace but do not fall entirely within the containing slab
3819 * cache's usercopy region.
3820 *
3821 * Returns NULL if check passes, otherwise const char * to name of cache
3822 * to indicate an error.
3823 */
3824 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3825 bool to_user)
3826 {
3827 struct kmem_cache *s;
3828 unsigned long offset;
3829 size_t object_size;
3830
3831 /* Find object and usable object size. */
3832 s = page->slab_cache;
3833
3834 /* Reject impossible pointers. */
3835 if (ptr < page_address(page))
3836 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3837 to_user, 0, n);
3838
3839 /* Find offset within object. */
3840 offset = (ptr - page_address(page)) % s->size;
3841
3842 /* Adjust for redzone and reject if within the redzone. */
3843 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3844 if (offset < s->red_left_pad)
3845 usercopy_abort("SLUB object in left red zone",
3846 s->name, to_user, offset, n);
3847 offset -= s->red_left_pad;
3848 }
3849
3850 /* Allow address range falling entirely within usercopy region. */
3851 if (offset >= s->useroffset &&
3852 offset - s->useroffset <= s->usersize &&
3853 n <= s->useroffset - offset + s->usersize)
3854 return;
3855
3856 /*
3857 * If the copy is still within the allocated object, produce
3858 * a warning instead of rejecting the copy. This is intended
3859 * to be a temporary method to find any missing usercopy
3860 * whitelists.
3861 */
3862 object_size = slab_ksize(s);
3863 if (usercopy_fallback &&
3864 offset <= object_size && n <= object_size - offset) {
3865 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3866 return;
3867 }
3868
3869 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3870 }
3871 #endif /* CONFIG_HARDENED_USERCOPY */
3872
3873 static size_t __ksize(const void *object)
3874 {
3875 struct page *page;
3876
3877 if (unlikely(object == ZERO_SIZE_PTR))
3878 return 0;
3879
3880 page = virt_to_head_page(object);
3881
3882 if (unlikely(!PageSlab(page))) {
3883 WARN_ON(!PageCompound(page));
3884 return PAGE_SIZE << compound_order(page);
3885 }
3886
3887 return slab_ksize(page->slab_cache);
3888 }
3889
3890 size_t ksize(const void *object)
3891 {
3892 size_t size = __ksize(object);
3893 /* We assume that ksize callers could use whole allocated area,
3894 * so we need to unpoison this area.
3895 */
3896 kasan_unpoison_shadow(object, size);
3897 return size;
3898 }
3899 EXPORT_SYMBOL(ksize);
3900
3901 void kfree(const void *x)
3902 {
3903 struct page *page;
3904 void *object = (void *)x;
3905
3906 trace_kfree(_RET_IP_, x);
3907
3908 if (unlikely(ZERO_OR_NULL_PTR(x)))
3909 return;
3910
3911 page = virt_to_head_page(x);
3912 if (unlikely(!PageSlab(page))) {
3913 BUG_ON(!PageCompound(page));
3914 kfree_hook(object);
3915 __free_pages(page, compound_order(page));
3916 return;
3917 }
3918 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3919 }
3920 EXPORT_SYMBOL(kfree);
3921
3922 #define SHRINK_PROMOTE_MAX 32
3923
3924 /*
3925 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3926 * up most to the head of the partial lists. New allocations will then
3927 * fill those up and thus they can be removed from the partial lists.
3928 *
3929 * The slabs with the least items are placed last. This results in them
3930 * being allocated from last increasing the chance that the last objects
3931 * are freed in them.
3932 */
3933 int __kmem_cache_shrink(struct kmem_cache *s)
3934 {
3935 int node;
3936 int i;
3937 struct kmem_cache_node *n;
3938 struct page *page;
3939 struct page *t;
3940 struct list_head discard;
3941 struct list_head promote[SHRINK_PROMOTE_MAX];
3942 unsigned long flags;
3943 int ret = 0;
3944
3945 flush_all(s);
3946 for_each_kmem_cache_node(s, node, n) {
3947 INIT_LIST_HEAD(&discard);
3948 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3949 INIT_LIST_HEAD(promote + i);
3950
3951 spin_lock_irqsave(&n->list_lock, flags);
3952
3953 /*
3954 * Build lists of slabs to discard or promote.
3955 *
3956 * Note that concurrent frees may occur while we hold the
3957 * list_lock. page->inuse here is the upper limit.
3958 */
3959 list_for_each_entry_safe(page, t, &n->partial, lru) {
3960 int free = page->objects - page->inuse;
3961
3962 /* Do not reread page->inuse */
3963 barrier();
3964
3965 /* We do not keep full slabs on the list */
3966 BUG_ON(free <= 0);
3967
3968 if (free == page->objects) {
3969 list_move(&page->lru, &discard);
3970 n->nr_partial--;
3971 } else if (free <= SHRINK_PROMOTE_MAX)
3972 list_move(&page->lru, promote + free - 1);
3973 }
3974
3975 /*
3976 * Promote the slabs filled up most to the head of the
3977 * partial list.
3978 */
3979 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3980 list_splice(promote + i, &n->partial);
3981
3982 spin_unlock_irqrestore(&n->list_lock, flags);
3983
3984 /* Release empty slabs */
3985 list_for_each_entry_safe(page, t, &discard, lru)
3986 discard_slab(s, page);
3987
3988 if (slabs_node(s, node))
3989 ret = 1;
3990 }
3991
3992 return ret;
3993 }
3994
3995 #ifdef CONFIG_MEMCG
3996 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3997 {
3998 /*
3999 * Called with all the locks held after a sched RCU grace period.
4000 * Even if @s becomes empty after shrinking, we can't know that @s
4001 * doesn't have allocations already in-flight and thus can't
4002 * destroy @s until the associated memcg is released.
4003 *
4004 * However, let's remove the sysfs files for empty caches here.
4005 * Each cache has a lot of interface files which aren't
4006 * particularly useful for empty draining caches; otherwise, we can
4007 * easily end up with millions of unnecessary sysfs files on
4008 * systems which have a lot of memory and transient cgroups.
4009 */
4010 if (!__kmem_cache_shrink(s))
4011 sysfs_slab_remove(s);
4012 }
4013
4014 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4015 {
4016 /*
4017 * Disable empty slabs caching. Used to avoid pinning offline
4018 * memory cgroups by kmem pages that can be freed.
4019 */
4020 slub_set_cpu_partial(s, 0);
4021 s->min_partial = 0;
4022
4023 /*
4024 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4025 * we have to make sure the change is visible before shrinking.
4026 */
4027 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4028 }
4029 #endif
4030
4031 static int slab_mem_going_offline_callback(void *arg)
4032 {
4033 struct kmem_cache *s;
4034
4035 mutex_lock(&slab_mutex);
4036 list_for_each_entry(s, &slab_caches, list)
4037 __kmem_cache_shrink(s);
4038 mutex_unlock(&slab_mutex);
4039
4040 return 0;
4041 }
4042
4043 static void slab_mem_offline_callback(void *arg)
4044 {
4045 struct kmem_cache_node *n;
4046 struct kmem_cache *s;
4047 struct memory_notify *marg = arg;
4048 int offline_node;
4049
4050 offline_node = marg->status_change_nid_normal;
4051
4052 /*
4053 * If the node still has available memory. we need kmem_cache_node
4054 * for it yet.
