]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slub.c
slab: Ignore internal flags in cache creation
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34
35 #include <trace/events/kmem.h>
36
37 #include "internal.h"
38
39 /*
40 * Lock order:
41 * 1. slab_mutex (Global Mutex)
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
44 *
45 * slab_mutex
46 *
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
113 */
114
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
122 }
123
124 /*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137
138 /*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142 #define MIN_PARTIAL 5
143
144 /*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149 #define MAX_PARTIAL 10
150
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154 /*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161 /*
162 * Set of flags that will prevent slab merging
163 */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179 static int kmem_size = sizeof(struct kmem_cache);
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
211
212 #endif
213
214 static inline void stat(const struct kmem_cache *s, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 __this_cpu_inc(s->cpu_slab->stat[si]);
218 #endif
219 }
220
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226 {
227 return s->node[node];
228 }
229
230 /* Verify that a pointer has an address that is valid within a slab page */
231 static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233 {
234 void *base;
235
236 if (!object)
237 return 1;
238
239 base = page_address(page);
240 if (object < base || object >= base + page->objects * s->size ||
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246 }
247
248 static inline void *get_freepointer(struct kmem_cache *s, void *object)
249 {
250 return *(void **)(object + s->offset);
251 }
252
253 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254 {
255 prefetch(object + s->offset);
256 }
257
258 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259 {
260 void *p;
261
262 #ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264 #else
265 p = get_freepointer(s, object);
266 #endif
267 return p;
268 }
269
270 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271 {
272 *(void **)(object + s->offset) = fp;
273 }
274
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 __p += (__s)->size)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 /* Interrupts must be disabled (for the fallback code to work right) */
349 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353 {
354 VM_BUG_ON(!irqs_disabled());
355 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357 if (s->flags & __CMPXCHG_DOUBLE) {
358 if (cmpxchg_double(&page->freelist, &page->counters,
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363 #endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378 #ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380 #endif
381
382 return 0;
383 }
384
385 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389 {
390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392 if (s->flags & __CMPXCHG_DOUBLE) {
393 if (cmpxchg_double(&page->freelist, &page->counters,
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398 #endif
399 {
400 unsigned long flags;
401
402 local_irq_save(flags);
403 slab_lock(page);
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
407 slab_unlock(page);
408 local_irq_restore(flags);
409 return 1;
410 }
411 slab_unlock(page);
412 local_irq_restore(flags);
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418 #ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420 #endif
421
422 return 0;
423 }
424
425 #ifdef CONFIG_SLUB_DEBUG
426 /*
427 * Determine a map of object in use on a page.
428 *
429 * Node listlock must be held to guarantee that the page does
430 * not vanish from under us.
431 */
432 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433 {
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439 }
440
441 /*
442 * Debug settings:
443 */
444 #ifdef CONFIG_SLUB_DEBUG_ON
445 static int slub_debug = DEBUG_DEFAULT_FLAGS;
446 #else
447 static int slub_debug;
448 #endif
449
450 static char *slub_debug_slabs;
451 static int disable_higher_order_debug;
452
453 /*
454 * Object debugging
455 */
456 static void print_section(char *text, u8 *addr, unsigned int length)
457 {
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
460 }
461
462 static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464 {
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473 }
474
475 static void set_track(struct kmem_cache *s, void *object,
476 enum track_item alloc, unsigned long addr)
477 {
478 struct track *p = get_track(s, object, alloc);
479
480 if (addr) {
481 #ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498 #endif
499 p->addr = addr;
500 p->cpu = smp_processor_id();
501 p->pid = current->pid;
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505 }
506
507 static void init_tracking(struct kmem_cache *s, void *object)
508 {
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
514 }
515
516 static void print_track(const char *s, struct track *t)
517 {
518 if (!t->addr)
519 return;
520
521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
523 #ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532 #endif
533 }
534
535 static void print_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542 }
543
544 static void print_page_info(struct page *page)
545 {
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
548
549 }
550
551 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552 {
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
564
565 add_taint(TAINT_BAD_PAGE);
566 }
567
568 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569 {
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577 }
578
579 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
580 {
581 unsigned int off; /* Offset of last byte */
582 u8 *addr = page_address(page);
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
592 print_section("Bytes b4 ", p - 16, 16);
593
594 print_section("Object ", p, min_t(unsigned long, s->object_size,
595 PAGE_SIZE));
596 if (s->flags & SLAB_RED_ZONE)
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
599
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
605 if (s->flags & SLAB_STORE_USER)
606 off += 2 * sizeof(struct track);
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
610 print_section("Padding ", p + off, s->size - off);
611
612 dump_stack();
613 }
614
615 static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617 {
618 slab_bug(s, "%s", reason);
619 print_trailer(s, page, object);
620 }
621
622 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
623 {
624 va_list args;
625 char buf[100];
626
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
629 va_end(args);
630 slab_bug(s, "%s", buf);
631 print_page_info(page);
632 dump_stack();
633 }
634
635 static void init_object(struct kmem_cache *s, void *object, u8 val)
636 {
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
645 memset(p + s->object_size, val, s->inuse - s->object_size);
646 }
647
648 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650 {
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653 }
654
655 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
657 u8 *start, unsigned int value, unsigned int bytes)
658 {
659 u8 *fault;
660 u8 *end;
661
662 fault = memchr_inv(start, value, bytes);
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
677 }
678
679 /*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
686 *
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
690 * object + s->object_size
691 * Padding to reach word boundary. This is also used for Redzoning.
692 * Padding is extended by another word if Redzoning is enabled and
693 * object_size == inuse.
694 *
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
699 * Meta data starts here.
700 *
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
703 * C. Padding to reach required alignment boundary or at mininum
704 * one word if debugging is on to be able to detect writes
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
708 *
709 * object + s->size
710 * Nothing is used beyond s->size.
711 *
712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
713 * ignored. And therefore no slab options that rely on these boundaries
714 * may be used with merged slabcaches.
715 */
716
717 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718 {
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
734 }
735
736 /* Check the pad bytes at the end of a slab page */
737 static int slab_pad_check(struct kmem_cache *s, struct page *page)
738 {
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
748 start = page_address(page);
749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
750 end = start + length;
751 remainder = length % s->size;
752 if (!remainder)
753 return 1;
754
755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
762 print_section("Padding ", end - remainder, remainder);
763
764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
765 return 0;
766 }
767
768 static int check_object(struct kmem_cache *s, struct page *page,
769 void *object, u8 val)
770 {
771 u8 *p = object;
772 u8 *endobject = object + s->object_size;
773
774 if (s->flags & SLAB_RED_ZONE) {
775 if (!check_bytes_and_report(s, page, object, "Redzone",
776 endobject, val, s->inuse - s->object_size))
777 return 0;
778 } else {
779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
780 check_bytes_and_report(s, page, p, "Alignment padding",
781 endobject, POISON_INUSE, s->inuse - s->object_size);
782 }
783 }
784
785 if (s->flags & SLAB_POISON) {
786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
787 (!check_bytes_and_report(s, page, p, "Poison", p,
788 POISON_FREE, s->object_size - 1) ||
789 !check_bytes_and_report(s, page, p, "Poison",
790 p + s->object_size - 1, POISON_END, 1)))
791 return 0;
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
798 if (!s->offset && val == SLUB_RED_ACTIVE)
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
809 * No choice but to zap it and thus lose the remainder
810 * of the free objects in this slab. May cause
811 * another error because the object count is now wrong.
812 */
813 set_freepointer(s, p, NULL);
814 return 0;
815 }
816 return 1;
817 }
818
819 static int check_slab(struct kmem_cache *s, struct page *page)
820 {
821 int maxobj;
822
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
826 slab_err(s, page, "Not a valid slab page");
827 return 0;
828 }
829
830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
837 slab_err(s, page, "inuse %u > max %u",
838 s->name, page->inuse, page->objects);
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844 }
845
846 /*
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
849 */
850 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851 {
852 int nr = 0;
853 void *fp;
854 void *object = NULL;
855 unsigned long max_objects;
856
857 fp = page->freelist;
858 while (fp && nr <= page->objects) {
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
865 set_freepointer(s, object, NULL);
866 break;
867 } else {
868 slab_err(s, page, "Freepointer corrupt");
869 page->freelist = NULL;
870 page->inuse = page->objects;
871 slab_fix(s, "Freelist cleared");
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
891 if (page->inuse != page->objects - nr) {
892 slab_err(s, page, "Wrong object count. Counter is %d but "
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
895 slab_fix(s, "Object count adjusted.");
896 }
897 return search == NULL;
898 }
899
900 static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
902 {
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
911 print_section("Object ", (void *)object, s->object_size);
912
913 dump_stack();
914 }
915 }
916
917 /*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922 {
923 flags &= gfp_allowed_mask;
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
927 return should_failslab(s->object_size, flags, s->flags);
928 }
929
930 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931 {
932 flags &= gfp_allowed_mask;
933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
935 }
936
937 static inline void slab_free_hook(struct kmem_cache *s, void *x)
938 {
939 kmemleak_free_recursive(x, s->flags);
940
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
953 local_irq_restore(flags);
954 }
955 #endif
956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
957 debug_check_no_obj_freed(x, s->object_size);
958 }
959
960 /*
961 * Tracking of fully allocated slabs for debugging purposes.
962 *
963 * list_lock must be held.
964 */
965 static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
967 {
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
971 list_add(&page->lru, &n->full);
972 }
973
974 /*
975 * list_lock must be held.
976 */
977 static void remove_full(struct kmem_cache *s, struct page *page)
978 {
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (n) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1033 void *object, unsigned long addr)
1034 {
1035 if (!check_slab(s, page))
1036 goto bad;
1037
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
1040 goto bad;
1041 }
1042
1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1044 goto bad;
1045
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
1050 init_object(s, object, SLUB_RED_ACTIVE);
1051 return 1;
1052
1053 bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
1058 * as used avoids touching the remaining objects.
1059 */
1060 slab_fix(s, "Marking all objects used");
1061 page->inuse = page->objects;
1062 page->freelist = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
1070 {
1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072
1073 spin_lock_irqsave(&n->list_lock, *flags);
1074 slab_lock(page);
1075
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
1085 object_err(s, page, object, "Object already free");
1086 goto fail;
1087 }
1088
1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1090 goto out;
1091
1092 if (unlikely(s != page->slab_cache)) {
1093 if (!PageSlab(page)) {
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1096 } else if (!page->slab_cache) {
1097 printk(KERN_ERR
1098 "SLUB <none>: no slab for object 0x%p.\n",
1099 object);
1100 dump_stack();
1101 } else
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
1104 goto fail;
1105 }
1106
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 slab_unlock(page);
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
1118
1119 fail:
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
1122 slab_fix(s, "Object at 0x%p not freed", object);
1123 return NULL;
1124 }
1125
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
1161 for (; *str && *str != ','; str++) {
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
1183 "unknown. skipped\n", *str);
1184 }
1185 }
1186
1187 check_slabs:
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
1190 out:
1191 return 1;
1192 }
1193
1194 __setup("slub_debug", setup_slub_debug);
1195
1196 static unsigned long kmem_cache_flags(unsigned long object_size,
1197 unsigned long flags, const char *name,
1198 void (*ctor)(void *))
1199 {
1200 /*
1201 * Enable debugging if selected on the kernel commandline.
1202 */
1203 if (slub_debug && (!slub_debug_slabs ||
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
1206
1207 return flags;
1208 }
1209 #else
1210 static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
1212
1213 static inline int alloc_debug_processing(struct kmem_cache *s,
1214 struct page *page, void *object, unsigned long addr) { return 0; }
1215
1216 static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
1219
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 unsigned long flags, const char *name,
1229 void (*ctor)(void *))
1230 {
1231 return flags;
1232 }
1233 #define slub_debug 0
1234
1235 #define disable_higher_order_debug 0
1236
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
1254 #endif /* CONFIG_SLUB_DEBUG */
1255
1256 /*
1257 * Slab allocation and freeing
1258 */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261 {
1262 int order = oo_order(oo);
1263
1264 flags |= __GFP_NOTRACK;
1265
1266 if (node == NUMA_NO_NODE)
1267 return alloc_pages(flags, order);
1268 else
1269 return alloc_pages_exact_node(node, flags, order);
1270 }
1271
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 struct page *page;
1275 struct kmem_cache_order_objects oo = s->oo;
1276 gfp_t alloc_gfp;
1277
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
1283 flags |= s->allocflags;
1284
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
1299
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
1302 }
1303
1304 if (kmemcheck_enabled && page
1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
1318 }
1319
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
1325 page->objects = oo_objects(oo);
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 1 << oo_order(oo));
1330
1331 return page;
1332 }
1333
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336 {
1337 setup_object_debug(s, page, object);
1338 if (unlikely(s->ctor))
1339 s->ctor(object);
1340 }
1341
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 struct page *page;
1345 void *start;
1346 void *last;
1347 void *p;
1348
1349 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1350
1351 page = allocate_slab(s,
1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1353 if (!page)
1354 goto out;
1355
1356 inc_slabs_node(s, page_to_nid(page), page->objects);
1357 page->slab_cache = s;
1358 __SetPageSlab(page);
1359 if (page->pfmemalloc)
1360 SetPageSlabPfmemalloc(page);
1361
1362 start = page_address(page);
1363
1364 if (unlikely(s->flags & SLAB_POISON))
1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1366
1367 last = start;
1368 for_each_object(p, s, start, page->objects) {
1369 setup_object(s, page, last);
1370 set_freepointer(s, last, p);
1371 last = p;
1372 }
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, NULL);
1375
1376 page->freelist = start;
1377 page->inuse = page->objects;
1378 page->frozen = 1;
1379 out:
1380 return page;
1381 }
1382
1383 static void __free_slab(struct kmem_cache *s, struct page *page)
1384 {
1385 int order = compound_order(page);
1386 int pages = 1 << order;
1387
1388 if (kmem_cache_debug(s)) {
1389 void *p;
1390
1391 slab_pad_check(s, page);
1392 for_each_object(p, s, page_address(page),
1393 page->objects)
1394 check_object(s, page, p, SLUB_RED_INACTIVE);
1395 }
1396
1397 kmemcheck_free_shadow(page, compound_order(page));
1398
1399 mod_zone_page_state(page_zone(page),
1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1402 -pages);
1403
1404 __ClearPageSlabPfmemalloc(page);
1405 __ClearPageSlab(page);
1406 reset_page_mapcount(page);
1407 if (current->reclaim_state)
1408 current->reclaim_state->reclaimed_slab += pages;
1409 __free_pages(page, order);
1410 }
1411
1412 #define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414
1415 static void rcu_free_slab(struct rcu_head *h)
1416 {
1417 struct page *page;
1418
1419 if (need_reserve_slab_rcu)
1420 page = virt_to_head_page(h);
1421 else
1422 page = container_of((struct list_head *)h, struct page, lru);
1423
1424 __free_slab(page->slab_cache, page);
1425 }
1426
1427 static void free_slab(struct kmem_cache *s, struct page *page)
1428 {
1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1430 struct rcu_head *head;
1431
1432 if (need_reserve_slab_rcu) {
1433 int order = compound_order(page);
1434 int offset = (PAGE_SIZE << order) - s->reserved;
1435
1436 VM_BUG_ON(s->reserved != sizeof(*head));
1437 head = page_address(page) + offset;
1438 } else {
1439 /*
1440 * RCU free overloads the RCU head over the LRU
1441 */
1442 head = (void *)&page->lru;
1443 }
1444
1445 call_rcu(head, rcu_free_slab);
1446 } else
1447 __free_slab(s, page);
1448 }
1449
1450 static void discard_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 dec_slabs_node(s, page_to_nid(page), page->objects);
1453 free_slab(s, page);
1454 }
1455
1456 /*
1457 * Management of partially allocated slabs.
1458 *
1459 * list_lock must be held.
1460 */
1461 static inline void add_partial(struct kmem_cache_node *n,
1462 struct page *page, int tail)
1463 {
1464 n->nr_partial++;
1465 if (tail == DEACTIVATE_TO_TAIL)
1466 list_add_tail(&page->lru, &n->partial);
1467 else
1468 list_add(&page->lru, &n->partial);
1469 }
1470
1471 /*
1472 * list_lock must be held.
