]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
goldfish: goldfish_tty_probe() is not using 'i' any more
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
204 #else
205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
209 #endif
210
211 static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
226 /* Verify that a pointer has an address that is valid within a slab page */
227 static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229 {
230 void *base;
231
232 if (!object)
233 return 1;
234
235 base = page_address(page);
236 if (object < base || object >= base + page->objects * s->size ||
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242 }
243
244 static inline void *get_freepointer(struct kmem_cache *s, void *object)
245 {
246 return *(void **)(object + s->offset);
247 }
248
249 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250 {
251 prefetch(object + s->offset);
252 }
253
254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255 {
256 void *p;
257
258 #ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 #else
261 p = get_freepointer(s, object);
262 #endif
263 return p;
264 }
265
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 *(void **)(object + s->offset) = fp;
269 }
270
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
275
276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349 {
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361 }
362
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368 {
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
377 } else
378 #endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 set_page_slub_counters(page, counters_new);
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397
398 return 0;
399 }
400
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
413 } else
414 #endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 set_page_slub_counters(page, counters_new);
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return 1;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438
439 return 0;
440 }
441
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456 }
457
458 /*
459 * Debug settings:
460 */
461 #ifdef CONFIG_SLUB_DEBUG_ON
462 static int slub_debug = DEBUG_DEFAULT_FLAGS;
463 #else
464 static int slub_debug;
465 #endif
466
467 static char *slub_debug_slabs;
468 static int disable_higher_order_debug;
469
470 /*
471 * Object debugging
472 */
473 static void print_section(char *text, u8 *addr, unsigned int length)
474 {
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
477 }
478
479 static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481 {
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490 }
491
492 static void set_track(struct kmem_cache *s, void *object,
493 enum track_item alloc, unsigned long addr)
494 {
495 struct track *p = get_track(s, object, alloc);
496
497 if (addr) {
498 #ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515 #endif
516 p->addr = addr;
517 p->cpu = smp_processor_id();
518 p->pid = current->pid;
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522 }
523
524 static void init_tracking(struct kmem_cache *s, void *object)
525 {
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
531 }
532
533 static void print_track(const char *s, struct track *t)
534 {
535 if (!t->addr)
536 return;
537
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 #ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
545 pr_err("\t%pS\n", (void *)t->addrs[i]);
546 else
547 break;
548 }
549 #endif
550 }
551
552 static void print_tracking(struct kmem_cache *s, void *object)
553 {
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559 }
560
561 static void print_page_info(struct page *page)
562 {
563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564 page, page->objects, page->inuse, page->freelist, page->flags);
565
566 }
567
568 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569 {
570 struct va_format vaf;
571 va_list args;
572
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 pr_err("=============================================================================\n");
577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578 pr_err("-----------------------------------------------------------------------------\n\n");
579
580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 va_end(args);
582 }
583
584 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585 {
586 struct va_format vaf;
587 va_list args;
588
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
593 va_end(args);
594 }
595
596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
597 {
598 unsigned int off; /* Offset of last byte */
599 u8 *addr = page_address(page);
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
607
608 if (p > addr + 16)
609 print_section("Bytes b4 ", p - 16, 16);
610
611 print_section("Object ", p, min_t(unsigned long, s->object_size,
612 PAGE_SIZE));
613 if (s->flags & SLAB_RED_ZONE)
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
616
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
622 if (s->flags & SLAB_STORE_USER)
623 off += 2 * sizeof(struct track);
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
627 print_section("Padding ", p + off, s->size - off);
628
629 dump_stack();
630 }
631
632 static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634 {
635 slab_bug(s, "%s", reason);
636 print_trailer(s, page, object);
637 }
638
639 static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->object_size
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * object_size == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->object_size;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->object_size))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
801 }
802 }
803
804 if (s->flags & SLAB_POISON) {
805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806 (!check_bytes_and_report(s, page, p, "Poison", p,
807 POISON_FREE, s->object_size - 1) ||
808 !check_bytes_and_report(s, page, p, "Poison",
809 p + s->object_size - 1, POISON_END, 1)))
810 return 0;
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
817 if (!s->offset && val == SLUB_RED_ACTIVE)
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
828 * No choice but to zap it and thus lose the remainder
829 * of the free objects in this slab. May cause
830 * another error because the object count is now wrong.
831 */
832 set_freepointer(s, p, NULL);
833 return 0;
834 }
835 return 1;
836 }
837
838 static int check_slab(struct kmem_cache *s, struct page *page)
839 {
840 int maxobj;
841
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
845 slab_err(s, page, "Not a valid slab page");
846 return 0;
847 }
848
849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
852 s->name, page->objects, maxobj);
853 return 0;
854 }
855 if (page->inuse > page->objects) {
856 slab_err(s, page, "inuse %u > max %u",
857 s->name, page->inuse, page->objects);
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863 }
864
865 /*
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
868 */
869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 {
871 int nr = 0;
872 void *fp;
873 void *object = NULL;
874 unsigned long max_objects;
875
876 fp = page->freelist;
877 while (fp && nr <= page->objects) {
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
884 set_freepointer(s, object, NULL);
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object,
930 s->object_size);
931
932 dump_stack();
933 }
934 }
935
936 /*
937 * Tracking of fully allocated slabs for debugging purposes.
938 */
939 static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
941 {
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
945 lockdep_assert_held(&n->list_lock);
946 list_add(&page->lru, &n->full);
947 }
948
949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 {
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
954 lockdep_assert_held(&n->list_lock);
955 list_del(&page->lru);
956 }
957
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960 {
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964 }
965
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967 {
968 return atomic_long_read(&n->nr_slabs);
969 }
970
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 {
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
981 if (likely(n)) {
982 atomic_long_inc(&n->nr_slabs);
983 atomic_long_add(objects, &n->total_objects);
984 }
985 }
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
991 atomic_long_sub(objects, &n->total_objects);
992 }
993
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997 {
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
1001 init_object(s, object, SLUB_RED_INACTIVE);
1002 init_tracking(s, object);
1003 }
1004
1005 static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
1007 void *object, unsigned long addr)
1008 {
1009 if (!check_slab(s, page))
1010 goto bad;
1011
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
1014 goto bad;
1015 }
1016
1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1018 goto bad;
1019
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
1024 init_object(s, object, SLUB_RED_ACTIVE);
1025 return 1;
1026
1027 bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
1032 * as used avoids touching the remaining objects.
1033 */
1034 slab_fix(s, "Marking all objects used");
1035 page->inuse = page->objects;
1036 page->freelist = NULL;
1037 }
1038 return 0;
1039 }
1040
1041 static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
1044 {
1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046
1047 spin_lock_irqsave(&n->list_lock, *flags);
1048 slab_lock(page);
1049
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
1059 object_err(s, page, object, "Object already free");
1060 goto fail;
1061 }
1062
1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064 goto out;
1065
1066 if (unlikely(s != page->slab_cache)) {
1067 if (!PageSlab(page)) {
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1070 } else if (!page->slab_cache) {
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
1073 dump_stack();
1074 } else
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
1077 goto fail;
1078 }
1079
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
1083 init_object(s, object, SLUB_RED_INACTIVE);
1084 out:
1085 slab_unlock(page);
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
1091
1092 fail:
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
1095 slab_fix(s, "Object at 0x%p not freed", object);
1096 return NULL;
1097 }
1098
1099 static int __init setup_slub_debug(char *str)
1100 {
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
1134 for (; *str && *str != ','; str++) {
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
1154 default:
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
1157 }
1158 }
1159
1160 check_slabs:
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
1163 out:
1164 return 1;
1165 }
1166
1167 __setup("slub_debug", setup_slub_debug);
1168
1169 unsigned long kmem_cache_flags(unsigned long object_size,
1170 unsigned long flags, const char *name,
1171 void (*ctor)(void *))
1172 {
1173 /*
1174 * Enable debugging if selected on the kernel commandline.
1175 */
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178 flags |= slub_debug;
1179
1180 return flags;
1181 }
1182 #else
1183 static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
1185
1186 static inline int alloc_debug_processing(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr) { return 0; }
1188
1189 static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
1192
1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195 static inline int check_object(struct kmem_cache *s, struct page *page,
1196 void *object, u8 val) { return 1; }
1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
1201 unsigned long kmem_cache_flags(unsigned long object_size,
1202 unsigned long flags, const char *name,
1203 void (*ctor)(void *))
1204 {
1205 return flags;
1206 }
1207 #define slub_debug 0
1208
1209 #define disable_higher_order_debug 0
1210
1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
1215 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
1219
1220 #endif /* CONFIG_SLUB_DEBUG */
1221
1222 /*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227 {
1228 kmemleak_alloc(ptr, size, 1, flags);
1229 }
1230
1231 static inline void kfree_hook(const void *x)
1232 {
1233 kmemleak_free(x);
1234 }
1235
1236 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1237 {
1238 flags &= gfp_allowed_mask;
1239 lockdep_trace_alloc(flags);
1240 might_sleep_if(flags & __GFP_WAIT);
1241
1242 return should_failslab(s->object_size, flags, s->flags);
1243 }
1244
1245 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1246 gfp_t flags, void *object)
1247 {
1248 flags &= gfp_allowed_mask;
1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1251 }
1252
1253 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1254 {
1255 kmemleak_free_recursive(x, s->flags);
1256
1257 /*
1258 * Trouble is that we may no longer disable interrupts in the fast path
1259 * So in order to make the debug calls that expect irqs to be
1260 * disabled we need to disable interrupts temporarily.
1261 */
1262 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1263 {
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267 kmemcheck_slab_free(s, x, s->object_size);
1268 debug_check_no_locks_freed(x, s->object_size);
1269 local_irq_restore(flags);
1270 }
1271 #endif
1272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1273 debug_check_no_obj_freed(x, s->object_size);
1274 }
1275
1276 /*
1277 * Slab allocation and freeing
1278 */
1279 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1280 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1281 {
1282 struct page *page;
1283 int order = oo_order(oo);
1284
1285 flags |= __GFP_NOTRACK;
1286
1287 if (memcg_charge_slab(s, flags, order))
1288 return NULL;
1289
1290 if (node == NUMA_NO_NODE)
1291 page = alloc_pages(flags, order);
1292 else
1293 page = alloc_pages_exact_node(node, flags, order);
1294
1295 if (!page)
1296 memcg_uncharge_slab(s, order);
1297
1298 return page;
1299 }
1300
1301 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1302 {
1303 struct page *page;
1304 struct kmem_cache_order_objects oo = s->oo;
1305 gfp_t alloc_gfp;
1306
1307 flags &= gfp_allowed_mask;
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_enable();
1311
1312 flags |= s->allocflags;
1313
1314 /*
1315 * Let the initial higher-order allocation fail under memory pressure
1316 * so we fall-back to the minimum order allocation.
1317 */
1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1319
1320 page = alloc_slab_page(s, alloc_gfp, node, oo);
1321 if (unlikely(!page)) {
1322 oo = s->min;
1323 alloc_gfp = flags;
1324 /*
1325 * Allocation may have failed due to fragmentation.
1326 * Try a lower order alloc if possible
1327 */
1328 page = alloc_slab_page(s, alloc_gfp, node, oo);
1329
1330 if (page)
1331 stat(s, ORDER_FALLBACK);
1332 }
1333
1334 if (kmemcheck_enabled && page
1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1336 int pages = 1 << oo_order(oo);
1337
1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1339
1340 /*
1341 * Objects from caches that have a constructor don't get
1342 * cleared when they're allocated, so we need to do it here.
1343 */
1344 if (s->ctor)
1345 kmemcheck_mark_uninitialized_pages(page, pages);
1346 else
1347 kmemcheck_mark_unallocated_pages(page, pages);
1348 }
1349
1350 if (flags & __GFP_WAIT)
1351 local_irq_disable();
1352 if (!page)
1353 return NULL;
1354
1355 page->objects = oo_objects(oo);
1356 mod_zone_page_state(page_zone(page),
1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1359 1 << oo_order(oo));
1360
1361 return page;
1362 }
1363
1364 static void setup_object(struct kmem_cache *s, struct page *page,
1365 void *object)
1366 {
1367 setup_object_debug(s, page, object);
1368 if (unlikely(s->ctor))
1369 s->ctor(object);
1370 }
1371
1372 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1373 {
1374 struct page *page;
1375 void *start;
1376 void *p;
1377 int order;
1378 int idx;
1379
1380 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1381
1382 page = allocate_slab(s,
1383 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1384 if (!page)
1385 goto out;
1386
1387 order = compound_order(page);
1388 inc_slabs_node(s, page_to_nid(page), page->objects);
1389 page->slab_cache = s;
1390 __SetPageSlab(page);
1391 if (page->pfmemalloc)
1392 SetPageSlabPfmemalloc(page);
1393
1394 start = page_address(page);
1395
1396 if (unlikely(s->flags & SLAB_POISON))
1397 memset(start, POISON_INUSE, PAGE_SIZE << order);
1398
1399 for_each_object_idx(p, idx, s, start, page->objects) {
1400 setup_object(s, page, p);
1401 if (likely(idx < page->objects))
1402 set_freepointer(s, p, p + s->size);
1403 else
1404 set_freepointer(s, p, NULL);
1405 }
1406
1407 page->freelist = start;
1408 page->inuse = page->objects;
1409 page->frozen = 1;
1410 out:
1411 return page;
1412 }
1413
1414 static void __free_slab(struct kmem_cache *s, struct page *page)
1415 {
1416 int order = compound_order(page);
1417 int pages = 1 << order;
1418
1419 if (kmem_cache_debug(s)) {
1420 void *p;
1421
1422 slab_pad_check(s, page);
1423 for_each_object(p, s, page_address(page),
1424 page->objects)
1425 check_object(s, page, p, SLUB_RED_INACTIVE);
1426 }
1427
1428 kmemcheck_free_shadow(page, compound_order(page));
1429
1430 mod_zone_page_state(page_zone(page),
1431 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1432 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1433 -pages);
1434
1435 __ClearPageSlabPfmemalloc(page);
1436 __ClearPageSlab(page);
1437
1438 page_mapcount_reset(page);
1439 if (current->reclaim_state)
1440 current->reclaim_state->reclaimed_slab += pages;
1441 __free_pages(page, order);
1442 memcg_uncharge_slab(s, order);
1443 }
1444
1445 #define need_reserve_slab_rcu \
1446 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1447
1448 static void rcu_free_slab(struct rcu_head *h)
1449 {
1450 struct page *page;
1451
1452 if (need_reserve_slab_rcu)
1453 page = virt_to_head_page(h);
1454 else
1455 page = container_of((struct list_head *)h, struct page, lru);
1456
1457 __free_slab(page->slab_cache, page);
1458 }
1459
1460 static void free_slab(struct kmem_cache *s, struct page *page)
1461 {
1462 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1463 struct rcu_head *head;
1464
1465 if (need_reserve_slab_rcu) {
1466 int order = compound_order(page);
1467 int offset = (PAGE_SIZE << order) - s->reserved;
1468
1469 VM_BUG_ON(s->reserved != sizeof(*head));
1470 head = page_address(page) + offset;
1471 } else {
1472 /*
1473 * RCU free overloads the RCU head over the LRU
1474 */
1475 head = (void *)&page->lru;
1476 }
1477
1478 call_rcu(head, rcu_free_slab);
1479 } else
1480 __free_slab(s, page);
1481 }
1482
1483 static void discard_slab(struct kmem_cache *s, struct page *page)
1484 {
1485 dec_slabs_node(s, page_to_nid(page), page->objects);
1486 free_slab(s, page);
1487 }
1488
1489 /*
1490 * Management of partially allocated slabs.
