]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slub.c
gpio: pl061: add support for wakeup configuration
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #if defined(CONFIG_SLUB_DEBUG_ON)
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #elif defined(CONFIG_KASAN)
465 static int slub_debug = SLAB_STORE_USER;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479 static inline void metadata_access_enable(void)
480 {
481 kasan_disable_current();
482 }
483
484 static inline void metadata_access_disable(void)
485 {
486 kasan_enable_current();
487 }
488
489 /*
490 * Object debugging
491 */
492 static void print_section(char *text, u8 *addr, unsigned int length)
493 {
494 metadata_access_enable();
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
497 metadata_access_disable();
498 }
499
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502 {
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511 }
512
513 static void set_track(struct kmem_cache *s, void *object,
514 enum track_item alloc, unsigned long addr)
515 {
516 struct track *p = get_track(s, object, alloc);
517
518 if (addr) {
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 metadata_access_enable();
528 save_stack_trace(&trace);
529 metadata_access_disable();
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538 #endif
539 p->addr = addr;
540 p->cpu = smp_processor_id();
541 p->pid = current->pid;
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545 }
546
547 static void init_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
554 }
555
556 static void print_track(const char *s, struct track *t)
557 {
558 if (!t->addr)
559 return;
560
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
563 #ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
568 pr_err("\t%pS\n", (void *)t->addrs[i]);
569 else
570 break;
571 }
572 #endif
573 }
574
575 static void print_tracking(struct kmem_cache *s, void *object)
576 {
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582 }
583
584 static void print_page_info(struct page *page)
585 {
586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
587 page, page->objects, page->inuse, page->freelist, page->flags);
588
589 }
590
591 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592 {
593 struct va_format vaf;
594 va_list args;
595
596 va_start(args, fmt);
597 vaf.fmt = fmt;
598 vaf.va = &args;
599 pr_err("=============================================================================\n");
600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
601 pr_err("-----------------------------------------------------------------------------\n\n");
602
603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
604 va_end(args);
605 }
606
607 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608 {
609 struct va_format vaf;
610 va_list args;
611
612 va_start(args, fmt);
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
616 va_end(args);
617 }
618
619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
620 {
621 unsigned int off; /* Offset of last byte */
622 u8 *addr = page_address(page);
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
630
631 if (p > addr + 16)
632 print_section("Bytes b4 ", p - 16, 16);
633
634 print_section("Object ", p, min_t(unsigned long, s->object_size,
635 PAGE_SIZE));
636 if (s->flags & SLAB_RED_ZONE)
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
639
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
645 if (s->flags & SLAB_STORE_USER)
646 off += 2 * sizeof(struct track);
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
650 print_section("Padding ", p + off, s->size - off);
651
652 dump_stack();
653 }
654
655 void object_err(struct kmem_cache *s, struct page *page,
656 u8 *object, char *reason)
657 {
658 slab_bug(s, "%s", reason);
659 print_trailer(s, page, object);
660 }
661
662 static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
664 {
665 va_list args;
666 char buf[100];
667
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
670 va_end(args);
671 slab_bug(s, "%s", buf);
672 print_page_info(page);
673 dump_stack();
674 }
675
676 static void init_object(struct kmem_cache *s, void *object, u8 val)
677 {
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
686 memset(p + s->object_size, val, s->inuse - s->object_size);
687 }
688
689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691 {
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694 }
695
696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
698 u8 *start, unsigned int value, unsigned int bytes)
699 {
700 u8 *fault;
701 u8 *end;
702
703 metadata_access_enable();
704 fault = memchr_inv(start, value, bytes);
705 metadata_access_disable();
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
720 }
721
722 /*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
729 *
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
733 * object + s->object_size
734 * Padding to reach word boundary. This is also used for Redzoning.
735 * Padding is extended by another word if Redzoning is enabled and
736 * object_size == inuse.
737 *
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
742 * Meta data starts here.
743 *
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
746 * C. Padding to reach required alignment boundary or at mininum
747 * one word if debugging is on to be able to detect writes
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
751 *
752 * object + s->size
753 * Nothing is used beyond s->size.
754 *
755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
756 * ignored. And therefore no slab options that rely on these boundaries
757 * may be used with merged slabcaches.
758 */
759
760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761 {
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
777 }
778
779 /* Check the pad bytes at the end of a slab page */
780 static int slab_pad_check(struct kmem_cache *s, struct page *page)
781 {
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
791 start = page_address(page);
792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
793 end = start + length;
794 remainder = length % s->size;
795 if (!remainder)
796 return 1;
797
798 metadata_access_enable();
799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
800 metadata_access_disable();
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
807 print_section("Padding ", end - remainder, remainder);
808
809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
810 return 0;
811 }
812
813 static int check_object(struct kmem_cache *s, struct page *page,
814 void *object, u8 val)
815 {
816 u8 *p = object;
817 u8 *endobject = object + s->object_size;
818
819 if (s->flags & SLAB_RED_ZONE) {
820 if (!check_bytes_and_report(s, page, object, "Redzone",
821 endobject, val, s->inuse - s->object_size))
822 return 0;
823 } else {
824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
825 check_bytes_and_report(s, page, p, "Alignment padding",
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
828 }
829 }
830
831 if (s->flags & SLAB_POISON) {
832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
833 (!check_bytes_and_report(s, page, p, "Poison", p,
834 POISON_FREE, s->object_size - 1) ||
835 !check_bytes_and_report(s, page, p, "Poison",
836 p + s->object_size - 1, POISON_END, 1)))
837 return 0;
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
844 if (!s->offset && val == SLUB_RED_ACTIVE)
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
855 * No choice but to zap it and thus lose the remainder
856 * of the free objects in this slab. May cause
857 * another error because the object count is now wrong.
858 */
859 set_freepointer(s, p, NULL);
860 return 0;
861 }
862 return 1;
863 }
864
865 static int check_slab(struct kmem_cache *s, struct page *page)
866 {
867 int maxobj;
868
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
872 slab_err(s, page, "Not a valid slab page");
873 return 0;
874 }
875
876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
879 page->objects, maxobj);
880 return 0;
881 }
882 if (page->inuse > page->objects) {
883 slab_err(s, page, "inuse %u > max %u",
884 page->inuse, page->objects);
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890 }
891
892 /*
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
895 */
896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897 {
898 int nr = 0;
899 void *fp;
900 void *object = NULL;
901 int max_objects;
902
903 fp = page->freelist;
904 while (fp && nr <= page->objects) {
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
911 set_freepointer(s, object, NULL);
912 } else {
913 slab_err(s, page, "Freepointer corrupt");
914 page->freelist = NULL;
915 page->inuse = page->objects;
916 slab_fix(s, "Freelist cleared");
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
936 if (page->inuse != page->objects - nr) {
937 slab_err(s, page, "Wrong object count. Counter is %d but "
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
940 slab_fix(s, "Object count adjusted.");
941 }
942 return search == NULL;
943 }
944
945 static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
947 {
948 if (s->flags & SLAB_TRACE) {
949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
956 print_section("Object ", (void *)object,
957 s->object_size);
958
959 dump_stack();
960 }
961 }
962
963 /*
964 * Tracking of fully allocated slabs for debugging purposes.
965 */
966 static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
968 {
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
972 lockdep_assert_held(&n->list_lock);
973 list_add(&page->lru, &n->full);
974 }
975
976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 lockdep_assert_held(&n->list_lock);
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (likely(n)) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
1034 void *object, unsigned long addr)
1035 {
1036 if (!check_slab(s, page))
1037 goto bad;
1038
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
1041 goto bad;
1042 }
1043
1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 goto bad;
1046
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
1051 init_object(s, object, SLUB_RED_ACTIVE);
1052 return 1;
1053
1054 bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1060 */
1061 slab_fix(s, "Marking all objects used");
1062 page->inuse = page->objects;
1063 page->freelist = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
1071 {
1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1073
1074 spin_lock_irqsave(&n->list_lock, *flags);
1075 slab_lock(page);
1076
1077 if (!check_slab(s, page))
1078 goto fail;
1079
1080 if (!check_valid_pointer(s, page, object)) {
1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
1082 goto fail;
1083 }
1084
1085 if (on_freelist(s, page, object)) {
1086 object_err(s, page, object, "Object already free");
1087 goto fail;
1088 }
1089
1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1091 goto out;
1092
1093 if (unlikely(s != page->slab_cache)) {
1094 if (!PageSlab(page)) {
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1097 } else if (!page->slab_cache) {
1098 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1099 object);
1100 dump_stack();
1101 } else
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
1104 goto fail;
1105 }
1106
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 slab_unlock(page);
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
1118
1119 fail:
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
1122 slab_fix(s, "Object at 0x%p not freed", object);
1123 return NULL;
1124 }
1125
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 slub_debug = 0;
1143 if (*str == '-')
1144 /*
1145 * Switch off all debugging measures.
1146 */
1147 goto out;
1148
1149 /*
1150 * Determine which debug features should be switched on
1151 */
1152 for (; *str && *str != ','; str++) {
1153 switch (tolower(*str)) {
1154 case 'f':
1155 slub_debug |= SLAB_DEBUG_FREE;
1156 break;
1157 case 'z':
1158 slub_debug |= SLAB_RED_ZONE;
1159 break;
1160 case 'p':
1161 slub_debug |= SLAB_POISON;
1162 break;
1163 case 'u':
1164 slub_debug |= SLAB_STORE_USER;
1165 break;
1166 case 't':
1167 slub_debug |= SLAB_TRACE;
1168 break;
1169 case 'a':
1170 slub_debug |= SLAB_FAILSLAB;
1171 break;
1172 case 'o':
1173 /*
1174 * Avoid enabling debugging on caches if its minimum
1175 * order would increase as a result.
1176 */
1177 disable_higher_order_debug = 1;
1178 break;
1179 default:
1180 pr_err("slub_debug option '%c' unknown. skipped\n",
1181 *str);
1182 }
1183 }
1184
1185 check_slabs:
1186 if (*str == ',')
1187 slub_debug_slabs = str + 1;
1188 out:
1189 return 1;
1190 }
1191
1192 __setup("slub_debug", setup_slub_debug);
1193
1194 unsigned long kmem_cache_flags(unsigned long object_size,
1195 unsigned long flags, const char *name,
1196 void (*ctor)(void *))
1197 {
1198 /*
1199 * Enable debugging if selected on the kernel commandline.
1200 */
1201 if (slub_debug && (!slub_debug_slabs || (name &&
1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1203 flags |= slub_debug;
1204
1205 return flags;
1206 }
1207 #else
1208 static inline void setup_object_debug(struct kmem_cache *s,
1209 struct page *page, void *object) {}
1210
1211 static inline int alloc_debug_processing(struct kmem_cache *s,
1212 struct page *page, void *object, unsigned long addr) { return 0; }
1213
1214 static inline struct kmem_cache_node *free_debug_processing(
1215 struct kmem_cache *s, struct page *page, void *object,
1216 unsigned long addr, unsigned long *flags) { return NULL; }
1217
1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220 static inline int check_object(struct kmem_cache *s, struct page *page,
1221 void *object, u8 val) { return 1; }
1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 unsigned long kmem_cache_flags(unsigned long object_size,
1227 unsigned long flags, const char *name,
1228 void (*ctor)(void *))
1229 {
1230 return flags;
1231 }
1232 #define slub_debug 0
1233
1234 #define disable_higher_order_debug 0
1235
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244
1245 #endif /* CONFIG_SLUB_DEBUG */
1246
1247 /*
1248 * Hooks for other subsystems that check memory allocations. In a typical
1249 * production configuration these hooks all should produce no code at all.
1250 */
1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252 {
1253 kmemleak_alloc(ptr, size, 1, flags);
1254 kasan_kmalloc_large(ptr, size);
1255 }
1256
1257 static inline void kfree_hook(const void *x)
1258 {
1259 kmemleak_free(x);
1260 kasan_kfree_large(x);
1261 }
1262
1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 gfp_t flags)
1265 {
1266 flags &= gfp_allowed_mask;
1267 lockdep_trace_alloc(flags);
1268 might_sleep_if(gfpflags_allow_blocking(flags));
1269
1270 if (should_failslab(s->object_size, flags, s->flags))
1271 return NULL;
1272
1273 return memcg_kmem_get_cache(s, flags);
1274 }
1275
1276 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 gfp_t flags, void *object)
1278 {
1279 flags &= gfp_allowed_mask;
1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1282 memcg_kmem_put_cache(s);
1283 kasan_slab_alloc(s, object);
1284 }
1285
1286 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287 {
1288 kmemleak_free_recursive(x, s->flags);
1289
1290 /*
1291 * Trouble is that we may no longer disable interrupts in the fast path
1292 * So in order to make the debug calls that expect irqs to be
1293 * disabled we need to disable interrupts temporarily.
1294 */
1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 {
1297 unsigned long flags;
1298
1299 local_irq_save(flags);
1300 kmemcheck_slab_free(s, x, s->object_size);
1301 debug_check_no_locks_freed(x, s->object_size);
1302 local_irq_restore(flags);
1303 }
1304 #endif
1305 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 debug_check_no_obj_freed(x, s->object_size);
1307
1308 kasan_slab_free(s, x);
1309 }
1310
1311 static void setup_object(struct kmem_cache *s, struct page *page,
1312 void *object)
1313 {
1314 setup_object_debug(s, page, object);
1315 if (unlikely(s->ctor)) {
1316 kasan_unpoison_object_data(s, object);
1317 s->ctor(object);
1318 kasan_poison_object_data(s, object);
1319 }
1320 }
1321
1322 /*
1323 * Slab allocation and freeing
1324 */
1325 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1326 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1327 {
1328 struct page *page;
1329 int order = oo_order(oo);
1330
1331 flags |= __GFP_NOTRACK;
1332
1333 if (node == NUMA_NO_NODE)
1334 page = alloc_pages(flags, order);
1335 else
1336 page = __alloc_pages_node(node, flags, order);
1337
1338 if (page && memcg_charge_slab(page, flags, order, s)) {
1339 __free_pages(page, order);
1340 page = NULL;
1341 }
1342
1343 return page;
1344 }
1345
1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 struct page *page;
1349 struct kmem_cache_order_objects oo = s->oo;
1350 gfp_t alloc_gfp;
1351 void *start, *p;
1352 int idx, order;
1353
1354 flags &= gfp_allowed_mask;
1355
1356 if (gfpflags_allow_blocking(flags))
1357 local_irq_enable();
1358
1359 flags |= s->allocflags;
1360
1361 /*
1362 * Let the initial higher-order allocation fail under memory pressure
1363 * so we fall-back to the minimum order allocation.
1364 */
1365 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1366 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1367 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1368
1369 page = alloc_slab_page(s, alloc_gfp, node, oo);
1370 if (unlikely(!page)) {
1371 oo = s->min;
1372 alloc_gfp = flags;
1373 /*
1374 * Allocation may have failed due to fragmentation.
1375 * Try a lower order alloc if possible
1376 */
1377 page = alloc_slab_page(s, alloc_gfp, node, oo);
1378 if (unlikely(!page))
1379 goto out;
1380 stat(s, ORDER_FALLBACK);
1381 }
1382
1383 if (kmemcheck_enabled &&
1384 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1385 int pages = 1 << oo_order(oo);
1386
1387 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1388
1389 /*
1390 * Objects from caches that have a constructor don't get
1391 * cleared when they're allocated, so we need to do it here.
