2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
202 unsigned long addr
; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
206 int cpu
; /* Was running on cpu */
207 int pid
; /* Pid context */
208 unsigned long when
; /* When did the operation occur */
211 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
214 static int sysfs_slab_add(struct kmem_cache
*);
215 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
241 return *(void **)(object
+ s
->offset
);
244 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
246 prefetch(object
+ s
->offset
);
249 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s
, object
);
256 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
260 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
262 *(void **)(object
+ s
->offset
) = fp
;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
279 return (p
- addr
) / s
->size
;
282 static inline int order_objects(int order
, unsigned long size
, int reserved
)
284 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
287 static inline struct kmem_cache_order_objects
oo_make(int order
,
288 unsigned long size
, int reserved
)
290 struct kmem_cache_order_objects x
= {
291 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
297 static inline int oo_order(struct kmem_cache_order_objects x
)
299 return x
.x
>> OO_SHIFT
;
302 static inline int oo_objects(struct kmem_cache_order_objects x
)
304 return x
.x
& OO_MASK
;
308 * Per slab locking using the pagelock
310 static __always_inline
void slab_lock(struct page
*page
)
312 VM_BUG_ON_PAGE(PageTail(page
), page
);
313 bit_spin_lock(PG_locked
, &page
->flags
);
316 static __always_inline
void slab_unlock(struct page
*page
)
318 VM_BUG_ON_PAGE(PageTail(page
), page
);
319 __bit_spin_unlock(PG_locked
, &page
->flags
);
322 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
325 tmp
.counters
= counters_new
;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page
->frozen
= tmp
.frozen
;
333 page
->inuse
= tmp
.inuse
;
334 page
->objects
= tmp
.objects
;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
339 void *freelist_old
, unsigned long counters_old
,
340 void *freelist_new
, unsigned long counters_new
,
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s
->flags
& __CMPXCHG_DOUBLE
) {
347 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
348 freelist_old
, counters_old
,
349 freelist_new
, counters_new
))
355 if (page
->freelist
== freelist_old
&&
356 page
->counters
== counters_old
) {
357 page
->freelist
= freelist_new
;
358 set_page_slub_counters(page
, counters_new
);
366 stat(s
, CMPXCHG_DOUBLE_FAIL
);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
375 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
376 void *freelist_old
, unsigned long counters_old
,
377 void *freelist_new
, unsigned long counters_new
,
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s
->flags
& __CMPXCHG_DOUBLE
) {
383 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
384 freelist_old
, counters_old
,
385 freelist_new
, counters_new
))
392 local_irq_save(flags
);
394 if (page
->freelist
== freelist_old
&&
395 page
->counters
== counters_old
) {
396 page
->freelist
= freelist_new
;
397 set_page_slub_counters(page
, counters_new
);
399 local_irq_restore(flags
);
403 local_irq_restore(flags
);
407 stat(s
, CMPXCHG_DOUBLE_FAIL
);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
426 void *addr
= page_address(page
);
428 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
429 set_bit(slab_index(p
, s
, addr
), map
);
432 static inline int size_from_object(struct kmem_cache
*s
)
434 if (s
->flags
& SLAB_RED_ZONE
)
435 return s
->size
- s
->red_left_pad
;
440 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
442 if (s
->flags
& SLAB_RED_ZONE
)
443 p
-= s
->red_left_pad
;
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
454 static int slub_debug
;
457 static char *slub_debug_slabs
;
458 static int disable_higher_order_debug
;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache
*s
,
482 struct page
*page
, void *object
)
489 base
= page_address(page
);
490 object
= restore_red_left(s
, object
);
491 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
492 (object
- base
) % s
->size
) {
499 static void print_section(char *level
, char *text
, u8
*addr
,
502 metadata_access_enable();
503 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
505 metadata_access_disable();
508 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
509 enum track_item alloc
)
514 p
= object
+ s
->offset
+ sizeof(void *);
516 p
= object
+ s
->inuse
;
521 static void set_track(struct kmem_cache
*s
, void *object
,
522 enum track_item alloc
, unsigned long addr
)
524 struct track
*p
= get_track(s
, object
, alloc
);
527 #ifdef CONFIG_STACKTRACE
528 struct stack_trace trace
;
531 trace
.nr_entries
= 0;
532 trace
.max_entries
= TRACK_ADDRS_COUNT
;
533 trace
.entries
= p
->addrs
;
535 metadata_access_enable();
536 save_stack_trace(&trace
);
537 metadata_access_disable();
539 /* See rant in lockdep.c */
540 if (trace
.nr_entries
!= 0 &&
541 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
544 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
548 p
->cpu
= smp_processor_id();
549 p
->pid
= current
->pid
;
552 memset(p
, 0, sizeof(struct track
));
555 static void init_tracking(struct kmem_cache
*s
, void *object
)
557 if (!(s
->flags
& SLAB_STORE_USER
))
560 set_track(s
, object
, TRACK_FREE
, 0UL);
561 set_track(s
, object
, TRACK_ALLOC
, 0UL);
564 static void print_track(const char *s
, struct track
*t
)
569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
571 #ifdef CONFIG_STACKTRACE
574 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
576 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
583 static void print_tracking(struct kmem_cache
*s
, void *object
)
585 if (!(s
->flags
& SLAB_STORE_USER
))
588 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
589 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
592 static void print_page_info(struct page
*page
)
594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
599 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
601 struct va_format vaf
;
607 pr_err("=============================================================================\n");
608 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
609 pr_err("-----------------------------------------------------------------------------\n\n");
611 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
615 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
617 struct va_format vaf
;
623 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
627 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
629 unsigned int off
; /* Offset of last byte */
630 u8
*addr
= page_address(page
);
632 print_tracking(s
, p
);
634 print_page_info(page
);
636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 p
, p
- addr
, get_freepointer(s
, p
));
639 if (s
->flags
& SLAB_RED_ZONE
)
640 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
642 else if (p
> addr
+ 16)
643 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
645 print_section(KERN_ERR
, "Object ", p
,
646 min_t(unsigned long, s
->object_size
, PAGE_SIZE
));
647 if (s
->flags
& SLAB_RED_ZONE
)
648 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
649 s
->inuse
- s
->object_size
);
652 off
= s
->offset
+ sizeof(void *);
656 if (s
->flags
& SLAB_STORE_USER
)
657 off
+= 2 * sizeof(struct track
);
659 off
+= kasan_metadata_size(s
);
661 if (off
!= size_from_object(s
))
662 /* Beginning of the filler is the free pointer */
663 print_section(KERN_ERR
, "Padding ", p
+ off
,
664 size_from_object(s
) - off
);
669 void object_err(struct kmem_cache
*s
, struct page
*page
,
670 u8
*object
, char *reason
)
672 slab_bug(s
, "%s", reason
);
673 print_trailer(s
, page
, object
);
676 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
677 const char *fmt
, ...)
683 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
685 slab_bug(s
, "%s", buf
);
686 print_page_info(page
);
690 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
694 if (s
->flags
& SLAB_RED_ZONE
)
695 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
697 if (s
->flags
& __OBJECT_POISON
) {
698 memset(p
, POISON_FREE
, s
->object_size
- 1);
699 p
[s
->object_size
- 1] = POISON_END
;
702 if (s
->flags
& SLAB_RED_ZONE
)
703 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
706 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
707 void *from
, void *to
)
709 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
710 memset(from
, data
, to
- from
);
713 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
714 u8
*object
, char *what
,
715 u8
*start
, unsigned int value
, unsigned int bytes
)
720 metadata_access_enable();
721 fault
= memchr_inv(start
, value
, bytes
);
722 metadata_access_disable();
727 while (end
> fault
&& end
[-1] == value
)
730 slab_bug(s
, "%s overwritten", what
);
731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 fault
, end
- 1, fault
[0], value
);
733 print_trailer(s
, page
, object
);
735 restore_bytes(s
, what
, value
, fault
, end
);
743 * Bytes of the object to be managed.
744 * If the freepointer may overlay the object then the free
745 * pointer is the first word of the object.
747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * object + s->object_size
751 * Padding to reach word boundary. This is also used for Redzoning.
752 * Padding is extended by another word if Redzoning is enabled and
753 * object_size == inuse.
755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756 * 0xcc (RED_ACTIVE) for objects in use.
759 * Meta data starts here.
761 * A. Free pointer (if we cannot overwrite object on free)
762 * B. Tracking data for SLAB_STORE_USER
763 * C. Padding to reach required alignment boundary or at mininum
764 * one word if debugging is on to be able to detect writes
765 * before the word boundary.
767 * Padding is done using 0x5a (POISON_INUSE)
770 * Nothing is used beyond s->size.
772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
773 * ignored. And therefore no slab options that rely on these boundaries
774 * may be used with merged slabcaches.
777 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
779 unsigned long off
= s
->inuse
; /* The end of info */
782 /* Freepointer is placed after the object. */
783 off
+= sizeof(void *);
785 if (s
->flags
& SLAB_STORE_USER
)
786 /* We also have user information there */
787 off
+= 2 * sizeof(struct track
);
789 off
+= kasan_metadata_size(s
);
791 if (size_from_object(s
) == off
)
794 return check_bytes_and_report(s
, page
, p
, "Object padding",
795 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
798 /* Check the pad bytes at the end of a slab page */
799 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
807 if (!(s
->flags
& SLAB_POISON
))
810 start
= page_address(page
);
811 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
812 end
= start
+ length
;
813 remainder
= length
% s
->size
;
817 metadata_access_enable();
818 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
819 metadata_access_disable();
822 while (end
> fault
&& end
[-1] == POISON_INUSE
)
825 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
826 print_section(KERN_ERR
, "Padding ", end
- remainder
, remainder
);
828 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
832 static int check_object(struct kmem_cache
*s
, struct page
*page
,
833 void *object
, u8 val
)
836 u8
*endobject
= object
+ s
->object_size
;
838 if (s
->flags
& SLAB_RED_ZONE
) {
839 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
840 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
843 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
844 endobject
, val
, s
->inuse
- s
->object_size
))
847 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
848 check_bytes_and_report(s
, page
, p
, "Alignment padding",
849 endobject
, POISON_INUSE
,
850 s
->inuse
- s
->object_size
);
854 if (s
->flags
& SLAB_POISON
) {
855 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
856 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
857 POISON_FREE
, s
->object_size
- 1) ||
858 !check_bytes_and_report(s
, page
, p
, "Poison",
859 p
+ s
->object_size
- 1, POISON_END
, 1)))
862 * check_pad_bytes cleans up on its own.
864 check_pad_bytes(s
, page
, p
);
867 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
869 * Object and freepointer overlap. Cannot check
870 * freepointer while object is allocated.
874 /* Check free pointer validity */
875 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
876 object_err(s
, page
, p
, "Freepointer corrupt");
878 * No choice but to zap it and thus lose the remainder
879 * of the free objects in this slab. May cause
880 * another error because the object count is now wrong.
882 set_freepointer(s
, p
, NULL
);
888 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
892 VM_BUG_ON(!irqs_disabled());
894 if (!PageSlab(page
)) {
895 slab_err(s
, page
, "Not a valid slab page");
899 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
900 if (page
->objects
> maxobj
) {
901 slab_err(s
, page
, "objects %u > max %u",
902 page
->objects
, maxobj
);
905 if (page
->inuse
> page
->objects
) {
906 slab_err(s
, page
, "inuse %u > max %u",
907 page
->inuse
, page
->objects
);
910 /* Slab_pad_check fixes things up after itself */
911 slab_pad_check(s
, page
);
916 * Determine if a certain object on a page is on the freelist. Must hold the
917 * slab lock to guarantee that the chains are in a consistent state.
919 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
927 while (fp
&& nr
<= page
->objects
) {
930 if (!check_valid_pointer(s
, page
, fp
)) {
932 object_err(s
, page
, object
,
933 "Freechain corrupt");
934 set_freepointer(s
, object
, NULL
);
936 slab_err(s
, page
, "Freepointer corrupt");
937 page
->freelist
= NULL
;
938 page
->inuse
= page
->objects
;
939 slab_fix(s
, "Freelist cleared");
945 fp
= get_freepointer(s
, object
);
949 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
950 if (max_objects
> MAX_OBJS_PER_PAGE
)
951 max_objects
= MAX_OBJS_PER_PAGE
;
953 if (page
->objects
!= max_objects
) {
954 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
955 page
->objects
, max_objects
);
956 page
->objects
= max_objects
;
957 slab_fix(s
, "Number of objects adjusted.");
959 if (page
->inuse
!= page
->objects
- nr
) {
960 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
961 page
->inuse
, page
->objects
- nr
);
962 page
->inuse
= page
->objects
- nr
;
963 slab_fix(s
, "Object count adjusted.");
965 return search
== NULL
;
968 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
971 if (s
->flags
& SLAB_TRACE
) {
972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 alloc
? "alloc" : "free",
979 print_section(KERN_INFO
, "Object ", (void *)object
,
987 * Tracking of fully allocated slabs for debugging purposes.
989 static void add_full(struct kmem_cache
*s
,
990 struct kmem_cache_node
*n
, struct page
*page
)
992 if (!(s
->flags
& SLAB_STORE_USER
))
995 lockdep_assert_held(&n
->list_lock
);
996 list_add(&page
->lru
, &n
->full
);
999 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1001 if (!(s
->flags
& SLAB_STORE_USER
))
1004 lockdep_assert_held(&n
->list_lock
);
1005 list_del(&page
->lru
);
1008 /* Tracking of the number of slabs for debugging purposes */
1009 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1011 struct kmem_cache_node
*n
= get_node(s
, node
);
1013 return atomic_long_read(&n
->nr_slabs
);
1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1018 return atomic_long_read(&n
->nr_slabs
);
1021 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1023 struct kmem_cache_node
*n
= get_node(s
, node
);
1026 * May be called early in order to allocate a slab for the
1027 * kmem_cache_node structure. Solve the chicken-egg
1028 * dilemma by deferring the increment of the count during
1029 * bootstrap (see early_kmem_cache_node_alloc).
