]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/slub.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-kernels.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
156
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
159
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
162 #endif
163
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
166 #endif
167
168 #define OO_SHIFT 16
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
175
176 static int kmem_size = sizeof(struct kmem_cache);
177
178 #ifdef CONFIG_SMP
179 static struct notifier_block slab_notifier;
180 #endif
181
182 static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
185 UP, /* Everything works but does not show up in sysfs */
186 SYSFS /* Sysfs up */
187 } slab_state = DOWN;
188
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock);
191 static LIST_HEAD(slab_caches);
192
193 /*
194 * Tracking user of a slab.
195 */
196 struct track {
197 unsigned long addr; /* Called from address */
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
201 };
202
203 enum track_item { TRACK_ALLOC, TRACK_FREE };
204
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache *);
207 static int sysfs_slab_alias(struct kmem_cache *, const char *);
208 static void sysfs_slab_remove(struct kmem_cache *);
209
210 #else
211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
214 static inline void sysfs_slab_remove(struct kmem_cache *s)
215 {
216 kfree(s);
217 }
218
219 #endif
220
221 static inline void stat(struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232 int slab_is_available(void)
233 {
234 return slab_state >= UP;
235 }
236
237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 {
239 #ifdef CONFIG_NUMA
240 return s->node[node];
241 #else
242 return &s->local_node;
243 #endif
244 }
245
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249 {
250 void *base;
251
252 if (!object)
253 return 1;
254
255 base = page_address(page);
256 if (object < base || object >= base + page->objects * s->size ||
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262 }
263
264 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 {
266 return *(void **)(object + s->offset);
267 }
268
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 {
271 *(void **)(object + s->offset) = fp;
272 }
273
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 __p += (__s)->size)
278
279 /* Scan freelist */
280 #define for_each_free_object(__p, __s, __free) \
281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 {
286 return (p - addr) / s->size;
287 }
288
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size)
291 {
292 struct kmem_cache_order_objects x = {
293 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
294 };
295
296 return x;
297 }
298
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 return x.x >> OO_SHIFT;
302 }
303
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 return x.x & OO_MASK;
307 }
308
309 #ifdef CONFIG_SLUB_DEBUG
310 /*
311 * Debug settings:
312 */
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 #else
316 static int slub_debug;
317 #endif
318
319 static char *slub_debug_slabs;
320 static int disable_higher_order_debug;
321
322 /*
323 * Object debugging
324 */
325 static void print_section(char *text, u8 *addr, unsigned int length)
326 {
327 int i, offset;
328 int newline = 1;
329 char ascii[17];
330
331 ascii[16] = 0;
332
333 for (i = 0; i < length; i++) {
334 if (newline) {
335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336 newline = 0;
337 }
338 printk(KERN_CONT " %02x", addr[i]);
339 offset = i % 16;
340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341 if (offset == 15) {
342 printk(KERN_CONT " %s\n", ascii);
343 newline = 1;
344 }
345 }
346 if (!newline) {
347 i %= 16;
348 while (i < 16) {
349 printk(KERN_CONT " ");
350 ascii[i] = ' ';
351 i++;
352 }
353 printk(KERN_CONT " %s\n", ascii);
354 }
355 }
356
357 static struct track *get_track(struct kmem_cache *s, void *object,
358 enum track_item alloc)
359 {
360 struct track *p;
361
362 if (s->offset)
363 p = object + s->offset + sizeof(void *);
364 else
365 p = object + s->inuse;
366
367 return p + alloc;
368 }
369
370 static void set_track(struct kmem_cache *s, void *object,
371 enum track_item alloc, unsigned long addr)
372 {
373 struct track *p = get_track(s, object, alloc);
374
375 if (addr) {
376 p->addr = addr;
377 p->cpu = smp_processor_id();
378 p->pid = current->pid;
379 p->when = jiffies;
380 } else
381 memset(p, 0, sizeof(struct track));
382 }
383
384 static void init_tracking(struct kmem_cache *s, void *object)
385 {
386 if (!(s->flags & SLAB_STORE_USER))
387 return;
388
389 set_track(s, object, TRACK_FREE, 0UL);
390 set_track(s, object, TRACK_ALLOC, 0UL);
391 }
392
393 static void print_track(const char *s, struct track *t)
394 {
395 if (!t->addr)
396 return;
397
398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
400 }
401
402 static void print_tracking(struct kmem_cache *s, void *object)
403 {
404 if (!(s->flags & SLAB_STORE_USER))
405 return;
406
407 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408 print_track("Freed", get_track(s, object, TRACK_FREE));
409 }
410
411 static void print_page_info(struct page *page)
412 {
413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 page, page->objects, page->inuse, page->freelist, page->flags);
415
416 }
417
418 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
419 {
420 va_list args;
421 char buf[100];
422
423 va_start(args, fmt);
424 vsnprintf(buf, sizeof(buf), fmt, args);
425 va_end(args);
426 printk(KERN_ERR "========================================"
427 "=====================================\n");
428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429 printk(KERN_ERR "----------------------------------------"
430 "-------------------------------------\n\n");
431 }
432
433 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
434 {
435 va_list args;
436 char buf[100];
437
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
442 }
443
444 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
445 {
446 unsigned int off; /* Offset of last byte */
447 u8 *addr = page_address(page);
448
449 print_tracking(s, p);
450
451 print_page_info(page);
452
453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 p, p - addr, get_freepointer(s, p));
455
456 if (p > addr + 16)
457 print_section("Bytes b4", p - 16, 16);
458
459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
460
461 if (s->flags & SLAB_RED_ZONE)
462 print_section("Redzone", p + s->objsize,
463 s->inuse - s->objsize);
464
465 if (s->offset)
466 off = s->offset + sizeof(void *);
467 else
468 off = s->inuse;
469
470 if (s->flags & SLAB_STORE_USER)
471 off += 2 * sizeof(struct track);
472
473 if (off != s->size)
474 /* Beginning of the filler is the free pointer */
475 print_section("Padding", p + off, s->size - off);
476
477 dump_stack();
478 }
479
480 static void object_err(struct kmem_cache *s, struct page *page,
481 u8 *object, char *reason)
482 {
483 slab_bug(s, "%s", reason);
484 print_trailer(s, page, object);
485 }
486
487 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
488 {
489 va_list args;
490 char buf[100];
491
492 va_start(args, fmt);
493 vsnprintf(buf, sizeof(buf), fmt, args);
494 va_end(args);
495 slab_bug(s, "%s", buf);
496 print_page_info(page);
497 dump_stack();
498 }
499
500 static void init_object(struct kmem_cache *s, void *object, int active)
501 {
502 u8 *p = object;
503
504 if (s->flags & __OBJECT_POISON) {
505 memset(p, POISON_FREE, s->objsize - 1);
506 p[s->objsize - 1] = POISON_END;
507 }
508
509 if (s->flags & SLAB_RED_ZONE)
510 memset(p + s->objsize,
511 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
512 s->inuse - s->objsize);
513 }
514
515 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
516 {
517 while (bytes) {
518 if (*start != (u8)value)
519 return start;
520 start++;
521 bytes--;
522 }
523 return NULL;
524 }
525
526 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
527 void *from, void *to)
528 {
529 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
530 memset(from, data, to - from);
531 }
532
533 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
534 u8 *object, char *what,
535 u8 *start, unsigned int value, unsigned int bytes)
536 {
537 u8 *fault;
538 u8 *end;
539
540 fault = check_bytes(start, value, bytes);
541 if (!fault)
542 return 1;
543
544 end = start + bytes;
545 while (end > fault && end[-1] == value)
546 end--;
547
548 slab_bug(s, "%s overwritten", what);
549 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
550 fault, end - 1, fault[0], value);
551 print_trailer(s, page, object);
552
553 restore_bytes(s, what, value, fault, end);
554 return 0;
555 }
556
557 /*
558 * Object layout:
559 *
560 * object address
561 * Bytes of the object to be managed.
562 * If the freepointer may overlay the object then the free
563 * pointer is the first word of the object.
564 *
565 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
566 * 0xa5 (POISON_END)
567 *
568 * object + s->objsize
569 * Padding to reach word boundary. This is also used for Redzoning.
570 * Padding is extended by another word if Redzoning is enabled and
571 * objsize == inuse.
572 *
573 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
574 * 0xcc (RED_ACTIVE) for objects in use.
575 *
576 * object + s->inuse
577 * Meta data starts here.
578 *
579 * A. Free pointer (if we cannot overwrite object on free)
580 * B. Tracking data for SLAB_STORE_USER
581 * C. Padding to reach required alignment boundary or at mininum
582 * one word if debugging is on to be able to detect writes
583 * before the word boundary.
584 *
585 * Padding is done using 0x5a (POISON_INUSE)
586 *
587 * object + s->size
588 * Nothing is used beyond s->size.
589 *
590 * If slabcaches are merged then the objsize and inuse boundaries are mostly
591 * ignored. And therefore no slab options that rely on these boundaries
592 * may be used with merged slabcaches.