4055 */
4056 if (offline_node < 0)
4057 return;
4058
4059 mutex_lock(&slab_mutex);
4060 list_for_each_entry(s, &slab_caches, list) {
4061 n = get_node(s, offline_node);
4062 if (n) {
4063 /*
4064 * if n->nr_slabs > 0, slabs still exist on the node
4065 * that is going down. We were unable to free them,
4066 * and offline_pages() function shouldn't call this
4067 * callback. So, we must fail.
4068 */
4069 BUG_ON(slabs_node(s, offline_node));
4070
4071 s->node[offline_node] = NULL;
4072 kmem_cache_free(kmem_cache_node, n);
4073 }
4074 }
4075 mutex_unlock(&slab_mutex);
4076 }
4077
4078 static int slab_mem_going_online_callback(void *arg)
4079 {
4080 struct kmem_cache_node *n;
4081 struct kmem_cache *s;
4082 struct memory_notify *marg = arg;
4083 int nid = marg->status_change_nid_normal;
4084 int ret = 0;
4085
4086 /*
4087 * If the node's memory is already available, then kmem_cache_node is
4088 * already created. Nothing to do.
4089 */
4090 if (nid < 0)
4091 return 0;
4092
4093 /*
4094 * We are bringing a node online. No memory is available yet. We must
4095 * allocate a kmem_cache_node structure in order to bring the node
4096 * online.
4097 */
4098 mutex_lock(&slab_mutex);
4099 list_for_each_entry(s, &slab_caches, list) {
4100 /*
4101 * XXX: kmem_cache_alloc_node will fallback to other nodes
4102 * since memory is not yet available from the node that
4103 * is brought up.
4104 */
4105 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4106 if (!n) {
4107 ret = -ENOMEM;
4108 goto out;
4109 }
4110 init_kmem_cache_node(n);
4111 s->node[nid] = n;
4112 }
4113 out:
4114 mutex_unlock(&slab_mutex);
4115 return ret;
4116 }
4117
4118 static int slab_memory_callback(struct notifier_block *self,
4119 unsigned long action, void *arg)
4120 {
4121 int ret = 0;
4122
4123 switch (action) {
4124 case MEM_GOING_ONLINE:
4125 ret = slab_mem_going_online_callback(arg);
4126 break;
4127 case MEM_GOING_OFFLINE:
4128 ret = slab_mem_going_offline_callback(arg);
4129 break;
4130 case MEM_OFFLINE:
4131 case MEM_CANCEL_ONLINE:
4132 slab_mem_offline_callback(arg);
4133 break;
4134 case MEM_ONLINE:
4135 case MEM_CANCEL_OFFLINE:
4136 break;
4137 }
4138 if (ret)
4139 ret = notifier_from_errno(ret);
4140 else
4141 ret = NOTIFY_OK;
4142 return ret;
4143 }
4144
4145 static struct notifier_block slab_memory_callback_nb = {
4146 .notifier_call = slab_memory_callback,
4147 .priority = SLAB_CALLBACK_PRI,
4148 };
4149
4150 /********************************************************************
4151 * Basic setup of slabs
4152 *******************************************************************/
4153
4154 /*
4155 * Used for early kmem_cache structures that were allocated using
4156 * the page allocator. Allocate them properly then fix up the pointers
4157 * that may be pointing to the wrong kmem_cache structure.
4158 */
4159
4160 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4161 {
4162 int node;
4163 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4164 struct kmem_cache_node *n;
4165
4166 memcpy(s, static_cache, kmem_cache->object_size);
4167
4168 /*
4169 * This runs very early, and only the boot processor is supposed to be
4170 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4171 * IPIs around.
4172 */
4173 __flush_cpu_slab(s, smp_processor_id());
4174 for_each_kmem_cache_node(s, node, n) {
4175 struct page *p;
4176
4177 list_for_each_entry(p, &n->partial, lru)
4178 p->slab_cache = s;
4179
4180 #ifdef CONFIG_SLUB_DEBUG
4181 list_for_each_entry(p, &n->full, lru)
4182 p->slab_cache = s;
4183 #endif
4184 }
4185 slab_init_memcg_params(s);
4186 list_add(&s->list, &slab_caches);
4187 memcg_link_cache(s);
4188 return s;
4189 }
4190
4191 void __init kmem_cache_init(void)
4192 {
4193 static __initdata struct kmem_cache boot_kmem_cache,
4194 boot_kmem_cache_node;
4195
4196 if (debug_guardpage_minorder())
4197 slub_max_order = 0;
4198
4199 kmem_cache_node = &boot_kmem_cache_node;
4200 kmem_cache = &boot_kmem_cache;
4201
4202 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4203 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4204
4205 register_hotmemory_notifier(&slab_memory_callback_nb);
4206
4207 /* Able to allocate the per node structures */
4208 slab_state = PARTIAL;
4209
4210 create_boot_cache(kmem_cache, "kmem_cache",
4211 offsetof(struct kmem_cache, node) +
4212 nr_node_ids * sizeof(struct kmem_cache_node *),
4213 SLAB_HWCACHE_ALIGN, 0, 0);
4214
4215 kmem_cache = bootstrap(&boot_kmem_cache);
4216
4217 /*
4218 * Allocate kmem_cache_node properly from the kmem_cache slab.
4219 * kmem_cache_node is separately allocated so no need to
4220 * update any list pointers.
4221 */
4222 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4223
4224 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4225 setup_kmalloc_cache_index_table();
4226 create_kmalloc_caches(0);
4227
4228 /* Setup random freelists for each cache */
4229 init_freelist_randomization();
4230
4231 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4232 slub_cpu_dead);
4233
4234 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4235 cache_line_size(),
4236 slub_min_order, slub_max_order, slub_min_objects,
4237 nr_cpu_ids, nr_node_ids);
4238 }
4239
4240 void __init kmem_cache_init_late(void)
4241 {
4242 }
4243
4244 struct kmem_cache *
4245 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4246 slab_flags_t flags, void (*ctor)(void *))
4247 {
4248 struct kmem_cache *s, *c;
4249
4250 s = find_mergeable(size, align, flags, name, ctor);
4251 if (s) {
4252 s->refcount++;
4253
4254 /*
4255 * Adjust the object sizes so that we clear
4256 * the complete object on kzalloc.
