]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
Add EXPORT_SYMBOL(ksize);
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 #if PAGE_SHIFT <= 12
153
154 /*
155 * Small page size. Make sure that we do not fragment memory
156 */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159
160 #else
161
162 /*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168
169 #endif
170
171 /*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175 #define MIN_PARTIAL 2
176
177 /*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182 #define MAX_PARTIAL 10
183
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187 /*
188 * Set of flags that will prevent slab merging
189 */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
211 #endif
212
213 static int kmem_size = sizeof(struct kmem_cache);
214
215 #ifdef CONFIG_SMP
216 static struct notifier_block slab_notifier;
217 #endif
218
219 static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
222 UP, /* Everything works but does not show up in sysfs */
223 SYSFS /* Sysfs up */
224 } slab_state = DOWN;
225
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock);
228 static LIST_HEAD(slab_caches);
229
230 /*
231 * Tracking user of a slab.
232 */
233 struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
238 };
239
240 enum track_item { TRACK_ALLOC, TRACK_FREE };
241
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache *);
244 static int sysfs_slab_alias(struct kmem_cache *, const char *);
245 static void sysfs_slab_remove(struct kmem_cache *);
246 #else
247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 { return 0; }
250 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
251 #endif
252
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
257 int slab_is_available(void)
258 {
259 return slab_state >= UP;
260 }
261
262 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
263 {
264 #ifdef CONFIG_NUMA
265 return s->node[node];
266 #else
267 return &s->local_node;
268 #endif
269 }
270
271 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
272 {
273 #ifdef CONFIG_SMP
274 return s->cpu_slab[cpu];
275 #else
276 return &s->cpu_slab;
277 #endif
278 }
279
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
282 {
283 void *base;
284
285 if (!object)
286 return 1;
287
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
292 }
293
294 return 1;
295 }
296
297 /*
298 * Slow version of get and set free pointer.
299 *
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
303 */
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
305 {
306 return *(void **)(object + s->offset);
307 }
308
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 *(void **)(object + s->offset) = fp;
312 }
313
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
318
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325 {
326 return (p - addr) / s->size;
327 }
328
329 #ifdef CONFIG_SLUB_DEBUG
330 /*
331 * Debug settings:
332 */
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
338
339 static char *slub_debug_slabs;
340
341 /*
342 * Object debugging
343 */
344 static void print_section(char *text, u8 *addr, unsigned int length)
345 {
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
349
350 ascii[16] = 0;
351
352 for (i = 0; i < length; i++) {
353 if (newline) {
354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 newline = 0;
356 }
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
363 }
364 }
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
371 }
372 printk(" %s\n", ascii);
373 }
374 }
375
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
378 {
379 struct track *p;
380
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
385
386 return p + alloc;
387 }
388
389 static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
391 {
392 struct track *p;
393
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
398
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
407 }
408
409 static void init_tracking(struct kmem_cache *s, void *object)
410 {
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
413
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
416 }
417
418 static void print_track(const char *s, struct track *t)
419 {
420 if (!t->addr)
421 return;
422
423 printk(KERN_ERR "INFO: %s in ", s);
424 __print_symbol("%s", (unsigned long)t->addr);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426 }
427
428 static void print_tracking(struct kmem_cache *s, void *object)
429 {
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
432
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
435 }
436
437 static void print_page_info(struct page *page)
438 {
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
441
442 }
443
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445 {
446 va_list args;
447 char buf[100];
448
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
457 }
458
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460 {
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468 }
469
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471 {
472 unsigned int off; /* Offset of last byte */
473 u8 *addr = page_address(page);
474
475 print_tracking(s, p);
476
477 print_page_info(page);
478
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
481
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
484
485 print_section("Object", p, min(s->objsize, 128));
486
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
490
491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
495
496 if (s->flags & SLAB_STORE_USER)
497 off += 2 * sizeof(struct track);
498
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p + off, s->size - off);
502
503 dump_stack();
504 }
505
506 static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
508 {
509 slab_bug(s, reason);
510 print_trailer(s, page, object);
511 }
512
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514 {
515 va_list args;
516 char buf[100];
517
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
520 va_end(args);
521 slab_bug(s, fmt);
522 print_page_info(page);
523 dump_stack();
524 }
525
526 static void init_object(struct kmem_cache *s, void *object, int active)
527 {
528 u8 *p = object;
529
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
533 }
534
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
539 }
540
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542 {
543 while (bytes) {
544 if (*start != (u8)value)
545 return start;
546 start++;
547 bytes--;
548 }
549 return NULL;
550 }
551
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
554 {
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
557 }
558
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
562 {
563 u8 *fault;
564 u8 *end;
565
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
569
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
573
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
578
579 restore_bytes(s, what, value, fault, end);
580 return 0;
581 }
582
583 /*
584 * Object layout:
585 *
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
590 *
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
593 *
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
598 *
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
601 *
602 * object + s->inuse
603 * Meta data starts here.
604 *
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
610 *
611 * Padding is done using 0x5a (POISON_INUSE)
612 *
613 * object + s->size
614 * Nothing is used beyond s->size.
615 *
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
619 */
620
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 unsigned long off = s->inuse; /* The end of info */
624
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
628
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
632
633 if (s->size == off)
634 return 1;
635
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
638 }
639
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
641 {
642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
647
648 if (!(s->flags & SLAB_POISON))
649 return 1;
650
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
653 length = s->objects * s->size;
654 remainder = end - (start + length);
655 if (!remainder)
656 return 1;
657
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
663
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
666
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
669 }
670
671 static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
673 {
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
676
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
683 return 0;
684 } else {
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
688 }
689
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
696 return 0;
697 /*
698 * check_pad_bytes cleans up on its own.
699 */
700 check_pad_bytes(s, page, p);
701 }
702
703 if (!s->offset && active)
704 /*
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
707 */
708 return 1;
709
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
713 /*
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
717 */
718 set_freepointer(s, p, NULL);
719 return 0;
720 }
721 return 1;
722 }
723
724 static int check_slab(struct kmem_cache *s, struct page *page)
725 {
726 VM_BUG_ON(!irqs_disabled());
727
728 if (!PageSlab(page)) {
729 slab_err(s, page, "Not a valid slab page");
730 return 0;
731 }
732 if (page->inuse > s->objects) {
733 slab_err(s, page, "inuse %u > max %u",
734 s->name, page->inuse, s->objects);
735 return 0;
736 }
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s, page);
739 return 1;
740 }
741
742 /*
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
745 */
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
747 {
748 int nr = 0;
749 void *fp = page->freelist;
750 void *object = NULL;
751
752 while (fp && nr <= s->objects) {
753 if (fp == search)
754 return 1;
755 if (!check_valid_pointer(s, page, fp)) {
756 if (object) {
757 object_err(s, page, object,
758 "Freechain corrupt");
759 set_freepointer(s, object, NULL);
760 break;
761 } else {
762 slab_err(s, page, "Freepointer corrupt");
763 page->freelist = NULL;
764 page->inuse = s->objects;
765 slab_fix(s, "Freelist cleared");
766 return 0;
767 }
768 break;
769 }
770 object = fp;
771 fp = get_freepointer(s, object);
772 nr++;
773 }
774
775 if (page->inuse != s->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, s->objects - nr);
778 page->inuse = s->objects - nr;
779 slab_fix(s, "Object count adjusted.");
780 }
781 return search == NULL;
782 }
783
784 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
785 {
786 if (s->flags & SLAB_TRACE) {
787 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
788 s->name,
789 alloc ? "alloc" : "free",
790 object, page->inuse,
791 page->freelist);
792
793 if (!alloc)
794 print_section("Object", (void *)object, s->objsize);
795
796 dump_stack();
797 }
798 }
799
800 /*
801 * Tracking of fully allocated slabs for debugging purposes.
802 */
803 static void add_full(struct kmem_cache_node *n, struct page *page)
804 {
805 spin_lock(&n->list_lock);
806 list_add(&page->lru, &n->full);
807 spin_unlock(&n->list_lock);
808 }
809
810 static void remove_full(struct kmem_cache *s, struct page *page)
811 {
812 struct kmem_cache_node *n;
813
814 if (!(s->flags & SLAB_STORE_USER))
815 return;
816
817 n = get_node(s, page_to_nid(page));
818
819 spin_lock(&n->list_lock);
820 list_del(&page->lru);
821 spin_unlock(&n->list_lock);
822 }
823
824 static void setup_object_debug(struct kmem_cache *s, struct page *page,
825 void *object)
826 {
827 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
828 return;
829
830 init_object(s, object, 0);
831 init_tracking(s, object);
832 }
833
834 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
835 void *object, void *addr)
836 {
837 if (!check_slab(s, page))
838 goto bad;
839
840 if (object && !on_freelist(s, page, object)) {
841 object_err(s, page, object, "Object already allocated");
842 goto bad;
843 }
844
845 if (!check_valid_pointer(s, page, object)) {
846 object_err(s, page, object, "Freelist Pointer check fails");
847 goto bad;
848 }
849
850 if (object && !check_object(s, page, object, 0))
851 goto bad;
852
853 /* Success perform special debug activities for allocs */
854 if (s->flags & SLAB_STORE_USER)
855 set_track(s, object, TRACK_ALLOC, addr);
856 trace(s, page, object, 1);
857 init_object(s, object, 1);
858 return 1;
859
860 bad:
861 if (PageSlab(page)) {
862 /*
863 * If this is a slab page then lets do the best we can
864 * to avoid issues in the future. Marking all objects
865 * as used avoids touching the remaining objects.
866 */
867 slab_fix(s, "Marking all objects used");
868 page->inuse = s->objects;
869 page->freelist = NULL;
870 }
871 return 0;
872 }
873
874 static int free_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, void *addr)
876 {
877 if (!check_slab(s, page))
878 goto fail;
879
880 if (!check_valid_pointer(s, page, object)) {
881 slab_err(s, page, "Invalid object pointer 0x%p", object);
882 goto fail;
883 }
884
885 if (on_freelist(s, page, object)) {
886 object_err(s, page, object, "Object already free");
887 goto fail;
888 }
889
890 if (!check_object(s, page, object, 1))
891 return 0;
892
893 if (unlikely(s != page->slab)) {
894 if (!PageSlab(page))
895 slab_err(s, page, "Attempt to free object(0x%p) "
896 "outside of slab", object);
897 else
898 if (!page->slab) {
899 printk(KERN_ERR
900 "SLUB <none>: no slab for object 0x%p.\n",
901 object);
902 dump_stack();
903 }
904 else
905 object_err(s, page, object,
906 "page slab pointer corrupt.");
907 goto fail;
908 }
909
910 /* Special debug activities for freeing objects */
911 if (!SlabFrozen(page) && !page->freelist)
912 remove_full(s, page);
913 if (s->flags & SLAB_STORE_USER)
914 set_track(s, object, TRACK_FREE, addr);
915 trace(s, page, object, 0);
916 init_object(s, object, 0);
917 return 1;
918
919 fail:
920 slab_fix(s, "Object at 0x%p not freed", object);
921 return 0;
922 }
923
924 static int __init setup_slub_debug(char *str)
925 {
926 slub_debug = DEBUG_DEFAULT_FLAGS;
927 if (*str++ != '=' || !*str)
928 /*
929 * No options specified. Switch on full debugging.
930 */
931 goto out;
932
933 if (*str == ',')
934 /*
935 * No options but restriction on slabs. This means full
936 * debugging for slabs matching a pattern.
937 */
938 goto check_slabs;
939
940 slub_debug = 0;
941 if (*str == '-')
942 /*
943 * Switch off all debugging measures.
944 */
945 goto out;
946
947 /*
948 * Determine which debug features should be switched on
949 */
950 for ( ;*str && *str != ','; str++) {
951 switch (tolower(*str)) {
952 case 'f':
953 slub_debug |= SLAB_DEBUG_FREE;
954 break;
955 case 'z':
956 slub_debug |= SLAB_RED_ZONE;
957 break;
958 case 'p':
959 slub_debug |= SLAB_POISON;
960 break;
961 case 'u':
962 slub_debug |= SLAB_STORE_USER;
963 break;
964 case 't':
965 slub_debug |= SLAB_TRACE;
966 break;
967 default:
968 printk(KERN_ERR "slub_debug option '%c' "
969 "unknown. skipped\n",*str);
970 }
971 }
972
973 check_slabs:
974 if (*str == ',')
975 slub_debug_slabs = str + 1;
976 out:
977 return 1;
978 }
979
980 __setup("slub_debug", setup_slub_debug);
981
982 static unsigned long kmem_cache_flags(unsigned long objsize,
983 unsigned long flags, const char *name,
984 void (*ctor)(struct kmem_cache *, void *))
985 {
986 /*
987 * The page->offset field is only 16 bit wide. This is an offset
988 * in units of words from the beginning of an object. If the slab
989 * size is bigger then we cannot move the free pointer behind the
990 * object anymore.