593 */
594
595 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
596 {
597 unsigned long off = s->inuse; /* The end of info */
598
599 if (s->offset)
600 /* Freepointer is placed after the object. */
601 off += sizeof(void *);
602
603 if (s->flags & SLAB_STORE_USER)
604 /* We also have user information there */
605 off += 2 * sizeof(struct track);
606
607 if (s->size == off)
608 return 1;
609
610 return check_bytes_and_report(s, page, p, "Object padding",
611 p + off, POISON_INUSE, s->size - off);
612 }
613
614 /* Check the pad bytes at the end of a slab page */
615 static int slab_pad_check(struct kmem_cache *s, struct page *page)
616 {
617 u8 *start;
618 u8 *fault;
619 u8 *end;
620 int length;
621 int remainder;
622
623 if (!(s->flags & SLAB_POISON))
624 return 1;
625
626 start = page_address(page);
627 length = (PAGE_SIZE << compound_order(page));
628 end = start + length;
629 remainder = length % s->size;
630 if (!remainder)
631 return 1;
632
633 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
634 if (!fault)
635 return 1;
636 while (end > fault && end[-1] == POISON_INUSE)
637 end--;
638
639 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
640 print_section("Padding", end - remainder, remainder);
641
642 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
643 return 0;
644 }
645
646 static int check_object(struct kmem_cache *s, struct page *page,
647 void *object, int active)
648 {
649 u8 *p = object;
650 u8 *endobject = object + s->objsize;
651
652 if (s->flags & SLAB_RED_ZONE) {
653 unsigned int red =
654 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
655
656 if (!check_bytes_and_report(s, page, object, "Redzone",
657 endobject, red, s->inuse - s->objsize))
658 return 0;
659 } else {
660 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
661 check_bytes_and_report(s, page, p, "Alignment padding",
662 endobject, POISON_INUSE, s->inuse - s->objsize);
663 }
664 }
665
666 if (s->flags & SLAB_POISON) {
667 if (!active && (s->flags & __OBJECT_POISON) &&
668 (!check_bytes_and_report(s, page, p, "Poison", p,
669 POISON_FREE, s->objsize - 1) ||
670 !check_bytes_and_report(s, page, p, "Poison",
671 p + s->objsize - 1, POISON_END, 1)))
672 return 0;
673 /*
674 * check_pad_bytes cleans up on its own.
675 */
676 check_pad_bytes(s, page, p);
677 }
678
679 if (!s->offset && active)
680 /*
681 * Object and freepointer overlap. Cannot check
682 * freepointer while object is allocated.
683 */
684 return 1;
685
686 /* Check free pointer validity */
687 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
688 object_err(s, page, p, "Freepointer corrupt");
689 /*
690 * No choice but to zap it and thus lose the remainder
691 * of the free objects in this slab. May cause
692 * another error because the object count is now wrong.
693 */
694 set_freepointer(s, p, NULL);
695 return 0;
696 }
697 return 1;
698 }
699
700 static int check_slab(struct kmem_cache *s, struct page *page)
701 {
702 int maxobj;
703
704 VM_BUG_ON(!irqs_disabled());
705
706 if (!PageSlab(page)) {
707 slab_err(s, page, "Not a valid slab page");
708 return 0;
709 }
710
711 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
712 if (page->objects > maxobj) {
713 slab_err(s, page, "objects %u > max %u",
714 s->name, page->objects, maxobj);
715 return 0;
716 }
717 if (page->inuse > page->objects) {
718 slab_err(s, page, "inuse %u > max %u",
719 s->name, page->inuse, page->objects);
720 return 0;
721 }
722 /* Slab_pad_check fixes things up after itself */
723 slab_pad_check(s, page);
724 return 1;
725 }
726
727 /*
728 * Determine if a certain object on a page is on the freelist. Must hold the
729 * slab lock to guarantee that the chains are in a consistent state.
730 */
731 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
732 {
733 int nr = 0;
734 void *fp = page->freelist;
735 void *object = NULL;
736 unsigned long max_objects;
737
738 while (fp && nr <= page->objects) {
739 if (fp == search)
740 return 1;
741 if (!check_valid_pointer(s, page, fp)) {
742 if (object) {
743 object_err(s, page, object,
744 "Freechain corrupt");
745 set_freepointer(s, object, NULL);
746 break;
747 } else {
748 slab_err(s, page, "Freepointer corrupt");
749 page->freelist = NULL;
750 page->inuse = page->objects;
751 slab_fix(s, "Freelist cleared");
752 return 0;
753 }
754 break;
755 }
756 object = fp;
757 fp = get_freepointer(s, object);
758 nr++;
759 }
760
761 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
762 if (max_objects > MAX_OBJS_PER_PAGE)
763 max_objects = MAX_OBJS_PER_PAGE;
764
765 if (page->objects != max_objects) {
766 slab_err(s, page, "Wrong number of objects. Found %d but "
767 "should be %d", page->objects, max_objects);
768 page->objects = max_objects;
769 slab_fix(s, "Number of objects adjusted.");
770 }
771 if (page->inuse != page->objects - nr) {
772 slab_err(s, page, "Wrong object count. Counter is %d but "
773 "counted were %d", page->inuse, page->objects - nr);
774 page->inuse = page->objects - nr;
775 slab_fix(s, "Object count adjusted.");
776 }
777 return search == NULL;
778 }
779
780 static void trace(struct kmem_cache *s, struct page *page, void *object,
781 int alloc)
782 {
783 if (s->flags & SLAB_TRACE) {
784 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
785 s->name,
786 alloc ? "alloc" : "free",
787 object, page->inuse,
788 page->freelist);
789
790 if (!alloc)
791 print_section("Object", (void *)object, s->objsize);
792
793 dump_stack();
794 }
795 }
796
797 /*
798 * Tracking of fully allocated slabs for debugging purposes.
799 */
800 static void add_full(struct kmem_cache_node *n, struct page *page)
801 {
802 spin_lock(&n->list_lock);
803 list_add(&page->lru, &n->full);
804 spin_unlock(&n->list_lock);
805 }
806
807 static void remove_full(struct kmem_cache *s, struct page *page)
808 {
809 struct kmem_cache_node *n;
810
811 if (!(s->flags & SLAB_STORE_USER))
812 return;
813
814 n = get_node(s, page_to_nid(page));
815
816 spin_lock(&n->list_lock);
817 list_del(&page->lru);
818 spin_unlock(&n->list_lock);
819 }
820
821 /* Tracking of the number of slabs for debugging purposes */
822 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
823 {
824 struct kmem_cache_node *n = get_node(s, node);
825
826 return atomic_long_read(&n->nr_slabs);
827 }
828
829 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
830 {
831 return atomic_long_read(&n->nr_slabs);
832 }
833
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 {
836 struct kmem_cache_node *n = get_node(s, node);
837
838 /*
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
843 */
844 if (!NUMA_BUILD || n) {
845 atomic_long_inc(&n->nr_slabs);
846 atomic_long_add(objects, &n->total_objects);
847 }
848 }
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 struct kmem_cache_node *n = get_node(s, node);
852
853 atomic_long_dec(&n->nr_slabs);
854 atomic_long_sub(objects, &n->total_objects);
855 }
856
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 void *object)
860 {
861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 return;
863
864 init_object(s, object, 0);
865 init_tracking(s, object);
866 }
867
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 void *object, unsigned long addr)
870 {
871 if (!check_slab(s, page))
872 goto bad;
873
874 if (!on_freelist(s, page, object)) {
875 object_err(s, page, object, "Object already allocated");
876 goto bad;
877 }
878
879 if (!check_valid_pointer(s, page, object)) {
880 object_err(s, page, object, "Freelist Pointer check fails");
881 goto bad;
882 }
883
884 if (!check_object(s, page, object, 0))
885 goto bad;
886
887 /* Success perform special debug activities for allocs */
888 if (s->flags & SLAB_STORE_USER)
889 set_track(s, object, TRACK_ALLOC, addr);
890 trace(s, page, object, 1);
891 init_object(s, object, 1);
892 return 1;
893
894 bad:
895 if (PageSlab(page)) {
896 /*
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
899 * as used avoids touching the remaining objects.
900 */
901 slab_fix(s, "Marking all objects used");
902 page->inuse = page->objects;
903 page->freelist = NULL;
904 }
905 return 0;
906 }
907
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 void *object, unsigned long addr)
910 {
911 if (!check_slab(s, page))
912 goto fail;
913
914 if (!check_valid_pointer(s, page, object)) {
915 slab_err(s, page, "Invalid object pointer 0x%p", object);
916 goto fail;
917 }
918
919 if (on_freelist(s, page, object)) {
920 object_err(s, page, object, "Object already free");
921 goto fail;
922 }
923
924 if (!check_object(s, page, object, 1))
925 return 0;
926
927 if (unlikely(s != page->slab)) {
928 if (!PageSlab(page)) {
929 slab_err(s, page, "Attempt to free object(0x%p) "
930 "outside of slab", object);
931 } else if (!page->slab) {
932 printk(KERN_ERR
933 "SLUB <none>: no slab for object 0x%p.\n",
934 object);
935 dump_stack();
936 } else
937 object_err(s, page, object,
938 "page slab pointer corrupt.");
939 goto fail;
940 }
941
942 /* Special debug activities for freeing objects */
943 if (!PageSlubFrozen(page) && !page->freelist)
944 remove_full(s, page);
945 if (s->flags & SLAB_STORE_USER)
946 set_track(s, object, TRACK_FREE, addr);
947 trace(s, page, object, 0);
948 init_object(s, object, 0);
949 return 1;
950
951 fail:
952 slab_fix(s, "Object at 0x%p not freed", object);
953 return 0;
954 }
955
956 static int __init setup_slub_debug(char *str)
957 {
958 slub_debug = DEBUG_DEFAULT_FLAGS;
959 if (*str++ != '=' || !*str)
960 /*
961 * No options specified. Switch on full debugging.
