]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slub.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
33
34 #include <trace/events/kmem.h>
35
36 /*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
122 }
123
124 /*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137
138 /*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142 #define MIN_PARTIAL 5
143
144 /*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149 #define MAX_PARTIAL 10
150
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154 /*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161 /*
162 * Set of flags that will prevent slab merging
163 */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179 static int kmem_size = sizeof(struct kmem_cache);
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190 } slab_state = DOWN;
191
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
195
196 /*
197 * Tracking user of a slab.
198 */
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 unsigned long addr; /* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204 #endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208 };
209
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
216
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 {
223 kfree(s->name);
224 kfree(s);
225 }
226
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
234 }
235
236 /********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240 int slab_is_available(void)
241 {
242 return slab_state >= UP;
243 }
244
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 {
247 return s->node[node];
248 }
249
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253 {
254 void *base;
255
256 if (!object)
257 return 1;
258
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266 }
267
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 return *(void **)(object + s->offset);
271 }
272
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 {
275 prefetch(object + s->offset);
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 void *p;
281
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 p = get_freepointer(s, object);
286 #endif
287 return p;
288 }
289
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 *(void **)(object + s->offset) = fp;
293 }
294
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
299
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 {
303 return (p - addr) / s->size;
304 }
305
306 static inline size_t slab_ksize(const struct kmem_cache *s)
307 {
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316 #endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328 }
329
330 static inline int order_objects(int order, unsigned long size, int reserved)
331 {
332 return ((PAGE_SIZE << order) - reserved) / size;
333 }
334
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
337 {
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
340 };
341
342 return x;
343 }
344
345 static inline int oo_order(struct kmem_cache_order_objects x)
346 {
347 return x.x >> OO_SHIFT;
348 }
349
350 static inline int oo_objects(struct kmem_cache_order_objects x)
351 {
352 return x.x & OO_MASK;
353 }
354
355 /*
356 * Per slab locking using the pagelock
357 */
358 static __always_inline void slab_lock(struct page *page)
359 {
360 bit_spin_lock(PG_locked, &page->flags);
361 }
362
363 static __always_inline void slab_unlock(struct page *page)
364 {
365 __bit_spin_unlock(PG_locked, &page->flags);
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return 0;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438 #ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441
442 return 0;
443 }
444
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459 }
460
461 /*
462 * Debug settings:
463 */
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * Object debugging
475 */
476 static void print_section(char *text, u8 *addr, unsigned int length)
477 {
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
480 }
481
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484 {
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493 }
494
495 static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
497 {
498 struct track *p = get_track(s, object, alloc);
499
500 if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518 #endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525 }
526
527 static void init_tracking(struct kmem_cache *s, void *object)
528 {
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
534 }
535
536 static void print_track(const char *s, struct track *t)
537 {
538 if (!t->addr)
539 return;
540
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552 #endif
553 }
554
555 static void print_tracking(struct kmem_cache *s, void *object)
556 {
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562 }
563
564 static void print_page_info(struct page *page)
565 {
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
568
569 }
570
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572 {
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
584 }
585
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587 {
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595 }
596
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598 {
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
611
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->objsize,
616 s->inuse - s->objsize);
617
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
629
630 dump_stack();
631 }
632
633 static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635 {
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
638 }
639
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
659 p[s->objsize - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->objsize, val, s->inuse - s->objsize);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->objsize))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
801 }
802
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->objsize - 1, POISON_END, 1)))
809 return 0;
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
816 if (!s->offset && val == SLUB_RED_ACTIVE)
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
830 */
831 set_freepointer(s, p, NULL);
832 return 0;
833 }
834 return 1;
835 }
836
837 static int check_slab(struct kmem_cache *s, struct page *page)
838 {
839 int maxobj;
840
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
846 }
847
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862 }
863
864 /*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869 {
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
874
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object, s->objsize);
930
931 dump_stack();
932 }
933 }
934
935 /*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940 {
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946 }
947
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949 {
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953 }
954
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
956 {
957 kmemleak_free_recursive(x, s->flags);
958
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
971 local_irq_restore(flags);
972 }
973 #endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
976 }
977
978 /*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983 static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_add(&page->lru, &n->full);
990 }
991
992 /*
993 * list_lock must be held.
994 */
995 static void remove_full(struct kmem_cache *s, struct page *page)
996 {
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
1000 list_del(&page->lru);
1001 }
1002
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005 {
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009 }
1010
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012 {
1013 return atomic_long_read(&n->nr_slabs);
1014 }
1015
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1029 }
1030 }
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1037 }
1038
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042 {
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1048 }
1049
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1052 {
1053 if (!check_slab(s, page))
1054 goto bad;
1055
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1059 }
1060
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1063
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1070
1071 bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1077 */
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1087 {
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
1092 slab_lock(page);
1093
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1109
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1123 }
1124
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130 out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1134
1135 fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1138 }
1139
1140 static int __init setup_slub_debug(char *str)
1141 {
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1198 }
1199 }
1200
1201 check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204 out:
1205 return 1;
1206 }
1207
1208 __setup("slub_debug", setup_slub_debug);
1209
1210 static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1213 {
1214 /*
1215 * Enable debugging if selected on the kernel commandline.
1216 */
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1220
1221 return flags;
1222 }
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1226
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1243 {
1244 return flags;
1245 }
1246 #define slub_debug 0
1247
1248 #define disable_higher_order_debug 0
1249
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1258
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267 #endif /* CONFIG_SLUB_DEBUG */
1268
1269 /*
1270 * Slab allocation and freeing
1271 */
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274 {
1275 int order = oo_order(oo);
1276
1277 flags |= __GFP_NOTRACK;
1278
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1283 }
1284
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286 {
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1290
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
1296 flags |= s->allocflags;
1297
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
1312
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1315 }
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1337 }
1338
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1344
1345 return page;
1346 }
1347
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350 {
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1354 }
1355
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1362
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1369
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 __SetPageSlab(page);
1373
1374 start = page_address(page);
1375
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1387
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391 out:
1392 return page;
1393 }
1394
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1396 {
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1399
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1402
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1407 }
1408
1409 kmemcheck_free_shadow(page, compound_order(page));
1410
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1415
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1421 }
1422
1423 #define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426 static void rcu_free_slab(struct rcu_head *h)
1427 {
1428 struct page *page;
1429
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
1435 __free_slab(page->slab, page);
1436 }
1437
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1439 {
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459 }
1460
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1462 {
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1465 }
1466
1467 /*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1474 {
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1480 }
1481
1482 /*
1483 * list_lock must be held.
1484 */
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1487 {
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490 }
1491
1492 /*
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock.
1499 */
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1503 {
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 do {
1514 freelist = page->freelist;
1515 counters = page->counters;
1516 new.counters = counters;
1517 if (mode) {
1518 new.inuse = page->objects;
1519 new.freelist = NULL;
1520 } else {
1521 new.freelist = freelist;
1522 }
1523
1524 VM_BUG_ON(new.frozen);
1525 new.frozen = 1;
1526
1527 } while (!__cmpxchg_double_slab(s, page,
1528 freelist, counters,
1529 new.freelist, new.counters,
1530 "lock and freeze"));
1531
1532 remove_partial(n, page);
1533 return freelist;
1534 }
1535
1536 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1537
1538 /*
1539 * Try to allocate a partial slab from a specific node.
1540 */
1541 static void *get_partial_node(struct kmem_cache *s,
1542 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1543 {
1544 struct page *page, *page2;
1545 void *object = NULL;
1546
1547 /*
1548 * Racy check. If we mistakenly see no partial slabs then we
1549 * just allocate an empty slab. If we mistakenly try to get a
1550 * partial slab and there is none available then get_partials()
1551 * will return NULL.
1552 */
1553 if (!n || !n->nr_partial)
1554 return NULL;
1555
1556 spin_lock(&n->list_lock);
1557 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1558 void *t = acquire_slab(s, n, page, object == NULL);
1559 int available;
1560
1561 if (!t)
1562 break;
1563
1564 if (!object) {
1565 c->page = page;
1566 c->node = page_to_nid(page);
1567 stat(s, ALLOC_FROM_PARTIAL);
1568 object = t;
1569 available = page->objects - page->inuse;
1570 } else {
1571 available = put_cpu_partial(s, page, 0);
1572 stat(s, CPU_PARTIAL_NODE);
1573 }
1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1575 break;
1576
1577 }
1578 spin_unlock(&n->list_lock);
1579 return object;
1580 }
1581
1582 /*
1583 * Get a page from somewhere. Search in increasing NUMA distances.
1584 */
1585 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1586 struct kmem_cache_cpu *c)
1587 {
1588 #ifdef CONFIG_NUMA
1589 struct zonelist *zonelist;
1590 struct zoneref *z;
1591 struct zone *zone;
1592 enum zone_type high_zoneidx = gfp_zone(flags);
1593 void *object;
1594 unsigned int cpuset_mems_cookie;
1595
1596 /*
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
1601 *
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
1606 *
1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
1613 */
1614 if (!s->remote_node_defrag_ratio ||
1615 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1616 return NULL;
1617
1618 do {
1619 cpuset_mems_cookie = get_mems_allowed();
1620 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622 struct kmem_cache_node *n;
1623
1624 n = get_node(s, zone_to_nid(zone));
1625
1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627 n->nr_partial > s->min_partial) {
1628 object = get_partial_node(s, n, c);
1629 if (object) {
1630 /*
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1637 */
1638 put_mems_allowed(cpuset_mems_cookie);
1639 return object;
1640 }
1641 }
1642 }
1643 } while (!put_mems_allowed(cpuset_mems_cookie));
1644 #endif
1645 return NULL;
1646 }
1647
1648 /*
1649 * Get a partial page, lock it and return it.
1650 */
1651 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1652 struct kmem_cache_cpu *c)
1653 {
1654 void *object;
1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1656
1657 object = get_partial_node(s, get_node(s, searchnode), c);
1658 if (object || node != NUMA_NO_NODE)
1659 return object;
1660
1661 return get_any_partial(s, flags, c);
1662 }
1663
1664 #ifdef CONFIG_PREEMPT
1665 /*
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1669 */
1670 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1671 #else
1672 /*
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1675 */
1676 #define TID_STEP 1
1677 #endif
1678
1679 static inline unsigned long next_tid(unsigned long tid)
1680 {
1681 return tid + TID_STEP;
1682 }
1683
1684 static inline unsigned int tid_to_cpu(unsigned long tid)
1685 {
1686 return tid % TID_STEP;
1687 }
1688
1689 static inline unsigned long tid_to_event(unsigned long tid)
1690 {
1691 return tid / TID_STEP;
1692 }
1693
1694 static inline unsigned int init_tid(int cpu)
1695 {
1696 return cpu;
1697 }
1698
1699 static inline void note_cmpxchg_failure(const char *n,
1700 const struct kmem_cache *s, unsigned long tid)
1701 {
1702 #ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1704
1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1706
1707 #ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711 else
1712 #endif
1713 if (tid_to_event(tid) != tid_to_event(actual_tid))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid), tid_to_event(actual_tid));
1716 else
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid, tid, next_tid(tid));
1719 #endif
1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1721 }
1722
1723 void init_kmem_cache_cpus(struct kmem_cache *s)
1724 {
1725 int cpu;
1726
1727 for_each_possible_cpu(cpu)
1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1729 }
1730
1731 /*
1732 * Remove the cpu slab
1733 */
1734 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1735 {
1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1737 struct page *page = c->page;
1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739 int lock = 0;
1740 enum slab_modes l = M_NONE, m = M_NONE;
1741 void *freelist;
1742 void *nextfree;
1743 int tail = DEACTIVATE_TO_HEAD;
1744 struct page new;
1745 struct page old;
1746
1747 if (page->freelist) {
1748 stat(s, DEACTIVATE_REMOTE_FREES);
1749 tail = DEACTIVATE_TO_TAIL;
1750 }
1751
1752 c->tid = next_tid(c->tid);
1753 c->page = NULL;
1754 freelist = c->freelist;
1755 c->freelist = NULL;
1756
1757 /*
1758 * Stage one: Free all available per cpu objects back
1759 * to the page freelist while it is still frozen. Leave the
1760 * last one.
1761 *
1762 * There is no need to take the list->lock because the page
1763 * is still frozen.
1764 */
1765 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1766 void *prior;
1767 unsigned long counters;
1768
1769 do {
1770 prior = page->freelist;
1771 counters = page->counters;
1772 set_freepointer(s, freelist, prior);
1773 new.counters = counters;
1774 new.inuse--;
1775 VM_BUG_ON(!new.frozen);
1776
1777 } while (!__cmpxchg_double_slab(s, page,
1778 prior, counters,
1779 freelist, new.counters,
1780 "drain percpu freelist"));
1781
1782 freelist = nextfree;
1783 }
1784
1785 /*
1786 * Stage two: Ensure that the page is unfrozen while the
1787 * list presence reflects the actual number of objects
1788 * during unfreeze.
1789 *
1790 * We setup the list membership and then perform a cmpxchg
1791 * with the count. If there is a mismatch then the page
1792 * is not unfrozen but the page is on the wrong list.
1793 *
1794 * Then we restart the process which may have to remove
1795 * the page from the list that we just put it on again
1796 * because the number of objects in the slab may have
1797 * changed.
1798 */
1799 redo:
1800
1801 old.freelist = page->freelist;
1802 old.counters = page->counters;
1803 VM_BUG_ON(!old.frozen);
1804
1805 /* Determine target state of the slab */
1806 new.counters = old.counters;
1807 if (freelist) {
1808 new.inuse--;
1809 set_freepointer(s, freelist, old.freelist);
1810 new.freelist = freelist;
1811 } else
1812 new.freelist = old.freelist;
1813
1814 new.frozen = 0;
1815
1816 if (!new.inuse && n->nr_partial > s->min_partial)
1817 m = M_FREE;
1818 else if (new.freelist) {
1819 m = M_PARTIAL;
1820 if (!lock) {
1821 lock = 1;
1822 /*
1823 * Taking the spinlock removes the possiblity
1824 * that acquire_slab() will see a slab page that
1825 * is frozen
1826 */
1827 spin_lock(&n->list_lock);
1828 }
1829 } else {
1830 m = M_FULL;
1831 if (kmem_cache_debug(s) && !lock) {
1832 lock = 1;
1833 /*
1834 * This also ensures that the scanning of full
1835 * slabs from diagnostic functions will not see
1836 * any frozen slabs.