4257 */
4258 s->object_size = max(s->object_size, size);
4259 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4260
4261 for_each_memcg_cache(c, s) {
4262 c->object_size = s->object_size;
4263 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4264 }
4265
4266 if (sysfs_slab_alias(s, name)) {
4267 s->refcount--;
4268 s = NULL;
4269 }
4270 }
4271
4272 return s;
4273 }
4274
4275 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4276 {
4277 int err;
4278
4279 err = kmem_cache_open(s, flags);
4280 if (err)
4281 return err;
4282
4283 /* Mutex is not taken during early boot */
4284 if (slab_state <= UP)
4285 return 0;
4286
4287 memcg_propagate_slab_attrs(s);
4288 err = sysfs_slab_add(s);
4289 if (err)
4290 __kmem_cache_release(s);
4291
4292 return err;
4293 }
4294
4295 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4296 {
4297 struct kmem_cache *s;
4298 void *ret;
4299
4300 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4301 return kmalloc_large(size, gfpflags);
4302
4303 s = kmalloc_slab(size, gfpflags);
4304
4305 if (unlikely(ZERO_OR_NULL_PTR(s)))
4306 return s;
4307
4308 ret = slab_alloc(s, gfpflags, caller);
4309
4310 /* Honor the call site pointer we received. */
4311 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4312
4313 return ret;
4314 }
4315
4316 #ifdef CONFIG_NUMA
4317 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4318 int node, unsigned long caller)
4319 {
4320 struct kmem_cache *s;
4321 void *ret;
4322
4323 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4324 ret = kmalloc_large_node(size, gfpflags, node);
4325
4326 trace_kmalloc_node(caller, ret,
4327 size, PAGE_SIZE << get_order(size),
4328 gfpflags, node);
4329
4330 return ret;
4331 }
4332
4333 s = kmalloc_slab(size, gfpflags);
4334
4335 if (unlikely(ZERO_OR_NULL_PTR(s)))
4336 return s;
4337
4338 ret = slab_alloc_node(s, gfpflags, node, caller);
4339
4340 /* Honor the call site pointer we received. */
4341 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4342
4343 return ret;
4344 }
4345 #endif
4346
4347 #ifdef CONFIG_SYSFS
4348 static int count_inuse(struct page *page)
4349 {
4350 return page->inuse;
4351 }
4352
4353 static int count_total(struct page *page)
4354 {
4355 return page->objects;
4356 }
4357 #endif
4358
4359 #ifdef CONFIG_SLUB_DEBUG
4360 static int validate_slab(struct kmem_cache *s, struct page *page,
4361 unsigned long *map)
4362 {
4363 void *p;
4364 void *addr = page_address(page);
4365
4366 if (!check_slab(s, page) ||
4367 !on_freelist(s, page, NULL))
4368 return 0;
4369
4370 /* Now we know that a valid freelist exists */
4371 bitmap_zero(map, page->objects);
4372
4373 get_map(s, page, map);
4374 for_each_object(p, s, addr, page->objects) {
4375 if (test_bit(slab_index(p, s, addr), map))
4376 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4377 return 0;
4378 }
4379
4380 for_each_object(p, s, addr, page->objects)
4381 if (!test_bit(slab_index(p, s, addr), map))
4382 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4383 return 0;
4384 return 1;
4385 }
4386
4387 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4388 unsigned long *map)
4389 {
4390 slab_lock(page);
4391 validate_slab(s, page, map);
4392 slab_unlock(page);
4393 }
4394
4395 static int validate_slab_node(struct kmem_cache *s,
4396 struct kmem_cache_node *n, unsigned long *map)
4397 {
4398 unsigned long count = 0;
4399 struct page *page;
4400 unsigned long flags;
4401
4402 spin_lock_irqsave(&n->list_lock, flags);
4403
4404 list_for_each_entry(page, &n->partial, lru) {
4405 validate_slab_slab(s, page, map);
4406 count++;
4407 }
4408 if (count != n->nr_partial)
4409 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4410 s->name, count, n->nr_partial);
4411
4412 if (!(s->flags & SLAB_STORE_USER))
4413 goto out;
4414
4415 list_for_each_entry(page, &n->full, lru) {
4416 validate_slab_slab(s, page, map);
4417 count++;
4418 }
4419 if (count != atomic_long_read(&n->nr_slabs))
4420 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4421 s->name, count, atomic_long_read(&n->nr_slabs));
4422
4423 out:
4424 spin_unlock_irqrestore(&n->list_lock, flags);
4425 return count;
4426 }
4427
4428 static long validate_slab_cache(struct kmem_cache *s)
4429 {
4430 int node;
4431 unsigned long count = 0;
4432 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4433 sizeof(unsigned long), GFP_KERNEL);
4434 struct kmem_cache_node *n;
4435
4436 if (!map)
4437 return -ENOMEM;
4438
4439 flush_all(s);
4440 for_each_kmem_cache_node(s, node, n)
4441 count += validate_slab_node(s, n, map);
4442 kfree(map);
4443 return count;
4444 }
4445 /*
4446 * Generate lists of code addresses where slabcache objects are allocated
4447 * and freed.
4448 */
4449
4450 struct location {
4451 unsigned long count;
4452 unsigned long addr;
4453 long long sum_time;
4454 long min_time;
4455 long max_time;
4456 long min_pid;
4457 long max_pid;
4458 DECLARE_BITMAP(cpus, NR_CPUS);
4459 nodemask_t nodes;
4460 };
4461
4462 struct loc_track {
4463 unsigned long max;
4464 unsigned long count;
4465 struct location *loc;
4466 };
4467
4468 static void free_loc_track(struct loc_track *t)
4469 {
4470 if (t->max)
4471 free_pages((unsigned long)t->loc,
4472 get_order(sizeof(struct location) * t->max));
4473 }
4474
4475 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4476 {
4477 struct location *l;
4478 int order;
4479
4480 order = get_order(sizeof(struct location) * max);
4481
4482 l = (void *)__get_free_pages(flags, order);
4483 if (!l)
4484 return 0;
4485
4486 if (t->count) {
4487 memcpy(l, t->loc, sizeof(struct location) * t->count);
4488 free_loc_track(t);
4489 }
4490 t->max = max;
4491 t->loc = l;
4492 return 1;
4493 }
4494
4495 static int add_location(struct loc_track *t, struct kmem_cache *s,
4496 const struct track *track)
4497 {
4498 long start, end, pos;
4499 struct location *l;
4500 unsigned long caddr;
4501 unsigned long age = jiffies - track->when;
4502
4503 start = -1;
4504 end = t->count;
4505
4506 for ( ; ; ) {
4507 pos = start + (end - start + 1) / 2;
4508
4509 /*
4510 * There is nothing at "end". If we end up there
4511 * we need to add something to before end.
4512 */
4513 if (pos == end)
4514 break;
4515
4516 caddr = t->loc[pos].addr;
4517 if (track->addr == caddr) {
4518
4519 l = &t->loc[pos];
4520 l->count++;
4521 if (track->when) {
4522 l->sum_time += age;
4523 if (age < l->min_time)
4524 l->min_time = age;
4525 if (age > l->max_time)
4526 l->max_time = age;
4527
4528 if (track->pid < l->min_pid)
4529 l->min_pid = track->pid;
4530 if (track->pid > l->max_pid)
4531 l->max_pid = track->pid;
4532
4533 cpumask_set_cpu(track->cpu,
4534 to_cpumask(l->cpus));
4535 }
4536 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4537 return 1;
4538 }
4539
4540 if (track->addr < caddr)
4541 end = pos;
4542 else
4543 start = pos;
4544 }
4545
4546 /*
4547 * Not found. Insert new tracking element.