1473 */
1474 static inline void remove_partial(struct kmem_cache_node *n,
1475 struct page *page)
1476 {
1477 list_del(&page->lru);
1478 n->nr_partial--;
1479 }
1480
1481 /*
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
1484 *
1485 * Returns a list of objects or NULL if it fails.
1486 *
1487 * Must hold list_lock since we modify the partial list.
1488 */
1489 static inline void *acquire_slab(struct kmem_cache *s,
1490 struct kmem_cache_node *n, struct page *page,
1491 int mode)
1492 {
1493 void *freelist;
1494 unsigned long counters;
1495 struct page new;
1496
1497 /*
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1501 */
1502 freelist = page->freelist;
1503 counters = page->counters;
1504 new.counters = counters;
1505 if (mode) {
1506 new.inuse = page->objects;
1507 new.freelist = NULL;
1508 } else {
1509 new.freelist = freelist;
1510 }
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1515 if (!__cmpxchg_double_slab(s, page,
1516 freelist, counters,
1517 new.freelist, new.counters,
1518 "acquire_slab"))
1519 return NULL;
1520
1521 remove_partial(n, page);
1522 WARN_ON(!freelist);
1523 return freelist;
1524 }
1525
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1528
1529 /*
1530 * Try to allocate a partial slab from a specific node.
1531 */
1532 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1533 struct kmem_cache_cpu *c, gfp_t flags)
1534 {
1535 struct page *page, *page2;
1536 void *object = NULL;
1537
1538 /*
1539 * Racy check. If we mistakenly see no partial slabs then we
1540 * just allocate an empty slab. If we mistakenly try to get a
1541 * partial slab and there is none available then get_partials()
1542 * will return NULL.
1543 */
1544 if (!n || !n->nr_partial)
1545 return NULL;
1546
1547 spin_lock(&n->list_lock);
1548 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1549 void *t;
1550 int available;
1551
1552 if (!pfmemalloc_match(page, flags))
1553 continue;
1554
1555 t = acquire_slab(s, n, page, object == NULL);
1556 if (!t)
1557 break;
1558
1559 if (!object) {
1560 c->page = page;
1561 stat(s, ALLOC_FROM_PARTIAL);
1562 object = t;
1563 available = page->objects - page->inuse;
1564 } else {
1565 available = put_cpu_partial(s, page, 0);
1566 stat(s, CPU_PARTIAL_NODE);
1567 }
1568 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1569 break;
1570
1571 }
1572 spin_unlock(&n->list_lock);
1573 return object;
1574 }
1575
1576 /*
1577 * Get a page from somewhere. Search in increasing NUMA distances.
1578 */
1579 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1580 struct kmem_cache_cpu *c)
1581 {
1582 #ifdef CONFIG_NUMA
1583 struct zonelist *zonelist;
1584 struct zoneref *z;
1585 struct zone *zone;
1586 enum zone_type high_zoneidx = gfp_zone(flags);
1587 void *object;
1588 unsigned int cpuset_mems_cookie;
1589
1590 /*
1591 * The defrag ratio allows a configuration of the tradeoffs between
1592 * inter node defragmentation and node local allocations. A lower
1593 * defrag_ratio increases the tendency to do local allocations
1594 * instead of attempting to obtain partial slabs from other nodes.
1595 *
1596 * If the defrag_ratio is set to 0 then kmalloc() always
1597 * returns node local objects. If the ratio is higher then kmalloc()
1598 * may return off node objects because partial slabs are obtained
1599 * from other nodes and filled up.
1600 *
1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1602 * defrag_ratio = 1000) then every (well almost) allocation will
1603 * first attempt to defrag slab caches on other nodes. This means
1604 * scanning over all nodes to look for partial slabs which may be
1605 * expensive if we do it every time we are trying to find a slab
1606 * with available objects.
1607 */
1608 if (!s->remote_node_defrag_ratio ||
1609 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1610 return NULL;
1611
1612 do {
1613 cpuset_mems_cookie = get_mems_allowed();
1614 zonelist = node_zonelist(slab_node(), flags);
1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 struct kmem_cache_node *n;
1617
1618 n = get_node(s, zone_to_nid(zone));
1619
1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1621 n->nr_partial > s->min_partial) {
1622 object = get_partial_node(s, n, c, flags);
1623 if (object) {
1624 /*
1625 * Return the object even if
1626 * put_mems_allowed indicated that
1627 * the cpuset mems_allowed was
1628 * updated in parallel. It's a
1629 * harmless race between the alloc
1630 * and the cpuset update.
1631 */
1632 put_mems_allowed(cpuset_mems_cookie);
1633 return object;
1634 }
1635 }
1636 }
1637 } while (!put_mems_allowed(cpuset_mems_cookie));
1638 #endif
1639 return NULL;
1640 }
1641
1642 /*
1643 * Get a partial page, lock it and return it.
1644 */
1645 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1646 struct kmem_cache_cpu *c)
1647 {
1648 void *object;
1649 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1650
1651 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1652 if (object || node != NUMA_NO_NODE)
1653 return object;
1654
1655 return get_any_partial(s, flags, c);
1656 }
1657
1658 #ifdef CONFIG_PREEMPT
1659 /*
1660 * Calculate the next globally unique transaction for disambiguiation
1661 * during cmpxchg. The transactions start with the cpu number and are then
1662 * incremented by CONFIG_NR_CPUS.
1663 */
1664 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1665 #else
1666 /*
1667 * No preemption supported therefore also no need to check for
1668 * different cpus.
1669 */
1670 #define TID_STEP 1
1671 #endif
1672
1673 static inline unsigned long next_tid(unsigned long tid)
1674 {
1675 return tid + TID_STEP;
1676 }
1677
1678 static inline unsigned int tid_to_cpu(unsigned long tid)
1679 {
1680 return tid % TID_STEP;
1681 }
1682
1683 static inline unsigned long tid_to_event(unsigned long tid)
1684 {
1685 return tid / TID_STEP;
1686 }
1687
1688 static inline unsigned int init_tid(int cpu)
1689 {
1690 return cpu;
1691 }
1692
1693 static inline void note_cmpxchg_failure(const char *n,
1694 const struct kmem_cache *s, unsigned long tid)
1695 {
1696 #ifdef SLUB_DEBUG_CMPXCHG
1697 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1698
1699 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1700
1701 #ifdef CONFIG_PREEMPT
1702 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1703 printk("due to cpu change %d -> %d\n",
1704 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1705 else
1706 #endif
1707 if (tid_to_event(tid) != tid_to_event(actual_tid))
1708 printk("due to cpu running other code. Event %ld->%ld\n",
1709 tid_to_event(tid), tid_to_event(actual_tid));
1710 else
1711 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1712 actual_tid, tid, next_tid(tid));
1713 #endif
1714 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1715 }
1716
1717 static void init_kmem_cache_cpus(struct kmem_cache *s)
1718 {
1719 int cpu;
1720
1721 for_each_possible_cpu(cpu)
1722 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1723 }
1724
1725 /*
1726 * Remove the cpu slab
1727 */
1728 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1729 {
1730 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1731 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1732 int lock = 0;
1733 enum slab_modes l = M_NONE, m = M_NONE;
1734 void *nextfree;
1735 int tail = DEACTIVATE_TO_HEAD;
1736 struct page new;
1737 struct page old;
1738
1739 if (page->freelist) {
1740 stat(s, DEACTIVATE_REMOTE_FREES);
1741 tail = DEACTIVATE_TO_TAIL;
1742 }
1743
1744 /*
1745 * Stage one: Free all available per cpu objects back
1746 * to the page freelist while it is still frozen. Leave the
1747 * last one.
1748 *
1749 * There is no need to take the list->lock because the page
1750 * is still frozen.
1751 */
1752 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1753 void *prior;
1754 unsigned long counters;
1755
1756 do {
1757 prior = page->freelist;
1758 counters = page->counters;
1759 set_freepointer(s, freelist, prior);
1760 new.counters = counters;
1761 new.inuse--;
1762 VM_BUG_ON(!new.frozen);
1763
1764 } while (!__cmpxchg_double_slab(s, page,
1765 prior, counters,
1766 freelist, new.counters,
1767 "drain percpu freelist"));
1768
1769 freelist = nextfree;
1770 }
1771
1772 /*
1773 * Stage two: Ensure that the page is unfrozen while the
1774 * list presence reflects the actual number of objects
1775 * during unfreeze.
1776 *
1777 * We setup the list membership and then perform a cmpxchg
1778 * with the count. If there is a mismatch then the page
1779 * is not unfrozen but the page is on the wrong list.
1780 *
1781 * Then we restart the process which may have to remove
1782 * the page from the list that we just put it on again
1783 * because the number of objects in the slab may have
1784 * changed.
1785 */
1786 redo:
1787
1788 old.freelist = page->freelist;
1789 old.counters = page->counters;
1790 VM_BUG_ON(!old.frozen);
1791
1792 /* Determine target state of the slab */
1793 new.counters = old.counters;
1794 if (freelist) {
1795 new.inuse--;
1796 set_freepointer(s, freelist, old.freelist);
1797 new.freelist = freelist;
1798 } else
1799 new.freelist = old.freelist;
1800
1801 new.frozen = 0;
1802
1803 if (!new.inuse && n->nr_partial > s->min_partial)
1804 m = M_FREE;
1805 else if (new.freelist) {
1806 m = M_PARTIAL;
1807 if (!lock) {
1808 lock = 1;
1809 /*
1810 * Taking the spinlock removes the possiblity
1811 * that acquire_slab() will see a slab page that
1812 * is frozen
1813 */
1814 spin_lock(&n->list_lock);
1815 }
1816 } else {
1817 m = M_FULL;
1818 if (kmem_cache_debug(s) && !lock) {
1819 lock = 1;
1820 /*
1821 * This also ensures that the scanning of full
1822 * slabs from diagnostic functions will not see
1823 * any frozen slabs.
1824 */
1825 spin_lock(&n->list_lock);
1826 }
1827 }
1828
1829 if (l != m) {
1830
1831 if (l == M_PARTIAL)
1832
1833 remove_partial(n, page);
1834
1835 else if (l == M_FULL)
1836
1837 remove_full(s, page);
1838
1839 if (m == M_PARTIAL) {
1840
1841 add_partial(n, page, tail);
1842 stat(s, tail);
1843
1844 } else if (m == M_FULL) {
1845
1846 stat(s, DEACTIVATE_FULL);
1847 add_full(s, n, page);
1848
1849 }
1850 }
1851
1852 l = m;
1853 if (!__cmpxchg_double_slab(s, page,
1854 old.freelist, old.counters,
1855 new.freelist, new.counters,
1856 "unfreezing slab"))
1857 goto redo;
1858
1859 if (lock)
1860 spin_unlock(&n->list_lock);
1861
1862 if (m == M_FREE) {
1863 stat(s, DEACTIVATE_EMPTY);
1864 discard_slab(s, page);
1865 stat(s, FREE_SLAB);
1866 }
1867 }
1868
1869 /*
1870 * Unfreeze all the cpu partial slabs.
1871 *
1872 * This function must be called with interrupt disabled.
1873 */
1874 static void unfreeze_partials(struct kmem_cache *s)
1875 {
1876 struct kmem_cache_node *n = NULL, *n2 = NULL;
1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1878 struct page *page, *discard_page = NULL;
1879
1880 while ((page = c->partial)) {
1881 struct page new;
1882 struct page old;
1883
1884 c->partial = page->next;
1885
1886 n2 = get_node(s, page_to_nid(page));
1887 if (n != n2) {
1888 if (n)
1889 spin_unlock(&n->list_lock);
1890
1891 n = n2;
1892 spin_lock(&n->list_lock);
1893 }
1894
1895 do {
1896
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1900
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1903
1904 new.frozen = 0;
1905
1906 } while (!__cmpxchg_double_slab(s, page,
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"));
1910
1911 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1912 page->next = discard_page;
1913 discard_page = page;
1914 } else {
1915 add_partial(n, page, DEACTIVATE_TO_TAIL);
1916 stat(s, FREE_ADD_PARTIAL);
1917 }
1918 }
1919
1920 if (n)
1921 spin_unlock(&n->list_lock);
1922
1923 while (discard_page) {
1924 page = discard_page;
1925 discard_page = discard_page->next;
1926
1927 stat(s, DEACTIVATE_EMPTY);
1928 discard_slab(s, page);
1929 stat(s, FREE_SLAB);
1930 }
1931 }
1932
1933 /*
1934 * Put a page that was just frozen (in __slab_free) into a partial page
1935 * slot if available. This is done without interrupts disabled and without
1936 * preemption disabled. The cmpxchg is racy and may put the partial page
1937 * onto a random cpus partial slot.
1938 *
1939 * If we did not find a slot then simply move all the partials to the
1940 * per node partial list.
1941 */
1942 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1943 {
1944 struct page *oldpage;
1945 int pages;
1946 int pobjects;
1947
1948 do {
1949 pages = 0;
1950 pobjects = 0;
1951 oldpage = this_cpu_read(s->cpu_slab->partial);
1952
1953 if (oldpage) {
1954 pobjects = oldpage->pobjects;
1955 pages = oldpage->pages;
1956 if (drain && pobjects > s->cpu_partial) {
1957 unsigned long flags;
1958 /*
1959 * partial array is full. Move the existing
1960 * set to the per node partial list.
1961 */
1962 local_irq_save(flags);
1963 unfreeze_partials(s);
1964 local_irq_restore(flags);
1965 oldpage = NULL;
1966 pobjects = 0;
1967 pages = 0;
1968 stat(s, CPU_PARTIAL_DRAIN);
1969 }
1970 }
1971
1972 pages++;
1973 pobjects += page->objects - page->inuse;
1974
1975 page->pages = pages;
1976 page->pobjects = pobjects;
1977 page->next = oldpage;
1978
1979 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1980 return pobjects;
1981 }
1982
1983 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1984 {
1985 stat(s, CPUSLAB_FLUSH);
1986 deactivate_slab(s, c->page, c->freelist);
1987
1988 c->tid = next_tid(c->tid);
1989 c->page = NULL;
1990 c->freelist = NULL;
1991 }
1992
1993 /*
1994 * Flush cpu slab.
1995 *
1996 * Called from IPI handler with interrupts disabled.
1997 */
1998 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1999 {
2000 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2001
2002 if (likely(c)) {
2003 if (c->page)
2004 flush_slab(s, c);
2005
2006 unfreeze_partials(s);
2007 }
2008 }
2009
2010 static void flush_cpu_slab(void *d)
2011 {
2012 struct kmem_cache *s = d;
2013
2014 __flush_cpu_slab(s, smp_processor_id());
2015 }
2016
2017 static bool has_cpu_slab(int cpu, void *info)
2018 {
2019 struct kmem_cache *s = info;
2020 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2021
2022 return c->page || c->partial;
2023 }
2024
2025 static void flush_all(struct kmem_cache *s)
2026 {
2027 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2028 }
2029
2030 /*
2031 * Check if the objects in a per cpu structure fit numa
2032 * locality expectations.