991 *
992 * On 32 bit platforms the limit is 256k. On 64bit platforms
993 * the limit is 512k.
994 *
995 * Debugging or ctor may create a need to move the free
996 * pointer. Fail if this happens.
997 */
998 if (objsize >= 65535 * sizeof(void *)) {
999 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1001 BUG_ON(ctor);
1002 } else {
1003 /*
1004 * Enable debugging if selected on the kernel commandline.
1005 */
1006 if (slub_debug && (!slub_debug_slabs ||
1007 strncmp(slub_debug_slabs, name,
1008 strlen(slub_debug_slabs)) == 0))
1009 flags |= slub_debug;
1010 }
1011
1012 return flags;
1013 }
1014 #else
1015 static inline void setup_object_debug(struct kmem_cache *s,
1016 struct page *page, void *object) {}
1017
1018 static inline int alloc_debug_processing(struct kmem_cache *s,
1019 struct page *page, void *object, void *addr) { return 0; }
1020
1021 static inline int free_debug_processing(struct kmem_cache *s,
1022 struct page *page, void *object, void *addr) { return 0; }
1023
1024 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1025 { return 1; }
1026 static inline int check_object(struct kmem_cache *s, struct page *page,
1027 void *object, int active) { return 1; }
1028 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030 unsigned long flags, const char *name,
1031 void (*ctor)(struct kmem_cache *, void *))
1032 {
1033 return flags;
1034 }
1035 #define slub_debug 0
1036 #endif
1037 /*
1038 * Slab allocation and freeing
1039 */
1040 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1041 {
1042 struct page * page;
1043 int pages = 1 << s->order;
1044
1045 if (s->order)
1046 flags |= __GFP_COMP;
1047
1048 if (s->flags & SLAB_CACHE_DMA)
1049 flags |= SLUB_DMA;
1050
1051 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052 flags |= __GFP_RECLAIMABLE;
1053
1054 if (node == -1)
1055 page = alloc_pages(flags, s->order);
1056 else
1057 page = alloc_pages_node(node, flags, s->order);
1058
1059 if (!page)
1060 return NULL;
1061
1062 mod_zone_page_state(page_zone(page),
1063 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1065 pages);
1066
1067 return page;
1068 }
1069
1070 static void setup_object(struct kmem_cache *s, struct page *page,
1071 void *object)
1072 {
1073 setup_object_debug(s, page, object);
1074 if (unlikely(s->ctor))
1075 s->ctor(s, object);
1076 }
1077
1078 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1079 {
1080 struct page *page;
1081 struct kmem_cache_node *n;
1082 void *start;
1083 void *last;
1084 void *p;
1085
1086 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087
1088 page = allocate_slab(s,
1089 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1090 if (!page)
1091 goto out;
1092
1093 n = get_node(s, page_to_nid(page));
1094 if (n)
1095 atomic_long_inc(&n->nr_slabs);
1096 page->slab = s;
1097 page->flags |= 1 << PG_slab;
1098 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1099 SLAB_STORE_USER | SLAB_TRACE))
1100 SetSlabDebug(page);
1101
1102 start = page_address(page);
1103
1104 if (unlikely(s->flags & SLAB_POISON))
1105 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1106
1107 last = start;
1108 for_each_object(p, s, start) {
1109 setup_object(s, page, last);
1110 set_freepointer(s, last, p);
1111 last = p;
1112 }
1113 setup_object(s, page, last);
1114 set_freepointer(s, last, NULL);
1115
1116 page->freelist = start;
1117 page->inuse = 0;
1118 out:
1119 return page;
1120 }
1121
1122 static void __free_slab(struct kmem_cache *s, struct page *page)
1123 {
1124 int pages = 1 << s->order;
1125
1126 if (unlikely(SlabDebug(page))) {
1127 void *p;
1128
1129 slab_pad_check(s, page);
1130 for_each_object(p, s, page_address(page))
1131 check_object(s, page, p, 0);
1132 ClearSlabDebug(page);
1133 }
1134
1135 mod_zone_page_state(page_zone(page),
1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138 - pages);
1139
1140 __free_pages(page, s->order);
1141 }
1142
1143 static void rcu_free_slab(struct rcu_head *h)
1144 {
1145 struct page *page;
1146
1147 page = container_of((struct list_head *)h, struct page, lru);
1148 __free_slab(page->slab, page);
1149 }
1150
1151 static void free_slab(struct kmem_cache *s, struct page *page)
1152 {
1153 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1154 /*
1155 * RCU free overloads the RCU head over the LRU
1156 */
1157 struct rcu_head *head = (void *)&page->lru;
1158
1159 call_rcu(head, rcu_free_slab);
1160 } else
1161 __free_slab(s, page);
1162 }
1163
1164 static void discard_slab(struct kmem_cache *s, struct page *page)
1165 {
1166 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167
1168 atomic_long_dec(&n->nr_slabs);
1169 reset_page_mapcount(page);
1170 __ClearPageSlab(page);
1171 free_slab(s, page);
1172 }
1173
1174 /*
1175 * Per slab locking using the pagelock
1176 */
1177 static __always_inline void slab_lock(struct page *page)
1178 {
1179 bit_spin_lock(PG_locked, &page->flags);
1180 }
1181
1182 static __always_inline void slab_unlock(struct page *page)
1183 {
1184 bit_spin_unlock(PG_locked, &page->flags);
1185 }
1186
1187 static __always_inline int slab_trylock(struct page *page)
1188 {
1189 int rc = 1;
1190
1191 rc = bit_spin_trylock(PG_locked, &page->flags);
1192 return rc;
1193 }
1194
1195 /*
1196 * Management of partially allocated slabs
1197 */
1198 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1199 {
1200 spin_lock(&n->list_lock);
1201 n->nr_partial++;
1202 list_add_tail(&page->lru, &n->partial);
1203 spin_unlock(&n->list_lock);
1204 }
1205
1206 static void add_partial(struct kmem_cache_node *n, struct page *page)
1207 {
1208 spin_lock(&n->list_lock);
1209 n->nr_partial++;
1210 list_add(&page->lru, &n->partial);
1211 spin_unlock(&n->list_lock);
1212 }
1213
1214 static void remove_partial(struct kmem_cache *s,
1215 struct page *page)
1216 {
1217 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1218
1219 spin_lock(&n->list_lock);
1220 list_del(&page->lru);
1221 n->nr_partial--;
1222 spin_unlock(&n->list_lock);
1223 }
1224
1225 /*
1226 * Lock slab and remove from the partial list.
1227 *
1228 * Must hold list_lock.
1229 */
1230 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1231 {
1232 if (slab_trylock(page)) {
1233 list_del(&page->lru);
1234 n->nr_partial--;
1235 SetSlabFrozen(page);
1236 return 1;
1237 }
1238 return 0;
1239 }
1240
1241 /*
1242 * Try to allocate a partial slab from a specific node.
1243 */
1244 static struct page *get_partial_node(struct kmem_cache_node *n)
1245 {
1246 struct page *page;
1247
1248 /*
1249 * Racy check. If we mistakenly see no partial slabs then we
1250 * just allocate an empty slab. If we mistakenly try to get a
1251 * partial slab and there is none available then get_partials()
1252 * will return NULL.
1253 */
1254 if (!n || !n->nr_partial)
1255 return NULL;
1256
1257 spin_lock(&n->list_lock);
1258 list_for_each_entry(page, &n->partial, lru)
1259 if (lock_and_freeze_slab(n, page))
1260 goto out;
1261 page = NULL;
1262 out:
1263 spin_unlock(&n->list_lock);
1264 return page;
1265 }
1266
1267 /*
1268 * Get a page from somewhere. Search in increasing NUMA distances.
1269 */
1270 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1271 {
1272 #ifdef CONFIG_NUMA
1273 struct zonelist *zonelist;
1274 struct zone **z;
1275 struct page *page;
1276
1277 /*
1278 * The defrag ratio allows a configuration of the tradeoffs between
1279 * inter node defragmentation and node local allocations. A lower
1280 * defrag_ratio increases the tendency to do local allocations
1281 * instead of attempting to obtain partial slabs from other nodes.
1282 *
1283 * If the defrag_ratio is set to 0 then kmalloc() always
1284 * returns node local objects. If the ratio is higher then kmalloc()
1285 * may return off node objects because partial slabs are obtained
1286 * from other nodes and filled up.
1287 *
1288 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1289 * defrag_ratio = 1000) then every (well almost) allocation will
1290 * first attempt to defrag slab caches on other nodes. This means
1291 * scanning over all nodes to look for partial slabs which may be
1292 * expensive if we do it every time we are trying to find a slab
1293 * with available objects.
1294 */
1295 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1296 return NULL;
1297
1298 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1299 ->node_zonelists[gfp_zone(flags)];
1300 for (z = zonelist->zones; *z; z++) {
1301 struct kmem_cache_node *n;
1302
1303 n = get_node(s, zone_to_nid(*z));
1304
1305 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1306 n->nr_partial > MIN_PARTIAL) {
1307 page = get_partial_node(n);
1308 if (page)
1309 return page;
1310 }
1311 }
1312 #endif
1313 return NULL;
1314 }
1315
1316 /*
1317 * Get a partial page, lock it and return it.
1318 */
1319 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1320 {
1321 struct page *page;
1322 int searchnode = (node == -1) ? numa_node_id() : node;
1323
1324 page = get_partial_node(get_node(s, searchnode));
1325 if (page || (flags & __GFP_THISNODE))
1326 return page;
1327
1328 return get_any_partial(s, flags);
1329 }
1330
1331 /*
1332 * Move a page back to the lists.
1333 *
1334 * Must be called with the slab lock held.
1335 *
1336 * On exit the slab lock will have been dropped.
1337 */
1338 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1339 {
1340 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1341
1342 ClearSlabFrozen(page);
1343 if (page->inuse) {
1344
1345 if (page->freelist)
1346 add_partial(n, page);
1347 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1348 add_full(n, page);
1349 slab_unlock(page);
1350
1351 } else {
1352 if (n->nr_partial < MIN_PARTIAL) {
1353 /*
1354 * Adding an empty slab to the partial slabs in order
1355 * to avoid page allocator overhead. This slab needs
1356 * to come after the other slabs with objects in
1357 * order to fill them up. That way the size of the
1358 * partial list stays small. kmem_cache_shrink can
1359 * reclaim empty slabs from the partial list.
1360 */
1361 add_partial_tail(n, page);
1362 slab_unlock(page);
1363 } else {
1364 slab_unlock(page);
1365 discard_slab(s, page);
1366 }
1367 }
1368 }
1369
1370 /*
1371 * Remove the cpu slab
1372 */
1373 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1374 {
1375 struct page *page = c->page;
1376 /*
1377 * Merge cpu freelist into freelist. Typically we get here
1378 * because both freelists are empty. So this is unlikely
1379 * to occur.
1380 */
1381 while (unlikely(c->freelist)) {
1382 void **object;
1383
1384 /* Retrieve object from cpu_freelist */
1385 object = c->freelist;
1386 c->freelist = c->freelist[c->offset];
1387
1388 /* And put onto the regular freelist */
1389 object[c->offset] = page->freelist;
1390 page->freelist = object;
1391 page->inuse--;
1392 }
1393 c->page = NULL;
1394 unfreeze_slab(s, page);
1395 }
1396
1397 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1398 {
1399 slab_lock(c->page);
1400 deactivate_slab(s, c);
1401 }
1402
1403 /*
1404 * Flush cpu slab.
1405 * Called from IPI handler with interrupts disabled.
1406 */
1407 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1408 {
1409 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1410
1411 if (likely(c && c->page))
1412 flush_slab(s, c);
1413 }
1414
1415 static void flush_cpu_slab(void *d)
1416 {
1417 struct kmem_cache *s = d;
1418
1419 __flush_cpu_slab(s, smp_processor_id());
1420 }
1421
1422 static void flush_all(struct kmem_cache *s)
1423 {
1424 #ifdef CONFIG_SMP
1425 on_each_cpu(flush_cpu_slab, s, 1, 1);
1426 #else
1427 unsigned long flags;
1428
1429 local_irq_save(flags);
1430 flush_cpu_slab(s);
1431 local_irq_restore(flags);
1432 #endif
1433 }
1434
1435 /*
1436 * Check if the objects in a per cpu structure fit numa
1437 * locality expectations.
1438 */
1439 static inline int node_match(struct kmem_cache_cpu *c, int node)
1440 {
1441 #ifdef CONFIG_NUMA
1442 if (node != -1 && c->node != node)
1443 return 0;
1444 #endif
1445 return 1;
1446 }
1447
1448 /*
1449 * Slow path. The lockless freelist is empty or we need to perform
1450 * debugging duties.
1451 *
1452 * Interrupts are disabled.