1392 */
1393 if (s->ctor)
1394 kmemcheck_mark_uninitialized_pages(page, pages);
1395 else
1396 kmemcheck_mark_unallocated_pages(page, pages);
1397 }
1398
1399 page->objects = oo_objects(oo);
1400
1401 order = compound_order(page);
1402 page->slab_cache = s;
1403 __SetPageSlab(page);
1404 if (page_is_pfmemalloc(page))
1405 SetPageSlabPfmemalloc(page);
1406
1407 start = page_address(page);
1408
1409 if (unlikely(s->flags & SLAB_POISON))
1410 memset(start, POISON_INUSE, PAGE_SIZE << order);
1411
1412 kasan_poison_slab(page);
1413
1414 for_each_object_idx(p, idx, s, start, page->objects) {
1415 setup_object(s, page, p);
1416 if (likely(idx < page->objects))
1417 set_freepointer(s, p, p + s->size);
1418 else
1419 set_freepointer(s, p, NULL);
1420 }
1421
1422 page->freelist = start;
1423 page->inuse = page->objects;
1424 page->frozen = 1;
1425
1426 out:
1427 if (gfpflags_allow_blocking(flags))
1428 local_irq_disable();
1429 if (!page)
1430 return NULL;
1431
1432 mod_zone_page_state(page_zone(page),
1433 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1434 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1435 1 << oo_order(oo));
1436
1437 inc_slabs_node(s, page_to_nid(page), page->objects);
1438
1439 return page;
1440 }
1441
1442 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1443 {
1444 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1445 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1446 BUG();
1447 }
1448
1449 return allocate_slab(s,
1450 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1451 }
1452
1453 static void __free_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 int order = compound_order(page);
1456 int pages = 1 << order;
1457
1458 if (kmem_cache_debug(s)) {
1459 void *p;
1460
1461 slab_pad_check(s, page);
1462 for_each_object(p, s, page_address(page),
1463 page->objects)
1464 check_object(s, page, p, SLUB_RED_INACTIVE);
1465 }
1466
1467 kmemcheck_free_shadow(page, compound_order(page));
1468
1469 mod_zone_page_state(page_zone(page),
1470 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1471 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1472 -pages);
1473
1474 __ClearPageSlabPfmemalloc(page);
1475 __ClearPageSlab(page);
1476
1477 page_mapcount_reset(page);
1478 if (current->reclaim_state)
1479 current->reclaim_state->reclaimed_slab += pages;
1480 __free_kmem_pages(page, order);
1481 }
1482
1483 #define need_reserve_slab_rcu \
1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485
1486 static void rcu_free_slab(struct rcu_head *h)
1487 {
1488 struct page *page;
1489
1490 if (need_reserve_slab_rcu)
1491 page = virt_to_head_page(h);
1492 else
1493 page = container_of((struct list_head *)h, struct page, lru);
1494
1495 __free_slab(page->slab_cache, page);
1496 }
1497
1498 static void free_slab(struct kmem_cache *s, struct page *page)
1499 {
1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1501 struct rcu_head *head;
1502
1503 if (need_reserve_slab_rcu) {
1504 int order = compound_order(page);
1505 int offset = (PAGE_SIZE << order) - s->reserved;
1506
1507 VM_BUG_ON(s->reserved != sizeof(*head));
1508 head = page_address(page) + offset;
1509 } else {
1510 head = &page->rcu_head;
1511 }
1512
1513 call_rcu(head, rcu_free_slab);
1514 } else
1515 __free_slab(s, page);
1516 }
1517
1518 static void discard_slab(struct kmem_cache *s, struct page *page)
1519 {
1520 dec_slabs_node(s, page_to_nid(page), page->objects);
1521 free_slab(s, page);
1522 }
1523
1524 /*
1525 * Management of partially allocated slabs.
1526 */
1527 static inline void
1528 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1529 {
1530 n->nr_partial++;
1531 if (tail == DEACTIVATE_TO_TAIL)
1532 list_add_tail(&page->lru, &n->partial);
1533 else
1534 list_add(&page->lru, &n->partial);
1535 }
1536
1537 static inline void add_partial(struct kmem_cache_node *n,
1538 struct page *page, int tail)
1539 {
1540 lockdep_assert_held(&n->list_lock);
1541 __add_partial(n, page, tail);
1542 }
1543
1544 static inline void
1545 __remove_partial(struct kmem_cache_node *n, struct page *page)
1546 {
1547 list_del(&page->lru);
1548 n->nr_partial--;
1549 }
1550
1551 static inline void remove_partial(struct kmem_cache_node *n,
1552 struct page *page)
1553 {
1554 lockdep_assert_held(&n->list_lock);
1555 __remove_partial(n, page);
1556 }
1557
1558 /*
1559 * Remove slab from the partial list, freeze it and
1560 * return the pointer to the freelist.
1561 *
1562 * Returns a list of objects or NULL if it fails.
1563 */
1564 static inline void *acquire_slab(struct kmem_cache *s,
1565 struct kmem_cache_node *n, struct page *page,
1566 int mode, int *objects)
1567 {
1568 void *freelist;
1569 unsigned long counters;
1570 struct page new;
1571
1572 lockdep_assert_held(&n->list_lock);
1573
1574 /*
1575 * Zap the freelist and set the frozen bit.
1576 * The old freelist is the list of objects for the
1577 * per cpu allocation list.
1578 */
1579 freelist = page->freelist;
1580 counters = page->counters;
1581 new.counters = counters;
1582 *objects = new.objects - new.inuse;
1583 if (mode) {
1584 new.inuse = page->objects;
1585 new.freelist = NULL;
1586 } else {
1587 new.freelist = freelist;
1588 }
1589
1590 VM_BUG_ON(new.frozen);
1591 new.frozen = 1;
1592
1593 if (!__cmpxchg_double_slab(s, page,
1594 freelist, counters,
1595 new.freelist, new.counters,
1596 "acquire_slab"))
1597 return NULL;
1598
1599 remove_partial(n, page);
1600 WARN_ON(!freelist);
1601 return freelist;
1602 }
1603
1604 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1605 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1606
1607 /*
1608 * Try to allocate a partial slab from a specific node.
1609 */
1610 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1611 struct kmem_cache_cpu *c, gfp_t flags)
1612 {
1613 struct page *page, *page2;
1614 void *object = NULL;
1615 int available = 0;
1616 int objects;
1617
1618 /*
1619 * Racy check. If we mistakenly see no partial slabs then we
1620 * just allocate an empty slab. If we mistakenly try to get a
1621 * partial slab and there is none available then get_partials()
1622 * will return NULL.
1623 */
1624 if (!n || !n->nr_partial)
1625 return NULL;
1626
1627 spin_lock(&n->list_lock);
1628 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1629 void *t;
1630
1631 if (!pfmemalloc_match(page, flags))
1632 continue;
1633
1634 t = acquire_slab(s, n, page, object == NULL, &objects);
1635 if (!t)
1636 break;
1637
1638 available += objects;
1639 if (!object) {
1640 c->page = page;
1641 stat(s, ALLOC_FROM_PARTIAL);
1642 object = t;
1643 } else {
1644 put_cpu_partial(s, page, 0);
1645 stat(s, CPU_PARTIAL_NODE);
1646 }
1647 if (!kmem_cache_has_cpu_partial(s)
1648 || available > s->cpu_partial / 2)
1649 break;
1650
1651 }
1652 spin_unlock(&n->list_lock);
1653 return object;
1654 }
1655
1656 /*
1657 * Get a page from somewhere. Search in increasing NUMA distances.
1658 */
1659 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1660 struct kmem_cache_cpu *c)
1661 {
1662 #ifdef CONFIG_NUMA
1663 struct zonelist *zonelist;
1664 struct zoneref *z;
1665 struct zone *zone;
1666 enum zone_type high_zoneidx = gfp_zone(flags);
1667 void *object;
1668 unsigned int cpuset_mems_cookie;
1669
1670 /*
1671 * The defrag ratio allows a configuration of the tradeoffs between
1672 * inter node defragmentation and node local allocations. A lower
1673 * defrag_ratio increases the tendency to do local allocations
1674 * instead of attempting to obtain partial slabs from other nodes.
1675 *
1676 * If the defrag_ratio is set to 0 then kmalloc() always
1677 * returns node local objects. If the ratio is higher then kmalloc()
1678 * may return off node objects because partial slabs are obtained
1679 * from other nodes and filled up.
1680 *
1681 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1682 * defrag_ratio = 1000) then every (well almost) allocation will
1683 * first attempt to defrag slab caches on other nodes. This means
1684 * scanning over all nodes to look for partial slabs which may be
1685 * expensive if we do it every time we are trying to find a slab
1686 * with available objects.
1687 */
1688 if (!s->remote_node_defrag_ratio ||
1689 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1690 return NULL;
1691
1692 do {
1693 cpuset_mems_cookie = read_mems_allowed_begin();
1694 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1695 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1696 struct kmem_cache_node *n;
1697
1698 n = get_node(s, zone_to_nid(zone));
1699
1700 if (n && cpuset_zone_allowed(zone, flags) &&
1701 n->nr_partial > s->min_partial) {
1702 object = get_partial_node(s, n, c, flags);
1703 if (object) {
1704 /*
1705 * Don't check read_mems_allowed_retry()
1706 * here - if mems_allowed was updated in
1707 * parallel, that was a harmless race
1708 * between allocation and the cpuset
1709 * update
1710 */
1711 return object;
1712 }
1713 }
1714 }
1715 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1716 #endif
1717 return NULL;
1718 }
1719
1720 /*
1721 * Get a partial page, lock it and return it.
1722 */
1723 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1724 struct kmem_cache_cpu *c)
1725 {
1726 void *object;
1727 int searchnode = node;
1728
1729 if (node == NUMA_NO_NODE)
1730 searchnode = numa_mem_id();
1731 else if (!node_present_pages(node))
1732 searchnode = node_to_mem_node(node);
1733
1734 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1735 if (object || node != NUMA_NO_NODE)
1736 return object;
1737
1738 return get_any_partial(s, flags, c);
1739 }
1740
1741 #ifdef CONFIG_PREEMPT
1742 /*
1743 * Calculate the next globally unique transaction for disambiguiation
1744 * during cmpxchg. The transactions start with the cpu number and are then
1745 * incremented by CONFIG_NR_CPUS.
1746 */
1747 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1748 #else
1749 /*
1750 * No preemption supported therefore also no need to check for
1751 * different cpus.
1752 */
1753 #define TID_STEP 1
1754 #endif
1755
1756 static inline unsigned long next_tid(unsigned long tid)
1757 {
1758 return tid + TID_STEP;
1759 }
1760
1761 static inline unsigned int tid_to_cpu(unsigned long tid)
1762 {
1763 return tid % TID_STEP;
1764 }
1765
1766 static inline unsigned long tid_to_event(unsigned long tid)
1767 {
1768 return tid / TID_STEP;
1769 }
1770
1771 static inline unsigned int init_tid(int cpu)
1772 {
1773 return cpu;
1774 }
1775
1776 static inline void note_cmpxchg_failure(const char *n,
1777 const struct kmem_cache *s, unsigned long tid)
1778 {
1779 #ifdef SLUB_DEBUG_CMPXCHG
1780 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1781
1782 pr_info("%s %s: cmpxchg redo ", n, s->name);
1783
1784 #ifdef CONFIG_PREEMPT
1785 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1786 pr_warn("due to cpu change %d -> %d\n",
1787 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1788 else
1789 #endif
1790 if (tid_to_event(tid) != tid_to_event(actual_tid))
1791 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1792 tid_to_event(tid), tid_to_event(actual_tid));
1793 else
1794 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1795 actual_tid, tid, next_tid(tid));
1796 #endif
1797 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1798 }
1799
1800 static void init_kmem_cache_cpus(struct kmem_cache *s)
1801 {
1802 int cpu;
1803
1804 for_each_possible_cpu(cpu)
1805 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1806 }
1807
1808 /*
1809 * Remove the cpu slab
1810 */
1811 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1812 void *freelist)
1813 {
1814 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1815 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1816 int lock = 0;
1817 enum slab_modes l = M_NONE, m = M_NONE;
1818 void *nextfree;
1819 int tail = DEACTIVATE_TO_HEAD;
1820 struct page new;
1821 struct page old;
1822
1823 if (page->freelist) {
1824 stat(s, DEACTIVATE_REMOTE_FREES);
1825 tail = DEACTIVATE_TO_TAIL;
1826 }
1827
1828 /*
1829 * Stage one: Free all available per cpu objects back
1830 * to the page freelist while it is still frozen. Leave the
1831 * last one.
1832 *
1833 * There is no need to take the list->lock because the page
1834 * is still frozen.
1835 */
1836 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1837 void *prior;
1838 unsigned long counters;
1839
1840 do {
1841 prior = page->freelist;
1842 counters = page->counters;
1843 set_freepointer(s, freelist, prior);
1844 new.counters = counters;
1845 new.inuse--;
1846 VM_BUG_ON(!new.frozen);
1847
1848 } while (!__cmpxchg_double_slab(s, page,
1849 prior, counters,
1850 freelist, new.counters,
1851 "drain percpu freelist"));
1852
1853 freelist = nextfree;
1854 }
1855
1856 /*
1857 * Stage two: Ensure that the page is unfrozen while the
1858 * list presence reflects the actual number of objects
1859 * during unfreeze.
1860 *
1861 * We setup the list membership and then perform a cmpxchg
1862 * with the count. If there is a mismatch then the page
1863 * is not unfrozen but the page is on the wrong list.
1864 *
1865 * Then we restart the process which may have to remove
1866 * the page from the list that we just put it on again
1867 * because the number of objects in the slab may have
1868 * changed.
1869 */
1870 redo:
1871
1872 old.freelist = page->freelist;
1873 old.counters = page->counters;
1874 VM_BUG_ON(!old.frozen);
1875
1876 /* Determine target state of the slab */
1877 new.counters = old.counters;
1878 if (freelist) {
1879 new.inuse--;
1880 set_freepointer(s, freelist, old.freelist);
1881 new.freelist = freelist;
1882 } else
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
1887 if (!new.inuse && n->nr_partial >= s->min_partial)
1888 m = M_FREE;
1889 else if (new.freelist) {
1890 m = M_PARTIAL;
1891 if (!lock) {
1892 lock = 1;
1893 /*
1894 * Taking the spinlock removes the possiblity
1895 * that acquire_slab() will see a slab page that
1896 * is frozen
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 } else {
1901 m = M_FULL;
1902 if (kmem_cache_debug(s) && !lock) {
1903 lock = 1;
1904 /*
1905 * This also ensures that the scanning of full
1906 * slabs from diagnostic functions will not see
1907 * any frozen slabs.
1908 */
1909 spin_lock(&n->list_lock);
1910 }
1911 }
1912
1913 if (l != m) {
1914
1915 if (l == M_PARTIAL)
1916
1917 remove_partial(n, page);
1918
1919 else if (l == M_FULL)
1920
1921 remove_full(s, n, page);
1922
1923 if (m == M_PARTIAL) {
1924
1925 add_partial(n, page, tail);
1926 stat(s, tail);
1927
1928 } else if (m == M_FULL) {
1929
1930 stat(s, DEACTIVATE_FULL);
1931 add_full(s, n, page);
1932
1933 }
1934 }
1935
1936 l = m;
1937 if (!__cmpxchg_double_slab(s, page,
1938 old.freelist, old.counters,
1939 new.freelist, new.counters,
1940 "unfreezing slab"))
1941 goto redo;
1942
1943 if (lock)
1944 spin_unlock(&n->list_lock);
1945
1946 if (m == M_FREE) {
1947 stat(s, DEACTIVATE_EMPTY);
1948 discard_slab(s, page);
1949 stat(s, FREE_SLAB);
1950 }
1951 }
1952
1953 /*
1954 * Unfreeze all the cpu partial slabs.
1955 *
1956 * This function must be called with interrupts disabled
1957 * for the cpu using c (or some other guarantee must be there
1958 * to guarantee no concurrent accesses).
1959 */
1960 static void unfreeze_partials(struct kmem_cache *s,
1961 struct kmem_cache_cpu *c)
1962 {
1963 #ifdef CONFIG_SLUB_CPU_PARTIAL
1964 struct kmem_cache_node *n = NULL, *n2 = NULL;
1965 struct page *page, *discard_page = NULL;
1966
1967 while ((page = c->partial)) {
1968 struct page new;
1969 struct page old;
1970
1971 c->partial = page->next;
1972
1973 n2 = get_node(s, page_to_nid(page));
1974 if (n != n2) {
1975 if (n)
1976 spin_unlock(&n->list_lock);
1977
1978 n = n2;
1979 spin_lock(&n->list_lock);
1980 }
1981
1982 do {
1983
1984 old.freelist = page->freelist;
1985 old.counters = page->counters;
1986 VM_BUG_ON(!old.frozen);
1987
1988 new.counters = old.counters;
1989 new.freelist = old.freelist;
1990
1991 new.frozen = 0;
1992
1993 } while (!__cmpxchg_double_slab(s, page,
1994 old.freelist, old.counters,
1995 new.freelist, new.counters,
1996 "unfreezing slab"));
1997
1998 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1999 page->next = discard_page;
2000 discard_page = page;
2001 } else {
2002 add_partial(n, page, DEACTIVATE_TO_TAIL);
2003 stat(s, FREE_ADD_PARTIAL);
2004 }
2005 }
2006
2007 if (n)
2008 spin_unlock(&n->list_lock);
2009
2010 while (discard_page) {
2011 page = discard_page;
2012 discard_page = discard_page->next;
2013
2014 stat(s, DEACTIVATE_EMPTY);
2015 discard_slab(s, page);
2016 stat(s, FREE_SLAB);
2017 }
2018 #endif
2019 }
2020
2021 /*
2022 * Put a page that was just frozen (in __slab_free) into a partial page
2023 * slot if available. This is done without interrupts disabled and without
2024 * preemption disabled. The cmpxchg is racy and may put the partial page
2025 * onto a random cpus partial slot.