962 */
963 goto out;
964
965 if (*str == ',')
966 /*
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
969 */
970 goto check_slabs;
971
972 if (tolower(*str) == 'o') {
973 /*
974 * Avoid enabling debugging on caches if its minimum order
975 * would increase as a result.
976 */
977 disable_higher_order_debug = 1;
978 goto out;
979 }
980
981 slub_debug = 0;
982 if (*str == '-')
983 /*
984 * Switch off all debugging measures.
985 */
986 goto out;
987
988 /*
989 * Determine which debug features should be switched on
990 */
991 for (; *str && *str != ','; str++) {
992 switch (tolower(*str)) {
993 case 'f':
994 slub_debug |= SLAB_DEBUG_FREE;
995 break;
996 case 'z':
997 slub_debug |= SLAB_RED_ZONE;
998 break;
999 case 'p':
1000 slub_debug |= SLAB_POISON;
1001 break;
1002 case 'u':
1003 slub_debug |= SLAB_STORE_USER;
1004 break;
1005 case 't':
1006 slub_debug |= SLAB_TRACE;
1007 break;
1008 case 'a':
1009 slub_debug |= SLAB_FAILSLAB;
1010 break;
1011 default:
1012 printk(KERN_ERR "slub_debug option '%c' "
1013 "unknown. skipped\n", *str);
1014 }
1015 }
1016
1017 check_slabs:
1018 if (*str == ',')
1019 slub_debug_slabs = str + 1;
1020 out:
1021 return 1;
1022 }
1023
1024 __setup("slub_debug", setup_slub_debug);
1025
1026 static unsigned long kmem_cache_flags(unsigned long objsize,
1027 unsigned long flags, const char *name,
1028 void (*ctor)(void *))
1029 {
1030 /*
1031 * Enable debugging if selected on the kernel commandline.
1032 */
1033 if (slub_debug && (!slub_debug_slabs ||
1034 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1035 flags |= slub_debug;
1036
1037 return flags;
1038 }
1039 #else
1040 static inline void setup_object_debug(struct kmem_cache *s,
1041 struct page *page, void *object) {}
1042
1043 static inline int alloc_debug_processing(struct kmem_cache *s,
1044 struct page *page, void *object, unsigned long addr) { return 0; }
1045
1046 static inline int free_debug_processing(struct kmem_cache *s,
1047 struct page *page, void *object, unsigned long addr) { return 0; }
1048
1049 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1050 { return 1; }
1051 static inline int check_object(struct kmem_cache *s, struct page *page,
1052 void *object, int active) { return 1; }
1053 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1054 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1055 unsigned long flags, const char *name,
1056 void (*ctor)(void *))
1057 {
1058 return flags;
1059 }
1060 #define slub_debug 0
1061
1062 #define disable_higher_order_debug 0
1063
1064 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1065 { return 0; }
1066 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1067 { return 0; }
1068 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1069 int objects) {}
1070 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1071 int objects) {}
1072 #endif
1073
1074 /*
1075 * Slab allocation and freeing
1076 */
1077 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1078 struct kmem_cache_order_objects oo)
1079 {
1080 int order = oo_order(oo);
1081
1082 flags |= __GFP_NOTRACK;
1083
1084 if (node == -1)
1085 return alloc_pages(flags, order);
1086 else
1087 return alloc_pages_node(node, flags, order);
1088 }
1089
1090 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1091 {
1092 struct page *page;
1093 struct kmem_cache_order_objects oo = s->oo;
1094 gfp_t alloc_gfp;
1095
1096 flags |= s->allocflags;
1097
1098 /*
1099 * Let the initial higher-order allocation fail under memory pressure
1100 * so we fall-back to the minimum order allocation.
1101 */
1102 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1103
1104 page = alloc_slab_page(alloc_gfp, node, oo);
1105 if (unlikely(!page)) {
1106 oo = s->min;
1107 /*
1108 * Allocation may have failed due to fragmentation.
1109 * Try a lower order alloc if possible
1110 */
1111 page = alloc_slab_page(flags, node, oo);
1112 if (!page)
1113 return NULL;
1114
1115 stat(s, ORDER_FALLBACK);
1116 }
1117
1118 if (kmemcheck_enabled
1119 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1120 int pages = 1 << oo_order(oo);
1121
1122 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1123
1124 /*
1125 * Objects from caches that have a constructor don't get
1126 * cleared when they're allocated, so we need to do it here.
1127 */
1128 if (s->ctor)
1129 kmemcheck_mark_uninitialized_pages(page, pages);
1130 else
1131 kmemcheck_mark_unallocated_pages(page, pages);
1132 }
1133
1134 page->objects = oo_objects(oo);
1135 mod_zone_page_state(page_zone(page),
1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138 1 << oo_order(oo));
1139
1140 return page;
1141 }
1142
1143 static void setup_object(struct kmem_cache *s, struct page *page,
1144 void *object)
1145 {
1146 setup_object_debug(s, page, object);
1147 if (unlikely(s->ctor))
1148 s->ctor(object);
1149 }
1150
1151 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1152 {
1153 struct page *page;
1154 void *start;
1155 void *last;
1156 void *p;
1157
1158 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1159
1160 page = allocate_slab(s,
1161 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1162 if (!page)
1163 goto out;
1164
1165 inc_slabs_node(s, page_to_nid(page), page->objects);
1166 page->slab = s;
1167 page->flags |= 1 << PG_slab;
1168 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1169 SLAB_STORE_USER | SLAB_TRACE))
1170 __SetPageSlubDebug(page);
1171
1172 start = page_address(page);
1173
1174 if (unlikely(s->flags & SLAB_POISON))
1175 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1176
1177 last = start;
1178 for_each_object(p, s, start, page->objects) {
1179 setup_object(s, page, last);
1180 set_freepointer(s, last, p);
1181 last = p;
1182 }
1183 setup_object(s, page, last);
1184 set_freepointer(s, last, NULL);
1185
1186 page->freelist = start;
1187 page->inuse = 0;
1188 out:
1189 return page;
1190 }
1191
1192 static void __free_slab(struct kmem_cache *s, struct page *page)
1193 {
1194 int order = compound_order(page);
1195 int pages = 1 << order;
1196
1197 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1198 void *p;
1199
1200 slab_pad_check(s, page);
1201 for_each_object(p, s, page_address(page),
1202 page->objects)
1203 check_object(s, page, p, 0);
1204 __ClearPageSlubDebug(page);
1205 }
1206
1207 kmemcheck_free_shadow(page, compound_order(page));
1208
1209 mod_zone_page_state(page_zone(page),
1210 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1212 -pages);
1213
1214 __ClearPageSlab(page);
1215 reset_page_mapcount(page);
1216 if (current->reclaim_state)
1217 current->reclaim_state->reclaimed_slab += pages;
1218 __free_pages(page, order);
1219 }
1220
1221 static void rcu_free_slab(struct rcu_head *h)
1222 {
1223 struct page *page;
1224
1225 page = container_of((struct list_head *)h, struct page, lru);
1226 __free_slab(page->slab, page);
1227 }
1228
1229 static void free_slab(struct kmem_cache *s, struct page *page)
1230 {
1231 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1232 /*
1233 * RCU free overloads the RCU head over the LRU
1234 */
1235 struct rcu_head *head = (void *)&page->lru;
1236
1237 call_rcu(head, rcu_free_slab);
1238 } else
1239 __free_slab(s, page);
1240 }
1241
1242 static void discard_slab(struct kmem_cache *s, struct page *page)
1243 {
1244 dec_slabs_node(s, page_to_nid(page), page->objects);
1245 free_slab(s, page);
1246 }
1247
1248 /*
1249 * Per slab locking using the pagelock
1250 */
1251 static __always_inline void slab_lock(struct page *page)
1252 {
1253 bit_spin_lock(PG_locked, &page->flags);
1254 }
1255
1256 static __always_inline void slab_unlock(struct page *page)
1257 {
1258 __bit_spin_unlock(PG_locked, &page->flags);
1259 }
1260
1261 static __always_inline int slab_trylock(struct page *page)
1262 {
1263 int rc = 1;
1264
1265 rc = bit_spin_trylock(PG_locked, &page->flags);
1266 return rc;
1267 }
1268
1269 /*
1270 * Management of partially allocated slabs
1271 */
1272 static void add_partial(struct kmem_cache_node *n,
1273 struct page *page, int tail)
1274 {
1275 spin_lock(&n->list_lock);
1276 n->nr_partial++;
1277 if (tail)
1278 list_add_tail(&page->lru, &n->partial);
1279 else
1280 list_add(&page->lru, &n->partial);
1281 spin_unlock(&n->list_lock);
1282 }
1283
1284 static void remove_partial(struct kmem_cache *s, struct page *page)
1285 {
1286 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1287
1288 spin_lock(&n->list_lock);
1289 list_del(&page->lru);
1290 n->nr_partial--;
1291 spin_unlock(&n->list_lock);
1292 }
1293
1294 /*
1295 * Lock slab and remove from the partial list.