1491 */
1492 static inline void
1493 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1494 {
1495 n->nr_partial++;
1496 if (tail == DEACTIVATE_TO_TAIL)
1497 list_add_tail(&page->lru, &n->partial);
1498 else
1499 list_add(&page->lru, &n->partial);
1500 }
1501
1502 static inline void add_partial(struct kmem_cache_node *n,
1503 struct page *page, int tail)
1504 {
1505 lockdep_assert_held(&n->list_lock);
1506 __add_partial(n, page, tail);
1507 }
1508
1509 static inline void
1510 __remove_partial(struct kmem_cache_node *n, struct page *page)
1511 {
1512 list_del(&page->lru);
1513 n->nr_partial--;
1514 }
1515
1516 static inline void remove_partial(struct kmem_cache_node *n,
1517 struct page *page)
1518 {
1519 lockdep_assert_held(&n->list_lock);
1520 __remove_partial(n, page);
1521 }
1522
1523 /*
1524 * Remove slab from the partial list, freeze it and
1525 * return the pointer to the freelist.
1526 *
1527 * Returns a list of objects or NULL if it fails.
1528 */
1529 static inline void *acquire_slab(struct kmem_cache *s,
1530 struct kmem_cache_node *n, struct page *page,
1531 int mode, int *objects)
1532 {
1533 void *freelist;
1534 unsigned long counters;
1535 struct page new;
1536
1537 lockdep_assert_held(&n->list_lock);
1538
1539 /*
1540 * Zap the freelist and set the frozen bit.
1541 * The old freelist is the list of objects for the
1542 * per cpu allocation list.
1543 */
1544 freelist = page->freelist;
1545 counters = page->counters;
1546 new.counters = counters;
1547 *objects = new.objects - new.inuse;
1548 if (mode) {
1549 new.inuse = page->objects;
1550 new.freelist = NULL;
1551 } else {
1552 new.freelist = freelist;
1553 }
1554
1555 VM_BUG_ON(new.frozen);
1556 new.frozen = 1;
1557
1558 if (!__cmpxchg_double_slab(s, page,
1559 freelist, counters,
1560 new.freelist, new.counters,
1561 "acquire_slab"))
1562 return NULL;
1563
1564 remove_partial(n, page);
1565 WARN_ON(!freelist);
1566 return freelist;
1567 }
1568
1569 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1570 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1571
1572 /*
1573 * Try to allocate a partial slab from a specific node.
1574 */
1575 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1576 struct kmem_cache_cpu *c, gfp_t flags)
1577 {
1578 struct page *page, *page2;
1579 void *object = NULL;
1580 int available = 0;
1581 int objects;
1582
1583 /*
1584 * Racy check. If we mistakenly see no partial slabs then we
1585 * just allocate an empty slab. If we mistakenly try to get a
1586 * partial slab and there is none available then get_partials()
1587 * will return NULL.
1588 */
1589 if (!n || !n->nr_partial)
1590 return NULL;
1591
1592 spin_lock(&n->list_lock);
1593 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1594 void *t;
1595
1596 if (!pfmemalloc_match(page, flags))
1597 continue;
1598
1599 t = acquire_slab(s, n, page, object == NULL, &objects);
1600 if (!t)
1601 break;
1602
1603 available += objects;
1604 if (!object) {
1605 c->page = page;
1606 stat(s, ALLOC_FROM_PARTIAL);
1607 object = t;
1608 } else {
1609 put_cpu_partial(s, page, 0);
1610 stat(s, CPU_PARTIAL_NODE);
1611 }
1612 if (!kmem_cache_has_cpu_partial(s)
1613 || available > s->cpu_partial / 2)
1614 break;
1615
1616 }
1617 spin_unlock(&n->list_lock);
1618 return object;
1619 }
1620
1621 /*
1622 * Get a page from somewhere. Search in increasing NUMA distances.
1623 */
1624 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1625 struct kmem_cache_cpu *c)
1626 {
1627 #ifdef CONFIG_NUMA
1628 struct zonelist *zonelist;
1629 struct zoneref *z;
1630 struct zone *zone;
1631 enum zone_type high_zoneidx = gfp_zone(flags);
1632 void *object;
1633 unsigned int cpuset_mems_cookie;
1634
1635 /*
1636 * The defrag ratio allows a configuration of the tradeoffs between
1637 * inter node defragmentation and node local allocations. A lower
1638 * defrag_ratio increases the tendency to do local allocations
1639 * instead of attempting to obtain partial slabs from other nodes.
1640 *
1641 * If the defrag_ratio is set to 0 then kmalloc() always
1642 * returns node local objects. If the ratio is higher then kmalloc()
1643 * may return off node objects because partial slabs are obtained
1644 * from other nodes and filled up.
1645 *
1646 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1647 * defrag_ratio = 1000) then every (well almost) allocation will
1648 * first attempt to defrag slab caches on other nodes. This means
1649 * scanning over all nodes to look for partial slabs which may be
1650 * expensive if we do it every time we are trying to find a slab
1651 * with available objects.
1652 */
1653 if (!s->remote_node_defrag_ratio ||
1654 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1655 return NULL;
1656
1657 do {
1658 cpuset_mems_cookie = read_mems_allowed_begin();
1659 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1660 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1661 struct kmem_cache_node *n;
1662
1663 n = get_node(s, zone_to_nid(zone));
1664
1665 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1666 n->nr_partial > s->min_partial) {
1667 object = get_partial_node(s, n, c, flags);
1668 if (object) {
1669 /*
1670 * Don't check read_mems_allowed_retry()
1671 * here - if mems_allowed was updated in
1672 * parallel, that was a harmless race
1673 * between allocation and the cpuset
1674 * update
1675 */
1676 return object;
1677 }
1678 }
1679 }
1680 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1681 #endif
1682 return NULL;
1683 }
1684
1685 /*
1686 * Get a partial page, lock it and return it.
1687 */
1688 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1689 struct kmem_cache_cpu *c)
1690 {
1691 void *object;
1692 int searchnode = node;
1693
1694 if (node == NUMA_NO_NODE)
1695 searchnode = numa_mem_id();
1696 else if (!node_present_pages(node))
1697 searchnode = node_to_mem_node(node);
1698
1699 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1700 if (object || node != NUMA_NO_NODE)
1701 return object;
1702
1703 return get_any_partial(s, flags, c);
1704 }
1705
1706 #ifdef CONFIG_PREEMPT
1707 /*
1708 * Calculate the next globally unique transaction for disambiguiation
1709 * during cmpxchg. The transactions start with the cpu number and are then
1710 * incremented by CONFIG_NR_CPUS.
1711 */
1712 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1713 #else
1714 /*
1715 * No preemption supported therefore also no need to check for
1716 * different cpus.
1717 */
1718 #define TID_STEP 1
1719 #endif
1720
1721 static inline unsigned long next_tid(unsigned long tid)
1722 {
1723 return tid + TID_STEP;
1724 }
1725
1726 static inline unsigned int tid_to_cpu(unsigned long tid)
1727 {
1728 return tid % TID_STEP;
1729 }
1730
1731 static inline unsigned long tid_to_event(unsigned long tid)
1732 {
1733 return tid / TID_STEP;
1734 }
1735
1736 static inline unsigned int init_tid(int cpu)
1737 {
1738 return cpu;
1739 }
1740
1741 static inline void note_cmpxchg_failure(const char *n,
1742 const struct kmem_cache *s, unsigned long tid)
1743 {
1744 #ifdef SLUB_DEBUG_CMPXCHG
1745 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1746
1747 pr_info("%s %s: cmpxchg redo ", n, s->name);
1748
1749 #ifdef CONFIG_PREEMPT
1750 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1751 pr_warn("due to cpu change %d -> %d\n",
1752 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1753 else
1754 #endif
1755 if (tid_to_event(tid) != tid_to_event(actual_tid))
1756 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1757 tid_to_event(tid), tid_to_event(actual_tid));
1758 else
1759 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1760 actual_tid, tid, next_tid(tid));
1761 #endif
1762 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1763 }
1764
1765 static void init_kmem_cache_cpus(struct kmem_cache *s)
1766 {
1767 int cpu;
1768
1769 for_each_possible_cpu(cpu)
1770 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1771 }
1772
1773 /*
1774 * Remove the cpu slab
1775 */
1776 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1777 void *freelist)
1778 {
1779 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1780 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1781 int lock = 0;
1782 enum slab_modes l = M_NONE, m = M_NONE;
1783 void *nextfree;
1784 int tail = DEACTIVATE_TO_HEAD;
1785 struct page new;
1786 struct page old;
1787
1788 if (page->freelist) {
1789 stat(s, DEACTIVATE_REMOTE_FREES);
1790 tail = DEACTIVATE_TO_TAIL;
1791 }
1792
1793 /*
1794 * Stage one: Free all available per cpu objects back
1795 * to the page freelist while it is still frozen. Leave the
1796 * last one.
1797 *
1798 * There is no need to take the list->lock because the page
1799 * is still frozen.
1800 */
1801 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1802 void *prior;
1803 unsigned long counters;
1804
1805 do {
1806 prior = page->freelist;
1807 counters = page->counters;
1808 set_freepointer(s, freelist, prior);
1809 new.counters = counters;
1810 new.inuse--;
1811 VM_BUG_ON(!new.frozen);
1812
1813 } while (!__cmpxchg_double_slab(s, page,
1814 prior, counters,
1815 freelist, new.counters,
1816 "drain percpu freelist"));
1817
1818 freelist = nextfree;
1819 }
1820
1821 /*
1822 * Stage two: Ensure that the page is unfrozen while the
1823 * list presence reflects the actual number of objects
1824 * during unfreeze.
1825 *
1826 * We setup the list membership and then perform a cmpxchg
1827 * with the count. If there is a mismatch then the page
1828 * is not unfrozen but the page is on the wrong list.
1829 *
1830 * Then we restart the process which may have to remove
1831 * the page from the list that we just put it on again
1832 * because the number of objects in the slab may have
1833 * changed.
1834 */
1835 redo:
1836
1837 old.freelist = page->freelist;
1838 old.counters = page->counters;
1839 VM_BUG_ON(!old.frozen);
1840
1841 /* Determine target state of the slab */
1842 new.counters = old.counters;
1843 if (freelist) {
1844 new.inuse--;
1845 set_freepointer(s, freelist, old.freelist);
1846 new.freelist = freelist;
1847 } else
1848 new.freelist = old.freelist;
1849
1850 new.frozen = 0;
1851
1852 if (!new.inuse && n->nr_partial >= s->min_partial)
1853 m = M_FREE;
1854 else if (new.freelist) {
1855 m = M_PARTIAL;
1856 if (!lock) {
1857 lock = 1;
1858 /*
1859 * Taking the spinlock removes the possiblity
1860 * that acquire_slab() will see a slab page that
1861 * is frozen
1862 */
1863 spin_lock(&n->list_lock);
1864 }
1865 } else {
1866 m = M_FULL;
1867 if (kmem_cache_debug(s) && !lock) {
1868 lock = 1;
1869 /*
1870 * This also ensures that the scanning of full
1871 * slabs from diagnostic functions will not see
1872 * any frozen slabs.
1873 */
1874 spin_lock(&n->list_lock);
1875 }
1876 }
1877
1878 if (l != m) {
1879
1880 if (l == M_PARTIAL)
1881
1882 remove_partial(n, page);
1883
1884 else if (l == M_FULL)
1885
1886 remove_full(s, n, page);
1887
1888 if (m == M_PARTIAL) {
1889
1890 add_partial(n, page, tail);
1891 stat(s, tail);
1892
1893 } else if (m == M_FULL) {
1894
1895 stat(s, DEACTIVATE_FULL);
1896 add_full(s, n, page);
1897
1898 }
1899 }
1900
1901 l = m;
1902 if (!__cmpxchg_double_slab(s, page,
1903 old.freelist, old.counters,
1904 new.freelist, new.counters,
1905 "unfreezing slab"))
1906 goto redo;
1907
1908 if (lock)
1909 spin_unlock(&n->list_lock);
1910
1911 if (m == M_FREE) {
1912 stat(s, DEACTIVATE_EMPTY);
1913 discard_slab(s, page);
1914 stat(s, FREE_SLAB);
1915 }
1916 }
1917
1918 /*
1919 * Unfreeze all the cpu partial slabs.
1920 *
1921 * This function must be called with interrupts disabled
1922 * for the cpu using c (or some other guarantee must be there
1923 * to guarantee no concurrent accesses).
1924 */
1925 static void unfreeze_partials(struct kmem_cache *s,
1926 struct kmem_cache_cpu *c)
1927 {
1928 #ifdef CONFIG_SLUB_CPU_PARTIAL
1929 struct kmem_cache_node *n = NULL, *n2 = NULL;
1930 struct page *page, *discard_page = NULL;
1931
1932 while ((page = c->partial)) {
1933 struct page new;
1934 struct page old;
1935
1936 c->partial = page->next;
1937
1938 n2 = get_node(s, page_to_nid(page));
1939 if (n != n2) {
1940 if (n)
1941 spin_unlock(&n->list_lock);
1942
1943 n = n2;
1944 spin_lock(&n->list_lock);
1945 }
1946
1947 do {
1948
1949 old.freelist = page->freelist;
1950 old.counters = page->counters;
1951 VM_BUG_ON(!old.frozen);
1952
1953 new.counters = old.counters;
1954 new.freelist = old.freelist;
1955
1956 new.frozen = 0;
1957
1958 } while (!__cmpxchg_double_slab(s, page,
1959 old.freelist, old.counters,
1960 new.freelist, new.counters,
1961 "unfreezing slab"));
1962
1963 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1964 page->next = discard_page;
1965 discard_page = page;
1966 } else {
1967 add_partial(n, page, DEACTIVATE_TO_TAIL);
1968 stat(s, FREE_ADD_PARTIAL);
1969 }
1970 }
1971
1972 if (n)
1973 spin_unlock(&n->list_lock);
1974
1975 while (discard_page) {
1976 page = discard_page;
1977 discard_page = discard_page->next;
1978
1979 stat(s, DEACTIVATE_EMPTY);
1980 discard_slab(s, page);
1981 stat(s, FREE_SLAB);
1982 }
1983 #endif
1984 }
1985
1986 /*
1987 * Put a page that was just frozen (in __slab_free) into a partial page
1988 * slot if available. This is done without interrupts disabled and without
1989 * preemption disabled. The cmpxchg is racy and may put the partial page
1990 * onto a random cpus partial slot.
1991 *
1992 * If we did not find a slot then simply move all the partials to the
1993 * per node partial list.
1994 */
1995 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1996 {
1997 #ifdef CONFIG_SLUB_CPU_PARTIAL
1998 struct page *oldpage;
1999 int pages;
2000 int pobjects;
2001
2002 do {
2003 pages = 0;
2004 pobjects = 0;
2005 oldpage = this_cpu_read(s->cpu_slab->partial);
2006
2007 if (oldpage) {
2008 pobjects = oldpage->pobjects;
2009 pages = oldpage->pages;
2010 if (drain && pobjects > s->cpu_partial) {
2011 unsigned long flags;
2012 /*
2013 * partial array is full. Move the existing
2014 * set to the per node partial list.
2015 */
2016 local_irq_save(flags);
2017 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2018 local_irq_restore(flags);
2019 oldpage = NULL;
2020 pobjects = 0;
2021 pages = 0;
2022 stat(s, CPU_PARTIAL_DRAIN);
2023 }
2024 }
2025
2026 pages++;
2027 pobjects += page->objects - page->inuse;
2028
2029 page->pages = pages;
2030 page->pobjects = pobjects;
2031 page->next = oldpage;
2032
2033 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2034 != oldpage);
2035 #endif
2036 }
2037
2038 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2039 {
2040 stat(s, CPUSLAB_FLUSH);
2041 deactivate_slab(s, c->page, c->freelist);
2042
2043 c->tid = next_tid(c->tid);
2044 c->page = NULL;
2045 c->freelist = NULL;
2046 }
2047
2048 /*
2049 * Flush cpu slab.