2026 *
2027 * If we did not find a slot then simply move all the partials to the
2028 * per node partial list.
2029 */
2030 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2031 {
2032 #ifdef CONFIG_SLUB_CPU_PARTIAL
2033 struct page *oldpage;
2034 int pages;
2035 int pobjects;
2036
2037 preempt_disable();
2038 do {
2039 pages = 0;
2040 pobjects = 0;
2041 oldpage = this_cpu_read(s->cpu_slab->partial);
2042
2043 if (oldpage) {
2044 pobjects = oldpage->pobjects;
2045 pages = oldpage->pages;
2046 if (drain && pobjects > s->cpu_partial) {
2047 unsigned long flags;
2048 /*
2049 * partial array is full. Move the existing
2050 * set to the per node partial list.
2051 */
2052 local_irq_save(flags);
2053 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2054 local_irq_restore(flags);
2055 oldpage = NULL;
2056 pobjects = 0;
2057 pages = 0;
2058 stat(s, CPU_PARTIAL_DRAIN);
2059 }
2060 }
2061
2062 pages++;
2063 pobjects += page->objects - page->inuse;
2064
2065 page->pages = pages;
2066 page->pobjects = pobjects;
2067 page->next = oldpage;
2068
2069 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2070 != oldpage);
2071 if (unlikely(!s->cpu_partial)) {
2072 unsigned long flags;
2073
2074 local_irq_save(flags);
2075 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2076 local_irq_restore(flags);
2077 }
2078 preempt_enable();
2079 #endif
2080 }
2081
2082 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2083 {
2084 stat(s, CPUSLAB_FLUSH);
2085 deactivate_slab(s, c->page, c->freelist);
2086
2087 c->tid = next_tid(c->tid);
2088 c->page = NULL;
2089 c->freelist = NULL;
2090 }
2091
2092 /*
2093 * Flush cpu slab.
2094 *
2095 * Called from IPI handler with interrupts disabled.
2096 */
2097 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2098 {
2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2100
2101 if (likely(c)) {
2102 if (c->page)
2103 flush_slab(s, c);
2104
2105 unfreeze_partials(s, c);
2106 }
2107 }
2108
2109 static void flush_cpu_slab(void *d)
2110 {
2111 struct kmem_cache *s = d;
2112
2113 __flush_cpu_slab(s, smp_processor_id());
2114 }
2115
2116 static bool has_cpu_slab(int cpu, void *info)
2117 {
2118 struct kmem_cache *s = info;
2119 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2120
2121 return c->page || c->partial;
2122 }
2123
2124 static void flush_all(struct kmem_cache *s)
2125 {
2126 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2127 }
2128
2129 /*
2130 * Check if the objects in a per cpu structure fit numa
2131 * locality expectations.
2132 */
2133 static inline int node_match(struct page *page, int node)
2134 {
2135 #ifdef CONFIG_NUMA
2136 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2137 return 0;
2138 #endif
2139 return 1;
2140 }
2141
2142 #ifdef CONFIG_SLUB_DEBUG
2143 static int count_free(struct page *page)
2144 {
2145 return page->objects - page->inuse;
2146 }
2147
2148 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2149 {
2150 return atomic_long_read(&n->total_objects);
2151 }
2152 #endif /* CONFIG_SLUB_DEBUG */
2153
2154 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2155 static unsigned long count_partial(struct kmem_cache_node *n,
2156 int (*get_count)(struct page *))
2157 {
2158 unsigned long flags;
2159 unsigned long x = 0;
2160 struct page *page;
2161
2162 spin_lock_irqsave(&n->list_lock, flags);
2163 list_for_each_entry(page, &n->partial, lru)
2164 x += get_count(page);
2165 spin_unlock_irqrestore(&n->list_lock, flags);
2166 return x;
2167 }
2168 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2169
2170 static noinline void
2171 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2172 {
2173 #ifdef CONFIG_SLUB_DEBUG
2174 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2175 DEFAULT_RATELIMIT_BURST);
2176 int node;
2177 struct kmem_cache_node *n;
2178
2179 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2180 return;
2181
2182 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2183 nid, gfpflags);
2184 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2185 s->name, s->object_size, s->size, oo_order(s->oo),
2186 oo_order(s->min));
2187
2188 if (oo_order(s->min) > get_order(s->object_size))
2189 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2190 s->name);
2191
2192 for_each_kmem_cache_node(s, node, n) {
2193 unsigned long nr_slabs;
2194 unsigned long nr_objs;
2195 unsigned long nr_free;
2196
2197 nr_free = count_partial(n, count_free);
2198 nr_slabs = node_nr_slabs(n);
2199 nr_objs = node_nr_objs(n);
2200
2201 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2202 node, nr_slabs, nr_objs, nr_free);
2203 }
2204 #endif
2205 }
2206
2207 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2208 int node, struct kmem_cache_cpu **pc)
2209 {
2210 void *freelist;
2211 struct kmem_cache_cpu *c = *pc;
2212 struct page *page;
2213
2214 freelist = get_partial(s, flags, node, c);
2215
2216 if (freelist)
2217 return freelist;
2218
2219 page = new_slab(s, flags, node);
2220 if (page) {
2221 c = raw_cpu_ptr(s->cpu_slab);
2222 if (c->page)
2223 flush_slab(s, c);
2224
2225 /*
2226 * No other reference to the page yet so we can
2227 * muck around with it freely without cmpxchg
2228 */
2229 freelist = page->freelist;
2230 page->freelist = NULL;
2231
2232 stat(s, ALLOC_SLAB);
2233 c->page = page;
2234 *pc = c;
2235 } else
2236 freelist = NULL;
2237
2238 return freelist;
2239 }
2240
2241 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2242 {
2243 if (unlikely(PageSlabPfmemalloc(page)))
2244 return gfp_pfmemalloc_allowed(gfpflags);
2245
2246 return true;
2247 }
2248
2249 /*
2250 * Check the page->freelist of a page and either transfer the freelist to the
2251 * per cpu freelist or deactivate the page.
2252 *
2253 * The page is still frozen if the return value is not NULL.
2254 *
2255 * If this function returns NULL then the page has been unfrozen.
2256 *
2257 * This function must be called with interrupt disabled.
2258 */
2259 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2260 {
2261 struct page new;
2262 unsigned long counters;
2263 void *freelist;
2264
2265 do {
2266 freelist = page->freelist;
2267 counters = page->counters;
2268
2269 new.counters = counters;
2270 VM_BUG_ON(!new.frozen);
2271
2272 new.inuse = page->objects;
2273 new.frozen = freelist != NULL;
2274
2275 } while (!__cmpxchg_double_slab(s, page,
2276 freelist, counters,
2277 NULL, new.counters,
2278 "get_freelist"));
2279
2280 return freelist;
2281 }
2282
2283 /*
2284 * Slow path. The lockless freelist is empty or we need to perform
2285 * debugging duties.
2286 *
2287 * Processing is still very fast if new objects have been freed to the
2288 * regular freelist. In that case we simply take over the regular freelist
2289 * as the lockless freelist and zap the regular freelist.
2290 *
2291 * If that is not working then we fall back to the partial lists. We take the
2292 * first element of the freelist as the object to allocate now and move the
2293 * rest of the freelist to the lockless freelist.
2294 *
2295 * And if we were unable to get a new slab from the partial slab lists then
2296 * we need to allocate a new slab. This is the slowest path since it involves
2297 * a call to the page allocator and the setup of a new slab.
2298 */
2299 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2300 unsigned long addr, struct kmem_cache_cpu *c)
2301 {
2302 void *freelist;
2303 struct page *page;
2304 unsigned long flags;
2305
2306 local_irq_save(flags);
2307 #ifdef CONFIG_PREEMPT
2308 /*
2309 * We may have been preempted and rescheduled on a different
2310 * cpu before disabling interrupts. Need to reload cpu area
2311 * pointer.
2312 */
2313 c = this_cpu_ptr(s->cpu_slab);
2314 #endif
2315
2316 page = c->page;
2317 if (!page)
2318 goto new_slab;
2319 redo:
2320
2321 if (unlikely(!node_match(page, node))) {
2322 int searchnode = node;
2323
2324 if (node != NUMA_NO_NODE && !node_present_pages(node))
2325 searchnode = node_to_mem_node(node);
2326
2327 if (unlikely(!node_match(page, searchnode))) {
2328 stat(s, ALLOC_NODE_MISMATCH);
2329 deactivate_slab(s, page, c->freelist);
2330 c->page = NULL;
2331 c->freelist = NULL;
2332 goto new_slab;
2333 }
2334 }
2335
2336 /*
2337 * By rights, we should be searching for a slab page that was
2338 * PFMEMALLOC but right now, we are losing the pfmemalloc
2339 * information when the page leaves the per-cpu allocator
2340 */
2341 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2342 deactivate_slab(s, page, c->freelist);
2343 c->page = NULL;
2344 c->freelist = NULL;
2345 goto new_slab;
2346 }
2347
2348 /* must check again c->freelist in case of cpu migration or IRQ */
2349 freelist = c->freelist;
2350 if (freelist)
2351 goto load_freelist;
2352
2353 freelist = get_freelist(s, page);
2354
2355 if (!freelist) {
2356 c->page = NULL;
2357 stat(s, DEACTIVATE_BYPASS);
2358 goto new_slab;
2359 }
2360
2361 stat(s, ALLOC_REFILL);
2362
2363 load_freelist:
2364 /*
2365 * freelist is pointing to the list of objects to be used.
2366 * page is pointing to the page from which the objects are obtained.
2367 * That page must be frozen for per cpu allocations to work.
2368 */
2369 VM_BUG_ON(!c->page->frozen);
2370 c->freelist = get_freepointer(s, freelist);
2371 c->tid = next_tid(c->tid);
2372 local_irq_restore(flags);
2373 return freelist;
2374
2375 new_slab:
2376
2377 if (c->partial) {
2378 page = c->page = c->partial;
2379 c->partial = page->next;
2380 stat(s, CPU_PARTIAL_ALLOC);
2381 c->freelist = NULL;
2382 goto redo;
2383 }
2384
2385 freelist = new_slab_objects(s, gfpflags, node, &c);
2386
2387 if (unlikely(!freelist)) {
2388 slab_out_of_memory(s, gfpflags, node);
2389 local_irq_restore(flags);
2390 return NULL;
2391 }
2392
2393 page = c->page;
2394 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2395 goto load_freelist;
2396
2397 /* Only entered in the debug case */
2398 if (kmem_cache_debug(s) &&
2399 !alloc_debug_processing(s, page, freelist, addr))
2400 goto new_slab; /* Slab failed checks. Next slab needed */
2401
2402 deactivate_slab(s, page, get_freepointer(s, freelist));
2403 c->page = NULL;
2404 c->freelist = NULL;
2405 local_irq_restore(flags);
2406 return freelist;
2407 }
2408
2409 /*
2410 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2411 * have the fastpath folded into their functions. So no function call
2412 * overhead for requests that can be satisfied on the fastpath.
2413 *
2414 * The fastpath works by first checking if the lockless freelist can be used.
2415 * If not then __slab_alloc is called for slow processing.
2416 *
2417 * Otherwise we can simply pick the next object from the lockless free list.
2418 */
2419 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2420 gfp_t gfpflags, int node, unsigned long addr)
2421 {
2422 void **object;
2423 struct kmem_cache_cpu *c;
2424 struct page *page;
2425 unsigned long tid;
2426
2427 s = slab_pre_alloc_hook(s, gfpflags);
2428 if (!s)
2429 return NULL;
2430 redo:
2431 /*
2432 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2433 * enabled. We may switch back and forth between cpus while
2434 * reading from one cpu area. That does not matter as long
2435 * as we end up on the original cpu again when doing the cmpxchg.
2436 *
2437 * We should guarantee that tid and kmem_cache are retrieved on
2438 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2439 * to check if it is matched or not.
2440 */
2441 do {
2442 tid = this_cpu_read(s->cpu_slab->tid);
2443 c = raw_cpu_ptr(s->cpu_slab);
2444 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2445 unlikely(tid != READ_ONCE(c->tid)));
2446
2447 /*
2448 * Irqless object alloc/free algorithm used here depends on sequence
2449 * of fetching cpu_slab's data. tid should be fetched before anything
2450 * on c to guarantee that object and page associated with previous tid
2451 * won't be used with current tid. If we fetch tid first, object and
2452 * page could be one associated with next tid and our alloc/free
2453 * request will be failed. In this case, we will retry. So, no problem.
2454 */
2455 barrier();
2456
2457 /*
2458 * The transaction ids are globally unique per cpu and per operation on
2459 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2460 * occurs on the right processor and that there was no operation on the
2461 * linked list in between.
2462 */
2463
2464 object = c->freelist;
2465 page = c->page;
2466 if (unlikely(!object || !node_match(page, node))) {
2467 object = __slab_alloc(s, gfpflags, node, addr, c);
2468 stat(s, ALLOC_SLOWPATH);
2469 } else {
2470 void *next_object = get_freepointer_safe(s, object);
2471
2472 /*
2473 * The cmpxchg will only match if there was no additional
2474 * operation and if we are on the right processor.
2475 *
2476 * The cmpxchg does the following atomically (without lock
2477 * semantics!)
2478 * 1. Relocate first pointer to the current per cpu area.
2479 * 2. Verify that tid and freelist have not been changed
2480 * 3. If they were not changed replace tid and freelist
2481 *
2482 * Since this is without lock semantics the protection is only
2483 * against code executing on this cpu *not* from access by
2484 * other cpus.
2485 */
2486 if (unlikely(!this_cpu_cmpxchg_double(
2487 s->cpu_slab->freelist, s->cpu_slab->tid,
2488 object, tid,
2489 next_object, next_tid(tid)))) {
2490
2491 note_cmpxchg_failure("slab_alloc", s, tid);
2492 goto redo;
2493 }
2494 prefetch_freepointer(s, next_object);
2495 stat(s, ALLOC_FASTPATH);
2496 }
2497
2498 if (unlikely(gfpflags & __GFP_ZERO) && object)
2499 memset(object, 0, s->object_size);
2500
2501 slab_post_alloc_hook(s, gfpflags, object);
2502
2503 return object;
2504 }
2505
2506 static __always_inline void *slab_alloc(struct kmem_cache *s,
2507 gfp_t gfpflags, unsigned long addr)
2508 {
2509 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2510 }
2511
2512 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2513 {
2514 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2515
2516 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2517 s->size, gfpflags);
2518
2519 return ret;
2520 }
2521 EXPORT_SYMBOL(kmem_cache_alloc);
2522
2523 #ifdef CONFIG_TRACING
2524 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2525 {
2526 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2527 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2528 kasan_kmalloc(s, ret, size);
2529 return ret;
2530 }
2531 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2532 #endif
2533
2534 #ifdef CONFIG_NUMA
2535 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2536 {
2537 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2538
2539 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2540 s->object_size, s->size, gfpflags, node);
2541
2542 return ret;
2543 }
2544 EXPORT_SYMBOL(kmem_cache_alloc_node);
2545
2546 #ifdef CONFIG_TRACING
2547 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2548 gfp_t gfpflags,
2549 int node, size_t size)
2550 {
2551 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2552
2553 trace_kmalloc_node(_RET_IP_, ret,
2554 size, s->size, gfpflags, node);
2555
2556 kasan_kmalloc(s, ret, size);
2557 return ret;
2558 }
2559 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2560 #endif
2561 #endif
2562
2563 /*
2564 * Slow path handling. This may still be called frequently since objects
2565 * have a longer lifetime than the cpu slabs in most processing loads.
2566 *
2567 * So we still attempt to reduce cache line usage. Just take the slab
2568 * lock and free the item. If there is no additional partial page
2569 * handling required then we can return immediately.