2033 */
2034 static inline int node_match(struct page *page, int node)
2035 {
2036 #ifdef CONFIG_NUMA
2037 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2038 return 0;
2039 #endif
2040 return 1;
2041 }
2042
2043 static int count_free(struct page *page)
2044 {
2045 return page->objects - page->inuse;
2046 }
2047
2048 static unsigned long count_partial(struct kmem_cache_node *n,
2049 int (*get_count)(struct page *))
2050 {
2051 unsigned long flags;
2052 unsigned long x = 0;
2053 struct page *page;
2054
2055 spin_lock_irqsave(&n->list_lock, flags);
2056 list_for_each_entry(page, &n->partial, lru)
2057 x += get_count(page);
2058 spin_unlock_irqrestore(&n->list_lock, flags);
2059 return x;
2060 }
2061
2062 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2063 {
2064 #ifdef CONFIG_SLUB_DEBUG
2065 return atomic_long_read(&n->total_objects);
2066 #else
2067 return 0;
2068 #endif
2069 }
2070
2071 static noinline void
2072 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2073 {
2074 int node;
2075
2076 printk(KERN_WARNING
2077 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2078 nid, gfpflags);
2079 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2080 "default order: %d, min order: %d\n", s->name, s->object_size,
2081 s->size, oo_order(s->oo), oo_order(s->min));
2082
2083 if (oo_order(s->min) > get_order(s->object_size))
2084 printk(KERN_WARNING " %s debugging increased min order, use "
2085 "slub_debug=O to disable.\n", s->name);
2086
2087 for_each_online_node(node) {
2088 struct kmem_cache_node *n = get_node(s, node);
2089 unsigned long nr_slabs;
2090 unsigned long nr_objs;
2091 unsigned long nr_free;
2092
2093 if (!n)
2094 continue;
2095
2096 nr_free = count_partial(n, count_free);
2097 nr_slabs = node_nr_slabs(n);
2098 nr_objs = node_nr_objs(n);
2099
2100 printk(KERN_WARNING
2101 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2102 node, nr_slabs, nr_objs, nr_free);
2103 }
2104 }
2105
2106 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2107 int node, struct kmem_cache_cpu **pc)
2108 {
2109 void *freelist;
2110 struct kmem_cache_cpu *c = *pc;
2111 struct page *page;
2112
2113 freelist = get_partial(s, flags, node, c);
2114
2115 if (freelist)
2116 return freelist;
2117
2118 page = new_slab(s, flags, node);
2119 if (page) {
2120 c = __this_cpu_ptr(s->cpu_slab);
2121 if (c->page)
2122 flush_slab(s, c);
2123
2124 /*
2125 * No other reference to the page yet so we can
2126 * muck around with it freely without cmpxchg
2127 */
2128 freelist = page->freelist;
2129 page->freelist = NULL;
2130
2131 stat(s, ALLOC_SLAB);
2132 c->page = page;
2133 *pc = c;
2134 } else
2135 freelist = NULL;
2136
2137 return freelist;
2138 }
2139
2140 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2141 {
2142 if (unlikely(PageSlabPfmemalloc(page)))
2143 return gfp_pfmemalloc_allowed(gfpflags);
2144
2145 return true;
2146 }
2147
2148 /*
2149 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2150 * or deactivate the page.
2151 *
2152 * The page is still frozen if the return value is not NULL.
2153 *
2154 * If this function returns NULL then the page has been unfrozen.
2155 *
2156 * This function must be called with interrupt disabled.
2157 */
2158 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2159 {
2160 struct page new;
2161 unsigned long counters;
2162 void *freelist;
2163
2164 do {
2165 freelist = page->freelist;
2166 counters = page->counters;
2167
2168 new.counters = counters;
2169 VM_BUG_ON(!new.frozen);
2170
2171 new.inuse = page->objects;
2172 new.frozen = freelist != NULL;
2173
2174 } while (!__cmpxchg_double_slab(s, page,
2175 freelist, counters,
2176 NULL, new.counters,
2177 "get_freelist"));
2178
2179 return freelist;
2180 }
2181
2182 /*
2183 * Slow path. The lockless freelist is empty or we need to perform
2184 * debugging duties.
2185 *
2186 * Processing is still very fast if new objects have been freed to the
2187 * regular freelist. In that case we simply take over the regular freelist
2188 * as the lockless freelist and zap the regular freelist.
2189 *
2190 * If that is not working then we fall back to the partial lists. We take the
2191 * first element of the freelist as the object to allocate now and move the
2192 * rest of the freelist to the lockless freelist.
2193 *
2194 * And if we were unable to get a new slab from the partial slab lists then
2195 * we need to allocate a new slab. This is the slowest path since it involves
2196 * a call to the page allocator and the setup of a new slab.
2197 */
2198 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2199 unsigned long addr, struct kmem_cache_cpu *c)
2200 {
2201 void *freelist;
2202 struct page *page;
2203 unsigned long flags;
2204
2205 local_irq_save(flags);
2206 #ifdef CONFIG_PREEMPT
2207 /*
2208 * We may have been preempted and rescheduled on a different
2209 * cpu before disabling interrupts. Need to reload cpu area
2210 * pointer.
2211 */
2212 c = this_cpu_ptr(s->cpu_slab);
2213 #endif
2214
2215 page = c->page;
2216 if (!page)
2217 goto new_slab;
2218 redo:
2219
2220 if (unlikely(!node_match(page, node))) {
2221 stat(s, ALLOC_NODE_MISMATCH);
2222 deactivate_slab(s, page, c->freelist);
2223 c->page = NULL;
2224 c->freelist = NULL;
2225 goto new_slab;
2226 }
2227
2228 /*
2229 * By rights, we should be searching for a slab page that was
2230 * PFMEMALLOC but right now, we are losing the pfmemalloc
2231 * information when the page leaves the per-cpu allocator
2232 */
2233 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2234 deactivate_slab(s, page, c->freelist);
2235 c->page = NULL;
2236 c->freelist = NULL;
2237 goto new_slab;
2238 }
2239
2240 /* must check again c->freelist in case of cpu migration or IRQ */
2241 freelist = c->freelist;
2242 if (freelist)
2243 goto load_freelist;
2244
2245 stat(s, ALLOC_SLOWPATH);
2246
2247 freelist = get_freelist(s, page);
2248
2249 if (!freelist) {
2250 c->page = NULL;
2251 stat(s, DEACTIVATE_BYPASS);
2252 goto new_slab;
2253 }
2254
2255 stat(s, ALLOC_REFILL);
2256
2257 load_freelist:
2258 /*
2259 * freelist is pointing to the list of objects to be used.
2260 * page is pointing to the page from which the objects are obtained.
2261 * That page must be frozen for per cpu allocations to work.
2262 */
2263 VM_BUG_ON(!c->page->frozen);
2264 c->freelist = get_freepointer(s, freelist);
2265 c->tid = next_tid(c->tid);
2266 local_irq_restore(flags);
2267 return freelist;
2268
2269 new_slab:
2270
2271 if (c->partial) {
2272 page = c->page = c->partial;
2273 c->partial = page->next;
2274 stat(s, CPU_PARTIAL_ALLOC);
2275 c->freelist = NULL;
2276 goto redo;
2277 }
2278
2279 freelist = new_slab_objects(s, gfpflags, node, &c);
2280
2281 if (unlikely(!freelist)) {
2282 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2283 slab_out_of_memory(s, gfpflags, node);
2284
2285 local_irq_restore(flags);
2286 return NULL;
2287 }
2288
2289 page = c->page;
2290 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2291 goto load_freelist;
2292
2293 /* Only entered in the debug case */
2294 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2295 goto new_slab; /* Slab failed checks. Next slab needed */
2296
2297 deactivate_slab(s, page, get_freepointer(s, freelist));
2298 c->page = NULL;
2299 c->freelist = NULL;
2300 local_irq_restore(flags);
2301 return freelist;
2302 }
2303
2304 /*
2305 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2306 * have the fastpath folded into their functions. So no function call
2307 * overhead for requests that can be satisfied on the fastpath.
2308 *
2309 * The fastpath works by first checking if the lockless freelist can be used.
2310 * If not then __slab_alloc is called for slow processing.
2311 *
2312 * Otherwise we can simply pick the next object from the lockless free list.
2313 */
2314 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2315 gfp_t gfpflags, int node, unsigned long addr)
2316 {
2317 void **object;
2318 struct kmem_cache_cpu *c;
2319 struct page *page;
2320 unsigned long tid;
2321
2322 if (slab_pre_alloc_hook(s, gfpflags))
2323 return NULL;
2324
2325 redo:
2326
2327 /*
2328 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2329 * enabled. We may switch back and forth between cpus while
2330 * reading from one cpu area. That does not matter as long
2331 * as we end up on the original cpu again when doing the cmpxchg.
2332 */
2333 c = __this_cpu_ptr(s->cpu_slab);
2334
2335 /*
2336 * The transaction ids are globally unique per cpu and per operation on
2337 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2338 * occurs on the right processor and that there was no operation on the
2339 * linked list in between.
2340 */
2341 tid = c->tid;
2342 barrier();
2343
2344 object = c->freelist;
2345 page = c->page;
2346 if (unlikely(!object || !node_match(page, node)))
2347 object = __slab_alloc(s, gfpflags, node, addr, c);
2348
2349 else {
2350 void *next_object = get_freepointer_safe(s, object);
2351
2352 /*
2353 * The cmpxchg will only match if there was no additional
2354 * operation and if we are on the right processor.
2355 *
2356 * The cmpxchg does the following atomically (without lock semantics!)
2357 * 1. Relocate first pointer to the current per cpu area.
2358 * 2. Verify that tid and freelist have not been changed
2359 * 3. If they were not changed replace tid and freelist
2360 *
2361 * Since this is without lock semantics the protection is only against
2362 * code executing on this cpu *not* from access by other cpus.
2363 */
2364 if (unlikely(!this_cpu_cmpxchg_double(
2365 s->cpu_slab->freelist, s->cpu_slab->tid,
2366 object, tid,
2367 next_object, next_tid(tid)))) {
2368
2369 note_cmpxchg_failure("slab_alloc", s, tid);
2370 goto redo;
2371 }
2372 prefetch_freepointer(s, next_object);
2373 stat(s, ALLOC_FASTPATH);
2374 }
2375
2376 if (unlikely(gfpflags & __GFP_ZERO) && object)
2377 memset(object, 0, s->object_size);
2378
2379 slab_post_alloc_hook(s, gfpflags, object);
2380
2381 return object;
2382 }
2383
2384 static __always_inline void *slab_alloc(struct kmem_cache *s,
2385 gfp_t gfpflags, unsigned long addr)
2386 {
2387 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2388 }
2389
2390 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2391 {
2392 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2393
2394 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2395
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(kmem_cache_alloc);
2399
2400 #ifdef CONFIG_TRACING
2401 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2402 {
2403 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2404 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2405 return ret;
2406 }
2407 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2408
2409 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2410 {
2411 void *ret = kmalloc_order(size, flags, order);
2412 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2413 return ret;
2414 }
2415 EXPORT_SYMBOL(kmalloc_order_trace);
2416 #endif
2417
2418 #ifdef CONFIG_NUMA
2419 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2420 {
2421 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2422
2423 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2424 s->object_size, s->size, gfpflags, node);
2425
2426 return ret;
2427 }
2428 EXPORT_SYMBOL(kmem_cache_alloc_node);
2429
2430 #ifdef CONFIG_TRACING
2431 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2432 gfp_t gfpflags,
2433 int node, size_t size)
2434 {
2435 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2436
2437 trace_kmalloc_node(_RET_IP_, ret,
2438 size, s->size, gfpflags, node);
2439 return ret;
2440 }
2441 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2442 #endif
2443 #endif
2444
2445 /*
2446 * Slow patch handling. This may still be called frequently since objects
2447 * have a longer lifetime than the cpu slabs in most processing loads.
2448 *
2449 * So we still attempt to reduce cache line usage. Just take the slab
2450 * lock and free the item. If there is no additional partial page
2451 * handling required then we can return immediately.
2452 */
2453 static void __slab_free(struct kmem_cache *s, struct page *page,
2454 void *x, unsigned long addr)
2455 {
2456 void *prior;
2457 void **object = (void *)x;
2458 int was_frozen;
2459 struct page new;
2460 unsigned long counters;
2461 struct kmem_cache_node *n = NULL;
2462 unsigned long uninitialized_var(flags);
2463
2464 stat(s, FREE_SLOWPATH);
2465
2466 if (kmem_cache_debug(s) &&
2467 !(n = free_debug_processing(s, page, x, addr, &flags)))
2468 return;
2469
2470 do {
2471 if (unlikely(n)) {
2472 spin_unlock_irqrestore(&n->list_lock, flags);
2473 n = NULL;
2474 }
2475 prior = page->freelist;
2476 counters = page->counters;
2477 set_freepointer(s, object, prior);
2478 new.counters = counters;
2479 was_frozen = new.frozen;
2480 new.inuse--;
2481 if ((!new.inuse || !prior) && !was_frozen) {
2482
2483 if (!kmem_cache_debug(s) && !prior)
2484
2485 /*
2486 * Slab was on no list before and will be partially empty
2487 * We can defer the list move and instead freeze it.
2488 */
2489 new.frozen = 1;
2490
2491 else { /* Needs to be taken off a list */
2492
2493 n = get_node(s, page_to_nid(page));
2494 /*
2495 * Speculatively acquire the list_lock.
2496 * If the cmpxchg does not succeed then we may
2497 * drop the list_lock without any processing.
2498 *
2499 * Otherwise the list_lock will synchronize with
2500 * other processors updating the list of slabs.
2501 */
2502 spin_lock_irqsave(&n->list_lock, flags);
2503
2504 }
2505 }
2506
2507 } while (!cmpxchg_double_slab(s, page,
2508 prior, counters,
2509 object, new.counters,
2510 "__slab_free"));
2511
2512 if (likely(!n)) {
2513
2514 /*
2515 * If we just froze the page then put it onto the
2516 * per cpu partial list.
2517 */
2518 if (new.frozen && !was_frozen) {
2519 put_cpu_partial(s, page, 1);
2520 stat(s, CPU_PARTIAL_FREE);
2521 }
2522 /*
2523 * The list lock was not taken therefore no list
2524 * activity can be necessary.
2525 */
2526 if (was_frozen)
2527 stat(s, FREE_FROZEN);
2528 return;
2529 }
2530
2531 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2532 goto slab_empty;
2533
2534 /*
2535 * Objects left in the slab. If it was not on the partial list before
2536 * then add it.
2537 */
2538 if (kmem_cache_debug(s) && unlikely(!prior)) {
2539 remove_full(s, page);
2540 add_partial(n, page, DEACTIVATE_TO_TAIL);
2541 stat(s, FREE_ADD_PARTIAL);
2542 }
2543 spin_unlock_irqrestore(&n->list_lock, flags);
2544 return;
2545
2546 slab_empty:
2547 if (prior) {
2548 /*
2549 * Slab on the partial list.
2550 */
2551 remove_partial(n, page);
2552 stat(s, FREE_REMOVE_PARTIAL);
2553 } else
2554 /* Slab must be on the full list */
2555 remove_full(s, page);
2556
2557 spin_unlock_irqrestore(&n->list_lock, flags);
2558 stat(s, FREE_SLAB);
2559 discard_slab(s, page);
2560 }
2561
2562 /*
2563 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2564 * can perform fastpath freeing without additional function calls.
2565 *
2566 * The fastpath is only possible if we are freeing to the current cpu slab
2567 * of this processor. This typically the case if we have just allocated
2568 * the item before.
2569 *
2570 * If fastpath is not possible then fall back to __slab_free where we deal
2571 * with all sorts of special processing.
2572 */
2573 static __always_inline void slab_free(struct kmem_cache *s,
2574 struct page *page, void *x, unsigned long addr)
2575 {
2576 void **object = (void *)x;
2577 struct kmem_cache_cpu *c;
2578 unsigned long tid;
2579
2580 slab_free_hook(s, x);
2581
2582 redo:
2583 /*
2584 * Determine the currently cpus per cpu slab.
2585 * The cpu may change afterward. However that does not matter since
2586 * data is retrieved via this pointer. If we are on the same cpu
2587 * during the cmpxchg then the free will succedd.
2588 */
2589 c = __this_cpu_ptr(s->cpu_slab);
2590
2591 tid = c->tid;
2592 barrier();
2593
2594 if (likely(page == c->page)) {
2595 set_freepointer(s, object, c->freelist);
2596
2597 if (unlikely(!this_cpu_cmpxchg_double(
2598 s->cpu_slab->freelist, s->cpu_slab->tid,
2599 c->freelist, tid,
2600 object, next_tid(tid)))) {
2601
2602 note_cmpxchg_failure("slab_free", s, tid);
2603 goto redo;
2604 }
2605 stat(s, FREE_FASTPATH);
2606 } else
2607 __slab_free(s, page, x, addr);
2608
2609 }
2610
2611 void kmem_cache_free(struct kmem_cache *s, void *x)
2612 {
2613 struct page *page;
2614
2615 page = virt_to_head_page(x);
2616
2617 if (kmem_cache_debug(s) && page->slab_cache != s) {
2618 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2619 " is from %s\n", page->slab_cache->name, s->name);
2620 WARN_ON_ONCE(1);
2621 return;
2622 }
2623
2624 slab_free(s, page, x, _RET_IP_);
2625
2626 trace_kmem_cache_free(_RET_IP_, x);
2627 }
2628 EXPORT_SYMBOL(kmem_cache_free);
2629
2630 /*
2631 * Object placement in a slab is made very easy because we always start at
2632 * offset 0. If we tune the size of the object to the alignment then we can
2633 * get the required alignment by putting one properly sized object after
2634 * another.