2050 *
2051 * Called from IPI handler with interrupts disabled.
2052 */
2053 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2054 {
2055 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2056
2057 if (likely(c)) {
2058 if (c->page)
2059 flush_slab(s, c);
2060
2061 unfreeze_partials(s, c);
2062 }
2063 }
2064
2065 static void flush_cpu_slab(void *d)
2066 {
2067 struct kmem_cache *s = d;
2068
2069 __flush_cpu_slab(s, smp_processor_id());
2070 }
2071
2072 static bool has_cpu_slab(int cpu, void *info)
2073 {
2074 struct kmem_cache *s = info;
2075 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2076
2077 return c->page || c->partial;
2078 }
2079
2080 static void flush_all(struct kmem_cache *s)
2081 {
2082 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2083 }
2084
2085 /*
2086 * Check if the objects in a per cpu structure fit numa
2087 * locality expectations.
2088 */
2089 static inline int node_match(struct page *page, int node)
2090 {
2091 #ifdef CONFIG_NUMA
2092 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2093 return 0;
2094 #endif
2095 return 1;
2096 }
2097
2098 #ifdef CONFIG_SLUB_DEBUG
2099 static int count_free(struct page *page)
2100 {
2101 return page->objects - page->inuse;
2102 }
2103
2104 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2105 {
2106 return atomic_long_read(&n->total_objects);
2107 }
2108 #endif /* CONFIG_SLUB_DEBUG */
2109
2110 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2111 static unsigned long count_partial(struct kmem_cache_node *n,
2112 int (*get_count)(struct page *))
2113 {
2114 unsigned long flags;
2115 unsigned long x = 0;
2116 struct page *page;
2117
2118 spin_lock_irqsave(&n->list_lock, flags);
2119 list_for_each_entry(page, &n->partial, lru)
2120 x += get_count(page);
2121 spin_unlock_irqrestore(&n->list_lock, flags);
2122 return x;
2123 }
2124 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2125
2126 static noinline void
2127 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2128 {
2129 #ifdef CONFIG_SLUB_DEBUG
2130 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2131 DEFAULT_RATELIMIT_BURST);
2132 int node;
2133 struct kmem_cache_node *n;
2134
2135 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2136 return;
2137
2138 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2139 nid, gfpflags);
2140 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2141 s->name, s->object_size, s->size, oo_order(s->oo),
2142 oo_order(s->min));
2143
2144 if (oo_order(s->min) > get_order(s->object_size))
2145 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2146 s->name);
2147
2148 for_each_kmem_cache_node(s, node, n) {
2149 unsigned long nr_slabs;
2150 unsigned long nr_objs;
2151 unsigned long nr_free;
2152
2153 nr_free = count_partial(n, count_free);
2154 nr_slabs = node_nr_slabs(n);
2155 nr_objs = node_nr_objs(n);
2156
2157 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2158 node, nr_slabs, nr_objs, nr_free);
2159 }
2160 #endif
2161 }
2162
2163 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2164 int node, struct kmem_cache_cpu **pc)
2165 {
2166 void *freelist;
2167 struct kmem_cache_cpu *c = *pc;
2168 struct page *page;
2169
2170 freelist = get_partial(s, flags, node, c);
2171
2172 if (freelist)
2173 return freelist;
2174
2175 page = new_slab(s, flags, node);
2176 if (page) {
2177 c = raw_cpu_ptr(s->cpu_slab);
2178 if (c->page)
2179 flush_slab(s, c);
2180
2181 /*
2182 * No other reference to the page yet so we can
2183 * muck around with it freely without cmpxchg
2184 */
2185 freelist = page->freelist;
2186 page->freelist = NULL;
2187
2188 stat(s, ALLOC_SLAB);
2189 c->page = page;
2190 *pc = c;
2191 } else
2192 freelist = NULL;
2193
2194 return freelist;
2195 }
2196
2197 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2198 {
2199 if (unlikely(PageSlabPfmemalloc(page)))
2200 return gfp_pfmemalloc_allowed(gfpflags);
2201
2202 return true;
2203 }
2204
2205 /*
2206 * Check the page->freelist of a page and either transfer the freelist to the
2207 * per cpu freelist or deactivate the page.
2208 *
2209 * The page is still frozen if the return value is not NULL.
2210 *
2211 * If this function returns NULL then the page has been unfrozen.
2212 *
2213 * This function must be called with interrupt disabled.
2214 */
2215 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2216 {
2217 struct page new;
2218 unsigned long counters;
2219 void *freelist;
2220
2221 do {
2222 freelist = page->freelist;
2223 counters = page->counters;
2224
2225 new.counters = counters;
2226 VM_BUG_ON(!new.frozen);
2227
2228 new.inuse = page->objects;
2229 new.frozen = freelist != NULL;
2230
2231 } while (!__cmpxchg_double_slab(s, page,
2232 freelist, counters,
2233 NULL, new.counters,
2234 "get_freelist"));
2235
2236 return freelist;
2237 }
2238
2239 /*
2240 * Slow path. The lockless freelist is empty or we need to perform
2241 * debugging duties.
2242 *
2243 * Processing is still very fast if new objects have been freed to the
2244 * regular freelist. In that case we simply take over the regular freelist
2245 * as the lockless freelist and zap the regular freelist.
2246 *
2247 * If that is not working then we fall back to the partial lists. We take the
2248 * first element of the freelist as the object to allocate now and move the
2249 * rest of the freelist to the lockless freelist.
2250 *
2251 * And if we were unable to get a new slab from the partial slab lists then
2252 * we need to allocate a new slab. This is the slowest path since it involves
2253 * a call to the page allocator and the setup of a new slab.
2254 */
2255 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2256 unsigned long addr, struct kmem_cache_cpu *c)
2257 {
2258 void *freelist;
2259 struct page *page;
2260 unsigned long flags;
2261
2262 local_irq_save(flags);
2263 #ifdef CONFIG_PREEMPT
2264 /*
2265 * We may have been preempted and rescheduled on a different
2266 * cpu before disabling interrupts. Need to reload cpu area
2267 * pointer.
2268 */
2269 c = this_cpu_ptr(s->cpu_slab);
2270 #endif
2271
2272 page = c->page;
2273 if (!page)
2274 goto new_slab;
2275 redo:
2276
2277 if (unlikely(!node_match(page, node))) {
2278 int searchnode = node;
2279
2280 if (node != NUMA_NO_NODE && !node_present_pages(node))
2281 searchnode = node_to_mem_node(node);
2282
2283 if (unlikely(!node_match(page, searchnode))) {
2284 stat(s, ALLOC_NODE_MISMATCH);
2285 deactivate_slab(s, page, c->freelist);
2286 c->page = NULL;
2287 c->freelist = NULL;
2288 goto new_slab;
2289 }
2290 }
2291
2292 /*
2293 * By rights, we should be searching for a slab page that was
2294 * PFMEMALLOC but right now, we are losing the pfmemalloc
2295 * information when the page leaves the per-cpu allocator
2296 */
2297 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2298 deactivate_slab(s, page, c->freelist);
2299 c->page = NULL;
2300 c->freelist = NULL;
2301 goto new_slab;
2302 }
2303
2304 /* must check again c->freelist in case of cpu migration or IRQ */
2305 freelist = c->freelist;
2306 if (freelist)
2307 goto load_freelist;
2308
2309 freelist = get_freelist(s, page);
2310
2311 if (!freelist) {
2312 c->page = NULL;
2313 stat(s, DEACTIVATE_BYPASS);
2314 goto new_slab;
2315 }
2316
2317 stat(s, ALLOC_REFILL);
2318
2319 load_freelist:
2320 /*
2321 * freelist is pointing to the list of objects to be used.
2322 * page is pointing to the page from which the objects are obtained.
2323 * That page must be frozen for per cpu allocations to work.
2324 */
2325 VM_BUG_ON(!c->page->frozen);
2326 c->freelist = get_freepointer(s, freelist);
2327 c->tid = next_tid(c->tid);
2328 local_irq_restore(flags);
2329 return freelist;
2330
2331 new_slab:
2332
2333 if (c->partial) {
2334 page = c->page = c->partial;
2335 c->partial = page->next;
2336 stat(s, CPU_PARTIAL_ALLOC);
2337 c->freelist = NULL;
2338 goto redo;
2339 }
2340
2341 freelist = new_slab_objects(s, gfpflags, node, &c);
2342
2343 if (unlikely(!freelist)) {
2344 slab_out_of_memory(s, gfpflags, node);
2345 local_irq_restore(flags);
2346 return NULL;
2347 }
2348
2349 page = c->page;
2350 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2351 goto load_freelist;
2352
2353 /* Only entered in the debug case */
2354 if (kmem_cache_debug(s) &&
2355 !alloc_debug_processing(s, page, freelist, addr))
2356 goto new_slab; /* Slab failed checks. Next slab needed */
2357
2358 deactivate_slab(s, page, get_freepointer(s, freelist));
2359 c->page = NULL;
2360 c->freelist = NULL;
2361 local_irq_restore(flags);
2362 return freelist;
2363 }
2364
2365 /*
2366 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2367 * have the fastpath folded into their functions. So no function call
2368 * overhead for requests that can be satisfied on the fastpath.
2369 *
2370 * The fastpath works by first checking if the lockless freelist can be used.
2371 * If not then __slab_alloc is called for slow processing.
2372 *
2373 * Otherwise we can simply pick the next object from the lockless free list.
2374 */
2375 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2376 gfp_t gfpflags, int node, unsigned long addr)
2377 {
2378 void **object;
2379 struct kmem_cache_cpu *c;
2380 struct page *page;
2381 unsigned long tid;
2382
2383 if (slab_pre_alloc_hook(s, gfpflags))
2384 return NULL;
2385
2386 s = memcg_kmem_get_cache(s, gfpflags);
2387 redo:
2388 /*
2389 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2390 * enabled. We may switch back and forth between cpus while
2391 * reading from one cpu area. That does not matter as long
2392 * as we end up on the original cpu again when doing the cmpxchg.
2393 *
2394 * Preemption is disabled for the retrieval of the tid because that
2395 * must occur from the current processor. We cannot allow rescheduling
2396 * on a different processor between the determination of the pointer
2397 * and the retrieval of the tid.
2398 */
2399 preempt_disable();
2400 c = this_cpu_ptr(s->cpu_slab);
2401
2402 /*
2403 * The transaction ids are globally unique per cpu and per operation on
2404 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2405 * occurs on the right processor and that there was no operation on the
2406 * linked list in between.
2407 */
2408 tid = c->tid;
2409 preempt_enable();
2410
2411 object = c->freelist;
2412 page = c->page;
2413 if (unlikely(!object || !node_match(page, node))) {
2414 object = __slab_alloc(s, gfpflags, node, addr, c);
2415 stat(s, ALLOC_SLOWPATH);
2416 } else {
2417 void *next_object = get_freepointer_safe(s, object);
2418
2419 /*
2420 * The cmpxchg will only match if there was no additional
2421 * operation and if we are on the right processor.
2422 *
2423 * The cmpxchg does the following atomically (without lock
2424 * semantics!)
2425 * 1. Relocate first pointer to the current per cpu area.
2426 * 2. Verify that tid and freelist have not been changed
2427 * 3. If they were not changed replace tid and freelist
2428 *
2429 * Since this is without lock semantics the protection is only
2430 * against code executing on this cpu *not* from access by
2431 * other cpus.
2432 */
2433 if (unlikely(!this_cpu_cmpxchg_double(
2434 s->cpu_slab->freelist, s->cpu_slab->tid,
2435 object, tid,
2436 next_object, next_tid(tid)))) {
2437
2438 note_cmpxchg_failure("slab_alloc", s, tid);
2439 goto redo;
2440 }
2441 prefetch_freepointer(s, next_object);
2442 stat(s, ALLOC_FASTPATH);
2443 }
2444
2445 if (unlikely(gfpflags & __GFP_ZERO) && object)
2446 memset(object, 0, s->object_size);
2447
2448 slab_post_alloc_hook(s, gfpflags, object);
2449
2450 return object;
2451 }
2452
2453 static __always_inline void *slab_alloc(struct kmem_cache *s,
2454 gfp_t gfpflags, unsigned long addr)
2455 {
2456 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2457 }
2458
2459 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2460 {
2461 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2462
2463 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2464 s->size, gfpflags);
2465
2466 return ret;
2467 }
2468 EXPORT_SYMBOL(kmem_cache_alloc);
2469
2470 #ifdef CONFIG_TRACING
2471 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2472 {
2473 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2474 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2475 return ret;
2476 }
2477 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2478 #endif
2479
2480 #ifdef CONFIG_NUMA
2481 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2482 {
2483 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2484
2485 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2486 s->object_size, s->size, gfpflags, node);
2487
2488 return ret;
2489 }
2490 EXPORT_SYMBOL(kmem_cache_alloc_node);
2491
2492 #ifdef CONFIG_TRACING
2493 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2494 gfp_t gfpflags,
2495 int node, size_t size)
2496 {
2497 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2498
2499 trace_kmalloc_node(_RET_IP_, ret,
2500 size, s->size, gfpflags, node);
2501 return ret;
2502 }
2503 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2504 #endif
2505 #endif
2506
2507 /*
2508 * Slow patch handling. This may still be called frequently since objects
2509 * have a longer lifetime than the cpu slabs in most processing loads.
2510 *
2511 * So we still attempt to reduce cache line usage. Just take the slab
2512 * lock and free the item. If there is no additional partial page
2513 * handling required then we can return immediately.
2514 */
2515 static void __slab_free(struct kmem_cache *s, struct page *page,
2516 void *x, unsigned long addr)
2517 {
2518 void *prior;
2519 void **object = (void *)x;
2520 int was_frozen;
2521 struct page new;
2522 unsigned long counters;
2523 struct kmem_cache_node *n = NULL;
2524 unsigned long uninitialized_var(flags);
2525
2526 stat(s, FREE_SLOWPATH);
2527
2528 if (kmem_cache_debug(s) &&
2529 !(n = free_debug_processing(s, page, x, addr, &flags)))
2530 return;
2531
2532 do {
2533 if (unlikely(n)) {
2534 spin_unlock_irqrestore(&n->list_lock, flags);
2535 n = NULL;
2536 }
2537 prior = page->freelist;
2538 counters = page->counters;
2539 set_freepointer(s, object, prior);
2540 new.counters = counters;
2541 was_frozen = new.frozen;
2542 new.inuse--;
2543 if ((!new.inuse || !prior) && !was_frozen) {
2544
2545 if (kmem_cache_has_cpu_partial(s) && !prior) {
2546
2547 /*
2548 * Slab was on no list before and will be
2549 * partially empty
2550 * We can defer the list move and instead
2551 * freeze it.
2552 */
2553 new.frozen = 1;
2554
2555 } else { /* Needs to be taken off a list */
2556
2557 n = get_node(s, page_to_nid(page));
2558 /*
2559 * Speculatively acquire the list_lock.
2560 * If the cmpxchg does not succeed then we may
2561 * drop the list_lock without any processing.
2562 *
2563 * Otherwise the list_lock will synchronize with
2564 * other processors updating the list of slabs.