1032 atomic_long_inc(&n
->nr_slabs
);
1033 atomic_long_add(objects
, &n
->total_objects
);
1036 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1038 struct kmem_cache_node
*n
= get_node(s
, node
);
1040 atomic_long_dec(&n
->nr_slabs
);
1041 atomic_long_sub(objects
, &n
->total_objects
);
1044 /* Object debug checks for alloc/free paths */
1045 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1048 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1051 init_object(s
, object
, SLUB_RED_INACTIVE
);
1052 init_tracking(s
, object
);
1055 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1057 void *object
, unsigned long addr
)
1059 if (!check_slab(s
, page
))
1062 if (!check_valid_pointer(s
, page
, object
)) {
1063 object_err(s
, page
, object
, "Freelist Pointer check fails");
1067 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1073 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1075 void *object
, unsigned long addr
)
1077 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1078 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1082 /* Success perform special debug activities for allocs */
1083 if (s
->flags
& SLAB_STORE_USER
)
1084 set_track(s
, object
, TRACK_ALLOC
, addr
);
1085 trace(s
, page
, object
, 1);
1086 init_object(s
, object
, SLUB_RED_ACTIVE
);
1090 if (PageSlab(page
)) {
1092 * If this is a slab page then lets do the best we can
1093 * to avoid issues in the future. Marking all objects
1094 * as used avoids touching the remaining objects.
1096 slab_fix(s
, "Marking all objects used");
1097 page
->inuse
= page
->objects
;
1098 page
->freelist
= NULL
;
1103 static inline int free_consistency_checks(struct kmem_cache
*s
,
1104 struct page
*page
, void *object
, unsigned long addr
)
1106 if (!check_valid_pointer(s
, page
, object
)) {
1107 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1111 if (on_freelist(s
, page
, object
)) {
1112 object_err(s
, page
, object
, "Object already free");
1116 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1119 if (unlikely(s
!= page
->slab_cache
)) {
1120 if (!PageSlab(page
)) {
1121 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1123 } else if (!page
->slab_cache
) {
1124 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1128 object_err(s
, page
, object
,
1129 "page slab pointer corrupt.");
1135 /* Supports checking bulk free of a constructed freelist */
1136 static noinline
int free_debug_processing(
1137 struct kmem_cache
*s
, struct page
*page
,
1138 void *head
, void *tail
, int bulk_cnt
,
1141 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1142 void *object
= head
;
1144 unsigned long uninitialized_var(flags
);
1147 spin_lock_irqsave(&n
->list_lock
, flags
);
1150 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1151 if (!check_slab(s
, page
))
1158 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1159 if (!free_consistency_checks(s
, page
, object
, addr
))
1163 if (s
->flags
& SLAB_STORE_USER
)
1164 set_track(s
, object
, TRACK_FREE
, addr
);
1165 trace(s
, page
, object
, 0);
1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167 init_object(s
, object
, SLUB_RED_INACTIVE
);
1169 /* Reached end of constructed freelist yet? */
1170 if (object
!= tail
) {
1171 object
= get_freepointer(s
, object
);
1177 if (cnt
!= bulk_cnt
)
1178 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1182 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1184 slab_fix(s
, "Object at 0x%p not freed", object
);
1188 static int __init
setup_slub_debug(char *str
)
1190 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1191 if (*str
++ != '=' || !*str
)
1193 * No options specified. Switch on full debugging.
1199 * No options but restriction on slabs. This means full
1200 * debugging for slabs matching a pattern.
1207 * Switch off all debugging measures.
1212 * Determine which debug features should be switched on
1214 for (; *str
&& *str
!= ','; str
++) {
1215 switch (tolower(*str
)) {
1217 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1220 slub_debug
|= SLAB_RED_ZONE
;
1223 slub_debug
|= SLAB_POISON
;
1226 slub_debug
|= SLAB_STORE_USER
;
1229 slub_debug
|= SLAB_TRACE
;
1232 slub_debug
|= SLAB_FAILSLAB
;
1236 * Avoid enabling debugging on caches if its minimum
1237 * order would increase as a result.
1239 disable_higher_order_debug
= 1;
1242 pr_err("slub_debug option '%c' unknown. skipped\n",
1249 slub_debug_slabs
= str
+ 1;
1254 __setup("slub_debug", setup_slub_debug
);
1256 unsigned long kmem_cache_flags(unsigned long object_size
,
1257 unsigned long flags
, const char *name
,
1258 void (*ctor
)(void *))
1261 * Enable debugging if selected on the kernel commandline.
1263 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1264 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1265 flags
|= slub_debug
;
1269 #else /* !CONFIG_SLUB_DEBUG */
1270 static inline void setup_object_debug(struct kmem_cache
*s
,
1271 struct page
*page
, void *object
) {}
1273 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1274 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1276 static inline int free_debug_processing(
1277 struct kmem_cache
*s
, struct page
*page
,
1278 void *head
, void *tail
, int bulk_cnt
,
1279 unsigned long addr
) { return 0; }
1281 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1283 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1284 void *object
, u8 val
) { return 1; }
1285 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1286 struct page
*page
) {}
1287 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1288 struct page
*page
) {}
1289 unsigned long kmem_cache_flags(unsigned long object_size
,
1290 unsigned long flags
, const char *name
,
1291 void (*ctor
)(void *))
1295 #define slub_debug 0
1297 #define disable_higher_order_debug 0
1299 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1303 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1305 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1308 #endif /* CONFIG_SLUB_DEBUG */
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1314 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1316 kmemleak_alloc(ptr
, size
, 1, flags
);
1317 kasan_kmalloc_large(ptr
, size
, flags
);
1320 static inline void kfree_hook(const void *x
)
1323 kasan_kfree_large(x
);
1326 static inline void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1330 kmemleak_free_recursive(x
, s
->flags
);
1333 * Trouble is that we may no longer disable interrupts in the fast path
1334 * So in order to make the debug calls that expect irqs to be
1335 * disabled we need to disable interrupts temporarily.
1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 unsigned long flags
;
1341 local_irq_save(flags
);
1342 kmemcheck_slab_free(s
, x
, s
->object_size
);
1343 debug_check_no_locks_freed(x
, s
->object_size
);
1344 local_irq_restore(flags
);
1347 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1348 debug_check_no_obj_freed(x
, s
->object_size
);
1350 freeptr
= get_freepointer(s
, x
);
1352 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 * reuse. In this case the object's freelist pointer is changed.
1355 kasan_slab_free(s
, x
);
1359 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1360 void *head
, void *tail
)
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 #if defined(CONFIG_KMEMCHECK) || \
1367 defined(CONFIG_LOCKDEP) || \
1368 defined(CONFIG_DEBUG_KMEMLEAK) || \
1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1370 defined(CONFIG_KASAN)
1372 void *object
= head
;
1373 void *tail_obj
= tail
? : head
;
1377 freeptr
= slab_free_hook(s
, object
);
1378 } while ((object
!= tail_obj
) && (object
= freeptr
));
1382 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1385 setup_object_debug(s
, page
, object
);
1386 kasan_init_slab_obj(s
, object
);
1387 if (unlikely(s
->ctor
)) {
1388 kasan_unpoison_object_data(s
, object
);
1390 kasan_poison_object_data(s
, object
);
1395 * Slab allocation and freeing
1397 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1398 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1401 int order
= oo_order(oo
);
1403 flags
|= __GFP_NOTRACK
;
1405 if (node
== NUMA_NO_NODE
)
1406 page
= alloc_pages(flags
, order
);
1408 page
= __alloc_pages_node(node
, flags
, order
);
1410 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1411 __free_pages(page
, order
);
1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1419 /* Pre-initialize the random sequence cache */
1420 static int init_cache_random_seq(struct kmem_cache
*s
)
1423 unsigned long i
, count
= oo_objects(s
->oo
);
1425 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1427 pr_err("SLUB: Unable to initialize free list for %s\n",
1432 /* Transform to an offset on the set of pages */
1433 if (s
->random_seq
) {
1434 for (i
= 0; i
< count
; i
++)
1435 s
->random_seq
[i
] *= s
->size
;
1440 /* Initialize each random sequence freelist per cache */
1441 static void __init
init_freelist_randomization(void)
1443 struct kmem_cache
*s
;
1445 mutex_lock(&slab_mutex
);
1447 list_for_each_entry(s
, &slab_caches
, list
)
1448 init_cache_random_seq(s
);
1450 mutex_unlock(&slab_mutex
);
1453 /* Get the next entry on the pre-computed freelist randomized */
1454 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1455 unsigned long *pos
, void *start
,
1456 unsigned long page_limit
,
1457 unsigned long freelist_count
)
1462 * If the target page allocation failed, the number of objects on the
1463 * page might be smaller than the usual size defined by the cache.
1466 idx
= s
->random_seq
[*pos
];
1468 if (*pos
>= freelist_count
)
1470 } while (unlikely(idx
>= page_limit
));
1472 return (char *)start
+ idx
;
1475 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1476 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1481 unsigned long idx
, pos
, page_limit
, freelist_count
;
1483 if (page
->objects
< 2 || !s
->random_seq
)
1486 freelist_count
= oo_objects(s
->oo
);
1487 pos
= get_random_int() % freelist_count
;
1489 page_limit
= page
->objects
* s
->size
;
1490 start
= fixup_red_left(s
, page_address(page
));
1492 /* First entry is used as the base of the freelist */
1493 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1495 page
->freelist
= cur
;
1497 for (idx
= 1; idx
< page
->objects
; idx
++) {
1498 setup_object(s
, page
, cur
);
1499 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1501 set_freepointer(s
, cur
, next
);
1504 setup_object(s
, page
, cur
);
1505 set_freepointer(s
, cur
, NULL
);
1510 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1514 static inline void init_freelist_randomization(void) { }
1515 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1519 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1521 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1524 struct kmem_cache_order_objects oo
= s
->oo
;
1530 flags
&= gfp_allowed_mask
;
1532 if (gfpflags_allow_blocking(flags
))
1535 flags
|= s
->allocflags
;
1538 * Let the initial higher-order allocation fail under memory pressure
1539 * so we fall-back to the minimum order allocation.
1541 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1542 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1543 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1545 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1546 if (unlikely(!page
)) {
1550 * Allocation may have failed due to fragmentation.
1551 * Try a lower order alloc if possible
1553 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1554 if (unlikely(!page
))
1556 stat(s
, ORDER_FALLBACK
);
1559 if (kmemcheck_enabled
&&
1560 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1561 int pages
= 1 << oo_order(oo
);
1563 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1566 * Objects from caches that have a constructor don't get
1567 * cleared when they're allocated, so we need to do it here.
1570 kmemcheck_mark_uninitialized_pages(page
, pages
);
1572 kmemcheck_mark_unallocated_pages(page
, pages
);
1575 page
->objects
= oo_objects(oo
);
1577 order
= compound_order(page
);
1578 page
->slab_cache
= s
;
1579 __SetPageSlab(page
);
1580 if (page_is_pfmemalloc(page
))
1581 SetPageSlabPfmemalloc(page
);
1583 start
= page_address(page
);
1585 if (unlikely(s
->flags
& SLAB_POISON
))
1586 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1588 kasan_poison_slab(page
);
1590 shuffle
= shuffle_freelist(s
, page
);
1593 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1594 setup_object(s
, page
, p
);
1595 if (likely(idx
< page
->objects
))
1596 set_freepointer(s
, p
, p
+ s
->size
);
1598 set_freepointer(s
, p
, NULL
);
1600 page
->freelist
= fixup_red_left(s
, start
);
1603 page
->inuse
= page
->objects
;
1607 if (gfpflags_allow_blocking(flags
))
1608 local_irq_disable();
1612 mod_zone_page_state(page_zone(page
),
1613 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1614 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1617 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1622 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1624 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1625 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1626 flags
&= ~GFP_SLAB_BUG_MASK
;
1627 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1628 invalid_mask
, &invalid_mask
, flags
, &flags
);
1631 return allocate_slab(s
,
1632 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1635 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1637 int order
= compound_order(page
);
1638 int pages
= 1 << order
;
1640 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1643 slab_pad_check(s
, page
);
1644 for_each_object(p
, s
, page_address(page
),
1646 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1649 kmemcheck_free_shadow(page
, compound_order(page
));
1651 mod_zone_page_state(page_zone(page
),
1652 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1653 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1656 __ClearPageSlabPfmemalloc(page
);
1657 __ClearPageSlab(page
);
1659 page_mapcount_reset(page
);
1660 if (current
->reclaim_state
)
1661 current
->reclaim_state
->reclaimed_slab
+= pages
;
1662 memcg_uncharge_slab(page
, order
, s
);
1663 __free_pages(page
, order
);
1666 #define need_reserve_slab_rcu \
1667 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1669 static void rcu_free_slab(struct rcu_head
*h
)
1673 if (need_reserve_slab_rcu
)
1674 page
= virt_to_head_page(h
);
1676 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1678 __free_slab(page
->slab_cache
, page
);
1681 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1683 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1684 struct rcu_head
*head
;
1686 if (need_reserve_slab_rcu
) {
1687 int order
= compound_order(page
);
1688 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1690 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1691 head
= page_address(page
) + offset
;
1693 head
= &page
->rcu_head
;
1696 call_rcu(head
, rcu_free_slab
);
1698 __free_slab(s
, page
);
1701 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1703 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1708 * Management of partially allocated slabs.