2635 *
2636 * Notice that the allocation order determines the sizes of the per cpu
2637 * caches. Each processor has always one slab available for allocations.
2638 * Increasing the allocation order reduces the number of times that slabs
2639 * must be moved on and off the partial lists and is therefore a factor in
2640 * locking overhead.
2641 */
2642
2643 /*
2644 * Mininum / Maximum order of slab pages. This influences locking overhead
2645 * and slab fragmentation. A higher order reduces the number of partial slabs
2646 * and increases the number of allocations possible without having to
2647 * take the list_lock.
2648 */
2649 static int slub_min_order;
2650 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2651 static int slub_min_objects;
2652
2653 /*
2654 * Merge control. If this is set then no merging of slab caches will occur.
2655 * (Could be removed. This was introduced to pacify the merge skeptics.)
2656 */
2657 static int slub_nomerge;
2658
2659 /*
2660 * Calculate the order of allocation given an slab object size.
2661 *
2662 * The order of allocation has significant impact on performance and other
2663 * system components. Generally order 0 allocations should be preferred since
2664 * order 0 does not cause fragmentation in the page allocator. Larger objects
2665 * be problematic to put into order 0 slabs because there may be too much
2666 * unused space left. We go to a higher order if more than 1/16th of the slab
2667 * would be wasted.
2668 *
2669 * In order to reach satisfactory performance we must ensure that a minimum
2670 * number of objects is in one slab. Otherwise we may generate too much
2671 * activity on the partial lists which requires taking the list_lock. This is
2672 * less a concern for large slabs though which are rarely used.
2673 *
2674 * slub_max_order specifies the order where we begin to stop considering the
2675 * number of objects in a slab as critical. If we reach slub_max_order then
2676 * we try to keep the page order as low as possible. So we accept more waste
2677 * of space in favor of a small page order.
2678 *
2679 * Higher order allocations also allow the placement of more objects in a
2680 * slab and thereby reduce object handling overhead. If the user has
2681 * requested a higher mininum order then we start with that one instead of
2682 * the smallest order which will fit the object.
2683 */
2684 static inline int slab_order(int size, int min_objects,
2685 int max_order, int fract_leftover, int reserved)
2686 {
2687 int order;
2688 int rem;
2689 int min_order = slub_min_order;
2690
2691 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2692 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2693
2694 for (order = max(min_order,
2695 fls(min_objects * size - 1) - PAGE_SHIFT);
2696 order <= max_order; order++) {
2697
2698 unsigned long slab_size = PAGE_SIZE << order;
2699
2700 if (slab_size < min_objects * size + reserved)
2701 continue;
2702
2703 rem = (slab_size - reserved) % size;
2704
2705 if (rem <= slab_size / fract_leftover)
2706 break;
2707
2708 }
2709
2710 return order;
2711 }
2712
2713 static inline int calculate_order(int size, int reserved)
2714 {
2715 int order;
2716 int min_objects;
2717 int fraction;
2718 int max_objects;
2719
2720 /*
2721 * Attempt to find best configuration for a slab. This
2722 * works by first attempting to generate a layout with
2723 * the best configuration and backing off gradually.
2724 *
2725 * First we reduce the acceptable waste in a slab. Then
2726 * we reduce the minimum objects required in a slab.
2727 */
2728 min_objects = slub_min_objects;
2729 if (!min_objects)
2730 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2731 max_objects = order_objects(slub_max_order, size, reserved);
2732 min_objects = min(min_objects, max_objects);
2733
2734 while (min_objects > 1) {
2735 fraction = 16;
2736 while (fraction >= 4) {
2737 order = slab_order(size, min_objects,
2738 slub_max_order, fraction, reserved);
2739 if (order <= slub_max_order)
2740 return order;
2741 fraction /= 2;
2742 }
2743 min_objects--;
2744 }
2745
2746 /*
2747 * We were unable to place multiple objects in a slab. Now
2748 * lets see if we can place a single object there.
2749 */
2750 order = slab_order(size, 1, slub_max_order, 1, reserved);
2751 if (order <= slub_max_order)
2752 return order;
2753
2754 /*
2755 * Doh this slab cannot be placed using slub_max_order.
2756 */
2757 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2758 if (order < MAX_ORDER)
2759 return order;
2760 return -ENOSYS;
2761 }
2762
2763 /*
2764 * Figure out what the alignment of the objects will be.
2765 */
2766 static unsigned long calculate_alignment(unsigned long flags,
2767 unsigned long align, unsigned long size)
2768 {
2769 /*
2770 * If the user wants hardware cache aligned objects then follow that
2771 * suggestion if the object is sufficiently large.
2772 *
2773 * The hardware cache alignment cannot override the specified
2774 * alignment though. If that is greater then use it.
2775 */
2776 if (flags & SLAB_HWCACHE_ALIGN) {
2777 unsigned long ralign = cache_line_size();
2778 while (size <= ralign / 2)
2779 ralign /= 2;
2780 align = max(align, ralign);
2781 }
2782
2783 if (align < ARCH_SLAB_MINALIGN)
2784 align = ARCH_SLAB_MINALIGN;
2785
2786 return ALIGN(align, sizeof(void *));
2787 }
2788
2789 static void
2790 init_kmem_cache_node(struct kmem_cache_node *n)
2791 {
2792 n->nr_partial = 0;
2793 spin_lock_init(&n->list_lock);
2794 INIT_LIST_HEAD(&n->partial);
2795 #ifdef CONFIG_SLUB_DEBUG
2796 atomic_long_set(&n->nr_slabs, 0);
2797 atomic_long_set(&n->total_objects, 0);
2798 INIT_LIST_HEAD(&n->full);
2799 #endif
2800 }
2801
2802 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2803 {
2804 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2805 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2806
2807 /*
2808 * Must align to double word boundary for the double cmpxchg
2809 * instructions to work; see __pcpu_double_call_return_bool().
2810 */
2811 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2812 2 * sizeof(void *));
2813
2814 if (!s->cpu_slab)
2815 return 0;
2816
2817 init_kmem_cache_cpus(s);
2818
2819 return 1;
2820 }
2821
2822 static struct kmem_cache *kmem_cache_node;
2823
2824 /*
2825 * No kmalloc_node yet so do it by hand. We know that this is the first
2826 * slab on the node for this slabcache. There are no concurrent accesses
2827 * possible.
2828 *
2829 * Note that this function only works on the kmalloc_node_cache
2830 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2831 * memory on a fresh node that has no slab structures yet.
2832 */
2833 static void early_kmem_cache_node_alloc(int node)
2834 {
2835 struct page *page;
2836 struct kmem_cache_node *n;
2837
2838 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2839
2840 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2841
2842 BUG_ON(!page);
2843 if (page_to_nid(page) != node) {
2844 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2845 "node %d\n", node);
2846 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2847 "in order to be able to continue\n");
2848 }
2849
2850 n = page->freelist;
2851 BUG_ON(!n);
2852 page->freelist = get_freepointer(kmem_cache_node, n);
2853 page->inuse = 1;
2854 page->frozen = 0;
2855 kmem_cache_node->node[node] = n;
2856 #ifdef CONFIG_SLUB_DEBUG
2857 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2858 init_tracking(kmem_cache_node, n);
2859 #endif
2860 init_kmem_cache_node(n);
2861 inc_slabs_node(kmem_cache_node, node, page->objects);
2862
2863 add_partial(n, page, DEACTIVATE_TO_HEAD);
2864 }
2865
2866 static void free_kmem_cache_nodes(struct kmem_cache *s)
2867 {
2868 int node;
2869
2870 for_each_node_state(node, N_NORMAL_MEMORY) {
2871 struct kmem_cache_node *n = s->node[node];
2872
2873 if (n)
2874 kmem_cache_free(kmem_cache_node, n);
2875
2876 s->node[node] = NULL;
2877 }
2878 }
2879
2880 static int init_kmem_cache_nodes(struct kmem_cache *s)
2881 {
2882 int node;
2883
2884 for_each_node_state(node, N_NORMAL_MEMORY) {
2885 struct kmem_cache_node *n;
2886
2887 if (slab_state == DOWN) {
2888 early_kmem_cache_node_alloc(node);
2889 continue;
2890 }
2891 n = kmem_cache_alloc_node(kmem_cache_node,
2892 GFP_KERNEL, node);
2893
2894 if (!n) {
2895 free_kmem_cache_nodes(s);
2896 return 0;
2897 }
2898
2899 s->node[node] = n;
2900 init_kmem_cache_node(n);
2901 }
2902 return 1;
2903 }
2904
2905 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2906 {
2907 if (min < MIN_PARTIAL)
2908 min = MIN_PARTIAL;
2909 else if (min > MAX_PARTIAL)
2910 min = MAX_PARTIAL;
2911 s->min_partial = min;
2912 }
2913
2914 /*
2915 * calculate_sizes() determines the order and the distribution of data within
2916 * a slab object.
2917 */
2918 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2919 {
2920 unsigned long flags = s->flags;
2921 unsigned long size = s->object_size;
2922 unsigned long align = s->align;
2923 int order;
2924
2925 /*
2926 * Round up object size to the next word boundary. We can only
2927 * place the free pointer at word boundaries and this determines
2928 * the possible location of the free pointer.
2929 */
2930 size = ALIGN(size, sizeof(void *));
2931
2932 #ifdef CONFIG_SLUB_DEBUG
2933 /*
2934 * Determine if we can poison the object itself. If the user of
2935 * the slab may touch the object after free or before allocation
2936 * then we should never poison the object itself.
2937 */
2938 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2939 !s->ctor)
2940 s->flags |= __OBJECT_POISON;
2941 else
2942 s->flags &= ~__OBJECT_POISON;
2943
2944
2945 /*
2946 * If we are Redzoning then check if there is some space between the
2947 * end of the object and the free pointer. If not then add an
2948 * additional word to have some bytes to store Redzone information.
2949 */
2950 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2951 size += sizeof(void *);
2952 #endif
2953
2954 /*
2955 * With that we have determined the number of bytes in actual use
2956 * by the object. This is the potential offset to the free pointer.
2957 */
2958 s->inuse = size;
2959
2960 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2961 s->ctor)) {
2962 /*
2963 * Relocate free pointer after the object if it is not
2964 * permitted to overwrite the first word of the object on
2965 * kmem_cache_free.
2966 *
2967 * This is the case if we do RCU, have a constructor or
2968 * destructor or are poisoning the objects.
2969 */
2970 s->offset = size;
2971 size += sizeof(void *);
2972 }
2973
2974 #ifdef CONFIG_SLUB_DEBUG
2975 if (flags & SLAB_STORE_USER)
2976 /*
2977 * Need to store information about allocs and frees after
2978 * the object.
2979 */
2980 size += 2 * sizeof(struct track);
2981
2982 if (flags & SLAB_RED_ZONE)
2983 /*
2984 * Add some empty padding so that we can catch
2985 * overwrites from earlier objects rather than let
2986 * tracking information or the free pointer be
2987 * corrupted if a user writes before the start
2988 * of the object.
2989 */
2990 size += sizeof(void *);
2991 #endif
2992
2993 /*
2994 * Determine the alignment based on various parameters that the
2995 * user specified and the dynamic determination of cache line size
2996 * on bootup.
2997 */
2998 align = calculate_alignment(flags, align, s->object_size);
2999 s->align = align;
3000
3001 /*
3002 * SLUB stores one object immediately after another beginning from
3003 * offset 0. In order to align the objects we have to simply size
3004 * each object to conform to the alignment.
3005 */
3006 size = ALIGN(size, align);
3007 s->size = size;
3008 if (forced_order >= 0)
3009 order = forced_order;
3010 else
3011 order = calculate_order(size, s->reserved);
3012
3013 if (order < 0)
3014 return 0;
3015
3016 s->allocflags = 0;
3017 if (order)
3018 s->allocflags |= __GFP_COMP;
3019
3020 if (s->flags & SLAB_CACHE_DMA)
3021 s->allocflags |= SLUB_DMA;
3022
3023 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3024 s->allocflags |= __GFP_RECLAIMABLE;
3025
3026 /*
3027 * Determine the number of objects per slab
3028 */
3029 s->oo = oo_make(order, size, s->reserved);
3030 s->min = oo_make(get_order(size), size, s->reserved);
3031 if (oo_objects(s->oo) > oo_objects(s->max))
3032 s->max = s->oo;
3033
3034 return !!oo_objects(s->oo);
3035
3036 }
3037
3038 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3039 {
3040 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3041 s->reserved = 0;
3042
3043 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3044 s->reserved = sizeof(struct rcu_head);
3045
3046 if (!calculate_sizes(s, -1))
3047 goto error;
3048 if (disable_higher_order_debug) {
3049 /*
3050 * Disable debugging flags that store metadata if the min slab
3051 * order increased.
3052 */
3053 if (get_order(s->size) > get_order(s->object_size)) {
3054 s->flags &= ~DEBUG_METADATA_FLAGS;
3055 s->offset = 0;
3056 if (!calculate_sizes(s, -1))
3057 goto error;
3058 }
3059 }
3060
3061 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3062 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3063 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3064 /* Enable fast mode */
3065 s->flags |= __CMPXCHG_DOUBLE;
3066 #endif
3067
3068 /*
3069 * The larger the object size is, the more pages we want on the partial
3070 * list to avoid pounding the page allocator excessively.
3071 */
3072 set_min_partial(s, ilog2(s->size) / 2);
3073
3074 /*
3075 * cpu_partial determined the maximum number of objects kept in the
3076 * per cpu partial lists of a processor.
3077 *
3078 * Per cpu partial lists mainly contain slabs that just have one
3079 * object freed. If they are used for allocation then they can be
3080 * filled up again with minimal effort. The slab will never hit the
3081 * per node partial lists and therefore no locking will be required.
3082 *
3083 * This setting also determines
3084 *
3085 * A) The number of objects from per cpu partial slabs dumped to the
3086 * per node list when we reach the limit.
3087 * B) The number of objects in cpu partial slabs to extract from the
3088 * per node list when we run out of per cpu objects. We only fetch 50%
3089 * to keep some capacity around for frees.
3090 */
3091 if (kmem_cache_debug(s))
3092 s->cpu_partial = 0;
3093 else if (s->size >= PAGE_SIZE)
3094 s->cpu_partial = 2;
3095 else if (s->size >= 1024)
3096 s->cpu_partial = 6;
3097 else if (s->size >= 256)
3098 s->cpu_partial = 13;
3099 else
3100 s->cpu_partial = 30;
3101
3102 #ifdef CONFIG_NUMA
3103 s->remote_node_defrag_ratio = 1000;
3104 #endif
3105 if (!init_kmem_cache_nodes(s))
3106 goto error;
3107
3108 if (alloc_kmem_cache_cpus(s))
3109 return 0;
3110
3111 free_kmem_cache_nodes(s);
3112 error:
3113 if (flags & SLAB_PANIC)
3114 panic("Cannot create slab %s size=%lu realsize=%u "
3115 "order=%u offset=%u flags=%lx\n",
3116 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3117 s->offset, flags);
3118 return -EINVAL;
3119 }
3120
3121 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3122 const char *text)
3123 {
3124 #ifdef CONFIG_SLUB_DEBUG
3125 void *addr = page_address(page);
3126 void *p;
3127 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3128 sizeof(long), GFP_ATOMIC);
3129 if (!map)
3130 return;
3131 slab_err(s, page, text, s->name);
3132 slab_lock(page);
3133
3134 get_map(s, page, map);
3135 for_each_object(p, s, addr, page->objects) {
3136
3137 if (!test_bit(slab_index(p, s, addr), map)) {
3138 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3139 p, p - addr);
3140 print_tracking(s, p);
3141 }
3142 }
3143 slab_unlock(page);
3144 kfree(map);
3145 #endif
3146 }
3147
3148 /*
3149 * Attempt to free all partial slabs on a node.