1837 */
1838 spin_lock(&n->list_lock);
1839 }
1840 }
1841
1842 if (l != m) {
1843
1844 if (l == M_PARTIAL)
1845
1846 remove_partial(n, page);
1847
1848 else if (l == M_FULL)
1849
1850 remove_full(s, page);
1851
1852 if (m == M_PARTIAL) {
1853
1854 add_partial(n, page, tail);
1855 stat(s, tail);
1856
1857 } else if (m == M_FULL) {
1858
1859 stat(s, DEACTIVATE_FULL);
1860 add_full(s, n, page);
1861
1862 }
1863 }
1864
1865 l = m;
1866 if (!__cmpxchg_double_slab(s, page,
1867 old.freelist, old.counters,
1868 new.freelist, new.counters,
1869 "unfreezing slab"))
1870 goto redo;
1871
1872 if (lock)
1873 spin_unlock(&n->list_lock);
1874
1875 if (m == M_FREE) {
1876 stat(s, DEACTIVATE_EMPTY);
1877 discard_slab(s, page);
1878 stat(s, FREE_SLAB);
1879 }
1880 }
1881
1882 /* Unfreeze all the cpu partial slabs */
1883 static void unfreeze_partials(struct kmem_cache *s)
1884 {
1885 struct kmem_cache_node *n = NULL;
1886 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1887 struct page *page, *discard_page = NULL;
1888
1889 while ((page = c->partial)) {
1890 enum slab_modes { M_PARTIAL, M_FREE };
1891 enum slab_modes l, m;
1892 struct page new;
1893 struct page old;
1894
1895 c->partial = page->next;
1896 l = M_FREE;
1897
1898 do {
1899
1900 old.freelist = page->freelist;
1901 old.counters = page->counters;
1902 VM_BUG_ON(!old.frozen);
1903
1904 new.counters = old.counters;
1905 new.freelist = old.freelist;
1906
1907 new.frozen = 0;
1908
1909 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1910 m = M_FREE;
1911 else {
1912 struct kmem_cache_node *n2 = get_node(s,
1913 page_to_nid(page));
1914
1915 m = M_PARTIAL;
1916 if (n != n2) {
1917 if (n)
1918 spin_unlock(&n->list_lock);
1919
1920 n = n2;
1921 spin_lock(&n->list_lock);
1922 }
1923 }
1924
1925 if (l != m) {
1926 if (l == M_PARTIAL) {
1927 remove_partial(n, page);
1928 stat(s, FREE_REMOVE_PARTIAL);
1929 } else {
1930 add_partial(n, page,
1931 DEACTIVATE_TO_TAIL);
1932 stat(s, FREE_ADD_PARTIAL);
1933 }
1934
1935 l = m;
1936 }
1937
1938 } while (!cmpxchg_double_slab(s, page,
1939 old.freelist, old.counters,
1940 new.freelist, new.counters,
1941 "unfreezing slab"));
1942
1943 if (m == M_FREE) {
1944 page->next = discard_page;
1945 discard_page = page;
1946 }
1947 }
1948
1949 if (n)
1950 spin_unlock(&n->list_lock);
1951
1952 while (discard_page) {
1953 page = discard_page;
1954 discard_page = discard_page->next;
1955
1956 stat(s, DEACTIVATE_EMPTY);
1957 discard_slab(s, page);
1958 stat(s, FREE_SLAB);
1959 }
1960 }
1961
1962 /*
1963 * Put a page that was just frozen (in __slab_free) into a partial page
1964 * slot if available. This is done without interrupts disabled and without
1965 * preemption disabled. The cmpxchg is racy and may put the partial page
1966 * onto a random cpus partial slot.
1967 *
1968 * If we did not find a slot then simply move all the partials to the
1969 * per node partial list.
1970 */
1971 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1972 {
1973 struct page *oldpage;
1974 int pages;
1975 int pobjects;
1976
1977 do {
1978 pages = 0;
1979 pobjects = 0;
1980 oldpage = this_cpu_read(s->cpu_slab->partial);
1981
1982 if (oldpage) {
1983 pobjects = oldpage->pobjects;
1984 pages = oldpage->pages;
1985 if (drain && pobjects > s->cpu_partial) {
1986 unsigned long flags;
1987 /*
1988 * partial array is full. Move the existing
1989 * set to the per node partial list.
1990 */
1991 local_irq_save(flags);
1992 unfreeze_partials(s);
1993 local_irq_restore(flags);
1994 pobjects = 0;
1995 pages = 0;
1996 stat(s, CPU_PARTIAL_DRAIN);
1997 }
1998 }
1999
2000 pages++;
2001 pobjects += page->objects - page->inuse;
2002
2003 page->pages = pages;
2004 page->pobjects = pobjects;
2005 page->next = oldpage;
2006
2007 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2008 return pobjects;
2009 }
2010
2011 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2012 {
2013 stat(s, CPUSLAB_FLUSH);
2014 deactivate_slab(s, c);
2015 }
2016
2017 /*
2018 * Flush cpu slab.
2019 *
2020 * Called from IPI handler with interrupts disabled.
2021 */
2022 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2023 {
2024 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2025
2026 if (likely(c)) {
2027 if (c->page)
2028 flush_slab(s, c);
2029
2030 unfreeze_partials(s);
2031 }
2032 }
2033
2034 static void flush_cpu_slab(void *d)
2035 {
2036 struct kmem_cache *s = d;
2037
2038 __flush_cpu_slab(s, smp_processor_id());
2039 }
2040
2041 static bool has_cpu_slab(int cpu, void *info)
2042 {
2043 struct kmem_cache *s = info;
2044 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2045
2046 return c->page || c->partial;
2047 }
2048
2049 static void flush_all(struct kmem_cache *s)
2050 {
2051 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2052 }
2053
2054 /*
2055 * Check if the objects in a per cpu structure fit numa
2056 * locality expectations.
2057 */
2058 static inline int node_match(struct kmem_cache_cpu *c, int node)
2059 {
2060 #ifdef CONFIG_NUMA
2061 if (node != NUMA_NO_NODE && c->node != node)
2062 return 0;
2063 #endif
2064 return 1;
2065 }
2066
2067 static int count_free(struct page *page)
2068 {
2069 return page->objects - page->inuse;
2070 }
2071
2072 static unsigned long count_partial(struct kmem_cache_node *n,
2073 int (*get_count)(struct page *))
2074 {
2075 unsigned long flags;
2076 unsigned long x = 0;
2077 struct page *page;
2078
2079 spin_lock_irqsave(&n->list_lock, flags);
2080 list_for_each_entry(page, &n->partial, lru)
2081 x += get_count(page);
2082 spin_unlock_irqrestore(&n->list_lock, flags);
2083 return x;
2084 }
2085
2086 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2087 {
2088 #ifdef CONFIG_SLUB_DEBUG
2089 return atomic_long_read(&n->total_objects);
2090 #else
2091 return 0;
2092 #endif
2093 }
2094
2095 static noinline void
2096 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2097 {
2098 int node;
2099
2100 printk(KERN_WARNING
2101 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2102 nid, gfpflags);
2103 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2104 "default order: %d, min order: %d\n", s->name, s->objsize,
2105 s->size, oo_order(s->oo), oo_order(s->min));
2106
2107 if (oo_order(s->min) > get_order(s->objsize))
2108 printk(KERN_WARNING " %s debugging increased min order, use "
2109 "slub_debug=O to disable.\n", s->name);
2110
2111 for_each_online_node(node) {
2112 struct kmem_cache_node *n = get_node(s, node);
2113 unsigned long nr_slabs;
2114 unsigned long nr_objs;
2115 unsigned long nr_free;
2116
2117 if (!n)
2118 continue;
2119
2120 nr_free = count_partial(n, count_free);
2121 nr_slabs = node_nr_slabs(n);
2122 nr_objs = node_nr_objs(n);
2123
2124 printk(KERN_WARNING
2125 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2126 node, nr_slabs, nr_objs, nr_free);
2127 }
2128 }
2129
2130 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2131 int node, struct kmem_cache_cpu **pc)
2132 {
2133 void *object;
2134 struct kmem_cache_cpu *c;
2135 struct page *page = new_slab(s, flags, node);
2136
2137 if (page) {
2138 c = __this_cpu_ptr(s->cpu_slab);
2139 if (c->page)
2140 flush_slab(s, c);
2141
2142 /*
2143 * No other reference to the page yet so we can
2144 * muck around with it freely without cmpxchg
2145 */
2146 object = page->freelist;
2147 page->freelist = NULL;
2148
2149 stat(s, ALLOC_SLAB);
2150 c->node = page_to_nid(page);
2151 c->page = page;
2152 *pc = c;
2153 } else
2154 object = NULL;
2155
2156 return object;
2157 }
2158
2159 /*
2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2161 * or deactivate the page.
2162 *
2163 * The page is still frozen if the return value is not NULL.
2164 *
2165 * If this function returns NULL then the page has been unfrozen.
2166 */
2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168 {
2169 struct page new;
2170 unsigned long counters;
2171 void *freelist;
2172
2173 do {
2174 freelist = page->freelist;
2175 counters = page->counters;
2176 new.counters = counters;
2177 VM_BUG_ON(!new.frozen);
2178
2179 new.inuse = page->objects;
2180 new.frozen = freelist != NULL;
2181
2182 } while (!cmpxchg_double_slab(s, page,
2183 freelist, counters,
2184 NULL, new.counters,
2185 "get_freelist"));
2186
2187 return freelist;
2188 }
2189
2190 /*
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2193 *
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
2197 *
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
2201 *
2202 * And if we were unable to get a new slab from the partial slab lists then
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
2205 */
2206 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207 unsigned long addr, struct kmem_cache_cpu *c)
2208 {
2209 void **object;
2210 unsigned long flags;
2211
2212 local_irq_save(flags);
2213 #ifdef CONFIG_PREEMPT
2214 /*
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2218 */
2219 c = this_cpu_ptr(s->cpu_slab);
2220 #endif
2221
2222 if (!c->page)
2223 goto new_slab;
2224 redo:
2225 if (unlikely(!node_match(c, node))) {
2226 stat(s, ALLOC_NODE_MISMATCH);
2227 deactivate_slab(s, c);
2228 goto new_slab;
2229 }
2230
2231 /* must check again c->freelist in case of cpu migration or IRQ */
2232 object = c->freelist;
2233 if (object)
2234 goto load_freelist;
2235
2236 stat(s, ALLOC_SLOWPATH);
2237
2238 object = get_freelist(s, c->page);
2239
2240 if (!object) {
2241 c->page = NULL;
2242 stat(s, DEACTIVATE_BYPASS);
2243 goto new_slab;
2244 }
2245
2246 stat(s, ALLOC_REFILL);
2247
2248 load_freelist:
2249 c->freelist = get_freepointer(s, object);
2250 c->tid = next_tid(c->tid);
2251 local_irq_restore(flags);
2252 return object;
2253
2254 new_slab:
2255
2256 if (c->partial) {
2257 c->page = c->partial;
2258 c->partial = c->page->next;
2259 c->node = page_to_nid(c->page);
2260 stat(s, CPU_PARTIAL_ALLOC);
2261 c->freelist = NULL;
2262 goto redo;
2263 }
2264
2265 /* Then do expensive stuff like retrieving pages from the partial lists */
2266 object = get_partial(s, gfpflags, node, c);
2267
2268 if (unlikely(!object)) {
2269
2270 object = new_slab_objects(s, gfpflags, node, &c);
2271
2272 if (unlikely(!object)) {
2273 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2274 slab_out_of_memory(s, gfpflags, node);
2275
2276 local_irq_restore(flags);
2277 return NULL;
2278 }
2279 }
2280
2281 if (likely(!kmem_cache_debug(s)))
2282 goto load_freelist;
2283
2284 /* Only entered in the debug case */
2285 if (!alloc_debug_processing(s, c->page, object, addr))
2286 goto new_slab; /* Slab failed checks. Next slab needed */
2287
2288 c->freelist = get_freepointer(s, object);
2289 deactivate_slab(s, c);
2290 c->node = NUMA_NO_NODE;
2291 local_irq_restore(flags);
2292 return object;
2293 }
2294
2295 /*
2296 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2297 * have the fastpath folded into their functions. So no function call
2298 * overhead for requests that can be satisfied on the fastpath.
2299 *
2300 * The fastpath works by first checking if the lockless freelist can be used.
2301 * If not then __slab_alloc is called for slow processing.
2302 *
2303 * Otherwise we can simply pick the next object from the lockless free list.
2304 */
2305 static __always_inline void *slab_alloc(struct kmem_cache *s,
2306 gfp_t gfpflags, int node, unsigned long addr)
2307 {
2308 void **object;
2309 struct kmem_cache_cpu *c;
2310 unsigned long tid;
2311
2312 if (slab_pre_alloc_hook(s, gfpflags))
2313 return NULL;
2314
2315 redo:
2316
2317 /*
2318 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2319 * enabled. We may switch back and forth between cpus while
2320 * reading from one cpu area. That does not matter as long
2321 * as we end up on the original cpu again when doing the cmpxchg.
2322 */
2323 c = __this_cpu_ptr(s->cpu_slab);
2324
2325 /*
2326 * The transaction ids are globally unique per cpu and per operation on
2327 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2328 * occurs on the right processor and that there was no operation on the
2329 * linked list in between.
2330 */
2331 tid = c->tid;
2332 barrier();
2333
2334 object = c->freelist;
2335 if (unlikely(!object || !node_match(c, node)))
2336
2337 object = __slab_alloc(s, gfpflags, node, addr, c);
2338
2339 else {
2340 void *next_object = get_freepointer_safe(s, object);
2341
2342 /*
2343 * The cmpxchg will only match if there was no additional
2344 * operation and if we are on the right processor.
2345 *
2346 * The cmpxchg does the following atomically (without lock semantics!)
2347 * 1. Relocate first pointer to the current per cpu area.
2348 * 2. Verify that tid and freelist have not been changed
2349 * 3. If they were not changed replace tid and freelist
2350 *
2351 * Since this is without lock semantics the protection is only against
2352 * code executing on this cpu *not* from access by other cpus.