2570 */
2571 static void __slab_free(struct kmem_cache *s, struct page *page,
2572 void *x, unsigned long addr)
2573 {
2574 void *prior;
2575 void **object = (void *)x;
2576 int was_frozen;
2577 struct page new;
2578 unsigned long counters;
2579 struct kmem_cache_node *n = NULL;
2580 unsigned long uninitialized_var(flags);
2581
2582 stat(s, FREE_SLOWPATH);
2583
2584 if (kmem_cache_debug(s) &&
2585 !(n = free_debug_processing(s, page, x, addr, &flags)))
2586 return;
2587
2588 do {
2589 if (unlikely(n)) {
2590 spin_unlock_irqrestore(&n->list_lock, flags);
2591 n = NULL;
2592 }
2593 prior = page->freelist;
2594 counters = page->counters;
2595 set_freepointer(s, object, prior);
2596 new.counters = counters;
2597 was_frozen = new.frozen;
2598 new.inuse--;
2599 if ((!new.inuse || !prior) && !was_frozen) {
2600
2601 if (kmem_cache_has_cpu_partial(s) && !prior) {
2602
2603 /*
2604 * Slab was on no list before and will be
2605 * partially empty
2606 * We can defer the list move and instead
2607 * freeze it.
2608 */
2609 new.frozen = 1;
2610
2611 } else { /* Needs to be taken off a list */
2612
2613 n = get_node(s, page_to_nid(page));
2614 /*
2615 * Speculatively acquire the list_lock.
2616 * If the cmpxchg does not succeed then we may
2617 * drop the list_lock without any processing.
2618 *
2619 * Otherwise the list_lock will synchronize with
2620 * other processors updating the list of slabs.
2621 */
2622 spin_lock_irqsave(&n->list_lock, flags);
2623
2624 }
2625 }
2626
2627 } while (!cmpxchg_double_slab(s, page,
2628 prior, counters,
2629 object, new.counters,
2630 "__slab_free"));
2631
2632 if (likely(!n)) {
2633
2634 /*
2635 * If we just froze the page then put it onto the
2636 * per cpu partial list.
2637 */
2638 if (new.frozen && !was_frozen) {
2639 put_cpu_partial(s, page, 1);
2640 stat(s, CPU_PARTIAL_FREE);
2641 }
2642 /*
2643 * The list lock was not taken therefore no list
2644 * activity can be necessary.
2645 */
2646 if (was_frozen)
2647 stat(s, FREE_FROZEN);
2648 return;
2649 }
2650
2651 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2652 goto slab_empty;
2653
2654 /*
2655 * Objects left in the slab. If it was not on the partial list before
2656 * then add it.
2657 */
2658 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2659 if (kmem_cache_debug(s))
2660 remove_full(s, n, page);
2661 add_partial(n, page, DEACTIVATE_TO_TAIL);
2662 stat(s, FREE_ADD_PARTIAL);
2663 }
2664 spin_unlock_irqrestore(&n->list_lock, flags);
2665 return;
2666
2667 slab_empty:
2668 if (prior) {
2669 /*
2670 * Slab on the partial list.
2671 */
2672 remove_partial(n, page);
2673 stat(s, FREE_REMOVE_PARTIAL);
2674 } else {
2675 /* Slab must be on the full list */
2676 remove_full(s, n, page);
2677 }
2678
2679 spin_unlock_irqrestore(&n->list_lock, flags);
2680 stat(s, FREE_SLAB);
2681 discard_slab(s, page);
2682 }
2683
2684 /*
2685 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2686 * can perform fastpath freeing without additional function calls.
2687 *
2688 * The fastpath is only possible if we are freeing to the current cpu slab
2689 * of this processor. This typically the case if we have just allocated
2690 * the item before.
2691 *
2692 * If fastpath is not possible then fall back to __slab_free where we deal
2693 * with all sorts of special processing.
2694 */
2695 static __always_inline void slab_free(struct kmem_cache *s,
2696 struct page *page, void *x, unsigned long addr)
2697 {
2698 void **object = (void *)x;
2699 struct kmem_cache_cpu *c;
2700 unsigned long tid;
2701
2702 slab_free_hook(s, x);
2703
2704 redo:
2705 /*
2706 * Determine the currently cpus per cpu slab.
2707 * The cpu may change afterward. However that does not matter since
2708 * data is retrieved via this pointer. If we are on the same cpu
2709 * during the cmpxchg then the free will succeed.
2710 */
2711 do {
2712 tid = this_cpu_read(s->cpu_slab->tid);
2713 c = raw_cpu_ptr(s->cpu_slab);
2714 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2715 unlikely(tid != READ_ONCE(c->tid)));
2716
2717 /* Same with comment on barrier() in slab_alloc_node() */
2718 barrier();
2719
2720 if (likely(page == c->page)) {
2721 set_freepointer(s, object, c->freelist);
2722
2723 if (unlikely(!this_cpu_cmpxchg_double(
2724 s->cpu_slab->freelist, s->cpu_slab->tid,
2725 c->freelist, tid,
2726 object, next_tid(tid)))) {
2727
2728 note_cmpxchg_failure("slab_free", s, tid);
2729 goto redo;
2730 }
2731 stat(s, FREE_FASTPATH);
2732 } else
2733 __slab_free(s, page, x, addr);
2734
2735 }
2736
2737 void kmem_cache_free(struct kmem_cache *s, void *x)
2738 {
2739 s = cache_from_obj(s, x);
2740 if (!s)
2741 return;
2742 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2743 trace_kmem_cache_free(_RET_IP_, x);
2744 }
2745 EXPORT_SYMBOL(kmem_cache_free);
2746
2747 /* Note that interrupts must be enabled when calling this function. */
2748 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2749 {
2750 struct kmem_cache_cpu *c;
2751 struct page *page;
2752 int i;
2753
2754 local_irq_disable();
2755 c = this_cpu_ptr(s->cpu_slab);
2756
2757 for (i = 0; i < size; i++) {
2758 void *object = p[i];
2759
2760 BUG_ON(!object);
2761 /* kmem cache debug support */
2762 s = cache_from_obj(s, object);
2763 if (unlikely(!s))
2764 goto exit;
2765 slab_free_hook(s, object);
2766
2767 page = virt_to_head_page(object);
2768
2769 if (c->page == page) {
2770 /* Fastpath: local CPU free */
2771 set_freepointer(s, object, c->freelist);
2772 c->freelist = object;
2773 } else {
2774 c->tid = next_tid(c->tid);
2775 local_irq_enable();
2776 /* Slowpath: overhead locked cmpxchg_double_slab */
2777 __slab_free(s, page, object, _RET_IP_);
2778 local_irq_disable();
2779 c = this_cpu_ptr(s->cpu_slab);
2780 }
2781 }
2782 exit:
2783 c->tid = next_tid(c->tid);
2784 local_irq_enable();
2785 }
2786 EXPORT_SYMBOL(kmem_cache_free_bulk);
2787
2788 /* Note that interrupts must be enabled when calling this function. */
2789 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2790 void **p)
2791 {
2792 struct kmem_cache_cpu *c;
2793 int i;
2794
2795 /*
2796 * Drain objects in the per cpu slab, while disabling local
2797 * IRQs, which protects against PREEMPT and interrupts
2798 * handlers invoking normal fastpath.
2799 */
2800 local_irq_disable();
2801 c = this_cpu_ptr(s->cpu_slab);
2802
2803 for (i = 0; i < size; i++) {
2804 void *object = c->freelist;
2805
2806 if (unlikely(!object)) {
2807 local_irq_enable();
2808 /*
2809 * Invoking slow path likely have side-effect
2810 * of re-populating per CPU c->freelist
2811 */
2812 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2813 _RET_IP_, c);
2814 if (unlikely(!p[i])) {
2815 __kmem_cache_free_bulk(s, i, p);
2816 return false;
2817 }
2818 local_irq_disable();
2819 c = this_cpu_ptr(s->cpu_slab);
2820 continue; /* goto for-loop */
2821 }
2822
2823 /* kmem_cache debug support */
2824 s = slab_pre_alloc_hook(s, flags);
2825 if (unlikely(!s)) {
2826 __kmem_cache_free_bulk(s, i, p);
2827 c->tid = next_tid(c->tid);
2828 local_irq_enable();
2829 return false;
2830 }
2831
2832 c->freelist = get_freepointer(s, object);
2833 p[i] = object;
2834
2835 /* kmem_cache debug support */
2836 slab_post_alloc_hook(s, flags, object);
2837 }
2838 c->tid = next_tid(c->tid);
2839 local_irq_enable();
2840
2841 /* Clear memory outside IRQ disabled fastpath loop */
2842 if (unlikely(flags & __GFP_ZERO)) {
2843 int j;
2844
2845 for (j = 0; j < i; j++)
2846 memset(p[j], 0, s->object_size);
2847 }
2848
2849 return true;
2850 }
2851 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2852
2853
2854 /*
2855 * Object placement in a slab is made very easy because we always start at
2856 * offset 0. If we tune the size of the object to the alignment then we can
2857 * get the required alignment by putting one properly sized object after
2858 * another.
2859 *
2860 * Notice that the allocation order determines the sizes of the per cpu
2861 * caches. Each processor has always one slab available for allocations.
2862 * Increasing the allocation order reduces the number of times that slabs
2863 * must be moved on and off the partial lists and is therefore a factor in
2864 * locking overhead.
2865 */
2866
2867 /*
2868 * Mininum / Maximum order of slab pages. This influences locking overhead
2869 * and slab fragmentation. A higher order reduces the number of partial slabs
2870 * and increases the number of allocations possible without having to
2871 * take the list_lock.
2872 */
2873 static int slub_min_order;
2874 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2875 static int slub_min_objects;
2876
2877 /*
2878 * Calculate the order of allocation given an slab object size.
2879 *
2880 * The order of allocation has significant impact on performance and other
2881 * system components. Generally order 0 allocations should be preferred since
2882 * order 0 does not cause fragmentation in the page allocator. Larger objects
2883 * be problematic to put into order 0 slabs because there may be too much
2884 * unused space left. We go to a higher order if more than 1/16th of the slab
2885 * would be wasted.
2886 *
2887 * In order to reach satisfactory performance we must ensure that a minimum
2888 * number of objects is in one slab. Otherwise we may generate too much
2889 * activity on the partial lists which requires taking the list_lock. This is
2890 * less a concern for large slabs though which are rarely used.
2891 *
2892 * slub_max_order specifies the order where we begin to stop considering the
2893 * number of objects in a slab as critical. If we reach slub_max_order then
2894 * we try to keep the page order as low as possible. So we accept more waste
2895 * of space in favor of a small page order.
2896 *
2897 * Higher order allocations also allow the placement of more objects in a
2898 * slab and thereby reduce object handling overhead. If the user has
2899 * requested a higher mininum order then we start with that one instead of
2900 * the smallest order which will fit the object.
2901 */
2902 static inline int slab_order(int size, int min_objects,
2903 int max_order, int fract_leftover, int reserved)
2904 {
2905 int order;
2906 int rem;
2907 int min_order = slub_min_order;
2908
2909 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2910 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2911
2912 for (order = max(min_order, get_order(min_objects * size + reserved));
2913 order <= max_order; order++) {
2914
2915 unsigned long slab_size = PAGE_SIZE << order;
2916
2917 rem = (slab_size - reserved) % size;
2918
2919 if (rem <= slab_size / fract_leftover)
2920 break;
2921 }
2922
2923 return order;
2924 }
2925
2926 static inline int calculate_order(int size, int reserved)
2927 {
2928 int order;
2929 int min_objects;
2930 int fraction;
2931 int max_objects;
2932
2933 /*
2934 * Attempt to find best configuration for a slab. This
2935 * works by first attempting to generate a layout with
2936 * the best configuration and backing off gradually.
2937 *
2938 * First we increase the acceptable waste in a slab. Then
2939 * we reduce the minimum objects required in a slab.
2940 */
2941 min_objects = slub_min_objects;
2942 if (!min_objects)
2943 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2944 max_objects = order_objects(slub_max_order, size, reserved);
2945 min_objects = min(min_objects, max_objects);
2946
2947 while (min_objects > 1) {
2948 fraction = 16;
2949 while (fraction >= 4) {
2950 order = slab_order(size, min_objects,
2951 slub_max_order, fraction, reserved);
2952 if (order <= slub_max_order)
2953 return order;
2954 fraction /= 2;
2955 }
2956 min_objects--;
2957 }
2958
2959 /*
2960 * We were unable to place multiple objects in a slab. Now
2961 * lets see if we can place a single object there.
2962 */
2963 order = slab_order(size, 1, slub_max_order, 1, reserved);
2964 if (order <= slub_max_order)
2965 return order;
2966
2967 /*
2968 * Doh this slab cannot be placed using slub_max_order.
2969 */
2970 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2971 if (order < MAX_ORDER)
2972 return order;
2973 return -ENOSYS;
2974 }
2975
2976 static void
2977 init_kmem_cache_node(struct kmem_cache_node *n)
2978 {
2979 n->nr_partial = 0;
2980 spin_lock_init(&n->list_lock);
2981 INIT_LIST_HEAD(&n->partial);
2982 #ifdef CONFIG_SLUB_DEBUG
2983 atomic_long_set(&n->nr_slabs, 0);
2984 atomic_long_set(&n->total_objects, 0);
2985 INIT_LIST_HEAD(&n->full);
2986 #endif
2987 }
2988
2989 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2990 {
2991 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2992 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2993
2994 /*
2995 * Must align to double word boundary for the double cmpxchg
2996 * instructions to work; see __pcpu_double_call_return_bool().
2997 */
2998 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2999 2 * sizeof(void *));
3000
3001 if (!s->cpu_slab)
3002 return 0;
3003
3004 init_kmem_cache_cpus(s);
3005
3006 return 1;
3007 }
3008
3009 static struct kmem_cache *kmem_cache_node;
3010
3011 /*
3012 * No kmalloc_node yet so do it by hand. We know that this is the first
3013 * slab on the node for this slabcache. There are no concurrent accesses
3014 * possible.
3015 *
3016 * Note that this function only works on the kmem_cache_node
3017 * when allocating for the kmem_cache_node. This is used for bootstrapping
3018 * memory on a fresh node that has no slab structures yet.
3019 */
3020 static void early_kmem_cache_node_alloc(int node)
3021 {
3022 struct page *page;
3023 struct kmem_cache_node *n;
3024
3025 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3026
3027 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3028
3029 BUG_ON(!page);
3030 if (page_to_nid(page) != node) {
3031 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3032 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3033 }
3034
3035 n = page->freelist;
3036 BUG_ON(!n);
3037 page->freelist = get_freepointer(kmem_cache_node, n);
3038 page->inuse = 1;
3039 page->frozen = 0;
3040 kmem_cache_node->node[node] = n;
3041 #ifdef CONFIG_SLUB_DEBUG
3042 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3043 init_tracking(kmem_cache_node, n);
3044 #endif
3045 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3046 init_kmem_cache_node(n);
3047 inc_slabs_node(kmem_cache_node, node, page->objects);
3048
3049 /*
3050 * No locks need to be taken here as it has just been
3051 * initialized and there is no concurrent access.
3052 */
3053 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3054 }
3055
3056 static void free_kmem_cache_nodes(struct kmem_cache *s)
3057 {
3058 int node;
3059 struct kmem_cache_node *n;
3060
3061 for_each_kmem_cache_node(s, node, n) {
3062 kmem_cache_free(kmem_cache_node, n);
3063 s->node[node] = NULL;
3064 }
3065 }
3066
3067 static int init_kmem_cache_nodes(struct kmem_cache *s)
3068 {
3069 int node;
3070
3071 for_each_node_state(node, N_NORMAL_MEMORY) {
3072 struct kmem_cache_node *n;
3073
3074 if (slab_state == DOWN) {
3075 early_kmem_cache_node_alloc(node);
3076 continue;
3077 }
3078 n = kmem_cache_alloc_node(kmem_cache_node,
3079 GFP_KERNEL, node);
3080
3081 if (!n) {
3082 free_kmem_cache_nodes(s);
3083 return 0;
3084 }
3085
3086 s->node[node] = n;
3087 init_kmem_cache_node(n);
3088 }
3089 return 1;
3090 }
3091
3092 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3093 {
3094 if (min < MIN_PARTIAL)
3095 min = MIN_PARTIAL;
3096 else if (min > MAX_PARTIAL)
3097 min = MAX_PARTIAL;
3098 s->min_partial = min;
3099 }
3100
3101 /*
3102 * calculate_sizes() determines the order and the distribution of data within
3103 * a slab object.
3104 */
3105 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3106 {
3107 unsigned long flags = s->flags;
3108 unsigned long size = s->object_size;
3109 int order;
3110
3111 /*
3112 * Round up object size to the next word boundary. We can only
3113 * place the free pointer at word boundaries and this determines
3114 * the possible location of the free pointer.