1296 *
1297 * Must hold list_lock.
1298 */
1299 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1300 struct page *page)
1301 {
1302 if (slab_trylock(page)) {
1303 list_del(&page->lru);
1304 n->nr_partial--;
1305 __SetPageSlubFrozen(page);
1306 return 1;
1307 }
1308 return 0;
1309 }
1310
1311 /*
1312 * Try to allocate a partial slab from a specific node.
1313 */
1314 static struct page *get_partial_node(struct kmem_cache_node *n)
1315 {
1316 struct page *page;
1317
1318 /*
1319 * Racy check. If we mistakenly see no partial slabs then we
1320 * just allocate an empty slab. If we mistakenly try to get a
1321 * partial slab and there is none available then get_partials()
1322 * will return NULL.
1323 */
1324 if (!n || !n->nr_partial)
1325 return NULL;
1326
1327 spin_lock(&n->list_lock);
1328 list_for_each_entry(page, &n->partial, lru)
1329 if (lock_and_freeze_slab(n, page))
1330 goto out;
1331 page = NULL;
1332 out:
1333 spin_unlock(&n->list_lock);
1334 return page;
1335 }
1336
1337 /*
1338 * Get a page from somewhere. Search in increasing NUMA distances.
1339 */
1340 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1341 {
1342 #ifdef CONFIG_NUMA
1343 struct zonelist *zonelist;
1344 struct zoneref *z;
1345 struct zone *zone;
1346 enum zone_type high_zoneidx = gfp_zone(flags);
1347 struct page *page;
1348
1349 /*
1350 * The defrag ratio allows a configuration of the tradeoffs between
1351 * inter node defragmentation and node local allocations. A lower
1352 * defrag_ratio increases the tendency to do local allocations
1353 * instead of attempting to obtain partial slabs from other nodes.
1354 *
1355 * If the defrag_ratio is set to 0 then kmalloc() always
1356 * returns node local objects. If the ratio is higher then kmalloc()
1357 * may return off node objects because partial slabs are obtained
1358 * from other nodes and filled up.
1359 *
1360 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1361 * defrag_ratio = 1000) then every (well almost) allocation will
1362 * first attempt to defrag slab caches on other nodes. This means
1363 * scanning over all nodes to look for partial slabs which may be
1364 * expensive if we do it every time we are trying to find a slab
1365 * with available objects.
1366 */
1367 if (!s->remote_node_defrag_ratio ||
1368 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1369 return NULL;
1370
1371 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1372 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1373 struct kmem_cache_node *n;
1374
1375 n = get_node(s, zone_to_nid(zone));
1376
1377 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1378 n->nr_partial > s->min_partial) {
1379 page = get_partial_node(n);
1380 if (page)
1381 return page;
1382 }
1383 }
1384 #endif
1385 return NULL;
1386 }
1387
1388 /*
1389 * Get a partial page, lock it and return it.
1390 */
1391 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1392 {
1393 struct page *page;
1394 int searchnode = (node == -1) ? numa_node_id() : node;
1395
1396 page = get_partial_node(get_node(s, searchnode));
1397 if (page || (flags & __GFP_THISNODE))
1398 return page;
1399
1400 return get_any_partial(s, flags);
1401 }
1402
1403 /*
1404 * Move a page back to the lists.
1405 *
1406 * Must be called with the slab lock held.
1407 *
1408 * On exit the slab lock will have been dropped.
1409 */
1410 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1411 {
1412 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1413
1414 __ClearPageSlubFrozen(page);
1415 if (page->inuse) {
1416
1417 if (page->freelist) {
1418 add_partial(n, page, tail);
1419 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1420 } else {
1421 stat(s, DEACTIVATE_FULL);
1422 if (SLABDEBUG && PageSlubDebug(page) &&
1423 (s->flags & SLAB_STORE_USER))
1424 add_full(n, page);
1425 }
1426 slab_unlock(page);
1427 } else {
1428 stat(s, DEACTIVATE_EMPTY);
1429 if (n->nr_partial < s->min_partial) {
1430 /*
1431 * Adding an empty slab to the partial slabs in order
1432 * to avoid page allocator overhead. This slab needs
1433 * to come after the other slabs with objects in
1434 * so that the others get filled first. That way the
1435 * size of the partial list stays small.
1436 *
1437 * kmem_cache_shrink can reclaim any empty slabs from
1438 * the partial list.
1439 */
1440 add_partial(n, page, 1);
1441 slab_unlock(page);
1442 } else {
1443 slab_unlock(page);
1444 stat(s, FREE_SLAB);
1445 discard_slab(s, page);
1446 }
1447 }
1448 }
1449
1450 /*
1451 * Remove the cpu slab
1452 */
1453 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1454 {
1455 struct page *page = c->page;
1456 int tail = 1;
1457
1458 if (page->freelist)
1459 stat(s, DEACTIVATE_REMOTE_FREES);
1460 /*
1461 * Merge cpu freelist into slab freelist. Typically we get here
1462 * because both freelists are empty. So this is unlikely
1463 * to occur.
1464 */
1465 while (unlikely(c->freelist)) {
1466 void **object;
1467
1468 tail = 0; /* Hot objects. Put the slab first */
1469
1470 /* Retrieve object from cpu_freelist */
1471 object = c->freelist;
1472 c->freelist = get_freepointer(s, c->freelist);
1473
1474 /* And put onto the regular freelist */
1475 set_freepointer(s, object, page->freelist);
1476 page->freelist = object;
1477 page->inuse--;
1478 }
1479 c->page = NULL;
1480 unfreeze_slab(s, page, tail);
1481 }
1482
1483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1484 {
1485 stat(s, CPUSLAB_FLUSH);
1486 slab_lock(c->page);
1487 deactivate_slab(s, c);
1488 }
1489
1490 /*
1491 * Flush cpu slab.
1492 *
1493 * Called from IPI handler with interrupts disabled.
1494 */
1495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1496 {
1497 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1498
1499 if (likely(c && c->page))
1500 flush_slab(s, c);
1501 }
1502
1503 static void flush_cpu_slab(void *d)
1504 {
1505 struct kmem_cache *s = d;
1506
1507 __flush_cpu_slab(s, smp_processor_id());
1508 }
1509
1510 static void flush_all(struct kmem_cache *s)
1511 {
1512 on_each_cpu(flush_cpu_slab, s, 1);
1513 }
1514
1515 /*
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1518 */
1519 static inline int node_match(struct kmem_cache_cpu *c, int node)
1520 {
1521 #ifdef CONFIG_NUMA
1522 if (node != -1 && c->node != node)
1523 return 0;
1524 #endif
1525 return 1;
1526 }
1527
1528 static int count_free(struct page *page)
1529 {
1530 return page->objects - page->inuse;
1531 }
1532
1533 static unsigned long count_partial(struct kmem_cache_node *n,
1534 int (*get_count)(struct page *))
1535 {
1536 unsigned long flags;
1537 unsigned long x = 0;
1538 struct page *page;
1539
1540 spin_lock_irqsave(&n->list_lock, flags);
1541 list_for_each_entry(page, &n->partial, lru)
1542 x += get_count(page);
1543 spin_unlock_irqrestore(&n->list_lock, flags);
1544 return x;
1545 }
1546
1547 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1548 {
1549 #ifdef CONFIG_SLUB_DEBUG
1550 return atomic_long_read(&n->total_objects);
1551 #else
1552 return 0;
1553 #endif
1554 }
1555
1556 static noinline void
1557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558 {
1559 int node;
1560
1561 printk(KERN_WARNING
1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563 nid, gfpflags);
1564 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1565 "default order: %d, min order: %d\n", s->name, s->objsize,
1566 s->size, oo_order(s->oo), oo_order(s->min));
1567
1568 if (oo_order(s->min) > get_order(s->objsize))
1569 printk(KERN_WARNING " %s debugging increased min order, use "
1570 "slub_debug=O to disable.\n", s->name);
1571
1572 for_each_online_node(node) {
1573 struct kmem_cache_node *n = get_node(s, node);
1574 unsigned long nr_slabs;
1575 unsigned long nr_objs;
1576 unsigned long nr_free;
1577
1578 if (!n)
1579 continue;
1580
1581 nr_free = count_partial(n, count_free);
1582 nr_slabs = node_nr_slabs(n);
1583 nr_objs = node_nr_objs(n);
1584
1585 printk(KERN_WARNING
1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587 node, nr_slabs, nr_objs, nr_free);
1588 }
1589 }
1590
1591 /*
1592 * Slow path. The lockless freelist is empty or we need to perform
1593 * debugging duties.
1594 *
1595 * Interrupts are disabled.