2353 */
2354 if (unlikely(!this_cpu_cmpxchg_double(
2355 s->cpu_slab->freelist, s->cpu_slab->tid,
2356 object, tid,
2357 next_object, next_tid(tid)))) {
2358
2359 note_cmpxchg_failure("slab_alloc", s, tid);
2360 goto redo;
2361 }
2362 prefetch_freepointer(s, next_object);
2363 stat(s, ALLOC_FASTPATH);
2364 }
2365
2366 if (unlikely(gfpflags & __GFP_ZERO) && object)
2367 memset(object, 0, s->objsize);
2368
2369 slab_post_alloc_hook(s, gfpflags, object);
2370
2371 return object;
2372 }
2373
2374 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2375 {
2376 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2377
2378 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2379
2380 return ret;
2381 }
2382 EXPORT_SYMBOL(kmem_cache_alloc);
2383
2384 #ifdef CONFIG_TRACING
2385 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2386 {
2387 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2388 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2389 return ret;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2392
2393 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2394 {
2395 void *ret = kmalloc_order(size, flags, order);
2396 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(kmalloc_order_trace);
2400 #endif
2401
2402 #ifdef CONFIG_NUMA
2403 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2404 {
2405 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2406
2407 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2408 s->objsize, s->size, gfpflags, node);
2409
2410 return ret;
2411 }
2412 EXPORT_SYMBOL(kmem_cache_alloc_node);
2413
2414 #ifdef CONFIG_TRACING
2415 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2416 gfp_t gfpflags,
2417 int node, size_t size)
2418 {
2419 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2420
2421 trace_kmalloc_node(_RET_IP_, ret,
2422 size, s->size, gfpflags, node);
2423 return ret;
2424 }
2425 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2426 #endif
2427 #endif
2428
2429 /*
2430 * Slow patch handling. This may still be called frequently since objects
2431 * have a longer lifetime than the cpu slabs in most processing loads.
2432 *
2433 * So we still attempt to reduce cache line usage. Just take the slab
2434 * lock and free the item. If there is no additional partial page
2435 * handling required then we can return immediately.
2436 */
2437 static void __slab_free(struct kmem_cache *s, struct page *page,
2438 void *x, unsigned long addr)
2439 {
2440 void *prior;
2441 void **object = (void *)x;
2442 int was_frozen;
2443 int inuse;
2444 struct page new;
2445 unsigned long counters;
2446 struct kmem_cache_node *n = NULL;
2447 unsigned long uninitialized_var(flags);
2448
2449 stat(s, FREE_SLOWPATH);
2450
2451 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2452 return;
2453
2454 do {
2455 prior = page->freelist;
2456 counters = page->counters;
2457 set_freepointer(s, object, prior);
2458 new.counters = counters;
2459 was_frozen = new.frozen;
2460 new.inuse--;
2461 if ((!new.inuse || !prior) && !was_frozen && !n) {
2462
2463 if (!kmem_cache_debug(s) && !prior)
2464
2465 /*
2466 * Slab was on no list before and will be partially empty
2467 * We can defer the list move and instead freeze it.
2468 */
2469 new.frozen = 1;
2470
2471 else { /* Needs to be taken off a list */
2472
2473 n = get_node(s, page_to_nid(page));
2474 /*
2475 * Speculatively acquire the list_lock.
2476 * If the cmpxchg does not succeed then we may
2477 * drop the list_lock without any processing.
2478 *
2479 * Otherwise the list_lock will synchronize with
2480 * other processors updating the list of slabs.
2481 */
2482 spin_lock_irqsave(&n->list_lock, flags);
2483
2484 }
2485 }
2486 inuse = new.inuse;
2487
2488 } while (!cmpxchg_double_slab(s, page,
2489 prior, counters,
2490 object, new.counters,
2491 "__slab_free"));
2492
2493 if (likely(!n)) {
2494
2495 /*
2496 * If we just froze the page then put it onto the
2497 * per cpu partial list.
2498 */
2499 if (new.frozen && !was_frozen) {
2500 put_cpu_partial(s, page, 1);
2501 stat(s, CPU_PARTIAL_FREE);
2502 }
2503 /*
2504 * The list lock was not taken therefore no list
2505 * activity can be necessary.
2506 */
2507 if (was_frozen)
2508 stat(s, FREE_FROZEN);
2509 return;
2510 }
2511
2512 /*
2513 * was_frozen may have been set after we acquired the list_lock in
2514 * an earlier loop. So we need to check it here again.
2515 */
2516 if (was_frozen)
2517 stat(s, FREE_FROZEN);
2518 else {
2519 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2520 goto slab_empty;
2521
2522 /*
2523 * Objects left in the slab. If it was not on the partial list before
2524 * then add it.
2525 */
2526 if (unlikely(!prior)) {
2527 remove_full(s, page);
2528 add_partial(n, page, DEACTIVATE_TO_TAIL);
2529 stat(s, FREE_ADD_PARTIAL);
2530 }
2531 }
2532 spin_unlock_irqrestore(&n->list_lock, flags);
2533 return;
2534
2535 slab_empty:
2536 if (prior) {
2537 /*
2538 * Slab on the partial list.
2539 */
2540 remove_partial(n, page);
2541 stat(s, FREE_REMOVE_PARTIAL);
2542 } else
2543 /* Slab must be on the full list */
2544 remove_full(s, page);
2545
2546 spin_unlock_irqrestore(&n->list_lock, flags);
2547 stat(s, FREE_SLAB);
2548 discard_slab(s, page);
2549 }
2550
2551 /*
2552 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2553 * can perform fastpath freeing without additional function calls.
2554 *
2555 * The fastpath is only possible if we are freeing to the current cpu slab
2556 * of this processor. This typically the case if we have just allocated
2557 * the item before.
2558 *
2559 * If fastpath is not possible then fall back to __slab_free where we deal
2560 * with all sorts of special processing.
2561 */
2562 static __always_inline void slab_free(struct kmem_cache *s,
2563 struct page *page, void *x, unsigned long addr)
2564 {
2565 void **object = (void *)x;
2566 struct kmem_cache_cpu *c;
2567 unsigned long tid;
2568
2569 slab_free_hook(s, x);
2570
2571 redo:
2572 /*
2573 * Determine the currently cpus per cpu slab.
2574 * The cpu may change afterward. However that does not matter since
2575 * data is retrieved via this pointer. If we are on the same cpu
2576 * during the cmpxchg then the free will succedd.
2577 */
2578 c = __this_cpu_ptr(s->cpu_slab);
2579
2580 tid = c->tid;
2581 barrier();
2582
2583 if (likely(page == c->page)) {
2584 set_freepointer(s, object, c->freelist);
2585
2586 if (unlikely(!this_cpu_cmpxchg_double(
2587 s->cpu_slab->freelist, s->cpu_slab->tid,
2588 c->freelist, tid,
2589 object, next_tid(tid)))) {
2590
2591 note_cmpxchg_failure("slab_free", s, tid);
2592 goto redo;
2593 }
2594 stat(s, FREE_FASTPATH);
2595 } else
2596 __slab_free(s, page, x, addr);
2597
2598 }
2599
2600 void kmem_cache_free(struct kmem_cache *s, void *x)
2601 {
2602 struct page *page;
2603
2604 page = virt_to_head_page(x);
2605
2606 slab_free(s, page, x, _RET_IP_);
2607
2608 trace_kmem_cache_free(_RET_IP_, x);
2609 }
2610 EXPORT_SYMBOL(kmem_cache_free);
2611
2612 /*
2613 * Object placement in a slab is made very easy because we always start at
2614 * offset 0. If we tune the size of the object to the alignment then we can
2615 * get the required alignment by putting one properly sized object after
2616 * another.
2617 *
2618 * Notice that the allocation order determines the sizes of the per cpu
2619 * caches. Each processor has always one slab available for allocations.
2620 * Increasing the allocation order reduces the number of times that slabs
2621 * must be moved on and off the partial lists and is therefore a factor in
2622 * locking overhead.
2623 */
2624
2625 /*
2626 * Mininum / Maximum order of slab pages. This influences locking overhead
2627 * and slab fragmentation. A higher order reduces the number of partial slabs
2628 * and increases the number of allocations possible without having to
2629 * take the list_lock.
2630 */
2631 static int slub_min_order;
2632 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2633 static int slub_min_objects;
2634
2635 /*
2636 * Merge control. If this is set then no merging of slab caches will occur.
2637 * (Could be removed. This was introduced to pacify the merge skeptics.)
2638 */
2639 static int slub_nomerge;
2640
2641 /*
2642 * Calculate the order of allocation given an slab object size.
2643 *
2644 * The order of allocation has significant impact on performance and other
2645 * system components. Generally order 0 allocations should be preferred since
2646 * order 0 does not cause fragmentation in the page allocator. Larger objects
2647 * be problematic to put into order 0 slabs because there may be too much
2648 * unused space left. We go to a higher order if more than 1/16th of the slab
2649 * would be wasted.
2650 *
2651 * In order to reach satisfactory performance we must ensure that a minimum
2652 * number of objects is in one slab. Otherwise we may generate too much
2653 * activity on the partial lists which requires taking the list_lock. This is
2654 * less a concern for large slabs though which are rarely used.
2655 *
2656 * slub_max_order specifies the order where we begin to stop considering the
2657 * number of objects in a slab as critical. If we reach slub_max_order then
2658 * we try to keep the page order as low as possible. So we accept more waste
2659 * of space in favor of a small page order.
2660 *
2661 * Higher order allocations also allow the placement of more objects in a
2662 * slab and thereby reduce object handling overhead. If the user has
2663 * requested a higher mininum order then we start with that one instead of
2664 * the smallest order which will fit the object.
2665 */
2666 static inline int slab_order(int size, int min_objects,
2667 int max_order, int fract_leftover, int reserved)
2668 {
2669 int order;
2670 int rem;
2671 int min_order = slub_min_order;
2672
2673 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2674 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2675
2676 for (order = max(min_order,
2677 fls(min_objects * size - 1) - PAGE_SHIFT);
2678 order <= max_order; order++) {
2679
2680 unsigned long slab_size = PAGE_SIZE << order;
2681
2682 if (slab_size < min_objects * size + reserved)
2683 continue;
2684
2685 rem = (slab_size - reserved) % size;
2686
2687 if (rem <= slab_size / fract_leftover)
2688 break;
2689
2690 }
2691
2692 return order;
2693 }
2694
2695 static inline int calculate_order(int size, int reserved)
2696 {
2697 int order;
2698 int min_objects;
2699 int fraction;
2700 int max_objects;
2701
2702 /*
2703 * Attempt to find best configuration for a slab. This
2704 * works by first attempting to generate a layout with
2705 * the best configuration and backing off gradually.
2706 *
2707 * First we reduce the acceptable waste in a slab. Then
2708 * we reduce the minimum objects required in a slab.
2709 */
2710 min_objects = slub_min_objects;
2711 if (!min_objects)
2712 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2713 max_objects = order_objects(slub_max_order, size, reserved);
2714 min_objects = min(min_objects, max_objects);
2715
2716 while (min_objects > 1) {
2717 fraction = 16;
2718 while (fraction >= 4) {
2719 order = slab_order(size, min_objects,
2720 slub_max_order, fraction, reserved);
2721 if (order <= slub_max_order)
2722 return order;
2723 fraction /= 2;
2724 }
2725 min_objects--;
2726 }
2727
2728 /*
2729 * We were unable to place multiple objects in a slab. Now
2730 * lets see if we can place a single object there.
2731 */
2732 order = slab_order(size, 1, slub_max_order, 1, reserved);
2733 if (order <= slub_max_order)
2734 return order;
2735
2736 /*
2737 * Doh this slab cannot be placed using slub_max_order.
2738 */
2739 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2740 if (order < MAX_ORDER)
2741 return order;
2742 return -ENOSYS;
2743 }
2744
2745 /*
2746 * Figure out what the alignment of the objects will be.
2747 */
2748 static unsigned long calculate_alignment(unsigned long flags,
2749 unsigned long align, unsigned long size)
2750 {
2751 /*
2752 * If the user wants hardware cache aligned objects then follow that
2753 * suggestion if the object is sufficiently large.
2754 *
2755 * The hardware cache alignment cannot override the specified
2756 * alignment though. If that is greater then use it.
2757 */
2758 if (flags & SLAB_HWCACHE_ALIGN) {
2759 unsigned long ralign = cache_line_size();
2760 while (size <= ralign / 2)
2761 ralign /= 2;
2762 align = max(align, ralign);
2763 }
2764
2765 if (align < ARCH_SLAB_MINALIGN)
2766 align = ARCH_SLAB_MINALIGN;
2767
2768 return ALIGN(align, sizeof(void *));
2769 }
2770
2771 static void
2772 init_kmem_cache_node(struct kmem_cache_node *n)
2773 {
2774 n->nr_partial = 0;
2775 spin_lock_init(&n->list_lock);
2776 INIT_LIST_HEAD(&n->partial);
2777 #ifdef CONFIG_SLUB_DEBUG
2778 atomic_long_set(&n->nr_slabs, 0);
2779 atomic_long_set(&n->total_objects, 0);
2780 INIT_LIST_HEAD(&n->full);
2781 #endif
2782 }
2783
2784 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2785 {
2786 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2787 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2788
2789 /*
2790 * Must align to double word boundary for the double cmpxchg
2791 * instructions to work; see __pcpu_double_call_return_bool().
2792 */
2793 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2794 2 * sizeof(void *));
2795
2796 if (!s->cpu_slab)
2797 return 0;
2798
2799 init_kmem_cache_cpus(s);
2800
2801 return 1;
2802 }
2803
2804 static struct kmem_cache *kmem_cache_node;
2805
2806 /*
2807 * No kmalloc_node yet so do it by hand. We know that this is the first
2808 * slab on the node for this slabcache. There are no concurrent accesses
2809 * possible.
2810 *
2811 * Note that this function only works on the kmalloc_node_cache
2812 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2813 * memory on a fresh node that has no slab structures yet.
2814 */
2815 static void early_kmem_cache_node_alloc(int node)
2816 {
2817 struct page *page;
2818 struct kmem_cache_node *n;
2819
2820 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2821
2822 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2823
2824 BUG_ON(!page);
2825 if (page_to_nid(page) != node) {
2826 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2827 "node %d\n", node);
2828 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2829 "in order to be able to continue\n");
2830 }
2831
2832 n = page->freelist;
2833 BUG_ON(!n);
2834 page->freelist = get_freepointer(kmem_cache_node, n);
2835 page->inuse = 1;
2836 page->frozen = 0;
2837 kmem_cache_node->node[node] = n;
2838 #ifdef CONFIG_SLUB_DEBUG
2839 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2840 init_tracking(kmem_cache_node, n);
2841 #endif
2842 init_kmem_cache_node(n);
2843 inc_slabs_node(kmem_cache_node, node, page->objects);
2844
2845 add_partial(n, page, DEACTIVATE_TO_HEAD);
2846 }
2847
2848 static void free_kmem_cache_nodes(struct kmem_cache *s)
2849 {
2850 int node;
2851
2852 for_each_node_state(node, N_NORMAL_MEMORY) {
2853 struct kmem_cache_node *n = s->node[node];
2854
2855 if (n)
2856 kmem_cache_free(kmem_cache_node, n);
2857
2858 s->node[node] = NULL;
2859 }
2860 }
2861
2862 static int init_kmem_cache_nodes(struct kmem_cache *s)
2863 {
2864 int node;
2865
2866 for_each_node_state(node, N_NORMAL_MEMORY) {
2867 struct kmem_cache_node *n;
2868
2869 if (slab_state == DOWN) {
2870 early_kmem_cache_node_alloc(node);
2871 continue;
2872 }
2873 n = kmem_cache_alloc_node(kmem_cache_node,
2874 GFP_KERNEL, node);
2875
2876 if (!n) {
2877 free_kmem_cache_nodes(s);
2878 return 0;
2879 }
2880
2881 s->node[node] = n;
2882 init_kmem_cache_node(n);
2883 }
2884 return 1;
2885 }
2886
2887 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2888 {
2889 if (min < MIN_PARTIAL)
2890 min = MIN_PARTIAL;
2891 else if (min > MAX_PARTIAL)
2892 min = MAX_PARTIAL;
2893 s->min_partial = min;
2894 }
2895
2896 /*
2897 * calculate_sizes() determines the order and the distribution of data within
2898 * a slab object.