1453 *
1454 * Processing is still very fast if new objects have been freed to the
1455 * regular freelist. In that case we simply take over the regular freelist
1456 * as the lockless freelist and zap the regular freelist.
1457 *
1458 * If that is not working then we fall back to the partial lists. We take the
1459 * first element of the freelist as the object to allocate now and move the
1460 * rest of the freelist to the lockless freelist.
1461 *
1462 * And if we were unable to get a new slab from the partial slab lists then
1463 * we need to allocate a new slab. This is slowest path since we may sleep.
1464 */
1465 static void *__slab_alloc(struct kmem_cache *s,
1466 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1467 {
1468 void **object;
1469 struct page *new;
1470
1471 if (!c->page)
1472 goto new_slab;
1473
1474 slab_lock(c->page);
1475 if (unlikely(!node_match(c, node)))
1476 goto another_slab;
1477 load_freelist:
1478 object = c->page->freelist;
1479 if (unlikely(!object))
1480 goto another_slab;
1481 if (unlikely(SlabDebug(c->page)))
1482 goto debug;
1483
1484 object = c->page->freelist;
1485 c->freelist = object[c->offset];
1486 c->page->inuse = s->objects;
1487 c->page->freelist = NULL;
1488 c->node = page_to_nid(c->page);
1489 slab_unlock(c->page);
1490 return object;
1491
1492 another_slab:
1493 deactivate_slab(s, c);
1494
1495 new_slab:
1496 new = get_partial(s, gfpflags, node);
1497 if (new) {
1498 c->page = new;
1499 goto load_freelist;
1500 }
1501
1502 if (gfpflags & __GFP_WAIT)
1503 local_irq_enable();
1504
1505 new = new_slab(s, gfpflags, node);
1506
1507 if (gfpflags & __GFP_WAIT)
1508 local_irq_disable();
1509
1510 if (new) {
1511 c = get_cpu_slab(s, smp_processor_id());
1512 if (c->page)
1513 flush_slab(s, c);
1514 slab_lock(new);
1515 SetSlabFrozen(new);
1516 c->page = new;
1517 goto load_freelist;
1518 }
1519 return NULL;
1520 debug:
1521 object = c->page->freelist;
1522 if (!alloc_debug_processing(s, c->page, object, addr))
1523 goto another_slab;
1524
1525 c->page->inuse++;
1526 c->page->freelist = object[c->offset];
1527 c->node = -1;
1528 slab_unlock(c->page);
1529 return object;
1530 }
1531
1532 /*
1533 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1534 * have the fastpath folded into their functions. So no function call
1535 * overhead for requests that can be satisfied on the fastpath.
1536 *
1537 * The fastpath works by first checking if the lockless freelist can be used.
1538 * If not then __slab_alloc is called for slow processing.
1539 *
1540 * Otherwise we can simply pick the next object from the lockless free list.
1541 */
1542 static void __always_inline *slab_alloc(struct kmem_cache *s,
1543 gfp_t gfpflags, int node, void *addr)
1544 {
1545 void **object;
1546 unsigned long flags;
1547 struct kmem_cache_cpu *c;
1548
1549 local_irq_save(flags);
1550 c = get_cpu_slab(s, smp_processor_id());
1551 if (unlikely(!c->freelist || !node_match(c, node)))
1552
1553 object = __slab_alloc(s, gfpflags, node, addr, c);
1554
1555 else {
1556 object = c->freelist;
1557 c->freelist = object[c->offset];
1558 }
1559 local_irq_restore(flags);
1560
1561 if (unlikely((gfpflags & __GFP_ZERO) && object))
1562 memset(object, 0, c->objsize);
1563
1564 return object;
1565 }
1566
1567 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1568 {
1569 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1570 }
1571 EXPORT_SYMBOL(kmem_cache_alloc);
1572
1573 #ifdef CONFIG_NUMA
1574 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1575 {
1576 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1577 }
1578 EXPORT_SYMBOL(kmem_cache_alloc_node);
1579 #endif
1580
1581 /*
1582 * Slow patch handling. This may still be called frequently since objects
1583 * have a longer lifetime than the cpu slabs in most processing loads.
1584 *
1585 * So we still attempt to reduce cache line usage. Just take the slab
1586 * lock and free the item. If there is no additional partial page
1587 * handling required then we can return immediately.
1588 */
1589 static void __slab_free(struct kmem_cache *s, struct page *page,
1590 void *x, void *addr, unsigned int offset)
1591 {
1592 void *prior;
1593 void **object = (void *)x;
1594
1595 slab_lock(page);
1596
1597 if (unlikely(SlabDebug(page)))
1598 goto debug;
1599 checks_ok:
1600 prior = object[offset] = page->freelist;
1601 page->freelist = object;
1602 page->inuse--;
1603
1604 if (unlikely(SlabFrozen(page)))
1605 goto out_unlock;
1606
1607 if (unlikely(!page->inuse))
1608 goto slab_empty;
1609
1610 /*
1611 * Objects left in the slab. If it
1612 * was not on the partial list before
1613 * then add it.
1614 */
1615 if (unlikely(!prior))
1616 add_partial(get_node(s, page_to_nid(page)), page);
1617
1618 out_unlock:
1619 slab_unlock(page);
1620 return;
1621
1622 slab_empty:
1623 if (prior)
1624 /*
1625 * Slab still on the partial list.
1626 */
1627 remove_partial(s, page);
1628
1629 slab_unlock(page);
1630 discard_slab(s, page);
1631 return;
1632
1633 debug:
1634 if (!free_debug_processing(s, page, x, addr))
1635 goto out_unlock;
1636 goto checks_ok;
1637 }
1638
1639 /*
1640 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1641 * can perform fastpath freeing without additional function calls.
1642 *
1643 * The fastpath is only possible if we are freeing to the current cpu slab
1644 * of this processor. This typically the case if we have just allocated
1645 * the item before.
1646 *
1647 * If fastpath is not possible then fall back to __slab_free where we deal
1648 * with all sorts of special processing.
1649 */
1650 static void __always_inline slab_free(struct kmem_cache *s,
1651 struct page *page, void *x, void *addr)
1652 {
1653 void **object = (void *)x;
1654 unsigned long flags;
1655 struct kmem_cache_cpu *c;
1656
1657 local_irq_save(flags);
1658 debug_check_no_locks_freed(object, s->objsize);
1659 c = get_cpu_slab(s, smp_processor_id());
1660 if (likely(page == c->page && c->node >= 0)) {
1661 object[c->offset] = c->freelist;
1662 c->freelist = object;
1663 } else
1664 __slab_free(s, page, x, addr, c->offset);
1665
1666 local_irq_restore(flags);
1667 }
1668
1669 void kmem_cache_free(struct kmem_cache *s, void *x)
1670 {
1671 struct page *page;
1672
1673 page = virt_to_head_page(x);
1674
1675 slab_free(s, page, x, __builtin_return_address(0));
1676 }
1677 EXPORT_SYMBOL(kmem_cache_free);
1678
1679 /* Figure out on which slab object the object resides */
1680 static struct page *get_object_page(const void *x)
1681 {
1682 struct page *page = virt_to_head_page(x);
1683
1684 if (!PageSlab(page))
1685 return NULL;
1686
1687 return page;
1688 }
1689
1690 /*
1691 * Object placement in a slab is made very easy because we always start at
1692 * offset 0. If we tune the size of the object to the alignment then we can
1693 * get the required alignment by putting one properly sized object after
1694 * another.
1695 *
1696 * Notice that the allocation order determines the sizes of the per cpu
1697 * caches. Each processor has always one slab available for allocations.
1698 * Increasing the allocation order reduces the number of times that slabs
1699 * must be moved on and off the partial lists and is therefore a factor in
1700 * locking overhead.
1701 */
1702
1703 /*
1704 * Mininum / Maximum order of slab pages. This influences locking overhead
1705 * and slab fragmentation. A higher order reduces the number of partial slabs
1706 * and increases the number of allocations possible without having to
1707 * take the list_lock.
1708 */
1709 static int slub_min_order;
1710 static int slub_max_order = DEFAULT_MAX_ORDER;
1711 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1712
1713 /*
1714 * Merge control. If this is set then no merging of slab caches will occur.
1715 * (Could be removed. This was introduced to pacify the merge skeptics.)
1716 */
1717 static int slub_nomerge;
1718
1719 /*
1720 * Calculate the order of allocation given an slab object size.
1721 *
1722 * The order of allocation has significant impact on performance and other
1723 * system components. Generally order 0 allocations should be preferred since
1724 * order 0 does not cause fragmentation in the page allocator. Larger objects
1725 * be problematic to put into order 0 slabs because there may be too much
1726 * unused space left. We go to a higher order if more than 1/8th of the slab
1727 * would be wasted.
1728 *
1729 * In order to reach satisfactory performance we must ensure that a minimum
1730 * number of objects is in one slab. Otherwise we may generate too much
1731 * activity on the partial lists which requires taking the list_lock. This is
1732 * less a concern for large slabs though which are rarely used.
1733 *
1734 * slub_max_order specifies the order where we begin to stop considering the
1735 * number of objects in a slab as critical. If we reach slub_max_order then
1736 * we try to keep the page order as low as possible. So we accept more waste
1737 * of space in favor of a small page order.
1738 *
1739 * Higher order allocations also allow the placement of more objects in a
1740 * slab and thereby reduce object handling overhead. If the user has
1741 * requested a higher mininum order then we start with that one instead of
1742 * the smallest order which will fit the object.
1743 */
1744 static inline int slab_order(int size, int min_objects,
1745 int max_order, int fract_leftover)
1746 {
1747 int order;
1748 int rem;
1749 int min_order = slub_min_order;
1750
1751 for (order = max(min_order,
1752 fls(min_objects * size - 1) - PAGE_SHIFT);
1753 order <= max_order; order++) {
1754
1755 unsigned long slab_size = PAGE_SIZE << order;
1756
1757 if (slab_size < min_objects * size)
1758 continue;
1759
1760 rem = slab_size % size;
1761
1762 if (rem <= slab_size / fract_leftover)
1763 break;
1764
1765 }
1766
1767 return order;
1768 }
1769
1770 static inline int calculate_order(int size)
1771 {
1772 int order;
1773 int min_objects;
1774 int fraction;
1775
1776 /*
1777 * Attempt to find best configuration for a slab. This
1778 * works by first attempting to generate a layout with
1779 * the best configuration and backing off gradually.
1780 *
1781 * First we reduce the acceptable waste in a slab. Then
1782 * we reduce the minimum objects required in a slab.
1783 */
1784 min_objects = slub_min_objects;
1785 while (min_objects > 1) {
1786 fraction = 8;
1787 while (fraction >= 4) {
1788 order = slab_order(size, min_objects,
1789 slub_max_order, fraction);
1790 if (order <= slub_max_order)
1791 return order;
1792 fraction /= 2;
1793 }
1794 min_objects /= 2;
1795 }
1796
1797 /*
1798 * We were unable to place multiple objects in a slab. Now
1799 * lets see if we can place a single object there.
1800 */
1801 order = slab_order(size, 1, slub_max_order, 1);
1802 if (order <= slub_max_order)
1803 return order;
1804
1805 /*
1806 * Doh this slab cannot be placed using slub_max_order.
1807 */
1808 order = slab_order(size, 1, MAX_ORDER, 1);
1809 if (order <= MAX_ORDER)
1810 return order;
1811 return -ENOSYS;
1812 }
1813
1814 /*
1815 * Figure out what the alignment of the objects will be.
1816 */
1817 static unsigned long calculate_alignment(unsigned long flags,
1818 unsigned long align, unsigned long size)
1819 {
1820 /*
1821 * If the user wants hardware cache aligned objects then
1822 * follow that suggestion if the object is sufficiently
1823 * large.
1824 *
1825 * The hardware cache alignment cannot override the
1826 * specified alignment though. If that is greater
1827 * then use it.
1828 */
1829 if ((flags & SLAB_HWCACHE_ALIGN) &&
1830 size > cache_line_size() / 2)
1831 return max_t(unsigned long, align, cache_line_size());
1832
1833 if (align < ARCH_SLAB_MINALIGN)
1834 return ARCH_SLAB_MINALIGN;
1835
1836 return ALIGN(align, sizeof(void *));
1837 }
1838
1839 static void init_kmem_cache_cpu(struct kmem_cache *s,
1840 struct kmem_cache_cpu *c)
1841 {
1842 c->page = NULL;
1843 c->freelist = NULL;
1844 c->node = 0;
1845 c->offset = s->offset / sizeof(void *);
1846 c->objsize = s->objsize;
1847 }
1848
1849 static void init_kmem_cache_node(struct kmem_cache_node *n)
1850 {
1851 n->nr_partial = 0;
1852 atomic_long_set(&n->nr_slabs, 0);
1853 spin_lock_init(&n->list_lock);
1854 INIT_LIST_HEAD(&n->partial);
1855 #ifdef CONFIG_SLUB_DEBUG
1856 INIT_LIST_HEAD(&n->full);
1857 #endif
1858 }
1859
1860 #ifdef CONFIG_SMP
1861 /*
1862 * Per cpu array for per cpu structures.