2565 */
2566 spin_lock_irqsave(&n->list_lock, flags);
2567
2568 }
2569 }
2570
2571 } while (!cmpxchg_double_slab(s, page,
2572 prior, counters,
2573 object, new.counters,
2574 "__slab_free"));
2575
2576 if (likely(!n)) {
2577
2578 /*
2579 * If we just froze the page then put it onto the
2580 * per cpu partial list.
2581 */
2582 if (new.frozen && !was_frozen) {
2583 put_cpu_partial(s, page, 1);
2584 stat(s, CPU_PARTIAL_FREE);
2585 }
2586 /*
2587 * The list lock was not taken therefore no list
2588 * activity can be necessary.
2589 */
2590 if (was_frozen)
2591 stat(s, FREE_FROZEN);
2592 return;
2593 }
2594
2595 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2596 goto slab_empty;
2597
2598 /*
2599 * Objects left in the slab. If it was not on the partial list before
2600 * then add it.
2601 */
2602 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2603 if (kmem_cache_debug(s))
2604 remove_full(s, n, page);
2605 add_partial(n, page, DEACTIVATE_TO_TAIL);
2606 stat(s, FREE_ADD_PARTIAL);
2607 }
2608 spin_unlock_irqrestore(&n->list_lock, flags);
2609 return;
2610
2611 slab_empty:
2612 if (prior) {
2613 /*
2614 * Slab on the partial list.
2615 */
2616 remove_partial(n, page);
2617 stat(s, FREE_REMOVE_PARTIAL);
2618 } else {
2619 /* Slab must be on the full list */
2620 remove_full(s, n, page);
2621 }
2622
2623 spin_unlock_irqrestore(&n->list_lock, flags);
2624 stat(s, FREE_SLAB);
2625 discard_slab(s, page);
2626 }
2627
2628 /*
2629 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2630 * can perform fastpath freeing without additional function calls.
2631 *
2632 * The fastpath is only possible if we are freeing to the current cpu slab
2633 * of this processor. This typically the case if we have just allocated
2634 * the item before.
2635 *
2636 * If fastpath is not possible then fall back to __slab_free where we deal
2637 * with all sorts of special processing.
2638 */
2639 static __always_inline void slab_free(struct kmem_cache *s,
2640 struct page *page, void *x, unsigned long addr)
2641 {
2642 void **object = (void *)x;
2643 struct kmem_cache_cpu *c;
2644 unsigned long tid;
2645
2646 slab_free_hook(s, x);
2647
2648 redo:
2649 /*
2650 * Determine the currently cpus per cpu slab.
2651 * The cpu may change afterward. However that does not matter since
2652 * data is retrieved via this pointer. If we are on the same cpu
2653 * during the cmpxchg then the free will succedd.
2654 */
2655 preempt_disable();
2656 c = this_cpu_ptr(s->cpu_slab);
2657
2658 tid = c->tid;
2659 preempt_enable();
2660
2661 if (likely(page == c->page)) {
2662 set_freepointer(s, object, c->freelist);
2663
2664 if (unlikely(!this_cpu_cmpxchg_double(
2665 s->cpu_slab->freelist, s->cpu_slab->tid,
2666 c->freelist, tid,
2667 object, next_tid(tid)))) {
2668
2669 note_cmpxchg_failure("slab_free", s, tid);
2670 goto redo;
2671 }
2672 stat(s, FREE_FASTPATH);
2673 } else
2674 __slab_free(s, page, x, addr);
2675
2676 }
2677
2678 void kmem_cache_free(struct kmem_cache *s, void *x)
2679 {
2680 s = cache_from_obj(s, x);
2681 if (!s)
2682 return;
2683 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2684 trace_kmem_cache_free(_RET_IP_, x);
2685 }
2686 EXPORT_SYMBOL(kmem_cache_free);
2687
2688 /*
2689 * Object placement in a slab is made very easy because we always start at
2690 * offset 0. If we tune the size of the object to the alignment then we can
2691 * get the required alignment by putting one properly sized object after
2692 * another.
2693 *
2694 * Notice that the allocation order determines the sizes of the per cpu
2695 * caches. Each processor has always one slab available for allocations.
2696 * Increasing the allocation order reduces the number of times that slabs
2697 * must be moved on and off the partial lists and is therefore a factor in
2698 * locking overhead.
2699 */
2700
2701 /*
2702 * Mininum / Maximum order of slab pages. This influences locking overhead
2703 * and slab fragmentation. A higher order reduces the number of partial slabs
2704 * and increases the number of allocations possible without having to
2705 * take the list_lock.
2706 */
2707 static int slub_min_order;
2708 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2709 static int slub_min_objects;
2710
2711 /*
2712 * Calculate the order of allocation given an slab object size.
2713 *
2714 * The order of allocation has significant impact on performance and other
2715 * system components. Generally order 0 allocations should be preferred since
2716 * order 0 does not cause fragmentation in the page allocator. Larger objects
2717 * be problematic to put into order 0 slabs because there may be too much
2718 * unused space left. We go to a higher order if more than 1/16th of the slab
2719 * would be wasted.
2720 *
2721 * In order to reach satisfactory performance we must ensure that a minimum
2722 * number of objects is in one slab. Otherwise we may generate too much
2723 * activity on the partial lists which requires taking the list_lock. This is
2724 * less a concern for large slabs though which are rarely used.
2725 *
2726 * slub_max_order specifies the order where we begin to stop considering the
2727 * number of objects in a slab as critical. If we reach slub_max_order then
2728 * we try to keep the page order as low as possible. So we accept more waste
2729 * of space in favor of a small page order.
2730 *
2731 * Higher order allocations also allow the placement of more objects in a
2732 * slab and thereby reduce object handling overhead. If the user has
2733 * requested a higher mininum order then we start with that one instead of
2734 * the smallest order which will fit the object.
2735 */
2736 static inline int slab_order(int size, int min_objects,
2737 int max_order, int fract_leftover, int reserved)
2738 {
2739 int order;
2740 int rem;
2741 int min_order = slub_min_order;
2742
2743 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2744 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2745
2746 for (order = max(min_order,
2747 fls(min_objects * size - 1) - PAGE_SHIFT);
2748 order <= max_order; order++) {
2749
2750 unsigned long slab_size = PAGE_SIZE << order;
2751
2752 if (slab_size < min_objects * size + reserved)
2753 continue;
2754
2755 rem = (slab_size - reserved) % size;
2756
2757 if (rem <= slab_size / fract_leftover)
2758 break;
2759
2760 }
2761
2762 return order;
2763 }
2764
2765 static inline int calculate_order(int size, int reserved)
2766 {
2767 int order;
2768 int min_objects;
2769 int fraction;
2770 int max_objects;
2771
2772 /*
2773 * Attempt to find best configuration for a slab. This
2774 * works by first attempting to generate a layout with
2775 * the best configuration and backing off gradually.
2776 *
2777 * First we reduce the acceptable waste in a slab. Then
2778 * we reduce the minimum objects required in a slab.
2779 */
2780 min_objects = slub_min_objects;
2781 if (!min_objects)
2782 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2783 max_objects = order_objects(slub_max_order, size, reserved);
2784 min_objects = min(min_objects, max_objects);
2785
2786 while (min_objects > 1) {
2787 fraction = 16;
2788 while (fraction >= 4) {
2789 order = slab_order(size, min_objects,
2790 slub_max_order, fraction, reserved);
2791 if (order <= slub_max_order)
2792 return order;
2793 fraction /= 2;
2794 }
2795 min_objects--;
2796 }
2797
2798 /*
2799 * We were unable to place multiple objects in a slab. Now
2800 * lets see if we can place a single object there.
2801 */
2802 order = slab_order(size, 1, slub_max_order, 1, reserved);
2803 if (order <= slub_max_order)
2804 return order;
2805
2806 /*
2807 * Doh this slab cannot be placed using slub_max_order.
2808 */
2809 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2810 if (order < MAX_ORDER)
2811 return order;
2812 return -ENOSYS;
2813 }
2814
2815 static void
2816 init_kmem_cache_node(struct kmem_cache_node *n)
2817 {
2818 n->nr_partial = 0;
2819 spin_lock_init(&n->list_lock);
2820 INIT_LIST_HEAD(&n->partial);
2821 #ifdef CONFIG_SLUB_DEBUG
2822 atomic_long_set(&n->nr_slabs, 0);
2823 atomic_long_set(&n->total_objects, 0);
2824 INIT_LIST_HEAD(&n->full);
2825 #endif
2826 }
2827
2828 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2829 {
2830 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2831 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2832
2833 /*
2834 * Must align to double word boundary for the double cmpxchg
2835 * instructions to work; see __pcpu_double_call_return_bool().
2836 */
2837 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2838 2 * sizeof(void *));
2839
2840 if (!s->cpu_slab)
2841 return 0;
2842
2843 init_kmem_cache_cpus(s);
2844
2845 return 1;
2846 }
2847
2848 static struct kmem_cache *kmem_cache_node;
2849
2850 /*
2851 * No kmalloc_node yet so do it by hand. We know that this is the first
2852 * slab on the node for this slabcache. There are no concurrent accesses
2853 * possible.
2854 *
2855 * Note that this function only works on the kmem_cache_node
2856 * when allocating for the kmem_cache_node. This is used for bootstrapping
2857 * memory on a fresh node that has no slab structures yet.
2858 */
2859 static void early_kmem_cache_node_alloc(int node)
2860 {
2861 struct page *page;
2862 struct kmem_cache_node *n;
2863
2864 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2865
2866 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2867
2868 BUG_ON(!page);
2869 if (page_to_nid(page) != node) {
2870 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2871 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2872 }
2873
2874 n = page->freelist;
2875 BUG_ON(!n);
2876 page->freelist = get_freepointer(kmem_cache_node, n);
2877 page->inuse = 1;
2878 page->frozen = 0;
2879 kmem_cache_node->node[node] = n;
2880 #ifdef CONFIG_SLUB_DEBUG
2881 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2882 init_tracking(kmem_cache_node, n);
2883 #endif
2884 init_kmem_cache_node(n);
2885 inc_slabs_node(kmem_cache_node, node, page->objects);
2886
2887 /*
2888 * No locks need to be taken here as it has just been
2889 * initialized and there is no concurrent access.
2890 */
2891 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2892 }
2893
2894 static void free_kmem_cache_nodes(struct kmem_cache *s)
2895 {
2896 int node;
2897 struct kmem_cache_node *n;
2898
2899 for_each_kmem_cache_node(s, node, n) {
2900 kmem_cache_free(kmem_cache_node, n);
2901 s->node[node] = NULL;
2902 }
2903 }
2904
2905 static int init_kmem_cache_nodes(struct kmem_cache *s)
2906 {
2907 int node;
2908
2909 for_each_node_state(node, N_NORMAL_MEMORY) {
2910 struct kmem_cache_node *n;
2911
2912 if (slab_state == DOWN) {
2913 early_kmem_cache_node_alloc(node);
2914 continue;
2915 }
2916 n = kmem_cache_alloc_node(kmem_cache_node,
2917 GFP_KERNEL, node);
2918
2919 if (!n) {
2920 free_kmem_cache_nodes(s);
2921 return 0;
2922 }
2923
2924 s->node[node] = n;
2925 init_kmem_cache_node(n);
2926 }
2927 return 1;
2928 }
2929
2930 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2931 {
2932 if (min < MIN_PARTIAL)
2933 min = MIN_PARTIAL;
2934 else if (min > MAX_PARTIAL)
2935 min = MAX_PARTIAL;
2936 s->min_partial = min;
2937 }
2938
2939 /*
2940 * calculate_sizes() determines the order and the distribution of data within
2941 * a slab object.
2942 */
2943 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2944 {
2945 unsigned long flags = s->flags;
2946 unsigned long size = s->object_size;
2947 int order;
2948
2949 /*
2950 * Round up object size to the next word boundary. We can only
2951 * place the free pointer at word boundaries and this determines
2952 * the possible location of the free pointer.
2953 */
2954 size = ALIGN(size, sizeof(void *));
2955
2956 #ifdef CONFIG_SLUB_DEBUG
2957 /*
2958 * Determine if we can poison the object itself. If the user of
2959 * the slab may touch the object after free or before allocation
2960 * then we should never poison the object itself.
2961 */
2962 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2963 !s->ctor)
2964 s->flags |= __OBJECT_POISON;
2965 else
2966 s->flags &= ~__OBJECT_POISON;
2967
2968
2969 /*
2970 * If we are Redzoning then check if there is some space between the
2971 * end of the object and the free pointer. If not then add an
2972 * additional word to have some bytes to store Redzone information.
2973 */
2974 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2975 size += sizeof(void *);
2976 #endif
2977
2978 /*
2979 * With that we have determined the number of bytes in actual use
2980 * by the object. This is the potential offset to the free pointer.
2981 */
2982 s->inuse = size;
2983
2984 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2985 s->ctor)) {
2986 /*
2987 * Relocate free pointer after the object if it is not
2988 * permitted to overwrite the first word of the object on
2989 * kmem_cache_free.
2990 *
2991 * This is the case if we do RCU, have a constructor or
2992 * destructor or are poisoning the objects.
2993 */
2994 s->offset = size;
2995 size += sizeof(void *);
2996 }
2997
2998 #ifdef CONFIG_SLUB_DEBUG
2999 if (flags & SLAB_STORE_USER)
3000 /*
3001 * Need to store information about allocs and frees after
3002 * the object.
3003 */
3004 size += 2 * sizeof(struct track);
3005
3006 if (flags & SLAB_RED_ZONE)
3007 /*
3008 * Add some empty padding so that we can catch
3009 * overwrites from earlier objects rather than let
3010 * tracking information or the free pointer be
3011 * corrupted if a user writes before the start
3012 * of the object.
3013 */
3014 size += sizeof(void *);
3015 #endif
3016
3017 /*
3018 * SLUB stores one object immediately after another beginning from
3019 * offset 0. In order to align the objects we have to simply size
3020 * each object to conform to the alignment.
3021 */
3022 size = ALIGN(size, s->align);
3023 s->size = size;
3024 if (forced_order >= 0)
3025 order = forced_order;
3026 else
3027 order = calculate_order(size, s->reserved);
3028
3029 if (order < 0)
3030 return 0;
3031
3032 s->allocflags = 0;
3033 if (order)
3034 s->allocflags |= __GFP_COMP;
3035
3036 if (s->flags & SLAB_CACHE_DMA)
3037 s->allocflags |= GFP_DMA;
3038
3039 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3040 s->allocflags |= __GFP_RECLAIMABLE;
3041
3042 /*
3043 * Determine the number of objects per slab
3044 */
3045 s->oo = oo_make(order, size, s->reserved);
3046 s->min = oo_make(get_order(size), size, s->reserved);
3047 if (oo_objects(s->oo) > oo_objects(s->max))
3048 s->max = s->oo;
3049
3050 return !!oo_objects(s->oo);
3051 }
3052
3053 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3054 {
3055 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3056 s->reserved = 0;
3057
3058 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3059 s->reserved = sizeof(struct rcu_head);
3060
3061 if (!calculate_sizes(s, -1))
3062 goto error;
3063 if (disable_higher_order_debug) {
3064 /*
3065 * Disable debugging flags that store metadata if the min slab
3066 * order increased.
3067 */
3068 if (get_order(s->size) > get_order(s->object_size)) {
3069 s->flags &= ~DEBUG_METADATA_FLAGS;
3070 s->offset = 0;
3071 if (!calculate_sizes(s, -1))
3072 goto error;
3073 }
3074 }
3075
3076 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3077 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3078 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3079 /* Enable fast mode */
3080 s->flags |= __CMPXCHG_DOUBLE;
3081 #endif
3082
3083 /*
3084 * The larger the object size is, the more pages we want on the partial
3085 * list to avoid pounding the page allocator excessively.