4548 */
4549 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4550 return 0;
4551
4552 l = t->loc + pos;
4553 if (pos < t->count)
4554 memmove(l + 1, l,
4555 (t->count - pos) * sizeof(struct location));
4556 t->count++;
4557 l->count = 1;
4558 l->addr = track->addr;
4559 l->sum_time = age;
4560 l->min_time = age;
4561 l->max_time = age;
4562 l->min_pid = track->pid;
4563 l->max_pid = track->pid;
4564 cpumask_clear(to_cpumask(l->cpus));
4565 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4566 nodes_clear(l->nodes);
4567 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568 return 1;
4569 }
4570
4571 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4572 struct page *page, enum track_item alloc,
4573 unsigned long *map)
4574 {
4575 void *addr = page_address(page);
4576 void *p;
4577
4578 bitmap_zero(map, page->objects);
4579 get_map(s, page, map);
4580
4581 for_each_object(p, s, addr, page->objects)
4582 if (!test_bit(slab_index(p, s, addr), map))
4583 add_location(t, s, get_track(s, p, alloc));
4584 }
4585
4586 static int list_locations(struct kmem_cache *s, char *buf,
4587 enum track_item alloc)
4588 {
4589 int len = 0;
4590 unsigned long i;
4591 struct loc_track t = { 0, 0, NULL };
4592 int node;
4593 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4594 sizeof(unsigned long), GFP_KERNEL);
4595 struct kmem_cache_node *n;
4596
4597 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4598 GFP_KERNEL)) {
4599 kfree(map);
4600 return sprintf(buf, "Out of memory\n");
4601 }
4602 /* Push back cpu slabs */
4603 flush_all(s);
4604
4605 for_each_kmem_cache_node(s, node, n) {
4606 unsigned long flags;
4607 struct page *page;
4608
4609 if (!atomic_long_read(&n->nr_slabs))
4610 continue;
4611
4612 spin_lock_irqsave(&n->list_lock, flags);
4613 list_for_each_entry(page, &n->partial, lru)
4614 process_slab(&t, s, page, alloc, map);
4615 list_for_each_entry(page, &n->full, lru)
4616 process_slab(&t, s, page, alloc, map);
4617 spin_unlock_irqrestore(&n->list_lock, flags);
4618 }
4619
4620 for (i = 0; i < t.count; i++) {
4621 struct location *l = &t.loc[i];
4622
4623 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4624 break;
4625 len += sprintf(buf + len, "%7ld ", l->count);
4626
4627 if (l->addr)
4628 len += sprintf(buf + len, "%pS", (void *)l->addr);
4629 else
4630 len += sprintf(buf + len, "<not-available>");
4631
4632 if (l->sum_time != l->min_time) {
4633 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4634 l->min_time,
4635 (long)div_u64(l->sum_time, l->count),
4636 l->max_time);
4637 } else
4638 len += sprintf(buf + len, " age=%ld",
4639 l->min_time);
4640
4641 if (l->min_pid != l->max_pid)
4642 len += sprintf(buf + len, " pid=%ld-%ld",
4643 l->min_pid, l->max_pid);
4644 else
4645 len += sprintf(buf + len, " pid=%ld",
4646 l->min_pid);
4647
4648 if (num_online_cpus() > 1 &&
4649 !cpumask_empty(to_cpumask(l->cpus)) &&
4650 len < PAGE_SIZE - 60)
4651 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4652 " cpus=%*pbl",
4653 cpumask_pr_args(to_cpumask(l->cpus)));
4654
4655 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4656 len < PAGE_SIZE - 60)
4657 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4658 " nodes=%*pbl",
4659 nodemask_pr_args(&l->nodes));
4660
4661 len += sprintf(buf + len, "\n");
4662 }
4663
4664 free_loc_track(&t);
4665 kfree(map);
4666 if (!t.count)
4667 len += sprintf(buf, "No data\n");
4668 return len;
4669 }
4670 #endif
4671
4672 #ifdef SLUB_RESILIENCY_TEST
4673 static void __init resiliency_test(void)
4674 {
4675 u8 *p;
4676
4677 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4678
4679 pr_err("SLUB resiliency testing\n");
4680 pr_err("-----------------------\n");
4681 pr_err("A. Corruption after allocation\n");
4682
4683 p = kzalloc(16, GFP_KERNEL);
4684 p[16] = 0x12;
4685 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4686 p + 16);
4687
4688 validate_slab_cache(kmalloc_caches[4]);
4689
4690 /* Hmmm... The next two are dangerous */
4691 p = kzalloc(32, GFP_KERNEL);
4692 p[32 + sizeof(void *)] = 0x34;
4693 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4694 p);
4695 pr_err("If allocated object is overwritten then not detectable\n\n");
4696
4697 validate_slab_cache(kmalloc_caches[5]);
4698 p = kzalloc(64, GFP_KERNEL);
4699 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4700 *p = 0x56;
4701 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4702 p);
4703 pr_err("If allocated object is overwritten then not detectable\n\n");
4704 validate_slab_cache(kmalloc_caches[6]);
4705
4706 pr_err("\nB. Corruption after free\n");
4707 p = kzalloc(128, GFP_KERNEL);
4708 kfree(p);
4709 *p = 0x78;
4710 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4711 validate_slab_cache(kmalloc_caches[7]);
4712
4713 p = kzalloc(256, GFP_KERNEL);
4714 kfree(p);
4715 p[50] = 0x9a;
4716 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4717 validate_slab_cache(kmalloc_caches[8]);
4718
4719 p = kzalloc(512, GFP_KERNEL);
4720 kfree(p);
4721 p[512] = 0xab;
4722 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4723 validate_slab_cache(kmalloc_caches[9]);
4724 }
4725 #else
4726 #ifdef CONFIG_SYSFS
4727 static void resiliency_test(void) {};
4728 #endif
4729 #endif
4730
4731 #ifdef CONFIG_SYSFS
4732 enum slab_stat_type {
4733 SL_ALL, /* All slabs */
4734 SL_PARTIAL, /* Only partially allocated slabs */
4735 SL_CPU, /* Only slabs used for cpu caches */
4736 SL_OBJECTS, /* Determine allocated objects not slabs */
4737 SL_TOTAL /* Determine object capacity not slabs */
4738 };
4739
4740 #define SO_ALL (1 << SL_ALL)
4741 #define SO_PARTIAL (1 << SL_PARTIAL)
4742 #define SO_CPU (1 << SL_CPU)
4743 #define SO_OBJECTS (1 << SL_OBJECTS)
4744 #define SO_TOTAL (1 << SL_TOTAL)
4745
4746 #ifdef CONFIG_MEMCG
4747 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4748
4749 static int __init setup_slub_memcg_sysfs(char *str)
4750 {
4751 int v;
4752
4753 if (get_option(&str, &v) > 0)
4754 memcg_sysfs_enabled = v;
4755
4756 return 1;
4757 }
4758
4759 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4760 #endif
4761
4762 static ssize_t show_slab_objects(struct kmem_cache *s,
4763 char *buf, unsigned long flags)
4764 {
4765 unsigned long total = 0;
4766 int node;
4767 int x;
4768 unsigned long *nodes;
4769
4770 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4771 if (!nodes)
4772 return -ENOMEM;
4773
4774 if (flags & SO_CPU) {
4775 int cpu;
4776
4777 for_each_possible_cpu(cpu) {
4778 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4779 cpu);
4780 int node;
4781 struct page *page;
4782
4783 page = READ_ONCE(c->page);
4784 if (!page)
4785 continue;
4786
4787 node = page_to_nid(page);
4788 if (flags & SO_TOTAL)
4789 x = page->objects;
4790 else if (flags & SO_OBJECTS)
4791 x = page->inuse;
4792 else
4793 x = 1;
4794
4795 total += x;
4796 nodes[node] += x;
4797
4798 page = slub_percpu_partial_read_once(c);
4799 if (page) {
4800 node = page_to_nid(page);
4801 if (flags & SO_TOTAL)
4802 WARN_ON_ONCE(1);
4803 else if (flags & SO_OBJECTS)
4804 WARN_ON_ONCE(1);
4805 else
4806 x = page->pages;
4807 total += x;
4808 nodes[node] += x;
4809 }
4810 }
4811 }
4812
4813 get_online_mems();
4814 #ifdef CONFIG_SLUB_DEBUG
4815 if (flags & SO_ALL) {
4816 struct kmem_cache_node *n;
4817
4818 for_each_kmem_cache_node(s, node, n) {
4819
4820 if (flags & SO_TOTAL)
4821 x = atomic_long_read(&n->total_objects);
4822 else if (flags & SO_OBJECTS)
4823 x = atomic_long_read(&n->total_objects) -
4824 count_partial(n, count_free);
4825 else
4826 x = atomic_long_read(&n->nr_slabs);
4827 total += x;
4828 nodes[node] += x;
4829 }
4830
4831 } else
4832 #endif
4833 if (flags & SO_PARTIAL) {
4834 struct kmem_cache_node *n;
4835
4836 for_each_kmem_cache_node(s, node, n) {
4837 if (flags & SO_TOTAL)