1863 *
1864 * The per cpu array places all kmem_cache_cpu structures from one processor
1865 * close together meaning that it becomes possible that multiple per cpu
1866 * structures are contained in one cacheline. This may be particularly
1867 * beneficial for the kmalloc caches.
1868 *
1869 * A desktop system typically has around 60-80 slabs. With 100 here we are
1870 * likely able to get per cpu structures for all caches from the array defined
1871 * here. We must be able to cover all kmalloc caches during bootstrap.
1872 *
1873 * If the per cpu array is exhausted then fall back to kmalloc
1874 * of individual cachelines. No sharing is possible then.
1875 */
1876 #define NR_KMEM_CACHE_CPU 100
1877
1878 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1879 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1880
1881 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1882 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1883
1884 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1885 int cpu, gfp_t flags)
1886 {
1887 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1888
1889 if (c)
1890 per_cpu(kmem_cache_cpu_free, cpu) =
1891 (void *)c->freelist;
1892 else {
1893 /* Table overflow: So allocate ourselves */
1894 c = kmalloc_node(
1895 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1896 flags, cpu_to_node(cpu));
1897 if (!c)
1898 return NULL;
1899 }
1900
1901 init_kmem_cache_cpu(s, c);
1902 return c;
1903 }
1904
1905 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1906 {
1907 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1908 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1909 kfree(c);
1910 return;
1911 }
1912 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1913 per_cpu(kmem_cache_cpu_free, cpu) = c;
1914 }
1915
1916 static void free_kmem_cache_cpus(struct kmem_cache *s)
1917 {
1918 int cpu;
1919
1920 for_each_online_cpu(cpu) {
1921 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1922
1923 if (c) {
1924 s->cpu_slab[cpu] = NULL;
1925 free_kmem_cache_cpu(c, cpu);
1926 }
1927 }
1928 }
1929
1930 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1931 {
1932 int cpu;
1933
1934 for_each_online_cpu(cpu) {
1935 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1936
1937 if (c)
1938 continue;
1939
1940 c = alloc_kmem_cache_cpu(s, cpu, flags);
1941 if (!c) {
1942 free_kmem_cache_cpus(s);
1943 return 0;
1944 }
1945 s->cpu_slab[cpu] = c;
1946 }
1947 return 1;
1948 }
1949
1950 /*
1951 * Initialize the per cpu array.
1952 */
1953 static void init_alloc_cpu_cpu(int cpu)
1954 {
1955 int i;
1956
1957 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1958 return;
1959
1960 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1961 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1962
1963 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1964 }
1965
1966 static void __init init_alloc_cpu(void)
1967 {
1968 int cpu;
1969
1970 for_each_online_cpu(cpu)
1971 init_alloc_cpu_cpu(cpu);
1972 }
1973
1974 #else
1975 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1976 static inline void init_alloc_cpu(void) {}
1977
1978 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1979 {
1980 init_kmem_cache_cpu(s, &s->cpu_slab);
1981 return 1;
1982 }
1983 #endif
1984
1985 #ifdef CONFIG_NUMA
1986 /*
1987 * No kmalloc_node yet so do it by hand. We know that this is the first
1988 * slab on the node for this slabcache. There are no concurrent accesses
1989 * possible.
1990 *
1991 * Note that this function only works on the kmalloc_node_cache
1992 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1993 * memory on a fresh node that has no slab structures yet.
1994 */
1995 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1996 int node)
1997 {
1998 struct page *page;
1999 struct kmem_cache_node *n;
2000
2001 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2002
2003 page = new_slab(kmalloc_caches, gfpflags, node);
2004
2005 BUG_ON(!page);
2006 if (page_to_nid(page) != node) {
2007 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2008 "node %d\n", node);
2009 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2010 "in order to be able to continue\n");
2011 }
2012
2013 n = page->freelist;
2014 BUG_ON(!n);
2015 page->freelist = get_freepointer(kmalloc_caches, n);
2016 page->inuse++;
2017 kmalloc_caches->node[node] = n;
2018 #ifdef CONFIG_SLUB_DEBUG
2019 init_object(kmalloc_caches, n, 1);
2020 init_tracking(kmalloc_caches, n);
2021 #endif
2022 init_kmem_cache_node(n);
2023 atomic_long_inc(&n->nr_slabs);
2024 add_partial(n, page);
2025 return n;
2026 }
2027
2028 static void free_kmem_cache_nodes(struct kmem_cache *s)
2029 {
2030 int node;
2031
2032 for_each_node_state(node, N_NORMAL_MEMORY) {
2033 struct kmem_cache_node *n = s->node[node];
2034 if (n && n != &s->local_node)
2035 kmem_cache_free(kmalloc_caches, n);
2036 s->node[node] = NULL;
2037 }
2038 }
2039
2040 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2041 {
2042 int node;
2043 int local_node;
2044
2045 if (slab_state >= UP)
2046 local_node = page_to_nid(virt_to_page(s));
2047 else
2048 local_node = 0;
2049
2050 for_each_node_state(node, N_NORMAL_MEMORY) {
2051 struct kmem_cache_node *n;
2052
2053 if (local_node == node)
2054 n = &s->local_node;
2055 else {
2056 if (slab_state == DOWN) {
2057 n = early_kmem_cache_node_alloc(gfpflags,
2058 node);
2059 continue;
2060 }
2061 n = kmem_cache_alloc_node(kmalloc_caches,
2062 gfpflags, node);
2063
2064 if (!n) {
2065 free_kmem_cache_nodes(s);
2066 return 0;
2067 }
2068
2069 }
2070 s->node[node] = n;
2071 init_kmem_cache_node(n);
2072 }
2073 return 1;
2074 }
2075 #else
2076 static void free_kmem_cache_nodes(struct kmem_cache *s)
2077 {
2078 }
2079
2080 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2081 {
2082 init_kmem_cache_node(&s->local_node);
2083 return 1;
2084 }
2085 #endif
2086
2087 /*
2088 * calculate_sizes() determines the order and the distribution of data within
2089 * a slab object.
2090 */
2091 static int calculate_sizes(struct kmem_cache *s)
2092 {
2093 unsigned long flags = s->flags;
2094 unsigned long size = s->objsize;
2095 unsigned long align = s->align;
2096
2097 /*
2098 * Determine if we can poison the object itself. If the user of
2099 * the slab may touch the object after free or before allocation
2100 * then we should never poison the object itself.
2101 */
2102 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2103 !s->ctor)
2104 s->flags |= __OBJECT_POISON;
2105 else
2106 s->flags &= ~__OBJECT_POISON;
2107
2108 /*
2109 * Round up object size to the next word boundary. We can only
2110 * place the free pointer at word boundaries and this determines
2111 * the possible location of the free pointer.
2112 */
2113 size = ALIGN(size, sizeof(void *));
2114
2115 #ifdef CONFIG_SLUB_DEBUG
2116 /*
2117 * If we are Redzoning then check if there is some space between the
2118 * end of the object and the free pointer. If not then add an
2119 * additional word to have some bytes to store Redzone information.
2120 */
2121 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2122 size += sizeof(void *);
2123 #endif
2124
2125 /*
2126 * With that we have determined the number of bytes in actual use
2127 * by the object. This is the potential offset to the free pointer.
2128 */
2129 s->inuse = size;
2130
2131 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2132 s->ctor)) {
2133 /*
2134 * Relocate free pointer after the object if it is not
2135 * permitted to overwrite the first word of the object on
2136 * kmem_cache_free.
2137 *
2138 * This is the case if we do RCU, have a constructor or
2139 * destructor or are poisoning the objects.
2140 */
2141 s->offset = size;
2142 size += sizeof(void *);
2143 }
2144
2145 #ifdef CONFIG_SLUB_DEBUG
2146 if (flags & SLAB_STORE_USER)
2147 /*
2148 * Need to store information about allocs and frees after
2149 * the object.
2150 */
2151 size += 2 * sizeof(struct track);
2152
2153 if (flags & SLAB_RED_ZONE)
2154 /*
2155 * Add some empty padding so that we can catch
2156 * overwrites from earlier objects rather than let
2157 * tracking information or the free pointer be
2158 * corrupted if an user writes before the start
2159 * of the object.
2160 */
2161 size += sizeof(void *);
2162 #endif
2163
2164 /*
2165 * Determine the alignment based on various parameters that the
2166 * user specified and the dynamic determination of cache line size
2167 * on bootup.
2168 */
2169 align = calculate_alignment(flags, align, s->objsize);
2170
2171 /*
2172 * SLUB stores one object immediately after another beginning from
2173 * offset 0. In order to align the objects we have to simply size
2174 * each object to conform to the alignment.
2175 */
2176 size = ALIGN(size, align);
2177 s->size = size;
2178
2179 s->order = calculate_order(size);
2180 if (s->order < 0)
2181 return 0;
2182
2183 /*
2184 * Determine the number of objects per slab
2185 */
2186 s->objects = (PAGE_SIZE << s->order) / size;
2187
2188 return !!s->objects;
2189
2190 }
2191
2192 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2193 const char *name, size_t size,
2194 size_t align, unsigned long flags,
2195 void (*ctor)(struct kmem_cache *, void *))
2196 {
2197 memset(s, 0, kmem_size);
2198 s->name = name;
2199 s->ctor = ctor;
2200 s->objsize = size;
2201 s->align = align;
2202 s->flags = kmem_cache_flags(size, flags, name, ctor);
2203
2204 if (!calculate_sizes(s))
2205 goto error;
2206
2207 s->refcount = 1;
2208 #ifdef CONFIG_NUMA
2209 s->defrag_ratio = 100;
2210 #endif
2211 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2212 goto error;
2213
2214 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2215 return 1;
2216 free_kmem_cache_nodes(s);
2217 error:
2218 if (flags & SLAB_PANIC)
2219 panic("Cannot create slab %s size=%lu realsize=%u "
2220 "order=%u offset=%u flags=%lx\n",
2221 s->name, (unsigned long)size, s->size, s->order,
2222 s->offset, flags);
2223 return 0;
2224 }
2225
2226 /*
2227 * Check if a given pointer is valid
2228 */
2229 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2230 {
2231 struct page * page;
2232
2233 page = get_object_page(object);
2234
2235 if (!page || s != page->slab)
2236 /* No slab or wrong slab */
2237 return 0;
2238
2239 if (!check_valid_pointer(s, page, object))
2240 return 0;
2241
2242 /*
2243 * We could also check if the object is on the slabs freelist.
2244 * But this would be too expensive and it seems that the main
2245 * purpose of kmem_ptr_valid is to check if the object belongs
2246 * to a certain slab.
2247 */
2248 return 1;
2249 }
2250 EXPORT_SYMBOL(kmem_ptr_validate);
2251
2252 /*
2253 * Determine the size of a slab object
2254 */
2255 unsigned int kmem_cache_size(struct kmem_cache *s)
2256 {
2257 return s->objsize;
2258 }
2259 EXPORT_SYMBOL(kmem_cache_size);
2260
2261 const char *kmem_cache_name(struct kmem_cache *s)
2262 {
2263 return s->name;
2264 }
2265 EXPORT_SYMBOL(kmem_cache_name);
2266
2267 /*
2268 * Attempt to free all slabs on a node. Return the number of slabs we
2269 * were unable to free.
2270 */
2271 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2272 struct list_head *list)
2273 {
2274 int slabs_inuse = 0;
2275 unsigned long flags;
2276 struct page *page, *h;
2277
2278 spin_lock_irqsave(&n->list_lock, flags);
2279 list_for_each_entry_safe(page, h, list, lru)
2280 if (!page->inuse) {
2281 list_del(&page->lru);
2282 discard_slab(s, page);
2283 } else
2284 slabs_inuse++;
2285 spin_unlock_irqrestore(&n->list_lock, flags);
2286 return slabs_inuse;
2287 }
2288
2289 /*
2290 * Release all resources used by a slab cache.