2899 */
2900 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2901 {
2902 unsigned long flags = s->flags;
2903 unsigned long size = s->objsize;
2904 unsigned long align = s->align;
2905 int order;
2906
2907 /*
2908 * Round up object size to the next word boundary. We can only
2909 * place the free pointer at word boundaries and this determines
2910 * the possible location of the free pointer.
2911 */
2912 size = ALIGN(size, sizeof(void *));
2913
2914 #ifdef CONFIG_SLUB_DEBUG
2915 /*
2916 * Determine if we can poison the object itself. If the user of
2917 * the slab may touch the object after free or before allocation
2918 * then we should never poison the object itself.
2919 */
2920 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2921 !s->ctor)
2922 s->flags |= __OBJECT_POISON;
2923 else
2924 s->flags &= ~__OBJECT_POISON;
2925
2926
2927 /*
2928 * If we are Redzoning then check if there is some space between the
2929 * end of the object and the free pointer. If not then add an
2930 * additional word to have some bytes to store Redzone information.
2931 */
2932 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2933 size += sizeof(void *);
2934 #endif
2935
2936 /*
2937 * With that we have determined the number of bytes in actual use
2938 * by the object. This is the potential offset to the free pointer.
2939 */
2940 s->inuse = size;
2941
2942 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2943 s->ctor)) {
2944 /*
2945 * Relocate free pointer after the object if it is not
2946 * permitted to overwrite the first word of the object on
2947 * kmem_cache_free.
2948 *
2949 * This is the case if we do RCU, have a constructor or
2950 * destructor or are poisoning the objects.
2951 */
2952 s->offset = size;
2953 size += sizeof(void *);
2954 }
2955
2956 #ifdef CONFIG_SLUB_DEBUG
2957 if (flags & SLAB_STORE_USER)
2958 /*
2959 * Need to store information about allocs and frees after
2960 * the object.
2961 */
2962 size += 2 * sizeof(struct track);
2963
2964 if (flags & SLAB_RED_ZONE)
2965 /*
2966 * Add some empty padding so that we can catch
2967 * overwrites from earlier objects rather than let
2968 * tracking information or the free pointer be
2969 * corrupted if a user writes before the start
2970 * of the object.
2971 */
2972 size += sizeof(void *);
2973 #endif
2974
2975 /*
2976 * Determine the alignment based on various parameters that the
2977 * user specified and the dynamic determination of cache line size
2978 * on bootup.
2979 */
2980 align = calculate_alignment(flags, align, s->objsize);
2981 s->align = align;
2982
2983 /*
2984 * SLUB stores one object immediately after another beginning from
2985 * offset 0. In order to align the objects we have to simply size
2986 * each object to conform to the alignment.
2987 */
2988 size = ALIGN(size, align);
2989 s->size = size;
2990 if (forced_order >= 0)
2991 order = forced_order;
2992 else
2993 order = calculate_order(size, s->reserved);
2994
2995 if (order < 0)
2996 return 0;
2997
2998 s->allocflags = 0;
2999 if (order)
3000 s->allocflags |= __GFP_COMP;
3001
3002 if (s->flags & SLAB_CACHE_DMA)
3003 s->allocflags |= SLUB_DMA;
3004
3005 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3006 s->allocflags |= __GFP_RECLAIMABLE;
3007
3008 /*
3009 * Determine the number of objects per slab
3010 */
3011 s->oo = oo_make(order, size, s->reserved);
3012 s->min = oo_make(get_order(size), size, s->reserved);
3013 if (oo_objects(s->oo) > oo_objects(s->max))
3014 s->max = s->oo;
3015
3016 return !!oo_objects(s->oo);
3017
3018 }
3019
3020 static int kmem_cache_open(struct kmem_cache *s,
3021 const char *name, size_t size,
3022 size_t align, unsigned long flags,
3023 void (*ctor)(void *))
3024 {
3025 memset(s, 0, kmem_size);
3026 s->name = name;
3027 s->ctor = ctor;
3028 s->objsize = size;
3029 s->align = align;
3030 s->flags = kmem_cache_flags(size, flags, name, ctor);
3031 s->reserved = 0;
3032
3033 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3034 s->reserved = sizeof(struct rcu_head);
3035
3036 if (!calculate_sizes(s, -1))
3037 goto error;
3038 if (disable_higher_order_debug) {
3039 /*
3040 * Disable debugging flags that store metadata if the min slab
3041 * order increased.
3042 */
3043 if (get_order(s->size) > get_order(s->objsize)) {
3044 s->flags &= ~DEBUG_METADATA_FLAGS;
3045 s->offset = 0;
3046 if (!calculate_sizes(s, -1))
3047 goto error;
3048 }
3049 }
3050
3051 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3052 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3053 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3054 /* Enable fast mode */
3055 s->flags |= __CMPXCHG_DOUBLE;
3056 #endif
3057
3058 /*
3059 * The larger the object size is, the more pages we want on the partial
3060 * list to avoid pounding the page allocator excessively.
3061 */
3062 set_min_partial(s, ilog2(s->size) / 2);
3063
3064 /*
3065 * cpu_partial determined the maximum number of objects kept in the
3066 * per cpu partial lists of a processor.
3067 *
3068 * Per cpu partial lists mainly contain slabs that just have one
3069 * object freed. If they are used for allocation then they can be
3070 * filled up again with minimal effort. The slab will never hit the
3071 * per node partial lists and therefore no locking will be required.
3072 *
3073 * This setting also determines
3074 *
3075 * A) The number of objects from per cpu partial slabs dumped to the
3076 * per node list when we reach the limit.
3077 * B) The number of objects in cpu partial slabs to extract from the
3078 * per node list when we run out of per cpu objects. We only fetch 50%
3079 * to keep some capacity around for frees.
3080 */
3081 if (kmem_cache_debug(s))
3082 s->cpu_partial = 0;
3083 else if (s->size >= PAGE_SIZE)
3084 s->cpu_partial = 2;
3085 else if (s->size >= 1024)
3086 s->cpu_partial = 6;
3087 else if (s->size >= 256)
3088 s->cpu_partial = 13;
3089 else
3090 s->cpu_partial = 30;
3091
3092 s->refcount = 1;
3093 #ifdef CONFIG_NUMA
3094 s->remote_node_defrag_ratio = 1000;
3095 #endif
3096 if (!init_kmem_cache_nodes(s))
3097 goto error;
3098
3099 if (alloc_kmem_cache_cpus(s))
3100 return 1;
3101
3102 free_kmem_cache_nodes(s);
3103 error:
3104 if (flags & SLAB_PANIC)
3105 panic("Cannot create slab %s size=%lu realsize=%u "
3106 "order=%u offset=%u flags=%lx\n",
3107 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3108 s->offset, flags);
3109 return 0;
3110 }
3111
3112 /*
3113 * Determine the size of a slab object
3114 */
3115 unsigned int kmem_cache_size(struct kmem_cache *s)
3116 {
3117 return s->objsize;
3118 }
3119 EXPORT_SYMBOL(kmem_cache_size);
3120
3121 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3122 const char *text)
3123 {
3124 #ifdef CONFIG_SLUB_DEBUG
3125 void *addr = page_address(page);
3126 void *p;
3127 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3128 sizeof(long), GFP_ATOMIC);
3129 if (!map)
3130 return;
3131 slab_err(s, page, "%s", text);
3132 slab_lock(page);
3133
3134 get_map(s, page, map);
3135 for_each_object(p, s, addr, page->objects) {
3136
3137 if (!test_bit(slab_index(p, s, addr), map)) {
3138 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3139 p, p - addr);
3140 print_tracking(s, p);
3141 }
3142 }
3143 slab_unlock(page);
3144 kfree(map);
3145 #endif
3146 }
3147
3148 /*
3149 * Attempt to free all partial slabs on a node.
3150 * This is called from kmem_cache_close(). We must be the last thread
3151 * using the cache and therefore we do not need to lock anymore.
3152 */
3153 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3154 {
3155 struct page *page, *h;
3156
3157 list_for_each_entry_safe(page, h, &n->partial, lru) {
3158 if (!page->inuse) {
3159 remove_partial(n, page);
3160 discard_slab(s, page);
3161 } else {
3162 list_slab_objects(s, page,
3163 "Objects remaining on kmem_cache_close()");
3164 }
3165 }
3166 }
3167
3168 /*
3169 * Release all resources used by a slab cache.
3170 */
3171 static inline int kmem_cache_close(struct kmem_cache *s)
3172 {
3173 int node;
3174
3175 flush_all(s);
3176 free_percpu(s->cpu_slab);
3177 /* Attempt to free all objects */
3178 for_each_node_state(node, N_NORMAL_MEMORY) {
3179 struct kmem_cache_node *n = get_node(s, node);
3180
3181 free_partial(s, n);
3182 if (n->nr_partial || slabs_node(s, node))
3183 return 1;
3184 }
3185 free_kmem_cache_nodes(s);
3186 return 0;
3187 }
3188
3189 /*
3190 * Close a cache and release the kmem_cache structure
3191 * (must be used for caches created using kmem_cache_create)
3192 */
3193 void kmem_cache_destroy(struct kmem_cache *s)
3194 {
3195 down_write(&slub_lock);
3196 s->refcount--;
3197 if (!s->refcount) {
3198 list_del(&s->list);
3199 up_write(&slub_lock);
3200 if (kmem_cache_close(s)) {
3201 printk(KERN_ERR "SLUB %s: %s called for cache that "
3202 "still has objects.\n", s->name, __func__);
3203 dump_stack();
3204 }
3205 if (s->flags & SLAB_DESTROY_BY_RCU)
3206 rcu_barrier();
3207 sysfs_slab_remove(s);
3208 } else
3209 up_write(&slub_lock);
3210 }
3211 EXPORT_SYMBOL(kmem_cache_destroy);
3212
3213 /********************************************************************
3214 * Kmalloc subsystem
3215 *******************************************************************/
3216
3217 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3218 EXPORT_SYMBOL(kmalloc_caches);
3219
3220 static struct kmem_cache *kmem_cache;
3221
3222 #ifdef CONFIG_ZONE_DMA
3223 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3224 #endif
3225
3226 static int __init setup_slub_min_order(char *str)
3227 {
3228 get_option(&str, &slub_min_order);
3229
3230 return 1;
3231 }
3232
3233 __setup("slub_min_order=", setup_slub_min_order);
3234
3235 static int __init setup_slub_max_order(char *str)
3236 {
3237 get_option(&str, &slub_max_order);
3238 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3239
3240 return 1;
3241 }
3242
3243 __setup("slub_max_order=", setup_slub_max_order);
3244
3245 static int __init setup_slub_min_objects(char *str)
3246 {
3247 get_option(&str, &slub_min_objects);
3248
3249 return 1;
3250 }
3251
3252 __setup("slub_min_objects=", setup_slub_min_objects);
3253
3254 static int __init setup_slub_nomerge(char *str)
3255 {
3256 slub_nomerge = 1;
3257 return 1;
3258 }
3259
3260 __setup("slub_nomerge", setup_slub_nomerge);
3261
3262 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3263 int size, unsigned int flags)
3264 {
3265 struct kmem_cache *s;
3266
3267 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3268
3269 /*
3270 * This function is called with IRQs disabled during early-boot on
3271 * single CPU so there's no need to take slub_lock here.
3272 */
3273 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3274 flags, NULL))
3275 goto panic;
3276
3277 list_add(&s->list, &slab_caches);
3278 return s;
3279
3280 panic:
3281 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3282 return NULL;
3283 }
3284
3285 /*
3286 * Conversion table for small slabs sizes / 8 to the index in the
3287 * kmalloc array. This is necessary for slabs < 192 since we have non power
3288 * of two cache sizes there. The size of larger slabs can be determined using
3289 * fls.