3086 */
3087 set_min_partial(s, ilog2(s->size) / 2);
3088
3089 /*
3090 * cpu_partial determined the maximum number of objects kept in the
3091 * per cpu partial lists of a processor.
3092 *
3093 * Per cpu partial lists mainly contain slabs that just have one
3094 * object freed. If they are used for allocation then they can be
3095 * filled up again with minimal effort. The slab will never hit the
3096 * per node partial lists and therefore no locking will be required.
3097 *
3098 * This setting also determines
3099 *
3100 * A) The number of objects from per cpu partial slabs dumped to the
3101 * per node list when we reach the limit.
3102 * B) The number of objects in cpu partial slabs to extract from the
3103 * per node list when we run out of per cpu objects. We only fetch
3104 * 50% to keep some capacity around for frees.
3105 */
3106 if (!kmem_cache_has_cpu_partial(s))
3107 s->cpu_partial = 0;
3108 else if (s->size >= PAGE_SIZE)
3109 s->cpu_partial = 2;
3110 else if (s->size >= 1024)
3111 s->cpu_partial = 6;
3112 else if (s->size >= 256)
3113 s->cpu_partial = 13;
3114 else
3115 s->cpu_partial = 30;
3116
3117 #ifdef CONFIG_NUMA
3118 s->remote_node_defrag_ratio = 1000;
3119 #endif
3120 if (!init_kmem_cache_nodes(s))
3121 goto error;
3122
3123 if (alloc_kmem_cache_cpus(s))
3124 return 0;
3125
3126 free_kmem_cache_nodes(s);
3127 error:
3128 if (flags & SLAB_PANIC)
3129 panic("Cannot create slab %s size=%lu realsize=%u "
3130 "order=%u offset=%u flags=%lx\n",
3131 s->name, (unsigned long)s->size, s->size,
3132 oo_order(s->oo), s->offset, flags);
3133 return -EINVAL;
3134 }
3135
3136 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3137 const char *text)
3138 {
3139 #ifdef CONFIG_SLUB_DEBUG
3140 void *addr = page_address(page);
3141 void *p;
3142 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3143 sizeof(long), GFP_ATOMIC);
3144 if (!map)
3145 return;
3146 slab_err(s, page, text, s->name);
3147 slab_lock(page);
3148
3149 get_map(s, page, map);
3150 for_each_object(p, s, addr, page->objects) {
3151
3152 if (!test_bit(slab_index(p, s, addr), map)) {
3153 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3154 print_tracking(s, p);
3155 }
3156 }
3157 slab_unlock(page);
3158 kfree(map);
3159 #endif
3160 }
3161
3162 /*
3163 * Attempt to free all partial slabs on a node.
3164 * This is called from kmem_cache_close(). We must be the last thread
3165 * using the cache and therefore we do not need to lock anymore.
3166 */
3167 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3168 {
3169 struct page *page, *h;
3170
3171 list_for_each_entry_safe(page, h, &n->partial, lru) {
3172 if (!page->inuse) {
3173 __remove_partial(n, page);
3174 discard_slab(s, page);
3175 } else {
3176 list_slab_objects(s, page,
3177 "Objects remaining in %s on kmem_cache_close()");
3178 }
3179 }
3180 }
3181
3182 /*
3183 * Release all resources used by a slab cache.
3184 */
3185 static inline int kmem_cache_close(struct kmem_cache *s)
3186 {
3187 int node;
3188 struct kmem_cache_node *n;
3189
3190 flush_all(s);
3191 /* Attempt to free all objects */
3192 for_each_kmem_cache_node(s, node, n) {
3193 free_partial(s, n);
3194 if (n->nr_partial || slabs_node(s, node))
3195 return 1;
3196 }
3197 free_percpu(s->cpu_slab);
3198 free_kmem_cache_nodes(s);
3199 return 0;
3200 }
3201
3202 int __kmem_cache_shutdown(struct kmem_cache *s)
3203 {
3204 return kmem_cache_close(s);
3205 }
3206
3207 /********************************************************************
3208 * Kmalloc subsystem
3209 *******************************************************************/
3210
3211 static int __init setup_slub_min_order(char *str)
3212 {
3213 get_option(&str, &slub_min_order);
3214
3215 return 1;
3216 }
3217
3218 __setup("slub_min_order=", setup_slub_min_order);
3219
3220 static int __init setup_slub_max_order(char *str)
3221 {
3222 get_option(&str, &slub_max_order);
3223 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3224
3225 return 1;
3226 }
3227
3228 __setup("slub_max_order=", setup_slub_max_order);
3229
3230 static int __init setup_slub_min_objects(char *str)
3231 {
3232 get_option(&str, &slub_min_objects);
3233
3234 return 1;
3235 }
3236
3237 __setup("slub_min_objects=", setup_slub_min_objects);
3238
3239 void *__kmalloc(size_t size, gfp_t flags)
3240 {
3241 struct kmem_cache *s;
3242 void *ret;
3243
3244 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3245 return kmalloc_large(size, flags);
3246
3247 s = kmalloc_slab(size, flags);
3248
3249 if (unlikely(ZERO_OR_NULL_PTR(s)))
3250 return s;
3251
3252 ret = slab_alloc(s, flags, _RET_IP_);
3253
3254 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3255
3256 return ret;
3257 }
3258 EXPORT_SYMBOL(__kmalloc);
3259
3260 #ifdef CONFIG_NUMA
3261 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3262 {
3263 struct page *page;
3264 void *ptr = NULL;
3265
3266 flags |= __GFP_COMP | __GFP_NOTRACK;
3267 page = alloc_kmem_pages_node(node, flags, get_order(size));
3268 if (page)
3269 ptr = page_address(page);
3270
3271 kmalloc_large_node_hook(ptr, size, flags);
3272 return ptr;
3273 }
3274
3275 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3276 {
3277 struct kmem_cache *s;
3278 void *ret;
3279
3280 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3281 ret = kmalloc_large_node(size, flags, node);
3282
3283 trace_kmalloc_node(_RET_IP_, ret,
3284 size, PAGE_SIZE << get_order(size),
3285 flags, node);
3286
3287 return ret;
3288 }
3289
3290 s = kmalloc_slab(size, flags);
3291
3292 if (unlikely(ZERO_OR_NULL_PTR(s)))
3293 return s;
3294
3295 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3296
3297 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3298
3299 return ret;
3300 }
3301 EXPORT_SYMBOL(__kmalloc_node);
3302 #endif
3303
3304 size_t ksize(const void *object)
3305 {
3306 struct page *page;
3307
3308 if (unlikely(object == ZERO_SIZE_PTR))
3309 return 0;
3310
3311 page = virt_to_head_page(object);
3312
3313 if (unlikely(!PageSlab(page))) {
3314 WARN_ON(!PageCompound(page));
3315 return PAGE_SIZE << compound_order(page);
3316 }
3317
3318 return slab_ksize(page->slab_cache);
3319 }
3320 EXPORT_SYMBOL(ksize);
3321
3322 void kfree(const void *x)
3323 {
3324 struct page *page;
3325 void *object = (void *)x;
3326
3327 trace_kfree(_RET_IP_, x);
3328
3329 if (unlikely(ZERO_OR_NULL_PTR(x)))
3330 return;
3331
3332 page = virt_to_head_page(x);
3333 if (unlikely(!PageSlab(page))) {
3334 BUG_ON(!PageCompound(page));
3335 kfree_hook(x);
3336 __free_kmem_pages(page, compound_order(page));
3337 return;
3338 }
3339 slab_free(page->slab_cache, page, object, _RET_IP_);
3340 }
3341 EXPORT_SYMBOL(kfree);
3342
3343 /*
3344 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3345 * the remaining slabs by the number of items in use. The slabs with the
3346 * most items in use come first. New allocations will then fill those up
3347 * and thus they can be removed from the partial lists.
3348 *
3349 * The slabs with the least items are placed last. This results in them
3350 * being allocated from last increasing the chance that the last objects
3351 * are freed in them.
3352 */
3353 int __kmem_cache_shrink(struct kmem_cache *s)
3354 {
3355 int node;
3356 int i;
3357 struct kmem_cache_node *n;
3358 struct page *page;
3359 struct page *t;
3360 int objects = oo_objects(s->max);
3361 struct list_head *slabs_by_inuse =
3362 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3363 unsigned long flags;
3364
3365 if (!slabs_by_inuse)
3366 return -ENOMEM;
3367
3368 flush_all(s);
3369 for_each_kmem_cache_node(s, node, n) {
3370 if (!n->nr_partial)
3371 continue;
3372
3373 for (i = 0; i < objects; i++)
3374 INIT_LIST_HEAD(slabs_by_inuse + i);
3375
3376 spin_lock_irqsave(&n->list_lock, flags);
3377
3378 /*
3379 * Build lists indexed by the items in use in each slab.
3380 *
3381 * Note that concurrent frees may occur while we hold the
3382 * list_lock. page->inuse here is the upper limit.
3383 */
3384 list_for_each_entry_safe(page, t, &n->partial, lru) {
3385 list_move(&page->lru, slabs_by_inuse + page->inuse);
3386 if (!page->inuse)
3387 n->nr_partial--;
3388 }
3389
3390 /*
3391 * Rebuild the partial list with the slabs filled up most
3392 * first and the least used slabs at the end.
3393 */
3394 for (i = objects - 1; i > 0; i--)
3395 list_splice(slabs_by_inuse + i, n->partial.prev);
3396
3397 spin_unlock_irqrestore(&n->list_lock, flags);
3398
3399 /* Release empty slabs */
3400 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3401 discard_slab(s, page);
3402 }
3403
3404 kfree(slabs_by_inuse);
3405 return 0;
3406 }
3407
3408 static int slab_mem_going_offline_callback(void *arg)
3409 {
3410 struct kmem_cache *s;
3411
3412 mutex_lock(&slab_mutex);
3413 list_for_each_entry(s, &slab_caches, list)
3414 __kmem_cache_shrink(s);
3415 mutex_unlock(&slab_mutex);
3416
3417 return 0;
3418 }
3419
3420 static void slab_mem_offline_callback(void *arg)
3421 {
3422 struct kmem_cache_node *n;
3423 struct kmem_cache *s;
3424 struct memory_notify *marg = arg;
3425 int offline_node;
3426
3427 offline_node = marg->status_change_nid_normal;
3428
3429 /*
3430 * If the node still has available memory. we need kmem_cache_node
3431 * for it yet.
3432 */
3433 if (offline_node < 0)
3434 return;
3435
3436 mutex_lock(&slab_mutex);
3437 list_for_each_entry(s, &slab_caches, list) {
3438 n = get_node(s, offline_node);
3439 if (n) {
3440 /*
3441 * if n->nr_slabs > 0, slabs still exist on the node
3442 * that is going down. We were unable to free them,
3443 * and offline_pages() function shouldn't call this
3444 * callback. So, we must fail.
3445 */
3446 BUG_ON(slabs_node(s, offline_node));
3447
3448 s->node[offline_node] = NULL;
3449 kmem_cache_free(kmem_cache_node, n);
3450 }
3451 }
3452 mutex_unlock(&slab_mutex);
3453 }
3454
3455 static int slab_mem_going_online_callback(void *arg)
3456 {
3457 struct kmem_cache_node *n;
3458 struct kmem_cache *s;
3459 struct memory_notify *marg = arg;
3460 int nid = marg->status_change_nid_normal;
3461 int ret = 0;
3462
3463 /*
3464 * If the node's memory is already available, then kmem_cache_node is
3465 * already created. Nothing to do.
3466 */
3467 if (nid < 0)
3468 return 0;
3469
3470 /*
3471 * We are bringing a node online. No memory is available yet. We must
3472 * allocate a kmem_cache_node structure in order to bring the node
3473 * online.
3474 */
3475 mutex_lock(&slab_mutex);
3476 list_for_each_entry(s, &slab_caches, list) {
3477 /*
3478 * XXX: kmem_cache_alloc_node will fallback to other nodes
3479 * since memory is not yet available from the node that
3480 * is brought up.
3481 */
3482 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3483 if (!n) {
3484 ret = -ENOMEM;
3485 goto out;
3486 }
3487 init_kmem_cache_node(n);
3488 s->node[nid] = n;
3489 }
3490 out:
3491 mutex_unlock(&slab_mutex);
3492 return ret;
3493 }
3494
3495 static int slab_memory_callback(struct notifier_block *self,
3496 unsigned long action, void *arg)
3497 {
3498 int ret = 0;
3499
3500 switch (action) {
3501 case MEM_GOING_ONLINE:
3502 ret = slab_mem_going_online_callback(arg);
3503 break;
3504 case MEM_GOING_OFFLINE:
3505 ret = slab_mem_going_offline_callback(arg);
3506 break;
3507 case MEM_OFFLINE:
3508 case MEM_CANCEL_ONLINE:
3509 slab_mem_offline_callback(arg);
3510 break;
3511 case MEM_ONLINE:
3512 case MEM_CANCEL_OFFLINE:
3513 break;
3514 }
3515 if (ret)
3516 ret = notifier_from_errno(ret);
3517 else
3518 ret = NOTIFY_OK;
3519 return ret;
3520 }
3521
3522 static struct notifier_block slab_memory_callback_nb = {
3523 .notifier_call = slab_memory_callback,
3524 .priority = SLAB_CALLBACK_PRI,
3525 };
3526
3527 /********************************************************************
3528 * Basic setup of slabs
3529 *******************************************************************/
3530
3531 /*
3532 * Used for early kmem_cache structures that were allocated using
3533 * the page allocator. Allocate them properly then fix up the pointers
3534 * that may be pointing to the wrong kmem_cache structure.
3535 */
3536
3537 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3538 {
3539 int node;
3540 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3541 struct kmem_cache_node *n;
3542
3543 memcpy(s, static_cache, kmem_cache->object_size);
3544
3545 /*
3546 * This runs very early, and only the boot processor is supposed to be
3547 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3548 * IPIs around.
3549 */
3550 __flush_cpu_slab(s, smp_processor_id());
3551 for_each_kmem_cache_node(s, node, n) {
3552 struct page *p;
3553
3554 list_for_each_entry(p, &n->partial, lru)
3555 p->slab_cache = s;
3556
3557 #ifdef CONFIG_SLUB_DEBUG
3558 list_for_each_entry(p, &n->full, lru)
3559 p->slab_cache = s;
3560 #endif
3561 }
3562 list_add(&s->list, &slab_caches);
3563 return s;
3564 }
3565
3566 void __init kmem_cache_init(void)
3567 {
3568 static __initdata struct kmem_cache boot_kmem_cache,
3569 boot_kmem_cache_node;
3570
3571 if (debug_guardpage_minorder())
3572 slub_max_order = 0;
3573
3574 kmem_cache_node = &boot_kmem_cache_node;
3575 kmem_cache = &boot_kmem_cache;
3576
3577 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3578 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3579
3580 register_hotmemory_notifier(&slab_memory_callback_nb);
3581
3582 /* Able to allocate the per node structures */
3583 slab_state = PARTIAL;
3584
3585 create_boot_cache(kmem_cache, "kmem_cache",
3586 offsetof(struct kmem_cache, node) +
3587 nr_node_ids * sizeof(struct kmem_cache_node *),
3588 SLAB_HWCACHE_ALIGN);
3589
3590 kmem_cache = bootstrap(&boot_kmem_cache);
3591
3592 /*
3593 * Allocate kmem_cache_node properly from the kmem_cache slab.
3594 * kmem_cache_node is separately allocated so no need to
3595 * update any list pointers.