1711 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1714 if (tail
== DEACTIVATE_TO_TAIL
)
1715 list_add_tail(&page
->lru
, &n
->partial
);
1717 list_add(&page
->lru
, &n
->partial
);
1720 static inline void add_partial(struct kmem_cache_node
*n
,
1721 struct page
*page
, int tail
)
1723 lockdep_assert_held(&n
->list_lock
);
1724 __add_partial(n
, page
, tail
);
1727 static inline void remove_partial(struct kmem_cache_node
*n
,
1730 lockdep_assert_held(&n
->list_lock
);
1731 list_del(&page
->lru
);
1736 * Remove slab from the partial list, freeze it and
1737 * return the pointer to the freelist.
1739 * Returns a list of objects or NULL if it fails.
1741 static inline void *acquire_slab(struct kmem_cache
*s
,
1742 struct kmem_cache_node
*n
, struct page
*page
,
1743 int mode
, int *objects
)
1746 unsigned long counters
;
1749 lockdep_assert_held(&n
->list_lock
);
1752 * Zap the freelist and set the frozen bit.
1753 * The old freelist is the list of objects for the
1754 * per cpu allocation list.
1756 freelist
= page
->freelist
;
1757 counters
= page
->counters
;
1758 new.counters
= counters
;
1759 *objects
= new.objects
- new.inuse
;
1761 new.inuse
= page
->objects
;
1762 new.freelist
= NULL
;
1764 new.freelist
= freelist
;
1767 VM_BUG_ON(new.frozen
);
1770 if (!__cmpxchg_double_slab(s
, page
,
1772 new.freelist
, new.counters
,
1776 remove_partial(n
, page
);
1781 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1782 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1785 * Try to allocate a partial slab from a specific node.
1787 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1788 struct kmem_cache_cpu
*c
, gfp_t flags
)
1790 struct page
*page
, *page2
;
1791 void *object
= NULL
;
1796 * Racy check. If we mistakenly see no partial slabs then we
1797 * just allocate an empty slab. If we mistakenly try to get a
1798 * partial slab and there is none available then get_partials()
1801 if (!n
|| !n
->nr_partial
)
1804 spin_lock(&n
->list_lock
);
1805 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1808 if (!pfmemalloc_match(page
, flags
))
1811 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1815 available
+= objects
;
1818 stat(s
, ALLOC_FROM_PARTIAL
);
1821 put_cpu_partial(s
, page
, 0);
1822 stat(s
, CPU_PARTIAL_NODE
);
1824 if (!kmem_cache_has_cpu_partial(s
)
1825 || available
> s
->cpu_partial
/ 2)
1829 spin_unlock(&n
->list_lock
);
1834 * Get a page from somewhere. Search in increasing NUMA distances.
1836 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1837 struct kmem_cache_cpu
*c
)
1840 struct zonelist
*zonelist
;
1843 enum zone_type high_zoneidx
= gfp_zone(flags
);
1845 unsigned int cpuset_mems_cookie
;
1848 * The defrag ratio allows a configuration of the tradeoffs between
1849 * inter node defragmentation and node local allocations. A lower
1850 * defrag_ratio increases the tendency to do local allocations
1851 * instead of attempting to obtain partial slabs from other nodes.
1853 * If the defrag_ratio is set to 0 then kmalloc() always
1854 * returns node local objects. If the ratio is higher then kmalloc()
1855 * may return off node objects because partial slabs are obtained
1856 * from other nodes and filled up.
1858 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1859 * (which makes defrag_ratio = 1000) then every (well almost)
1860 * allocation will first attempt to defrag slab caches on other nodes.
1861 * This means scanning over all nodes to look for partial slabs which
1862 * may be expensive if we do it every time we are trying to find a slab
1863 * with available objects.
1865 if (!s
->remote_node_defrag_ratio
||
1866 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1870 cpuset_mems_cookie
= read_mems_allowed_begin();
1871 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1872 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1873 struct kmem_cache_node
*n
;
1875 n
= get_node(s
, zone_to_nid(zone
));
1877 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1878 n
->nr_partial
> s
->min_partial
) {
1879 object
= get_partial_node(s
, n
, c
, flags
);
1882 * Don't check read_mems_allowed_retry()
1883 * here - if mems_allowed was updated in
1884 * parallel, that was a harmless race
1885 * between allocation and the cpuset
1892 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1898 * Get a partial page, lock it and return it.
1900 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1901 struct kmem_cache_cpu
*c
)
1904 int searchnode
= node
;
1906 if (node
== NUMA_NO_NODE
)
1907 searchnode
= numa_mem_id();
1908 else if (!node_present_pages(node
))
1909 searchnode
= node_to_mem_node(node
);
1911 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1912 if (object
|| node
!= NUMA_NO_NODE
)
1915 return get_any_partial(s
, flags
, c
);
1918 #ifdef CONFIG_PREEMPT
1920 * Calculate the next globally unique transaction for disambiguiation
1921 * during cmpxchg. The transactions start with the cpu number and are then
1922 * incremented by CONFIG_NR_CPUS.
1924 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1927 * No preemption supported therefore also no need to check for
1933 static inline unsigned long next_tid(unsigned long tid
)
1935 return tid
+ TID_STEP
;
1938 static inline unsigned int tid_to_cpu(unsigned long tid
)
1940 return tid
% TID_STEP
;
1943 static inline unsigned long tid_to_event(unsigned long tid
)
1945 return tid
/ TID_STEP
;
1948 static inline unsigned int init_tid(int cpu
)
1953 static inline void note_cmpxchg_failure(const char *n
,
1954 const struct kmem_cache
*s
, unsigned long tid
)
1956 #ifdef SLUB_DEBUG_CMPXCHG
1957 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1959 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1961 #ifdef CONFIG_PREEMPT
1962 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1963 pr_warn("due to cpu change %d -> %d\n",
1964 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1967 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1968 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1969 tid_to_event(tid
), tid_to_event(actual_tid
));
1971 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1972 actual_tid
, tid
, next_tid(tid
));
1974 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1977 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1981 for_each_possible_cpu(cpu
)
1982 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1986 * Remove the cpu slab
1988 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1991 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1992 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1994 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1996 int tail
= DEACTIVATE_TO_HEAD
;
2000 if (page
->freelist
) {
2001 stat(s
, DEACTIVATE_REMOTE_FREES
);
2002 tail
= DEACTIVATE_TO_TAIL
;
2006 * Stage one: Free all available per cpu objects back
2007 * to the page freelist while it is still frozen. Leave the
2010 * There is no need to take the list->lock because the page
2013 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2015 unsigned long counters
;
2018 prior
= page
->freelist
;
2019 counters
= page
->counters
;
2020 set_freepointer(s
, freelist
, prior
);
2021 new.counters
= counters
;
2023 VM_BUG_ON(!new.frozen
);
2025 } while (!__cmpxchg_double_slab(s
, page
,
2027 freelist
, new.counters
,
2028 "drain percpu freelist"));
2030 freelist
= nextfree
;
2034 * Stage two: Ensure that the page is unfrozen while the
2035 * list presence reflects the actual number of objects
2038 * We setup the list membership and then perform a cmpxchg
2039 * with the count. If there is a mismatch then the page
2040 * is not unfrozen but the page is on the wrong list.
2042 * Then we restart the process which may have to remove
2043 * the page from the list that we just put it on again
2044 * because the number of objects in the slab may have
2049 old
.freelist
= page
->freelist
;
2050 old
.counters
= page
->counters
;
2051 VM_BUG_ON(!old
.frozen
);
2053 /* Determine target state of the slab */
2054 new.counters
= old
.counters
;
2057 set_freepointer(s
, freelist
, old
.freelist
);
2058 new.freelist
= freelist
;
2060 new.freelist
= old
.freelist
;
2064 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2066 else if (new.freelist
) {
2071 * Taking the spinlock removes the possiblity
2072 * that acquire_slab() will see a slab page that
2075 spin_lock(&n
->list_lock
);
2079 if (kmem_cache_debug(s
) && !lock
) {
2082 * This also ensures that the scanning of full
2083 * slabs from diagnostic functions will not see
2086 spin_lock(&n
->list_lock
);
2094 remove_partial(n
, page
);
2096 else if (l
== M_FULL
)
2098 remove_full(s
, n
, page
);
2100 if (m
== M_PARTIAL
) {
2102 add_partial(n
, page
, tail
);
2105 } else if (m
== M_FULL
) {
2107 stat(s
, DEACTIVATE_FULL
);
2108 add_full(s
, n
, page
);
2114 if (!__cmpxchg_double_slab(s
, page
,
2115 old
.freelist
, old
.counters
,
2116 new.freelist
, new.counters
,
2121 spin_unlock(&n
->list_lock
);
2124 stat(s
, DEACTIVATE_EMPTY
);
2125 discard_slab(s
, page
);
2131 * Unfreeze all the cpu partial slabs.
2133 * This function must be called with interrupts disabled
2134 * for the cpu using c (or some other guarantee must be there
2135 * to guarantee no concurrent accesses).
2137 static void unfreeze_partials(struct kmem_cache
*s
,
2138 struct kmem_cache_cpu
*c
)
2140 #ifdef CONFIG_SLUB_CPU_PARTIAL
2141 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2142 struct page
*page
, *discard_page
= NULL
;
2144 while ((page
= c
->partial
)) {
2148 c
->partial
= page
->next
;
2150 n2
= get_node(s
, page_to_nid(page
));
2153 spin_unlock(&n
->list_lock
);
2156 spin_lock(&n
->list_lock
);
2161 old
.freelist
= page
->freelist
;
2162 old
.counters
= page
->counters
;
2163 VM_BUG_ON(!old
.frozen
);
2165 new.counters
= old
.counters
;
2166 new.freelist
= old
.freelist
;
2170 } while (!__cmpxchg_double_slab(s
, page
,
2171 old
.freelist
, old
.counters
,
2172 new.freelist
, new.counters
,
2173 "unfreezing slab"));
2175 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2176 page
->next
= discard_page
;
2177 discard_page
= page
;
2179 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2180 stat(s
, FREE_ADD_PARTIAL
);
2185 spin_unlock(&n
->list_lock
);
2187 while (discard_page
) {
2188 page
= discard_page
;
2189 discard_page
= discard_page
->next
;
2191 stat(s
, DEACTIVATE_EMPTY
);
2192 discard_slab(s
, page
);
2199 * Put a page that was just frozen (in __slab_free) into a partial page
2200 * slot if available. This is done without interrupts disabled and without
2201 * preemption disabled. The cmpxchg is racy and may put the partial page
2202 * onto a random cpus partial slot.
2204 * If we did not find a slot then simply move all the partials to the
2205 * per node partial list.
2207 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2209 #ifdef CONFIG_SLUB_CPU_PARTIAL
2210 struct page
*oldpage
;
2218 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2221 pobjects
= oldpage
->pobjects
;
2222 pages
= oldpage
->pages
;
2223 if (drain
&& pobjects
> s
->cpu_partial
) {
2224 unsigned long flags
;
2226 * partial array is full. Move the existing
2227 * set to the per node partial list.
2229 local_irq_save(flags
);
2230 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2231 local_irq_restore(flags
);
2235 stat(s
, CPU_PARTIAL_DRAIN
);
2240 pobjects
+= page
->objects
- page
->inuse
;
2242 page
->pages
= pages
;
2243 page
->pobjects
= pobjects
;
2244 page
->next
= oldpage
;
2246 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2248 if (unlikely(!s
->cpu_partial
)) {
2249 unsigned long flags
;
2251 local_irq_save(flags
);
2252 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2253 local_irq_restore(flags
);
2259 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2261 stat(s
, CPUSLAB_FLUSH
);
2262 deactivate_slab(s
, c
->page
, c
->freelist
);
2264 c
->tid
= next_tid(c
->tid
);
2272 * Called from IPI handler with interrupts disabled.
2274 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2276 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2282 unfreeze_partials(s
, c
);
2286 static void flush_cpu_slab(void *d
)
2288 struct kmem_cache
*s
= d
;
2290 __flush_cpu_slab(s
, smp_processor_id());
2293 static bool has_cpu_slab(int cpu
, void *info
)
2295 struct kmem_cache
*s
= info
;
2296 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2298 return c
->page
|| c
->partial
;
2301 static void flush_all(struct kmem_cache
*s
)
2303 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2307 * Use the cpu notifier to insure that the cpu slabs are flushed when
2310 static int slub_cpu_dead(unsigned int cpu
)
2312 struct kmem_cache
*s
;
2313 unsigned long flags
;
2315 mutex_lock(&slab_mutex
);
2316 list_for_each_entry(s
, &slab_caches
, list
) {
2317 local_irq_save(flags
);
2318 __flush_cpu_slab(s
, cpu
);
2319 local_irq_restore(flags
);
2321 mutex_unlock(&slab_mutex
);
2326 * Check if the objects in a per cpu structure fit numa
2327 * locality expectations.