3290 */
3291 static s8 size_index[24] = {
3292 3, /* 8 */
3293 4, /* 16 */
3294 5, /* 24 */
3295 5, /* 32 */
3296 6, /* 40 */
3297 6, /* 48 */
3298 6, /* 56 */
3299 6, /* 64 */
3300 1, /* 72 */
3301 1, /* 80 */
3302 1, /* 88 */
3303 1, /* 96 */
3304 7, /* 104 */
3305 7, /* 112 */
3306 7, /* 120 */
3307 7, /* 128 */
3308 2, /* 136 */
3309 2, /* 144 */
3310 2, /* 152 */
3311 2, /* 160 */
3312 2, /* 168 */
3313 2, /* 176 */
3314 2, /* 184 */
3315 2 /* 192 */
3316 };
3317
3318 static inline int size_index_elem(size_t bytes)
3319 {
3320 return (bytes - 1) / 8;
3321 }
3322
3323 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3324 {
3325 int index;
3326
3327 if (size <= 192) {
3328 if (!size)
3329 return ZERO_SIZE_PTR;
3330
3331 index = size_index[size_index_elem(size)];
3332 } else
3333 index = fls(size - 1);
3334
3335 #ifdef CONFIG_ZONE_DMA
3336 if (unlikely((flags & SLUB_DMA)))
3337 return kmalloc_dma_caches[index];
3338
3339 #endif
3340 return kmalloc_caches[index];
3341 }
3342
3343 void *__kmalloc(size_t size, gfp_t flags)
3344 {
3345 struct kmem_cache *s;
3346 void *ret;
3347
3348 if (unlikely(size > SLUB_MAX_SIZE))
3349 return kmalloc_large(size, flags);
3350
3351 s = get_slab(size, flags);
3352
3353 if (unlikely(ZERO_OR_NULL_PTR(s)))
3354 return s;
3355
3356 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3357
3358 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3359
3360 return ret;
3361 }
3362 EXPORT_SYMBOL(__kmalloc);
3363
3364 #ifdef CONFIG_NUMA
3365 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3366 {
3367 struct page *page;
3368 void *ptr = NULL;
3369
3370 flags |= __GFP_COMP | __GFP_NOTRACK;
3371 page = alloc_pages_node(node, flags, get_order(size));
3372 if (page)
3373 ptr = page_address(page);
3374
3375 kmemleak_alloc(ptr, size, 1, flags);
3376 return ptr;
3377 }
3378
3379 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3380 {
3381 struct kmem_cache *s;
3382 void *ret;
3383
3384 if (unlikely(size > SLUB_MAX_SIZE)) {
3385 ret = kmalloc_large_node(size, flags, node);
3386
3387 trace_kmalloc_node(_RET_IP_, ret,
3388 size, PAGE_SIZE << get_order(size),
3389 flags, node);
3390
3391 return ret;
3392 }
3393
3394 s = get_slab(size, flags);
3395
3396 if (unlikely(ZERO_OR_NULL_PTR(s)))
3397 return s;
3398
3399 ret = slab_alloc(s, flags, node, _RET_IP_);
3400
3401 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3402
3403 return ret;
3404 }
3405 EXPORT_SYMBOL(__kmalloc_node);
3406 #endif
3407
3408 size_t ksize(const void *object)
3409 {
3410 struct page *page;
3411
3412 if (unlikely(object == ZERO_SIZE_PTR))
3413 return 0;
3414
3415 page = virt_to_head_page(object);
3416
3417 if (unlikely(!PageSlab(page))) {
3418 WARN_ON(!PageCompound(page));
3419 return PAGE_SIZE << compound_order(page);
3420 }
3421
3422 return slab_ksize(page->slab);
3423 }
3424 EXPORT_SYMBOL(ksize);
3425
3426 #ifdef CONFIG_SLUB_DEBUG
3427 bool verify_mem_not_deleted(const void *x)
3428 {
3429 struct page *page;
3430 void *object = (void *)x;
3431 unsigned long flags;
3432 bool rv;
3433
3434 if (unlikely(ZERO_OR_NULL_PTR(x)))
3435 return false;
3436
3437 local_irq_save(flags);
3438
3439 page = virt_to_head_page(x);
3440 if (unlikely(!PageSlab(page))) {
3441 /* maybe it was from stack? */
3442 rv = true;
3443 goto out_unlock;
3444 }
3445
3446 slab_lock(page);
3447 if (on_freelist(page->slab, page, object)) {
3448 object_err(page->slab, page, object, "Object is on free-list");
3449 rv = false;
3450 } else {
3451 rv = true;
3452 }
3453 slab_unlock(page);
3454
3455 out_unlock:
3456 local_irq_restore(flags);
3457 return rv;
3458 }
3459 EXPORT_SYMBOL(verify_mem_not_deleted);
3460 #endif
3461
3462 void kfree(const void *x)
3463 {
3464 struct page *page;
3465 void *object = (void *)x;
3466
3467 trace_kfree(_RET_IP_, x);
3468
3469 if (unlikely(ZERO_OR_NULL_PTR(x)))
3470 return;
3471
3472 page = virt_to_head_page(x);
3473 if (unlikely(!PageSlab(page))) {
3474 BUG_ON(!PageCompound(page));
3475 kmemleak_free(x);
3476 put_page(page);
3477 return;
3478 }
3479 slab_free(page->slab, page, object, _RET_IP_);
3480 }
3481 EXPORT_SYMBOL(kfree);
3482
3483 /*
3484 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3485 * the remaining slabs by the number of items in use. The slabs with the
3486 * most items in use come first. New allocations will then fill those up
3487 * and thus they can be removed from the partial lists.
3488 *
3489 * The slabs with the least items are placed last. This results in them
3490 * being allocated from last increasing the chance that the last objects
3491 * are freed in them.
3492 */
3493 int kmem_cache_shrink(struct kmem_cache *s)
3494 {
3495 int node;
3496 int i;
3497 struct kmem_cache_node *n;
3498 struct page *page;
3499 struct page *t;
3500 int objects = oo_objects(s->max);
3501 struct list_head *slabs_by_inuse =
3502 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3503 unsigned long flags;
3504
3505 if (!slabs_by_inuse)
3506 return -ENOMEM;
3507
3508 flush_all(s);
3509 for_each_node_state(node, N_NORMAL_MEMORY) {
3510 n = get_node(s, node);
3511
3512 if (!n->nr_partial)
3513 continue;
3514
3515 for (i = 0; i < objects; i++)
3516 INIT_LIST_HEAD(slabs_by_inuse + i);
3517
3518 spin_lock_irqsave(&n->list_lock, flags);
3519
3520 /*
3521 * Build lists indexed by the items in use in each slab.
3522 *
3523 * Note that concurrent frees may occur while we hold the
3524 * list_lock. page->inuse here is the upper limit.
3525 */
3526 list_for_each_entry_safe(page, t, &n->partial, lru) {
3527 list_move(&page->lru, slabs_by_inuse + page->inuse);
3528 if (!page->inuse)
3529 n->nr_partial--;
3530 }
3531
3532 /*
3533 * Rebuild the partial list with the slabs filled up most
3534 * first and the least used slabs at the end.
3535 */
3536 for (i = objects - 1; i > 0; i--)
3537 list_splice(slabs_by_inuse + i, n->partial.prev);
3538
3539 spin_unlock_irqrestore(&n->list_lock, flags);
3540
3541 /* Release empty slabs */
3542 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3543 discard_slab(s, page);
3544 }
3545
3546 kfree(slabs_by_inuse);
3547 return 0;
3548 }
3549 EXPORT_SYMBOL(kmem_cache_shrink);
3550
3551 #if defined(CONFIG_MEMORY_HOTPLUG)
3552 static int slab_mem_going_offline_callback(void *arg)
3553 {
3554 struct kmem_cache *s;
3555
3556 down_read(&slub_lock);
3557 list_for_each_entry(s, &slab_caches, list)
3558 kmem_cache_shrink(s);
3559 up_read(&slub_lock);
3560
3561 return 0;
3562 }
3563
3564 static void slab_mem_offline_callback(void *arg)
3565 {
3566 struct kmem_cache_node *n;
3567 struct kmem_cache *s;
3568 struct memory_notify *marg = arg;
3569 int offline_node;
3570
3571 offline_node = marg->status_change_nid;
3572
3573 /*
3574 * If the node still has available memory. we need kmem_cache_node
3575 * for it yet.
3576 */
3577 if (offline_node < 0)
3578 return;
3579
3580 down_read(&slub_lock);
3581 list_for_each_entry(s, &slab_caches, list) {
3582 n = get_node(s, offline_node);
3583 if (n) {
3584 /*
3585 * if n->nr_slabs > 0, slabs still exist on the node
3586 * that is going down. We were unable to free them,
3587 * and offline_pages() function shouldn't call this
3588 * callback. So, we must fail.
3589 */
3590 BUG_ON(slabs_node(s, offline_node));
3591
3592 s->node[offline_node] = NULL;
3593 kmem_cache_free(kmem_cache_node, n);
3594 }
3595 }
3596 up_read(&slub_lock);
3597 }
3598
3599 static int slab_mem_going_online_callback(void *arg)
3600 {
3601 struct kmem_cache_node *n;
3602 struct kmem_cache *s;
3603 struct memory_notify *marg = arg;
3604 int nid = marg->status_change_nid;
3605 int ret = 0;
3606
3607 /*
3608 * If the node's memory is already available, then kmem_cache_node is
3609 * already created. Nothing to do.
3610 */
3611 if (nid < 0)
3612 return 0;
3613
3614 /*
3615 * We are bringing a node online. No memory is available yet. We must
3616 * allocate a kmem_cache_node structure in order to bring the node
3617 * online.
3618 */
3619 down_read(&slub_lock);
3620 list_for_each_entry(s, &slab_caches, list) {
3621 /*
3622 * XXX: kmem_cache_alloc_node will fallback to other nodes
3623 * since memory is not yet available from the node that
3624 * is brought up.
3625 */
3626 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3627 if (!n) {
3628 ret = -ENOMEM;
3629 goto out;
3630 }
3631 init_kmem_cache_node(n);
3632 s->node[nid] = n;
3633 }
3634 out:
3635 up_read(&slub_lock);
3636 return ret;
3637 }
3638
3639 static int slab_memory_callback(struct notifier_block *self,
3640 unsigned long action, void *arg)
3641 {
3642 int ret = 0;
3643
3644 switch (action) {
3645 case MEM_GOING_ONLINE:
3646 ret = slab_mem_going_online_callback(arg);
3647 break;
3648 case MEM_GOING_OFFLINE:
3649 ret = slab_mem_going_offline_callback(arg);
3650 break;
3651 case MEM_OFFLINE:
3652 case MEM_CANCEL_ONLINE:
3653 slab_mem_offline_callback(arg);
3654 break;
3655 case MEM_ONLINE:
3656 case MEM_CANCEL_OFFLINE:
3657 break;
3658 }
3659 if (ret)
3660 ret = notifier_from_errno(ret);
3661 else
3662 ret = NOTIFY_OK;
3663 return ret;
3664 }
3665
3666 #endif /* CONFIG_MEMORY_HOTPLUG */
3667
3668 /********************************************************************
3669 * Basic setup of slabs
3670 *******************************************************************/
3671
3672 /*
3673 * Used for early kmem_cache structures that were allocated using
3674 * the page allocator
3675 */
3676
3677 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3678 {
3679 int node;
3680
3681 list_add(&s->list, &slab_caches);
3682 s->refcount = -1;
3683
3684 for_each_node_state(node, N_NORMAL_MEMORY) {
3685 struct kmem_cache_node *n = get_node(s, node);
3686 struct page *p;
3687
3688 if (n) {
3689 list_for_each_entry(p, &n->partial, lru)
3690 p->slab = s;
3691
3692 #ifdef CONFIG_SLUB_DEBUG
3693 list_for_each_entry(p, &n->full, lru)
3694 p->slab = s;
3695 #endif
3696 }
3697 }
3698 }
3699
3700 void __init kmem_cache_init(void)
3701 {
3702 int i;
3703 int caches = 0;
3704 struct kmem_cache *temp_kmem_cache;
3705 int order;
3706 struct kmem_cache *temp_kmem_cache_node;
3707 unsigned long kmalloc_size;
3708
3709 if (debug_guardpage_minorder())
3710 slub_max_order = 0;
3711
3712 kmem_size = offsetof(struct kmem_cache, node) +
3713 nr_node_ids * sizeof(struct kmem_cache_node *);
3714
3715 /* Allocate two kmem_caches from the page allocator */
3716 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3717 order = get_order(2 * kmalloc_size);
3718 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3719
3720 /*
3721 * Must first have the slab cache available for the allocations of the
3722 * struct kmem_cache_node's. There is special bootstrap code in
3723 * kmem_cache_open for slab_state == DOWN.
3724 */
3725 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3726
3727 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3728 sizeof(struct kmem_cache_node),
3729 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3730
3731 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3732
3733 /* Able to allocate the per node structures */
3734 slab_state = PARTIAL;
3735
3736 temp_kmem_cache = kmem_cache;
3737 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3738 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3739 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3740 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3741
3742 /*
3743 * Allocate kmem_cache_node properly from the kmem_cache slab.
3744 * kmem_cache_node is separately allocated so no need to
3745 * update any list pointers.
3746 */
3747 temp_kmem_cache_node = kmem_cache_node;
3748
3749 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3750 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3751
3752 kmem_cache_bootstrap_fixup(kmem_cache_node);
3753
3754 caches++;
3755 kmem_cache_bootstrap_fixup(kmem_cache);
3756 caches++;
3757 /* Free temporary boot structure */
3758 free_pages((unsigned long)temp_kmem_cache, order);
3759
3760 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3761
3762 /*
3763 * Patch up the size_index table if we have strange large alignment
3764 * requirements for the kmalloc array. This is only the case for
3765 * MIPS it seems. The standard arches will not generate any code here.
3766 *
3767 * Largest permitted alignment is 256 bytes due to the way we
3768 * handle the index determination for the smaller caches.
3769 *
3770 * Make sure that nothing crazy happens if someone starts tinkering
3771 * around with ARCH_KMALLOC_MINALIGN
3772 */
3773 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3774 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3775
3776 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3777 int elem = size_index_elem(i);
3778 if (elem >= ARRAY_SIZE(size_index))
3779 break;
3780 size_index[elem] = KMALLOC_SHIFT_LOW;
3781 }
3782
3783 if (KMALLOC_MIN_SIZE == 64) {
3784 /*
3785 * The 96 byte size cache is not used if the alignment
3786 * is 64 byte.
3787 */
3788 for (i = 64 + 8; i <= 96; i += 8)
3789 size_index[size_index_elem(i)] = 7;
3790 } else if (KMALLOC_MIN_SIZE == 128) {
3791 /*
3792 * The 192 byte sized cache is not used if the alignment
3793 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3794 * instead.
3795 */
3796 for (i = 128 + 8; i <= 192; i += 8)
3797 size_index[size_index_elem(i)] = 8;
3798 }
3799
3800 /* Caches that are not of the two-to-the-power-of size */
3801 if (KMALLOC_MIN_SIZE <= 32) {
3802 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3803 caches++;
3804 }
3805
3806 if (KMALLOC_MIN_SIZE <= 64) {
3807 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3808 caches++;
3809 }
3810
3811 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3812 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3813 caches++;
3814 }
3815
3816 slab_state = UP;
3817
3818 /* Provide the correct kmalloc names now that the caches are up */
3819 if (KMALLOC_MIN_SIZE <= 32) {
3820 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3821 BUG_ON(!kmalloc_caches[1]->name);
3822 }
3823
3824 if (KMALLOC_MIN_SIZE <= 64) {
3825 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3826 BUG_ON(!kmalloc_caches[2]->name);
3827 }
3828
3829 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3830 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3831
3832 BUG_ON(!s);
3833 kmalloc_caches[i]->name = s;
3834 }
3835
3836 #ifdef CONFIG_SMP
3837 register_cpu_notifier(&slab_notifier);
3838 #endif
3839
3840 #ifdef CONFIG_ZONE_DMA
3841 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3842 struct kmem_cache *s = kmalloc_caches[i];
3843
3844 if (s && s->size) {
3845 char *name = kasprintf(GFP_NOWAIT,
3846 "dma-kmalloc-%d", s->objsize);
3847
3848 BUG_ON(!name);
3849 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3850 s->objsize, SLAB_CACHE_DMA);
3851 }
3852 }
3853 #endif
3854 printk(KERN_INFO
3855 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3856 " CPUs=%d, Nodes=%d\n",
3857 caches, cache_line_size(),
3858 slub_min_order, slub_max_order, slub_min_objects,
3859 nr_cpu_ids, nr_node_ids);
3860 }
3861
3862 void __init kmem_cache_init_late(void)
3863 {
3864 }
3865
3866 /*
3867 * Find a mergeable slab cache
3868 */
3869 static int slab_unmergeable(struct kmem_cache *s)
3870 {
3871 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3872 return 1;
3873
3874 if (s->ctor)
3875 return 1;
3876
3877 /*
3878 * We may have set a slab to be unmergeable during bootstrap.