3596 */
3597 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3598
3599 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3600 create_kmalloc_caches(0);
3601
3602 #ifdef CONFIG_SMP
3603 register_cpu_notifier(&slab_notifier);
3604 #endif
3605
3606 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3607 cache_line_size(),
3608 slub_min_order, slub_max_order, slub_min_objects,
3609 nr_cpu_ids, nr_node_ids);
3610 }
3611
3612 void __init kmem_cache_init_late(void)
3613 {
3614 }
3615
3616 struct kmem_cache *
3617 __kmem_cache_alias(const char *name, size_t size, size_t align,
3618 unsigned long flags, void (*ctor)(void *))
3619 {
3620 struct kmem_cache *s;
3621
3622 s = find_mergeable(size, align, flags, name, ctor);
3623 if (s) {
3624 int i;
3625 struct kmem_cache *c;
3626
3627 s->refcount++;
3628
3629 /*
3630 * Adjust the object sizes so that we clear
3631 * the complete object on kzalloc.
3632 */
3633 s->object_size = max(s->object_size, (int)size);
3634 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3635
3636 for_each_memcg_cache_index(i) {
3637 c = cache_from_memcg_idx(s, i);
3638 if (!c)
3639 continue;
3640 c->object_size = s->object_size;
3641 c->inuse = max_t(int, c->inuse,
3642 ALIGN(size, sizeof(void *)));
3643 }
3644
3645 if (sysfs_slab_alias(s, name)) {
3646 s->refcount--;
3647 s = NULL;
3648 }
3649 }
3650
3651 return s;
3652 }
3653
3654 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3655 {
3656 int err;
3657
3658 err = kmem_cache_open(s, flags);
3659 if (err)
3660 return err;
3661
3662 /* Mutex is not taken during early boot */
3663 if (slab_state <= UP)
3664 return 0;
3665
3666 memcg_propagate_slab_attrs(s);
3667 err = sysfs_slab_add(s);
3668 if (err)
3669 kmem_cache_close(s);
3670
3671 return err;
3672 }
3673
3674 #ifdef CONFIG_SMP
3675 /*
3676 * Use the cpu notifier to insure that the cpu slabs are flushed when
3677 * necessary.
3678 */
3679 static int slab_cpuup_callback(struct notifier_block *nfb,
3680 unsigned long action, void *hcpu)
3681 {
3682 long cpu = (long)hcpu;
3683 struct kmem_cache *s;
3684 unsigned long flags;
3685
3686 switch (action) {
3687 case CPU_UP_CANCELED:
3688 case CPU_UP_CANCELED_FROZEN:
3689 case CPU_DEAD:
3690 case CPU_DEAD_FROZEN:
3691 mutex_lock(&slab_mutex);
3692 list_for_each_entry(s, &slab_caches, list) {
3693 local_irq_save(flags);
3694 __flush_cpu_slab(s, cpu);
3695 local_irq_restore(flags);
3696 }
3697 mutex_unlock(&slab_mutex);
3698 break;
3699 default:
3700 break;
3701 }
3702 return NOTIFY_OK;
3703 }
3704
3705 static struct notifier_block slab_notifier = {
3706 .notifier_call = slab_cpuup_callback
3707 };
3708
3709 #endif
3710
3711 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3712 {
3713 struct kmem_cache *s;
3714 void *ret;
3715
3716 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3717 return kmalloc_large(size, gfpflags);
3718
3719 s = kmalloc_slab(size, gfpflags);
3720
3721 if (unlikely(ZERO_OR_NULL_PTR(s)))
3722 return s;
3723
3724 ret = slab_alloc(s, gfpflags, caller);
3725
3726 /* Honor the call site pointer we received. */
3727 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3728
3729 return ret;
3730 }
3731
3732 #ifdef CONFIG_NUMA
3733 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3734 int node, unsigned long caller)
3735 {
3736 struct kmem_cache *s;
3737 void *ret;
3738
3739 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3740 ret = kmalloc_large_node(size, gfpflags, node);
3741
3742 trace_kmalloc_node(caller, ret,
3743 size, PAGE_SIZE << get_order(size),
3744 gfpflags, node);
3745
3746 return ret;
3747 }
3748
3749 s = kmalloc_slab(size, gfpflags);
3750
3751 if (unlikely(ZERO_OR_NULL_PTR(s)))
3752 return s;
3753
3754 ret = slab_alloc_node(s, gfpflags, node, caller);
3755
3756 /* Honor the call site pointer we received. */
3757 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3758
3759 return ret;
3760 }
3761 #endif
3762
3763 #ifdef CONFIG_SYSFS
3764 static int count_inuse(struct page *page)
3765 {
3766 return page->inuse;
3767 }
3768
3769 static int count_total(struct page *page)
3770 {
3771 return page->objects;
3772 }
3773 #endif
3774
3775 #ifdef CONFIG_SLUB_DEBUG
3776 static int validate_slab(struct kmem_cache *s, struct page *page,
3777 unsigned long *map)
3778 {
3779 void *p;
3780 void *addr = page_address(page);
3781
3782 if (!check_slab(s, page) ||
3783 !on_freelist(s, page, NULL))
3784 return 0;
3785
3786 /* Now we know that a valid freelist exists */
3787 bitmap_zero(map, page->objects);
3788
3789 get_map(s, page, map);
3790 for_each_object(p, s, addr, page->objects) {
3791 if (test_bit(slab_index(p, s, addr), map))
3792 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3793 return 0;
3794 }
3795
3796 for_each_object(p, s, addr, page->objects)
3797 if (!test_bit(slab_index(p, s, addr), map))
3798 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3799 return 0;
3800 return 1;
3801 }
3802
3803 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3804 unsigned long *map)
3805 {
3806 slab_lock(page);
3807 validate_slab(s, page, map);
3808 slab_unlock(page);
3809 }
3810
3811 static int validate_slab_node(struct kmem_cache *s,
3812 struct kmem_cache_node *n, unsigned long *map)
3813 {
3814 unsigned long count = 0;
3815 struct page *page;
3816 unsigned long flags;
3817
3818 spin_lock_irqsave(&n->list_lock, flags);
3819
3820 list_for_each_entry(page, &n->partial, lru) {
3821 validate_slab_slab(s, page, map);
3822 count++;
3823 }
3824 if (count != n->nr_partial)
3825 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3826 s->name, count, n->nr_partial);
3827
3828 if (!(s->flags & SLAB_STORE_USER))
3829 goto out;
3830
3831 list_for_each_entry(page, &n->full, lru) {
3832 validate_slab_slab(s, page, map);
3833 count++;
3834 }
3835 if (count != atomic_long_read(&n->nr_slabs))
3836 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3837 s->name, count, atomic_long_read(&n->nr_slabs));
3838
3839 out:
3840 spin_unlock_irqrestore(&n->list_lock, flags);
3841 return count;
3842 }
3843
3844 static long validate_slab_cache(struct kmem_cache *s)
3845 {
3846 int node;
3847 unsigned long count = 0;
3848 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3849 sizeof(unsigned long), GFP_KERNEL);
3850 struct kmem_cache_node *n;
3851
3852 if (!map)
3853 return -ENOMEM;
3854
3855 flush_all(s);
3856 for_each_kmem_cache_node(s, node, n)
3857 count += validate_slab_node(s, n, map);
3858 kfree(map);
3859 return count;
3860 }
3861 /*
3862 * Generate lists of code addresses where slabcache objects are allocated
3863 * and freed.
3864 */
3865
3866 struct location {
3867 unsigned long count;
3868 unsigned long addr;
3869 long long sum_time;
3870 long min_time;
3871 long max_time;
3872 long min_pid;
3873 long max_pid;
3874 DECLARE_BITMAP(cpus, NR_CPUS);
3875 nodemask_t nodes;
3876 };
3877
3878 struct loc_track {
3879 unsigned long max;
3880 unsigned long count;
3881 struct location *loc;
3882 };
3883
3884 static void free_loc_track(struct loc_track *t)
3885 {
3886 if (t->max)
3887 free_pages((unsigned long)t->loc,
3888 get_order(sizeof(struct location) * t->max));
3889 }
3890
3891 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3892 {
3893 struct location *l;
3894 int order;
3895
3896 order = get_order(sizeof(struct location) * max);
3897
3898 l = (void *)__get_free_pages(flags, order);
3899 if (!l)
3900 return 0;
3901
3902 if (t->count) {
3903 memcpy(l, t->loc, sizeof(struct location) * t->count);
3904 free_loc_track(t);
3905 }
3906 t->max = max;
3907 t->loc = l;
3908 return 1;
3909 }
3910
3911 static int add_location(struct loc_track *t, struct kmem_cache *s,
3912 const struct track *track)
3913 {
3914 long start, end, pos;
3915 struct location *l;
3916 unsigned long caddr;
3917 unsigned long age = jiffies - track->when;
3918
3919 start = -1;
3920 end = t->count;
3921
3922 for ( ; ; ) {
3923 pos = start + (end - start + 1) / 2;
3924
3925 /*
3926 * There is nothing at "end". If we end up there
3927 * we need to add something to before end.
3928 */
3929 if (pos == end)
3930 break;
3931
3932 caddr = t->loc[pos].addr;
3933 if (track->addr == caddr) {
3934
3935 l = &t->loc[pos];
3936 l->count++;
3937 if (track->when) {
3938 l->sum_time += age;
3939 if (age < l->min_time)
3940 l->min_time = age;
3941 if (age > l->max_time)
3942 l->max_time = age;
3943
3944 if (track->pid < l->min_pid)
3945 l->min_pid = track->pid;
3946 if (track->pid > l->max_pid)
3947 l->max_pid = track->pid;
3948
3949 cpumask_set_cpu(track->cpu,
3950 to_cpumask(l->cpus));
3951 }
3952 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3953 return 1;
3954 }
3955
3956 if (track->addr < caddr)
3957 end = pos;
3958 else
3959 start = pos;
3960 }
3961
3962 /*
3963 * Not found. Insert new tracking element.
3964 */
3965 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3966 return 0;
3967
3968 l = t->loc + pos;
3969 if (pos < t->count)
3970 memmove(l + 1, l,
3971 (t->count - pos) * sizeof(struct location));
3972 t->count++;
3973 l->count = 1;
3974 l->addr = track->addr;
3975 l->sum_time = age;
3976 l->min_time = age;
3977 l->max_time = age;
3978 l->min_pid = track->pid;
3979 l->max_pid = track->pid;
3980 cpumask_clear(to_cpumask(l->cpus));
3981 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3982 nodes_clear(l->nodes);
3983 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3984 return 1;
3985 }
3986
3987 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3988 struct page *page, enum track_item alloc,
3989 unsigned long *map)
3990 {
3991 void *addr = page_address(page);
3992 void *p;
3993
3994 bitmap_zero(map, page->objects);
3995 get_map(s, page, map);
3996
3997 for_each_object(p, s, addr, page->objects)
3998 if (!test_bit(slab_index(p, s, addr), map))
3999 add_location(t, s, get_track(s, p, alloc));
4000 }
4001
4002 static int list_locations(struct kmem_cache *s, char *buf,
4003 enum track_item alloc)
4004 {
4005 int len = 0;
4006 unsigned long i;
4007 struct loc_track t = { 0, 0, NULL };
4008 int node;
4009 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4010 sizeof(unsigned long), GFP_KERNEL);
4011 struct kmem_cache_node *n;
4012
4013 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4014 GFP_TEMPORARY)) {
4015 kfree(map);
4016 return sprintf(buf, "Out of memory\n");
4017 }
4018 /* Push back cpu slabs */
4019 flush_all(s);
4020
4021 for_each_kmem_cache_node(s, node, n) {
4022 unsigned long flags;
4023 struct page *page;
4024
4025 if (!atomic_long_read(&n->nr_slabs))
4026 continue;
4027
4028 spin_lock_irqsave(&n->list_lock, flags);
4029 list_for_each_entry(page, &n->partial, lru)
4030 process_slab(&t, s, page, alloc, map);
4031 list_for_each_entry(page, &n->full, lru)
4032 process_slab(&t, s, page, alloc, map);
4033 spin_unlock_irqrestore(&n->list_lock, flags);
4034 }
4035
4036 for (i = 0; i < t.count; i++) {
4037 struct location *l = &t.loc[i];
4038
4039 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4040 break;
4041 len += sprintf(buf + len, "%7ld ", l->count);
4042
4043 if (l->addr)
4044 len += sprintf(buf + len, "%pS", (void *)l->addr);
4045 else
4046 len += sprintf(buf + len, "<not-available>");
4047
4048 if (l->sum_time != l->min_time) {
4049 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4050 l->min_time,
4051 (long)div_u64(l->sum_time, l->count),
4052 l->max_time);
4053 } else
4054 len += sprintf(buf + len, " age=%ld",
4055 l->min_time);
4056
4057 if (l->min_pid != l->max_pid)
4058 len += sprintf(buf + len, " pid=%ld-%ld",
4059 l->min_pid, l->max_pid);
4060 else
4061 len += sprintf(buf + len, " pid=%ld",
4062 l->min_pid);
4063
4064 if (num_online_cpus() > 1 &&
4065 !cpumask_empty(to_cpumask(l->cpus)) &&
4066 len < PAGE_SIZE - 60) {
4067 len += sprintf(buf + len, " cpus=");
4068 len += cpulist_scnprintf(buf + len,
4069 PAGE_SIZE - len - 50,
4070 to_cpumask(l->cpus));
4071 }
4072
4073 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4074 len < PAGE_SIZE - 60) {
4075 len += sprintf(buf + len, " nodes=");
4076 len += nodelist_scnprintf(buf + len,
4077 PAGE_SIZE - len - 50,
4078 l->nodes);
4079 }
4080
4081 len += sprintf(buf + len, "\n");
4082 }
4083
4084 free_loc_track(&t);
4085 kfree(map);
4086 if (!t.count)
4087 len += sprintf(buf, "No data\n");
4088 return len;
4089 }
4090 #endif
4091
4092 #ifdef SLUB_RESILIENCY_TEST
4093 static void __init resiliency_test(void)
4094 {
4095 u8 *p;
4096
4097 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4098
4099 pr_err("SLUB resiliency testing\n");
4100 pr_err("-----------------------\n");
4101 pr_err("A. Corruption after allocation\n");
4102
4103 p = kzalloc(16, GFP_KERNEL);
4104 p[16] = 0x12;
4105 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4106 p + 16);
4107
4108 validate_slab_cache(kmalloc_caches[4]);
4109
4110 /* Hmmm... The next two are dangerous */
4111 p = kzalloc(32, GFP_KERNEL);
4112 p[32 + sizeof(void *)] = 0x34;
4113 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4114 p);
4115 pr_err("If allocated object is overwritten then not detectable\n\n");
4116
4117 validate_slab_cache(kmalloc_caches[5]);
4118 p = kzalloc(64, GFP_KERNEL);
4119 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4120 *p = 0x56;
4121 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4122 p);
4123 pr_err("If allocated object is overwritten then not detectable\n\n");
4124 validate_slab_cache(kmalloc_caches[6]);
4125
4126 pr_err("\nB. Corruption after free\n");
4127 p = kzalloc(128, GFP_KERNEL);
4128 kfree(p);
4129 *p = 0x78;
4130 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4131 validate_slab_cache(kmalloc_caches[7]);
4132
4133 p = kzalloc(256, GFP_KERNEL);
4134 kfree(p);
4135 p[50] = 0x9a;
4136 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4137 validate_slab_cache(kmalloc_caches[8]);
4138
4139 p = kzalloc(512, GFP_KERNEL);
4140 kfree(p);
4141 p[512] = 0xab;
4142 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4143 validate_slab_cache(kmalloc_caches[9]);
4144 }
4145 #else
4146 #ifdef CONFIG_SYSFS
4147 static void resiliency_test(void) {};
4148 #endif
4149 #endif
4150
4151 #ifdef CONFIG_SYSFS
4152 enum slab_stat_type {
4153 SL_ALL, /* All slabs */
4154 SL_PARTIAL, /* Only partially allocated slabs */
4155 SL_CPU, /* Only slabs used for cpu caches */