4838 x = count_partial(n, count_total);
4839 else if (flags & SO_OBJECTS)
4840 x = count_partial(n, count_inuse);
4841 else
4842 x = n->nr_partial;
4843 total += x;
4844 nodes[node] += x;
4845 }
4846 }
4847 x = sprintf(buf, "%lu", total);
4848 #ifdef CONFIG_NUMA
4849 for (node = 0; node < nr_node_ids; node++)
4850 if (nodes[node])
4851 x += sprintf(buf + x, " N%d=%lu",
4852 node, nodes[node]);
4853 #endif
4854 put_online_mems();
4855 kfree(nodes);
4856 return x + sprintf(buf + x, "\n");
4857 }
4858
4859 #ifdef CONFIG_SLUB_DEBUG
4860 static int any_slab_objects(struct kmem_cache *s)
4861 {
4862 int node;
4863 struct kmem_cache_node *n;
4864
4865 for_each_kmem_cache_node(s, node, n)
4866 if (atomic_long_read(&n->total_objects))
4867 return 1;
4868
4869 return 0;
4870 }
4871 #endif
4872
4873 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4874 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4875
4876 struct slab_attribute {
4877 struct attribute attr;
4878 ssize_t (*show)(struct kmem_cache *s, char *buf);
4879 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4880 };
4881
4882 #define SLAB_ATTR_RO(_name) \
4883 static struct slab_attribute _name##_attr = \
4884 __ATTR(_name, 0400, _name##_show, NULL)
4885
4886 #define SLAB_ATTR(_name) \
4887 static struct slab_attribute _name##_attr = \
4888 __ATTR(_name, 0600, _name##_show, _name##_store)
4889
4890 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4891 {
4892 return sprintf(buf, "%d\n", s->size);
4893 }
4894 SLAB_ATTR_RO(slab_size);
4895
4896 static ssize_t align_show(struct kmem_cache *s, char *buf)
4897 {
4898 return sprintf(buf, "%u\n", s->align);
4899 }
4900 SLAB_ATTR_RO(align);
4901
4902 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4903 {
4904 return sprintf(buf, "%u\n", s->object_size);
4905 }
4906 SLAB_ATTR_RO(object_size);
4907
4908 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4909 {
4910 return sprintf(buf, "%d\n", oo_objects(s->oo));
4911 }
4912 SLAB_ATTR_RO(objs_per_slab);
4913
4914 static ssize_t order_store(struct kmem_cache *s,
4915 const char *buf, size_t length)
4916 {
4917 unsigned long order;
4918 int err;
4919
4920 err = kstrtoul(buf, 10, &order);
4921 if (err)
4922 return err;
4923
4924 if (order > slub_max_order || order < slub_min_order)
4925 return -EINVAL;
4926
4927 calculate_sizes(s, order);
4928 return length;
4929 }
4930
4931 static ssize_t order_show(struct kmem_cache *s, char *buf)
4932 {
4933 return sprintf(buf, "%d\n", oo_order(s->oo));
4934 }
4935 SLAB_ATTR(order);
4936
4937 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4938 {
4939 return sprintf(buf, "%lu\n", s->min_partial);
4940 }
4941
4942 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4943 size_t length)
4944 {
4945 unsigned long min;
4946 int err;
4947
4948 err = kstrtoul(buf, 10, &min);
4949 if (err)
4950 return err;
4951
4952 set_min_partial(s, min);
4953 return length;
4954 }
4955 SLAB_ATTR(min_partial);
4956
4957 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4958 {
4959 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4960 }
4961
4962 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4963 size_t length)
4964 {
4965 unsigned int objects;
4966 int err;
4967
4968 err = kstrtouint(buf, 10, &objects);
4969 if (err)
4970 return err;
4971 if (objects && !kmem_cache_has_cpu_partial(s))
4972 return -EINVAL;
4973
4974 slub_set_cpu_partial(s, objects);
4975 flush_all(s);
4976 return length;
4977 }
4978 SLAB_ATTR(cpu_partial);
4979
4980 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4981 {
4982 if (!s->ctor)
4983 return 0;
4984 return sprintf(buf, "%pS\n", s->ctor);
4985 }
4986 SLAB_ATTR_RO(ctor);
4987
4988 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4989 {
4990 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4991 }
4992 SLAB_ATTR_RO(aliases);
4993
4994 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4995 {
4996 return show_slab_objects(s, buf, SO_PARTIAL);
4997 }
4998 SLAB_ATTR_RO(partial);
4999
5000 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5001 {
5002 return show_slab_objects(s, buf, SO_CPU);
5003 }
5004 SLAB_ATTR_RO(cpu_slabs);
5005
5006 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5007 {
5008 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5009 }
5010 SLAB_ATTR_RO(objects);
5011
5012 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5013 {
5014 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5015 }
5016 SLAB_ATTR_RO(objects_partial);
5017
5018 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5019 {
5020 int objects = 0;
5021 int pages = 0;
5022 int cpu;
5023 int len;
5024
5025 for_each_online_cpu(cpu) {
5026 struct page *page;
5027
5028 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5029
5030 if (page) {
5031 pages += page->pages;
5032 objects += page->pobjects;
5033 }
5034 }
5035
5036 len = sprintf(buf, "%d(%d)", objects, pages);
5037
5038 #ifdef CONFIG_SMP
5039 for_each_online_cpu(cpu) {
5040 struct page *page;
5041
5042 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5043
5044 if (page && len < PAGE_SIZE - 20)
5045 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5046 page->pobjects, page->pages);
5047 }
5048 #endif
5049 return len + sprintf(buf + len, "\n");
5050 }
5051 SLAB_ATTR_RO(slabs_cpu_partial);
5052
5053 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5054 {
5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5056 }
5057
5058 static ssize_t reclaim_account_store(struct kmem_cache *s,
5059 const char *buf, size_t length)
5060 {
5061 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5062 if (buf[0] == '1')
5063 s->flags |= SLAB_RECLAIM_ACCOUNT;
5064 return length;
5065 }
5066 SLAB_ATTR(reclaim_account);
5067
5068 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5069 {
5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5071 }
5072 SLAB_ATTR_RO(hwcache_align);
5073
5074 #ifdef CONFIG_ZONE_DMA
5075 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5076 {
5077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5078 }
5079 SLAB_ATTR_RO(cache_dma);
5080 #endif
5081
5082 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5083 {
5084 return sprintf(buf, "%zu\n", s->usersize);
5085 }
5086 SLAB_ATTR_RO(usersize);
5087
5088 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5089 {
5090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5091 }
5092 SLAB_ATTR_RO(destroy_by_rcu);
5093
5094 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5095 {
5096 return sprintf(buf, "%u\n", s->reserved);
5097 }
5098 SLAB_ATTR_RO(reserved);
5099
5100 #ifdef CONFIG_SLUB_DEBUG
5101 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5102 {
5103 return show_slab_objects(s, buf, SO_ALL);
5104 }
5105 SLAB_ATTR_RO(slabs);
5106
5107 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5108 {
5109 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5110 }
5111 SLAB_ATTR_RO(total_objects);
5112
5113 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5114 {
5115 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5116 }
5117
5118 static ssize_t sanity_checks_store(struct kmem_cache *s,
5119 const char *buf, size_t length)
5120 {
5121 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5122 if (buf[0] == '1') {
5123 s->flags &= ~__CMPXCHG_DOUBLE;
5124 s->flags |= SLAB_CONSISTENCY_CHECKS;
5125 }
5126 return length;
5127 }
5128 SLAB_ATTR(sanity_checks);
5129
5130 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5131 {
5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5133 }
5134
5135 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5136 size_t length)
5137 {
5138 /*
5139 * Tracing a merged cache is going to give confusing results
5140 * as well as cause other issues like converting a mergeable
5141 * cache into an umergeable one.