3150 * This is called from kmem_cache_close(). We must be the last thread
3151 * using the cache and therefore we do not need to lock anymore.
3152 */
3153 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3154 {
3155 struct page *page, *h;
3156
3157 list_for_each_entry_safe(page, h, &n->partial, lru) {
3158 if (!page->inuse) {
3159 remove_partial(n, page);
3160 discard_slab(s, page);
3161 } else {
3162 list_slab_objects(s, page,
3163 "Objects remaining in %s on kmem_cache_close()");
3164 }
3165 }
3166 }
3167
3168 /*
3169 * Release all resources used by a slab cache.
3170 */
3171 static inline int kmem_cache_close(struct kmem_cache *s)
3172 {
3173 int node;
3174
3175 flush_all(s);
3176 /* Attempt to free all objects */
3177 for_each_node_state(node, N_NORMAL_MEMORY) {
3178 struct kmem_cache_node *n = get_node(s, node);
3179
3180 free_partial(s, n);
3181 if (n->nr_partial || slabs_node(s, node))
3182 return 1;
3183 }
3184 free_percpu(s->cpu_slab);
3185 free_kmem_cache_nodes(s);
3186 return 0;
3187 }
3188
3189 int __kmem_cache_shutdown(struct kmem_cache *s)
3190 {
3191 int rc = kmem_cache_close(s);
3192
3193 if (!rc)
3194 sysfs_slab_remove(s);
3195
3196 return rc;
3197 }
3198
3199 /********************************************************************
3200 * Kmalloc subsystem
3201 *******************************************************************/
3202
3203 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3204 EXPORT_SYMBOL(kmalloc_caches);
3205
3206 #ifdef CONFIG_ZONE_DMA
3207 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3208 #endif
3209
3210 static int __init setup_slub_min_order(char *str)
3211 {
3212 get_option(&str, &slub_min_order);
3213
3214 return 1;
3215 }
3216
3217 __setup("slub_min_order=", setup_slub_min_order);
3218
3219 static int __init setup_slub_max_order(char *str)
3220 {
3221 get_option(&str, &slub_max_order);
3222 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3223
3224 return 1;
3225 }
3226
3227 __setup("slub_max_order=", setup_slub_max_order);
3228
3229 static int __init setup_slub_min_objects(char *str)
3230 {
3231 get_option(&str, &slub_min_objects);
3232
3233 return 1;
3234 }
3235
3236 __setup("slub_min_objects=", setup_slub_min_objects);
3237
3238 static int __init setup_slub_nomerge(char *str)
3239 {
3240 slub_nomerge = 1;
3241 return 1;
3242 }
3243
3244 __setup("slub_nomerge", setup_slub_nomerge);
3245
3246 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3247 int size, unsigned int flags)
3248 {
3249 struct kmem_cache *s;
3250
3251 s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3252
3253 s->name = name;
3254 s->size = s->object_size = size;
3255 s->align = ARCH_KMALLOC_MINALIGN;
3256
3257 /*
3258 * This function is called with IRQs disabled during early-boot on
3259 * single CPU so there's no need to take slab_mutex here.
3260 */
3261 if (kmem_cache_open(s, flags))
3262 goto panic;
3263
3264 list_add(&s->list, &slab_caches);
3265 return s;
3266
3267 panic:
3268 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3269 return NULL;
3270 }
3271
3272 /*
3273 * Conversion table for small slabs sizes / 8 to the index in the
3274 * kmalloc array. This is necessary for slabs < 192 since we have non power
3275 * of two cache sizes there. The size of larger slabs can be determined using
3276 * fls.
3277 */
3278 static s8 size_index[24] = {
3279 3, /* 8 */
3280 4, /* 16 */
3281 5, /* 24 */
3282 5, /* 32 */
3283 6, /* 40 */
3284 6, /* 48 */
3285 6, /* 56 */
3286 6, /* 64 */
3287 1, /* 72 */
3288 1, /* 80 */
3289 1, /* 88 */
3290 1, /* 96 */
3291 7, /* 104 */
3292 7, /* 112 */
3293 7, /* 120 */
3294 7, /* 128 */
3295 2, /* 136 */
3296 2, /* 144 */
3297 2, /* 152 */
3298 2, /* 160 */
3299 2, /* 168 */
3300 2, /* 176 */
3301 2, /* 184 */
3302 2 /* 192 */
3303 };
3304
3305 static inline int size_index_elem(size_t bytes)
3306 {
3307 return (bytes - 1) / 8;
3308 }
3309
3310 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3311 {
3312 int index;
3313
3314 if (size <= 192) {
3315 if (!size)
3316 return ZERO_SIZE_PTR;
3317
3318 index = size_index[size_index_elem(size)];
3319 } else
3320 index = fls(size - 1);
3321
3322 #ifdef CONFIG_ZONE_DMA
3323 if (unlikely((flags & SLUB_DMA)))
3324 return kmalloc_dma_caches[index];
3325
3326 #endif
3327 return kmalloc_caches[index];
3328 }
3329
3330 void *__kmalloc(size_t size, gfp_t flags)
3331 {
3332 struct kmem_cache *s;
3333 void *ret;
3334
3335 if (unlikely(size > SLUB_MAX_SIZE))
3336 return kmalloc_large(size, flags);
3337
3338 s = get_slab(size, flags);
3339
3340 if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 return s;
3342
3343 ret = slab_alloc(s, flags, _RET_IP_);
3344
3345 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3346
3347 return ret;
3348 }
3349 EXPORT_SYMBOL(__kmalloc);
3350
3351 #ifdef CONFIG_NUMA
3352 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3353 {
3354 struct page *page;
3355 void *ptr = NULL;
3356
3357 flags |= __GFP_COMP | __GFP_NOTRACK;
3358 page = alloc_pages_node(node, flags, get_order(size));
3359 if (page)
3360 ptr = page_address(page);
3361
3362 kmemleak_alloc(ptr, size, 1, flags);
3363 return ptr;
3364 }
3365
3366 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3367 {
3368 struct kmem_cache *s;
3369 void *ret;
3370
3371 if (unlikely(size > SLUB_MAX_SIZE)) {
3372 ret = kmalloc_large_node(size, flags, node);
3373
3374 trace_kmalloc_node(_RET_IP_, ret,
3375 size, PAGE_SIZE << get_order(size),
3376 flags, node);
3377
3378 return ret;
3379 }
3380
3381 s = get_slab(size, flags);
3382
3383 if (unlikely(ZERO_OR_NULL_PTR(s)))
3384 return s;
3385
3386 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3387
3388 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3389
3390 return ret;
3391 }
3392 EXPORT_SYMBOL(__kmalloc_node);
3393 #endif
3394
3395 size_t ksize(const void *object)
3396 {
3397 struct page *page;
3398
3399 if (unlikely(object == ZERO_SIZE_PTR))
3400 return 0;
3401
3402 page = virt_to_head_page(object);
3403
3404 if (unlikely(!PageSlab(page))) {
3405 WARN_ON(!PageCompound(page));
3406 return PAGE_SIZE << compound_order(page);
3407 }
3408
3409 return slab_ksize(page->slab_cache);
3410 }
3411 EXPORT_SYMBOL(ksize);
3412
3413 #ifdef CONFIG_SLUB_DEBUG
3414 bool verify_mem_not_deleted(const void *x)
3415 {
3416 struct page *page;
3417 void *object = (void *)x;
3418 unsigned long flags;
3419 bool rv;
3420
3421 if (unlikely(ZERO_OR_NULL_PTR(x)))
3422 return false;
3423
3424 local_irq_save(flags);
3425
3426 page = virt_to_head_page(x);
3427 if (unlikely(!PageSlab(page))) {
3428 /* maybe it was from stack? */
3429 rv = true;
3430 goto out_unlock;
3431 }
3432
3433 slab_lock(page);
3434 if (on_freelist(page->slab_cache, page, object)) {
3435 object_err(page->slab_cache, page, object, "Object is on free-list");
3436 rv = false;
3437 } else {
3438 rv = true;
3439 }
3440 slab_unlock(page);
3441
3442 out_unlock:
3443 local_irq_restore(flags);
3444 return rv;
3445 }
3446 EXPORT_SYMBOL(verify_mem_not_deleted);
3447 #endif
3448
3449 void kfree(const void *x)
3450 {
3451 struct page *page;
3452 void *object = (void *)x;
3453
3454 trace_kfree(_RET_IP_, x);
3455
3456 if (unlikely(ZERO_OR_NULL_PTR(x)))
3457 return;
3458
3459 page = virt_to_head_page(x);
3460 if (unlikely(!PageSlab(page))) {
3461 BUG_ON(!PageCompound(page));
3462 kmemleak_free(x);
3463 __free_pages(page, compound_order(page));
3464 return;
3465 }
3466 slab_free(page->slab_cache, page, object, _RET_IP_);
3467 }
3468 EXPORT_SYMBOL(kfree);
3469
3470 /*
3471 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3472 * the remaining slabs by the number of items in use. The slabs with the
3473 * most items in use come first. New allocations will then fill those up
3474 * and thus they can be removed from the partial lists.
3475 *
3476 * The slabs with the least items are placed last. This results in them
3477 * being allocated from last increasing the chance that the last objects
3478 * are freed in them.
3479 */
3480 int kmem_cache_shrink(struct kmem_cache *s)
3481 {
3482 int node;
3483 int i;
3484 struct kmem_cache_node *n;
3485 struct page *page;
3486 struct page *t;
3487 int objects = oo_objects(s->max);
3488 struct list_head *slabs_by_inuse =
3489 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3490 unsigned long flags;
3491
3492 if (!slabs_by_inuse)
3493 return -ENOMEM;
3494
3495 flush_all(s);
3496 for_each_node_state(node, N_NORMAL_MEMORY) {
3497 n = get_node(s, node);
3498
3499 if (!n->nr_partial)
3500 continue;
3501
3502 for (i = 0; i < objects; i++)
3503 INIT_LIST_HEAD(slabs_by_inuse + i);
3504
3505 spin_lock_irqsave(&n->list_lock, flags);
3506
3507 /*
3508 * Build lists indexed by the items in use in each slab.
3509 *
3510 * Note that concurrent frees may occur while we hold the
3511 * list_lock. page->inuse here is the upper limit.
3512 */
3513 list_for_each_entry_safe(page, t, &n->partial, lru) {
3514 list_move(&page->lru, slabs_by_inuse + page->inuse);
3515 if (!page->inuse)
3516 n->nr_partial--;
3517 }
3518
3519 /*
3520 * Rebuild the partial list with the slabs filled up most
3521 * first and the least used slabs at the end.
3522 */
3523 for (i = objects - 1; i > 0; i--)
3524 list_splice(slabs_by_inuse + i, n->partial.prev);
3525
3526 spin_unlock_irqrestore(&n->list_lock, flags);
3527
3528 /* Release empty slabs */
3529 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3530 discard_slab(s, page);
3531 }
3532
3533 kfree(slabs_by_inuse);
3534 return 0;
3535 }
3536 EXPORT_SYMBOL(kmem_cache_shrink);
3537
3538 #if defined(CONFIG_MEMORY_HOTPLUG)
3539 static int slab_mem_going_offline_callback(void *arg)
3540 {
3541 struct kmem_cache *s;
3542
3543 mutex_lock(&slab_mutex);
3544 list_for_each_entry(s, &slab_caches, list)
3545 kmem_cache_shrink(s);
3546 mutex_unlock(&slab_mutex);
3547
3548 return 0;
3549 }
3550
3551 static void slab_mem_offline_callback(void *arg)
3552 {
3553 struct kmem_cache_node *n;
3554 struct kmem_cache *s;
3555 struct memory_notify *marg = arg;
3556 int offline_node;
3557
3558 offline_node = marg->status_change_nid;
3559
3560 /*
3561 * If the node still has available memory. we need kmem_cache_node
3562 * for it yet.
3563 */
3564 if (offline_node < 0)
3565 return;
3566
3567 mutex_lock(&slab_mutex);
3568 list_for_each_entry(s, &slab_caches, list) {
3569 n = get_node(s, offline_node);
3570 if (n) {
3571 /*
3572 * if n->nr_slabs > 0, slabs still exist on the node
3573 * that is going down. We were unable to free them,
3574 * and offline_pages() function shouldn't call this
3575 * callback. So, we must fail.
3576 */
3577 BUG_ON(slabs_node(s, offline_node));
3578
3579 s->node[offline_node] = NULL;
3580 kmem_cache_free(kmem_cache_node, n);
3581 }
3582 }
3583 mutex_unlock(&slab_mutex);
3584 }
3585
3586 static int slab_mem_going_online_callback(void *arg)
3587 {
3588 struct kmem_cache_node *n;
3589 struct kmem_cache *s;
3590 struct memory_notify *marg = arg;
3591 int nid = marg->status_change_nid;
3592 int ret = 0;
3593
3594 /*
3595 * If the node's memory is already available, then kmem_cache_node is
3596 * already created. Nothing to do.
3597 */
3598 if (nid < 0)
3599 return 0;
3600
3601 /*
3602 * We are bringing a node online. No memory is available yet. We must
3603 * allocate a kmem_cache_node structure in order to bring the node
3604 * online.
3605 */
3606 mutex_lock(&slab_mutex);
3607 list_for_each_entry(s, &slab_caches, list) {
3608 /*
3609 * XXX: kmem_cache_alloc_node will fallback to other nodes
3610 * since memory is not yet available from the node that
3611 * is brought up.
3612 */
3613 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3614 if (!n) {
3615 ret = -ENOMEM;
3616 goto out;
3617 }
3618 init_kmem_cache_node(n);
3619 s->node[nid] = n;
3620 }
3621 out:
3622 mutex_unlock(&slab_mutex);
3623 return ret;
3624 }
3625
3626 static int slab_memory_callback(struct notifier_block *self,
3627 unsigned long action, void *arg)
3628 {
3629 int ret = 0;
3630
3631 switch (action) {
3632 case MEM_GOING_ONLINE:
3633 ret = slab_mem_going_online_callback(arg);
3634 break;
3635 case MEM_GOING_OFFLINE:
3636 ret = slab_mem_going_offline_callback(arg);
3637 break;
3638 case MEM_OFFLINE:
3639 case MEM_CANCEL_ONLINE:
3640 slab_mem_offline_callback(arg);
3641 break;
3642 case MEM_ONLINE:
3643 case MEM_CANCEL_OFFLINE:
3644 break;
3645 }
3646 if (ret)
3647 ret = notifier_from_errno(ret);
3648 else
3649 ret = NOTIFY_OK;
3650 return ret;
3651 }
3652
3653 #endif /* CONFIG_MEMORY_HOTPLUG */
3654
3655 /********************************************************************
3656 * Basic setup of slabs
3657 *******************************************************************/
3658
3659 /*
3660 * Used for early kmem_cache structures that were allocated using
3661 * the page allocator
3662 */
3663
3664 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3665 {
3666 int node;
3667
3668 list_add(&s->list, &slab_caches);
3669 s->refcount = -1;
3670
3671 for_each_node_state(node, N_NORMAL_MEMORY) {
3672 struct kmem_cache_node *n = get_node(s, node);
3673 struct page *p;
3674
3675 if (n) {
3676 list_for_each_entry(p, &n->partial, lru)
3677 p->slab_cache = s;
3678
3679 #ifdef CONFIG_SLUB_DEBUG
3680 list_for_each_entry(p, &n->full, lru)
3681 p->slab_cache = s;
3682 #endif
3683 }
3684 }
3685 }
3686
3687 void __init kmem_cache_init(void)
3688 {
3689 int i;
3690 int caches = 0;
3691 struct kmem_cache *temp_kmem_cache;
3692 int order;
3693 struct kmem_cache *temp_kmem_cache_node;
3694 unsigned long kmalloc_size;
3695
3696 if (debug_guardpage_minorder())
3697 slub_max_order = 0;
3698
3699 kmem_size = offsetof(struct kmem_cache, node) +
3700 nr_node_ids * sizeof(struct kmem_cache_node *);
3701
3702 /* Allocate two kmem_caches from the page allocator */
3703 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3704 order = get_order(2 * kmalloc_size);
3705 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order);
3706
3707 /*
3708 * Must first have the slab cache available for the allocations of the
3709 * struct kmem_cache_node's. There is special bootstrap code in
3710 * kmem_cache_open for slab_state == DOWN.