3879 */
3880 if (s->refcount < 0)
3881 return 1;
3882
3883 return 0;
3884 }
3885
3886 static struct kmem_cache *find_mergeable(size_t size,
3887 size_t align, unsigned long flags, const char *name,
3888 void (*ctor)(void *))
3889 {
3890 struct kmem_cache *s;
3891
3892 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3893 return NULL;
3894
3895 if (ctor)
3896 return NULL;
3897
3898 size = ALIGN(size, sizeof(void *));
3899 align = calculate_alignment(flags, align, size);
3900 size = ALIGN(size, align);
3901 flags = kmem_cache_flags(size, flags, name, NULL);
3902
3903 list_for_each_entry(s, &slab_caches, list) {
3904 if (slab_unmergeable(s))
3905 continue;
3906
3907 if (size > s->size)
3908 continue;
3909
3910 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3911 continue;
3912 /*
3913 * Check if alignment is compatible.
3914 * Courtesy of Adrian Drzewiecki
3915 */
3916 if ((s->size & ~(align - 1)) != s->size)
3917 continue;
3918
3919 if (s->size - size >= sizeof(void *))
3920 continue;
3921
3922 return s;
3923 }
3924 return NULL;
3925 }
3926
3927 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3928 size_t align, unsigned long flags, void (*ctor)(void *))
3929 {
3930 struct kmem_cache *s;
3931 char *n;
3932
3933 if (WARN_ON(!name))
3934 return NULL;
3935
3936 down_write(&slub_lock);
3937 s = find_mergeable(size, align, flags, name, ctor);
3938 if (s) {
3939 s->refcount++;
3940 /*
3941 * Adjust the object sizes so that we clear
3942 * the complete object on kzalloc.
3943 */
3944 s->objsize = max(s->objsize, (int)size);
3945 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3946
3947 if (sysfs_slab_alias(s, name)) {
3948 s->refcount--;
3949 goto err;
3950 }
3951 up_write(&slub_lock);
3952 return s;
3953 }
3954
3955 n = kstrdup(name, GFP_KERNEL);
3956 if (!n)
3957 goto err;
3958
3959 s = kmalloc(kmem_size, GFP_KERNEL);
3960 if (s) {
3961 if (kmem_cache_open(s, n,
3962 size, align, flags, ctor)) {
3963 list_add(&s->list, &slab_caches);
3964 up_write(&slub_lock);
3965 if (sysfs_slab_add(s)) {
3966 down_write(&slub_lock);
3967 list_del(&s->list);
3968 kfree(n);
3969 kfree(s);
3970 goto err;
3971 }
3972 return s;
3973 }
3974 kfree(s);
3975 }
3976 kfree(n);
3977 err:
3978 up_write(&slub_lock);
3979
3980 if (flags & SLAB_PANIC)
3981 panic("Cannot create slabcache %s\n", name);
3982 else
3983 s = NULL;
3984 return s;
3985 }
3986 EXPORT_SYMBOL(kmem_cache_create);
3987
3988 #ifdef CONFIG_SMP
3989 /*
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 * necessary.
3992 */
3993 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3994 unsigned long action, void *hcpu)
3995 {
3996 long cpu = (long)hcpu;
3997 struct kmem_cache *s;
3998 unsigned long flags;
3999
4000 switch (action) {
4001 case CPU_UP_CANCELED:
4002 case CPU_UP_CANCELED_FROZEN:
4003 case CPU_DEAD:
4004 case CPU_DEAD_FROZEN:
4005 down_read(&slub_lock);
4006 list_for_each_entry(s, &slab_caches, list) {
4007 local_irq_save(flags);
4008 __flush_cpu_slab(s, cpu);
4009 local_irq_restore(flags);
4010 }
4011 up_read(&slub_lock);
4012 break;
4013 default:
4014 break;
4015 }
4016 return NOTIFY_OK;
4017 }
4018
4019 static struct notifier_block __cpuinitdata slab_notifier = {
4020 .notifier_call = slab_cpuup_callback
4021 };
4022
4023 #endif
4024
4025 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4026 {
4027 struct kmem_cache *s;
4028 void *ret;
4029
4030 if (unlikely(size > SLUB_MAX_SIZE))
4031 return kmalloc_large(size, gfpflags);
4032
4033 s = get_slab(size, gfpflags);
4034
4035 if (unlikely(ZERO_OR_NULL_PTR(s)))
4036 return s;
4037
4038 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4039
4040 /* Honor the call site pointer we received. */
4041 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4042
4043 return ret;
4044 }
4045
4046 #ifdef CONFIG_NUMA
4047 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4048 int node, unsigned long caller)
4049 {
4050 struct kmem_cache *s;
4051 void *ret;
4052
4053 if (unlikely(size > SLUB_MAX_SIZE)) {
4054 ret = kmalloc_large_node(size, gfpflags, node);
4055
4056 trace_kmalloc_node(caller, ret,
4057 size, PAGE_SIZE << get_order(size),
4058 gfpflags, node);
4059
4060 return ret;
4061 }
4062
4063 s = get_slab(size, gfpflags);
4064
4065 if (unlikely(ZERO_OR_NULL_PTR(s)))
4066 return s;
4067
4068 ret = slab_alloc(s, gfpflags, node, caller);
4069
4070 /* Honor the call site pointer we received. */
4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4072
4073 return ret;
4074 }
4075 #endif
4076
4077 #ifdef CONFIG_SYSFS
4078 static int count_inuse(struct page *page)
4079 {
4080 return page->inuse;
4081 }
4082
4083 static int count_total(struct page *page)
4084 {
4085 return page->objects;
4086 }
4087 #endif
4088
4089 #ifdef CONFIG_SLUB_DEBUG
4090 static int validate_slab(struct kmem_cache *s, struct page *page,
4091 unsigned long *map)
4092 {
4093 void *p;
4094 void *addr = page_address(page);
4095
4096 if (!check_slab(s, page) ||
4097 !on_freelist(s, page, NULL))
4098 return 0;
4099
4100 /* Now we know that a valid freelist exists */
4101 bitmap_zero(map, page->objects);
4102
4103 get_map(s, page, map);
4104 for_each_object(p, s, addr, page->objects) {
4105 if (test_bit(slab_index(p, s, addr), map))
4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107 return 0;
4108 }
4109
4110 for_each_object(p, s, addr, page->objects)
4111 if (!test_bit(slab_index(p, s, addr), map))
4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4113 return 0;
4114 return 1;
4115 }
4116
4117 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118 unsigned long *map)
4119 {
4120 slab_lock(page);
4121 validate_slab(s, page, map);
4122 slab_unlock(page);
4123 }
4124
4125 static int validate_slab_node(struct kmem_cache *s,
4126 struct kmem_cache_node *n, unsigned long *map)
4127 {
4128 unsigned long count = 0;
4129 struct page *page;
4130 unsigned long flags;
4131
4132 spin_lock_irqsave(&n->list_lock, flags);
4133
4134 list_for_each_entry(page, &n->partial, lru) {
4135 validate_slab_slab(s, page, map);
4136 count++;
4137 }
4138 if (count != n->nr_partial)
4139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4140 "counter=%ld\n", s->name, count, n->nr_partial);
4141
4142 if (!(s->flags & SLAB_STORE_USER))
4143 goto out;
4144
4145 list_for_each_entry(page, &n->full, lru) {
4146 validate_slab_slab(s, page, map);
4147 count++;
4148 }
4149 if (count != atomic_long_read(&n->nr_slabs))
4150 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4151 "counter=%ld\n", s->name, count,
4152 atomic_long_read(&n->nr_slabs));
4153
4154 out:
4155 spin_unlock_irqrestore(&n->list_lock, flags);
4156 return count;
4157 }
4158
4159 static long validate_slab_cache(struct kmem_cache *s)
4160 {
4161 int node;
4162 unsigned long count = 0;
4163 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4164 sizeof(unsigned long), GFP_KERNEL);
4165
4166 if (!map)
4167 return -ENOMEM;
4168
4169 flush_all(s);
4170 for_each_node_state(node, N_NORMAL_MEMORY) {
4171 struct kmem_cache_node *n = get_node(s, node);
4172
4173 count += validate_slab_node(s, n, map);
4174 }
4175 kfree(map);
4176 return count;
4177 }
4178 /*
4179 * Generate lists of code addresses where slabcache objects are allocated
4180 * and freed.
4181 */
4182
4183 struct location {
4184 unsigned long count;
4185 unsigned long addr;
4186 long long sum_time;
4187 long min_time;
4188 long max_time;
4189 long min_pid;
4190 long max_pid;
4191 DECLARE_BITMAP(cpus, NR_CPUS);
4192 nodemask_t nodes;
4193 };
4194
4195 struct loc_track {
4196 unsigned long max;
4197 unsigned long count;
4198 struct location *loc;
4199 };
4200
4201 static void free_loc_track(struct loc_track *t)
4202 {
4203 if (t->max)
4204 free_pages((unsigned long)t->loc,
4205 get_order(sizeof(struct location) * t->max));
4206 }
4207
4208 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4209 {
4210 struct location *l;
4211 int order;
4212
4213 order = get_order(sizeof(struct location) * max);
4214
4215 l = (void *)__get_free_pages(flags, order);
4216 if (!l)
4217 return 0;
4218
4219 if (t->count) {
4220 memcpy(l, t->loc, sizeof(struct location) * t->count);
4221 free_loc_track(t);
4222 }
4223 t->max = max;
4224 t->loc = l;
4225 return 1;
4226 }
4227
4228 static int add_location(struct loc_track *t, struct kmem_cache *s,
4229 const struct track *track)
4230 {
4231 long start, end, pos;
4232 struct location *l;
4233 unsigned long caddr;
4234 unsigned long age = jiffies - track->when;
4235
4236 start = -1;
4237 end = t->count;
4238
4239 for ( ; ; ) {
4240 pos = start + (end - start + 1) / 2;
4241
4242 /*
4243 * There is nothing at "end". If we end up there
4244 * we need to add something to before end.
4245 */
4246 if (pos == end)
4247 break;
4248
4249 caddr = t->loc[pos].addr;
4250 if (track->addr == caddr) {
4251
4252 l = &t->loc[pos];
4253 l->count++;
4254 if (track->when) {
4255 l->sum_time += age;
4256 if (age < l->min_time)
4257 l->min_time = age;
4258 if (age > l->max_time)
4259 l->max_time = age;
4260
4261 if (track->pid < l->min_pid)
4262 l->min_pid = track->pid;
4263 if (track->pid > l->max_pid)
4264 l->max_pid = track->pid;
4265
4266 cpumask_set_cpu(track->cpu,
4267 to_cpumask(l->cpus));
4268 }
4269 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4270 return 1;
4271 }
4272
4273 if (track->addr < caddr)
4274 end = pos;
4275 else
4276 start = pos;
4277 }
4278
4279 /*
4280 * Not found. Insert new tracking element.