3115 */
3116 size = ALIGN(size, sizeof(void *));
3117
3118 #ifdef CONFIG_SLUB_DEBUG
3119 /*
3120 * Determine if we can poison the object itself. If the user of
3121 * the slab may touch the object after free or before allocation
3122 * then we should never poison the object itself.
3123 */
3124 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3125 !s->ctor)
3126 s->flags |= __OBJECT_POISON;
3127 else
3128 s->flags &= ~__OBJECT_POISON;
3129
3130
3131 /*
3132 * If we are Redzoning then check if there is some space between the
3133 * end of the object and the free pointer. If not then add an
3134 * additional word to have some bytes to store Redzone information.
3135 */
3136 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3137 size += sizeof(void *);
3138 #endif
3139
3140 /*
3141 * With that we have determined the number of bytes in actual use
3142 * by the object. This is the potential offset to the free pointer.
3143 */
3144 s->inuse = size;
3145
3146 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3147 s->ctor)) {
3148 /*
3149 * Relocate free pointer after the object if it is not
3150 * permitted to overwrite the first word of the object on
3151 * kmem_cache_free.
3152 *
3153 * This is the case if we do RCU, have a constructor or
3154 * destructor or are poisoning the objects.
3155 */
3156 s->offset = size;
3157 size += sizeof(void *);
3158 }
3159
3160 #ifdef CONFIG_SLUB_DEBUG
3161 if (flags & SLAB_STORE_USER)
3162 /*
3163 * Need to store information about allocs and frees after
3164 * the object.
3165 */
3166 size += 2 * sizeof(struct track);
3167
3168 if (flags & SLAB_RED_ZONE)
3169 /*
3170 * Add some empty padding so that we can catch
3171 * overwrites from earlier objects rather than let
3172 * tracking information or the free pointer be
3173 * corrupted if a user writes before the start
3174 * of the object.
3175 */
3176 size += sizeof(void *);
3177 #endif
3178
3179 /*
3180 * SLUB stores one object immediately after another beginning from
3181 * offset 0. In order to align the objects we have to simply size
3182 * each object to conform to the alignment.
3183 */
3184 size = ALIGN(size, s->align);
3185 s->size = size;
3186 if (forced_order >= 0)
3187 order = forced_order;
3188 else
3189 order = calculate_order(size, s->reserved);
3190
3191 if (order < 0)
3192 return 0;
3193
3194 s->allocflags = 0;
3195 if (order)
3196 s->allocflags |= __GFP_COMP;
3197
3198 if (s->flags & SLAB_CACHE_DMA)
3199 s->allocflags |= GFP_DMA;
3200
3201 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3202 s->allocflags |= __GFP_RECLAIMABLE;
3203
3204 /*
3205 * Determine the number of objects per slab
3206 */
3207 s->oo = oo_make(order, size, s->reserved);
3208 s->min = oo_make(get_order(size), size, s->reserved);
3209 if (oo_objects(s->oo) > oo_objects(s->max))
3210 s->max = s->oo;
3211
3212 return !!oo_objects(s->oo);
3213 }
3214
3215 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3216 {
3217 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3218 s->reserved = 0;
3219
3220 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3221 s->reserved = sizeof(struct rcu_head);
3222
3223 if (!calculate_sizes(s, -1))
3224 goto error;
3225 if (disable_higher_order_debug) {
3226 /*
3227 * Disable debugging flags that store metadata if the min slab
3228 * order increased.
3229 */
3230 if (get_order(s->size) > get_order(s->object_size)) {
3231 s->flags &= ~DEBUG_METADATA_FLAGS;
3232 s->offset = 0;
3233 if (!calculate_sizes(s, -1))
3234 goto error;
3235 }
3236 }
3237
3238 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3239 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3240 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3241 /* Enable fast mode */
3242 s->flags |= __CMPXCHG_DOUBLE;
3243 #endif
3244
3245 /*
3246 * The larger the object size is, the more pages we want on the partial
3247 * list to avoid pounding the page allocator excessively.
3248 */
3249 set_min_partial(s, ilog2(s->size) / 2);
3250
3251 /*
3252 * cpu_partial determined the maximum number of objects kept in the
3253 * per cpu partial lists of a processor.
3254 *
3255 * Per cpu partial lists mainly contain slabs that just have one
3256 * object freed. If they are used for allocation then they can be
3257 * filled up again with minimal effort. The slab will never hit the
3258 * per node partial lists and therefore no locking will be required.
3259 *
3260 * This setting also determines
3261 *
3262 * A) The number of objects from per cpu partial slabs dumped to the
3263 * per node list when we reach the limit.
3264 * B) The number of objects in cpu partial slabs to extract from the
3265 * per node list when we run out of per cpu objects. We only fetch
3266 * 50% to keep some capacity around for frees.
3267 */
3268 if (!kmem_cache_has_cpu_partial(s))
3269 s->cpu_partial = 0;
3270 else if (s->size >= PAGE_SIZE)
3271 s->cpu_partial = 2;
3272 else if (s->size >= 1024)
3273 s->cpu_partial = 6;
3274 else if (s->size >= 256)
3275 s->cpu_partial = 13;
3276 else
3277 s->cpu_partial = 30;
3278
3279 #ifdef CONFIG_NUMA
3280 s->remote_node_defrag_ratio = 1000;
3281 #endif
3282 if (!init_kmem_cache_nodes(s))
3283 goto error;
3284
3285 if (alloc_kmem_cache_cpus(s))
3286 return 0;
3287
3288 free_kmem_cache_nodes(s);
3289 error:
3290 if (flags & SLAB_PANIC)
3291 panic("Cannot create slab %s size=%lu realsize=%u "
3292 "order=%u offset=%u flags=%lx\n",
3293 s->name, (unsigned long)s->size, s->size,
3294 oo_order(s->oo), s->offset, flags);
3295 return -EINVAL;
3296 }
3297
3298 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3299 const char *text)
3300 {
3301 #ifdef CONFIG_SLUB_DEBUG
3302 void *addr = page_address(page);
3303 void *p;
3304 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3305 sizeof(long), GFP_ATOMIC);
3306 if (!map)
3307 return;
3308 slab_err(s, page, text, s->name);
3309 slab_lock(page);
3310
3311 get_map(s, page, map);
3312 for_each_object(p, s, addr, page->objects) {
3313
3314 if (!test_bit(slab_index(p, s, addr), map)) {
3315 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3316 print_tracking(s, p);
3317 }
3318 }
3319 slab_unlock(page);
3320 kfree(map);
3321 #endif
3322 }
3323
3324 /*
3325 * Attempt to free all partial slabs on a node.
3326 * This is called from kmem_cache_close(). We must be the last thread
3327 * using the cache and therefore we do not need to lock anymore.
3328 */
3329 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3330 {
3331 struct page *page, *h;
3332
3333 list_for_each_entry_safe(page, h, &n->partial, lru) {
3334 if (!page->inuse) {
3335 __remove_partial(n, page);
3336 discard_slab(s, page);
3337 } else {
3338 list_slab_objects(s, page,
3339 "Objects remaining in %s on kmem_cache_close()");
3340 }
3341 }
3342 }
3343
3344 /*
3345 * Release all resources used by a slab cache.
3346 */
3347 static inline int kmem_cache_close(struct kmem_cache *s)
3348 {
3349 int node;
3350 struct kmem_cache_node *n;
3351
3352 flush_all(s);
3353 /* Attempt to free all objects */
3354 for_each_kmem_cache_node(s, node, n) {
3355 free_partial(s, n);
3356 if (n->nr_partial || slabs_node(s, node))
3357 return 1;
3358 }
3359 free_percpu(s->cpu_slab);
3360 free_kmem_cache_nodes(s);
3361 return 0;
3362 }
3363
3364 int __kmem_cache_shutdown(struct kmem_cache *s)
3365 {
3366 return kmem_cache_close(s);
3367 }
3368
3369 /********************************************************************
3370 * Kmalloc subsystem
3371 *******************************************************************/
3372
3373 static int __init setup_slub_min_order(char *str)
3374 {
3375 get_option(&str, &slub_min_order);
3376
3377 return 1;
3378 }
3379
3380 __setup("slub_min_order=", setup_slub_min_order);
3381
3382 static int __init setup_slub_max_order(char *str)
3383 {
3384 get_option(&str, &slub_max_order);
3385 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3386
3387 return 1;
3388 }
3389
3390 __setup("slub_max_order=", setup_slub_max_order);
3391
3392 static int __init setup_slub_min_objects(char *str)
3393 {
3394 get_option(&str, &slub_min_objects);
3395
3396 return 1;
3397 }
3398
3399 __setup("slub_min_objects=", setup_slub_min_objects);
3400
3401 void *__kmalloc(size_t size, gfp_t flags)
3402 {
3403 struct kmem_cache *s;
3404 void *ret;
3405
3406 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3407 return kmalloc_large(size, flags);
3408
3409 s = kmalloc_slab(size, flags);
3410
3411 if (unlikely(ZERO_OR_NULL_PTR(s)))
3412 return s;
3413
3414 ret = slab_alloc(s, flags, _RET_IP_);
3415
3416 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3417
3418 kasan_kmalloc(s, ret, size);
3419
3420 return ret;
3421 }
3422 EXPORT_SYMBOL(__kmalloc);
3423
3424 #ifdef CONFIG_NUMA
3425 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3426 {
3427 struct page *page;
3428 void *ptr = NULL;
3429
3430 flags |= __GFP_COMP | __GFP_NOTRACK;
3431 page = alloc_kmem_pages_node(node, flags, get_order(size));
3432 if (page)
3433 ptr = page_address(page);
3434
3435 kmalloc_large_node_hook(ptr, size, flags);
3436 return ptr;
3437 }
3438
3439 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3440 {
3441 struct kmem_cache *s;
3442 void *ret;
3443
3444 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3445 ret = kmalloc_large_node(size, flags, node);
3446
3447 trace_kmalloc_node(_RET_IP_, ret,
3448 size, PAGE_SIZE << get_order(size),
3449 flags, node);
3450
3451 return ret;
3452 }
3453
3454 s = kmalloc_slab(size, flags);
3455
3456 if (unlikely(ZERO_OR_NULL_PTR(s)))
3457 return s;
3458
3459 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3460
3461 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3462
3463 kasan_kmalloc(s, ret, size);
3464
3465 return ret;
3466 }
3467 EXPORT_SYMBOL(__kmalloc_node);
3468 #endif
3469
3470 static size_t __ksize(const void *object)
3471 {
3472 struct page *page;
3473
3474 if (unlikely(object == ZERO_SIZE_PTR))
3475 return 0;
3476
3477 page = virt_to_head_page(object);
3478
3479 if (unlikely(!PageSlab(page))) {
3480 WARN_ON(!PageCompound(page));
3481 return PAGE_SIZE << compound_order(page);
3482 }
3483
3484 return slab_ksize(page->slab_cache);
3485 }
3486
3487 size_t ksize(const void *object)
3488 {
3489 size_t size = __ksize(object);
3490 /* We assume that ksize callers could use whole allocated area,
3491 so we need unpoison this area. */
3492 kasan_krealloc(object, size);
3493 return size;
3494 }
3495 EXPORT_SYMBOL(ksize);
3496
3497 void kfree(const void *x)
3498 {
3499 struct page *page;
3500 void *object = (void *)x;
3501
3502 trace_kfree(_RET_IP_, x);
3503
3504 if (unlikely(ZERO_OR_NULL_PTR(x)))
3505 return;
3506
3507 page = virt_to_head_page(x);
3508 if (unlikely(!PageSlab(page))) {
3509 BUG_ON(!PageCompound(page));
3510 kfree_hook(x);
3511 __free_kmem_pages(page, compound_order(page));
3512 return;
3513 }
3514 slab_free(page->slab_cache, page, object, _RET_IP_);
3515 }
3516 EXPORT_SYMBOL(kfree);
3517
3518 #define SHRINK_PROMOTE_MAX 32
3519
3520 /*
3521 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3522 * up most to the head of the partial lists. New allocations will then
3523 * fill those up and thus they can be removed from the partial lists.
3524 *
3525 * The slabs with the least items are placed last. This results in them
3526 * being allocated from last increasing the chance that the last objects
3527 * are freed in them.
3528 */
3529 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3530 {
3531 int node;
3532 int i;
3533 struct kmem_cache_node *n;
3534 struct page *page;
3535 struct page *t;
3536 struct list_head discard;
3537 struct list_head promote[SHRINK_PROMOTE_MAX];
3538 unsigned long flags;
3539 int ret = 0;
3540
3541 if (deactivate) {
3542 /*
3543 * Disable empty slabs caching. Used to avoid pinning offline
3544 * memory cgroups by kmem pages that can be freed.
3545 */
3546 s->cpu_partial = 0;
3547 s->min_partial = 0;
3548
3549 /*
3550 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3551 * so we have to make sure the change is visible.
3552 */
3553 kick_all_cpus_sync();
3554 }
3555
3556 flush_all(s);
3557 for_each_kmem_cache_node(s, node, n) {
3558 INIT_LIST_HEAD(&discard);
3559 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3560 INIT_LIST_HEAD(promote + i);
3561
3562 spin_lock_irqsave(&n->list_lock, flags);
3563
3564 /*
3565 * Build lists of slabs to discard or promote.
3566 *
3567 * Note that concurrent frees may occur while we hold the
3568 * list_lock. page->inuse here is the upper limit.
3569 */
3570 list_for_each_entry_safe(page, t, &n->partial, lru) {
3571 int free = page->objects - page->inuse;
3572
3573 /* Do not reread page->inuse */
3574 barrier();
3575
3576 /* We do not keep full slabs on the list */
3577 BUG_ON(free <= 0);
3578
3579 if (free == page->objects) {
3580 list_move(&page->lru, &discard);
3581 n->nr_partial--;
3582 } else if (free <= SHRINK_PROMOTE_MAX)
3583 list_move(&page->lru, promote + free - 1);
3584 }
3585
3586 /*
3587 * Promote the slabs filled up most to the head of the
3588 * partial list.
3589 */
3590 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3591 list_splice(promote + i, &n->partial);
3592
3593 spin_unlock_irqrestore(&n->list_lock, flags);
3594
3595 /* Release empty slabs */
3596 list_for_each_entry_safe(page, t, &discard, lru)
3597 discard_slab(s, page);
3598
3599 if (slabs_node(s, node))
3600 ret = 1;
3601 }
3602
3603 return ret;
3604 }
3605
3606 static int slab_mem_going_offline_callback(void *arg)
3607 {
3608 struct kmem_cache *s;
3609
3610 mutex_lock(&slab_mutex);
3611 list_for_each_entry(s, &slab_caches, list)
3612 __kmem_cache_shrink(s, false);
3613 mutex_unlock(&slab_mutex);
3614
3615 return 0;
3616 }
3617
3618 static void slab_mem_offline_callback(void *arg)
3619 {
3620 struct kmem_cache_node *n;
3621 struct kmem_cache *s;
3622 struct memory_notify *marg = arg;
3623 int offline_node;
3624
3625 offline_node = marg->status_change_nid_normal;
3626
3627 /*
3628 * If the node still has available memory. we need kmem_cache_node
3629 * for it yet.
3630 */
3631 if (offline_node < 0)
3632 return;
3633
3634 mutex_lock(&slab_mutex);
3635 list_for_each_entry(s, &slab_caches, list) {
3636 n = get_node(s, offline_node);
3637 if (n) {
3638 /*
3639 * if n->nr_slabs > 0, slabs still exist on the node
3640 * that is going down. We were unable to free them,
3641 * and offline_pages() function shouldn't call this
3642 * callback. So, we must fail.
3643 */
3644 BUG_ON(slabs_node(s, offline_node));
3645
3646 s->node[offline_node] = NULL;
3647 kmem_cache_free(kmem_cache_node, n);
3648 }
3649 }
3650 mutex_unlock(&slab_mutex);
3651 }
3652
3653 static int slab_mem_going_online_callback(void *arg)
3654 {
3655 struct kmem_cache_node *n;
3656 struct kmem_cache *s;
3657 struct memory_notify *marg = arg;
3658 int nid = marg->status_change_nid_normal;
3659 int ret = 0;
3660
3661 /*
3662 * If the node's memory is already available, then kmem_cache_node is
3663 * already created. Nothing to do.
3664 */
3665 if (nid < 0)
3666 return 0;
3667
3668 /*
3669 * We are bringing a node online. No memory is available yet. We must
3670 * allocate a kmem_cache_node structure in order to bring the node
3671 * online.
3672 */
3673 mutex_lock(&slab_mutex);
3674 list_for_each_entry(s, &slab_caches, list) {
3675 /*
3676 * XXX: kmem_cache_alloc_node will fallback to other nodes
3677 * since memory is not yet available from the node that
3678 * is brought up.