2329 static inline int node_match(struct page
*page
, int node
)
2332 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2338 #ifdef CONFIG_SLUB_DEBUG
2339 static int count_free(struct page
*page
)
2341 return page
->objects
- page
->inuse
;
2344 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2346 return atomic_long_read(&n
->total_objects
);
2348 #endif /* CONFIG_SLUB_DEBUG */
2350 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2351 static unsigned long count_partial(struct kmem_cache_node
*n
,
2352 int (*get_count
)(struct page
*))
2354 unsigned long flags
;
2355 unsigned long x
= 0;
2358 spin_lock_irqsave(&n
->list_lock
, flags
);
2359 list_for_each_entry(page
, &n
->partial
, lru
)
2360 x
+= get_count(page
);
2361 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2364 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2366 static noinline
void
2367 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2369 #ifdef CONFIG_SLUB_DEBUG
2370 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2371 DEFAULT_RATELIMIT_BURST
);
2373 struct kmem_cache_node
*n
;
2375 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2378 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2379 nid
, gfpflags
, &gfpflags
);
2380 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2381 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2384 if (oo_order(s
->min
) > get_order(s
->object_size
))
2385 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2388 for_each_kmem_cache_node(s
, node
, n
) {
2389 unsigned long nr_slabs
;
2390 unsigned long nr_objs
;
2391 unsigned long nr_free
;
2393 nr_free
= count_partial(n
, count_free
);
2394 nr_slabs
= node_nr_slabs(n
);
2395 nr_objs
= node_nr_objs(n
);
2397 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2398 node
, nr_slabs
, nr_objs
, nr_free
);
2403 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2404 int node
, struct kmem_cache_cpu
**pc
)
2407 struct kmem_cache_cpu
*c
= *pc
;
2410 freelist
= get_partial(s
, flags
, node
, c
);
2415 page
= new_slab(s
, flags
, node
);
2417 c
= raw_cpu_ptr(s
->cpu_slab
);
2422 * No other reference to the page yet so we can
2423 * muck around with it freely without cmpxchg
2425 freelist
= page
->freelist
;
2426 page
->freelist
= NULL
;
2428 stat(s
, ALLOC_SLAB
);
2437 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2439 if (unlikely(PageSlabPfmemalloc(page
)))
2440 return gfp_pfmemalloc_allowed(gfpflags
);
2446 * Check the page->freelist of a page and either transfer the freelist to the
2447 * per cpu freelist or deactivate the page.
2449 * The page is still frozen if the return value is not NULL.
2451 * If this function returns NULL then the page has been unfrozen.
2453 * This function must be called with interrupt disabled.
2455 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2458 unsigned long counters
;
2462 freelist
= page
->freelist
;
2463 counters
= page
->counters
;
2465 new.counters
= counters
;
2466 VM_BUG_ON(!new.frozen
);
2468 new.inuse
= page
->objects
;
2469 new.frozen
= freelist
!= NULL
;
2471 } while (!__cmpxchg_double_slab(s
, page
,
2480 * Slow path. The lockless freelist is empty or we need to perform
2483 * Processing is still very fast if new objects have been freed to the
2484 * regular freelist. In that case we simply take over the regular freelist
2485 * as the lockless freelist and zap the regular freelist.
2487 * If that is not working then we fall back to the partial lists. We take the
2488 * first element of the freelist as the object to allocate now and move the
2489 * rest of the freelist to the lockless freelist.
2491 * And if we were unable to get a new slab from the partial slab lists then
2492 * we need to allocate a new slab. This is the slowest path since it involves
2493 * a call to the page allocator and the setup of a new slab.
2495 * Version of __slab_alloc to use when we know that interrupts are
2496 * already disabled (which is the case for bulk allocation).
2498 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2499 unsigned long addr
, struct kmem_cache_cpu
*c
)
2509 if (unlikely(!node_match(page
, node
))) {
2510 int searchnode
= node
;
2512 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2513 searchnode
= node_to_mem_node(node
);
2515 if (unlikely(!node_match(page
, searchnode
))) {
2516 stat(s
, ALLOC_NODE_MISMATCH
);
2517 deactivate_slab(s
, page
, c
->freelist
);
2525 * By rights, we should be searching for a slab page that was
2526 * PFMEMALLOC but right now, we are losing the pfmemalloc
2527 * information when the page leaves the per-cpu allocator
2529 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2530 deactivate_slab(s
, page
, c
->freelist
);
2536 /* must check again c->freelist in case of cpu migration or IRQ */
2537 freelist
= c
->freelist
;
2541 freelist
= get_freelist(s
, page
);
2545 stat(s
, DEACTIVATE_BYPASS
);
2549 stat(s
, ALLOC_REFILL
);
2553 * freelist is pointing to the list of objects to be used.
2554 * page is pointing to the page from which the objects are obtained.
2555 * That page must be frozen for per cpu allocations to work.
2557 VM_BUG_ON(!c
->page
->frozen
);
2558 c
->freelist
= get_freepointer(s
, freelist
);
2559 c
->tid
= next_tid(c
->tid
);
2565 page
= c
->page
= c
->partial
;
2566 c
->partial
= page
->next
;
2567 stat(s
, CPU_PARTIAL_ALLOC
);
2572 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2574 if (unlikely(!freelist
)) {
2575 slab_out_of_memory(s
, gfpflags
, node
);
2580 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2583 /* Only entered in the debug case */
2584 if (kmem_cache_debug(s
) &&
2585 !alloc_debug_processing(s
, page
, freelist
, addr
))
2586 goto new_slab
; /* Slab failed checks. Next slab needed */
2588 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2595 * Another one that disabled interrupt and compensates for possible
2596 * cpu changes by refetching the per cpu area pointer.
2598 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2599 unsigned long addr
, struct kmem_cache_cpu
*c
)
2602 unsigned long flags
;
2604 local_irq_save(flags
);
2605 #ifdef CONFIG_PREEMPT
2607 * We may have been preempted and rescheduled on a different
2608 * cpu before disabling interrupts. Need to reload cpu area
2611 c
= this_cpu_ptr(s
->cpu_slab
);
2614 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2615 local_irq_restore(flags
);
2620 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2621 * have the fastpath folded into their functions. So no function call
2622 * overhead for requests that can be satisfied on the fastpath.
2624 * The fastpath works by first checking if the lockless freelist can be used.
2625 * If not then __slab_alloc is called for slow processing.
2627 * Otherwise we can simply pick the next object from the lockless free list.
2629 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2630 gfp_t gfpflags
, int node
, unsigned long addr
)
2633 struct kmem_cache_cpu
*c
;
2637 s
= slab_pre_alloc_hook(s
, gfpflags
);
2642 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2643 * enabled. We may switch back and forth between cpus while
2644 * reading from one cpu area. That does not matter as long
2645 * as we end up on the original cpu again when doing the cmpxchg.
2647 * We should guarantee that tid and kmem_cache are retrieved on
2648 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2649 * to check if it is matched or not.
2652 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2653 c
= raw_cpu_ptr(s
->cpu_slab
);
2654 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2655 unlikely(tid
!= READ_ONCE(c
->tid
)));
2658 * Irqless object alloc/free algorithm used here depends on sequence
2659 * of fetching cpu_slab's data. tid should be fetched before anything
2660 * on c to guarantee that object and page associated with previous tid
2661 * won't be used with current tid. If we fetch tid first, object and
2662 * page could be one associated with next tid and our alloc/free
2663 * request will be failed. In this case, we will retry. So, no problem.
2668 * The transaction ids are globally unique per cpu and per operation on
2669 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2670 * occurs on the right processor and that there was no operation on the
2671 * linked list in between.
2674 object
= c
->freelist
;
2676 if (unlikely(!object
|| !node_match(page
, node
))) {
2677 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2678 stat(s
, ALLOC_SLOWPATH
);
2680 void *next_object
= get_freepointer_safe(s
, object
);
2683 * The cmpxchg will only match if there was no additional
2684 * operation and if we are on the right processor.
2686 * The cmpxchg does the following atomically (without lock
2688 * 1. Relocate first pointer to the current per cpu area.
2689 * 2. Verify that tid and freelist have not been changed
2690 * 3. If they were not changed replace tid and freelist
2692 * Since this is without lock semantics the protection is only
2693 * against code executing on this cpu *not* from access by
2696 if (unlikely(!this_cpu_cmpxchg_double(
2697 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2699 next_object
, next_tid(tid
)))) {
2701 note_cmpxchg_failure("slab_alloc", s
, tid
);
2704 prefetch_freepointer(s
, next_object
);
2705 stat(s
, ALLOC_FASTPATH
);
2708 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2709 memset(object
, 0, s
->object_size
);
2711 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2716 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2717 gfp_t gfpflags
, unsigned long addr
)
2719 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2722 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2724 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2726 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2731 EXPORT_SYMBOL(kmem_cache_alloc
);
2733 #ifdef CONFIG_TRACING
2734 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2736 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2737 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2738 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2741 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2745 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2747 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2749 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2750 s
->object_size
, s
->size
, gfpflags
, node
);
2754 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2756 #ifdef CONFIG_TRACING
2757 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2759 int node
, size_t size
)
2761 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2763 trace_kmalloc_node(_RET_IP_
, ret
,
2764 size
, s
->size
, gfpflags
, node
);
2766 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2769 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2774 * Slow path handling. This may still be called frequently since objects
2775 * have a longer lifetime than the cpu slabs in most processing loads.
2777 * So we still attempt to reduce cache line usage. Just take the slab
2778 * lock and free the item. If there is no additional partial page
2779 * handling required then we can return immediately.
2781 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2782 void *head
, void *tail
, int cnt
,
2789 unsigned long counters
;
2790 struct kmem_cache_node
*n
= NULL
;
2791 unsigned long uninitialized_var(flags
);
2793 stat(s
, FREE_SLOWPATH
);
2795 if (kmem_cache_debug(s
) &&
2796 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2801 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2804 prior
= page
->freelist
;
2805 counters
= page
->counters
;
2806 set_freepointer(s
, tail
, prior
);
2807 new.counters
= counters
;
2808 was_frozen
= new.frozen
;
2810 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2812 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2815 * Slab was on no list before and will be
2817 * We can defer the list move and instead
2822 } else { /* Needs to be taken off a list */
2824 n
= get_node(s
, page_to_nid(page
));
2826 * Speculatively acquire the list_lock.
2827 * If the cmpxchg does not succeed then we may
2828 * drop the list_lock without any processing.
2830 * Otherwise the list_lock will synchronize with
2831 * other processors updating the list of slabs.
2833 spin_lock_irqsave(&n
->list_lock
, flags
);
2838 } while (!cmpxchg_double_slab(s
, page
,
2846 * If we just froze the page then put it onto the
2847 * per cpu partial list.
2849 if (new.frozen
&& !was_frozen
) {
2850 put_cpu_partial(s
, page
, 1);
2851 stat(s
, CPU_PARTIAL_FREE
);
2854 * The list lock was not taken therefore no list
2855 * activity can be necessary.
2858 stat(s
, FREE_FROZEN
);
2862 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2866 * Objects left in the slab. If it was not on the partial list before
2869 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2870 if (kmem_cache_debug(s
))
2871 remove_full(s
, n
, page
);
2872 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2873 stat(s
, FREE_ADD_PARTIAL
);
2875 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2881 * Slab on the partial list.
2883 remove_partial(n
, page
);
2884 stat(s
, FREE_REMOVE_PARTIAL
);
2886 /* Slab must be on the full list */
2887 remove_full(s
, n
, page
);
2890 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2892 discard_slab(s
, page
);
2896 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2897 * can perform fastpath freeing without additional function calls.
2899 * The fastpath is only possible if we are freeing to the current cpu slab
2900 * of this processor. This typically the case if we have just allocated
2903 * If fastpath is not possible then fall back to __slab_free where we deal
2904 * with all sorts of special processing.
2906 * Bulk free of a freelist with several objects (all pointing to the
2907 * same page) possible by specifying head and tail ptr, plus objects
2908 * count (cnt). Bulk free indicated by tail pointer being set.
2910 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2911 struct page
*page
, void *head
, void *tail
,
2912 int cnt
, unsigned long addr
)
2914 void *tail_obj
= tail
? : head
;
2915 struct kmem_cache_cpu
*c
;
2919 * Determine the currently cpus per cpu slab.
2920 * The cpu may change afterward. However that does not matter since
2921 * data is retrieved via this pointer. If we are on the same cpu
2922 * during the cmpxchg then the free will succeed.
2925 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2926 c
= raw_cpu_ptr(s
->cpu_slab
);
2927 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2928 unlikely(tid
!= READ_ONCE(c
->tid
)));
2930 /* Same with comment on barrier() in slab_alloc_node() */
2933 if (likely(page
== c
->page
)) {
2934 set_freepointer(s
, tail_obj
, c
->freelist
);
2936 if (unlikely(!this_cpu_cmpxchg_double(
2937 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2939 head
, next_tid(tid
)))) {
2941 note_cmpxchg_failure("slab_free", s
, tid
);
2944 stat(s
, FREE_FASTPATH
);
2946 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2950 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2951 void *head
, void *tail
, int cnt
,
2954 slab_free_freelist_hook(s
, head
, tail
);
2956 * slab_free_freelist_hook() could have put the items into quarantine.
2957 * If so, no need to free them.
2959 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_DESTROY_BY_RCU
))
2961 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2965 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2967 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2971 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2973 s
= cache_from_obj(s
, x
);
2976 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2977 trace_kmem_cache_free(_RET_IP_
, x
);
2979 EXPORT_SYMBOL(kmem_cache_free
);
2981 struct detached_freelist
{
2986 struct kmem_cache
*s
;
2990 * This function progressively scans the array with free objects (with
2991 * a limited look ahead) and extract objects belonging to the same
2992 * page. It builds a detached freelist directly within the given
2993 * page/objects. This can happen without any need for
2994 * synchronization, because the objects are owned by running process.
2995 * The freelist is build up as a single linked list in the objects.
2996 * The idea is, that this detached freelist can then be bulk
2997 * transferred to the real freelist(s), but only requiring a single
2998 * synchronization primitive. Look ahead in the array is limited due
2999 * to performance reasons.