1596 *
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
1600 *
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
1604 *
1605 * And if we were unable to get a new slab from the partial slab lists then
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
1608 */
1609 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610 unsigned long addr, struct kmem_cache_cpu *c)
1611 {
1612 void **object;
1613 struct page *new;
1614
1615 /* We handle __GFP_ZERO in the caller */
1616 gfpflags &= ~__GFP_ZERO;
1617
1618 if (!c->page)
1619 goto new_slab;
1620
1621 slab_lock(c->page);
1622 if (unlikely(!node_match(c, node)))
1623 goto another_slab;
1624
1625 stat(s, ALLOC_REFILL);
1626
1627 load_freelist:
1628 object = c->page->freelist;
1629 if (unlikely(!object))
1630 goto another_slab;
1631 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1632 goto debug;
1633
1634 c->freelist = get_freepointer(s, object);
1635 c->page->inuse = c->page->objects;
1636 c->page->freelist = NULL;
1637 c->node = page_to_nid(c->page);
1638 unlock_out:
1639 slab_unlock(c->page);
1640 stat(s, ALLOC_SLOWPATH);
1641 return object;
1642
1643 another_slab:
1644 deactivate_slab(s, c);
1645
1646 new_slab:
1647 new = get_partial(s, gfpflags, node);
1648 if (new) {
1649 c->page = new;
1650 stat(s, ALLOC_FROM_PARTIAL);
1651 goto load_freelist;
1652 }
1653
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_enable();
1656
1657 new = new_slab(s, gfpflags, node);
1658
1659 if (gfpflags & __GFP_WAIT)
1660 local_irq_disable();
1661
1662 if (new) {
1663 c = __this_cpu_ptr(s->cpu_slab);
1664 stat(s, ALLOC_SLAB);
1665 if (c->page)
1666 flush_slab(s, c);
1667 slab_lock(new);
1668 __SetPageSlubFrozen(new);
1669 c->page = new;
1670 goto load_freelist;
1671 }
1672 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673 slab_out_of_memory(s, gfpflags, node);
1674 return NULL;
1675 debug:
1676 if (!alloc_debug_processing(s, c->page, object, addr))
1677 goto another_slab;
1678
1679 c->page->inuse++;
1680 c->page->freelist = get_freepointer(s, object);
1681 c->node = -1;
1682 goto unlock_out;
1683 }
1684
1685 /*
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1689 *
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1692 *
1693 * Otherwise we can simply pick the next object from the lockless free list.
1694 */
1695 static __always_inline void *slab_alloc(struct kmem_cache *s,
1696 gfp_t gfpflags, int node, unsigned long addr)
1697 {
1698 void **object;
1699 struct kmem_cache_cpu *c;
1700 unsigned long flags;
1701
1702 gfpflags &= gfp_allowed_mask;
1703
1704 lockdep_trace_alloc(gfpflags);
1705 might_sleep_if(gfpflags & __GFP_WAIT);
1706
1707 if (should_failslab(s->objsize, gfpflags, s->flags))
1708 return NULL;
1709
1710 local_irq_save(flags);
1711 c = __this_cpu_ptr(s->cpu_slab);
1712 object = c->freelist;
1713 if (unlikely(!object || !node_match(c, node)))
1714
1715 object = __slab_alloc(s, gfpflags, node, addr, c);
1716
1717 else {
1718 c->freelist = get_freepointer(s, object);
1719 stat(s, ALLOC_FASTPATH);
1720 }
1721 local_irq_restore(flags);
1722
1723 if (unlikely(gfpflags & __GFP_ZERO) && object)
1724 memset(object, 0, s->objsize);
1725
1726 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1728
1729 return object;
1730 }
1731
1732 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1733 {
1734 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1735
1736 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1737
1738 return ret;
1739 }
1740 EXPORT_SYMBOL(kmem_cache_alloc);
1741
1742 #ifdef CONFIG_TRACING
1743 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1744 {
1745 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1746 }
1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748 #endif
1749
1750 #ifdef CONFIG_NUMA
1751 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1752 {
1753 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1754
1755 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756 s->objsize, s->size, gfpflags, node);
1757
1758 return ret;
1759 }
1760 EXPORT_SYMBOL(kmem_cache_alloc_node);
1761 #endif
1762
1763 #ifdef CONFIG_TRACING
1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765 gfp_t gfpflags,
1766 int node)
1767 {
1768 return slab_alloc(s, gfpflags, node, _RET_IP_);
1769 }
1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771 #endif
1772
1773 /*
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
1776 *
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
1780 */
1781 static void __slab_free(struct kmem_cache *s, struct page *page,
1782 void *x, unsigned long addr)
1783 {
1784 void *prior;
1785 void **object = (void *)x;
1786
1787 stat(s, FREE_SLOWPATH);
1788 slab_lock(page);
1789
1790 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1791 goto debug;
1792
1793 checks_ok:
1794 prior = page->freelist;
1795 set_freepointer(s, object, prior);
1796 page->freelist = object;
1797 page->inuse--;
1798
1799 if (unlikely(PageSlubFrozen(page))) {
1800 stat(s, FREE_FROZEN);
1801 goto out_unlock;
1802 }
1803
1804 if (unlikely(!page->inuse))
1805 goto slab_empty;
1806
1807 /*
1808 * Objects left in the slab. If it was not on the partial list before
1809 * then add it.
1810 */
1811 if (unlikely(!prior)) {
1812 add_partial(get_node(s, page_to_nid(page)), page, 1);
1813 stat(s, FREE_ADD_PARTIAL);
1814 }
1815
1816 out_unlock:
1817 slab_unlock(page);
1818 return;
1819
1820 slab_empty:
1821 if (prior) {
1822 /*
1823 * Slab still on the partial list.
1824 */
1825 remove_partial(s, page);
1826 stat(s, FREE_REMOVE_PARTIAL);
1827 }
1828 slab_unlock(page);
1829 stat(s, FREE_SLAB);
1830 discard_slab(s, page);
1831 return;
1832
1833 debug:
1834 if (!free_debug_processing(s, page, x, addr))
1835 goto out_unlock;
1836 goto checks_ok;
1837 }
1838
1839 /*
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1842 *
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1845 * the item before.
1846 *
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1849 */
1850 static __always_inline void slab_free(struct kmem_cache *s,
1851 struct page *page, void *x, unsigned long addr)
1852 {
1853 void **object = (void *)x;
1854 struct kmem_cache_cpu *c;
1855 unsigned long flags;
1856
1857 kmemleak_free_recursive(x, s->flags);
1858 local_irq_save(flags);
1859 c = __this_cpu_ptr(s->cpu_slab);
1860 kmemcheck_slab_free(s, object, s->objsize);
1861 debug_check_no_locks_freed(object, s->objsize);
1862 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1863 debug_check_no_obj_freed(object, s->objsize);
1864 if (likely(page == c->page && c->node >= 0)) {
1865 set_freepointer(s, object, c->freelist);
1866 c->freelist = object;
1867 stat(s, FREE_FASTPATH);
1868 } else
1869 __slab_free(s, page, x, addr);
1870
1871 local_irq_restore(flags);
1872 }
1873
1874 void kmem_cache_free(struct kmem_cache *s, void *x)
1875 {
1876 struct page *page;
1877
1878 page = virt_to_head_page(x);
1879
1880 slab_free(s, page, x, _RET_IP_);
1881
1882 trace_kmem_cache_free(_RET_IP_, x);
1883 }
1884 EXPORT_SYMBOL(kmem_cache_free);
1885
1886 /* Figure out on which slab page the object resides */
1887 static struct page *get_object_page(const void *x)
1888 {
1889 struct page *page = virt_to_head_page(x);
1890
1891 if (!PageSlab(page))
1892 return NULL;
1893
1894 return page;
1895 }
1896
1897 /*
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1901 * another.
1902 *
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
1906 * must be moved on and off the partial lists and is therefore a factor in
1907 * locking overhead.
1908 */
1909
1910 /*
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1915 */
1916 static int slub_min_order;
1917 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1918 static int slub_min_objects;
1919
1920 /*
1921 * Merge control. If this is set then no merging of slab caches will occur.
1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
1923 */
1924 static int slub_nomerge;
1925
1926 /*
1927 * Calculate the order of allocation given an slab object size.
1928 *
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
1933 * unused space left. We go to a higher order if more than 1/16th of the slab
1934 * would be wasted.
1935 *
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
1940 *
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
1945 *
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
1950 */
1951 static inline int slab_order(int size, int min_objects,
1952 int max_order, int fract_leftover)
1953 {
1954 int order;
1955 int rem;
1956 int min_order = slub_min_order;
1957
1958 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1960
1961 for (order = max(min_order,
1962 fls(min_objects * size - 1) - PAGE_SHIFT);
1963 order <= max_order; order++) {
1964
1965 unsigned long slab_size = PAGE_SIZE << order;
1966
1967 if (slab_size < min_objects * size)
1968 continue;
1969
1970 rem = slab_size % size;
1971
1972 if (rem <= slab_size / fract_leftover)
1973 break;
1974
1975 }
1976
1977 return order;
1978 }
1979
1980 static inline int calculate_order(int size)
1981 {
1982 int order;
1983 int min_objects;
1984 int fraction;
1985 int max_objects;
1986
1987 /*
1988 * Attempt to find best configuration for a slab. This
1989 * works by first attempting to generate a layout with
1990 * the best configuration and backing off gradually.
1991 *
1992 * First we reduce the acceptable waste in a slab. Then
1993 * we reduce the minimum objects required in a slab.
1994 */
1995 min_objects = slub_min_objects;
1996 if (!min_objects)
1997 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1998 max_objects = (PAGE_SIZE << slub_max_order)/size;
1999 min_objects = min(min_objects, max_objects);
2000
2001 while (min_objects > 1) {
2002 fraction = 16;
2003 while (fraction >= 4) {
2004 order = slab_order(size, min_objects,
2005 slub_max_order, fraction);
2006 if (order <= slub_max_order)
2007 return order;
2008 fraction /= 2;
2009 }
2010 min_objects--;
2011 }
2012
2013 /*
2014 * We were unable to place multiple objects in a slab. Now
2015 * lets see if we can place a single object there.