2291 */
2292 static inline int kmem_cache_close(struct kmem_cache *s)
2293 {
2294 int node;
2295
2296 flush_all(s);
2297
2298 /* Attempt to free all objects */
2299 free_kmem_cache_cpus(s);
2300 for_each_node_state(node, N_NORMAL_MEMORY) {
2301 struct kmem_cache_node *n = get_node(s, node);
2302
2303 n->nr_partial -= free_list(s, n, &n->partial);
2304 if (atomic_long_read(&n->nr_slabs))
2305 return 1;
2306 }
2307 free_kmem_cache_nodes(s);
2308 return 0;
2309 }
2310
2311 /*
2312 * Close a cache and release the kmem_cache structure
2313 * (must be used for caches created using kmem_cache_create)
2314 */
2315 void kmem_cache_destroy(struct kmem_cache *s)
2316 {
2317 down_write(&slub_lock);
2318 s->refcount--;
2319 if (!s->refcount) {
2320 list_del(&s->list);
2321 up_write(&slub_lock);
2322 if (kmem_cache_close(s))
2323 WARN_ON(1);
2324 sysfs_slab_remove(s);
2325 kfree(s);
2326 } else
2327 up_write(&slub_lock);
2328 }
2329 EXPORT_SYMBOL(kmem_cache_destroy);
2330
2331 /********************************************************************
2332 * Kmalloc subsystem
2333 *******************************************************************/
2334
2335 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2336 EXPORT_SYMBOL(kmalloc_caches);
2337
2338 #ifdef CONFIG_ZONE_DMA
2339 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2340 #endif
2341
2342 static int __init setup_slub_min_order(char *str)
2343 {
2344 get_option (&str, &slub_min_order);
2345
2346 return 1;
2347 }
2348
2349 __setup("slub_min_order=", setup_slub_min_order);
2350
2351 static int __init setup_slub_max_order(char *str)
2352 {
2353 get_option (&str, &slub_max_order);
2354
2355 return 1;
2356 }
2357
2358 __setup("slub_max_order=", setup_slub_max_order);
2359
2360 static int __init setup_slub_min_objects(char *str)
2361 {
2362 get_option (&str, &slub_min_objects);
2363
2364 return 1;
2365 }
2366
2367 __setup("slub_min_objects=", setup_slub_min_objects);
2368
2369 static int __init setup_slub_nomerge(char *str)
2370 {
2371 slub_nomerge = 1;
2372 return 1;
2373 }
2374
2375 __setup("slub_nomerge", setup_slub_nomerge);
2376
2377 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2378 const char *name, int size, gfp_t gfp_flags)
2379 {
2380 unsigned int flags = 0;
2381
2382 if (gfp_flags & SLUB_DMA)
2383 flags = SLAB_CACHE_DMA;
2384
2385 down_write(&slub_lock);
2386 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2387 flags, NULL))
2388 goto panic;
2389
2390 list_add(&s->list, &slab_caches);
2391 up_write(&slub_lock);
2392 if (sysfs_slab_add(s))
2393 goto panic;
2394 return s;
2395
2396 panic:
2397 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2398 }
2399
2400 #ifdef CONFIG_ZONE_DMA
2401
2402 static void sysfs_add_func(struct work_struct *w)
2403 {
2404 struct kmem_cache *s;
2405
2406 down_write(&slub_lock);
2407 list_for_each_entry(s, &slab_caches, list) {
2408 if (s->flags & __SYSFS_ADD_DEFERRED) {
2409 s->flags &= ~__SYSFS_ADD_DEFERRED;
2410 sysfs_slab_add(s);
2411 }
2412 }
2413 up_write(&slub_lock);
2414 }
2415
2416 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2417
2418 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2419 {
2420 struct kmem_cache *s;
2421 char *text;
2422 size_t realsize;
2423
2424 s = kmalloc_caches_dma[index];
2425 if (s)
2426 return s;
2427
2428 /* Dynamically create dma cache */
2429 if (flags & __GFP_WAIT)
2430 down_write(&slub_lock);
2431 else {
2432 if (!down_write_trylock(&slub_lock))
2433 goto out;
2434 }
2435
2436 if (kmalloc_caches_dma[index])
2437 goto unlock_out;
2438
2439 realsize = kmalloc_caches[index].objsize;
2440 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2441 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2442
2443 if (!s || !text || !kmem_cache_open(s, flags, text,
2444 realsize, ARCH_KMALLOC_MINALIGN,
2445 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2446 kfree(s);
2447 kfree(text);
2448 goto unlock_out;
2449 }
2450
2451 list_add(&s->list, &slab_caches);
2452 kmalloc_caches_dma[index] = s;
2453
2454 schedule_work(&sysfs_add_work);
2455
2456 unlock_out:
2457 up_write(&slub_lock);
2458 out:
2459 return kmalloc_caches_dma[index];
2460 }
2461 #endif
2462
2463 /*
2464 * Conversion table for small slabs sizes / 8 to the index in the
2465 * kmalloc array. This is necessary for slabs < 192 since we have non power
2466 * of two cache sizes there. The size of larger slabs can be determined using
2467 * fls.
2468 */
2469 static s8 size_index[24] = {
2470 3, /* 8 */
2471 4, /* 16 */
2472 5, /* 24 */
2473 5, /* 32 */
2474 6, /* 40 */
2475 6, /* 48 */
2476 6, /* 56 */
2477 6, /* 64 */
2478 1, /* 72 */
2479 1, /* 80 */
2480 1, /* 88 */
2481 1, /* 96 */
2482 7, /* 104 */
2483 7, /* 112 */
2484 7, /* 120 */
2485 7, /* 128 */
2486 2, /* 136 */
2487 2, /* 144 */
2488 2, /* 152 */
2489 2, /* 160 */
2490 2, /* 168 */
2491 2, /* 176 */
2492 2, /* 184 */
2493 2 /* 192 */
2494 };
2495
2496 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2497 {
2498 int index;
2499
2500 if (size <= 192) {
2501 if (!size)
2502 return ZERO_SIZE_PTR;
2503
2504 index = size_index[(size - 1) / 8];
2505 } else
2506 index = fls(size - 1);
2507
2508 #ifdef CONFIG_ZONE_DMA
2509 if (unlikely((flags & SLUB_DMA)))
2510 return dma_kmalloc_cache(index, flags);
2511
2512 #endif
2513 return &kmalloc_caches[index];
2514 }
2515
2516 void *__kmalloc(size_t size, gfp_t flags)
2517 {
2518 struct kmem_cache *s;
2519
2520 if (unlikely(size > PAGE_SIZE / 2))
2521 return (void *)__get_free_pages(flags | __GFP_COMP,
2522 get_order(size));
2523
2524 s = get_slab(size, flags);
2525
2526 if (unlikely(ZERO_OR_NULL_PTR(s)))
2527 return s;
2528
2529 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2530 }
2531 EXPORT_SYMBOL(__kmalloc);
2532
2533 #ifdef CONFIG_NUMA
2534 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2535 {
2536 struct kmem_cache *s;
2537
2538 if (unlikely(size > PAGE_SIZE / 2))
2539 return (void *)__get_free_pages(flags | __GFP_COMP,
2540 get_order(size));
2541
2542 s = get_slab(size, flags);
2543
2544 if (unlikely(ZERO_OR_NULL_PTR(s)))
2545 return s;
2546
2547 return slab_alloc(s, flags, node, __builtin_return_address(0));
2548 }
2549 EXPORT_SYMBOL(__kmalloc_node);
2550 #endif
2551
2552 size_t ksize(const void *object)
2553 {
2554 struct page *page;
2555 struct kmem_cache *s;
2556
2557 BUG_ON(!object);
2558 if (unlikely(object == ZERO_SIZE_PTR))
2559 return 0;
2560
2561 page = get_object_page(object);
2562 BUG_ON(!page);
2563 s = page->slab;
2564 BUG_ON(!s);
2565
2566 /*
2567 * Debugging requires use of the padding between object
2568 * and whatever may come after it.
2569 */
2570 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2571 return s->objsize;
2572
2573 /*
2574 * If we have the need to store the freelist pointer
2575 * back there or track user information then we can
2576 * only use the space before that information.
2577 */
2578 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2579 return s->inuse;
2580
2581 /*
2582 * Else we can use all the padding etc for the allocation
2583 */
2584 return s->size;
2585 }
2586 EXPORT_SYMBOL(ksize);
2587
2588 void kfree(const void *x)
2589 {
2590 struct page *page;
2591
2592 if (unlikely(ZERO_OR_NULL_PTR(x)))
2593 return;
2594
2595 page = virt_to_head_page(x);
2596 if (unlikely(!PageSlab(page))) {
2597 put_page(page);
2598 return;
2599 }
2600 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2601 }
2602 EXPORT_SYMBOL(kfree);
2603
2604 /*
2605 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2606 * the remaining slabs by the number of items in use. The slabs with the
2607 * most items in use come first. New allocations will then fill those up
2608 * and thus they can be removed from the partial lists.
2609 *
2610 * The slabs with the least items are placed last. This results in them
2611 * being allocated from last increasing the chance that the last objects
2612 * are freed in them.
2613 */
2614 int kmem_cache_shrink(struct kmem_cache *s)
2615 {
2616 int node;
2617 int i;
2618 struct kmem_cache_node *n;
2619 struct page *page;
2620 struct page *t;
2621 struct list_head *slabs_by_inuse =
2622 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2623 unsigned long flags;
2624
2625 if (!slabs_by_inuse)
2626 return -ENOMEM;
2627
2628 flush_all(s);
2629 for_each_node_state(node, N_NORMAL_MEMORY) {
2630 n = get_node(s, node);
2631
2632 if (!n->nr_partial)
2633 continue;
2634
2635 for (i = 0; i < s->objects; i++)
2636 INIT_LIST_HEAD(slabs_by_inuse + i);
2637
2638 spin_lock_irqsave(&n->list_lock, flags);
2639
2640 /*
2641 * Build lists indexed by the items in use in each slab.
2642 *
2643 * Note that concurrent frees may occur while we hold the
2644 * list_lock. page->inuse here is the upper limit.
2645 */
2646 list_for_each_entry_safe(page, t, &n->partial, lru) {
2647 if (!page->inuse && slab_trylock(page)) {
2648 /*
2649 * Must hold slab lock here because slab_free
2650 * may have freed the last object and be
2651 * waiting to release the slab.
2652 */
2653 list_del(&page->lru);
2654 n->nr_partial--;
2655 slab_unlock(page);
2656 discard_slab(s, page);
2657 } else {
2658 list_move(&page->lru,
2659 slabs_by_inuse + page->inuse);
2660 }
2661 }
2662
2663 /*
2664 * Rebuild the partial list with the slabs filled up most
2665 * first and the least used slabs at the end.
2666 */
2667 for (i = s->objects - 1; i >= 0; i--)
2668 list_splice(slabs_by_inuse + i, n->partial.prev);
2669
2670 spin_unlock_irqrestore(&n->list_lock, flags);
2671 }
2672
2673 kfree(slabs_by_inuse);
2674 return 0;
2675 }
2676 EXPORT_SYMBOL(kmem_cache_shrink);
2677
2678 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2679 static int slab_mem_going_offline_callback(void *arg)
2680 {
2681 struct kmem_cache *s;
2682
2683 down_read(&slub_lock);
2684 list_for_each_entry(s, &slab_caches, list)
2685 kmem_cache_shrink(s);
2686 up_read(&slub_lock);
2687
2688 return 0;
2689 }
2690
2691 static void slab_mem_offline_callback(void *arg)
2692 {
2693 struct kmem_cache_node *n;
2694 struct kmem_cache *s;
2695 struct memory_notify *marg = arg;
2696 int offline_node;
2697
2698 offline_node = marg->status_change_nid;
2699
2700 /*
2701 * If the node still has available memory. we need kmem_cache_node
2702 * for it yet.
2703 */
2704 if (offline_node < 0)
2705 return;
2706
2707 down_read(&slub_lock);
2708 list_for_each_entry(s, &slab_caches, list) {
2709 n = get_node(s, offline_node);
2710 if (n) {
2711 /*
2712 * if n->nr_slabs > 0, slabs still exist on the node
2713 * that is going down. We were unable to free them,
2714 * and offline_pages() function shoudn't call this
2715 * callback. So, we must fail.
2716 */
2717 BUG_ON(atomic_long_read(&n->nr_slabs));
2718
2719 s->node[offline_node] = NULL;
2720 kmem_cache_free(kmalloc_caches, n);
2721 }
2722 }
2723 up_read(&slub_lock);
2724 }
2725
2726 static int slab_mem_going_online_callback(void *arg)
2727 {
2728 struct kmem_cache_node *n;
2729 struct kmem_cache *s;
2730 struct memory_notify *marg = arg;
2731 int nid = marg->status_change_nid;
2732 int ret = 0;
2733
2734 /*
2735 * If the node's memory is already available, then kmem_cache_node is
2736 * already created. Nothing to do.
2737 */
2738 if (nid < 0)
2739 return 0;
2740
2741 /*
2742 * We are bringing a node online. No memory is availabe yet. We must
2743 * allocate a kmem_cache_node structure in order to bring the node
2744 * online.
2745 */
2746 down_read(&slub_lock);
2747 list_for_each_entry(s, &slab_caches, list) {
2748 /*
2749 * XXX: kmem_cache_alloc_node will fallback to other nodes
2750 * since memory is not yet available from the node that
2751 * is brought up.