3002 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3003 void **p
, struct detached_freelist
*df
)
3005 size_t first_skipped_index
= 0;
3010 /* Always re-init detached_freelist */
3015 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3016 } while (!object
&& size
);
3021 page
= virt_to_head_page(object
);
3023 /* Handle kalloc'ed objects */
3024 if (unlikely(!PageSlab(page
))) {
3025 BUG_ON(!PageCompound(page
));
3027 __free_pages(page
, compound_order(page
));
3028 p
[size
] = NULL
; /* mark object processed */
3031 /* Derive kmem_cache from object */
3032 df
->s
= page
->slab_cache
;
3034 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3037 /* Start new detached freelist */
3039 set_freepointer(df
->s
, object
, NULL
);
3041 df
->freelist
= object
;
3042 p
[size
] = NULL
; /* mark object processed */
3048 continue; /* Skip processed objects */
3050 /* df->page is always set at this point */
3051 if (df
->page
== virt_to_head_page(object
)) {
3052 /* Opportunity build freelist */
3053 set_freepointer(df
->s
, object
, df
->freelist
);
3054 df
->freelist
= object
;
3056 p
[size
] = NULL
; /* mark object processed */
3061 /* Limit look ahead search */
3065 if (!first_skipped_index
)
3066 first_skipped_index
= size
+ 1;
3069 return first_skipped_index
;
3072 /* Note that interrupts must be enabled when calling this function. */
3073 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3079 struct detached_freelist df
;
3081 size
= build_detached_freelist(s
, size
, p
, &df
);
3085 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3086 } while (likely(size
));
3088 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3090 /* Note that interrupts must be enabled when calling this function. */
3091 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3094 struct kmem_cache_cpu
*c
;
3097 /* memcg and kmem_cache debug support */
3098 s
= slab_pre_alloc_hook(s
, flags
);
3102 * Drain objects in the per cpu slab, while disabling local
3103 * IRQs, which protects against PREEMPT and interrupts
3104 * handlers invoking normal fastpath.
3106 local_irq_disable();
3107 c
= this_cpu_ptr(s
->cpu_slab
);
3109 for (i
= 0; i
< size
; i
++) {
3110 void *object
= c
->freelist
;
3112 if (unlikely(!object
)) {
3114 * Invoking slow path likely have side-effect
3115 * of re-populating per CPU c->freelist
3117 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3119 if (unlikely(!p
[i
]))
3122 c
= this_cpu_ptr(s
->cpu_slab
);
3123 continue; /* goto for-loop */
3125 c
->freelist
= get_freepointer(s
, object
);
3128 c
->tid
= next_tid(c
->tid
);
3131 /* Clear memory outside IRQ disabled fastpath loop */
3132 if (unlikely(flags
& __GFP_ZERO
)) {
3135 for (j
= 0; j
< i
; j
++)
3136 memset(p
[j
], 0, s
->object_size
);
3139 /* memcg and kmem_cache debug support */
3140 slab_post_alloc_hook(s
, flags
, size
, p
);
3144 slab_post_alloc_hook(s
, flags
, i
, p
);
3145 __kmem_cache_free_bulk(s
, i
, p
);
3148 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3152 * Object placement in a slab is made very easy because we always start at
3153 * offset 0. If we tune the size of the object to the alignment then we can
3154 * get the required alignment by putting one properly sized object after
3157 * Notice that the allocation order determines the sizes of the per cpu
3158 * caches. Each processor has always one slab available for allocations.
3159 * Increasing the allocation order reduces the number of times that slabs
3160 * must be moved on and off the partial lists and is therefore a factor in
3165 * Mininum / Maximum order of slab pages. This influences locking overhead
3166 * and slab fragmentation. A higher order reduces the number of partial slabs
3167 * and increases the number of allocations possible without having to
3168 * take the list_lock.
3170 static int slub_min_order
;
3171 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3172 static int slub_min_objects
;
3175 * Calculate the order of allocation given an slab object size.
3177 * The order of allocation has significant impact on performance and other
3178 * system components. Generally order 0 allocations should be preferred since
3179 * order 0 does not cause fragmentation in the page allocator. Larger objects
3180 * be problematic to put into order 0 slabs because there may be too much
3181 * unused space left. We go to a higher order if more than 1/16th of the slab
3184 * In order to reach satisfactory performance we must ensure that a minimum
3185 * number of objects is in one slab. Otherwise we may generate too much
3186 * activity on the partial lists which requires taking the list_lock. This is
3187 * less a concern for large slabs though which are rarely used.
3189 * slub_max_order specifies the order where we begin to stop considering the
3190 * number of objects in a slab as critical. If we reach slub_max_order then
3191 * we try to keep the page order as low as possible. So we accept more waste
3192 * of space in favor of a small page order.
3194 * Higher order allocations also allow the placement of more objects in a
3195 * slab and thereby reduce object handling overhead. If the user has
3196 * requested a higher mininum order then we start with that one instead of
3197 * the smallest order which will fit the object.
3199 static inline int slab_order(int size
, int min_objects
,
3200 int max_order
, int fract_leftover
, int reserved
)
3204 int min_order
= slub_min_order
;
3206 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3207 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3209 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3210 order
<= max_order
; order
++) {
3212 unsigned long slab_size
= PAGE_SIZE
<< order
;
3214 rem
= (slab_size
- reserved
) % size
;
3216 if (rem
<= slab_size
/ fract_leftover
)
3223 static inline int calculate_order(int size
, int reserved
)
3231 * Attempt to find best configuration for a slab. This
3232 * works by first attempting to generate a layout with
3233 * the best configuration and backing off gradually.
3235 * First we increase the acceptable waste in a slab. Then
3236 * we reduce the minimum objects required in a slab.
3238 min_objects
= slub_min_objects
;
3240 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3241 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3242 min_objects
= min(min_objects
, max_objects
);
3244 while (min_objects
> 1) {
3246 while (fraction
>= 4) {
3247 order
= slab_order(size
, min_objects
,
3248 slub_max_order
, fraction
, reserved
);
3249 if (order
<= slub_max_order
)
3257 * We were unable to place multiple objects in a slab. Now
3258 * lets see if we can place a single object there.
3260 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3261 if (order
<= slub_max_order
)
3265 * Doh this slab cannot be placed using slub_max_order.
3267 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3268 if (order
< MAX_ORDER
)
3274 init_kmem_cache_node(struct kmem_cache_node
*n
)
3277 spin_lock_init(&n
->list_lock
);
3278 INIT_LIST_HEAD(&n
->partial
);
3279 #ifdef CONFIG_SLUB_DEBUG
3280 atomic_long_set(&n
->nr_slabs
, 0);
3281 atomic_long_set(&n
->total_objects
, 0);
3282 INIT_LIST_HEAD(&n
->full
);
3286 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3288 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3289 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3292 * Must align to double word boundary for the double cmpxchg
3293 * instructions to work; see __pcpu_double_call_return_bool().
3295 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3296 2 * sizeof(void *));
3301 init_kmem_cache_cpus(s
);
3306 static struct kmem_cache
*kmem_cache_node
;
3309 * No kmalloc_node yet so do it by hand. We know that this is the first
3310 * slab on the node for this slabcache. There are no concurrent accesses
3313 * Note that this function only works on the kmem_cache_node
3314 * when allocating for the kmem_cache_node. This is used for bootstrapping
3315 * memory on a fresh node that has no slab structures yet.
3317 static void early_kmem_cache_node_alloc(int node
)
3320 struct kmem_cache_node
*n
;
3322 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3324 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3327 if (page_to_nid(page
) != node
) {
3328 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3329 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3334 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3337 kmem_cache_node
->node
[node
] = n
;
3338 #ifdef CONFIG_SLUB_DEBUG
3339 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3340 init_tracking(kmem_cache_node
, n
);
3342 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3344 init_kmem_cache_node(n
);
3345 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3348 * No locks need to be taken here as it has just been
3349 * initialized and there is no concurrent access.
3351 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3354 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3357 struct kmem_cache_node
*n
;
3359 for_each_kmem_cache_node(s
, node
, n
) {
3360 kmem_cache_free(kmem_cache_node
, n
);
3361 s
->node
[node
] = NULL
;
3365 void __kmem_cache_release(struct kmem_cache
*s
)
3367 cache_random_seq_destroy(s
);
3368 free_percpu(s
->cpu_slab
);
3369 free_kmem_cache_nodes(s
);
3372 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3376 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3377 struct kmem_cache_node
*n
;
3379 if (slab_state
== DOWN
) {
3380 early_kmem_cache_node_alloc(node
);
3383 n
= kmem_cache_alloc_node(kmem_cache_node
,
3387 free_kmem_cache_nodes(s
);
3392 init_kmem_cache_node(n
);
3397 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3399 if (min
< MIN_PARTIAL
)
3401 else if (min
> MAX_PARTIAL
)
3403 s
->min_partial
= min
;
3407 * calculate_sizes() determines the order and the distribution of data within
3410 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3412 unsigned long flags
= s
->flags
;
3413 size_t size
= s
->object_size
;
3417 * Round up object size to the next word boundary. We can only
3418 * place the free pointer at word boundaries and this determines
3419 * the possible location of the free pointer.
3421 size
= ALIGN(size
, sizeof(void *));
3423 #ifdef CONFIG_SLUB_DEBUG
3425 * Determine if we can poison the object itself. If the user of
3426 * the slab may touch the object after free or before allocation
3427 * then we should never poison the object itself.
3429 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3431 s
->flags
|= __OBJECT_POISON
;
3433 s
->flags
&= ~__OBJECT_POISON
;
3437 * If we are Redzoning then check if there is some space between the
3438 * end of the object and the free pointer. If not then add an
3439 * additional word to have some bytes to store Redzone information.
3441 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3442 size
+= sizeof(void *);
3446 * With that we have determined the number of bytes in actual use
3447 * by the object. This is the potential offset to the free pointer.
3451 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3454 * Relocate free pointer after the object if it is not
3455 * permitted to overwrite the first word of the object on
3458 * This is the case if we do RCU, have a constructor or
3459 * destructor or are poisoning the objects.
3462 size
+= sizeof(void *);
3465 #ifdef CONFIG_SLUB_DEBUG
3466 if (flags
& SLAB_STORE_USER
)
3468 * Need to store information about allocs and frees after
3471 size
+= 2 * sizeof(struct track
);
3474 kasan_cache_create(s
, &size
, &s
->flags
);
3475 #ifdef CONFIG_SLUB_DEBUG
3476 if (flags
& SLAB_RED_ZONE
) {
3478 * Add some empty padding so that we can catch
3479 * overwrites from earlier objects rather than let
3480 * tracking information or the free pointer be
3481 * corrupted if a user writes before the start
3484 size
+= sizeof(void *);
3486 s
->red_left_pad
= sizeof(void *);
3487 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3488 size
+= s
->red_left_pad
;
3493 * SLUB stores one object immediately after another beginning from
3494 * offset 0. In order to align the objects we have to simply size
3495 * each object to conform to the alignment.
3497 size
= ALIGN(size
, s
->align
);
3499 if (forced_order
>= 0)
3500 order
= forced_order
;
3502 order
= calculate_order(size
, s
->reserved
);
3509 s
->allocflags
|= __GFP_COMP
;
3511 if (s
->flags
& SLAB_CACHE_DMA
)
3512 s
->allocflags
|= GFP_DMA
;
3514 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3515 s
->allocflags
|= __GFP_RECLAIMABLE
;
3518 * Determine the number of objects per slab
3520 s
->oo
= oo_make(order
, size
, s
->reserved
);
3521 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3522 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3525 return !!oo_objects(s
->oo
);
3528 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3530 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3533 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3534 s
->reserved
= sizeof(struct rcu_head
);
3536 if (!calculate_sizes(s
, -1))
3538 if (disable_higher_order_debug
) {
3540 * Disable debugging flags that store metadata if the min slab
3543 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3544 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3546 if (!calculate_sizes(s
, -1))
3551 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3552 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3553 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3554 /* Enable fast mode */
3555 s
->flags
|= __CMPXCHG_DOUBLE
;
3559 * The larger the object size is, the more pages we want on the partial
3560 * list to avoid pounding the page allocator excessively.
3562 set_min_partial(s
, ilog2(s
->size
) / 2);
3565 * cpu_partial determined the maximum number of objects kept in the
3566 * per cpu partial lists of a processor.
3568 * Per cpu partial lists mainly contain slabs that just have one
3569 * object freed. If they are used for allocation then they can be
3570 * filled up again with minimal effort. The slab will never hit the
3571 * per node partial lists and therefore no locking will be required.
3573 * This setting also determines
3575 * A) The number of objects from per cpu partial slabs dumped to the
3576 * per node list when we reach the limit.
3577 * B) The number of objects in cpu partial slabs to extract from the
3578 * per node list when we run out of per cpu objects. We only fetch
3579 * 50% to keep some capacity around for frees.
3581 if (!kmem_cache_has_cpu_partial(s
))
3583 else if (s
->size
>= PAGE_SIZE
)
3585 else if (s
->size
>= 1024)
3587 else if (s
->size
>= 256)
3588 s
->cpu_partial
= 13;
3590 s
->cpu_partial
= 30;
3593 s
->remote_node_defrag_ratio
= 1000;
3596 /* Initialize the pre-computed randomized freelist if slab is up */
3597 if (slab_state
>= UP
) {
3598 if (init_cache_random_seq(s
))
3602 if (!init_kmem_cache_nodes(s
))
3605 if (alloc_kmem_cache_cpus(s
))
3608 free_kmem_cache_nodes(s
);
3610 if (flags
& SLAB_PANIC
)
3611 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3612 s
->name
, (unsigned long)s
->size
, s
->size
,
3613 oo_order(s
->oo
), s
->offset
, flags
);
3617 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3620 #ifdef CONFIG_SLUB_DEBUG
3621 void *addr
= page_address(page
);
3623 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3624 sizeof(long), GFP_ATOMIC
);
3627 slab_err(s
, page
, text
, s
->name
);
3630 get_map(s
, page
, map
);
3631 for_each_object(p
, s
, addr
, page
->objects
) {
3633 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3634 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3635 print_tracking(s
, p
);
3644 * Attempt to free all partial slabs on a node.
3645 * This is called from __kmem_cache_shutdown(). We must take list_lock
3646 * because sysfs file might still access partial list after the shutdowning.