4156 SL_OBJECTS, /* Determine allocated objects not slabs */
4157 SL_TOTAL /* Determine object capacity not slabs */
4158 };
4159
4160 #define SO_ALL (1 << SL_ALL)
4161 #define SO_PARTIAL (1 << SL_PARTIAL)
4162 #define SO_CPU (1 << SL_CPU)
4163 #define SO_OBJECTS (1 << SL_OBJECTS)
4164 #define SO_TOTAL (1 << SL_TOTAL)
4165
4166 static ssize_t show_slab_objects(struct kmem_cache *s,
4167 char *buf, unsigned long flags)
4168 {
4169 unsigned long total = 0;
4170 int node;
4171 int x;
4172 unsigned long *nodes;
4173
4174 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4175 if (!nodes)
4176 return -ENOMEM;
4177
4178 if (flags & SO_CPU) {
4179 int cpu;
4180
4181 for_each_possible_cpu(cpu) {
4182 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4183 cpu);
4184 int node;
4185 struct page *page;
4186
4187 page = ACCESS_ONCE(c->page);
4188 if (!page)
4189 continue;
4190
4191 node = page_to_nid(page);
4192 if (flags & SO_TOTAL)
4193 x = page->objects;
4194 else if (flags & SO_OBJECTS)
4195 x = page->inuse;
4196 else
4197 x = 1;
4198
4199 total += x;
4200 nodes[node] += x;
4201
4202 page = ACCESS_ONCE(c->partial);
4203 if (page) {
4204 node = page_to_nid(page);
4205 if (flags & SO_TOTAL)
4206 WARN_ON_ONCE(1);
4207 else if (flags & SO_OBJECTS)
4208 WARN_ON_ONCE(1);
4209 else
4210 x = page->pages;
4211 total += x;
4212 nodes[node] += x;
4213 }
4214 }
4215 }
4216
4217 get_online_mems();
4218 #ifdef CONFIG_SLUB_DEBUG
4219 if (flags & SO_ALL) {
4220 struct kmem_cache_node *n;
4221
4222 for_each_kmem_cache_node(s, node, n) {
4223
4224 if (flags & SO_TOTAL)
4225 x = atomic_long_read(&n->total_objects);
4226 else if (flags & SO_OBJECTS)
4227 x = atomic_long_read(&n->total_objects) -
4228 count_partial(n, count_free);
4229 else
4230 x = atomic_long_read(&n->nr_slabs);
4231 total += x;
4232 nodes[node] += x;
4233 }
4234
4235 } else
4236 #endif
4237 if (flags & SO_PARTIAL) {
4238 struct kmem_cache_node *n;
4239
4240 for_each_kmem_cache_node(s, node, n) {
4241 if (flags & SO_TOTAL)
4242 x = count_partial(n, count_total);
4243 else if (flags & SO_OBJECTS)
4244 x = count_partial(n, count_inuse);
4245 else
4246 x = n->nr_partial;
4247 total += x;
4248 nodes[node] += x;
4249 }
4250 }
4251 x = sprintf(buf, "%lu", total);
4252 #ifdef CONFIG_NUMA
4253 for (node = 0; node < nr_node_ids; node++)
4254 if (nodes[node])
4255 x += sprintf(buf + x, " N%d=%lu",
4256 node, nodes[node]);
4257 #endif
4258 put_online_mems();
4259 kfree(nodes);
4260 return x + sprintf(buf + x, "\n");
4261 }
4262
4263 #ifdef CONFIG_SLUB_DEBUG
4264 static int any_slab_objects(struct kmem_cache *s)
4265 {
4266 int node;
4267 struct kmem_cache_node *n;
4268
4269 for_each_kmem_cache_node(s, node, n)
4270 if (atomic_long_read(&n->total_objects))
4271 return 1;
4272
4273 return 0;
4274 }
4275 #endif
4276
4277 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4278 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4279
4280 struct slab_attribute {
4281 struct attribute attr;
4282 ssize_t (*show)(struct kmem_cache *s, char *buf);
4283 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4284 };
4285
4286 #define SLAB_ATTR_RO(_name) \
4287 static struct slab_attribute _name##_attr = \
4288 __ATTR(_name, 0400, _name##_show, NULL)
4289
4290 #define SLAB_ATTR(_name) \
4291 static struct slab_attribute _name##_attr = \
4292 __ATTR(_name, 0600, _name##_show, _name##_store)
4293
4294 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4295 {
4296 return sprintf(buf, "%d\n", s->size);
4297 }
4298 SLAB_ATTR_RO(slab_size);
4299
4300 static ssize_t align_show(struct kmem_cache *s, char *buf)
4301 {
4302 return sprintf(buf, "%d\n", s->align);
4303 }
4304 SLAB_ATTR_RO(align);
4305
4306 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4307 {
4308 return sprintf(buf, "%d\n", s->object_size);
4309 }
4310 SLAB_ATTR_RO(object_size);
4311
4312 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4313 {
4314 return sprintf(buf, "%d\n", oo_objects(s->oo));
4315 }
4316 SLAB_ATTR_RO(objs_per_slab);
4317
4318 static ssize_t order_store(struct kmem_cache *s,
4319 const char *buf, size_t length)
4320 {
4321 unsigned long order;
4322 int err;
4323
4324 err = kstrtoul(buf, 10, &order);
4325 if (err)
4326 return err;
4327
4328 if (order > slub_max_order || order < slub_min_order)
4329 return -EINVAL;
4330
4331 calculate_sizes(s, order);
4332 return length;
4333 }
4334
4335 static ssize_t order_show(struct kmem_cache *s, char *buf)
4336 {
4337 return sprintf(buf, "%d\n", oo_order(s->oo));
4338 }
4339 SLAB_ATTR(order);
4340
4341 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4342 {
4343 return sprintf(buf, "%lu\n", s->min_partial);
4344 }
4345
4346 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4347 size_t length)
4348 {
4349 unsigned long min;
4350 int err;
4351
4352 err = kstrtoul(buf, 10, &min);
4353 if (err)
4354 return err;
4355
4356 set_min_partial(s, min);
4357 return length;
4358 }
4359 SLAB_ATTR(min_partial);
4360
4361 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4362 {
4363 return sprintf(buf, "%u\n", s->cpu_partial);
4364 }
4365
4366 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4367 size_t length)
4368 {
4369 unsigned long objects;
4370 int err;
4371
4372 err = kstrtoul(buf, 10, &objects);
4373 if (err)
4374 return err;
4375 if (objects && !kmem_cache_has_cpu_partial(s))
4376 return -EINVAL;
4377
4378 s->cpu_partial = objects;
4379 flush_all(s);
4380 return length;
4381 }
4382 SLAB_ATTR(cpu_partial);
4383
4384 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4385 {
4386 if (!s->ctor)
4387 return 0;
4388 return sprintf(buf, "%pS\n", s->ctor);
4389 }
4390 SLAB_ATTR_RO(ctor);
4391
4392 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4393 {
4394 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4395 }
4396 SLAB_ATTR_RO(aliases);
4397
4398 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4399 {
4400 return show_slab_objects(s, buf, SO_PARTIAL);
4401 }
4402 SLAB_ATTR_RO(partial);
4403
4404 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4405 {
4406 return show_slab_objects(s, buf, SO_CPU);
4407 }
4408 SLAB_ATTR_RO(cpu_slabs);
4409
4410 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4411 {
4412 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4413 }
4414 SLAB_ATTR_RO(objects);
4415
4416 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4417 {
4418 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4419 }
4420 SLAB_ATTR_RO(objects_partial);
4421
4422 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4423 {
4424 int objects = 0;
4425 int pages = 0;
4426 int cpu;
4427 int len;
4428
4429 for_each_online_cpu(cpu) {
4430 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4431
4432 if (page) {
4433 pages += page->pages;
4434 objects += page->pobjects;
4435 }
4436 }
4437
4438 len = sprintf(buf, "%d(%d)", objects, pages);
4439
4440 #ifdef CONFIG_SMP
4441 for_each_online_cpu(cpu) {
4442 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4443
4444 if (page && len < PAGE_SIZE - 20)
4445 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4446 page->pobjects, page->pages);
4447 }
4448 #endif
4449 return len + sprintf(buf + len, "\n");
4450 }
4451 SLAB_ATTR_RO(slabs_cpu_partial);
4452
4453 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4454 {
4455 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4456 }
4457
4458 static ssize_t reclaim_account_store(struct kmem_cache *s,
4459 const char *buf, size_t length)
4460 {
4461 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4462 if (buf[0] == '1')
4463 s->flags |= SLAB_RECLAIM_ACCOUNT;
4464 return length;
4465 }
4466 SLAB_ATTR(reclaim_account);
4467
4468 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4469 {
4470 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4471 }
4472 SLAB_ATTR_RO(hwcache_align);
4473
4474 #ifdef CONFIG_ZONE_DMA
4475 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4476 {
4477 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4478 }
4479 SLAB_ATTR_RO(cache_dma);
4480 #endif
4481
4482 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4483 {
4484 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4485 }
4486 SLAB_ATTR_RO(destroy_by_rcu);
4487
4488 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4489 {
4490 return sprintf(buf, "%d\n", s->reserved);
4491 }
4492 SLAB_ATTR_RO(reserved);
4493
4494 #ifdef CONFIG_SLUB_DEBUG
4495 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4496 {
4497 return show_slab_objects(s, buf, SO_ALL);
4498 }
4499 SLAB_ATTR_RO(slabs);
4500
4501 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4502 {
4503 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4504 }
4505 SLAB_ATTR_RO(total_objects);
4506
4507 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4508 {
4509 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4510 }
4511
4512 static ssize_t sanity_checks_store(struct kmem_cache *s,
4513 const char *buf, size_t length)
4514 {
4515 s->flags &= ~SLAB_DEBUG_FREE;
4516 if (buf[0] == '1') {
4517 s->flags &= ~__CMPXCHG_DOUBLE;
4518 s->flags |= SLAB_DEBUG_FREE;
4519 }
4520 return length;
4521 }
4522 SLAB_ATTR(sanity_checks);
4523
4524 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4525 {
4526 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4527 }
4528
4529 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4530 size_t length)
4531 {
4532 /*
4533 * Tracing a merged cache is going to give confusing results
4534 * as well as cause other issues like converting a mergeable
4535 * cache into an umergeable one.
4536 */
4537 if (s->refcount > 1)
4538 return -EINVAL;
4539
4540 s->flags &= ~SLAB_TRACE;
4541 if (buf[0] == '1') {
4542 s->flags &= ~__CMPXCHG_DOUBLE;
4543 s->flags |= SLAB_TRACE;
4544 }
4545 return length;
4546 }
4547 SLAB_ATTR(trace);
4548
4549 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4550 {
4551 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4552 }
4553
4554 static ssize_t red_zone_store(struct kmem_cache *s,
4555 const char *buf, size_t length)
4556 {
4557 if (any_slab_objects(s))
4558 return -EBUSY;
4559
4560 s->flags &= ~SLAB_RED_ZONE;
4561 if (buf[0] == '1') {
4562 s->flags &= ~__CMPXCHG_DOUBLE;
4563 s->flags |= SLAB_RED_ZONE;
4564 }
4565 calculate_sizes(s, -1);
4566 return length;
4567 }
4568 SLAB_ATTR(red_zone);
4569
4570 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4571 {
4572 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4573 }
4574
4575 static ssize_t poison_store(struct kmem_cache *s,
4576 const char *buf, size_t length)
4577 {
4578 if (any_slab_objects(s))
4579 return -EBUSY;
4580
4581 s->flags &= ~SLAB_POISON;
4582 if (buf[0] == '1') {
4583 s->flags &= ~__CMPXCHG_DOUBLE;
4584 s->flags |= SLAB_POISON;
4585 }
4586 calculate_sizes(s, -1);
4587 return length;
4588 }
4589 SLAB_ATTR(poison);
4590
4591 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4592 {
4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4594 }
4595
4596 static ssize_t store_user_store(struct kmem_cache *s,
4597 const char *buf, size_t length)
4598 {
4599 if (any_slab_objects(s))
4600 return -EBUSY;
4601
4602 s->flags &= ~SLAB_STORE_USER;
4603 if (buf[0] == '1') {
4604 s->flags &= ~__CMPXCHG_DOUBLE;
4605 s->flags |= SLAB_STORE_USER;
4606 }
4607 calculate_sizes(s, -1);
4608 return length;
4609 }
4610 SLAB_ATTR(store_user);
4611
4612 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4613 {
4614 return 0;
4615 }
4616
4617 static ssize_t validate_store(struct kmem_cache *s,
4618 const char *buf, size_t length)
4619 {
4620 int ret = -EINVAL;
4621
4622 if (buf[0] == '1') {
4623 ret = validate_slab_cache(s);
4624 if (ret >= 0)
4625 ret = length;
4626 }
4627 return ret;
4628 }
4629 SLAB_ATTR(validate);
4630
4631 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4632 {
4633 if (!(s->flags & SLAB_STORE_USER))
4634 return -ENOSYS;
4635 return list_locations(s, buf, TRACK_ALLOC);
4636 }
4637 SLAB_ATTR_RO(alloc_calls);
4638
4639 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4640 {
4641 if (!(s->flags & SLAB_STORE_USER))
4642 return -ENOSYS;
4643 return list_locations(s, buf, TRACK_FREE);
4644 }
4645 SLAB_ATTR_RO(free_calls);
4646 #endif /* CONFIG_SLUB_DEBUG */
4647
4648 #ifdef CONFIG_FAILSLAB
4649 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4650 {
4651 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4652 }
4653
4654 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4655 size_t length)
4656 {
4657 if (s->refcount > 1)
4658 return -EINVAL;
4659
4660 s->flags &= ~SLAB_FAILSLAB;
4661 if (buf[0] == '1')
4662 s->flags |= SLAB_FAILSLAB;
4663 return length;
4664 }
4665 SLAB_ATTR(failslab);
4666 #endif
4667
4668 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4669 {
4670 return 0;
4671 }
4672
4673 static ssize_t shrink_store(struct kmem_cache *s,
4674 const char *buf, size_t length)
4675 {
4676 if (buf[0] == '1') {
4677 int rc = kmem_cache_shrink(s);
4678
4679 if (rc)
4680 return rc;
4681 } else
4682 return -EINVAL;
4683 return length;
4684 }
4685 SLAB_ATTR(shrink);
4686
4687 #ifdef CONFIG_NUMA
4688 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4689 {
4690 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4691 }
4692
4693 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4694 const char *buf, size_t length)
4695 {
4696 unsigned long ratio;
4697 int err;
4698
4699 err = kstrtoul(buf, 10, &ratio);
4700 if (err)
4701 return err;
4702
4703 if (ratio <= 100)
4704 s->remote_node_defrag_ratio = ratio * 10;
4705
4706 return length;
4707 }
4708 SLAB_ATTR(remote_node_defrag_ratio);
4709 #endif
4710
4711 #ifdef CONFIG_SLUB_STATS
4712 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4713 {
4714 unsigned long sum = 0;
4715 int cpu;
4716 int len;
4717 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4718
4719 if (!data)
4720 return -ENOMEM;
4721
4722 for_each_online_cpu(cpu) {
4723 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4724
4725 data[cpu] = x;
4726 sum += x;
4727 }
4728
4729 len = sprintf(buf, "%lu", sum);
4730
4731 #ifdef CONFIG_SMP
4732 for_each_online_cpu(cpu) {
4733 if (data[cpu] && len < PAGE_SIZE - 20)
4734 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4735 }
4736 #endif
4737 kfree(data);