5142 */
5143 if (s->refcount > 1)
5144 return -EINVAL;
5145
5146 s->flags &= ~SLAB_TRACE;
5147 if (buf[0] == '1') {
5148 s->flags &= ~__CMPXCHG_DOUBLE;
5149 s->flags |= SLAB_TRACE;
5150 }
5151 return length;
5152 }
5153 SLAB_ATTR(trace);
5154
5155 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5156 {
5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5158 }
5159
5160 static ssize_t red_zone_store(struct kmem_cache *s,
5161 const char *buf, size_t length)
5162 {
5163 if (any_slab_objects(s))
5164 return -EBUSY;
5165
5166 s->flags &= ~SLAB_RED_ZONE;
5167 if (buf[0] == '1') {
5168 s->flags |= SLAB_RED_ZONE;
5169 }
5170 calculate_sizes(s, -1);
5171 return length;
5172 }
5173 SLAB_ATTR(red_zone);
5174
5175 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5176 {
5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5178 }
5179
5180 static ssize_t poison_store(struct kmem_cache *s,
5181 const char *buf, size_t length)
5182 {
5183 if (any_slab_objects(s))
5184 return -EBUSY;
5185
5186 s->flags &= ~SLAB_POISON;
5187 if (buf[0] == '1') {
5188 s->flags |= SLAB_POISON;
5189 }
5190 calculate_sizes(s, -1);
5191 return length;
5192 }
5193 SLAB_ATTR(poison);
5194
5195 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5196 {
5197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5198 }
5199
5200 static ssize_t store_user_store(struct kmem_cache *s,
5201 const char *buf, size_t length)
5202 {
5203 if (any_slab_objects(s))
5204 return -EBUSY;
5205
5206 s->flags &= ~SLAB_STORE_USER;
5207 if (buf[0] == '1') {
5208 s->flags &= ~__CMPXCHG_DOUBLE;
5209 s->flags |= SLAB_STORE_USER;
5210 }
5211 calculate_sizes(s, -1);
5212 return length;
5213 }
5214 SLAB_ATTR(store_user);
5215
5216 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5217 {
5218 return 0;
5219 }
5220
5221 static ssize_t validate_store(struct kmem_cache *s,
5222 const char *buf, size_t length)
5223 {
5224 int ret = -EINVAL;
5225
5226 if (buf[0] == '1') {
5227 ret = validate_slab_cache(s);
5228 if (ret >= 0)
5229 ret = length;
5230 }
5231 return ret;
5232 }
5233 SLAB_ATTR(validate);
5234
5235 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5236 {
5237 if (!(s->flags & SLAB_STORE_USER))
5238 return -ENOSYS;
5239 return list_locations(s, buf, TRACK_ALLOC);
5240 }
5241 SLAB_ATTR_RO(alloc_calls);
5242
5243 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5244 {
5245 if (!(s->flags & SLAB_STORE_USER))
5246 return -ENOSYS;
5247 return list_locations(s, buf, TRACK_FREE);
5248 }
5249 SLAB_ATTR_RO(free_calls);
5250 #endif /* CONFIG_SLUB_DEBUG */
5251
5252 #ifdef CONFIG_FAILSLAB
5253 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5254 {
5255 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5256 }
5257
5258 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5259 size_t length)
5260 {
5261 if (s->refcount > 1)
5262 return -EINVAL;
5263
5264 s->flags &= ~SLAB_FAILSLAB;
5265 if (buf[0] == '1')
5266 s->flags |= SLAB_FAILSLAB;
5267 return length;
5268 }
5269 SLAB_ATTR(failslab);
5270 #endif
5271
5272 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5273 {
5274 return 0;
5275 }
5276
5277 static ssize_t shrink_store(struct kmem_cache *s,
5278 const char *buf, size_t length)
5279 {
5280 if (buf[0] == '1')
5281 kmem_cache_shrink(s);
5282 else
5283 return -EINVAL;
5284 return length;
5285 }
5286 SLAB_ATTR(shrink);
5287
5288 #ifdef CONFIG_NUMA
5289 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5290 {
5291 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5292 }
5293
5294 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5295 const char *buf, size_t length)
5296 {
5297 unsigned int ratio;
5298 int err;
5299
5300 err = kstrtouint(buf, 10, &ratio);
5301 if (err)
5302 return err;
5303 if (ratio > 100)
5304 return -ERANGE;
5305
5306 s->remote_node_defrag_ratio = ratio * 10;
5307
5308 return length;
5309 }
5310 SLAB_ATTR(remote_node_defrag_ratio);
5311 #endif
5312
5313 #ifdef CONFIG_SLUB_STATS
5314 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5315 {
5316 unsigned long sum = 0;
5317 int cpu;
5318 int len;
5319 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5320
5321 if (!data)
5322 return -ENOMEM;
5323
5324 for_each_online_cpu(cpu) {
5325 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5326
5327 data[cpu] = x;
5328 sum += x;
5329 }
5330
5331 len = sprintf(buf, "%lu", sum);
5332
5333 #ifdef CONFIG_SMP
5334 for_each_online_cpu(cpu) {
5335 if (data[cpu] && len < PAGE_SIZE - 20)
5336 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5337 }
5338 #endif
5339 kfree(data);
5340 return len + sprintf(buf + len, "\n");
5341 }
5342
5343 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5344 {
5345 int cpu;
5346
5347 for_each_online_cpu(cpu)
5348 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5349 }
5350
5351 #define STAT_ATTR(si, text) \
5352 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5353 { \
5354 return show_stat(s, buf, si); \
5355 } \
5356 static ssize_t text##_store(struct kmem_cache *s, \
5357 const char *buf, size_t length) \
5358 { \
5359 if (buf[0] != '0') \
5360 return -EINVAL; \
5361 clear_stat(s, si); \
5362 return length; \
5363 } \
5364 SLAB_ATTR(text); \
5365
5366 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5367 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5368 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5369 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5370 STAT_ATTR(FREE_FROZEN, free_frozen);
5371 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5372 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5373 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5374 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5375 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5376 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5377 STAT_ATTR(FREE_SLAB, free_slab);
5378 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5379 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5380 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5381 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5382 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5383 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5384 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5385 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5386 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5387 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5388 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5389 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5390 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5391 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5392 #endif
5393
5394 static struct attribute *slab_attrs[] = {
5395 &slab_size_attr.attr,
5396 &object_size_attr.attr,
5397 &objs_per_slab_attr.attr,
5398 &order_attr.attr,
5399 &min_partial_attr.attr,
5400 &cpu_partial_attr.attr,