3648 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3651 struct page
*page
, *h
;
3653 BUG_ON(irqs_disabled());
3654 spin_lock_irq(&n
->list_lock
);
3655 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3657 remove_partial(n
, page
);
3658 list_add(&page
->lru
, &discard
);
3660 list_slab_objects(s
, page
,
3661 "Objects remaining in %s on __kmem_cache_shutdown()");
3664 spin_unlock_irq(&n
->list_lock
);
3666 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3667 discard_slab(s
, page
);
3671 * Release all resources used by a slab cache.
3673 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3676 struct kmem_cache_node
*n
;
3679 /* Attempt to free all objects */
3680 for_each_kmem_cache_node(s
, node
, n
) {
3682 if (n
->nr_partial
|| slabs_node(s
, node
))
3688 /********************************************************************
3690 *******************************************************************/
3692 static int __init
setup_slub_min_order(char *str
)
3694 get_option(&str
, &slub_min_order
);
3699 __setup("slub_min_order=", setup_slub_min_order
);
3701 static int __init
setup_slub_max_order(char *str
)
3703 get_option(&str
, &slub_max_order
);
3704 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3709 __setup("slub_max_order=", setup_slub_max_order
);
3711 static int __init
setup_slub_min_objects(char *str
)
3713 get_option(&str
, &slub_min_objects
);
3718 __setup("slub_min_objects=", setup_slub_min_objects
);
3720 void *__kmalloc(size_t size
, gfp_t flags
)
3722 struct kmem_cache
*s
;
3725 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3726 return kmalloc_large(size
, flags
);
3728 s
= kmalloc_slab(size
, flags
);
3730 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3733 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3735 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3737 kasan_kmalloc(s
, ret
, size
, flags
);
3741 EXPORT_SYMBOL(__kmalloc
);
3744 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3749 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3750 page
= alloc_pages_node(node
, flags
, get_order(size
));
3752 ptr
= page_address(page
);
3754 kmalloc_large_node_hook(ptr
, size
, flags
);
3758 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3760 struct kmem_cache
*s
;
3763 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3764 ret
= kmalloc_large_node(size
, flags
, node
);
3766 trace_kmalloc_node(_RET_IP_
, ret
,
3767 size
, PAGE_SIZE
<< get_order(size
),
3773 s
= kmalloc_slab(size
, flags
);
3775 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3778 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3780 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3782 kasan_kmalloc(s
, ret
, size
, flags
);
3786 EXPORT_SYMBOL(__kmalloc_node
);
3789 #ifdef CONFIG_HARDENED_USERCOPY
3791 * Rejects objects that are incorrectly sized.
3793 * Returns NULL if check passes, otherwise const char * to name of cache
3794 * to indicate an error.
3796 const char *__check_heap_object(const void *ptr
, unsigned long n
,
3799 struct kmem_cache
*s
;
3800 unsigned long offset
;
3803 /* Find object and usable object size. */
3804 s
= page
->slab_cache
;
3805 object_size
= slab_ksize(s
);
3807 /* Reject impossible pointers. */
3808 if (ptr
< page_address(page
))
3811 /* Find offset within object. */
3812 offset
= (ptr
- page_address(page
)) % s
->size
;
3814 /* Adjust for redzone and reject if within the redzone. */
3815 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3816 if (offset
< s
->red_left_pad
)
3818 offset
-= s
->red_left_pad
;
3821 /* Allow address range falling entirely within object size. */
3822 if (offset
<= object_size
&& n
<= object_size
- offset
)
3827 #endif /* CONFIG_HARDENED_USERCOPY */
3829 static size_t __ksize(const void *object
)
3833 if (unlikely(object
== ZERO_SIZE_PTR
))
3836 page
= virt_to_head_page(object
);
3838 if (unlikely(!PageSlab(page
))) {
3839 WARN_ON(!PageCompound(page
));
3840 return PAGE_SIZE
<< compound_order(page
);
3843 return slab_ksize(page
->slab_cache
);
3846 size_t ksize(const void *object
)
3848 size_t size
= __ksize(object
);
3849 /* We assume that ksize callers could use whole allocated area,
3850 * so we need to unpoison this area.
3852 kasan_unpoison_shadow(object
, size
);
3855 EXPORT_SYMBOL(ksize
);
3857 void kfree(const void *x
)
3860 void *object
= (void *)x
;
3862 trace_kfree(_RET_IP_
, x
);
3864 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3867 page
= virt_to_head_page(x
);
3868 if (unlikely(!PageSlab(page
))) {
3869 BUG_ON(!PageCompound(page
));
3871 __free_pages(page
, compound_order(page
));
3874 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3876 EXPORT_SYMBOL(kfree
);
3878 #define SHRINK_PROMOTE_MAX 32
3881 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3882 * up most to the head of the partial lists. New allocations will then
3883 * fill those up and thus they can be removed from the partial lists.
3885 * The slabs with the least items are placed last. This results in them
3886 * being allocated from last increasing the chance that the last objects
3887 * are freed in them.
3889 int __kmem_cache_shrink(struct kmem_cache
*s
)
3893 struct kmem_cache_node
*n
;
3896 struct list_head discard
;
3897 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3898 unsigned long flags
;
3902 for_each_kmem_cache_node(s
, node
, n
) {
3903 INIT_LIST_HEAD(&discard
);
3904 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3905 INIT_LIST_HEAD(promote
+ i
);
3907 spin_lock_irqsave(&n
->list_lock
, flags
);
3910 * Build lists of slabs to discard or promote.
3912 * Note that concurrent frees may occur while we hold the
3913 * list_lock. page->inuse here is the upper limit.
3915 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3916 int free
= page
->objects
- page
->inuse
;
3918 /* Do not reread page->inuse */
3921 /* We do not keep full slabs on the list */
3924 if (free
== page
->objects
) {
3925 list_move(&page
->lru
, &discard
);
3927 } else if (free
<= SHRINK_PROMOTE_MAX
)
3928 list_move(&page
->lru
, promote
+ free
- 1);
3932 * Promote the slabs filled up most to the head of the
3935 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3936 list_splice(promote
+ i
, &n
->partial
);
3938 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3940 /* Release empty slabs */
3941 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3942 discard_slab(s
, page
);
3944 if (slabs_node(s
, node
))
3951 static int slab_mem_going_offline_callback(void *arg
)
3953 struct kmem_cache
*s
;
3955 mutex_lock(&slab_mutex
);
3956 list_for_each_entry(s
, &slab_caches
, list
)
3957 __kmem_cache_shrink(s
);
3958 mutex_unlock(&slab_mutex
);
3963 static void slab_mem_offline_callback(void *arg
)
3965 struct kmem_cache_node
*n
;
3966 struct kmem_cache
*s
;
3967 struct memory_notify
*marg
= arg
;
3970 offline_node
= marg
->status_change_nid_normal
;
3973 * If the node still has available memory. we need kmem_cache_node
3976 if (offline_node
< 0)
3979 mutex_lock(&slab_mutex
);
3980 list_for_each_entry(s
, &slab_caches
, list
) {
3981 n
= get_node(s
, offline_node
);
3984 * if n->nr_slabs > 0, slabs still exist on the node
3985 * that is going down. We were unable to free them,
3986 * and offline_pages() function shouldn't call this
3987 * callback. So, we must fail.
3989 BUG_ON(slabs_node(s
, offline_node
));
3991 s
->node
[offline_node
] = NULL
;
3992 kmem_cache_free(kmem_cache_node
, n
);
3995 mutex_unlock(&slab_mutex
);
3998 static int slab_mem_going_online_callback(void *arg
)
4000 struct kmem_cache_node
*n
;
4001 struct kmem_cache
*s
;
4002 struct memory_notify
*marg
= arg
;
4003 int nid
= marg
->status_change_nid_normal
;
4007 * If the node's memory is already available, then kmem_cache_node is
4008 * already created. Nothing to do.
4014 * We are bringing a node online. No memory is available yet. We must
4015 * allocate a kmem_cache_node structure in order to bring the node
4018 mutex_lock(&slab_mutex
);
4019 list_for_each_entry(s
, &slab_caches
, list
) {
4021 * XXX: kmem_cache_alloc_node will fallback to other nodes
4022 * since memory is not yet available from the node that
4025 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4030 init_kmem_cache_node(n
);
4034 mutex_unlock(&slab_mutex
);
4038 static int slab_memory_callback(struct notifier_block
*self
,
4039 unsigned long action
, void *arg
)
4044 case MEM_GOING_ONLINE
:
4045 ret
= slab_mem_going_online_callback(arg
);
4047 case MEM_GOING_OFFLINE
:
4048 ret
= slab_mem_going_offline_callback(arg
);
4051 case MEM_CANCEL_ONLINE
:
4052 slab_mem_offline_callback(arg
);
4055 case MEM_CANCEL_OFFLINE
:
4059 ret
= notifier_from_errno(ret
);
4065 static struct notifier_block slab_memory_callback_nb
= {
4066 .notifier_call
= slab_memory_callback
,
4067 .priority
= SLAB_CALLBACK_PRI
,
4070 /********************************************************************
4071 * Basic setup of slabs
4072 *******************************************************************/
4075 * Used for early kmem_cache structures that were allocated using
4076 * the page allocator. Allocate them properly then fix up the pointers
4077 * that may be pointing to the wrong kmem_cache structure.
4080 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4083 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4084 struct kmem_cache_node
*n
;
4086 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4089 * This runs very early, and only the boot processor is supposed to be
4090 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4093 __flush_cpu_slab(s
, smp_processor_id());
4094 for_each_kmem_cache_node(s
, node
, n
) {
4097 list_for_each_entry(p
, &n
->partial
, lru
)
4100 #ifdef CONFIG_SLUB_DEBUG
4101 list_for_each_entry(p
, &n
->full
, lru
)
4105 slab_init_memcg_params(s
);
4106 list_add(&s
->list
, &slab_caches
);
4110 void __init
kmem_cache_init(void)
4112 static __initdata
struct kmem_cache boot_kmem_cache
,
4113 boot_kmem_cache_node
;
4115 if (debug_guardpage_minorder())
4118 kmem_cache_node
= &boot_kmem_cache_node
;
4119 kmem_cache
= &boot_kmem_cache
;
4121 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4122 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
4124 register_hotmemory_notifier(&slab_memory_callback_nb
);
4126 /* Able to allocate the per node structures */
4127 slab_state
= PARTIAL
;
4129 create_boot_cache(kmem_cache
, "kmem_cache",
4130 offsetof(struct kmem_cache
, node
) +
4131 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4132 SLAB_HWCACHE_ALIGN
);
4134 kmem_cache
= bootstrap(&boot_kmem_cache
);
4137 * Allocate kmem_cache_node properly from the kmem_cache slab.
4138 * kmem_cache_node is separately allocated so no need to
4139 * update any list pointers.
4141 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4143 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4144 setup_kmalloc_cache_index_table();
4145 create_kmalloc_caches(0);
4147 /* Setup random freelists for each cache */
4148 init_freelist_randomization();
4150 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4153 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4155 slub_min_order
, slub_max_order
, slub_min_objects
,
4156 nr_cpu_ids
, nr_node_ids
);
4159 void __init
kmem_cache_init_late(void)
4164 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4165 unsigned long flags
, void (*ctor
)(void *))
4167 struct kmem_cache
*s
, *c
;
4169 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4174 * Adjust the object sizes so that we clear
4175 * the complete object on kzalloc.
4177 s
->object_size
= max(s
->object_size
, (int)size
);
4178 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4180 for_each_memcg_cache(c
, s
) {
4181 c
->object_size
= s
->object_size
;
4182 c
->inuse
= max_t(int, c
->inuse
,
4183 ALIGN(size
, sizeof(void *)));
4186 if (sysfs_slab_alias(s
, name
)) {
4195 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4199 err
= kmem_cache_open(s
, flags
);
4203 /* Mutex is not taken during early boot */
4204 if (slab_state
<= UP
)
4207 memcg_propagate_slab_attrs(s
);
4208 err
= sysfs_slab_add(s
);
4210 __kmem_cache_release(s
);
4215 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4217 struct kmem_cache
*s
;
4220 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4221 return kmalloc_large(size
, gfpflags
);
4223 s
= kmalloc_slab(size
, gfpflags
);
4225 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4228 ret
= slab_alloc(s
, gfpflags
, caller
);
4230 /* Honor the call site pointer we received. */
4231 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4237 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4238 int node
, unsigned long caller
)
4240 struct kmem_cache
*s
;
4243 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4244 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4246 trace_kmalloc_node(caller
, ret
,
4247 size
, PAGE_SIZE
<< get_order(size
),
4253 s
= kmalloc_slab(size
, gfpflags
);
4255 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4258 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4260 /* Honor the call site pointer we received. */
4261 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4268 static int count_inuse(struct page
*page
)
4273 static int count_total(struct page
*page
)
4275 return page
->objects
;
4279 #ifdef CONFIG_SLUB_DEBUG
4280 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4284 void *addr
= page_address(page
);
4286 if (!check_slab(s
, page
) ||
4287 !on_freelist(s
, page
, NULL
))
4290 /* Now we know that a valid freelist exists */
4291 bitmap_zero(map
, page
->objects
);
4293 get_map(s
, page
, map
);
4294 for_each_object(p
, s
, addr
, page
->objects
) {
4295 if (test_bit(slab_index(p
, s
, addr
), map
))
4296 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4300 for_each_object(p
, s
, addr
, page
->objects
)
4301 if (!test_bit(slab_index(p
, s
, addr
), map
))
4302 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4307 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4311 validate_slab(s
, page
, map
);
4315 static int validate_slab_node(struct kmem_cache
*s
,
4316 struct kmem_cache_node
*n
, unsigned long *map
)
4318 unsigned long count
= 0;
4320 unsigned long flags
;
4322 spin_lock_irqsave(&n
->list_lock
, flags
);
4324 list_for_each_entry(page
, &n
->partial
, lru
) {
4325 validate_slab_slab(s
, page
, map
);
4328 if (count
!= n
->nr_partial
)
4329 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4330 s
->name
, count
, n
->nr_partial
);
4332 if (!(s
->flags
& SLAB_STORE_USER
))
4335 list_for_each_entry(page
, &n
->full
, lru
) {
4336 validate_slab_slab(s
, page
, map
);
4339 if (count
!= atomic_long_read(&n
->nr_slabs
))
4340 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4341 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4344 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4348 static long validate_slab_cache(struct kmem_cache
*s
)
4351 unsigned long count
= 0;
4352 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4353 sizeof(unsigned long), GFP_KERNEL
);
4354 struct kmem_cache_node
*n
;
4360 for_each_kmem_cache_node(s
, node
, n
)
4361 count
+= validate_slab_node(s
, n
, map
);
4366 * Generate lists of code addresses where slabcache objects are allocated
4371 unsigned long count
;
4378 DECLARE_BITMAP(cpus
, NR_CPUS
);
4384 unsigned long count
;
4385 struct location
*loc
;
4388 static void free_loc_track(struct loc_track
*t
)
4391 free_pages((unsigned long)t
->loc
,
4392 get_order(sizeof(struct location
) * t
->max
));
4395 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4400 order
= get_order(sizeof(struct location
) * max
);
4402 l
= (void *)__get_free_pages(flags
, order
);
4407 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4415 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4416 const struct track
*track
)
4418 long start
, end
, pos
;
4420 unsigned long caddr
;
4421 unsigned long age
= jiffies
- track
->when
;
4427 pos
= start
+ (end
- start
+ 1) / 2;
4430 * There is nothing at "end". If we end up there
4431 * we need to add something to before end.