2752 */
2753 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2754 if (!n) {
2755 ret = -ENOMEM;
2756 goto out;
2757 }
2758 init_kmem_cache_node(n);
2759 s->node[nid] = n;
2760 }
2761 out:
2762 up_read(&slub_lock);
2763 return ret;
2764 }
2765
2766 static int slab_memory_callback(struct notifier_block *self,
2767 unsigned long action, void *arg)
2768 {
2769 int ret = 0;
2770
2771 switch (action) {
2772 case MEM_GOING_ONLINE:
2773 ret = slab_mem_going_online_callback(arg);
2774 break;
2775 case MEM_GOING_OFFLINE:
2776 ret = slab_mem_going_offline_callback(arg);
2777 break;
2778 case MEM_OFFLINE:
2779 case MEM_CANCEL_ONLINE:
2780 slab_mem_offline_callback(arg);
2781 break;
2782 case MEM_ONLINE:
2783 case MEM_CANCEL_OFFLINE:
2784 break;
2785 }
2786
2787 ret = notifier_from_errno(ret);
2788 return ret;
2789 }
2790
2791 #endif /* CONFIG_MEMORY_HOTPLUG */
2792
2793 /********************************************************************
2794 * Basic setup of slabs
2795 *******************************************************************/
2796
2797 void __init kmem_cache_init(void)
2798 {
2799 int i;
2800 int caches = 0;
2801
2802 init_alloc_cpu();
2803
2804 #ifdef CONFIG_NUMA
2805 /*
2806 * Must first have the slab cache available for the allocations of the
2807 * struct kmem_cache_node's. There is special bootstrap code in
2808 * kmem_cache_open for slab_state == DOWN.
2809 */
2810 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2811 sizeof(struct kmem_cache_node), GFP_KERNEL);
2812 kmalloc_caches[0].refcount = -1;
2813 caches++;
2814
2815 hotplug_memory_notifier(slab_memory_callback, 1);
2816 #endif
2817
2818 /* Able to allocate the per node structures */
2819 slab_state = PARTIAL;
2820
2821 /* Caches that are not of the two-to-the-power-of size */
2822 if (KMALLOC_MIN_SIZE <= 64) {
2823 create_kmalloc_cache(&kmalloc_caches[1],
2824 "kmalloc-96", 96, GFP_KERNEL);
2825 caches++;
2826 }
2827 if (KMALLOC_MIN_SIZE <= 128) {
2828 create_kmalloc_cache(&kmalloc_caches[2],
2829 "kmalloc-192", 192, GFP_KERNEL);
2830 caches++;
2831 }
2832
2833 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2834 create_kmalloc_cache(&kmalloc_caches[i],
2835 "kmalloc", 1 << i, GFP_KERNEL);
2836 caches++;
2837 }
2838
2839
2840 /*
2841 * Patch up the size_index table if we have strange large alignment
2842 * requirements for the kmalloc array. This is only the case for
2843 * mips it seems. The standard arches will not generate any code here.
2844 *
2845 * Largest permitted alignment is 256 bytes due to the way we
2846 * handle the index determination for the smaller caches.
2847 *
2848 * Make sure that nothing crazy happens if someone starts tinkering
2849 * around with ARCH_KMALLOC_MINALIGN
2850 */
2851 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2852 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2853
2854 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2855 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2856
2857 slab_state = UP;
2858
2859 /* Provide the correct kmalloc names now that the caches are up */
2860 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2861 kmalloc_caches[i]. name =
2862 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2863
2864 #ifdef CONFIG_SMP
2865 register_cpu_notifier(&slab_notifier);
2866 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2867 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2868 #else
2869 kmem_size = sizeof(struct kmem_cache);
2870 #endif
2871
2872
2873 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2874 " CPUs=%d, Nodes=%d\n",
2875 caches, cache_line_size(),
2876 slub_min_order, slub_max_order, slub_min_objects,
2877 nr_cpu_ids, nr_node_ids);
2878 }
2879
2880 /*
2881 * Find a mergeable slab cache
2882 */
2883 static int slab_unmergeable(struct kmem_cache *s)
2884 {
2885 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2886 return 1;
2887
2888 if (s->ctor)
2889 return 1;
2890
2891 /*
2892 * We may have set a slab to be unmergeable during bootstrap.
2893 */
2894 if (s->refcount < 0)
2895 return 1;
2896
2897 return 0;
2898 }
2899
2900 static struct kmem_cache *find_mergeable(size_t size,
2901 size_t align, unsigned long flags, const char *name,
2902 void (*ctor)(struct kmem_cache *, void *))
2903 {
2904 struct kmem_cache *s;
2905
2906 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2907 return NULL;
2908
2909 if (ctor)
2910 return NULL;
2911
2912 size = ALIGN(size, sizeof(void *));
2913 align = calculate_alignment(flags, align, size);
2914 size = ALIGN(size, align);
2915 flags = kmem_cache_flags(size, flags, name, NULL);
2916
2917 list_for_each_entry(s, &slab_caches, list) {
2918 if (slab_unmergeable(s))
2919 continue;
2920
2921 if (size > s->size)
2922 continue;
2923
2924 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2925 continue;
2926 /*
2927 * Check if alignment is compatible.
2928 * Courtesy of Adrian Drzewiecki
2929 */
2930 if ((s->size & ~(align -1)) != s->size)
2931 continue;
2932
2933 if (s->size - size >= sizeof(void *))
2934 continue;
2935
2936 return s;
2937 }
2938 return NULL;
2939 }
2940
2941 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2942 size_t align, unsigned long flags,
2943 void (*ctor)(struct kmem_cache *, void *))
2944 {
2945 struct kmem_cache *s;
2946
2947 down_write(&slub_lock);
2948 s = find_mergeable(size, align, flags, name, ctor);
2949 if (s) {
2950 int cpu;
2951
2952 s->refcount++;
2953 /*
2954 * Adjust the object sizes so that we clear
2955 * the complete object on kzalloc.
2956 */
2957 s->objsize = max(s->objsize, (int)size);
2958
2959 /*
2960 * And then we need to update the object size in the
2961 * per cpu structures
2962 */
2963 for_each_online_cpu(cpu)
2964 get_cpu_slab(s, cpu)->objsize = s->objsize;
2965 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2966 up_write(&slub_lock);
2967 if (sysfs_slab_alias(s, name))
2968 goto err;
2969 return s;
2970 }
2971 s = kmalloc(kmem_size, GFP_KERNEL);
2972 if (s) {
2973 if (kmem_cache_open(s, GFP_KERNEL, name,
2974 size, align, flags, ctor)) {
2975 list_add(&s->list, &slab_caches);
2976 up_write(&slub_lock);
2977 if (sysfs_slab_add(s))
2978 goto err;
2979 return s;
2980 }
2981 kfree(s);
2982 }
2983 up_write(&slub_lock);
2984
2985 err:
2986 if (flags & SLAB_PANIC)
2987 panic("Cannot create slabcache %s\n", name);
2988 else
2989 s = NULL;
2990 return s;
2991 }
2992 EXPORT_SYMBOL(kmem_cache_create);
2993
2994 #ifdef CONFIG_SMP
2995 /*
2996 * Use the cpu notifier to insure that the cpu slabs are flushed when
2997 * necessary.
2998 */
2999 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3000 unsigned long action, void *hcpu)
3001 {
3002 long cpu = (long)hcpu;
3003 struct kmem_cache *s;
3004 unsigned long flags;
3005
3006 switch (action) {
3007 case CPU_UP_PREPARE:
3008 case CPU_UP_PREPARE_FROZEN:
3009 init_alloc_cpu_cpu(cpu);
3010 down_read(&slub_lock);
3011 list_for_each_entry(s, &slab_caches, list)
3012 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3013 GFP_KERNEL);
3014 up_read(&slub_lock);
3015 break;
3016
3017 case CPU_UP_CANCELED:
3018 case CPU_UP_CANCELED_FROZEN:
3019 case CPU_DEAD:
3020 case CPU_DEAD_FROZEN:
3021 down_read(&slub_lock);
3022 list_for_each_entry(s, &slab_caches, list) {
3023 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3024
3025 local_irq_save(flags);
3026 __flush_cpu_slab(s, cpu);
3027 local_irq_restore(flags);
3028 free_kmem_cache_cpu(c, cpu);
3029 s->cpu_slab[cpu] = NULL;
3030 }
3031 up_read(&slub_lock);
3032 break;
3033 default:
3034 break;
3035 }
3036 return NOTIFY_OK;
3037 }
3038
3039 static struct notifier_block __cpuinitdata slab_notifier =
3040 { &slab_cpuup_callback, NULL, 0 };
3041
3042 #endif
3043
3044 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3045 {
3046 struct kmem_cache *s;
3047
3048 if (unlikely(size > PAGE_SIZE / 2))
3049 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3050 get_order(size));
3051 s = get_slab(size, gfpflags);
3052
3053 if (unlikely(ZERO_OR_NULL_PTR(s)))
3054 return s;
3055
3056 return slab_alloc(s, gfpflags, -1, caller);
3057 }
3058
3059 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3060 int node, void *caller)
3061 {
3062 struct kmem_cache *s;
3063
3064 if (unlikely(size > PAGE_SIZE / 2))
3065 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3066 get_order(size));
3067 s = get_slab(size, gfpflags);
3068
3069 if (unlikely(ZERO_OR_NULL_PTR(s)))
3070 return s;
3071
3072 return slab_alloc(s, gfpflags, node, caller);
3073 }
3074
3075 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3076 static int validate_slab(struct kmem_cache *s, struct page *page,
3077 unsigned long *map)
3078 {
3079 void *p;
3080 void *addr = page_address(page);
3081
3082 if (!check_slab(s, page) ||
3083 !on_freelist(s, page, NULL))
3084 return 0;
3085
3086 /* Now we know that a valid freelist exists */
3087 bitmap_zero(map, s->objects);
3088
3089 for_each_free_object(p, s, page->freelist) {
3090 set_bit(slab_index(p, s, addr), map);
3091 if (!check_object(s, page, p, 0))
3092 return 0;
3093 }
3094
3095 for_each_object(p, s, addr)
3096 if (!test_bit(slab_index(p, s, addr), map))
3097 if (!check_object(s, page, p, 1))
3098 return 0;
3099 return 1;
3100 }
3101
3102 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3103 unsigned long *map)
3104 {
3105 if (slab_trylock(page)) {
3106 validate_slab(s, page, map);
3107 slab_unlock(page);
3108 } else
3109 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3110 s->name, page);
3111
3112 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3113 if (!SlabDebug(page))
3114 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3115 "on slab 0x%p\n", s->name, page);
3116 } else {
3117 if (SlabDebug(page))
3118 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3119 "slab 0x%p\n", s->name, page);
3120 }
3121 }
3122
3123 static int validate_slab_node(struct kmem_cache *s,
3124 struct kmem_cache_node *n, unsigned long *map)
3125 {
3126 unsigned long count = 0;
3127 struct page *page;
3128 unsigned long flags;
3129
3130 spin_lock_irqsave(&n->list_lock, flags);
3131
3132 list_for_each_entry(page, &n->partial, lru) {
3133 validate_slab_slab(s, page, map);
3134 count++;
3135 }
3136 if (count != n->nr_partial)
3137 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3138 "counter=%ld\n", s->name, count, n->nr_partial);
3139
3140 if (!(s->flags & SLAB_STORE_USER))
3141 goto out;
3142
3143 list_for_each_entry(page, &n->full, lru) {
3144 validate_slab_slab(s, page, map);
3145 count++;
3146 }
3147 if (count != atomic_long_read(&n->nr_slabs))
3148 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3149 "counter=%ld\n", s->name, count,
3150 atomic_long_read(&n->nr_slabs));
3151
3152 out:
3153 spin_unlock_irqrestore(&n->list_lock, flags);
3154 return count;
3155 }
3156
3157 static long validate_slab_cache(struct kmem_cache *s)
3158 {
3159 int node;
3160 unsigned long count = 0;
3161 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3162 sizeof(unsigned long), GFP_KERNEL);
3163
3164 if (!map)
3165 return -ENOMEM;
3166
3167 flush_all(s);
3168 for_each_node_state(node, N_NORMAL_MEMORY) {
3169 struct kmem_cache_node *n = get_node(s, node);
3170
3171 count += validate_slab_node(s, n, map);
3172 }
3173 kfree(map);
3174 return count;
3175 }
3176
3177 #ifdef SLUB_RESILIENCY_TEST
3178 static void resiliency_test(void)
3179 {
3180 u8 *p;
3181
3182 printk(KERN_ERR "SLUB resiliency testing\n");
3183 printk(KERN_ERR "-----------------------\n");
3184 printk(KERN_ERR "A. Corruption after allocation\n");
3185
3186 p = kzalloc(16, GFP_KERNEL);
3187 p[16] = 0x12;
3188 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3189 " 0x12->0x%p\n\n", p + 16);
3190
3191 validate_slab_cache(kmalloc_caches + 4);
3192
3193 /* Hmmm... The next two are dangerous */
3194 p = kzalloc(32, GFP_KERNEL);
3195 p[32 + sizeof(void *)] = 0x34;
3196 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3197 " 0x34 -> -0x%p\n", p);
3198 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3199
3200 validate_slab_cache(kmalloc_caches + 5);
3201 p = kzalloc(64, GFP_KERNEL);
3202 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3203 *p = 0x56;
3204 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3205 p);
3206 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3207 validate_slab_cache(kmalloc_caches + 6);
3208
3209 printk(KERN_ERR "\nB. Corruption after free\n");
3210 p = kzalloc(128, GFP_KERNEL);
3211 kfree(p);
3212 *p = 0x78;
3213 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3214 validate_slab_cache(kmalloc_caches + 7);
3215
3216 p = kzalloc(256, GFP_KERNEL);
3217 kfree(p);
3218 p[50] = 0x9a;
3219 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3220 validate_slab_cache(kmalloc_caches + 8);
3221
3222 p = kzalloc(512, GFP_KERNEL);
3223 kfree(p);
3224 p[512] = 0xab;
3225 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3226 validate_slab_cache(kmalloc_caches + 9);
3227 }
3228 #else
3229 static void resiliency_test(void) {};
3230 #endif
3231
3232 /*
3233 * Generate lists of code addresses where slabcache objects are allocated
3234 * and freed.