5401 &objects_attr.attr,
5402 &objects_partial_attr.attr,
5403 &partial_attr.attr,
5404 &cpu_slabs_attr.attr,
5405 &ctor_attr.attr,
5406 &aliases_attr.attr,
5407 &align_attr.attr,
5408 &hwcache_align_attr.attr,
5409 &reclaim_account_attr.attr,
5410 &destroy_by_rcu_attr.attr,
5411 &shrink_attr.attr,
5412 &reserved_attr.attr,
5413 &slabs_cpu_partial_attr.attr,
5414 #ifdef CONFIG_SLUB_DEBUG
5415 &total_objects_attr.attr,
5416 &slabs_attr.attr,
5417 &sanity_checks_attr.attr,
5418 &trace_attr.attr,
5419 &red_zone_attr.attr,
5420 &poison_attr.attr,
5421 &store_user_attr.attr,
5422 &validate_attr.attr,
5423 &alloc_calls_attr.attr,
5424 &free_calls_attr.attr,
5425 #endif
5426 #ifdef CONFIG_ZONE_DMA
5427 &cache_dma_attr.attr,
5428 #endif
5429 #ifdef CONFIG_NUMA
5430 &remote_node_defrag_ratio_attr.attr,
5431 #endif
5432 #ifdef CONFIG_SLUB_STATS
5433 &alloc_fastpath_attr.attr,
5434 &alloc_slowpath_attr.attr,
5435 &free_fastpath_attr.attr,
5436 &free_slowpath_attr.attr,
5437 &free_frozen_attr.attr,
5438 &free_add_partial_attr.attr,
5439 &free_remove_partial_attr.attr,
5440 &alloc_from_partial_attr.attr,
5441 &alloc_slab_attr.attr,
5442 &alloc_refill_attr.attr,
5443 &alloc_node_mismatch_attr.attr,
5444 &free_slab_attr.attr,
5445 &cpuslab_flush_attr.attr,
5446 &deactivate_full_attr.attr,
5447 &deactivate_empty_attr.attr,
5448 &deactivate_to_head_attr.attr,
5449 &deactivate_to_tail_attr.attr,
5450 &deactivate_remote_frees_attr.attr,
5451 &deactivate_bypass_attr.attr,
5452 &order_fallback_attr.attr,
5453 &cmpxchg_double_fail_attr.attr,
5454 &cmpxchg_double_cpu_fail_attr.attr,
5455 &cpu_partial_alloc_attr.attr,
5456 &cpu_partial_free_attr.attr,
5457 &cpu_partial_node_attr.attr,
5458 &cpu_partial_drain_attr.attr,
5459 #endif
5460 #ifdef CONFIG_FAILSLAB
5461 &failslab_attr.attr,
5462 #endif
5463 &usersize_attr.attr,
5464
5465 NULL
5466 };
5467
5468 static const struct attribute_group slab_attr_group = {
5469 .attrs = slab_attrs,
5470 };
5471
5472 static ssize_t slab_attr_show(struct kobject *kobj,
5473 struct attribute *attr,
5474 char *buf)
5475 {
5476 struct slab_attribute *attribute;
5477 struct kmem_cache *s;
5478 int err;
5479
5480 attribute = to_slab_attr(attr);
5481 s = to_slab(kobj);
5482
5483 if (!attribute->show)
5484 return -EIO;
5485
5486 err = attribute->show(s, buf);
5487
5488 return err;
5489 }
5490
5491 static ssize_t slab_attr_store(struct kobject *kobj,
5492 struct attribute *attr,
5493 const char *buf, size_t len)
5494 {
5495 struct slab_attribute *attribute;
5496 struct kmem_cache *s;
5497 int err;
5498
5499 attribute = to_slab_attr(attr);
5500 s = to_slab(kobj);
5501
5502 if (!attribute->store)
5503 return -EIO;
5504
5505 err = attribute->store(s, buf, len);
5506 #ifdef CONFIG_MEMCG
5507 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5508 struct kmem_cache *c;
5509
5510 mutex_lock(&slab_mutex);
5511 if (s->max_attr_size < len)
5512 s->max_attr_size = len;
5513
5514 /*
5515 * This is a best effort propagation, so this function's return
5516 * value will be determined by the parent cache only. This is
5517 * basically because not all attributes will have a well
5518 * defined semantics for rollbacks - most of the actions will
5519 * have permanent effects.
5520 *
5521 * Returning the error value of any of the children that fail
5522 * is not 100 % defined, in the sense that users seeing the
5523 * error code won't be able to know anything about the state of
5524 * the cache.
5525 *
5526 * Only returning the error code for the parent cache at least
5527 * has well defined semantics. The cache being written to
5528 * directly either failed or succeeded, in which case we loop
5529 * through the descendants with best-effort propagation.
5530 */
5531 for_each_memcg_cache(c, s)
5532 attribute->store(c, buf, len);
5533 mutex_unlock(&slab_mutex);
5534 }
5535 #endif
5536 return err;
5537 }
5538
5539 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5540 {
5541 #ifdef CONFIG_MEMCG
5542 int i;
5543 char *buffer = NULL;
5544 struct kmem_cache *root_cache;
5545
5546 if (is_root_cache(s))
5547 return;
5548
5549 root_cache = s->memcg_params.root_cache;
5550
5551 /*
5552 * This mean this cache had no attribute written. Therefore, no point
5553 * in copying default values around
5554 */
5555 if (!root_cache->max_attr_size)
5556 return;
5557
5558 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5559 char mbuf[64];
5560 char *buf;
5561 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5562 ssize_t len;
5563
5564 if (!attr || !attr->store || !attr->show)
5565 continue;
5566
5567 /*
5568 * It is really bad that we have to allocate here, so we will
5569 * do it only as a fallback. If we actually allocate, though,
5570 * we can just use the allocated buffer until the end.
5571 *
5572 * Most of the slub attributes will tend to be very small in
5573 * size, but sysfs allows buffers up to a page, so they can
5574 * theoretically happen.
5575 */
5576 if (buffer)
5577 buf = buffer;
5578 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5579 buf = mbuf;
5580 else {
5581 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5582 if (WARN_ON(!buffer))
5583 continue;
5584 buf = buffer;
5585 }
5586
5587 len = attr->show(root_cache, buf);
5588 if (len > 0)
5589 attr->store(s, buf, len);
5590 }
5591
5592 if (buffer)
5593 free_page((unsigned long)buffer);
5594 #endif
5595 }
5596
5597 static void kmem_cache_release(struct kobject *k)
5598 {
5599 slab_kmem_cache_release(to_slab(k));
5600 }
5601
5602 static const struct sysfs_ops slab_sysfs_ops = {
5603 .show = slab_attr_show,
5604 .store = slab_attr_store,
5605 };
5606
5607 static struct kobj_type slab_ktype = {
5608 .sysfs_ops = &slab_sysfs_ops,
5609 .release = kmem_cache_release,
5610 };
5611
5612 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5613 {
5614 struct kobj_type *ktype = get_ktype(kobj);
5615
5616 if (ktype == &slab_ktype)
5617 return 1;
5618 return 0;
5619 }
5620
5621 static const struct kset_uevent_ops slab_uevent_ops = {
5622 .filter = uevent_filter,
5623 };
5624
5625 static struct kset *slab_kset;
5626
5627 static inline struct kset *cache_kset(struct kmem_cache *s)
5628 {
5629 #ifdef CONFIG_MEMCG
5630 if (!is_root_cache(s))
5631 return s->memcg_params.root_cache->memcg_kset;
5632 #endif
5633 return slab_kset;
5634 }
5635
5636 #define ID_STR_LENGTH 64
5637
5638 /* Create a unique string id for a slab cache:
5639 *
5640 * Format :[flags-]size
5641 */
5642 static char *create_unique_id(struct kmem_cache *s)
5643 {
5644 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5645 char *p = name;
5646
5647 BUG_ON(!name);
5648
5649 *p++ = ':';
5650 /*
5651 * First flags affecting slabcache operations. We will only
5652 * get here for aliasable slabs so we do not need to support
5653 * too many flags. The flags here must cover all flags that
5654 * are matched during merging to guarantee that the id is
5655 * unique.