2016 */
2017 order = slab_order(size, 1, slub_max_order, 1);
2018 if (order <= slub_max_order)
2019 return order;
2020
2021 /*
2022 * Doh this slab cannot be placed using slub_max_order.
2023 */
2024 order = slab_order(size, 1, MAX_ORDER, 1);
2025 if (order < MAX_ORDER)
2026 return order;
2027 return -ENOSYS;
2028 }
2029
2030 /*
2031 * Figure out what the alignment of the objects will be.
2032 */
2033 static unsigned long calculate_alignment(unsigned long flags,
2034 unsigned long align, unsigned long size)
2035 {
2036 /*
2037 * If the user wants hardware cache aligned objects then follow that
2038 * suggestion if the object is sufficiently large.
2039 *
2040 * The hardware cache alignment cannot override the specified
2041 * alignment though. If that is greater then use it.
2042 */
2043 if (flags & SLAB_HWCACHE_ALIGN) {
2044 unsigned long ralign = cache_line_size();
2045 while (size <= ralign / 2)
2046 ralign /= 2;
2047 align = max(align, ralign);
2048 }
2049
2050 if (align < ARCH_SLAB_MINALIGN)
2051 align = ARCH_SLAB_MINALIGN;
2052
2053 return ALIGN(align, sizeof(void *));
2054 }
2055
2056 static void
2057 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2058 {
2059 n->nr_partial = 0;
2060 spin_lock_init(&n->list_lock);
2061 INIT_LIST_HEAD(&n->partial);
2062 #ifdef CONFIG_SLUB_DEBUG
2063 atomic_long_set(&n->nr_slabs, 0);
2064 atomic_long_set(&n->total_objects, 0);
2065 INIT_LIST_HEAD(&n->full);
2066 #endif
2067 }
2068
2069 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2070
2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2072 {
2073 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2074 /*
2075 * Boot time creation of the kmalloc array. Use static per cpu data
2076 * since the per cpu allocator is not available yet.
2077 */
2078 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2079 else
2080 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2081
2082 if (!s->cpu_slab)
2083 return 0;
2084
2085 return 1;
2086 }
2087
2088 #ifdef CONFIG_NUMA
2089 /*
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2092 * possible.
2093 *
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2097 */
2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2099 {
2100 struct page *page;
2101 struct kmem_cache_node *n;
2102 unsigned long flags;
2103
2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105
2106 page = new_slab(kmalloc_caches, gfpflags, node);
2107
2108 BUG_ON(!page);
2109 if (page_to_nid(page) != node) {
2110 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111 "node %d\n", node);
2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113 "in order to be able to continue\n");
2114 }
2115
2116 n = page->freelist;
2117 BUG_ON(!n);
2118 page->freelist = get_freepointer(kmalloc_caches, n);
2119 page->inuse++;
2120 kmalloc_caches->node[node] = n;
2121 #ifdef CONFIG_SLUB_DEBUG
2122 init_object(kmalloc_caches, n, 1);
2123 init_tracking(kmalloc_caches, n);
2124 #endif
2125 init_kmem_cache_node(n, kmalloc_caches);
2126 inc_slabs_node(kmalloc_caches, node, page->objects);
2127
2128 /*
2129 * lockdep requires consistent irq usage for each lock
2130 * so even though there cannot be a race this early in
2131 * the boot sequence, we still disable irqs.
2132 */
2133 local_irq_save(flags);
2134 add_partial(n, page, 0);
2135 local_irq_restore(flags);
2136 }
2137
2138 static void free_kmem_cache_nodes(struct kmem_cache *s)
2139 {
2140 int node;
2141
2142 for_each_node_state(node, N_NORMAL_MEMORY) {
2143 struct kmem_cache_node *n = s->node[node];
2144 if (n && n != &s->local_node)
2145 kmem_cache_free(kmalloc_caches, n);
2146 s->node[node] = NULL;
2147 }
2148 }
2149
2150 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2151 {
2152 int node;
2153 int local_node;
2154
2155 if (slab_state >= UP && (s < kmalloc_caches ||
2156 s > kmalloc_caches + KMALLOC_CACHES))
2157 local_node = page_to_nid(virt_to_page(s));
2158 else
2159 local_node = 0;
2160
2161 for_each_node_state(node, N_NORMAL_MEMORY) {
2162 struct kmem_cache_node *n;
2163
2164 if (local_node == node)
2165 n = &s->local_node;
2166 else {
2167 if (slab_state == DOWN) {
2168 early_kmem_cache_node_alloc(gfpflags, node);
2169 continue;
2170 }
2171 n = kmem_cache_alloc_node(kmalloc_caches,
2172 gfpflags, node);
2173
2174 if (!n) {
2175 free_kmem_cache_nodes(s);
2176 return 0;
2177 }
2178
2179 }
2180 s->node[node] = n;
2181 init_kmem_cache_node(n, s);
2182 }
2183 return 1;
2184 }
2185 #else
2186 static void free_kmem_cache_nodes(struct kmem_cache *s)
2187 {
2188 }
2189
2190 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2191 {
2192 init_kmem_cache_node(&s->local_node, s);
2193 return 1;
2194 }
2195 #endif
2196
2197 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2198 {
2199 if (min < MIN_PARTIAL)
2200 min = MIN_PARTIAL;
2201 else if (min > MAX_PARTIAL)
2202 min = MAX_PARTIAL;
2203 s->min_partial = min;
2204 }
2205
2206 /*
2207 * calculate_sizes() determines the order and the distribution of data within
2208 * a slab object.
2209 */
2210 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2211 {
2212 unsigned long flags = s->flags;
2213 unsigned long size = s->objsize;
2214 unsigned long align = s->align;
2215 int order;
2216
2217 /*
2218 * Round up object size to the next word boundary. We can only
2219 * place the free pointer at word boundaries and this determines
2220 * the possible location of the free pointer.
2221 */
2222 size = ALIGN(size, sizeof(void *));
2223
2224 #ifdef CONFIG_SLUB_DEBUG
2225 /*
2226 * Determine if we can poison the object itself. If the user of
2227 * the slab may touch the object after free or before allocation
2228 * then we should never poison the object itself.
2229 */
2230 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2231 !s->ctor)
2232 s->flags |= __OBJECT_POISON;
2233 else
2234 s->flags &= ~__OBJECT_POISON;
2235
2236
2237 /*
2238 * If we are Redzoning then check if there is some space between the
2239 * end of the object and the free pointer. If not then add an
2240 * additional word to have some bytes to store Redzone information.
2241 */
2242 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2243 size += sizeof(void *);
2244 #endif
2245
2246 /*
2247 * With that we have determined the number of bytes in actual use
2248 * by the object. This is the potential offset to the free pointer.
2249 */
2250 s->inuse = size;
2251
2252 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2253 s->ctor)) {
2254 /*
2255 * Relocate free pointer after the object if it is not
2256 * permitted to overwrite the first word of the object on
2257 * kmem_cache_free.
2258 *
2259 * This is the case if we do RCU, have a constructor or
2260 * destructor or are poisoning the objects.
2261 */
2262 s->offset = size;
2263 size += sizeof(void *);
2264 }
2265
2266 #ifdef CONFIG_SLUB_DEBUG
2267 if (flags & SLAB_STORE_USER)
2268 /*
2269 * Need to store information about allocs and frees after
2270 * the object.
2271 */
2272 size += 2 * sizeof(struct track);
2273
2274 if (flags & SLAB_RED_ZONE)
2275 /*
2276 * Add some empty padding so that we can catch
2277 * overwrites from earlier objects rather than let
2278 * tracking information or the free pointer be
2279 * corrupted if a user writes before the start
2280 * of the object.
2281 */
2282 size += sizeof(void *);
2283 #endif
2284
2285 /*
2286 * Determine the alignment based on various parameters that the
2287 * user specified and the dynamic determination of cache line size
2288 * on bootup.
2289 */
2290 align = calculate_alignment(flags, align, s->objsize);
2291 s->align = align;
2292
2293 /*
2294 * SLUB stores one object immediately after another beginning from
2295 * offset 0. In order to align the objects we have to simply size
2296 * each object to conform to the alignment.
2297 */
2298 size = ALIGN(size, align);
2299 s->size = size;
2300 if (forced_order >= 0)
2301 order = forced_order;
2302 else
2303 order = calculate_order(size);
2304
2305 if (order < 0)
2306 return 0;
2307
2308 s->allocflags = 0;
2309 if (order)
2310 s->allocflags |= __GFP_COMP;
2311
2312 if (s->flags & SLAB_CACHE_DMA)
2313 s->allocflags |= SLUB_DMA;
2314
2315 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2316 s->allocflags |= __GFP_RECLAIMABLE;
2317
2318 /*
2319 * Determine the number of objects per slab
2320 */
2321 s->oo = oo_make(order, size);
2322 s->min = oo_make(get_order(size), size);
2323 if (oo_objects(s->oo) > oo_objects(s->max))
2324 s->max = s->oo;
2325
2326 return !!oo_objects(s->oo);
2327
2328 }
2329
2330 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2331 const char *name, size_t size,
2332 size_t align, unsigned long flags,
2333 void (*ctor)(void *))
2334 {
2335 memset(s, 0, kmem_size);
2336 s->name = name;
2337 s->ctor = ctor;
2338 s->objsize = size;
2339 s->align = align;
2340 s->flags = kmem_cache_flags(size, flags, name, ctor);
2341
2342 if (!calculate_sizes(s, -1))
2343 goto error;
2344 if (disable_higher_order_debug) {
2345 /*
2346 * Disable debugging flags that store metadata if the min slab
2347 * order increased.