3235 */
3236
3237 struct location {
3238 unsigned long count;
3239 void *addr;
3240 long long sum_time;
3241 long min_time;
3242 long max_time;
3243 long min_pid;
3244 long max_pid;
3245 cpumask_t cpus;
3246 nodemask_t nodes;
3247 };
3248
3249 struct loc_track {
3250 unsigned long max;
3251 unsigned long count;
3252 struct location *loc;
3253 };
3254
3255 static void free_loc_track(struct loc_track *t)
3256 {
3257 if (t->max)
3258 free_pages((unsigned long)t->loc,
3259 get_order(sizeof(struct location) * t->max));
3260 }
3261
3262 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3263 {
3264 struct location *l;
3265 int order;
3266
3267 order = get_order(sizeof(struct location) * max);
3268
3269 l = (void *)__get_free_pages(flags, order);
3270 if (!l)
3271 return 0;
3272
3273 if (t->count) {
3274 memcpy(l, t->loc, sizeof(struct location) * t->count);
3275 free_loc_track(t);
3276 }
3277 t->max = max;
3278 t->loc = l;
3279 return 1;
3280 }
3281
3282 static int add_location(struct loc_track *t, struct kmem_cache *s,
3283 const struct track *track)
3284 {
3285 long start, end, pos;
3286 struct location *l;
3287 void *caddr;
3288 unsigned long age = jiffies - track->when;
3289
3290 start = -1;
3291 end = t->count;
3292
3293 for ( ; ; ) {
3294 pos = start + (end - start + 1) / 2;
3295
3296 /*
3297 * There is nothing at "end". If we end up there
3298 * we need to add something to before end.
3299 */
3300 if (pos == end)
3301 break;
3302
3303 caddr = t->loc[pos].addr;
3304 if (track->addr == caddr) {
3305
3306 l = &t->loc[pos];
3307 l->count++;
3308 if (track->when) {
3309 l->sum_time += age;
3310 if (age < l->min_time)
3311 l->min_time = age;
3312 if (age > l->max_time)
3313 l->max_time = age;
3314
3315 if (track->pid < l->min_pid)
3316 l->min_pid = track->pid;
3317 if (track->pid > l->max_pid)
3318 l->max_pid = track->pid;
3319
3320 cpu_set(track->cpu, l->cpus);
3321 }
3322 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3323 return 1;
3324 }
3325
3326 if (track->addr < caddr)
3327 end = pos;
3328 else
3329 start = pos;
3330 }
3331
3332 /*
3333 * Not found. Insert new tracking element.
3334 */
3335 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3336 return 0;
3337
3338 l = t->loc + pos;
3339 if (pos < t->count)
3340 memmove(l + 1, l,
3341 (t->count - pos) * sizeof(struct location));
3342 t->count++;
3343 l->count = 1;
3344 l->addr = track->addr;
3345 l->sum_time = age;
3346 l->min_time = age;
3347 l->max_time = age;
3348 l->min_pid = track->pid;
3349 l->max_pid = track->pid;
3350 cpus_clear(l->cpus);
3351 cpu_set(track->cpu, l->cpus);
3352 nodes_clear(l->nodes);
3353 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3354 return 1;
3355 }
3356
3357 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3358 struct page *page, enum track_item alloc)
3359 {
3360 void *addr = page_address(page);
3361 DECLARE_BITMAP(map, s->objects);
3362 void *p;
3363
3364 bitmap_zero(map, s->objects);
3365 for_each_free_object(p, s, page->freelist)
3366 set_bit(slab_index(p, s, addr), map);
3367
3368 for_each_object(p, s, addr)
3369 if (!test_bit(slab_index(p, s, addr), map))
3370 add_location(t, s, get_track(s, p, alloc));
3371 }
3372
3373 static int list_locations(struct kmem_cache *s, char *buf,
3374 enum track_item alloc)
3375 {
3376 int n = 0;
3377 unsigned long i;
3378 struct loc_track t = { 0, 0, NULL };
3379 int node;
3380
3381 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3382 GFP_TEMPORARY))
3383 return sprintf(buf, "Out of memory\n");
3384
3385 /* Push back cpu slabs */
3386 flush_all(s);
3387
3388 for_each_node_state(node, N_NORMAL_MEMORY) {
3389 struct kmem_cache_node *n = get_node(s, node);
3390 unsigned long flags;
3391 struct page *page;
3392
3393 if (!atomic_long_read(&n->nr_slabs))
3394 continue;
3395
3396 spin_lock_irqsave(&n->list_lock, flags);
3397 list_for_each_entry(page, &n->partial, lru)
3398 process_slab(&t, s, page, alloc);
3399 list_for_each_entry(page, &n->full, lru)
3400 process_slab(&t, s, page, alloc);
3401 spin_unlock_irqrestore(&n->list_lock, flags);
3402 }
3403
3404 for (i = 0; i < t.count; i++) {
3405 struct location *l = &t.loc[i];
3406
3407 if (n > PAGE_SIZE - 100)
3408 break;
3409 n += sprintf(buf + n, "%7ld ", l->count);
3410
3411 if (l->addr)
3412 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3413 else
3414 n += sprintf(buf + n, "<not-available>");
3415
3416 if (l->sum_time != l->min_time) {
3417 unsigned long remainder;
3418
3419 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3420 l->min_time,
3421 div_long_long_rem(l->sum_time, l->count, &remainder),
3422 l->max_time);
3423 } else
3424 n += sprintf(buf + n, " age=%ld",
3425 l->min_time);
3426
3427 if (l->min_pid != l->max_pid)
3428 n += sprintf(buf + n, " pid=%ld-%ld",
3429 l->min_pid, l->max_pid);
3430 else
3431 n += sprintf(buf + n, " pid=%ld",
3432 l->min_pid);
3433
3434 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3435 n < PAGE_SIZE - 60) {
3436 n += sprintf(buf + n, " cpus=");
3437 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3438 l->cpus);
3439 }
3440
3441 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3442 n < PAGE_SIZE - 60) {
3443 n += sprintf(buf + n, " nodes=");
3444 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3445 l->nodes);
3446 }
3447
3448 n += sprintf(buf + n, "\n");
3449 }
3450
3451 free_loc_track(&t);
3452 if (!t.count)
3453 n += sprintf(buf, "No data\n");
3454 return n;
3455 }
3456
3457 static unsigned long count_partial(struct kmem_cache_node *n)
3458 {
3459 unsigned long flags;
3460 unsigned long x = 0;
3461 struct page *page;
3462
3463 spin_lock_irqsave(&n->list_lock, flags);
3464 list_for_each_entry(page, &n->partial, lru)
3465 x += page->inuse;
3466 spin_unlock_irqrestore(&n->list_lock, flags);
3467 return x;
3468 }
3469
3470 enum slab_stat_type {
3471 SL_FULL,
3472 SL_PARTIAL,
3473 SL_CPU,
3474 SL_OBJECTS
3475 };
3476
3477 #define SO_FULL (1 << SL_FULL)
3478 #define SO_PARTIAL (1 << SL_PARTIAL)
3479 #define SO_CPU (1 << SL_CPU)
3480 #define SO_OBJECTS (1 << SL_OBJECTS)
3481
3482 static unsigned long slab_objects(struct kmem_cache *s,
3483 char *buf, unsigned long flags)
3484 {
3485 unsigned long total = 0;
3486 int cpu;
3487 int node;
3488 int x;
3489 unsigned long *nodes;
3490 unsigned long *per_cpu;
3491
3492 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3493 per_cpu = nodes + nr_node_ids;
3494
3495 for_each_possible_cpu(cpu) {
3496 struct page *page;
3497 int node;
3498 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3499
3500 if (!c)
3501 continue;
3502
3503 page = c->page;
3504 node = c->node;
3505 if (node < 0)
3506 continue;
3507 if (page) {
3508 if (flags & SO_CPU) {
3509 int x = 0;
3510
3511 if (flags & SO_OBJECTS)
3512 x = page->inuse;
3513 else
3514 x = 1;
3515 total += x;
3516 nodes[node] += x;
3517 }
3518 per_cpu[node]++;
3519 }
3520 }
3521
3522 for_each_node_state(node, N_NORMAL_MEMORY) {
3523 struct kmem_cache_node *n = get_node(s, node);
3524
3525 if (flags & SO_PARTIAL) {
3526 if (flags & SO_OBJECTS)
3527 x = count_partial(n);
3528 else
3529 x = n->nr_partial;
3530 total += x;
3531 nodes[node] += x;
3532 }
3533
3534 if (flags & SO_FULL) {
3535 int full_slabs = atomic_long_read(&n->nr_slabs)
3536 - per_cpu[node]
3537 - n->nr_partial;
3538
3539 if (flags & SO_OBJECTS)
3540 x = full_slabs * s->objects;
3541 else
3542 x = full_slabs;
3543 total += x;
3544 nodes[node] += x;
3545 }
3546 }
3547
3548 x = sprintf(buf, "%lu", total);
3549 #ifdef CONFIG_NUMA
3550 for_each_node_state(node, N_NORMAL_MEMORY)
3551 if (nodes[node])
3552 x += sprintf(buf + x, " N%d=%lu",
3553 node, nodes[node]);
3554 #endif
3555 kfree(nodes);
3556 return x + sprintf(buf + x, "\n");
3557 }
3558
3559 static int any_slab_objects(struct kmem_cache *s)
3560 {
3561 int node;
3562 int cpu;
3563
3564 for_each_possible_cpu(cpu) {
3565 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3566
3567 if (c && c->page)
3568 return 1;
3569 }
3570
3571 for_each_online_node(node) {
3572 struct kmem_cache_node *n = get_node(s, node);
3573
3574 if (!n)
3575 continue;
3576
3577 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3578 return 1;
3579 }
3580 return 0;
3581 }
3582
3583 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3584 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3585
3586 struct slab_attribute {
3587 struct attribute attr;
3588 ssize_t (*show)(struct kmem_cache *s, char *buf);
3589 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3590 };
3591
3592 #define SLAB_ATTR_RO(_name) \
3593 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3594
3595 #define SLAB_ATTR(_name) \
3596 static struct slab_attribute _name##_attr = \
3597 __ATTR(_name, 0644, _name##_show, _name##_store)
3598
3599 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3600 {
3601 return sprintf(buf, "%d\n", s->size);
3602 }
3603 SLAB_ATTR_RO(slab_size);
3604
3605 static ssize_t align_show(struct kmem_cache *s, char *buf)
3606 {
3607 return sprintf(buf, "%d\n", s->align);
3608 }
3609 SLAB_ATTR_RO(align);
3610
3611 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3612 {
3613 return sprintf(buf, "%d\n", s->objsize);
3614 }
3615 SLAB_ATTR_RO(object_size);
3616
3617 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3618 {
3619 return sprintf(buf, "%d\n", s->objects);
3620 }
3621 SLAB_ATTR_RO(objs_per_slab);
3622
3623 static ssize_t order_show(struct kmem_cache *s, char *buf)
3624 {
3625 return sprintf(buf, "%d\n", s->order);
3626 }
3627 SLAB_ATTR_RO(order);
3628
3629 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3630 {
3631 if (s->ctor) {
3632 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3633
3634 return n + sprintf(buf + n, "\n");
3635 }
3636 return 0;
3637 }
3638 SLAB_ATTR_RO(ctor);
3639
3640 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3641 {
3642 return sprintf(buf, "%d\n", s->refcount - 1);
3643 }
3644 SLAB_ATTR_RO(aliases);
3645
3646 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3647 {
3648 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3649 }
3650 SLAB_ATTR_RO(slabs);
3651
3652 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3653 {
3654 return slab_objects(s, buf, SO_PARTIAL);
3655 }
3656 SLAB_ATTR_RO(partial);
3657
3658 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3659 {
3660 return slab_objects(s, buf, SO_CPU);
3661 }
3662 SLAB_ATTR_RO(cpu_slabs);
3663
3664 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3665 {
3666 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3667 }
3668 SLAB_ATTR_RO(objects);
3669
3670 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3671 {
3672 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3673 }
3674
3675 static ssize_t sanity_checks_store(struct kmem_cache *s,
3676 const char *buf, size_t length)