3711 */
3712 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3713
3714 kmem_cache_node->name = "kmem_cache_node";
3715 kmem_cache_node->size = kmem_cache_node->object_size =
3716 sizeof(struct kmem_cache_node);
3717 kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3718
3719 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3720
3721 /* Able to allocate the per node structures */
3722 slab_state = PARTIAL;
3723
3724 temp_kmem_cache = kmem_cache;
3725 kmem_cache->name = "kmem_cache";
3726 kmem_cache->size = kmem_cache->object_size = kmem_size;
3727 kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3728
3729 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3730 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3731
3732 /*
3733 * Allocate kmem_cache_node properly from the kmem_cache slab.
3734 * kmem_cache_node is separately allocated so no need to
3735 * update any list pointers.
3736 */
3737 temp_kmem_cache_node = kmem_cache_node;
3738
3739 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3740 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3741
3742 kmem_cache_bootstrap_fixup(kmem_cache_node);
3743
3744 caches++;
3745 kmem_cache_bootstrap_fixup(kmem_cache);
3746 caches++;
3747 /* Free temporary boot structure */
3748 free_pages((unsigned long)temp_kmem_cache, order);
3749
3750 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3751
3752 /*
3753 * Patch up the size_index table if we have strange large alignment
3754 * requirements for the kmalloc array. This is only the case for
3755 * MIPS it seems. The standard arches will not generate any code here.
3756 *
3757 * Largest permitted alignment is 256 bytes due to the way we
3758 * handle the index determination for the smaller caches.
3759 *
3760 * Make sure that nothing crazy happens if someone starts tinkering
3761 * around with ARCH_KMALLOC_MINALIGN
3762 */
3763 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3764 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3765
3766 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3767 int elem = size_index_elem(i);
3768 if (elem >= ARRAY_SIZE(size_index))
3769 break;
3770 size_index[elem] = KMALLOC_SHIFT_LOW;
3771 }
3772
3773 if (KMALLOC_MIN_SIZE == 64) {
3774 /*
3775 * The 96 byte size cache is not used if the alignment
3776 * is 64 byte.
3777 */
3778 for (i = 64 + 8; i <= 96; i += 8)
3779 size_index[size_index_elem(i)] = 7;
3780 } else if (KMALLOC_MIN_SIZE == 128) {
3781 /*
3782 * The 192 byte sized cache is not used if the alignment
3783 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3784 * instead.
3785 */
3786 for (i = 128 + 8; i <= 192; i += 8)
3787 size_index[size_index_elem(i)] = 8;
3788 }
3789
3790 /* Caches that are not of the two-to-the-power-of size */
3791 if (KMALLOC_MIN_SIZE <= 32) {
3792 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3793 caches++;
3794 }
3795
3796 if (KMALLOC_MIN_SIZE <= 64) {
3797 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3798 caches++;
3799 }
3800
3801 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3802 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3803 caches++;
3804 }
3805
3806 slab_state = UP;
3807
3808 /* Provide the correct kmalloc names now that the caches are up */
3809 if (KMALLOC_MIN_SIZE <= 32) {
3810 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3811 BUG_ON(!kmalloc_caches[1]->name);
3812 }
3813
3814 if (KMALLOC_MIN_SIZE <= 64) {
3815 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3816 BUG_ON(!kmalloc_caches[2]->name);
3817 }
3818
3819 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3820 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3821
3822 BUG_ON(!s);
3823 kmalloc_caches[i]->name = s;
3824 }
3825
3826 #ifdef CONFIG_SMP
3827 register_cpu_notifier(&slab_notifier);
3828 #endif
3829
3830 #ifdef CONFIG_ZONE_DMA
3831 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3832 struct kmem_cache *s = kmalloc_caches[i];
3833
3834 if (s && s->size) {
3835 char *name = kasprintf(GFP_NOWAIT,
3836 "dma-kmalloc-%d", s->object_size);
3837
3838 BUG_ON(!name);
3839 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3840 s->object_size, SLAB_CACHE_DMA);
3841 }
3842 }
3843 #endif
3844 printk(KERN_INFO
3845 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3846 " CPUs=%d, Nodes=%d\n",
3847 caches, cache_line_size(),
3848 slub_min_order, slub_max_order, slub_min_objects,
3849 nr_cpu_ids, nr_node_ids);
3850 }
3851
3852 void __init kmem_cache_init_late(void)
3853 {
3854 }
3855
3856 /*
3857 * Find a mergeable slab cache
3858 */
3859 static int slab_unmergeable(struct kmem_cache *s)
3860 {
3861 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3862 return 1;
3863
3864 if (s->ctor)
3865 return 1;
3866
3867 /*
3868 * We may have set a slab to be unmergeable during bootstrap.
3869 */
3870 if (s->refcount < 0)
3871 return 1;
3872
3873 return 0;
3874 }
3875
3876 static struct kmem_cache *find_mergeable(size_t size,
3877 size_t align, unsigned long flags, const char *name,
3878 void (*ctor)(void *))
3879 {
3880 struct kmem_cache *s;
3881
3882 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3883 return NULL;
3884
3885 if (ctor)
3886 return NULL;
3887
3888 size = ALIGN(size, sizeof(void *));
3889 align = calculate_alignment(flags, align, size);
3890 size = ALIGN(size, align);
3891 flags = kmem_cache_flags(size, flags, name, NULL);
3892
3893 list_for_each_entry(s, &slab_caches, list) {
3894 if (slab_unmergeable(s))
3895 continue;
3896
3897 if (size > s->size)
3898 continue;
3899
3900 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3901 continue;
3902 /*
3903 * Check if alignment is compatible.
3904 * Courtesy of Adrian Drzewiecki
3905 */
3906 if ((s->size & ~(align - 1)) != s->size)
3907 continue;
3908
3909 if (s->size - size >= sizeof(void *))
3910 continue;
3911
3912 return s;
3913 }
3914 return NULL;
3915 }
3916
3917 struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
3918 size_t align, unsigned long flags, void (*ctor)(void *))
3919 {
3920 struct kmem_cache *s;
3921
3922 s = find_mergeable(size, align, flags, name, ctor);
3923 if (s) {
3924 s->refcount++;
3925 /*
3926 * Adjust the object sizes so that we clear
3927 * the complete object on kzalloc.
3928 */
3929 s->object_size = max(s->object_size, (int)size);
3930 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3931
3932 if (sysfs_slab_alias(s, name)) {
3933 s->refcount--;
3934 s = NULL;
3935 }
3936 }
3937
3938 return s;
3939 }
3940
3941 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3942 {
3943 int err;
3944
3945 err = kmem_cache_open(s, flags);
3946 if (err)
3947 return err;
3948
3949 mutex_unlock(&slab_mutex);
3950 err = sysfs_slab_add(s);
3951 mutex_lock(&slab_mutex);
3952
3953 if (err)
3954 kmem_cache_close(s);
3955
3956 return err;
3957 }
3958
3959 #ifdef CONFIG_SMP
3960 /*
3961 * Use the cpu notifier to insure that the cpu slabs are flushed when
3962 * necessary.
3963 */
3964 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3965 unsigned long action, void *hcpu)
3966 {
3967 long cpu = (long)hcpu;
3968 struct kmem_cache *s;
3969 unsigned long flags;
3970
3971 switch (action) {
3972 case CPU_UP_CANCELED:
3973 case CPU_UP_CANCELED_FROZEN:
3974 case CPU_DEAD:
3975 case CPU_DEAD_FROZEN:
3976 mutex_lock(&slab_mutex);
3977 list_for_each_entry(s, &slab_caches, list) {
3978 local_irq_save(flags);
3979 __flush_cpu_slab(s, cpu);
3980 local_irq_restore(flags);
3981 }
3982 mutex_unlock(&slab_mutex);
3983 break;
3984 default:
3985 break;
3986 }
3987 return NOTIFY_OK;
3988 }
3989
3990 static struct notifier_block __cpuinitdata slab_notifier = {
3991 .notifier_call = slab_cpuup_callback
3992 };
3993
3994 #endif
3995
3996 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3997 {
3998 struct kmem_cache *s;
3999 void *ret;
4000
4001 if (unlikely(size > SLUB_MAX_SIZE))
4002 return kmalloc_large(size, gfpflags);
4003
4004 s = get_slab(size, gfpflags);
4005
4006 if (unlikely(ZERO_OR_NULL_PTR(s)))
4007 return s;
4008
4009 ret = slab_alloc(s, gfpflags, caller);
4010
4011 /* Honor the call site pointer we received. */
4012 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4013
4014 return ret;
4015 }
4016
4017 #ifdef CONFIG_NUMA
4018 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4019 int node, unsigned long caller)
4020 {
4021 struct kmem_cache *s;
4022 void *ret;
4023
4024 if (unlikely(size > SLUB_MAX_SIZE)) {
4025 ret = kmalloc_large_node(size, gfpflags, node);
4026
4027 trace_kmalloc_node(caller, ret,
4028 size, PAGE_SIZE << get_order(size),
4029 gfpflags, node);
4030
4031 return ret;
4032 }
4033
4034 s = get_slab(size, gfpflags);
4035
4036 if (unlikely(ZERO_OR_NULL_PTR(s)))
4037 return s;
4038
4039 ret = slab_alloc_node(s, gfpflags, node, caller);
4040
4041 /* Honor the call site pointer we received. */
4042 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4043
4044 return ret;
4045 }
4046 #endif
4047
4048 #ifdef CONFIG_SYSFS
4049 static int count_inuse(struct page *page)
4050 {
4051 return page->inuse;
4052 }
4053
4054 static int count_total(struct page *page)
4055 {
4056 return page->objects;
4057 }
4058 #endif
4059
4060 #ifdef CONFIG_SLUB_DEBUG
4061 static int validate_slab(struct kmem_cache *s, struct page *page,
4062 unsigned long *map)
4063 {
4064 void *p;
4065 void *addr = page_address(page);
4066
4067 if (!check_slab(s, page) ||
4068 !on_freelist(s, page, NULL))
4069 return 0;
4070
4071 /* Now we know that a valid freelist exists */
4072 bitmap_zero(map, page->objects);
4073
4074 get_map(s, page, map);
4075 for_each_object(p, s, addr, page->objects) {
4076 if (test_bit(slab_index(p, s, addr), map))
4077 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4078 return 0;
4079 }
4080
4081 for_each_object(p, s, addr, page->objects)
4082 if (!test_bit(slab_index(p, s, addr), map))
4083 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4084 return 0;
4085 return 1;
4086 }
4087
4088 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4089 unsigned long *map)
4090 {
4091 slab_lock(page);
4092 validate_slab(s, page, map);
4093 slab_unlock(page);
4094 }
4095
4096 static int validate_slab_node(struct kmem_cache *s,
4097 struct kmem_cache_node *n, unsigned long *map)
4098 {
4099 unsigned long count = 0;
4100 struct page *page;
4101 unsigned long flags;
4102
4103 spin_lock_irqsave(&n->list_lock, flags);
4104
4105 list_for_each_entry(page, &n->partial, lru) {
4106 validate_slab_slab(s, page, map);
4107 count++;
4108 }
4109 if (count != n->nr_partial)
4110 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4111 "counter=%ld\n", s->name, count, n->nr_partial);
4112
4113 if (!(s->flags & SLAB_STORE_USER))
4114 goto out;
4115
4116 list_for_each_entry(page, &n->full, lru) {
4117 validate_slab_slab(s, page, map);
4118 count++;
4119 }
4120 if (count != atomic_long_read(&n->nr_slabs))
4121 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4122 "counter=%ld\n", s->name, count,
4123 atomic_long_read(&n->nr_slabs));
4124
4125 out:
4126 spin_unlock_irqrestore(&n->list_lock, flags);
4127 return count;
4128 }
4129
4130 static long validate_slab_cache(struct kmem_cache *s)
4131 {
4132 int node;
4133 unsigned long count = 0;
4134 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4135 sizeof(unsigned long), GFP_KERNEL);
4136
4137 if (!map)
4138 return -ENOMEM;
4139
4140 flush_all(s);
4141 for_each_node_state(node, N_NORMAL_MEMORY) {
4142 struct kmem_cache_node *n = get_node(s, node);
4143
4144 count += validate_slab_node(s, n, map);
4145 }
4146 kfree(map);
4147 return count;
4148 }
4149 /*
4150 * Generate lists of code addresses where slabcache objects are allocated
4151 * and freed.
4152 */
4153
4154 struct location {
4155 unsigned long count;
4156 unsigned long addr;
4157 long long sum_time;
4158 long min_time;
4159 long max_time;
4160 long min_pid;
4161 long max_pid;
4162 DECLARE_BITMAP(cpus, NR_CPUS);
4163 nodemask_t nodes;
4164 };
4165
4166 struct loc_track {
4167 unsigned long max;
4168 unsigned long count;
4169 struct location *loc;
4170 };
4171
4172 static void free_loc_track(struct loc_track *t)
4173 {
4174 if (t->max)
4175 free_pages((unsigned long)t->loc,
4176 get_order(sizeof(struct location) * t->max));
4177 }
4178
4179 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4180 {
4181 struct location *l;
4182 int order;
4183
4184 order = get_order(sizeof(struct location) * max);
4185
4186 l = (void *)__get_free_pages(flags, order);
4187 if (!l)
4188 return 0;
4189
4190 if (t->count) {
4191 memcpy(l, t->loc, sizeof(struct location) * t->count);
4192 free_loc_track(t);
4193 }
4194 t->max = max;
4195 t->loc = l;
4196 return 1;
4197 }
4198
4199 static int add_location(struct loc_track *t, struct kmem_cache *s,
4200 const struct track *track)
4201 {
4202 long start, end, pos;
4203 struct location *l;
4204 unsigned long caddr;
4205 unsigned long age = jiffies - track->when;
4206
4207 start = -1;
4208 end = t->count;
4209
4210 for ( ; ; ) {
4211 pos = start + (end - start + 1) / 2;
4212
4213 /*
4214 * There is nothing at "end". If we end up there
4215 * we need to add something to before end.
4216 */
4217 if (pos == end)
4218 break;
4219
4220 caddr = t->loc[pos].addr;
4221 if (track->addr == caddr) {
4222
4223 l = &t->loc[pos];
4224 l->count++;
4225 if (track->when) {
4226 l->sum_time += age;
4227 if (age < l->min_time)
4228 l->min_time = age;
4229 if (age > l->max_time)
4230 l->max_time = age;
4231
4232 if (track->pid < l->min_pid)
4233 l->min_pid = track->pid;
4234 if (track->pid > l->max_pid)
4235 l->max_pid = track->pid;
4236
4237 cpumask_set_cpu(track->cpu,
4238 to_cpumask(l->cpus));
4239 }
4240 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4241 return 1;
4242 }
4243
4244 if (track->addr < caddr)
4245 end = pos;
4246 else
4247 start = pos;
4248 }
4249
4250 /*
4251 * Not found. Insert new tracking element.