4281 */
4282 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4283 return 0;
4284
4285 l = t->loc + pos;
4286 if (pos < t->count)
4287 memmove(l + 1, l,
4288 (t->count - pos) * sizeof(struct location));
4289 t->count++;
4290 l->count = 1;
4291 l->addr = track->addr;
4292 l->sum_time = age;
4293 l->min_time = age;
4294 l->max_time = age;
4295 l->min_pid = track->pid;
4296 l->max_pid = track->pid;
4297 cpumask_clear(to_cpumask(l->cpus));
4298 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4299 nodes_clear(l->nodes);
4300 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4301 return 1;
4302 }
4303
4304 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4305 struct page *page, enum track_item alloc,
4306 unsigned long *map)
4307 {
4308 void *addr = page_address(page);
4309 void *p;
4310
4311 bitmap_zero(map, page->objects);
4312 get_map(s, page, map);
4313
4314 for_each_object(p, s, addr, page->objects)
4315 if (!test_bit(slab_index(p, s, addr), map))
4316 add_location(t, s, get_track(s, p, alloc));
4317 }
4318
4319 static int list_locations(struct kmem_cache *s, char *buf,
4320 enum track_item alloc)
4321 {
4322 int len = 0;
4323 unsigned long i;
4324 struct loc_track t = { 0, 0, NULL };
4325 int node;
4326 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4327 sizeof(unsigned long), GFP_KERNEL);
4328
4329 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4330 GFP_TEMPORARY)) {
4331 kfree(map);
4332 return sprintf(buf, "Out of memory\n");
4333 }
4334 /* Push back cpu slabs */
4335 flush_all(s);
4336
4337 for_each_node_state(node, N_NORMAL_MEMORY) {
4338 struct kmem_cache_node *n = get_node(s, node);
4339 unsigned long flags;
4340 struct page *page;
4341
4342 if (!atomic_long_read(&n->nr_slabs))
4343 continue;
4344
4345 spin_lock_irqsave(&n->list_lock, flags);
4346 list_for_each_entry(page, &n->partial, lru)
4347 process_slab(&t, s, page, alloc, map);
4348 list_for_each_entry(page, &n->full, lru)
4349 process_slab(&t, s, page, alloc, map);
4350 spin_unlock_irqrestore(&n->list_lock, flags);
4351 }
4352
4353 for (i = 0; i < t.count; i++) {
4354 struct location *l = &t.loc[i];
4355
4356 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4357 break;
4358 len += sprintf(buf + len, "%7ld ", l->count);
4359
4360 if (l->addr)
4361 len += sprintf(buf + len, "%pS", (void *)l->addr);
4362 else
4363 len += sprintf(buf + len, "<not-available>");
4364
4365 if (l->sum_time != l->min_time) {
4366 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4367 l->min_time,
4368 (long)div_u64(l->sum_time, l->count),
4369 l->max_time);
4370 } else
4371 len += sprintf(buf + len, " age=%ld",
4372 l->min_time);
4373
4374 if (l->min_pid != l->max_pid)
4375 len += sprintf(buf + len, " pid=%ld-%ld",
4376 l->min_pid, l->max_pid);
4377 else
4378 len += sprintf(buf + len, " pid=%ld",
4379 l->min_pid);
4380
4381 if (num_online_cpus() > 1 &&
4382 !cpumask_empty(to_cpumask(l->cpus)) &&
4383 len < PAGE_SIZE - 60) {
4384 len += sprintf(buf + len, " cpus=");
4385 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4386 to_cpumask(l->cpus));
4387 }
4388
4389 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4390 len < PAGE_SIZE - 60) {
4391 len += sprintf(buf + len, " nodes=");
4392 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4393 l->nodes);
4394 }
4395
4396 len += sprintf(buf + len, "\n");
4397 }
4398
4399 free_loc_track(&t);
4400 kfree(map);
4401 if (!t.count)
4402 len += sprintf(buf, "No data\n");
4403 return len;
4404 }
4405 #endif
4406
4407 #ifdef SLUB_RESILIENCY_TEST
4408 static void resiliency_test(void)
4409 {
4410 u8 *p;
4411
4412 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4413
4414 printk(KERN_ERR "SLUB resiliency testing\n");
4415 printk(KERN_ERR "-----------------------\n");
4416 printk(KERN_ERR "A. Corruption after allocation\n");
4417
4418 p = kzalloc(16, GFP_KERNEL);
4419 p[16] = 0x12;
4420 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4421 " 0x12->0x%p\n\n", p + 16);
4422
4423 validate_slab_cache(kmalloc_caches[4]);
4424
4425 /* Hmmm... The next two are dangerous */
4426 p = kzalloc(32, GFP_KERNEL);
4427 p[32 + sizeof(void *)] = 0x34;
4428 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4429 " 0x34 -> -0x%p\n", p);
4430 printk(KERN_ERR
4431 "If allocated object is overwritten then not detectable\n\n");
4432
4433 validate_slab_cache(kmalloc_caches[5]);
4434 p = kzalloc(64, GFP_KERNEL);
4435 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4436 *p = 0x56;
4437 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4438 p);
4439 printk(KERN_ERR
4440 "If allocated object is overwritten then not detectable\n\n");
4441 validate_slab_cache(kmalloc_caches[6]);
4442
4443 printk(KERN_ERR "\nB. Corruption after free\n");
4444 p = kzalloc(128, GFP_KERNEL);
4445 kfree(p);
4446 *p = 0x78;
4447 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4448 validate_slab_cache(kmalloc_caches[7]);
4449
4450 p = kzalloc(256, GFP_KERNEL);
4451 kfree(p);
4452 p[50] = 0x9a;
4453 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4454 p);
4455 validate_slab_cache(kmalloc_caches[8]);
4456
4457 p = kzalloc(512, GFP_KERNEL);
4458 kfree(p);
4459 p[512] = 0xab;
4460 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4461 validate_slab_cache(kmalloc_caches[9]);
4462 }
4463 #else
4464 #ifdef CONFIG_SYSFS
4465 static void resiliency_test(void) {};
4466 #endif
4467 #endif
4468
4469 #ifdef CONFIG_SYSFS
4470 enum slab_stat_type {
4471 SL_ALL, /* All slabs */
4472 SL_PARTIAL, /* Only partially allocated slabs */
4473 SL_CPU, /* Only slabs used for cpu caches */
4474 SL_OBJECTS, /* Determine allocated objects not slabs */
4475 SL_TOTAL /* Determine object capacity not slabs */
4476 };
4477
4478 #define SO_ALL (1 << SL_ALL)
4479 #define SO_PARTIAL (1 << SL_PARTIAL)
4480 #define SO_CPU (1 << SL_CPU)
4481 #define SO_OBJECTS (1 << SL_OBJECTS)
4482 #define SO_TOTAL (1 << SL_TOTAL)
4483
4484 static ssize_t show_slab_objects(struct kmem_cache *s,
4485 char *buf, unsigned long flags)
4486 {
4487 unsigned long total = 0;
4488 int node;
4489 int x;
4490 unsigned long *nodes;
4491 unsigned long *per_cpu;
4492
4493 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4494 if (!nodes)
4495 return -ENOMEM;
4496 per_cpu = nodes + nr_node_ids;
4497
4498 if (flags & SO_CPU) {
4499 int cpu;
4500
4501 for_each_possible_cpu(cpu) {
4502 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4503 int node = ACCESS_ONCE(c->node);
4504 struct page *page;
4505
4506 if (node < 0)
4507 continue;
4508 page = ACCESS_ONCE(c->page);
4509 if (page) {
4510 if (flags & SO_TOTAL)
4511 x = page->objects;
4512 else if (flags & SO_OBJECTS)
4513 x = page->inuse;
4514 else
4515 x = 1;
4516
4517 total += x;
4518 nodes[node] += x;
4519 }
4520 page = c->partial;
4521
4522 if (page) {
4523 x = page->pobjects;
4524 total += x;
4525 nodes[node] += x;
4526 }
4527 per_cpu[node]++;
4528 }
4529 }
4530
4531 lock_memory_hotplug();
4532 #ifdef CONFIG_SLUB_DEBUG
4533 if (flags & SO_ALL) {
4534 for_each_node_state(node, N_NORMAL_MEMORY) {
4535 struct kmem_cache_node *n = get_node(s, node);
4536
4537 if (flags & SO_TOTAL)
4538 x = atomic_long_read(&n->total_objects);
4539 else if (flags & SO_OBJECTS)
4540 x = atomic_long_read(&n->total_objects) -
4541 count_partial(n, count_free);
4542
4543 else
4544 x = atomic_long_read(&n->nr_slabs);
4545 total += x;
4546 nodes[node] += x;
4547 }
4548
4549 } else
4550 #endif
4551 if (flags & SO_PARTIAL) {
4552 for_each_node_state(node, N_NORMAL_MEMORY) {
4553 struct kmem_cache_node *n = get_node(s, node);
4554
4555 if (flags & SO_TOTAL)
4556 x = count_partial(n, count_total);
4557 else if (flags & SO_OBJECTS)
4558 x = count_partial(n, count_inuse);
4559 else
4560 x = n->nr_partial;
4561 total += x;
4562 nodes[node] += x;
4563 }
4564 }
4565 x = sprintf(buf, "%lu", total);
4566 #ifdef CONFIG_NUMA
4567 for_each_node_state(node, N_NORMAL_MEMORY)
4568 if (nodes[node])
4569 x += sprintf(buf + x, " N%d=%lu",
4570 node, nodes[node]);
4571 #endif
4572 unlock_memory_hotplug();
4573 kfree(nodes);
4574 return x + sprintf(buf + x, "\n");
4575 }
4576
4577 #ifdef CONFIG_SLUB_DEBUG
4578 static int any_slab_objects(struct kmem_cache *s)
4579 {
4580 int node;
4581
4582 for_each_online_node(node) {
4583 struct kmem_cache_node *n = get_node(s, node);
4584
4585 if (!n)
4586 continue;
4587
4588 if (atomic_long_read(&n->total_objects))
4589 return 1;
4590 }
4591 return 0;
4592 }
4593 #endif
4594
4595 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4596 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4597
4598 struct slab_attribute {
4599 struct attribute attr;
4600 ssize_t (*show)(struct kmem_cache *s, char *buf);
4601 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4602 };
4603
4604 #define SLAB_ATTR_RO(_name) \
4605 static struct slab_attribute _name##_attr = \
4606 __ATTR(_name, 0400, _name##_show, NULL)
4607
4608 #define SLAB_ATTR(_name) \
4609 static struct slab_attribute _name##_attr = \
4610 __ATTR(_name, 0600, _name##_show, _name##_store)
4611
4612 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4613 {
4614 return sprintf(buf, "%d\n", s->size);
4615 }
4616 SLAB_ATTR_RO(slab_size);
4617
4618 static ssize_t align_show(struct kmem_cache *s, char *buf)
4619 {
4620 return sprintf(buf, "%d\n", s->align);
4621 }
4622 SLAB_ATTR_RO(align);
4623
4624 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4625 {
4626 return sprintf(buf, "%d\n", s->objsize);
4627 }
4628 SLAB_ATTR_RO(object_size);
4629
4630 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4631 {
4632 return sprintf(buf, "%d\n", oo_objects(s->oo));
4633 }
4634 SLAB_ATTR_RO(objs_per_slab);
4635
4636 static ssize_t order_store(struct kmem_cache *s,
4637 const char *buf, size_t length)
4638 {
4639 unsigned long order;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &order);
4643 if (err)
4644 return err;
4645
4646 if (order > slub_max_order || order < slub_min_order)
4647 return -EINVAL;
4648
4649 calculate_sizes(s, order);
4650 return length;
4651 }
4652
4653 static ssize_t order_show(struct kmem_cache *s, char *buf)
4654 {
4655 return sprintf(buf, "%d\n", oo_order(s->oo));
4656 }
4657 SLAB_ATTR(order);
4658
4659 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4660 {
4661 return sprintf(buf, "%lu\n", s->min_partial);
4662 }
4663
4664 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4665 size_t length)
4666 {
4667 unsigned long min;
4668 int err;
4669
4670 err = strict_strtoul(buf, 10, &min);
4671 if (err)
4672 return err;
4673
4674 set_min_partial(s, min);
4675 return length;
4676 }
4677 SLAB_ATTR(min_partial);
4678
4679 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4680 {
4681 return sprintf(buf, "%u\n", s->cpu_partial);
4682 }
4683
4684 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4685 size_t length)
4686 {
4687 unsigned long objects;
4688 int err;
4689
4690 err = strict_strtoul(buf, 10, &objects);
4691 if (err)
4692 return err;
4693 if (objects && kmem_cache_debug(s))
4694 return -EINVAL;
4695
4696 s->cpu_partial = objects;
4697 flush_all(s);
4698 return length;
4699 }
4700 SLAB_ATTR(cpu_partial);
4701
4702 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4703 {
4704 if (!s->ctor)
4705 return 0;
4706 return sprintf(buf, "%pS\n", s->ctor);
4707 }
4708 SLAB_ATTR_RO(ctor);
4709
4710 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4711 {
4712 return sprintf(buf, "%d\n", s->refcount - 1);
4713 }
4714 SLAB_ATTR_RO(aliases);
4715
4716 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4717 {
4718 return show_slab_objects(s, buf, SO_PARTIAL);
4719 }
4720 SLAB_ATTR_RO(partial);
4721
4722 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4723 {
4724 return show_slab_objects(s, buf, SO_CPU);
4725 }
4726 SLAB_ATTR_RO(cpu_slabs);
4727
4728 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4729 {
4730 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4731 }
4732 SLAB_ATTR_RO(objects);
4733
4734 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4735 {
4736 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4737 }
4738 SLAB_ATTR_RO(objects_partial);
4739
4740 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4741 {
4742 int objects = 0;
4743 int pages = 0;
4744 int cpu;
4745 int len;
4746
4747 for_each_online_cpu(cpu) {
4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4749
4750 if (page) {
4751 pages += page->pages;
4752 objects += page->pobjects;
4753 }
4754 }
4755
4756 len = sprintf(buf, "%d(%d)", objects, pages);
4757
4758 #ifdef CONFIG_SMP
4759 for_each_online_cpu(cpu) {
4760 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4761
4762 if (page && len < PAGE_SIZE - 20)
4763 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4764 page->pobjects, page->pages);
4765 }
4766 #endif
4767 return len + sprintf(buf + len, "\n");
4768 }
4769 SLAB_ATTR_RO(slabs_cpu_partial);
4770
4771 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4772 {
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4774 }
4775
4776 static ssize_t reclaim_account_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778 {
4779 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4780 if (buf[0] == '1')
4781 s->flags |= SLAB_RECLAIM_ACCOUNT;
4782 return length;
4783 }
4784 SLAB_ATTR(reclaim_account);
4785
4786 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4787 {
4788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4789 }
4790 SLAB_ATTR_RO(hwcache_align);
4791
4792 #ifdef CONFIG_ZONE_DMA
4793 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4794 {
4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4796 }
4797 SLAB_ATTR_RO(cache_dma);
4798 #endif
4799
4800 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4801 {
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4803 }
4804 SLAB_ATTR_RO(destroy_by_rcu);
4805
4806 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4807 {
4808 return sprintf(buf, "%d\n", s->reserved);
4809 }
4810 SLAB_ATTR_RO(reserved);
4811
4812 #ifdef CONFIG_SLUB_DEBUG
4813 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4814 {
4815 return show_slab_objects(s, buf, SO_ALL);
4816 }
4817 SLAB_ATTR_RO(slabs);
4818
4819 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4820 {
4821 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4822 }
4823 SLAB_ATTR_RO(total_objects);
4824
4825 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4826 {
4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4828 }
4829
4830 static ssize_t sanity_checks_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4832 {
4833 s->flags &= ~SLAB_DEBUG_FREE;
4834 if (buf[0] == '1') {
4835 s->flags &= ~__CMPXCHG_DOUBLE;
4836 s->flags |= SLAB_DEBUG_FREE;
4837 }
4838 return length;
4839 }
4840 SLAB_ATTR(sanity_checks);
4841
4842 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4843 {
4844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4845 }
4846
4847 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4848 size_t length)
4849 {
4850 s->flags &= ~SLAB_TRACE;
4851 if (buf[0] == '1') {
4852 s->flags &= ~__CMPXCHG_DOUBLE;