3679 */
3680 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3681 if (!n) {
3682 ret = -ENOMEM;
3683 goto out;
3684 }
3685 init_kmem_cache_node(n);
3686 s->node[nid] = n;
3687 }
3688 out:
3689 mutex_unlock(&slab_mutex);
3690 return ret;
3691 }
3692
3693 static int slab_memory_callback(struct notifier_block *self,
3694 unsigned long action, void *arg)
3695 {
3696 int ret = 0;
3697
3698 switch (action) {
3699 case MEM_GOING_ONLINE:
3700 ret = slab_mem_going_online_callback(arg);
3701 break;
3702 case MEM_GOING_OFFLINE:
3703 ret = slab_mem_going_offline_callback(arg);
3704 break;
3705 case MEM_OFFLINE:
3706 case MEM_CANCEL_ONLINE:
3707 slab_mem_offline_callback(arg);
3708 break;
3709 case MEM_ONLINE:
3710 case MEM_CANCEL_OFFLINE:
3711 break;
3712 }
3713 if (ret)
3714 ret = notifier_from_errno(ret);
3715 else
3716 ret = NOTIFY_OK;
3717 return ret;
3718 }
3719
3720 static struct notifier_block slab_memory_callback_nb = {
3721 .notifier_call = slab_memory_callback,
3722 .priority = SLAB_CALLBACK_PRI,
3723 };
3724
3725 /********************************************************************
3726 * Basic setup of slabs
3727 *******************************************************************/
3728
3729 /*
3730 * Used for early kmem_cache structures that were allocated using
3731 * the page allocator. Allocate them properly then fix up the pointers
3732 * that may be pointing to the wrong kmem_cache structure.
3733 */
3734
3735 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3736 {
3737 int node;
3738 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3739 struct kmem_cache_node *n;
3740
3741 memcpy(s, static_cache, kmem_cache->object_size);
3742
3743 /*
3744 * This runs very early, and only the boot processor is supposed to be
3745 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3746 * IPIs around.
3747 */
3748 __flush_cpu_slab(s, smp_processor_id());
3749 for_each_kmem_cache_node(s, node, n) {
3750 struct page *p;
3751
3752 list_for_each_entry(p, &n->partial, lru)
3753 p->slab_cache = s;
3754
3755 #ifdef CONFIG_SLUB_DEBUG
3756 list_for_each_entry(p, &n->full, lru)
3757 p->slab_cache = s;
3758 #endif
3759 }
3760 slab_init_memcg_params(s);
3761 list_add(&s->list, &slab_caches);
3762 return s;
3763 }
3764
3765 void __init kmem_cache_init(void)
3766 {
3767 static __initdata struct kmem_cache boot_kmem_cache,
3768 boot_kmem_cache_node;
3769
3770 if (debug_guardpage_minorder())
3771 slub_max_order = 0;
3772
3773 kmem_cache_node = &boot_kmem_cache_node;
3774 kmem_cache = &boot_kmem_cache;
3775
3776 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3777 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3778
3779 register_hotmemory_notifier(&slab_memory_callback_nb);
3780
3781 /* Able to allocate the per node structures */
3782 slab_state = PARTIAL;
3783
3784 create_boot_cache(kmem_cache, "kmem_cache",
3785 offsetof(struct kmem_cache, node) +
3786 nr_node_ids * sizeof(struct kmem_cache_node *),
3787 SLAB_HWCACHE_ALIGN);
3788
3789 kmem_cache = bootstrap(&boot_kmem_cache);
3790
3791 /*
3792 * Allocate kmem_cache_node properly from the kmem_cache slab.
3793 * kmem_cache_node is separately allocated so no need to
3794 * update any list pointers.
3795 */
3796 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3797
3798 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3799 setup_kmalloc_cache_index_table();
3800 create_kmalloc_caches(0);
3801
3802 #ifdef CONFIG_SMP
3803 register_cpu_notifier(&slab_notifier);
3804 #endif
3805
3806 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3807 cache_line_size(),
3808 slub_min_order, slub_max_order, slub_min_objects,
3809 nr_cpu_ids, nr_node_ids);
3810 }
3811
3812 void __init kmem_cache_init_late(void)
3813 {
3814 }
3815
3816 struct kmem_cache *
3817 __kmem_cache_alias(const char *name, size_t size, size_t align,
3818 unsigned long flags, void (*ctor)(void *))
3819 {
3820 struct kmem_cache *s, *c;
3821
3822 s = find_mergeable(size, align, flags, name, ctor);
3823 if (s) {
3824 s->refcount++;
3825
3826 /*
3827 * Adjust the object sizes so that we clear
3828 * the complete object on kzalloc.
3829 */
3830 s->object_size = max(s->object_size, (int)size);
3831 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3832
3833 for_each_memcg_cache(c, s) {
3834 c->object_size = s->object_size;
3835 c->inuse = max_t(int, c->inuse,
3836 ALIGN(size, sizeof(void *)));
3837 }
3838
3839 if (sysfs_slab_alias(s, name)) {
3840 s->refcount--;
3841 s = NULL;
3842 }
3843 }
3844
3845 return s;
3846 }
3847
3848 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3849 {
3850 int err;
3851
3852 err = kmem_cache_open(s, flags);
3853 if (err)
3854 return err;
3855
3856 /* Mutex is not taken during early boot */
3857 if (slab_state <= UP)
3858 return 0;
3859
3860 memcg_propagate_slab_attrs(s);
3861 err = sysfs_slab_add(s);
3862 if (err)
3863 kmem_cache_close(s);
3864
3865 return err;
3866 }
3867
3868 #ifdef CONFIG_SMP
3869 /*
3870 * Use the cpu notifier to insure that the cpu slabs are flushed when
3871 * necessary.
3872 */
3873 static int slab_cpuup_callback(struct notifier_block *nfb,
3874 unsigned long action, void *hcpu)
3875 {
3876 long cpu = (long)hcpu;
3877 struct kmem_cache *s;
3878 unsigned long flags;
3879
3880 switch (action) {
3881 case CPU_UP_CANCELED:
3882 case CPU_UP_CANCELED_FROZEN:
3883 case CPU_DEAD:
3884 case CPU_DEAD_FROZEN:
3885 mutex_lock(&slab_mutex);
3886 list_for_each_entry(s, &slab_caches, list) {
3887 local_irq_save(flags);
3888 __flush_cpu_slab(s, cpu);
3889 local_irq_restore(flags);
3890 }
3891 mutex_unlock(&slab_mutex);
3892 break;
3893 default:
3894 break;
3895 }
3896 return NOTIFY_OK;
3897 }
3898
3899 static struct notifier_block slab_notifier = {
3900 .notifier_call = slab_cpuup_callback
3901 };
3902
3903 #endif
3904
3905 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3906 {
3907 struct kmem_cache *s;
3908 void *ret;
3909
3910 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3911 return kmalloc_large(size, gfpflags);
3912
3913 s = kmalloc_slab(size, gfpflags);
3914
3915 if (unlikely(ZERO_OR_NULL_PTR(s)))
3916 return s;
3917
3918 ret = slab_alloc(s, gfpflags, caller);
3919
3920 /* Honor the call site pointer we received. */
3921 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3922
3923 return ret;
3924 }
3925
3926 #ifdef CONFIG_NUMA
3927 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3928 int node, unsigned long caller)
3929 {
3930 struct kmem_cache *s;
3931 void *ret;
3932
3933 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3934 ret = kmalloc_large_node(size, gfpflags, node);
3935
3936 trace_kmalloc_node(caller, ret,
3937 size, PAGE_SIZE << get_order(size),
3938 gfpflags, node);
3939
3940 return ret;
3941 }
3942
3943 s = kmalloc_slab(size, gfpflags);
3944
3945 if (unlikely(ZERO_OR_NULL_PTR(s)))
3946 return s;
3947
3948 ret = slab_alloc_node(s, gfpflags, node, caller);
3949
3950 /* Honor the call site pointer we received. */
3951 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3952
3953 return ret;
3954 }
3955 #endif
3956
3957 #ifdef CONFIG_SYSFS
3958 static int count_inuse(struct page *page)
3959 {
3960 return page->inuse;
3961 }
3962
3963 static int count_total(struct page *page)
3964 {
3965 return page->objects;
3966 }
3967 #endif
3968
3969 #ifdef CONFIG_SLUB_DEBUG
3970 static int validate_slab(struct kmem_cache *s, struct page *page,
3971 unsigned long *map)
3972 {
3973 void *p;
3974 void *addr = page_address(page);
3975
3976 if (!check_slab(s, page) ||
3977 !on_freelist(s, page, NULL))
3978 return 0;
3979
3980 /* Now we know that a valid freelist exists */
3981 bitmap_zero(map, page->objects);
3982
3983 get_map(s, page, map);
3984 for_each_object(p, s, addr, page->objects) {
3985 if (test_bit(slab_index(p, s, addr), map))
3986 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3987 return 0;
3988 }
3989
3990 for_each_object(p, s, addr, page->objects)
3991 if (!test_bit(slab_index(p, s, addr), map))
3992 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3993 return 0;
3994 return 1;
3995 }
3996
3997 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3998 unsigned long *map)
3999 {
4000 slab_lock(page);
4001 validate_slab(s, page, map);
4002 slab_unlock(page);
4003 }
4004
4005 static int validate_slab_node(struct kmem_cache *s,
4006 struct kmem_cache_node *n, unsigned long *map)
4007 {
4008 unsigned long count = 0;
4009 struct page *page;
4010 unsigned long flags;
4011
4012 spin_lock_irqsave(&n->list_lock, flags);
4013
4014 list_for_each_entry(page, &n->partial, lru) {
4015 validate_slab_slab(s, page, map);
4016 count++;
4017 }
4018 if (count != n->nr_partial)
4019 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4020 s->name, count, n->nr_partial);
4021
4022 if (!(s->flags & SLAB_STORE_USER))
4023 goto out;
4024
4025 list_for_each_entry(page, &n->full, lru) {
4026 validate_slab_slab(s, page, map);
4027 count++;
4028 }
4029 if (count != atomic_long_read(&n->nr_slabs))
4030 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4031 s->name, count, atomic_long_read(&n->nr_slabs));
4032
4033 out:
4034 spin_unlock_irqrestore(&n->list_lock, flags);
4035 return count;
4036 }
4037
4038 static long validate_slab_cache(struct kmem_cache *s)
4039 {
4040 int node;
4041 unsigned long count = 0;
4042 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4043 sizeof(unsigned long), GFP_KERNEL);
4044 struct kmem_cache_node *n;
4045
4046 if (!map)
4047 return -ENOMEM;
4048
4049 flush_all(s);
4050 for_each_kmem_cache_node(s, node, n)
4051 count += validate_slab_node(s, n, map);
4052 kfree(map);
4053 return count;
4054 }
4055 /*
4056 * Generate lists of code addresses where slabcache objects are allocated
4057 * and freed.
4058 */
4059
4060 struct location {
4061 unsigned long count;
4062 unsigned long addr;
4063 long long sum_time;
4064 long min_time;
4065 long max_time;
4066 long min_pid;
4067 long max_pid;
4068 DECLARE_BITMAP(cpus, NR_CPUS);
4069 nodemask_t nodes;
4070 };
4071
4072 struct loc_track {
4073 unsigned long max;
4074 unsigned long count;
4075 struct location *loc;
4076 };
4077
4078 static void free_loc_track(struct loc_track *t)
4079 {
4080 if (t->max)
4081 free_pages((unsigned long)t->loc,
4082 get_order(sizeof(struct location) * t->max));
4083 }
4084
4085 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4086 {
4087 struct location *l;
4088 int order;
4089
4090 order = get_order(sizeof(struct location) * max);
4091
4092 l = (void *)__get_free_pages(flags, order);
4093 if (!l)
4094 return 0;
4095
4096 if (t->count) {
4097 memcpy(l, t->loc, sizeof(struct location) * t->count);
4098 free_loc_track(t);
4099 }
4100 t->max = max;
4101 t->loc = l;
4102 return 1;
4103 }
4104
4105 static int add_location(struct loc_track *t, struct kmem_cache *s,
4106 const struct track *track)
4107 {
4108 long start, end, pos;
4109 struct location *l;
4110 unsigned long caddr;
4111 unsigned long age = jiffies - track->when;
4112
4113 start = -1;
4114 end = t->count;
4115
4116 for ( ; ; ) {
4117 pos = start + (end - start + 1) / 2;
4118
4119 /*
4120 * There is nothing at "end". If we end up there
4121 * we need to add something to before end.
4122 */
4123 if (pos == end)
4124 break;
4125
4126 caddr = t->loc[pos].addr;
4127 if (track->addr == caddr) {
4128
4129 l = &t->loc[pos];
4130 l->count++;
4131 if (track->when) {
4132 l->sum_time += age;
4133 if (age < l->min_time)
4134 l->min_time = age;
4135 if (age > l->max_time)
4136 l->max_time = age;
4137
4138 if (track->pid < l->min_pid)
4139 l->min_pid = track->pid;
4140 if (track->pid > l->max_pid)
4141 l->max_pid = track->pid;
4142
4143 cpumask_set_cpu(track->cpu,
4144 to_cpumask(l->cpus));
4145 }
4146 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4147 return 1;
4148 }
4149
4150 if (track->addr < caddr)
4151 end = pos;
4152 else
4153 start = pos;
4154 }
4155
4156 /*
4157 * Not found. Insert new tracking element.