4252 */
4253 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4254 return 0;
4255
4256 l = t->loc + pos;
4257 if (pos < t->count)
4258 memmove(l + 1, l,
4259 (t->count - pos) * sizeof(struct location));
4260 t->count++;
4261 l->count = 1;
4262 l->addr = track->addr;
4263 l->sum_time = age;
4264 l->min_time = age;
4265 l->max_time = age;
4266 l->min_pid = track->pid;
4267 l->max_pid = track->pid;
4268 cpumask_clear(to_cpumask(l->cpus));
4269 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4270 nodes_clear(l->nodes);
4271 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4272 return 1;
4273 }
4274
4275 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4276 struct page *page, enum track_item alloc,
4277 unsigned long *map)
4278 {
4279 void *addr = page_address(page);
4280 void *p;
4281
4282 bitmap_zero(map, page->objects);
4283 get_map(s, page, map);
4284
4285 for_each_object(p, s, addr, page->objects)
4286 if (!test_bit(slab_index(p, s, addr), map))
4287 add_location(t, s, get_track(s, p, alloc));
4288 }
4289
4290 static int list_locations(struct kmem_cache *s, char *buf,
4291 enum track_item alloc)
4292 {
4293 int len = 0;
4294 unsigned long i;
4295 struct loc_track t = { 0, 0, NULL };
4296 int node;
4297 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4298 sizeof(unsigned long), GFP_KERNEL);
4299
4300 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4301 GFP_TEMPORARY)) {
4302 kfree(map);
4303 return sprintf(buf, "Out of memory\n");
4304 }
4305 /* Push back cpu slabs */
4306 flush_all(s);
4307
4308 for_each_node_state(node, N_NORMAL_MEMORY) {
4309 struct kmem_cache_node *n = get_node(s, node);
4310 unsigned long flags;
4311 struct page *page;
4312
4313 if (!atomic_long_read(&n->nr_slabs))
4314 continue;
4315
4316 spin_lock_irqsave(&n->list_lock, flags);
4317 list_for_each_entry(page, &n->partial, lru)
4318 process_slab(&t, s, page, alloc, map);
4319 list_for_each_entry(page, &n->full, lru)
4320 process_slab(&t, s, page, alloc, map);
4321 spin_unlock_irqrestore(&n->list_lock, flags);
4322 }
4323
4324 for (i = 0; i < t.count; i++) {
4325 struct location *l = &t.loc[i];
4326
4327 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4328 break;
4329 len += sprintf(buf + len, "%7ld ", l->count);
4330
4331 if (l->addr)
4332 len += sprintf(buf + len, "%pS", (void *)l->addr);
4333 else
4334 len += sprintf(buf + len, "<not-available>");
4335
4336 if (l->sum_time != l->min_time) {
4337 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4338 l->min_time,
4339 (long)div_u64(l->sum_time, l->count),
4340 l->max_time);
4341 } else
4342 len += sprintf(buf + len, " age=%ld",
4343 l->min_time);
4344
4345 if (l->min_pid != l->max_pid)
4346 len += sprintf(buf + len, " pid=%ld-%ld",
4347 l->min_pid, l->max_pid);
4348 else
4349 len += sprintf(buf + len, " pid=%ld",
4350 l->min_pid);
4351
4352 if (num_online_cpus() > 1 &&
4353 !cpumask_empty(to_cpumask(l->cpus)) &&
4354 len < PAGE_SIZE - 60) {
4355 len += sprintf(buf + len, " cpus=");
4356 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4357 to_cpumask(l->cpus));
4358 }
4359
4360 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4361 len < PAGE_SIZE - 60) {
4362 len += sprintf(buf + len, " nodes=");
4363 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4364 l->nodes);
4365 }
4366
4367 len += sprintf(buf + len, "\n");
4368 }
4369
4370 free_loc_track(&t);
4371 kfree(map);
4372 if (!t.count)
4373 len += sprintf(buf, "No data\n");
4374 return len;
4375 }
4376 #endif
4377
4378 #ifdef SLUB_RESILIENCY_TEST
4379 static void resiliency_test(void)
4380 {
4381 u8 *p;
4382
4383 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4384
4385 printk(KERN_ERR "SLUB resiliency testing\n");
4386 printk(KERN_ERR "-----------------------\n");
4387 printk(KERN_ERR "A. Corruption after allocation\n");
4388
4389 p = kzalloc(16, GFP_KERNEL);
4390 p[16] = 0x12;
4391 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4392 " 0x12->0x%p\n\n", p + 16);
4393
4394 validate_slab_cache(kmalloc_caches[4]);
4395
4396 /* Hmmm... The next two are dangerous */
4397 p = kzalloc(32, GFP_KERNEL);
4398 p[32 + sizeof(void *)] = 0x34;
4399 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4400 " 0x34 -> -0x%p\n", p);
4401 printk(KERN_ERR
4402 "If allocated object is overwritten then not detectable\n\n");
4403
4404 validate_slab_cache(kmalloc_caches[5]);
4405 p = kzalloc(64, GFP_KERNEL);
4406 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4407 *p = 0x56;
4408 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4409 p);
4410 printk(KERN_ERR
4411 "If allocated object is overwritten then not detectable\n\n");
4412 validate_slab_cache(kmalloc_caches[6]);
4413
4414 printk(KERN_ERR "\nB. Corruption after free\n");
4415 p = kzalloc(128, GFP_KERNEL);
4416 kfree(p);
4417 *p = 0x78;
4418 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4419 validate_slab_cache(kmalloc_caches[7]);
4420
4421 p = kzalloc(256, GFP_KERNEL);
4422 kfree(p);
4423 p[50] = 0x9a;
4424 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4425 p);
4426 validate_slab_cache(kmalloc_caches[8]);
4427
4428 p = kzalloc(512, GFP_KERNEL);
4429 kfree(p);
4430 p[512] = 0xab;
4431 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4432 validate_slab_cache(kmalloc_caches[9]);
4433 }
4434 #else
4435 #ifdef CONFIG_SYSFS
4436 static void resiliency_test(void) {};
4437 #endif
4438 #endif
4439
4440 #ifdef CONFIG_SYSFS
4441 enum slab_stat_type {
4442 SL_ALL, /* All slabs */
4443 SL_PARTIAL, /* Only partially allocated slabs */
4444 SL_CPU, /* Only slabs used for cpu caches */
4445 SL_OBJECTS, /* Determine allocated objects not slabs */
4446 SL_TOTAL /* Determine object capacity not slabs */
4447 };
4448
4449 #define SO_ALL (1 << SL_ALL)
4450 #define SO_PARTIAL (1 << SL_PARTIAL)
4451 #define SO_CPU (1 << SL_CPU)
4452 #define SO_OBJECTS (1 << SL_OBJECTS)
4453 #define SO_TOTAL (1 << SL_TOTAL)
4454
4455 static ssize_t show_slab_objects(struct kmem_cache *s,
4456 char *buf, unsigned long flags)
4457 {
4458 unsigned long total = 0;
4459 int node;
4460 int x;
4461 unsigned long *nodes;
4462 unsigned long *per_cpu;
4463
4464 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4465 if (!nodes)
4466 return -ENOMEM;
4467 per_cpu = nodes + nr_node_ids;
4468
4469 if (flags & SO_CPU) {
4470 int cpu;
4471
4472 for_each_possible_cpu(cpu) {
4473 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4474 int node;
4475 struct page *page;
4476
4477 page = ACCESS_ONCE(c->page);
4478 if (!page)
4479 continue;
4480
4481 node = page_to_nid(page);
4482 if (flags & SO_TOTAL)
4483 x = page->objects;
4484 else if (flags & SO_OBJECTS)
4485 x = page->inuse;
4486 else
4487 x = 1;
4488
4489 total += x;
4490 nodes[node] += x;
4491
4492 page = ACCESS_ONCE(c->partial);
4493 if (page) {
4494 x = page->pobjects;
4495 total += x;
4496 nodes[node] += x;
4497 }
4498
4499 per_cpu[node]++;
4500 }
4501 }
4502
4503 lock_memory_hotplug();
4504 #ifdef CONFIG_SLUB_DEBUG
4505 if (flags & SO_ALL) {
4506 for_each_node_state(node, N_NORMAL_MEMORY) {
4507 struct kmem_cache_node *n = get_node(s, node);
4508
4509 if (flags & SO_TOTAL)
4510 x = atomic_long_read(&n->total_objects);
4511 else if (flags & SO_OBJECTS)
4512 x = atomic_long_read(&n->total_objects) -
4513 count_partial(n, count_free);
4514
4515 else
4516 x = atomic_long_read(&n->nr_slabs);
4517 total += x;
4518 nodes[node] += x;
4519 }
4520
4521 } else
4522 #endif
4523 if (flags & SO_PARTIAL) {
4524 for_each_node_state(node, N_NORMAL_MEMORY) {
4525 struct kmem_cache_node *n = get_node(s, node);
4526
4527 if (flags & SO_TOTAL)
4528 x = count_partial(n, count_total);
4529 else if (flags & SO_OBJECTS)
4530 x = count_partial(n, count_inuse);
4531 else
4532 x = n->nr_partial;
4533 total += x;
4534 nodes[node] += x;
4535 }
4536 }
4537 x = sprintf(buf, "%lu", total);
4538 #ifdef CONFIG_NUMA
4539 for_each_node_state(node, N_NORMAL_MEMORY)
4540 if (nodes[node])
4541 x += sprintf(buf + x, " N%d=%lu",
4542 node, nodes[node]);
4543 #endif
4544 unlock_memory_hotplug();
4545 kfree(nodes);
4546 return x + sprintf(buf + x, "\n");
4547 }
4548
4549 #ifdef CONFIG_SLUB_DEBUG
4550 static int any_slab_objects(struct kmem_cache *s)
4551 {
4552 int node;
4553
4554 for_each_online_node(node) {
4555 struct kmem_cache_node *n = get_node(s, node);
4556
4557 if (!n)
4558 continue;
4559
4560 if (atomic_long_read(&n->total_objects))
4561 return 1;
4562 }
4563 return 0;
4564 }
4565 #endif
4566
4567 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4568 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4569
4570 struct slab_attribute {
4571 struct attribute attr;
4572 ssize_t (*show)(struct kmem_cache *s, char *buf);
4573 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4574 };
4575
4576 #define SLAB_ATTR_RO(_name) \
4577 static struct slab_attribute _name##_attr = \
4578 __ATTR(_name, 0400, _name##_show, NULL)
4579
4580 #define SLAB_ATTR(_name) \
4581 static struct slab_attribute _name##_attr = \
4582 __ATTR(_name, 0600, _name##_show, _name##_store)
4583
4584 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4585 {
4586 return sprintf(buf, "%d\n", s->size);
4587 }
4588 SLAB_ATTR_RO(slab_size);
4589
4590 static ssize_t align_show(struct kmem_cache *s, char *buf)
4591 {
4592 return sprintf(buf, "%d\n", s->align);
4593 }
4594 SLAB_ATTR_RO(align);
4595
4596 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4597 {
4598 return sprintf(buf, "%d\n", s->object_size);
4599 }
4600 SLAB_ATTR_RO(object_size);
4601
4602 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4603 {
4604 return sprintf(buf, "%d\n", oo_objects(s->oo));
4605 }
4606 SLAB_ATTR_RO(objs_per_slab);
4607
4608 static ssize_t order_store(struct kmem_cache *s,
4609 const char *buf, size_t length)
4610 {
4611 unsigned long order;
4612 int err;
4613
4614 err = strict_strtoul(buf, 10, &order);
4615 if (err)
4616 return err;
4617
4618 if (order > slub_max_order || order < slub_min_order)
4619 return -EINVAL;
4620
4621 calculate_sizes(s, order);
4622 return length;
4623 }
4624
4625 static ssize_t order_show(struct kmem_cache *s, char *buf)
4626 {
4627 return sprintf(buf, "%d\n", oo_order(s->oo));
4628 }
4629 SLAB_ATTR(order);
4630
4631 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4632 {
4633 return sprintf(buf, "%lu\n", s->min_partial);
4634 }
4635
4636 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4637 size_t length)
4638 {
4639 unsigned long min;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &min);
4643 if (err)
4644 return err;
4645
4646 set_min_partial(s, min);
4647 return length;
4648 }
4649 SLAB_ATTR(min_partial);
4650
4651 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4652 {
4653 return sprintf(buf, "%u\n", s->cpu_partial);
4654 }
4655
4656 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4657 size_t length)
4658 {
4659 unsigned long objects;
4660 int err;
4661
4662 err = strict_strtoul(buf, 10, &objects);
4663 if (err)
4664 return err;
4665 if (objects && kmem_cache_debug(s))
4666 return -EINVAL;
4667
4668 s->cpu_partial = objects;
4669 flush_all(s);
4670 return length;
4671 }
4672 SLAB_ATTR(cpu_partial);
4673
4674 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4675 {
4676 if (!s->ctor)
4677 return 0;
4678 return sprintf(buf, "%pS\n", s->ctor);
4679 }
4680 SLAB_ATTR_RO(ctor);
4681
4682 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4683 {
4684 return sprintf(buf, "%d\n", s->refcount - 1);
4685 }
4686 SLAB_ATTR_RO(aliases);
4687
4688 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4689 {
4690 return show_slab_objects(s, buf, SO_PARTIAL);
4691 }
4692 SLAB_ATTR_RO(partial);
4693
4694 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4695 {
4696 return show_slab_objects(s, buf, SO_CPU);
4697 }
4698 SLAB_ATTR_RO(cpu_slabs);
4699
4700 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4701 {
4702 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4703 }
4704 SLAB_ATTR_RO(objects);
4705
4706 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4707 {
4708 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4709 }
4710 SLAB_ATTR_RO(objects_partial);
4711
4712 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4713 {
4714 int objects = 0;
4715 int pages = 0;
4716 int cpu;
4717 int len;
4718
4719 for_each_online_cpu(cpu) {
4720 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4721
4722 if (page) {
4723 pages += page->pages;
4724 objects += page->pobjects;
4725 }
4726 }
4727
4728 len = sprintf(buf, "%d(%d)", objects, pages);
4729
4730 #ifdef CONFIG_SMP
4731 for_each_online_cpu(cpu) {
4732 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4733
4734 if (page && len < PAGE_SIZE - 20)
4735 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4736 page->pobjects, page->pages);
4737 }
4738 #endif
4739 return len + sprintf(buf + len, "\n");
4740 }
4741 SLAB_ATTR_RO(slabs_cpu_partial);
4742
4743 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4744 {
4745 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4746 }
4747
4748 static ssize_t reclaim_account_store(struct kmem_cache *s,
4749 const char *buf, size_t length)
4750 {
4751 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4752 if (buf[0] == '1')
4753 s->flags |= SLAB_RECLAIM_ACCOUNT;
4754 return length;
4755 }
4756 SLAB_ATTR(reclaim_account);
4757
4758 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4759 {
4760 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4761 }
4762 SLAB_ATTR_RO(hwcache_align);
4763
4764 #ifdef CONFIG_ZONE_DMA
4765 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4766 {
4767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4768 }
4769 SLAB_ATTR_RO(cache_dma);
4770 #endif
4771
4772 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4773 {
4774 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4775 }
4776 SLAB_ATTR_RO(destroy_by_rcu);
4777
4778 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4779 {
4780 return sprintf(buf, "%d\n", s->reserved);
4781 }
4782 SLAB_ATTR_RO(reserved);
4783
4784 #ifdef CONFIG_SLUB_DEBUG
4785 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4786 {
4787 return show_slab_objects(s, buf, SO_ALL);
4788 }
4789 SLAB_ATTR_RO(slabs);
4790
4791 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4792 {
4793 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4794 }
4795 SLAB_ATTR_RO(total_objects);
4796
4797 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4798 {
4799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4800 }
4801
4802 static ssize_t sanity_checks_store(struct kmem_cache *s,
4803 const char *buf, size_t length)
4804 {
4805 s->flags &= ~SLAB_DEBUG_FREE;
4806 if (buf[0] == '1') {
4807 s->flags &= ~__CMPXCHG_DOUBLE;
4808 s->flags |= SLAB_DEBUG_FREE;
4809 }
4810 return length;
4811 }
4812 SLAB_ATTR(sanity_checks);
4813
4814 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4815 {
4816 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4817 }
4818
4819 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4820 size_t length)
4821 {
4822 s->flags &= ~SLAB_TRACE;
4823 if (buf[0] == '1') {
4824 s->flags &= ~__CMPXCHG_DOUBLE;
4825 s->flags |= SLAB_TRACE;
4826 }
4827 return length;
4828 }
4829 SLAB_ATTR(trace);
4830
4831 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4832 {
4833 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4834 }