4853 s->flags |= SLAB_TRACE;
4854 }
4855 return length;
4856 }
4857 SLAB_ATTR(trace);
4858
4859 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860 {
4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862 }
4863
4864 static ssize_t red_zone_store(struct kmem_cache *s,
4865 const char *buf, size_t length)
4866 {
4867 if (any_slab_objects(s))
4868 return -EBUSY;
4869
4870 s->flags &= ~SLAB_RED_ZONE;
4871 if (buf[0] == '1') {
4872 s->flags &= ~__CMPXCHG_DOUBLE;
4873 s->flags |= SLAB_RED_ZONE;
4874 }
4875 calculate_sizes(s, -1);
4876 return length;
4877 }
4878 SLAB_ATTR(red_zone);
4879
4880 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881 {
4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883 }
4884
4885 static ssize_t poison_store(struct kmem_cache *s,
4886 const char *buf, size_t length)
4887 {
4888 if (any_slab_objects(s))
4889 return -EBUSY;
4890
4891 s->flags &= ~SLAB_POISON;
4892 if (buf[0] == '1') {
4893 s->flags &= ~__CMPXCHG_DOUBLE;
4894 s->flags |= SLAB_POISON;
4895 }
4896 calculate_sizes(s, -1);
4897 return length;
4898 }
4899 SLAB_ATTR(poison);
4900
4901 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902 {
4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904 }
4905
4906 static ssize_t store_user_store(struct kmem_cache *s,
4907 const char *buf, size_t length)
4908 {
4909 if (any_slab_objects(s))
4910 return -EBUSY;
4911
4912 s->flags &= ~SLAB_STORE_USER;
4913 if (buf[0] == '1') {
4914 s->flags &= ~__CMPXCHG_DOUBLE;
4915 s->flags |= SLAB_STORE_USER;
4916 }
4917 calculate_sizes(s, -1);
4918 return length;
4919 }
4920 SLAB_ATTR(store_user);
4921
4922 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923 {
4924 return 0;
4925 }
4926
4927 static ssize_t validate_store(struct kmem_cache *s,
4928 const char *buf, size_t length)
4929 {
4930 int ret = -EINVAL;
4931
4932 if (buf[0] == '1') {
4933 ret = validate_slab_cache(s);
4934 if (ret >= 0)
4935 ret = length;
4936 }
4937 return ret;
4938 }
4939 SLAB_ATTR(validate);
4940
4941 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942 {
4943 if (!(s->flags & SLAB_STORE_USER))
4944 return -ENOSYS;
4945 return list_locations(s, buf, TRACK_ALLOC);
4946 }
4947 SLAB_ATTR_RO(alloc_calls);
4948
4949 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950 {
4951 if (!(s->flags & SLAB_STORE_USER))
4952 return -ENOSYS;
4953 return list_locations(s, buf, TRACK_FREE);
4954 }
4955 SLAB_ATTR_RO(free_calls);
4956 #endif /* CONFIG_SLUB_DEBUG */
4957
4958 #ifdef CONFIG_FAILSLAB
4959 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960 {
4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962 }
4963
4964 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966 {
4967 s->flags &= ~SLAB_FAILSLAB;
4968 if (buf[0] == '1')
4969 s->flags |= SLAB_FAILSLAB;
4970 return length;
4971 }
4972 SLAB_ATTR(failslab);
4973 #endif
4974
4975 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4976 {
4977 return 0;
4978 }
4979
4980 static ssize_t shrink_store(struct kmem_cache *s,
4981 const char *buf, size_t length)
4982 {
4983 if (buf[0] == '1') {
4984 int rc = kmem_cache_shrink(s);
4985
4986 if (rc)
4987 return rc;
4988 } else
4989 return -EINVAL;
4990 return length;
4991 }
4992 SLAB_ATTR(shrink);
4993
4994 #ifdef CONFIG_NUMA
4995 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4996 {
4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998 }
4999
5000 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5001 const char *buf, size_t length)
5002 {
5003 unsigned long ratio;
5004 int err;
5005
5006 err = strict_strtoul(buf, 10, &ratio);
5007 if (err)
5008 return err;
5009
5010 if (ratio <= 100)
5011 s->remote_node_defrag_ratio = ratio * 10;
5012
5013 return length;
5014 }
5015 SLAB_ATTR(remote_node_defrag_ratio);
5016 #endif
5017
5018 #ifdef CONFIG_SLUB_STATS
5019 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020 {
5021 unsigned long sum = 0;
5022 int cpu;
5023 int len;
5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026 if (!data)
5027 return -ENOMEM;
5028
5029 for_each_online_cpu(cpu) {
5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031
5032 data[cpu] = x;
5033 sum += x;
5034 }
5035
5036 len = sprintf(buf, "%lu", sum);
5037
5038 #ifdef CONFIG_SMP
5039 for_each_online_cpu(cpu) {
5040 if (data[cpu] && len < PAGE_SIZE - 20)
5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5042 }
5043 #endif
5044 kfree(data);
5045 return len + sprintf(buf + len, "\n");
5046 }
5047
5048 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049 {
5050 int cpu;
5051
5052 for_each_online_cpu(cpu)
5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054 }
5055
5056 #define STAT_ATTR(si, text) \
5057 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5058 { \
5059 return show_stat(s, buf, si); \
5060 } \
5061 static ssize_t text##_store(struct kmem_cache *s, \
5062 const char *buf, size_t length) \
5063 { \
5064 if (buf[0] != '0') \
5065 return -EINVAL; \
5066 clear_stat(s, si); \
5067 return length; \
5068 } \
5069 SLAB_ATTR(text); \
5070
5071 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075 STAT_ATTR(FREE_FROZEN, free_frozen);
5076 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082 STAT_ATTR(FREE_SLAB, free_slab);
5083 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5097 #endif
5098
5099 static struct attribute *slab_attrs[] = {
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
5104 &min_partial_attr.attr,
5105 &cpu_partial_attr.attr,
5106 &objects_attr.attr,
5107 &objects_partial_attr.attr,
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
5111 &aliases_attr.attr,
5112 &align_attr.attr,
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
5116 &shrink_attr.attr,
5117 &reserved_attr.attr,
5118 &slabs_cpu_partial_attr.attr,
5119 #ifdef CONFIG_SLUB_DEBUG
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
5127 &validate_attr.attr,
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
5130 #endif
5131 #ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133 #endif
5134 #ifdef CONFIG_NUMA
5135 &remote_node_defrag_ratio_attr.attr,
5136 #endif
5137 #ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
5148 &alloc_node_mismatch_attr.attr,
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
5156 &deactivate_bypass_attr.attr,
5157 &order_fallback_attr.attr,
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
5162 &cpu_partial_node_attr.attr,
5163 &cpu_partial_drain_attr.attr,
5164 #endif
5165 #ifdef CONFIG_FAILSLAB
5166 &failslab_attr.attr,
5167 #endif
5168
5169 NULL
5170 };
5171
5172 static struct attribute_group slab_attr_group = {
5173 .attrs = slab_attrs,
5174 };
5175
5176 static ssize_t slab_attr_show(struct kobject *kobj,
5177 struct attribute *attr,
5178 char *buf)
5179 {
5180 struct slab_attribute *attribute;
5181 struct kmem_cache *s;
5182 int err;
5183
5184 attribute = to_slab_attr(attr);
5185 s = to_slab(kobj);
5186
5187 if (!attribute->show)
5188 return -EIO;
5189
5190 err = attribute->show(s, buf);
5191
5192 return err;
5193 }
5194
5195 static ssize_t slab_attr_store(struct kobject *kobj,
5196 struct attribute *attr,
5197 const char *buf, size_t len)
5198 {
5199 struct slab_attribute *attribute;
5200 struct kmem_cache *s;
5201 int err;
5202
5203 attribute = to_slab_attr(attr);
5204 s = to_slab(kobj);
5205
5206 if (!attribute->store)
5207 return -EIO;
5208
5209 err = attribute->store(s, buf, len);
5210
5211 return err;
5212 }
5213
5214 static void kmem_cache_release(struct kobject *kobj)
5215 {
5216 struct kmem_cache *s = to_slab(kobj);
5217
5218 kfree(s->name);
5219 kfree(s);
5220 }
5221
5222 static const struct sysfs_ops slab_sysfs_ops = {
5223 .show = slab_attr_show,
5224 .store = slab_attr_store,
5225 };
5226
5227 static struct kobj_type slab_ktype = {
5228 .sysfs_ops = &slab_sysfs_ops,
5229 .release = kmem_cache_release
5230 };
5231
5232 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5233 {
5234 struct kobj_type *ktype = get_ktype(kobj);
5235
5236 if (ktype == &slab_ktype)
5237 return 1;
5238 return 0;
5239 }
5240
5241 static const struct kset_uevent_ops slab_uevent_ops = {
5242 .filter = uevent_filter,
5243 };
5244
5245 static struct kset *slab_kset;
5246
5247 #define ID_STR_LENGTH 64
5248
5249 /* Create a unique string id for a slab cache:
5250 *
5251 * Format :[flags-]size
5252 */
5253 static char *create_unique_id(struct kmem_cache *s)
5254 {
5255 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5256 char *p = name;
5257
5258 BUG_ON(!name);
5259
5260 *p++ = ':';
5261 /*
5262 * First flags affecting slabcache operations. We will only
5263 * get here for aliasable slabs so we do not need to support
5264 * too many flags. The flags here must cover all flags that
5265 * are matched during merging to guarantee that the id is
5266 * unique.
5267 */
5268 if (s->flags & SLAB_CACHE_DMA)
5269 *p++ = 'd';
5270 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5271 *p++ = 'a';
5272 if (s->flags & SLAB_DEBUG_FREE)
5273 *p++ = 'F';
5274 if (!(s->flags & SLAB_NOTRACK))
5275 *p++ = 't';
5276 if (p != name + 1)
5277 *p++ = '-';
5278 p += sprintf(p, "%07d", s->size);
5279 BUG_ON(p > name + ID_STR_LENGTH - 1);
5280 return name;
5281 }
5282
5283 static int sysfs_slab_add(struct kmem_cache *s)
5284 {
5285 int err;
5286 const char *name;
5287 int unmergeable;
5288
5289 if (slab_state < SYSFS)
5290 /* Defer until later */
5291 return 0;
5292
5293 unmergeable = slab_unmergeable(s);
5294 if (unmergeable) {
5295 /*
5296 * Slabcache can never be merged so we can use the name proper.
5297 * This is typically the case for debug situations. In that
5298 * case we can catch duplicate names easily.
5299 */
5300 sysfs_remove_link(&slab_kset->kobj, s->name);
5301 name = s->name;
5302 } else {
5303 /*
5304 * Create a unique name for the slab as a target
5305 * for the symlinks.
5306 */
5307 name = create_unique_id(s);
5308 }
5309
5310 s->kobj.kset = slab_kset;
5311 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5312 if (err) {
5313 kobject_put(&s->kobj);
5314 return err;
5315 }
5316
5317 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5318 if (err) {
5319 kobject_del(&s->kobj);
5320 kobject_put(&s->kobj);
5321 return err;
5322 }
5323 kobject_uevent(&s->kobj, KOBJ_ADD);
5324 if (!unmergeable) {
5325 /* Setup first alias */
5326 sysfs_slab_alias(s, s->name);
5327 kfree(name);
5328 }
5329 return 0;
5330 }
5331
5332 static void sysfs_slab_remove(struct kmem_cache *s)
5333 {
5334 if (slab_state < SYSFS)
5335 /*
5336 * Sysfs has not been setup yet so no need to remove the
5337 * cache from sysfs.
5338 */
5339 return;
5340
5341 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5342 kobject_del(&s->kobj);
5343 kobject_put(&s->kobj);
5344 }
5345
5346 /*
5347 * Need to buffer aliases during bootup until sysfs becomes
5348 * available lest we lose that information.
5349 */
5350 struct saved_alias {
5351 struct kmem_cache *s;
5352 const char *name;
5353 struct saved_alias *next;
5354 };
5355
5356 static struct saved_alias *alias_list;
5357
5358 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5359 {
5360 struct saved_alias *al;
5361
5362 if (slab_state == SYSFS) {
5363 /*
5364 * If we have a leftover link then remove it.
5365 */
5366 sysfs_remove_link(&slab_kset->kobj, name);
5367 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5368 }
5369
5370 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5371 if (!al)
5372 return -ENOMEM;
5373
5374 al->s = s;
5375 al->name = name;
5376 al->next = alias_list;
5377 alias_list = al;
5378 return 0;
5379 }
5380
5381 static int __init slab_sysfs_init(void)
5382 {
5383 struct kmem_cache *s;
5384 int err;
5385
5386 down_write(&slub_lock);
5387
5388 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5389 if (!slab_kset) {
5390 up_write(&slub_lock);
5391 printk(KERN_ERR "Cannot register slab subsystem.\n");
5392 return -ENOSYS;
5393 }
5394
5395 slab_state = SYSFS;
5396
5397 list_for_each_entry(s, &slab_caches, list) {
5398 err = sysfs_slab_add(s);
5399 if (err)
5400 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5401 " to sysfs\n", s->name);
5402 }
5403
5404 while (alias_list) {
5405 struct saved_alias *al = alias_list;
5406
5407 alias_list = alias_list->next;
5408 err = sysfs_slab_alias(al->s, al->name);
5409 if (err)
5410 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5411 " %s to sysfs\n", s->name);
5412 kfree(al);
5413 }
5414
5415 up_write(&slub_lock);
5416 resiliency_test();
5417 return 0;
5418 }
5419
5420 __initcall(slab_sysfs_init);
5421 #endif /* CONFIG_SYSFS */
5422
5423 /*
5424 * The /proc/slabinfo ABI
5425 */
5426 #ifdef CONFIG_SLABINFO
5427 static void print_slabinfo_header(struct seq_file *m)
5428 {
5429 seq_puts(m, "slabinfo - version: 2.1\n");
5430 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5431 "<objperslab> <pagesperslab>");
5432 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5433 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5434 seq_putc(m, '\n');
5435 }
5436
5437 static void *s_start(struct seq_file *m, loff_t *pos)
5438 {
5439 loff_t n = *pos;
5440
5441 down_read(&slub_lock);
5442 if (!n)
5443 print_slabinfo_header(m);
5444
5445 return seq_list_start(&slab_caches, *pos);
5446 }
5447
5448 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5449 {
5450 return seq_list_next(p, &slab_caches, pos);
5451 }
5452
5453 static void s_stop(struct seq_file *m, void *p)
5454 {
5455 up_read(&slub_lock);
5456 }
5457
5458 static int s_show(struct seq_file *m, void *p)
5459 {
5460 unsigned long nr_partials = 0;
5461 unsigned long nr_slabs = 0;
5462 unsigned long nr_inuse = 0;
5463 unsigned long nr_objs = 0;
5464 unsigned long nr_free = 0;
5465 struct kmem_cache *s;
5466 int node;
5467
5468 s = list_entry(p, struct kmem_cache, list);
5469
5470 for_each_online_node(node) {
5471 struct kmem_cache_node *n = get_node(s, node);
5472
5473 if (!n)
5474 continue;
5475
5476 nr_partials += n->nr_partial;
5477 nr_slabs += atomic_long_read(&n->nr_slabs);
5478 nr_objs += atomic_long_read(&n->total_objects);
5479 nr_free += count_partial(n, count_free);
5480 }
5481
5482 nr_inuse = nr_objs - nr_free;
5483
5484 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5485 nr_objs, s->size, oo_objects(s->oo),
5486 (1 << oo_order(s->oo)));
5487 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5488 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5489 0UL);
5490 seq_putc(m, '\n');
5491 return 0;
5492 }
5493
5494 static const struct seq_operations slabinfo_op = {
5495 .start = s_start,
5496 .next = s_next,
5497 .stop = s_stop,
5498 .show = s_show,
5499 };
5500
5501 static int slabinfo_open(struct inode *inode, struct file *file)
5502 {
5503 return seq_open(file, &slabinfo_op);
5504 }
5505
5506 static const struct file_operations proc_slabinfo_operations = {
5507 .open = slabinfo_open,
5508 .read = seq_read,
5509 .llseek = seq_lseek,
5510 .release = seq_release,
5511 };
5512
5513 static int __init slab_proc_init(void)
5514 {
5515 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5516 return 0;
5517 }
5518 module_init(slab_proc_init);
5519 #endif /* CONFIG_SLABINFO */