2348 */
2349 if (get_order(s->size) > get_order(s->objsize)) {
2350 s->flags &= ~DEBUG_METADATA_FLAGS;
2351 s->offset = 0;
2352 if (!calculate_sizes(s, -1))
2353 goto error;
2354 }
2355 }
2356
2357 /*
2358 * The larger the object size is, the more pages we want on the partial
2359 * list to avoid pounding the page allocator excessively.
2360 */
2361 set_min_partial(s, ilog2(s->size));
2362 s->refcount = 1;
2363 #ifdef CONFIG_NUMA
2364 s->remote_node_defrag_ratio = 1000;
2365 #endif
2366 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2367 goto error;
2368
2369 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2370 return 1;
2371
2372 free_kmem_cache_nodes(s);
2373 error:
2374 if (flags & SLAB_PANIC)
2375 panic("Cannot create slab %s size=%lu realsize=%u "
2376 "order=%u offset=%u flags=%lx\n",
2377 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2378 s->offset, flags);
2379 return 0;
2380 }
2381
2382 /*
2383 * Check if a given pointer is valid
2384 */
2385 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2386 {
2387 struct page *page;
2388
2389 page = get_object_page(object);
2390
2391 if (!page || s != page->slab)
2392 /* No slab or wrong slab */
2393 return 0;
2394
2395 if (!check_valid_pointer(s, page, object))
2396 return 0;
2397
2398 /*
2399 * We could also check if the object is on the slabs freelist.
2400 * But this would be too expensive and it seems that the main
2401 * purpose of kmem_ptr_valid() is to check if the object belongs
2402 * to a certain slab.
2403 */
2404 return 1;
2405 }
2406 EXPORT_SYMBOL(kmem_ptr_validate);
2407
2408 /*
2409 * Determine the size of a slab object
2410 */
2411 unsigned int kmem_cache_size(struct kmem_cache *s)
2412 {
2413 return s->objsize;
2414 }
2415 EXPORT_SYMBOL(kmem_cache_size);
2416
2417 const char *kmem_cache_name(struct kmem_cache *s)
2418 {
2419 return s->name;
2420 }
2421 EXPORT_SYMBOL(kmem_cache_name);
2422
2423 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2424 const char *text)
2425 {
2426 #ifdef CONFIG_SLUB_DEBUG
2427 void *addr = page_address(page);
2428 void *p;
2429 DECLARE_BITMAP(map, page->objects);
2430
2431 bitmap_zero(map, page->objects);
2432 slab_err(s, page, "%s", text);
2433 slab_lock(page);
2434 for_each_free_object(p, s, page->freelist)
2435 set_bit(slab_index(p, s, addr), map);
2436
2437 for_each_object(p, s, addr, page->objects) {
2438
2439 if (!test_bit(slab_index(p, s, addr), map)) {
2440 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2441 p, p - addr);
2442 print_tracking(s, p);
2443 }
2444 }
2445 slab_unlock(page);
2446 #endif
2447 }
2448
2449 /*
2450 * Attempt to free all partial slabs on a node.
2451 */
2452 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2453 {
2454 unsigned long flags;
2455 struct page *page, *h;
2456
2457 spin_lock_irqsave(&n->list_lock, flags);
2458 list_for_each_entry_safe(page, h, &n->partial, lru) {
2459 if (!page->inuse) {
2460 list_del(&page->lru);
2461 discard_slab(s, page);
2462 n->nr_partial--;
2463 } else {
2464 list_slab_objects(s, page,
2465 "Objects remaining on kmem_cache_close()");
2466 }
2467 }
2468 spin_unlock_irqrestore(&n->list_lock, flags);
2469 }
2470
2471 /*
2472 * Release all resources used by a slab cache.
2473 */
2474 static inline int kmem_cache_close(struct kmem_cache *s)
2475 {
2476 int node;
2477
2478 flush_all(s);
2479 free_percpu(s->cpu_slab);
2480 /* Attempt to free all objects */
2481 for_each_node_state(node, N_NORMAL_MEMORY) {
2482 struct kmem_cache_node *n = get_node(s, node);
2483
2484 free_partial(s, n);
2485 if (n->nr_partial || slabs_node(s, node))
2486 return 1;
2487 }
2488 free_kmem_cache_nodes(s);
2489 return 0;
2490 }
2491
2492 /*
2493 * Close a cache and release the kmem_cache structure
2494 * (must be used for caches created using kmem_cache_create)
2495 */
2496 void kmem_cache_destroy(struct kmem_cache *s)
2497 {
2498 down_write(&slub_lock);
2499 s->refcount--;
2500 if (!s->refcount) {
2501 list_del(&s->list);
2502 up_write(&slub_lock);
2503 if (kmem_cache_close(s)) {
2504 printk(KERN_ERR "SLUB %s: %s called for cache that "
2505 "still has objects.\n", s->name, __func__);
2506 dump_stack();
2507 }
2508 if (s->flags & SLAB_DESTROY_BY_RCU)
2509 rcu_barrier();
2510 sysfs_slab_remove(s);
2511 } else
2512 up_write(&slub_lock);
2513 }
2514 EXPORT_SYMBOL(kmem_cache_destroy);
2515
2516 /********************************************************************
2517 * Kmalloc subsystem
2518 *******************************************************************/
2519
2520 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2521 EXPORT_SYMBOL(kmalloc_caches);
2522
2523 static int __init setup_slub_min_order(char *str)
2524 {
2525 get_option(&str, &slub_min_order);
2526
2527 return 1;
2528 }
2529
2530 __setup("slub_min_order=", setup_slub_min_order);
2531
2532 static int __init setup_slub_max_order(char *str)
2533 {
2534 get_option(&str, &slub_max_order);
2535 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2536
2537 return 1;
2538 }
2539
2540 __setup("slub_max_order=", setup_slub_max_order);
2541
2542 static int __init setup_slub_min_objects(char *str)
2543 {
2544 get_option(&str, &slub_min_objects);
2545
2546 return 1;
2547 }
2548
2549 __setup("slub_min_objects=", setup_slub_min_objects);
2550
2551 static int __init setup_slub_nomerge(char *str)
2552 {
2553 slub_nomerge = 1;
2554 return 1;
2555 }
2556
2557 __setup("slub_nomerge", setup_slub_nomerge);
2558
2559 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2560 const char *name, int size, gfp_t gfp_flags)
2561 {
2562 unsigned int flags = 0;
2563
2564 if (gfp_flags & SLUB_DMA)
2565 flags = SLAB_CACHE_DMA;
2566
2567 /*
2568 * This function is called with IRQs disabled during early-boot on
2569 * single CPU so there's no need to take slub_lock here.
2570 */
2571 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2572 flags, NULL))
2573 goto panic;
2574
2575 list_add(&s->list, &slab_caches);
2576
2577 if (sysfs_slab_add(s))
2578 goto panic;
2579 return s;
2580
2581 panic:
2582 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2583 }
2584
2585 #ifdef CONFIG_ZONE_DMA
2586 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2587
2588 static void sysfs_add_func(struct work_struct *w)
2589 {
2590 struct kmem_cache *s;
2591
2592 down_write(&slub_lock);
2593 list_for_each_entry(s, &slab_caches, list) {
2594 if (s->flags & __SYSFS_ADD_DEFERRED) {
2595 s->flags &= ~__SYSFS_ADD_DEFERRED;
2596 sysfs_slab_add(s);
2597 }
2598 }
2599 up_write(&slub_lock);
2600 }
2601
2602 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2603
2604 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2605 {
2606 struct kmem_cache *s;
2607 char *text;
2608 size_t realsize;
2609 unsigned long slabflags;
2610 int i;
2611
2612 s = kmalloc_caches_dma[index];
2613 if (s)
2614 return s;
2615
2616 /* Dynamically create dma cache */
2617 if (flags & __GFP_WAIT)
2618 down_write(&slub_lock);
2619 else {
2620 if (!down_write_trylock(&slub_lock))
2621 goto out;
2622 }
2623
2624 if (kmalloc_caches_dma[index])
2625 goto unlock_out;
2626
2627 realsize = kmalloc_caches[index].objsize;
2628 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2629 (unsigned int)realsize);
2630
2631 s = NULL;
2632 for (i = 0; i < KMALLOC_CACHES; i++)
2633 if (!kmalloc_caches[i].size)
2634 break;
2635
2636 BUG_ON(i >= KMALLOC_CACHES);
2637 s = kmalloc_caches + i;
2638
2639 /*
2640 * Must defer sysfs creation to a workqueue because we don't know
2641 * what context we are called from. Before sysfs comes up, we don't
2642 * need to do anything because our sysfs initcall will start by
2643 * adding all existing slabs to sysfs.