4436 caddr
= t
->loc
[pos
].addr
;
4437 if (track
->addr
== caddr
) {
4443 if (age
< l
->min_time
)
4445 if (age
> l
->max_time
)
4448 if (track
->pid
< l
->min_pid
)
4449 l
->min_pid
= track
->pid
;
4450 if (track
->pid
> l
->max_pid
)
4451 l
->max_pid
= track
->pid
;
4453 cpumask_set_cpu(track
->cpu
,
4454 to_cpumask(l
->cpus
));
4456 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4460 if (track
->addr
< caddr
)
4467 * Not found. Insert new tracking element.
4469 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4475 (t
->count
- pos
) * sizeof(struct location
));
4478 l
->addr
= track
->addr
;
4482 l
->min_pid
= track
->pid
;
4483 l
->max_pid
= track
->pid
;
4484 cpumask_clear(to_cpumask(l
->cpus
));
4485 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4486 nodes_clear(l
->nodes
);
4487 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4491 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4492 struct page
*page
, enum track_item alloc
,
4495 void *addr
= page_address(page
);
4498 bitmap_zero(map
, page
->objects
);
4499 get_map(s
, page
, map
);
4501 for_each_object(p
, s
, addr
, page
->objects
)
4502 if (!test_bit(slab_index(p
, s
, addr
), map
))
4503 add_location(t
, s
, get_track(s
, p
, alloc
));
4506 static int list_locations(struct kmem_cache
*s
, char *buf
,
4507 enum track_item alloc
)
4511 struct loc_track t
= { 0, 0, NULL
};
4513 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4514 sizeof(unsigned long), GFP_KERNEL
);
4515 struct kmem_cache_node
*n
;
4517 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4520 return sprintf(buf
, "Out of memory\n");
4522 /* Push back cpu slabs */
4525 for_each_kmem_cache_node(s
, node
, n
) {
4526 unsigned long flags
;
4529 if (!atomic_long_read(&n
->nr_slabs
))
4532 spin_lock_irqsave(&n
->list_lock
, flags
);
4533 list_for_each_entry(page
, &n
->partial
, lru
)
4534 process_slab(&t
, s
, page
, alloc
, map
);
4535 list_for_each_entry(page
, &n
->full
, lru
)
4536 process_slab(&t
, s
, page
, alloc
, map
);
4537 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4540 for (i
= 0; i
< t
.count
; i
++) {
4541 struct location
*l
= &t
.loc
[i
];
4543 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4545 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4548 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4550 len
+= sprintf(buf
+ len
, "<not-available>");
4552 if (l
->sum_time
!= l
->min_time
) {
4553 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4555 (long)div_u64(l
->sum_time
, l
->count
),
4558 len
+= sprintf(buf
+ len
, " age=%ld",
4561 if (l
->min_pid
!= l
->max_pid
)
4562 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4563 l
->min_pid
, l
->max_pid
);
4565 len
+= sprintf(buf
+ len
, " pid=%ld",
4568 if (num_online_cpus() > 1 &&
4569 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4570 len
< PAGE_SIZE
- 60)
4571 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4573 cpumask_pr_args(to_cpumask(l
->cpus
)));
4575 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4576 len
< PAGE_SIZE
- 60)
4577 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4579 nodemask_pr_args(&l
->nodes
));
4581 len
+= sprintf(buf
+ len
, "\n");
4587 len
+= sprintf(buf
, "No data\n");
4592 #ifdef SLUB_RESILIENCY_TEST
4593 static void __init
resiliency_test(void)
4597 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4599 pr_err("SLUB resiliency testing\n");
4600 pr_err("-----------------------\n");
4601 pr_err("A. Corruption after allocation\n");
4603 p
= kzalloc(16, GFP_KERNEL
);
4605 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4608 validate_slab_cache(kmalloc_caches
[4]);
4610 /* Hmmm... The next two are dangerous */
4611 p
= kzalloc(32, GFP_KERNEL
);
4612 p
[32 + sizeof(void *)] = 0x34;
4613 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4615 pr_err("If allocated object is overwritten then not detectable\n\n");
4617 validate_slab_cache(kmalloc_caches
[5]);
4618 p
= kzalloc(64, GFP_KERNEL
);
4619 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4621 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4623 pr_err("If allocated object is overwritten then not detectable\n\n");
4624 validate_slab_cache(kmalloc_caches
[6]);
4626 pr_err("\nB. Corruption after free\n");
4627 p
= kzalloc(128, GFP_KERNEL
);
4630 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4631 validate_slab_cache(kmalloc_caches
[7]);
4633 p
= kzalloc(256, GFP_KERNEL
);
4636 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4637 validate_slab_cache(kmalloc_caches
[8]);
4639 p
= kzalloc(512, GFP_KERNEL
);
4642 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4643 validate_slab_cache(kmalloc_caches
[9]);
4647 static void resiliency_test(void) {};
4652 enum slab_stat_type
{
4653 SL_ALL
, /* All slabs */
4654 SL_PARTIAL
, /* Only partially allocated slabs */
4655 SL_CPU
, /* Only slabs used for cpu caches */
4656 SL_OBJECTS
, /* Determine allocated objects not slabs */
4657 SL_TOTAL
/* Determine object capacity not slabs */
4660 #define SO_ALL (1 << SL_ALL)
4661 #define SO_PARTIAL (1 << SL_PARTIAL)
4662 #define SO_CPU (1 << SL_CPU)
4663 #define SO_OBJECTS (1 << SL_OBJECTS)
4664 #define SO_TOTAL (1 << SL_TOTAL)
4666 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4667 char *buf
, unsigned long flags
)
4669 unsigned long total
= 0;
4672 unsigned long *nodes
;
4674 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4678 if (flags
& SO_CPU
) {
4681 for_each_possible_cpu(cpu
) {
4682 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4687 page
= READ_ONCE(c
->page
);
4691 node
= page_to_nid(page
);
4692 if (flags
& SO_TOTAL
)
4694 else if (flags
& SO_OBJECTS
)
4702 page
= READ_ONCE(c
->partial
);
4704 node
= page_to_nid(page
);
4705 if (flags
& SO_TOTAL
)
4707 else if (flags
& SO_OBJECTS
)
4718 #ifdef CONFIG_SLUB_DEBUG
4719 if (flags
& SO_ALL
) {
4720 struct kmem_cache_node
*n
;
4722 for_each_kmem_cache_node(s
, node
, n
) {
4724 if (flags
& SO_TOTAL
)
4725 x
= atomic_long_read(&n
->total_objects
);
4726 else if (flags
& SO_OBJECTS
)
4727 x
= atomic_long_read(&n
->total_objects
) -
4728 count_partial(n
, count_free
);
4730 x
= atomic_long_read(&n
->nr_slabs
);
4737 if (flags
& SO_PARTIAL
) {
4738 struct kmem_cache_node
*n
;
4740 for_each_kmem_cache_node(s
, node
, n
) {
4741 if (flags
& SO_TOTAL
)
4742 x
= count_partial(n
, count_total
);
4743 else if (flags
& SO_OBJECTS
)
4744 x
= count_partial(n
, count_inuse
);
4751 x
= sprintf(buf
, "%lu", total
);
4753 for (node
= 0; node
< nr_node_ids
; node
++)
4755 x
+= sprintf(buf
+ x
, " N%d=%lu",
4760 return x
+ sprintf(buf
+ x
, "\n");
4763 #ifdef CONFIG_SLUB_DEBUG
4764 static int any_slab_objects(struct kmem_cache
*s
)
4767 struct kmem_cache_node
*n
;
4769 for_each_kmem_cache_node(s
, node
, n
)
4770 if (atomic_long_read(&n
->total_objects
))
4777 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4778 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4780 struct slab_attribute
{
4781 struct attribute attr
;
4782 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4783 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4786 #define SLAB_ATTR_RO(_name) \
4787 static struct slab_attribute _name##_attr = \
4788 __ATTR(_name, 0400, _name##_show, NULL)
4790 #define SLAB_ATTR(_name) \
4791 static struct slab_attribute _name##_attr = \
4792 __ATTR(_name, 0600, _name##_show, _name##_store)
4794 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4796 return sprintf(buf
, "%d\n", s
->size
);
4798 SLAB_ATTR_RO(slab_size
);
4800 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4802 return sprintf(buf
, "%d\n", s
->align
);
4804 SLAB_ATTR_RO(align
);
4806 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4808 return sprintf(buf
, "%d\n", s
->object_size
);
4810 SLAB_ATTR_RO(object_size
);
4812 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4814 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4816 SLAB_ATTR_RO(objs_per_slab
);
4818 static ssize_t
order_store(struct kmem_cache
*s
,
4819 const char *buf
, size_t length
)
4821 unsigned long order
;
4824 err
= kstrtoul(buf
, 10, &order
);
4828 if (order
> slub_max_order
|| order
< slub_min_order
)
4831 calculate_sizes(s
, order
);
4835 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4837 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4841 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4843 return sprintf(buf
, "%lu\n", s
->min_partial
);
4846 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4852 err
= kstrtoul(buf
, 10, &min
);
4856 set_min_partial(s
, min
);
4859 SLAB_ATTR(min_partial
);
4861 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4863 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4866 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4869 unsigned long objects
;
4872 err
= kstrtoul(buf
, 10, &objects
);
4875 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4878 s
->cpu_partial
= objects
;
4882 SLAB_ATTR(cpu_partial
);
4884 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4888 return sprintf(buf
, "%pS\n", s
->ctor
);
4892 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4894 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4896 SLAB_ATTR_RO(aliases
);
4898 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4900 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4902 SLAB_ATTR_RO(partial
);
4904 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4906 return show_slab_objects(s
, buf
, SO_CPU
);
4908 SLAB_ATTR_RO(cpu_slabs
);
4910 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4912 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4914 SLAB_ATTR_RO(objects
);
4916 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4918 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4920 SLAB_ATTR_RO(objects_partial
);
4922 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4929 for_each_online_cpu(cpu
) {
4930 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4933 pages
+= page
->pages
;
4934 objects
+= page
->pobjects
;
4938 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4941 for_each_online_cpu(cpu
) {
4942 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4944 if (page
&& len
< PAGE_SIZE
- 20)
4945 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4946 page
->pobjects
, page
->pages
);
4949 return len
+ sprintf(buf
+ len
, "\n");
4951 SLAB_ATTR_RO(slabs_cpu_partial
);
4953 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4955 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4958 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4959 const char *buf
, size_t length
)
4961 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4963 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4966 SLAB_ATTR(reclaim_account
);
4968 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4970 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4972 SLAB_ATTR_RO(hwcache_align
);
4974 #ifdef CONFIG_ZONE_DMA
4975 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4977 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4979 SLAB_ATTR_RO(cache_dma
);
4982 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4984 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4986 SLAB_ATTR_RO(destroy_by_rcu
);
4988 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4990 return sprintf(buf
, "%d\n", s
->reserved
);
4992 SLAB_ATTR_RO(reserved
);
4994 #ifdef CONFIG_SLUB_DEBUG
4995 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4997 return show_slab_objects(s
, buf
, SO_ALL
);
4999 SLAB_ATTR_RO(slabs
);
5001 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5003 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5005 SLAB_ATTR_RO(total_objects
);
5007 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5009 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5012 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5013 const char *buf
, size_t length
)
5015 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5016 if (buf
[0] == '1') {
5017 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5018 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5022 SLAB_ATTR(sanity_checks
);
5024 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5026 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5029 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5033 * Tracing a merged cache is going to give confusing results
5034 * as well as cause other issues like converting a mergeable
5035 * cache into an umergeable one.