5656 */
5657 if (s->flags & SLAB_CACHE_DMA)
5658 *p++ = 'd';
5659 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5660 *p++ = 'a';
5661 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5662 *p++ = 'F';
5663 if (s->flags & SLAB_ACCOUNT)
5664 *p++ = 'A';
5665 if (p != name + 1)
5666 *p++ = '-';
5667 p += sprintf(p, "%07d", s->size);
5668
5669 BUG_ON(p > name + ID_STR_LENGTH - 1);
5670 return name;
5671 }
5672
5673 static void sysfs_slab_remove_workfn(struct work_struct *work)
5674 {
5675 struct kmem_cache *s =
5676 container_of(work, struct kmem_cache, kobj_remove_work);
5677
5678 if (!s->kobj.state_in_sysfs)
5679 /*
5680 * For a memcg cache, this may be called during
5681 * deactivation and again on shutdown. Remove only once.
5682 * A cache is never shut down before deactivation is
5683 * complete, so no need to worry about synchronization.
5684 */
5685 goto out;
5686
5687 #ifdef CONFIG_MEMCG
5688 kset_unregister(s->memcg_kset);
5689 #endif
5690 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5691 kobject_del(&s->kobj);
5692 out:
5693 kobject_put(&s->kobj);
5694 }
5695
5696 static int sysfs_slab_add(struct kmem_cache *s)
5697 {
5698 int err;
5699 const char *name;
5700 struct kset *kset = cache_kset(s);
5701 int unmergeable = slab_unmergeable(s);
5702
5703 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5704
5705 if (!kset) {
5706 kobject_init(&s->kobj, &slab_ktype);
5707 return 0;
5708 }
5709
5710 if (!unmergeable && disable_higher_order_debug &&
5711 (slub_debug & DEBUG_METADATA_FLAGS))
5712 unmergeable = 1;
5713
5714 if (unmergeable) {
5715 /*
5716 * Slabcache can never be merged so we can use the name proper.
5717 * This is typically the case for debug situations. In that
5718 * case we can catch duplicate names easily.
5719 */
5720 sysfs_remove_link(&slab_kset->kobj, s->name);
5721 name = s->name;
5722 } else {
5723 /*
5724 * Create a unique name for the slab as a target
5725 * for the symlinks.
5726 */
5727 name = create_unique_id(s);
5728 }
5729
5730 s->kobj.kset = kset;
5731 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5732 if (err)
5733 goto out;
5734
5735 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5736 if (err)
5737 goto out_del_kobj;
5738
5739 #ifdef CONFIG_MEMCG
5740 if (is_root_cache(s) && memcg_sysfs_enabled) {
5741 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5742 if (!s->memcg_kset) {
5743 err = -ENOMEM;
5744 goto out_del_kobj;
5745 }
5746 }
5747 #endif
5748
5749 kobject_uevent(&s->kobj, KOBJ_ADD);
5750 if (!unmergeable) {
5751 /* Setup first alias */
5752 sysfs_slab_alias(s, s->name);
5753 }
5754 out:
5755 if (!unmergeable)
5756 kfree(name);
5757 return err;
5758 out_del_kobj:
5759 kobject_del(&s->kobj);
5760 goto out;
5761 }
5762
5763 static void sysfs_slab_remove(struct kmem_cache *s)
5764 {
5765 if (slab_state < FULL)
5766 /*
5767 * Sysfs has not been setup yet so no need to remove the
5768 * cache from sysfs.
5769 */
5770 return;
5771
5772 kobject_get(&s->kobj);
5773 schedule_work(&s->kobj_remove_work);
5774 }
5775
5776 void sysfs_slab_release(struct kmem_cache *s)
5777 {
5778 if (slab_state >= FULL)
5779 kobject_put(&s->kobj);
5780 }
5781
5782 /*
5783 * Need to buffer aliases during bootup until sysfs becomes
5784 * available lest we lose that information.
5785 */
5786 struct saved_alias {
5787 struct kmem_cache *s;
5788 const char *name;
5789 struct saved_alias *next;
5790 };
5791
5792 static struct saved_alias *alias_list;
5793
5794 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5795 {
5796 struct saved_alias *al;
5797
5798 if (slab_state == FULL) {
5799 /*
5800 * If we have a leftover link then remove it.
5801 */
5802 sysfs_remove_link(&slab_kset->kobj, name);
5803 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5804 }
5805
5806 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5807 if (!al)
5808 return -ENOMEM;
5809
5810 al->s = s;
5811 al->name = name;
5812 al->next = alias_list;
5813 alias_list = al;
5814 return 0;
5815 }
5816
5817 static int __init slab_sysfs_init(void)
5818 {
5819 struct kmem_cache *s;
5820 int err;
5821
5822 mutex_lock(&slab_mutex);
5823
5824 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5825 if (!slab_kset) {
5826 mutex_unlock(&slab_mutex);
5827 pr_err("Cannot register slab subsystem.\n");
5828 return -ENOSYS;
5829 }
5830
5831 slab_state = FULL;
5832
5833 list_for_each_entry(s, &slab_caches, list) {
5834 err = sysfs_slab_add(s);
5835 if (err)
5836 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5837 s->name);
5838 }
5839
5840 while (alias_list) {
5841 struct saved_alias *al = alias_list;
5842
5843 alias_list = alias_list->next;
5844 err = sysfs_slab_alias(al->s, al->name);
5845 if (err)
5846 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5847 al->name);
5848 kfree(al);
5849 }
5850
5851 mutex_unlock(&slab_mutex);
5852 resiliency_test();
5853 return 0;
5854 }
5855
5856 __initcall(slab_sysfs_init);
5857 #endif /* CONFIG_SYSFS */
5858
5859 /*
5860 * The /proc/slabinfo ABI
5861 */
5862 #ifdef CONFIG_SLUB_DEBUG
5863 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5864 {
5865 unsigned long nr_slabs = 0;
5866 unsigned long nr_objs = 0;
5867 unsigned long nr_free = 0;
5868 int node;
5869 struct kmem_cache_node *n;
5870
5871 for_each_kmem_cache_node(s, node, n) {
5872 nr_slabs += node_nr_slabs(n);
5873 nr_objs += node_nr_objs(n);
5874 nr_free += count_partial(n, count_free);
5875 }
5876
5877 sinfo->active_objs = nr_objs - nr_free;
5878 sinfo->num_objs = nr_objs;
5879 sinfo->active_slabs = nr_slabs;
5880 sinfo->num_slabs = nr_slabs;
5881 sinfo->objects_per_slab = oo_objects(s->oo);
5882 sinfo->cache_order = oo_order(s->oo);
5883 }
5884
5885 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5886 {
5887 }
5888
5889 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5890 size_t count, loff_t *ppos)
5891 {
5892 return -EIO;
5893 }
5894 #endif /* CONFIG_SLUB_DEBUG */