4158 */
4159 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4160 return 0;
4161
4162 l = t->loc + pos;
4163 if (pos < t->count)
4164 memmove(l + 1, l,
4165 (t->count - pos) * sizeof(struct location));
4166 t->count++;
4167 l->count = 1;
4168 l->addr = track->addr;
4169 l->sum_time = age;
4170 l->min_time = age;
4171 l->max_time = age;
4172 l->min_pid = track->pid;
4173 l->max_pid = track->pid;
4174 cpumask_clear(to_cpumask(l->cpus));
4175 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4176 nodes_clear(l->nodes);
4177 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4178 return 1;
4179 }
4180
4181 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4182 struct page *page, enum track_item alloc,
4183 unsigned long *map)
4184 {
4185 void *addr = page_address(page);
4186 void *p;
4187
4188 bitmap_zero(map, page->objects);
4189 get_map(s, page, map);
4190
4191 for_each_object(p, s, addr, page->objects)
4192 if (!test_bit(slab_index(p, s, addr), map))
4193 add_location(t, s, get_track(s, p, alloc));
4194 }
4195
4196 static int list_locations(struct kmem_cache *s, char *buf,
4197 enum track_item alloc)
4198 {
4199 int len = 0;
4200 unsigned long i;
4201 struct loc_track t = { 0, 0, NULL };
4202 int node;
4203 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4204 sizeof(unsigned long), GFP_KERNEL);
4205 struct kmem_cache_node *n;
4206
4207 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4208 GFP_TEMPORARY)) {
4209 kfree(map);
4210 return sprintf(buf, "Out of memory\n");
4211 }
4212 /* Push back cpu slabs */
4213 flush_all(s);
4214
4215 for_each_kmem_cache_node(s, node, n) {
4216 unsigned long flags;
4217 struct page *page;
4218
4219 if (!atomic_long_read(&n->nr_slabs))
4220 continue;
4221
4222 spin_lock_irqsave(&n->list_lock, flags);
4223 list_for_each_entry(page, &n->partial, lru)
4224 process_slab(&t, s, page, alloc, map);
4225 list_for_each_entry(page, &n->full, lru)
4226 process_slab(&t, s, page, alloc, map);
4227 spin_unlock_irqrestore(&n->list_lock, flags);
4228 }
4229
4230 for (i = 0; i < t.count; i++) {
4231 struct location *l = &t.loc[i];
4232
4233 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4234 break;
4235 len += sprintf(buf + len, "%7ld ", l->count);
4236
4237 if (l->addr)
4238 len += sprintf(buf + len, "%pS", (void *)l->addr);
4239 else
4240 len += sprintf(buf + len, "<not-available>");
4241
4242 if (l->sum_time != l->min_time) {
4243 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4244 l->min_time,
4245 (long)div_u64(l->sum_time, l->count),
4246 l->max_time);
4247 } else
4248 len += sprintf(buf + len, " age=%ld",
4249 l->min_time);
4250
4251 if (l->min_pid != l->max_pid)
4252 len += sprintf(buf + len, " pid=%ld-%ld",
4253 l->min_pid, l->max_pid);
4254 else
4255 len += sprintf(buf + len, " pid=%ld",
4256 l->min_pid);
4257
4258 if (num_online_cpus() > 1 &&
4259 !cpumask_empty(to_cpumask(l->cpus)) &&
4260 len < PAGE_SIZE - 60)
4261 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4262 " cpus=%*pbl",
4263 cpumask_pr_args(to_cpumask(l->cpus)));
4264
4265 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4266 len < PAGE_SIZE - 60)
4267 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4268 " nodes=%*pbl",
4269 nodemask_pr_args(&l->nodes));
4270
4271 len += sprintf(buf + len, "\n");
4272 }
4273
4274 free_loc_track(&t);
4275 kfree(map);
4276 if (!t.count)
4277 len += sprintf(buf, "No data\n");
4278 return len;
4279 }
4280 #endif
4281
4282 #ifdef SLUB_RESILIENCY_TEST
4283 static void __init resiliency_test(void)
4284 {
4285 u8 *p;
4286
4287 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4288
4289 pr_err("SLUB resiliency testing\n");
4290 pr_err("-----------------------\n");
4291 pr_err("A. Corruption after allocation\n");
4292
4293 p = kzalloc(16, GFP_KERNEL);
4294 p[16] = 0x12;
4295 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4296 p + 16);
4297
4298 validate_slab_cache(kmalloc_caches[4]);
4299
4300 /* Hmmm... The next two are dangerous */
4301 p = kzalloc(32, GFP_KERNEL);
4302 p[32 + sizeof(void *)] = 0x34;
4303 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4304 p);
4305 pr_err("If allocated object is overwritten then not detectable\n\n");
4306
4307 validate_slab_cache(kmalloc_caches[5]);
4308 p = kzalloc(64, GFP_KERNEL);
4309 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4310 *p = 0x56;
4311 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4312 p);
4313 pr_err("If allocated object is overwritten then not detectable\n\n");
4314 validate_slab_cache(kmalloc_caches[6]);
4315
4316 pr_err("\nB. Corruption after free\n");
4317 p = kzalloc(128, GFP_KERNEL);
4318 kfree(p);
4319 *p = 0x78;
4320 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4321 validate_slab_cache(kmalloc_caches[7]);
4322
4323 p = kzalloc(256, GFP_KERNEL);
4324 kfree(p);
4325 p[50] = 0x9a;
4326 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4327 validate_slab_cache(kmalloc_caches[8]);
4328
4329 p = kzalloc(512, GFP_KERNEL);
4330 kfree(p);
4331 p[512] = 0xab;
4332 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4333 validate_slab_cache(kmalloc_caches[9]);
4334 }
4335 #else
4336 #ifdef CONFIG_SYSFS
4337 static void resiliency_test(void) {};
4338 #endif
4339 #endif
4340
4341 #ifdef CONFIG_SYSFS
4342 enum slab_stat_type {
4343 SL_ALL, /* All slabs */
4344 SL_PARTIAL, /* Only partially allocated slabs */
4345 SL_CPU, /* Only slabs used for cpu caches */
4346 SL_OBJECTS, /* Determine allocated objects not slabs */
4347 SL_TOTAL /* Determine object capacity not slabs */
4348 };
4349
4350 #define SO_ALL (1 << SL_ALL)
4351 #define SO_PARTIAL (1 << SL_PARTIAL)
4352 #define SO_CPU (1 << SL_CPU)
4353 #define SO_OBJECTS (1 << SL_OBJECTS)
4354 #define SO_TOTAL (1 << SL_TOTAL)
4355
4356 static ssize_t show_slab_objects(struct kmem_cache *s,
4357 char *buf, unsigned long flags)
4358 {
4359 unsigned long total = 0;
4360 int node;
4361 int x;
4362 unsigned long *nodes;
4363
4364 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4365 if (!nodes)
4366 return -ENOMEM;
4367
4368 if (flags & SO_CPU) {
4369 int cpu;
4370
4371 for_each_possible_cpu(cpu) {
4372 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4373 cpu);
4374 int node;
4375 struct page *page;
4376
4377 page = READ_ONCE(c->page);
4378 if (!page)
4379 continue;
4380
4381 node = page_to_nid(page);
4382 if (flags & SO_TOTAL)
4383 x = page->objects;
4384 else if (flags & SO_OBJECTS)
4385 x = page->inuse;
4386 else
4387 x = 1;
4388
4389 total += x;
4390 nodes[node] += x;
4391
4392 page = READ_ONCE(c->partial);
4393 if (page) {
4394 node = page_to_nid(page);
4395 if (flags & SO_TOTAL)
4396 WARN_ON_ONCE(1);
4397 else if (flags & SO_OBJECTS)
4398 WARN_ON_ONCE(1);
4399 else
4400 x = page->pages;
4401 total += x;
4402 nodes[node] += x;
4403 }
4404 }
4405 }
4406
4407 get_online_mems();
4408 #ifdef CONFIG_SLUB_DEBUG
4409 if (flags & SO_ALL) {
4410 struct kmem_cache_node *n;
4411
4412 for_each_kmem_cache_node(s, node, n) {
4413
4414 if (flags & SO_TOTAL)
4415 x = atomic_long_read(&n->total_objects);
4416 else if (flags & SO_OBJECTS)
4417 x = atomic_long_read(&n->total_objects) -
4418 count_partial(n, count_free);
4419 else
4420 x = atomic_long_read(&n->nr_slabs);
4421 total += x;
4422 nodes[node] += x;
4423 }
4424
4425 } else
4426 #endif
4427 if (flags & SO_PARTIAL) {
4428 struct kmem_cache_node *n;
4429
4430 for_each_kmem_cache_node(s, node, n) {
4431 if (flags & SO_TOTAL)
4432 x = count_partial(n, count_total);
4433 else if (flags & SO_OBJECTS)
4434 x = count_partial(n, count_inuse);
4435 else
4436 x = n->nr_partial;
4437 total += x;
4438 nodes[node] += x;
4439 }
4440 }
4441 x = sprintf(buf, "%lu", total);
4442 #ifdef CONFIG_NUMA
4443 for (node = 0; node < nr_node_ids; node++)
4444 if (nodes[node])
4445 x += sprintf(buf + x, " N%d=%lu",
4446 node, nodes[node]);
4447 #endif
4448 put_online_mems();
4449 kfree(nodes);
4450 return x + sprintf(buf + x, "\n");
4451 }
4452
4453 #ifdef CONFIG_SLUB_DEBUG
4454 static int any_slab_objects(struct kmem_cache *s)
4455 {
4456 int node;
4457 struct kmem_cache_node *n;
4458
4459 for_each_kmem_cache_node(s, node, n)
4460 if (atomic_long_read(&n->total_objects))
4461 return 1;
4462
4463 return 0;
4464 }
4465 #endif
4466
4467 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4468 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4469
4470 struct slab_attribute {
4471 struct attribute attr;
4472 ssize_t (*show)(struct kmem_cache *s, char *buf);
4473 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4474 };
4475
4476 #define SLAB_ATTR_RO(_name) \
4477 static struct slab_attribute _name##_attr = \
4478 __ATTR(_name, 0400, _name##_show, NULL)
4479
4480 #define SLAB_ATTR(_name) \
4481 static struct slab_attribute _name##_attr = \
4482 __ATTR(_name, 0600, _name##_show, _name##_store)
4483
4484 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4485 {
4486 return sprintf(buf, "%d\n", s->size);
4487 }
4488 SLAB_ATTR_RO(slab_size);
4489
4490 static ssize_t align_show(struct kmem_cache *s, char *buf)
4491 {
4492 return sprintf(buf, "%d\n", s->align);
4493 }
4494 SLAB_ATTR_RO(align);
4495
4496 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4497 {
4498 return sprintf(buf, "%d\n", s->object_size);
4499 }
4500 SLAB_ATTR_RO(object_size);
4501
4502 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4503 {
4504 return sprintf(buf, "%d\n", oo_objects(s->oo));
4505 }
4506 SLAB_ATTR_RO(objs_per_slab);
4507
4508 static ssize_t order_store(struct kmem_cache *s,
4509 const char *buf, size_t length)
4510 {
4511 unsigned long order;
4512 int err;
4513
4514 err = kstrtoul(buf, 10, &order);
4515 if (err)
4516 return err;
4517
4518 if (order > slub_max_order || order < slub_min_order)
4519 return -EINVAL;
4520
4521 calculate_sizes(s, order);
4522 return length;
4523 }
4524
4525 static ssize_t order_show(struct kmem_cache *s, char *buf)
4526 {
4527 return sprintf(buf, "%d\n", oo_order(s->oo));
4528 }
4529 SLAB_ATTR(order);
4530
4531 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4532 {
4533 return sprintf(buf, "%lu\n", s->min_partial);
4534 }
4535
4536 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4537 size_t length)
4538 {
4539 unsigned long min;
4540 int err;
4541
4542 err = kstrtoul(buf, 10, &min);
4543 if (err)
4544 return err;
4545
4546 set_min_partial(s, min);
4547 return length;
4548 }
4549 SLAB_ATTR(min_partial);
4550
4551 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4552 {
4553 return sprintf(buf, "%u\n", s->cpu_partial);
4554 }
4555
4556 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4557 size_t length)
4558 {
4559 unsigned long objects;
4560 int err;
4561
4562 err = kstrtoul(buf, 10, &objects);
4563 if (err)
4564 return err;
4565 if (objects && !kmem_cache_has_cpu_partial(s))
4566 return -EINVAL;
4567
4568 s->cpu_partial = objects;
4569 flush_all(s);
4570 return length;
4571 }
4572 SLAB_ATTR(cpu_partial);
4573
4574 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4575 {
4576 if (!s->ctor)
4577 return 0;
4578 return sprintf(buf, "%pS\n", s->ctor);
4579 }
4580 SLAB_ATTR_RO(ctor);
4581
4582 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4583 {
4584 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4585 }
4586 SLAB_ATTR_RO(aliases);
4587
4588 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4589 {
4590 return show_slab_objects(s, buf, SO_PARTIAL);
4591 }
4592 SLAB_ATTR_RO(partial);
4593
4594 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4595 {
4596 return show_slab_objects(s, buf, SO_CPU);
4597 }
4598 SLAB_ATTR_RO(cpu_slabs);
4599
4600 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4601 {
4602 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4603 }
4604 SLAB_ATTR_RO(objects);
4605
4606 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4607 {
4608 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4609 }
4610 SLAB_ATTR_RO(objects_partial);
4611
4612 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4613 {
4614 int objects = 0;
4615 int pages = 0;
4616 int cpu;
4617 int len;
4618
4619 for_each_online_cpu(cpu) {
4620 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4621
4622 if (page) {
4623 pages += page->pages;
4624 objects += page->pobjects;
4625 }
4626 }
4627
4628 len = sprintf(buf, "%d(%d)", objects, pages);
4629
4630 #ifdef CONFIG_SMP
4631 for_each_online_cpu(cpu) {
4632 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4633
4634 if (page && len < PAGE_SIZE - 20)
4635 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4636 page->pobjects, page->pages);
4637 }
4638 #endif
4639 return len + sprintf(buf + len, "\n");
4640 }
4641 SLAB_ATTR_RO(slabs_cpu_partial);
4642
4643 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4644 {
4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4646 }
4647
4648 static ssize_t reclaim_account_store(struct kmem_cache *s,
4649 const char *buf, size_t length)
4650 {
4651 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4652 if (buf[0] == '1')
4653 s->flags |= SLAB_RECLAIM_ACCOUNT;
4654 return length;
4655 }
4656 SLAB_ATTR(reclaim_account);
4657
4658 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4659 {
4660 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4661 }
4662 SLAB_ATTR_RO(hwcache_align);
4663
4664 #ifdef CONFIG_ZONE_DMA
4665 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4666 {
4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4668 }
4669 SLAB_ATTR_RO(cache_dma);
4670 #endif
4671
4672 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4673 {
4674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4675 }
4676 SLAB_ATTR_RO(destroy_by_rcu);
4677
4678 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%d\n", s->reserved);
4681 }
4682 SLAB_ATTR_RO(reserved);
4683
4684 #ifdef CONFIG_SLUB_DEBUG
4685 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4686 {
4687 return show_slab_objects(s, buf, SO_ALL);
4688 }
4689 SLAB_ATTR_RO(slabs);
4690
4691 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4692 {
4693 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4694 }
4695 SLAB_ATTR_RO(total_objects);
4696
4697 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4698 {
4699 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4700 }
4701
4702 static ssize_t sanity_checks_store(struct kmem_cache *s,
4703 const char *buf, size_t length)
4704 {
4705 s->flags &= ~SLAB_DEBUG_FREE;
4706 if (buf[0] == '1') {
4707 s->flags &= ~__CMPXCHG_DOUBLE;
4708 s->flags |= SLAB_DEBUG_FREE;
4709 }
4710 return length;
4711 }
4712 SLAB_ATTR(sanity_checks);
4713
4714 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4715 {
4716 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4717 }
4718
4719 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4720 size_t length)
4721 {
4722 /*
4723 * Tracing a merged cache is going to give confusing results
4724 * as well as cause other issues like converting a mergeable
4725 * cache into an umergeable one.