5037 if (s
->refcount
> 1)
5040 s
->flags
&= ~SLAB_TRACE
;
5041 if (buf
[0] == '1') {
5042 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5043 s
->flags
|= SLAB_TRACE
;
5049 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5051 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5054 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5055 const char *buf
, size_t length
)
5057 if (any_slab_objects(s
))
5060 s
->flags
&= ~SLAB_RED_ZONE
;
5061 if (buf
[0] == '1') {
5062 s
->flags
|= SLAB_RED_ZONE
;
5064 calculate_sizes(s
, -1);
5067 SLAB_ATTR(red_zone
);
5069 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5071 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5074 static ssize_t
poison_store(struct kmem_cache
*s
,
5075 const char *buf
, size_t length
)
5077 if (any_slab_objects(s
))
5080 s
->flags
&= ~SLAB_POISON
;
5081 if (buf
[0] == '1') {
5082 s
->flags
|= SLAB_POISON
;
5084 calculate_sizes(s
, -1);
5089 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5091 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5094 static ssize_t
store_user_store(struct kmem_cache
*s
,
5095 const char *buf
, size_t length
)
5097 if (any_slab_objects(s
))
5100 s
->flags
&= ~SLAB_STORE_USER
;
5101 if (buf
[0] == '1') {
5102 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5103 s
->flags
|= SLAB_STORE_USER
;
5105 calculate_sizes(s
, -1);
5108 SLAB_ATTR(store_user
);
5110 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5115 static ssize_t
validate_store(struct kmem_cache
*s
,
5116 const char *buf
, size_t length
)
5120 if (buf
[0] == '1') {
5121 ret
= validate_slab_cache(s
);
5127 SLAB_ATTR(validate
);
5129 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5131 if (!(s
->flags
& SLAB_STORE_USER
))
5133 return list_locations(s
, buf
, TRACK_ALLOC
);
5135 SLAB_ATTR_RO(alloc_calls
);
5137 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5139 if (!(s
->flags
& SLAB_STORE_USER
))
5141 return list_locations(s
, buf
, TRACK_FREE
);
5143 SLAB_ATTR_RO(free_calls
);
5144 #endif /* CONFIG_SLUB_DEBUG */
5146 #ifdef CONFIG_FAILSLAB
5147 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5149 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5152 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5155 if (s
->refcount
> 1)
5158 s
->flags
&= ~SLAB_FAILSLAB
;
5160 s
->flags
|= SLAB_FAILSLAB
;
5163 SLAB_ATTR(failslab
);
5166 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5171 static ssize_t
shrink_store(struct kmem_cache
*s
,
5172 const char *buf
, size_t length
)
5175 kmem_cache_shrink(s
);
5183 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5185 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5188 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5189 const char *buf
, size_t length
)
5191 unsigned long ratio
;
5194 err
= kstrtoul(buf
, 10, &ratio
);
5199 s
->remote_node_defrag_ratio
= ratio
* 10;
5203 SLAB_ATTR(remote_node_defrag_ratio
);
5206 #ifdef CONFIG_SLUB_STATS
5207 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5209 unsigned long sum
= 0;
5212 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5217 for_each_online_cpu(cpu
) {
5218 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5224 len
= sprintf(buf
, "%lu", sum
);
5227 for_each_online_cpu(cpu
) {
5228 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5229 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5233 return len
+ sprintf(buf
+ len
, "\n");
5236 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5240 for_each_online_cpu(cpu
)
5241 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5244 #define STAT_ATTR(si, text) \
5245 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5247 return show_stat(s, buf, si); \
5249 static ssize_t text##_store(struct kmem_cache *s, \
5250 const char *buf, size_t length) \
5252 if (buf[0] != '0') \
5254 clear_stat(s, si); \
5259 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5260 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5261 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5262 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5263 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5264 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5265 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5266 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5267 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5268 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5269 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5270 STAT_ATTR(FREE_SLAB
, free_slab
);
5271 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5272 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5273 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5274 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5275 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5276 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5277 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5278 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5279 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5280 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5281 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5282 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5283 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5284 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5287 static struct attribute
*slab_attrs
[] = {
5288 &slab_size_attr
.attr
,
5289 &object_size_attr
.attr
,
5290 &objs_per_slab_attr
.attr
,
5292 &min_partial_attr
.attr
,
5293 &cpu_partial_attr
.attr
,
5295 &objects_partial_attr
.attr
,
5297 &cpu_slabs_attr
.attr
,
5301 &hwcache_align_attr
.attr
,
5302 &reclaim_account_attr
.attr
,
5303 &destroy_by_rcu_attr
.attr
,
5305 &reserved_attr
.attr
,
5306 &slabs_cpu_partial_attr
.attr
,
5307 #ifdef CONFIG_SLUB_DEBUG
5308 &total_objects_attr
.attr
,
5310 &sanity_checks_attr
.attr
,
5312 &red_zone_attr
.attr
,
5314 &store_user_attr
.attr
,
5315 &validate_attr
.attr
,
5316 &alloc_calls_attr
.attr
,
5317 &free_calls_attr
.attr
,
5319 #ifdef CONFIG_ZONE_DMA
5320 &cache_dma_attr
.attr
,
5323 &remote_node_defrag_ratio_attr
.attr
,
5325 #ifdef CONFIG_SLUB_STATS
5326 &alloc_fastpath_attr
.attr
,
5327 &alloc_slowpath_attr
.attr
,
5328 &free_fastpath_attr
.attr
,
5329 &free_slowpath_attr
.attr
,
5330 &free_frozen_attr
.attr
,
5331 &free_add_partial_attr
.attr
,
5332 &free_remove_partial_attr
.attr
,
5333 &alloc_from_partial_attr
.attr
,
5334 &alloc_slab_attr
.attr
,
5335 &alloc_refill_attr
.attr
,
5336 &alloc_node_mismatch_attr
.attr
,
5337 &free_slab_attr
.attr
,
5338 &cpuslab_flush_attr
.attr
,
5339 &deactivate_full_attr
.attr
,
5340 &deactivate_empty_attr
.attr
,
5341 &deactivate_to_head_attr
.attr
,
5342 &deactivate_to_tail_attr
.attr
,
5343 &deactivate_remote_frees_attr
.attr
,
5344 &deactivate_bypass_attr
.attr
,
5345 &order_fallback_attr
.attr
,
5346 &cmpxchg_double_fail_attr
.attr
,
5347 &cmpxchg_double_cpu_fail_attr
.attr
,
5348 &cpu_partial_alloc_attr
.attr
,
5349 &cpu_partial_free_attr
.attr
,
5350 &cpu_partial_node_attr
.attr
,
5351 &cpu_partial_drain_attr
.attr
,
5353 #ifdef CONFIG_FAILSLAB
5354 &failslab_attr
.attr
,
5360 static struct attribute_group slab_attr_group
= {
5361 .attrs
= slab_attrs
,
5364 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5365 struct attribute
*attr
,
5368 struct slab_attribute
*attribute
;
5369 struct kmem_cache
*s
;
5372 attribute
= to_slab_attr(attr
);
5375 if (!attribute
->show
)
5378 err
= attribute
->show(s
, buf
);
5383 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5384 struct attribute
*attr
,
5385 const char *buf
, size_t len
)
5387 struct slab_attribute
*attribute
;
5388 struct kmem_cache
*s
;
5391 attribute
= to_slab_attr(attr
);
5394 if (!attribute
->store
)
5397 err
= attribute
->store(s
, buf
, len
);
5399 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5400 struct kmem_cache
*c
;
5402 mutex_lock(&slab_mutex
);
5403 if (s
->max_attr_size
< len
)
5404 s
->max_attr_size
= len
;
5407 * This is a best effort propagation, so this function's return
5408 * value will be determined by the parent cache only. This is
5409 * basically because not all attributes will have a well
5410 * defined semantics for rollbacks - most of the actions will
5411 * have permanent effects.
5413 * Returning the error value of any of the children that fail
5414 * is not 100 % defined, in the sense that users seeing the
5415 * error code won't be able to know anything about the state of
5418 * Only returning the error code for the parent cache at least
5419 * has well defined semantics. The cache being written to
5420 * directly either failed or succeeded, in which case we loop
5421 * through the descendants with best-effort propagation.
5423 for_each_memcg_cache(c
, s
)
5424 attribute
->store(c
, buf
, len
);
5425 mutex_unlock(&slab_mutex
);
5431 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5435 char *buffer
= NULL
;
5436 struct kmem_cache
*root_cache
;
5438 if (is_root_cache(s
))
5441 root_cache
= s
->memcg_params
.root_cache
;
5444 * This mean this cache had no attribute written. Therefore, no point
5445 * in copying default values around
5447 if (!root_cache
->max_attr_size
)
5450 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5453 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5455 if (!attr
|| !attr
->store
|| !attr
->show
)
5459 * It is really bad that we have to allocate here, so we will
5460 * do it only as a fallback. If we actually allocate, though,
5461 * we can just use the allocated buffer until the end.
5463 * Most of the slub attributes will tend to be very small in
5464 * size, but sysfs allows buffers up to a page, so they can
5465 * theoretically happen.
5469 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5472 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5473 if (WARN_ON(!buffer
))
5478 attr
->show(root_cache
, buf
);
5479 attr
->store(s
, buf
, strlen(buf
));
5483 free_page((unsigned long)buffer
);
5487 static void kmem_cache_release(struct kobject
*k
)
5489 slab_kmem_cache_release(to_slab(k
));
5492 static const struct sysfs_ops slab_sysfs_ops
= {
5493 .show
= slab_attr_show
,
5494 .store
= slab_attr_store
,
5497 static struct kobj_type slab_ktype
= {
5498 .sysfs_ops
= &slab_sysfs_ops
,
5499 .release
= kmem_cache_release
,
5502 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5504 struct kobj_type
*ktype
= get_ktype(kobj
);
5506 if (ktype
== &slab_ktype
)
5511 static const struct kset_uevent_ops slab_uevent_ops
= {
5512 .filter
= uevent_filter
,
5515 static struct kset
*slab_kset
;
5517 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5520 if (!is_root_cache(s
))
5521 return s
->memcg_params
.root_cache
->memcg_kset
;
5526 #define ID_STR_LENGTH 64
5528 /* Create a unique string id for a slab cache:
5530 * Format :[flags-]size
5532 static char *create_unique_id(struct kmem_cache
*s
)
5534 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5541 * First flags affecting slabcache operations. We will only
5542 * get here for aliasable slabs so we do not need to support
5543 * too many flags. The flags here must cover all flags that
5544 * are matched during merging to guarantee that the id is
5547 if (s
->flags
& SLAB_CACHE_DMA
)
5549 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5551 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5553 if (!(s
->flags
& SLAB_NOTRACK
))
5555 if (s
->flags
& SLAB_ACCOUNT
)
5559 p
+= sprintf(p
, "%07d", s
->size
);
5561 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5565 static int sysfs_slab_add(struct kmem_cache
*s
)
5569 int unmergeable
= slab_unmergeable(s
);
5573 * Slabcache can never be merged so we can use the name proper.
5574 * This is typically the case for debug situations. In that
5575 * case we can catch duplicate names easily.
5577 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5581 * Create a unique name for the slab as a target
5584 name
= create_unique_id(s
);
5587 s
->kobj
.kset
= cache_kset(s
);
5588 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5592 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5597 if (is_root_cache(s
)) {
5598 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5599 if (!s
->memcg_kset
) {
5606 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5608 /* Setup first alias */
5609 sysfs_slab_alias(s
, s
->name
);
5616 kobject_del(&s
->kobj
);
5620 void sysfs_slab_remove(struct kmem_cache
*s
)
5622 if (slab_state
< FULL
)
5624 * Sysfs has not been setup yet so no need to remove the
5630 kset_unregister(s
->memcg_kset
);
5632 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5633 kobject_del(&s
->kobj
);
5634 kobject_put(&s
->kobj
);
5638 * Need to buffer aliases during bootup until sysfs becomes
5639 * available lest we lose that information.
5641 struct saved_alias
{
5642 struct kmem_cache
*s
;
5644 struct saved_alias
*next
;
5647 static struct saved_alias
*alias_list
;
5649 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5651 struct saved_alias
*al
;
5653 if (slab_state
== FULL
) {
5655 * If we have a leftover link then remove it.
5657 sysfs_remove_link(&slab_kset
->kobj
, name
);
5658 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5661 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5667 al
->next
= alias_list
;
5672 static int __init
slab_sysfs_init(void)
5674 struct kmem_cache
*s
;
5677 mutex_lock(&slab_mutex
);
5679 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5681 mutex_unlock(&slab_mutex
);
5682 pr_err("Cannot register slab subsystem.\n");
5688 list_for_each_entry(s
, &slab_caches
, list
) {
5689 err
= sysfs_slab_add(s
);
5691 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5695 while (alias_list
) {
5696 struct saved_alias
*al
= alias_list
;
5698 alias_list
= alias_list
->next
;
5699 err
= sysfs_slab_alias(al
->s
, al
->name
);
5701 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5706 mutex_unlock(&slab_mutex
);
5711 __initcall(slab_sysfs_init
);
5712 #endif /* CONFIG_SYSFS */
5715 * The /proc/slabinfo ABI
5717 #ifdef CONFIG_SLABINFO
5718 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5720 unsigned long nr_slabs
= 0;
5721 unsigned long nr_objs
= 0;
5722 unsigned long nr_free
= 0;
5724 struct kmem_cache_node
*n
;
5726 for_each_kmem_cache_node(s
, node
, n
) {
5727 nr_slabs
+= node_nr_slabs(n
);
5728 nr_objs
+= node_nr_objs(n
);
5729 nr_free
+= count_partial(n
, count_free
);
5732 sinfo
->active_objs
= nr_objs
- nr_free
;
5733 sinfo
->num_objs
= nr_objs
;
5734 sinfo
->active_slabs
= nr_slabs
;
5735 sinfo
->num_slabs
= nr_slabs
;
5736 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5737 sinfo
->cache_order
= oo_order(s
->oo
);
5740 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5744 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5745 size_t count
, loff_t
*ppos
)
5749 #endif /* CONFIG_SLABINFO */