3677 {
3678 s->flags &= ~SLAB_DEBUG_FREE;
3679 if (buf[0] == '1')
3680 s->flags |= SLAB_DEBUG_FREE;
3681 return length;
3682 }
3683 SLAB_ATTR(sanity_checks);
3684
3685 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3686 {
3687 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3688 }
3689
3690 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3691 size_t length)
3692 {
3693 s->flags &= ~SLAB_TRACE;
3694 if (buf[0] == '1')
3695 s->flags |= SLAB_TRACE;
3696 return length;
3697 }
3698 SLAB_ATTR(trace);
3699
3700 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3701 {
3702 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3703 }
3704
3705 static ssize_t reclaim_account_store(struct kmem_cache *s,
3706 const char *buf, size_t length)
3707 {
3708 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3709 if (buf[0] == '1')
3710 s->flags |= SLAB_RECLAIM_ACCOUNT;
3711 return length;
3712 }
3713 SLAB_ATTR(reclaim_account);
3714
3715 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3716 {
3717 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3718 }
3719 SLAB_ATTR_RO(hwcache_align);
3720
3721 #ifdef CONFIG_ZONE_DMA
3722 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3723 {
3724 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3725 }
3726 SLAB_ATTR_RO(cache_dma);
3727 #endif
3728
3729 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3730 {
3731 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3732 }
3733 SLAB_ATTR_RO(destroy_by_rcu);
3734
3735 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3736 {
3737 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3738 }
3739
3740 static ssize_t red_zone_store(struct kmem_cache *s,
3741 const char *buf, size_t length)
3742 {
3743 if (any_slab_objects(s))
3744 return -EBUSY;
3745
3746 s->flags &= ~SLAB_RED_ZONE;
3747 if (buf[0] == '1')
3748 s->flags |= SLAB_RED_ZONE;
3749 calculate_sizes(s);
3750 return length;
3751 }
3752 SLAB_ATTR(red_zone);
3753
3754 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3755 {
3756 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3757 }
3758
3759 static ssize_t poison_store(struct kmem_cache *s,
3760 const char *buf, size_t length)
3761 {
3762 if (any_slab_objects(s))
3763 return -EBUSY;
3764
3765 s->flags &= ~SLAB_POISON;
3766 if (buf[0] == '1')
3767 s->flags |= SLAB_POISON;
3768 calculate_sizes(s);
3769 return length;
3770 }
3771 SLAB_ATTR(poison);
3772
3773 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3774 {
3775 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3776 }
3777
3778 static ssize_t store_user_store(struct kmem_cache *s,
3779 const char *buf, size_t length)
3780 {
3781 if (any_slab_objects(s))
3782 return -EBUSY;
3783
3784 s->flags &= ~SLAB_STORE_USER;
3785 if (buf[0] == '1')
3786 s->flags |= SLAB_STORE_USER;
3787 calculate_sizes(s);
3788 return length;
3789 }
3790 SLAB_ATTR(store_user);
3791
3792 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3793 {
3794 return 0;
3795 }
3796
3797 static ssize_t validate_store(struct kmem_cache *s,
3798 const char *buf, size_t length)
3799 {
3800 int ret = -EINVAL;
3801
3802 if (buf[0] == '1') {
3803 ret = validate_slab_cache(s);
3804 if (ret >= 0)
3805 ret = length;
3806 }
3807 return ret;
3808 }
3809 SLAB_ATTR(validate);
3810
3811 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3812 {
3813 return 0;
3814 }
3815
3816 static ssize_t shrink_store(struct kmem_cache *s,
3817 const char *buf, size_t length)
3818 {
3819 if (buf[0] == '1') {
3820 int rc = kmem_cache_shrink(s);
3821
3822 if (rc)
3823 return rc;
3824 } else
3825 return -EINVAL;
3826 return length;
3827 }
3828 SLAB_ATTR(shrink);
3829
3830 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3831 {
3832 if (!(s->flags & SLAB_STORE_USER))
3833 return -ENOSYS;
3834 return list_locations(s, buf, TRACK_ALLOC);
3835 }
3836 SLAB_ATTR_RO(alloc_calls);
3837
3838 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3839 {
3840 if (!(s->flags & SLAB_STORE_USER))
3841 return -ENOSYS;
3842 return list_locations(s, buf, TRACK_FREE);
3843 }
3844 SLAB_ATTR_RO(free_calls);
3845
3846 #ifdef CONFIG_NUMA
3847 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3848 {
3849 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3850 }
3851
3852 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3853 const char *buf, size_t length)
3854 {
3855 int n = simple_strtoul(buf, NULL, 10);
3856
3857 if (n < 100)
3858 s->defrag_ratio = n * 10;
3859 return length;
3860 }
3861 SLAB_ATTR(defrag_ratio);
3862 #endif
3863
3864 static struct attribute * slab_attrs[] = {
3865 &slab_size_attr.attr,
3866 &object_size_attr.attr,
3867 &objs_per_slab_attr.attr,
3868 &order_attr.attr,
3869 &objects_attr.attr,
3870 &slabs_attr.attr,
3871 &partial_attr.attr,
3872 &cpu_slabs_attr.attr,
3873 &ctor_attr.attr,
3874 &aliases_attr.attr,
3875 &align_attr.attr,
3876 &sanity_checks_attr.attr,
3877 &trace_attr.attr,
3878 &hwcache_align_attr.attr,
3879 &reclaim_account_attr.attr,
3880 &destroy_by_rcu_attr.attr,
3881 &red_zone_attr.attr,
3882 &poison_attr.attr,
3883 &store_user_attr.attr,
3884 &validate_attr.attr,
3885 &shrink_attr.attr,
3886 &alloc_calls_attr.attr,
3887 &free_calls_attr.attr,
3888 #ifdef CONFIG_ZONE_DMA
3889 &cache_dma_attr.attr,
3890 #endif
3891 #ifdef CONFIG_NUMA
3892 &defrag_ratio_attr.attr,
3893 #endif
3894 NULL
3895 };
3896
3897 static struct attribute_group slab_attr_group = {
3898 .attrs = slab_attrs,
3899 };
3900
3901 static ssize_t slab_attr_show(struct kobject *kobj,
3902 struct attribute *attr,
3903 char *buf)
3904 {
3905 struct slab_attribute *attribute;
3906 struct kmem_cache *s;
3907 int err;
3908
3909 attribute = to_slab_attr(attr);
3910 s = to_slab(kobj);
3911
3912 if (!attribute->show)
3913 return -EIO;
3914
3915 err = attribute->show(s, buf);
3916
3917 return err;
3918 }
3919
3920 static ssize_t slab_attr_store(struct kobject *kobj,
3921 struct attribute *attr,
3922 const char *buf, size_t len)
3923 {
3924 struct slab_attribute *attribute;
3925 struct kmem_cache *s;
3926 int err;
3927
3928 attribute = to_slab_attr(attr);
3929 s = to_slab(kobj);
3930
3931 if (!attribute->store)
3932 return -EIO;
3933
3934 err = attribute->store(s, buf, len);
3935
3936 return err;
3937 }
3938
3939 static struct sysfs_ops slab_sysfs_ops = {
3940 .show = slab_attr_show,
3941 .store = slab_attr_store,
3942 };
3943
3944 static struct kobj_type slab_ktype = {
3945 .sysfs_ops = &slab_sysfs_ops,
3946 };
3947
3948 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3949 {
3950 struct kobj_type *ktype = get_ktype(kobj);
3951
3952 if (ktype == &slab_ktype)
3953 return 1;
3954 return 0;
3955 }
3956
3957 static struct kset_uevent_ops slab_uevent_ops = {
3958 .filter = uevent_filter,
3959 };
3960
3961 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3962
3963 #define ID_STR_LENGTH 64
3964
3965 /* Create a unique string id for a slab cache:
3966 * format
3967 * :[flags-]size:[memory address of kmemcache]
3968 */
3969 static char *create_unique_id(struct kmem_cache *s)
3970 {
3971 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3972 char *p = name;
3973
3974 BUG_ON(!name);
3975
3976 *p++ = ':';
3977 /*
3978 * First flags affecting slabcache operations. We will only
3979 * get here for aliasable slabs so we do not need to support
3980 * too many flags. The flags here must cover all flags that
3981 * are matched during merging to guarantee that the id is
3982 * unique.
3983 */
3984 if (s->flags & SLAB_CACHE_DMA)
3985 *p++ = 'd';
3986 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3987 *p++ = 'a';
3988 if (s->flags & SLAB_DEBUG_FREE)
3989 *p++ = 'F';
3990 if (p != name + 1)
3991 *p++ = '-';
3992 p += sprintf(p, "%07d", s->size);
3993 BUG_ON(p > name + ID_STR_LENGTH - 1);
3994 return name;
3995 }
3996
3997 static int sysfs_slab_add(struct kmem_cache *s)
3998 {
3999 int err;
4000 const char *name;
4001 int unmergeable;
4002
4003 if (slab_state < SYSFS)
4004 /* Defer until later */
4005 return 0;
4006
4007 unmergeable = slab_unmergeable(s);
4008 if (unmergeable) {
4009 /*
4010 * Slabcache can never be merged so we can use the name proper.
4011 * This is typically the case for debug situations. In that
4012 * case we can catch duplicate names easily.
4013 */
4014 sysfs_remove_link(&slab_subsys.kobj, s->name);
4015 name = s->name;
4016 } else {
4017 /*
4018 * Create a unique name for the slab as a target
4019 * for the symlinks.
4020 */
4021 name = create_unique_id(s);
4022 }
4023
4024 kobj_set_kset_s(s, slab_subsys);
4025 kobject_set_name(&s->kobj, name);
4026 kobject_init(&s->kobj);
4027 err = kobject_add(&s->kobj);
4028 if (err)
4029 return err;
4030
4031 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4032 if (err)
4033 return err;
4034 kobject_uevent(&s->kobj, KOBJ_ADD);
4035 if (!unmergeable) {
4036 /* Setup first alias */
4037 sysfs_slab_alias(s, s->name);
4038 kfree(name);
4039 }
4040 return 0;
4041 }
4042
4043 static void sysfs_slab_remove(struct kmem_cache *s)
4044 {
4045 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4046 kobject_del(&s->kobj);
4047 }
4048
4049 /*
4050 * Need to buffer aliases during bootup until sysfs becomes
4051 * available lest we loose that information.
4052 */
4053 struct saved_alias {
4054 struct kmem_cache *s;
4055 const char *name;
4056 struct saved_alias *next;
4057 };
4058
4059 static struct saved_alias *alias_list;
4060
4061 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4062 {
4063 struct saved_alias *al;
4064
4065 if (slab_state == SYSFS) {
4066 /*
4067 * If we have a leftover link then remove it.
4068 */
4069 sysfs_remove_link(&slab_subsys.kobj, name);
4070 return sysfs_create_link(&slab_subsys.kobj,
4071 &s->kobj, name);
4072 }
4073
4074 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4075 if (!al)
4076 return -ENOMEM;
4077
4078 al->s = s;
4079 al->name = name;
4080 al->next = alias_list;
4081 alias_list = al;
4082 return 0;
4083 }
4084
4085 static int __init slab_sysfs_init(void)
4086 {
4087 struct kmem_cache *s;
4088 int err;
4089
4090 err = subsystem_register(&slab_subsys);
4091 if (err) {
4092 printk(KERN_ERR "Cannot register slab subsystem.\n");
4093 return -ENOSYS;
4094 }
4095
4096 slab_state = SYSFS;
4097
4098 list_for_each_entry(s, &slab_caches, list) {
4099 err = sysfs_slab_add(s);
4100 if (err)
4101 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4102 " to sysfs\n", s->name);
4103 }
4104
4105 while (alias_list) {
4106 struct saved_alias *al = alias_list;
4107
4108 alias_list = alias_list->next;
4109 err = sysfs_slab_alias(al->s, al->name);
4110 if (err)
4111 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4112 " %s to sysfs\n", s->name);
4113 kfree(al);
4114 }
4115
4116 resiliency_test();
4117 return 0;
4118 }
4119
4120 __initcall(slab_sysfs_init);
4121 #endif