4726 */
4727 if (s->refcount > 1)
4728 return -EINVAL;
4729
4730 s->flags &= ~SLAB_TRACE;
4731 if (buf[0] == '1') {
4732 s->flags &= ~__CMPXCHG_DOUBLE;
4733 s->flags |= SLAB_TRACE;
4734 }
4735 return length;
4736 }
4737 SLAB_ATTR(trace);
4738
4739 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4740 {
4741 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4742 }
4743
4744 static ssize_t red_zone_store(struct kmem_cache *s,
4745 const char *buf, size_t length)
4746 {
4747 if (any_slab_objects(s))
4748 return -EBUSY;
4749
4750 s->flags &= ~SLAB_RED_ZONE;
4751 if (buf[0] == '1') {
4752 s->flags &= ~__CMPXCHG_DOUBLE;
4753 s->flags |= SLAB_RED_ZONE;
4754 }
4755 calculate_sizes(s, -1);
4756 return length;
4757 }
4758 SLAB_ATTR(red_zone);
4759
4760 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4761 {
4762 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4763 }
4764
4765 static ssize_t poison_store(struct kmem_cache *s,
4766 const char *buf, size_t length)
4767 {
4768 if (any_slab_objects(s))
4769 return -EBUSY;
4770
4771 s->flags &= ~SLAB_POISON;
4772 if (buf[0] == '1') {
4773 s->flags &= ~__CMPXCHG_DOUBLE;
4774 s->flags |= SLAB_POISON;
4775 }
4776 calculate_sizes(s, -1);
4777 return length;
4778 }
4779 SLAB_ATTR(poison);
4780
4781 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4782 {
4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4784 }
4785
4786 static ssize_t store_user_store(struct kmem_cache *s,
4787 const char *buf, size_t length)
4788 {
4789 if (any_slab_objects(s))
4790 return -EBUSY;
4791
4792 s->flags &= ~SLAB_STORE_USER;
4793 if (buf[0] == '1') {
4794 s->flags &= ~__CMPXCHG_DOUBLE;
4795 s->flags |= SLAB_STORE_USER;
4796 }
4797 calculate_sizes(s, -1);
4798 return length;
4799 }
4800 SLAB_ATTR(store_user);
4801
4802 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4803 {
4804 return 0;
4805 }
4806
4807 static ssize_t validate_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809 {
4810 int ret = -EINVAL;
4811
4812 if (buf[0] == '1') {
4813 ret = validate_slab_cache(s);
4814 if (ret >= 0)
4815 ret = length;
4816 }
4817 return ret;
4818 }
4819 SLAB_ATTR(validate);
4820
4821 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4822 {
4823 if (!(s->flags & SLAB_STORE_USER))
4824 return -ENOSYS;
4825 return list_locations(s, buf, TRACK_ALLOC);
4826 }
4827 SLAB_ATTR_RO(alloc_calls);
4828
4829 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4830 {
4831 if (!(s->flags & SLAB_STORE_USER))
4832 return -ENOSYS;
4833 return list_locations(s, buf, TRACK_FREE);
4834 }
4835 SLAB_ATTR_RO(free_calls);
4836 #endif /* CONFIG_SLUB_DEBUG */
4837
4838 #ifdef CONFIG_FAILSLAB
4839 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4840 {
4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4842 }
4843
4844 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4845 size_t length)
4846 {
4847 if (s->refcount > 1)
4848 return -EINVAL;
4849
4850 s->flags &= ~SLAB_FAILSLAB;
4851 if (buf[0] == '1')
4852 s->flags |= SLAB_FAILSLAB;
4853 return length;
4854 }
4855 SLAB_ATTR(failslab);
4856 #endif
4857
4858 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4859 {
4860 return 0;
4861 }
4862
4863 static ssize_t shrink_store(struct kmem_cache *s,
4864 const char *buf, size_t length)
4865 {
4866 if (buf[0] == '1')
4867 kmem_cache_shrink(s);
4868 else
4869 return -EINVAL;
4870 return length;
4871 }
4872 SLAB_ATTR(shrink);
4873
4874 #ifdef CONFIG_NUMA
4875 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4876 {
4877 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4878 }
4879
4880 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4881 const char *buf, size_t length)
4882 {
4883 unsigned long ratio;
4884 int err;
4885
4886 err = kstrtoul(buf, 10, &ratio);
4887 if (err)
4888 return err;
4889
4890 if (ratio <= 100)
4891 s->remote_node_defrag_ratio = ratio * 10;
4892
4893 return length;
4894 }
4895 SLAB_ATTR(remote_node_defrag_ratio);
4896 #endif
4897
4898 #ifdef CONFIG_SLUB_STATS
4899 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4900 {
4901 unsigned long sum = 0;
4902 int cpu;
4903 int len;
4904 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4905
4906 if (!data)
4907 return -ENOMEM;
4908
4909 for_each_online_cpu(cpu) {
4910 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4911
4912 data[cpu] = x;
4913 sum += x;
4914 }
4915
4916 len = sprintf(buf, "%lu", sum);
4917
4918 #ifdef CONFIG_SMP
4919 for_each_online_cpu(cpu) {
4920 if (data[cpu] && len < PAGE_SIZE - 20)
4921 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4922 }
4923 #endif
4924 kfree(data);
4925 return len + sprintf(buf + len, "\n");
4926 }
4927
4928 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4929 {
4930 int cpu;
4931
4932 for_each_online_cpu(cpu)
4933 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4934 }
4935
4936 #define STAT_ATTR(si, text) \
4937 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4938 { \
4939 return show_stat(s, buf, si); \
4940 } \
4941 static ssize_t text##_store(struct kmem_cache *s, \
4942 const char *buf, size_t length) \
4943 { \
4944 if (buf[0] != '0') \
4945 return -EINVAL; \
4946 clear_stat(s, si); \
4947 return length; \
4948 } \
4949 SLAB_ATTR(text); \
4950
4951 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4952 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4953 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4954 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4955 STAT_ATTR(FREE_FROZEN, free_frozen);
4956 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4957 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4958 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4959 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4960 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4961 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4962 STAT_ATTR(FREE_SLAB, free_slab);
4963 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4964 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4965 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4966 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4967 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4968 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4969 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4970 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4971 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4972 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4973 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4974 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4975 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4976 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4977 #endif
4978
4979 static struct attribute *slab_attrs[] = {
4980 &slab_size_attr.attr,
4981 &object_size_attr.attr,
4982 &objs_per_slab_attr.attr,
4983 &order_attr.attr,
4984 &min_partial_attr.attr,
4985 &cpu_partial_attr.attr,
4986 &objects_attr.attr,
4987 &objects_partial_attr.attr,
4988 &partial_attr.attr,
4989 &cpu_slabs_attr.attr,
4990 &ctor_attr.attr,
4991 &aliases_attr.attr,
4992 &align_attr.attr,
4993 &hwcache_align_attr.attr,
4994 &reclaim_account_attr.attr,
4995 &destroy_by_rcu_attr.attr,
4996 &shrink_attr.attr,
4997 &reserved_attr.attr,
4998 &slabs_cpu_partial_attr.attr,
4999 #ifdef CONFIG_SLUB_DEBUG
5000 &total_objects_attr.attr,
5001 &slabs_attr.attr,
5002 &sanity_checks_attr.attr,
5003 &trace_attr.attr,
5004 &red_zone_attr.attr,
5005 &poison_attr.attr,
5006 &store_user_attr.attr,
5007 &validate_attr.attr,
5008 &alloc_calls_attr.attr,
5009 &free_calls_attr.attr,
5010 #endif
5011 #ifdef CONFIG_ZONE_DMA
5012 &cache_dma_attr.attr,
5013 #endif
5014 #ifdef CONFIG_NUMA
5015 &remote_node_defrag_ratio_attr.attr,
5016 #endif
5017 #ifdef CONFIG_SLUB_STATS
5018 &alloc_fastpath_attr.attr,
5019 &alloc_slowpath_attr.attr,
5020 &free_fastpath_attr.attr,
5021 &free_slowpath_attr.attr,
5022 &free_frozen_attr.attr,
5023 &free_add_partial_attr.attr,
5024 &free_remove_partial_attr.attr,
5025 &alloc_from_partial_attr.attr,
5026 &alloc_slab_attr.attr,
5027 &alloc_refill_attr.attr,
5028 &alloc_node_mismatch_attr.attr,
5029 &free_slab_attr.attr,
5030 &cpuslab_flush_attr.attr,
5031 &deactivate_full_attr.attr,
5032 &deactivate_empty_attr.attr,
5033 &deactivate_to_head_attr.attr,
5034 &deactivate_to_tail_attr.attr,
5035 &deactivate_remote_frees_attr.attr,
5036 &deactivate_bypass_attr.attr,
5037 &order_fallback_attr.attr,
5038 &cmpxchg_double_fail_attr.attr,
5039 &cmpxchg_double_cpu_fail_attr.attr,
5040 &cpu_partial_alloc_attr.attr,
5041 &cpu_partial_free_attr.attr,
5042 &cpu_partial_node_attr.attr,
5043 &cpu_partial_drain_attr.attr,
5044 #endif
5045 #ifdef CONFIG_FAILSLAB
5046 &failslab_attr.attr,
5047 #endif
5048
5049 NULL
5050 };
5051
5052 static struct attribute_group slab_attr_group = {
5053 .attrs = slab_attrs,
5054 };
5055
5056 static ssize_t slab_attr_show(struct kobject *kobj,
5057 struct attribute *attr,
5058 char *buf)
5059 {
5060 struct slab_attribute *attribute;
5061 struct kmem_cache *s;
5062 int err;
5063
5064 attribute = to_slab_attr(attr);
5065 s = to_slab(kobj);
5066
5067 if (!attribute->show)
5068 return -EIO;
5069
5070 err = attribute->show(s, buf);
5071
5072 return err;
5073 }
5074
5075 static ssize_t slab_attr_store(struct kobject *kobj,
5076 struct attribute *attr,
5077 const char *buf, size_t len)
5078 {
5079 struct slab_attribute *attribute;
5080 struct kmem_cache *s;
5081 int err;
5082
5083 attribute = to_slab_attr(attr);
5084 s = to_slab(kobj);
5085
5086 if (!attribute->store)
5087 return -EIO;
5088
5089 err = attribute->store(s, buf, len);
5090 #ifdef CONFIG_MEMCG_KMEM
5091 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5092 struct kmem_cache *c;
5093
5094 mutex_lock(&slab_mutex);
5095 if (s->max_attr_size < len)
5096 s->max_attr_size = len;
5097
5098 /*
5099 * This is a best effort propagation, so this function's return
5100 * value will be determined by the parent cache only. This is
5101 * basically because not all attributes will have a well
5102 * defined semantics for rollbacks - most of the actions will
5103 * have permanent effects.
5104 *
5105 * Returning the error value of any of the children that fail
5106 * is not 100 % defined, in the sense that users seeing the
5107 * error code won't be able to know anything about the state of
5108 * the cache.
5109 *
5110 * Only returning the error code for the parent cache at least
5111 * has well defined semantics. The cache being written to
5112 * directly either failed or succeeded, in which case we loop
5113 * through the descendants with best-effort propagation.
5114 */
5115 for_each_memcg_cache(c, s)
5116 attribute->store(c, buf, len);
5117 mutex_unlock(&slab_mutex);
5118 }
5119 #endif
5120 return err;
5121 }
5122
5123 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5124 {
5125 #ifdef CONFIG_MEMCG_KMEM
5126 int i;
5127 char *buffer = NULL;
5128 struct kmem_cache *root_cache;
5129
5130 if (is_root_cache(s))
5131 return;
5132
5133 root_cache = s->memcg_params.root_cache;
5134
5135 /*
5136 * This mean this cache had no attribute written. Therefore, no point
5137 * in copying default values around
5138 */
5139 if (!root_cache->max_attr_size)
5140 return;
5141
5142 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5143 char mbuf[64];
5144 char *buf;
5145 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5146
5147 if (!attr || !attr->store || !attr->show)
5148 continue;
5149
5150 /*
5151 * It is really bad that we have to allocate here, so we will
5152 * do it only as a fallback. If we actually allocate, though,
5153 * we can just use the allocated buffer until the end.
5154 *
5155 * Most of the slub attributes will tend to be very small in
5156 * size, but sysfs allows buffers up to a page, so they can
5157 * theoretically happen.
5158 */
5159 if (buffer)
5160 buf = buffer;
5161 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5162 buf = mbuf;
5163 else {
5164 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5165 if (WARN_ON(!buffer))
5166 continue;
5167 buf = buffer;
5168 }
5169
5170 attr->show(root_cache, buf);
5171 attr->store(s, buf, strlen(buf));
5172 }
5173
5174 if (buffer)
5175 free_page((unsigned long)buffer);
5176 #endif
5177 }
5178
5179 static void kmem_cache_release(struct kobject *k)
5180 {
5181 slab_kmem_cache_release(to_slab(k));
5182 }
5183
5184 static const struct sysfs_ops slab_sysfs_ops = {
5185 .show = slab_attr_show,
5186 .store = slab_attr_store,
5187 };
5188
5189 static struct kobj_type slab_ktype = {
5190 .sysfs_ops = &slab_sysfs_ops,
5191 .release = kmem_cache_release,
5192 };
5193
5194 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5195 {
5196 struct kobj_type *ktype = get_ktype(kobj);
5197
5198 if (ktype == &slab_ktype)
5199 return 1;
5200 return 0;
5201 }
5202
5203 static const struct kset_uevent_ops slab_uevent_ops = {
5204 .filter = uevent_filter,
5205 };
5206
5207 static struct kset *slab_kset;
5208
5209 static inline struct kset *cache_kset(struct kmem_cache *s)
5210 {
5211 #ifdef CONFIG_MEMCG_KMEM
5212 if (!is_root_cache(s))
5213 return s->memcg_params.root_cache->memcg_kset;
5214 #endif
5215 return slab_kset;
5216 }
5217
5218 #define ID_STR_LENGTH 64
5219
5220 /* Create a unique string id for a slab cache:
5221 *
5222 * Format :[flags-]size
5223 */
5224 static char *create_unique_id(struct kmem_cache *s)
5225 {
5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 char *p = name;
5228
5229 BUG_ON(!name);
5230
5231 *p++ = ':';
5232 /*
5233 * First flags affecting slabcache operations. We will only
5234 * get here for aliasable slabs so we do not need to support
5235 * too many flags. The flags here must cover all flags that
5236 * are matched during merging to guarantee that the id is
5237 * unique.
5238 */
5239 if (s->flags & SLAB_CACHE_DMA)
5240 *p++ = 'd';
5241 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 *p++ = 'a';
5243 if (s->flags & SLAB_DEBUG_FREE)
5244 *p++ = 'F';
5245 if (!(s->flags & SLAB_NOTRACK))
5246 *p++ = 't';
5247 if (p != name + 1)
5248 *p++ = '-';
5249 p += sprintf(p, "%07d", s->size);
5250
5251 BUG_ON(p > name + ID_STR_LENGTH - 1);
5252 return name;
5253 }
5254
5255 static int sysfs_slab_add(struct kmem_cache *s)
5256 {
5257 int err;
5258 const char *name;
5259 int unmergeable = slab_unmergeable(s);
5260
5261 if (unmergeable) {
5262 /*
5263 * Slabcache can never be merged so we can use the name proper.
5264 * This is typically the case for debug situations. In that
5265 * case we can catch duplicate names easily.
5266 */
5267 sysfs_remove_link(&slab_kset->kobj, s->name);
5268 name = s->name;
5269 } else {
5270 /*
5271 * Create a unique name for the slab as a target
5272 * for the symlinks.
5273 */
5274 name = create_unique_id(s);
5275 }
5276
5277 s->kobj.kset = cache_kset(s);
5278 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5279 if (err)
5280 goto out;
5281
5282 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5283 if (err)
5284 goto out_del_kobj;
5285
5286 #ifdef CONFIG_MEMCG_KMEM
5287 if (is_root_cache(s)) {
5288 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5289 if (!s->memcg_kset) {
5290 err = -ENOMEM;
5291 goto out_del_kobj;
5292 }
5293 }
5294 #endif
5295
5296 kobject_uevent(&s->kobj, KOBJ_ADD);
5297 if (!unmergeable) {
5298 /* Setup first alias */
5299 sysfs_slab_alias(s, s->name);
5300 }
5301 out:
5302 if (!unmergeable)
5303 kfree(name);
5304 return err;
5305 out_del_kobj:
5306 kobject_del(&s->kobj);
5307 goto out;
5308 }
5309
5310 void sysfs_slab_remove(struct kmem_cache *s)
5311 {
5312 if (slab_state < FULL)
5313 /*
5314 * Sysfs has not been setup yet so no need to remove the
5315 * cache from sysfs.
5316 */
5317 return;
5318
5319 #ifdef CONFIG_MEMCG_KMEM
5320 kset_unregister(s->memcg_kset);
5321 #endif
5322 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 kobject_del(&s->kobj);
5324 kobject_put(&s->kobj);
5325 }
5326
5327 /*
5328 * Need to buffer aliases during bootup until sysfs becomes
5329 * available lest we lose that information.
5330 */
5331 struct saved_alias {
5332 struct kmem_cache *s;
5333 const char *name;
5334 struct saved_alias *next;
5335 };
5336
5337 static struct saved_alias *alias_list;
5338
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340 {
5341 struct saved_alias *al;
5342
5343 if (slab_state == FULL) {
5344 /*
5345 * If we have a leftover link then remove it.
5346 */
5347 sysfs_remove_link(&slab_kset->kobj, name);
5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5349 }
5350
5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 if (!al)
5353 return -ENOMEM;
5354
5355 al->s = s;
5356 al->name = name;
5357 al->next = alias_list;
5358 alias_list = al;
5359 return 0;
5360 }
5361
5362 static int __init slab_sysfs_init(void)
5363 {
5364 struct kmem_cache *s;
5365 int err;
5366
5367 mutex_lock(&slab_mutex);
5368
5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 if (!slab_kset) {
5371 mutex_unlock(&slab_mutex);
5372 pr_err("Cannot register slab subsystem.\n");
5373 return -ENOSYS;
5374 }
5375
5376 slab_state = FULL;
5377
5378 list_for_each_entry(s, &slab_caches, list) {
5379 err = sysfs_slab_add(s);
5380 if (err)
5381 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5382 s->name);
5383 }
5384
5385 while (alias_list) {
5386 struct saved_alias *al = alias_list;
5387
5388 alias_list = alias_list->next;
5389 err = sysfs_slab_alias(al->s, al->name);
5390 if (err)
5391 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5392 al->name);
5393 kfree(al);
5394 }
5395
5396 mutex_unlock(&slab_mutex);
5397 resiliency_test();
5398 return 0;
5399 }
5400
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5403
5404 /*
5405 * The /proc/slabinfo ABI
5406 */
5407 #ifdef CONFIG_SLABINFO
5408 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5409 {
5410 unsigned long nr_slabs = 0;
5411 unsigned long nr_objs = 0;
5412 unsigned long nr_free = 0;
5413 int node;
5414 struct kmem_cache_node *n;
5415
5416 for_each_kmem_cache_node(s, node, n) {
5417 nr_slabs += node_nr_slabs(n);
5418 nr_objs += node_nr_objs(n);
5419 nr_free += count_partial(n, count_free);
5420 }
5421
5422 sinfo->active_objs = nr_objs - nr_free;
5423 sinfo->num_objs = nr_objs;
5424 sinfo->active_slabs = nr_slabs;
5425 sinfo->num_slabs = nr_slabs;
5426 sinfo->objects_per_slab = oo_objects(s->oo);
5427 sinfo->cache_order = oo_order(s->oo);
5428 }
5429
5430 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5431 {
5432 }
5433
5434 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5435 size_t count, loff_t *ppos)
5436 {
5437 return -EIO;
5438 }
5439 #endif /* CONFIG_SLABINFO */