4835
4836 static ssize_t red_zone_store(struct kmem_cache *s,
4837 const char *buf, size_t length)
4838 {
4839 if (any_slab_objects(s))
4840 return -EBUSY;
4841
4842 s->flags &= ~SLAB_RED_ZONE;
4843 if (buf[0] == '1') {
4844 s->flags &= ~__CMPXCHG_DOUBLE;
4845 s->flags |= SLAB_RED_ZONE;
4846 }
4847 calculate_sizes(s, -1);
4848 return length;
4849 }
4850 SLAB_ATTR(red_zone);
4851
4852 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4853 {
4854 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4855 }
4856
4857 static ssize_t poison_store(struct kmem_cache *s,
4858 const char *buf, size_t length)
4859 {
4860 if (any_slab_objects(s))
4861 return -EBUSY;
4862
4863 s->flags &= ~SLAB_POISON;
4864 if (buf[0] == '1') {
4865 s->flags &= ~__CMPXCHG_DOUBLE;
4866 s->flags |= SLAB_POISON;
4867 }
4868 calculate_sizes(s, -1);
4869 return length;
4870 }
4871 SLAB_ATTR(poison);
4872
4873 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4874 {
4875 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4876 }
4877
4878 static ssize_t store_user_store(struct kmem_cache *s,
4879 const char *buf, size_t length)
4880 {
4881 if (any_slab_objects(s))
4882 return -EBUSY;
4883
4884 s->flags &= ~SLAB_STORE_USER;
4885 if (buf[0] == '1') {
4886 s->flags &= ~__CMPXCHG_DOUBLE;
4887 s->flags |= SLAB_STORE_USER;
4888 }
4889 calculate_sizes(s, -1);
4890 return length;
4891 }
4892 SLAB_ATTR(store_user);
4893
4894 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4895 {
4896 return 0;
4897 }
4898
4899 static ssize_t validate_store(struct kmem_cache *s,
4900 const char *buf, size_t length)
4901 {
4902 int ret = -EINVAL;
4903
4904 if (buf[0] == '1') {
4905 ret = validate_slab_cache(s);
4906 if (ret >= 0)
4907 ret = length;
4908 }
4909 return ret;
4910 }
4911 SLAB_ATTR(validate);
4912
4913 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4914 {
4915 if (!(s->flags & SLAB_STORE_USER))
4916 return -ENOSYS;
4917 return list_locations(s, buf, TRACK_ALLOC);
4918 }
4919 SLAB_ATTR_RO(alloc_calls);
4920
4921 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4922 {
4923 if (!(s->flags & SLAB_STORE_USER))
4924 return -ENOSYS;
4925 return list_locations(s, buf, TRACK_FREE);
4926 }
4927 SLAB_ATTR_RO(free_calls);
4928 #endif /* CONFIG_SLUB_DEBUG */
4929
4930 #ifdef CONFIG_FAILSLAB
4931 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4932 {
4933 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4934 }
4935
4936 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4937 size_t length)
4938 {
4939 s->flags &= ~SLAB_FAILSLAB;
4940 if (buf[0] == '1')
4941 s->flags |= SLAB_FAILSLAB;
4942 return length;
4943 }
4944 SLAB_ATTR(failslab);
4945 #endif
4946
4947 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4948 {
4949 return 0;
4950 }
4951
4952 static ssize_t shrink_store(struct kmem_cache *s,
4953 const char *buf, size_t length)
4954 {
4955 if (buf[0] == '1') {
4956 int rc = kmem_cache_shrink(s);
4957
4958 if (rc)
4959 return rc;
4960 } else
4961 return -EINVAL;
4962 return length;
4963 }
4964 SLAB_ATTR(shrink);
4965
4966 #ifdef CONFIG_NUMA
4967 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4968 {
4969 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4970 }
4971
4972 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4973 const char *buf, size_t length)
4974 {
4975 unsigned long ratio;
4976 int err;
4977
4978 err = strict_strtoul(buf, 10, &ratio);
4979 if (err)
4980 return err;
4981
4982 if (ratio <= 100)
4983 s->remote_node_defrag_ratio = ratio * 10;
4984
4985 return length;
4986 }
4987 SLAB_ATTR(remote_node_defrag_ratio);
4988 #endif
4989
4990 #ifdef CONFIG_SLUB_STATS
4991 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4992 {
4993 unsigned long sum = 0;
4994 int cpu;
4995 int len;
4996 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4997
4998 if (!data)
4999 return -ENOMEM;
5000
5001 for_each_online_cpu(cpu) {
5002 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5003
5004 data[cpu] = x;
5005 sum += x;
5006 }
5007
5008 len = sprintf(buf, "%lu", sum);
5009
5010 #ifdef CONFIG_SMP
5011 for_each_online_cpu(cpu) {
5012 if (data[cpu] && len < PAGE_SIZE - 20)
5013 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5014 }
5015 #endif
5016 kfree(data);
5017 return len + sprintf(buf + len, "\n");
5018 }
5019
5020 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5021 {
5022 int cpu;
5023
5024 for_each_online_cpu(cpu)
5025 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5026 }
5027
5028 #define STAT_ATTR(si, text) \
5029 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5030 { \
5031 return show_stat(s, buf, si); \
5032 } \
5033 static ssize_t text##_store(struct kmem_cache *s, \
5034 const char *buf, size_t length) \
5035 { \
5036 if (buf[0] != '0') \
5037 return -EINVAL; \
5038 clear_stat(s, si); \
5039 return length; \
5040 } \
5041 SLAB_ATTR(text); \
5042
5043 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5044 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5045 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5046 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5047 STAT_ATTR(FREE_FROZEN, free_frozen);
5048 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5049 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5050 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5051 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5052 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5053 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5054 STAT_ATTR(FREE_SLAB, free_slab);
5055 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5056 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5057 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5058 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5059 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5060 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5061 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5062 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5063 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5064 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5065 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5066 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5067 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5068 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5069 #endif
5070
5071 static struct attribute *slab_attrs[] = {
5072 &slab_size_attr.attr,
5073 &object_size_attr.attr,
5074 &objs_per_slab_attr.attr,
5075 &order_attr.attr,
5076 &min_partial_attr.attr,
5077 &cpu_partial_attr.attr,
5078 &objects_attr.attr,
5079 &objects_partial_attr.attr,
5080 &partial_attr.attr,
5081 &cpu_slabs_attr.attr,
5082 &ctor_attr.attr,
5083 &aliases_attr.attr,
5084 &align_attr.attr,
5085 &hwcache_align_attr.attr,
5086 &reclaim_account_attr.attr,
5087 &destroy_by_rcu_attr.attr,
5088 &shrink_attr.attr,
5089 &reserved_attr.attr,
5090 &slabs_cpu_partial_attr.attr,
5091 #ifdef CONFIG_SLUB_DEBUG
5092 &total_objects_attr.attr,
5093 &slabs_attr.attr,
5094 &sanity_checks_attr.attr,
5095 &trace_attr.attr,
5096 &red_zone_attr.attr,
5097 &poison_attr.attr,
5098 &store_user_attr.attr,
5099 &validate_attr.attr,
5100 &alloc_calls_attr.attr,
5101 &free_calls_attr.attr,
5102 #endif
5103 #ifdef CONFIG_ZONE_DMA
5104 &cache_dma_attr.attr,
5105 #endif
5106 #ifdef CONFIG_NUMA
5107 &remote_node_defrag_ratio_attr.attr,
5108 #endif
5109 #ifdef CONFIG_SLUB_STATS
5110 &alloc_fastpath_attr.attr,
5111 &alloc_slowpath_attr.attr,
5112 &free_fastpath_attr.attr,
5113 &free_slowpath_attr.attr,
5114 &free_frozen_attr.attr,
5115 &free_add_partial_attr.attr,
5116 &free_remove_partial_attr.attr,
5117 &alloc_from_partial_attr.attr,
5118 &alloc_slab_attr.attr,
5119 &alloc_refill_attr.attr,
5120 &alloc_node_mismatch_attr.attr,
5121 &free_slab_attr.attr,
5122 &cpuslab_flush_attr.attr,
5123 &deactivate_full_attr.attr,
5124 &deactivate_empty_attr.attr,
5125 &deactivate_to_head_attr.attr,
5126 &deactivate_to_tail_attr.attr,
5127 &deactivate_remote_frees_attr.attr,
5128 &deactivate_bypass_attr.attr,
5129 &order_fallback_attr.attr,
5130 &cmpxchg_double_fail_attr.attr,
5131 &cmpxchg_double_cpu_fail_attr.attr,
5132 &cpu_partial_alloc_attr.attr,
5133 &cpu_partial_free_attr.attr,
5134 &cpu_partial_node_attr.attr,
5135 &cpu_partial_drain_attr.attr,
5136 #endif
5137 #ifdef CONFIG_FAILSLAB
5138 &failslab_attr.attr,
5139 #endif
5140
5141 NULL
5142 };
5143
5144 static struct attribute_group slab_attr_group = {
5145 .attrs = slab_attrs,
5146 };
5147
5148 static ssize_t slab_attr_show(struct kobject *kobj,
5149 struct attribute *attr,
5150 char *buf)
5151 {
5152 struct slab_attribute *attribute;
5153 struct kmem_cache *s;
5154 int err;
5155
5156 attribute = to_slab_attr(attr);
5157 s = to_slab(kobj);
5158
5159 if (!attribute->show)
5160 return -EIO;
5161
5162 err = attribute->show(s, buf);
5163
5164 return err;
5165 }
5166
5167 static ssize_t slab_attr_store(struct kobject *kobj,
5168 struct attribute *attr,
5169 const char *buf, size_t len)
5170 {
5171 struct slab_attribute *attribute;
5172 struct kmem_cache *s;
5173 int err;
5174
5175 attribute = to_slab_attr(attr);
5176 s = to_slab(kobj);
5177
5178 if (!attribute->store)
5179 return -EIO;
5180
5181 err = attribute->store(s, buf, len);
5182
5183 return err;
5184 }
5185
5186 static const struct sysfs_ops slab_sysfs_ops = {
5187 .show = slab_attr_show,
5188 .store = slab_attr_store,
5189 };
5190
5191 static struct kobj_type slab_ktype = {
5192 .sysfs_ops = &slab_sysfs_ops,
5193 };
5194
5195 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5196 {
5197 struct kobj_type *ktype = get_ktype(kobj);
5198
5199 if (ktype == &slab_ktype)
5200 return 1;
5201 return 0;
5202 }
5203
5204 static const struct kset_uevent_ops slab_uevent_ops = {
5205 .filter = uevent_filter,
5206 };
5207
5208 static struct kset *slab_kset;
5209
5210 #define ID_STR_LENGTH 64
5211
5212 /* Create a unique string id for a slab cache:
5213 *
5214 * Format :[flags-]size
5215 */
5216 static char *create_unique_id(struct kmem_cache *s)
5217 {
5218 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5219 char *p = name;
5220
5221 BUG_ON(!name);
5222
5223 *p++ = ':';
5224 /*
5225 * First flags affecting slabcache operations. We will only
5226 * get here for aliasable slabs so we do not need to support
5227 * too many flags. The flags here must cover all flags that
5228 * are matched during merging to guarantee that the id is
5229 * unique.
5230 */
5231 if (s->flags & SLAB_CACHE_DMA)
5232 *p++ = 'd';
5233 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5234 *p++ = 'a';
5235 if (s->flags & SLAB_DEBUG_FREE)
5236 *p++ = 'F';
5237 if (!(s->flags & SLAB_NOTRACK))
5238 *p++ = 't';
5239 if (p != name + 1)
5240 *p++ = '-';
5241 p += sprintf(p, "%07d", s->size);
5242 BUG_ON(p > name + ID_STR_LENGTH - 1);
5243 return name;
5244 }
5245
5246 static int sysfs_slab_add(struct kmem_cache *s)
5247 {
5248 int err;
5249 const char *name;
5250 int unmergeable;
5251
5252 if (slab_state < FULL)
5253 /* Defer until later */
5254 return 0;
5255
5256 unmergeable = slab_unmergeable(s);
5257 if (unmergeable) {
5258 /*
5259 * Slabcache can never be merged so we can use the name proper.
5260 * This is typically the case for debug situations. In that
5261 * case we can catch duplicate names easily.
5262 */
5263 sysfs_remove_link(&slab_kset->kobj, s->name);
5264 name = s->name;
5265 } else {
5266 /*
5267 * Create a unique name for the slab as a target
5268 * for the symlinks.
5269 */
5270 name = create_unique_id(s);
5271 }
5272
5273 s->kobj.kset = slab_kset;
5274 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5275 if (err) {
5276 kobject_put(&s->kobj);
5277 return err;
5278 }
5279
5280 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5281 if (err) {
5282 kobject_del(&s->kobj);
5283 kobject_put(&s->kobj);
5284 return err;
5285 }
5286 kobject_uevent(&s->kobj, KOBJ_ADD);
5287 if (!unmergeable) {
5288 /* Setup first alias */
5289 sysfs_slab_alias(s, s->name);
5290 kfree(name);
5291 }
5292 return 0;
5293 }
5294
5295 static void sysfs_slab_remove(struct kmem_cache *s)
5296 {
5297 if (slab_state < FULL)
5298 /*
5299 * Sysfs has not been setup yet so no need to remove the
5300 * cache from sysfs.
5301 */
5302 return;
5303
5304 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5305 kobject_del(&s->kobj);
5306 kobject_put(&s->kobj);
5307 }
5308
5309 /*
5310 * Need to buffer aliases during bootup until sysfs becomes
5311 * available lest we lose that information.
5312 */
5313 struct saved_alias {
5314 struct kmem_cache *s;
5315 const char *name;
5316 struct saved_alias *next;
5317 };
5318
5319 static struct saved_alias *alias_list;
5320
5321 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5322 {
5323 struct saved_alias *al;
5324
5325 if (slab_state == FULL) {
5326 /*
5327 * If we have a leftover link then remove it.
5328 */
5329 sysfs_remove_link(&slab_kset->kobj, name);
5330 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5331 }
5332
5333 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5334 if (!al)
5335 return -ENOMEM;
5336
5337 al->s = s;
5338 al->name = name;
5339 al->next = alias_list;
5340 alias_list = al;
5341 return 0;
5342 }
5343
5344 static int __init slab_sysfs_init(void)
5345 {
5346 struct kmem_cache *s;
5347 int err;
5348
5349 mutex_lock(&slab_mutex);
5350
5351 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5352 if (!slab_kset) {
5353 mutex_unlock(&slab_mutex);
5354 printk(KERN_ERR "Cannot register slab subsystem.\n");
5355 return -ENOSYS;
5356 }
5357
5358 slab_state = FULL;
5359
5360 list_for_each_entry(s, &slab_caches, list) {
5361 err = sysfs_slab_add(s);
5362 if (err)
5363 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5364 " to sysfs\n", s->name);
5365 }
5366
5367 while (alias_list) {
5368 struct saved_alias *al = alias_list;
5369
5370 alias_list = alias_list->next;
5371 err = sysfs_slab_alias(al->s, al->name);
5372 if (err)
5373 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5374 " %s to sysfs\n", al->name);
5375 kfree(al);
5376 }
5377
5378 mutex_unlock(&slab_mutex);
5379 resiliency_test();
5380 return 0;
5381 }
5382
5383 __initcall(slab_sysfs_init);
5384 #endif /* CONFIG_SYSFS */
5385
5386 /*
5387 * The /proc/slabinfo ABI
5388 */
5389 #ifdef CONFIG_SLABINFO
5390 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5391 {
5392 unsigned long nr_partials = 0;
5393 unsigned long nr_slabs = 0;
5394 unsigned long nr_objs = 0;
5395 unsigned long nr_free = 0;
5396 int node;
5397
5398 for_each_online_node(node) {
5399 struct kmem_cache_node *n = get_node(s, node);
5400
5401 if (!n)
5402 continue;
5403
5404 nr_partials += n->nr_partial;
5405 nr_slabs += atomic_long_read(&n->nr_slabs);
5406 nr_objs += atomic_long_read(&n->total_objects);
5407 nr_free += count_partial(n, count_free);
5408 }
5409
5410 sinfo->active_objs = nr_objs - nr_free;
5411 sinfo->num_objs = nr_objs;
5412 sinfo->active_slabs = nr_slabs;
5413 sinfo->num_slabs = nr_slabs;
5414 sinfo->objects_per_slab = oo_objects(s->oo);
5415 sinfo->cache_order = oo_order(s->oo);
5416 }
5417
5418 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5419 {
5420 }
5421
5422 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5423 size_t count, loff_t *ppos)
5424 {
5425 return -EIO;
5426 }
5427 #endif /* CONFIG_SLABINFO */