4738 return len + sprintf(buf + len, "\n");
4739 }
4740
4741 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4742 {
4743 int cpu;
4744
4745 for_each_online_cpu(cpu)
4746 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4747 }
4748
4749 #define STAT_ATTR(si, text) \
4750 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4751 { \
4752 return show_stat(s, buf, si); \
4753 } \
4754 static ssize_t text##_store(struct kmem_cache *s, \
4755 const char *buf, size_t length) \
4756 { \
4757 if (buf[0] != '0') \
4758 return -EINVAL; \
4759 clear_stat(s, si); \
4760 return length; \
4761 } \
4762 SLAB_ATTR(text); \
4763
4764 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4765 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4766 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4767 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4768 STAT_ATTR(FREE_FROZEN, free_frozen);
4769 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4770 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4771 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4772 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4773 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4774 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4775 STAT_ATTR(FREE_SLAB, free_slab);
4776 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4777 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4778 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4779 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4780 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4781 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4782 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4783 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4784 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4785 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4786 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4787 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4788 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4789 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4790 #endif
4791
4792 static struct attribute *slab_attrs[] = {
4793 &slab_size_attr.attr,
4794 &object_size_attr.attr,
4795 &objs_per_slab_attr.attr,
4796 &order_attr.attr,
4797 &min_partial_attr.attr,
4798 &cpu_partial_attr.attr,
4799 &objects_attr.attr,
4800 &objects_partial_attr.attr,
4801 &partial_attr.attr,
4802 &cpu_slabs_attr.attr,
4803 &ctor_attr.attr,
4804 &aliases_attr.attr,
4805 &align_attr.attr,
4806 &hwcache_align_attr.attr,
4807 &reclaim_account_attr.attr,
4808 &destroy_by_rcu_attr.attr,
4809 &shrink_attr.attr,
4810 &reserved_attr.attr,
4811 &slabs_cpu_partial_attr.attr,
4812 #ifdef CONFIG_SLUB_DEBUG
4813 &total_objects_attr.attr,
4814 &slabs_attr.attr,
4815 &sanity_checks_attr.attr,
4816 &trace_attr.attr,
4817 &red_zone_attr.attr,
4818 &poison_attr.attr,
4819 &store_user_attr.attr,
4820 &validate_attr.attr,
4821 &alloc_calls_attr.attr,
4822 &free_calls_attr.attr,
4823 #endif
4824 #ifdef CONFIG_ZONE_DMA
4825 &cache_dma_attr.attr,
4826 #endif
4827 #ifdef CONFIG_NUMA
4828 &remote_node_defrag_ratio_attr.attr,
4829 #endif
4830 #ifdef CONFIG_SLUB_STATS
4831 &alloc_fastpath_attr.attr,
4832 &alloc_slowpath_attr.attr,
4833 &free_fastpath_attr.attr,
4834 &free_slowpath_attr.attr,
4835 &free_frozen_attr.attr,
4836 &free_add_partial_attr.attr,
4837 &free_remove_partial_attr.attr,
4838 &alloc_from_partial_attr.attr,
4839 &alloc_slab_attr.attr,
4840 &alloc_refill_attr.attr,
4841 &alloc_node_mismatch_attr.attr,
4842 &free_slab_attr.attr,
4843 &cpuslab_flush_attr.attr,
4844 &deactivate_full_attr.attr,
4845 &deactivate_empty_attr.attr,
4846 &deactivate_to_head_attr.attr,
4847 &deactivate_to_tail_attr.attr,
4848 &deactivate_remote_frees_attr.attr,
4849 &deactivate_bypass_attr.attr,
4850 &order_fallback_attr.attr,
4851 &cmpxchg_double_fail_attr.attr,
4852 &cmpxchg_double_cpu_fail_attr.attr,
4853 &cpu_partial_alloc_attr.attr,
4854 &cpu_partial_free_attr.attr,
4855 &cpu_partial_node_attr.attr,
4856 &cpu_partial_drain_attr.attr,
4857 #endif
4858 #ifdef CONFIG_FAILSLAB
4859 &failslab_attr.attr,
4860 #endif
4861
4862 NULL
4863 };
4864
4865 static struct attribute_group slab_attr_group = {
4866 .attrs = slab_attrs,
4867 };
4868
4869 static ssize_t slab_attr_show(struct kobject *kobj,
4870 struct attribute *attr,
4871 char *buf)
4872 {
4873 struct slab_attribute *attribute;
4874 struct kmem_cache *s;
4875 int err;
4876
4877 attribute = to_slab_attr(attr);
4878 s = to_slab(kobj);
4879
4880 if (!attribute->show)
4881 return -EIO;
4882
4883 err = attribute->show(s, buf);
4884
4885 return err;
4886 }
4887
4888 static ssize_t slab_attr_store(struct kobject *kobj,
4889 struct attribute *attr,
4890 const char *buf, size_t len)
4891 {
4892 struct slab_attribute *attribute;
4893 struct kmem_cache *s;
4894 int err;
4895
4896 attribute = to_slab_attr(attr);
4897 s = to_slab(kobj);
4898
4899 if (!attribute->store)
4900 return -EIO;
4901
4902 err = attribute->store(s, buf, len);
4903 #ifdef CONFIG_MEMCG_KMEM
4904 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4905 int i;
4906
4907 mutex_lock(&slab_mutex);
4908 if (s->max_attr_size < len)
4909 s->max_attr_size = len;
4910
4911 /*
4912 * This is a best effort propagation, so this function's return
4913 * value will be determined by the parent cache only. This is
4914 * basically because not all attributes will have a well
4915 * defined semantics for rollbacks - most of the actions will
4916 * have permanent effects.
4917 *
4918 * Returning the error value of any of the children that fail
4919 * is not 100 % defined, in the sense that users seeing the
4920 * error code won't be able to know anything about the state of
4921 * the cache.
4922 *
4923 * Only returning the error code for the parent cache at least
4924 * has well defined semantics. The cache being written to
4925 * directly either failed or succeeded, in which case we loop
4926 * through the descendants with best-effort propagation.
4927 */
4928 for_each_memcg_cache_index(i) {
4929 struct kmem_cache *c = cache_from_memcg_idx(s, i);
4930 if (c)
4931 attribute->store(c, buf, len);
4932 }
4933 mutex_unlock(&slab_mutex);
4934 }
4935 #endif
4936 return err;
4937 }
4938
4939 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4940 {
4941 #ifdef CONFIG_MEMCG_KMEM
4942 int i;
4943 char *buffer = NULL;
4944 struct kmem_cache *root_cache;
4945
4946 if (is_root_cache(s))
4947 return;
4948
4949 root_cache = s->memcg_params->root_cache;
4950
4951 /*
4952 * This mean this cache had no attribute written. Therefore, no point
4953 * in copying default values around
4954 */
4955 if (!root_cache->max_attr_size)
4956 return;
4957
4958 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4959 char mbuf[64];
4960 char *buf;
4961 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4962
4963 if (!attr || !attr->store || !attr->show)
4964 continue;
4965
4966 /*
4967 * It is really bad that we have to allocate here, so we will
4968 * do it only as a fallback. If we actually allocate, though,
4969 * we can just use the allocated buffer until the end.
4970 *
4971 * Most of the slub attributes will tend to be very small in
4972 * size, but sysfs allows buffers up to a page, so they can
4973 * theoretically happen.
4974 */
4975 if (buffer)
4976 buf = buffer;
4977 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4978 buf = mbuf;
4979 else {
4980 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4981 if (WARN_ON(!buffer))
4982 continue;
4983 buf = buffer;
4984 }
4985
4986 attr->show(root_cache, buf);
4987 attr->store(s, buf, strlen(buf));
4988 }
4989
4990 if (buffer)
4991 free_page((unsigned long)buffer);
4992 #endif
4993 }
4994
4995 static void kmem_cache_release(struct kobject *k)
4996 {
4997 slab_kmem_cache_release(to_slab(k));
4998 }
4999
5000 static const struct sysfs_ops slab_sysfs_ops = {
5001 .show = slab_attr_show,
5002 .store = slab_attr_store,
5003 };
5004
5005 static struct kobj_type slab_ktype = {
5006 .sysfs_ops = &slab_sysfs_ops,
5007 .release = kmem_cache_release,
5008 };
5009
5010 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5011 {
5012 struct kobj_type *ktype = get_ktype(kobj);
5013
5014 if (ktype == &slab_ktype)
5015 return 1;
5016 return 0;
5017 }
5018
5019 static const struct kset_uevent_ops slab_uevent_ops = {
5020 .filter = uevent_filter,
5021 };
5022
5023 static struct kset *slab_kset;
5024
5025 static inline struct kset *cache_kset(struct kmem_cache *s)
5026 {
5027 #ifdef CONFIG_MEMCG_KMEM
5028 if (!is_root_cache(s))
5029 return s->memcg_params->root_cache->memcg_kset;
5030 #endif
5031 return slab_kset;
5032 }
5033
5034 #define ID_STR_LENGTH 64
5035
5036 /* Create a unique string id for a slab cache:
5037 *
5038 * Format :[flags-]size
5039 */
5040 static char *create_unique_id(struct kmem_cache *s)
5041 {
5042 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5043 char *p = name;
5044
5045 BUG_ON(!name);
5046
5047 *p++ = ':';
5048 /*
5049 * First flags affecting slabcache operations. We will only
5050 * get here for aliasable slabs so we do not need to support
5051 * too many flags. The flags here must cover all flags that
5052 * are matched during merging to guarantee that the id is
5053 * unique.
5054 */
5055 if (s->flags & SLAB_CACHE_DMA)
5056 *p++ = 'd';
5057 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5058 *p++ = 'a';
5059 if (s->flags & SLAB_DEBUG_FREE)
5060 *p++ = 'F';
5061 if (!(s->flags & SLAB_NOTRACK))
5062 *p++ = 't';
5063 if (p != name + 1)
5064 *p++ = '-';
5065 p += sprintf(p, "%07d", s->size);
5066
5067 BUG_ON(p > name + ID_STR_LENGTH - 1);
5068 return name;
5069 }
5070
5071 static int sysfs_slab_add(struct kmem_cache *s)
5072 {
5073 int err;
5074 const char *name;
5075 int unmergeable = slab_unmergeable(s);
5076
5077 if (unmergeable) {
5078 /*
5079 * Slabcache can never be merged so we can use the name proper.
5080 * This is typically the case for debug situations. In that
5081 * case we can catch duplicate names easily.
5082 */
5083 sysfs_remove_link(&slab_kset->kobj, s->name);
5084 name = s->name;
5085 } else {
5086 /*
5087 * Create a unique name for the slab as a target
5088 * for the symlinks.
5089 */
5090 name = create_unique_id(s);
5091 }
5092
5093 s->kobj.kset = cache_kset(s);
5094 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5095 if (err)
5096 goto out_put_kobj;
5097
5098 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5099 if (err)
5100 goto out_del_kobj;
5101
5102 #ifdef CONFIG_MEMCG_KMEM
5103 if (is_root_cache(s)) {
5104 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5105 if (!s->memcg_kset) {
5106 err = -ENOMEM;
5107 goto out_del_kobj;
5108 }
5109 }
5110 #endif
5111
5112 kobject_uevent(&s->kobj, KOBJ_ADD);
5113 if (!unmergeable) {
5114 /* Setup first alias */
5115 sysfs_slab_alias(s, s->name);
5116 }
5117 out:
5118 if (!unmergeable)
5119 kfree(name);
5120 return err;
5121 out_del_kobj:
5122 kobject_del(&s->kobj);
5123 out_put_kobj:
5124 kobject_put(&s->kobj);
5125 goto out;
5126 }
5127
5128 void sysfs_slab_remove(struct kmem_cache *s)
5129 {
5130 if (slab_state < FULL)
5131 /*
5132 * Sysfs has not been setup yet so no need to remove the
5133 * cache from sysfs.
5134 */
5135 return;
5136
5137 #ifdef CONFIG_MEMCG_KMEM
5138 kset_unregister(s->memcg_kset);
5139 #endif
5140 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5141 kobject_del(&s->kobj);
5142 kobject_put(&s->kobj);
5143 }
5144
5145 /*
5146 * Need to buffer aliases during bootup until sysfs becomes
5147 * available lest we lose that information.
5148 */
5149 struct saved_alias {
5150 struct kmem_cache *s;
5151 const char *name;
5152 struct saved_alias *next;
5153 };
5154
5155 static struct saved_alias *alias_list;
5156
5157 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5158 {
5159 struct saved_alias *al;
5160
5161 if (slab_state == FULL) {
5162 /*
5163 * If we have a leftover link then remove it.
5164 */
5165 sysfs_remove_link(&slab_kset->kobj, name);
5166 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5167 }
5168
5169 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5170 if (!al)
5171 return -ENOMEM;
5172
5173 al->s = s;
5174 al->name = name;
5175 al->next = alias_list;
5176 alias_list = al;
5177 return 0;
5178 }
5179
5180 static int __init slab_sysfs_init(void)
5181 {
5182 struct kmem_cache *s;
5183 int err;
5184
5185 mutex_lock(&slab_mutex);
5186
5187 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5188 if (!slab_kset) {
5189 mutex_unlock(&slab_mutex);
5190 pr_err("Cannot register slab subsystem.\n");
5191 return -ENOSYS;
5192 }
5193
5194 slab_state = FULL;
5195
5196 list_for_each_entry(s, &slab_caches, list) {
5197 err = sysfs_slab_add(s);
5198 if (err)
5199 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5200 s->name);
5201 }
5202
5203 while (alias_list) {
5204 struct saved_alias *al = alias_list;
5205
5206 alias_list = alias_list->next;
5207 err = sysfs_slab_alias(al->s, al->name);
5208 if (err)
5209 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5210 al->name);
5211 kfree(al);
5212 }
5213
5214 mutex_unlock(&slab_mutex);
5215 resiliency_test();
5216 return 0;
5217 }
5218
5219 __initcall(slab_sysfs_init);
5220 #endif /* CONFIG_SYSFS */
5221
5222 /*
5223 * The /proc/slabinfo ABI
5224 */
5225 #ifdef CONFIG_SLABINFO
5226 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5227 {
5228 unsigned long nr_slabs = 0;
5229 unsigned long nr_objs = 0;
5230 unsigned long nr_free = 0;
5231 int node;
5232 struct kmem_cache_node *n;
5233
5234 for_each_kmem_cache_node(s, node, n) {
5235 nr_slabs += node_nr_slabs(n);
5236 nr_objs += node_nr_objs(n);
5237 nr_free += count_partial(n, count_free);
5238 }
5239
5240 sinfo->active_objs = nr_objs - nr_free;
5241 sinfo->num_objs = nr_objs;
5242 sinfo->active_slabs = nr_slabs;
5243 sinfo->num_slabs = nr_slabs;
5244 sinfo->objects_per_slab = oo_objects(s->oo);
5245 sinfo->cache_order = oo_order(s->oo);
5246 }
5247
5248 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5249 {
5250 }
5251
5252 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5253 size_t count, loff_t *ppos)
5254 {
5255 return -EIO;
5256 }
5257 #endif /* CONFIG_SLABINFO */