2644 */
2645 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2646 if (slab_state >= SYSFS)
2647 slabflags |= __SYSFS_ADD_DEFERRED;
2648
2649 if (!text || !kmem_cache_open(s, flags, text,
2650 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2651 s->size = 0;
2652 kfree(text);
2653 goto unlock_out;
2654 }
2655
2656 list_add(&s->list, &slab_caches);
2657 kmalloc_caches_dma[index] = s;
2658
2659 if (slab_state >= SYSFS)
2660 schedule_work(&sysfs_add_work);
2661
2662 unlock_out:
2663 up_write(&slub_lock);
2664 out:
2665 return kmalloc_caches_dma[index];
2666 }
2667 #endif
2668
2669 /*
2670 * Conversion table for small slabs sizes / 8 to the index in the
2671 * kmalloc array. This is necessary for slabs < 192 since we have non power
2672 * of two cache sizes there. The size of larger slabs can be determined using
2673 * fls.
2674 */
2675 static s8 size_index[24] = {
2676 3, /* 8 */
2677 4, /* 16 */
2678 5, /* 24 */
2679 5, /* 32 */
2680 6, /* 40 */
2681 6, /* 48 */
2682 6, /* 56 */
2683 6, /* 64 */
2684 1, /* 72 */
2685 1, /* 80 */
2686 1, /* 88 */
2687 1, /* 96 */
2688 7, /* 104 */
2689 7, /* 112 */
2690 7, /* 120 */
2691 7, /* 128 */
2692 2, /* 136 */
2693 2, /* 144 */
2694 2, /* 152 */
2695 2, /* 160 */
2696 2, /* 168 */
2697 2, /* 176 */
2698 2, /* 184 */
2699 2 /* 192 */
2700 };
2701
2702 static inline int size_index_elem(size_t bytes)
2703 {
2704 return (bytes - 1) / 8;
2705 }
2706
2707 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2708 {
2709 int index;
2710
2711 if (size <= 192) {
2712 if (!size)
2713 return ZERO_SIZE_PTR;
2714
2715 index = size_index[size_index_elem(size)];
2716 } else
2717 index = fls(size - 1);
2718
2719 #ifdef CONFIG_ZONE_DMA
2720 if (unlikely((flags & SLUB_DMA)))
2721 return dma_kmalloc_cache(index, flags);
2722
2723 #endif
2724 return &kmalloc_caches[index];
2725 }
2726
2727 void *__kmalloc(size_t size, gfp_t flags)
2728 {
2729 struct kmem_cache *s;
2730 void *ret;
2731
2732 if (unlikely(size > SLUB_MAX_SIZE))
2733 return kmalloc_large(size, flags);
2734
2735 s = get_slab(size, flags);
2736
2737 if (unlikely(ZERO_OR_NULL_PTR(s)))
2738 return s;
2739
2740 ret = slab_alloc(s, flags, -1, _RET_IP_);
2741
2742 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2743
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(__kmalloc);
2747
2748 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2749 {
2750 struct page *page;
2751 void *ptr = NULL;
2752
2753 flags |= __GFP_COMP | __GFP_NOTRACK;
2754 page = alloc_pages_node(node, flags, get_order(size));
2755 if (page)
2756 ptr = page_address(page);
2757
2758 kmemleak_alloc(ptr, size, 1, flags);
2759 return ptr;
2760 }
2761
2762 #ifdef CONFIG_NUMA
2763 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2764 {
2765 struct kmem_cache *s;
2766 void *ret;
2767
2768 if (unlikely(size > SLUB_MAX_SIZE)) {
2769 ret = kmalloc_large_node(size, flags, node);
2770
2771 trace_kmalloc_node(_RET_IP_, ret,
2772 size, PAGE_SIZE << get_order(size),
2773 flags, node);
2774
2775 return ret;
2776 }
2777
2778 s = get_slab(size, flags);
2779
2780 if (unlikely(ZERO_OR_NULL_PTR(s)))
2781 return s;
2782
2783 ret = slab_alloc(s, flags, node, _RET_IP_);
2784
2785 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2786
2787 return ret;
2788 }
2789 EXPORT_SYMBOL(__kmalloc_node);
2790 #endif
2791
2792 size_t ksize(const void *object)
2793 {
2794 struct page *page;
2795 struct kmem_cache *s;
2796
2797 if (unlikely(object == ZERO_SIZE_PTR))
2798 return 0;
2799
2800 page = virt_to_head_page(object);
2801
2802 if (unlikely(!PageSlab(page))) {
2803 WARN_ON(!PageCompound(page));
2804 return PAGE_SIZE << compound_order(page);
2805 }
2806 s = page->slab;
2807
2808 #ifdef CONFIG_SLUB_DEBUG
2809 /*
2810 * Debugging requires use of the padding between object
2811 * and whatever may come after it.
2812 */
2813 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2814 return s->objsize;
2815
2816 #endif
2817 /*
2818 * If we have the need to store the freelist pointer
2819 * back there or track user information then we can
2820 * only use the space before that information.
2821 */
2822 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2823 return s->inuse;
2824 /*
2825 * Else we can use all the padding etc for the allocation
2826 */
2827 return s->size;
2828 }
2829 EXPORT_SYMBOL(ksize);
2830
2831 void kfree(const void *x)
2832 {
2833 struct page *page;
2834 void *object = (void *)x;
2835
2836 trace_kfree(_RET_IP_, x);
2837
2838 if (unlikely(ZERO_OR_NULL_PTR(x)))
2839 return;
2840
2841 page = virt_to_head_page(x);
2842 if (unlikely(!PageSlab(page))) {
2843 BUG_ON(!PageCompound(page));
2844 kmemleak_free(x);
2845 put_page(page);
2846 return;
2847 }
2848 slab_free(page->slab, page, object, _RET_IP_);
2849 }
2850 EXPORT_SYMBOL(kfree);
2851
2852 /*
2853 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2854 * the remaining slabs by the number of items in use. The slabs with the
2855 * most items in use come first. New allocations will then fill those up
2856 * and thus they can be removed from the partial lists.
2857 *
2858 * The slabs with the least items are placed last. This results in them
2859 * being allocated from last increasing the chance that the last objects
2860 * are freed in them.
2861 */
2862 int kmem_cache_shrink(struct kmem_cache *s)
2863 {
2864 int node;
2865 int i;
2866 struct kmem_cache_node *n;
2867 struct page *page;
2868 struct page *t;
2869 int objects = oo_objects(s->max);
2870 struct list_head *slabs_by_inuse =
2871 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2872 unsigned long flags;
2873
2874 if (!slabs_by_inuse)
2875 return -ENOMEM;
2876
2877 flush_all(s);
2878 for_each_node_state(node, N_NORMAL_MEMORY) {
2879 n = get_node(s, node);
2880
2881 if (!n->nr_partial)
2882 continue;
2883
2884 for (i = 0; i < objects; i++)
2885 INIT_LIST_HEAD(slabs_by_inuse + i);
2886
2887 spin_lock_irqsave(&n->list_lock, flags);
2888
2889 /*
2890 * Build lists indexed by the items in use in each slab.
2891 *
2892 * Note that concurrent frees may occur while we hold the
2893 * list_lock. page->inuse here is the upper limit.
2894 */
2895 list_for_each_entry_safe(page, t, &n->partial, lru) {
2896 if (!page->inuse && slab_trylock(page)) {
2897 /*
2898 * Must hold slab lock here because slab_free
2899 * may have freed the last object and be
2900 * waiting to release the slab.
2901 */
2902 list_del(&page->lru);
2903 n->nr_partial--;
2904 slab_unlock(page);
2905 discard_slab(s, page);
2906 } else {
2907 list_move(&page->lru,
2908 slabs_by_inuse + page->inuse);
2909 }
2910 }
2911
2912 /*
2913 * Rebuild the partial list with the slabs filled up most
2914 * first and the least used slabs at the end.
2915 */
2916 for (i = objects - 1; i >= 0; i--)
2917 list_splice(slabs_by_inuse + i, n->partial.prev);
2918
2919 spin_unlock_irqrestore(&n->list_lock, flags);
2920 }
2921
2922 kfree(slabs_by_inuse);
2923 return 0;
2924 }
2925 EXPORT_SYMBOL(kmem_cache_shrink);
2926
2927 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2928 static int slab_mem_going_offline_callback(void *arg)
2929 {
2930 struct kmem_cache *s;
2931
2932 down_read(&slub_lock);
2933 list_for_each_entry(s, &slab_caches, list)
2934 kmem_cache_shrink(s);
2935 up_read(&slub_lock);
2936
2937 return 0;
2938 }
2939
2940 static void slab_mem_offline_callback(void *arg)
2941 {
2942 struct kmem_cache_node *n;
2943 struct kmem_cache *s;
2944 struct memory_notify *marg = arg;
2945 int offline_node;
2946
2947 offline_node = marg->status_change_nid;
2948
2949 /*
2950 * If the node still has available memory. we need kmem_cache_node
2951 * for it yet.
2952 */
2953 if (offline_node < 0)
2954 return;
2955
2956 down_read(&slub_lock);
2957 list_for_each_entry(s, &slab_caches, list) {
2958 n = get_node(s, offline_node);
2959 if (n) {
2960 /*
2961 * if n->nr_slabs > 0, slabs still exist on the node
2962 * that is going down. We were unable to free them,
2963 * and offline_pages() function shouldn't call this
2964 * callback. So, we must fail.
2965 */
2966 BUG_ON(slabs_node(s, offline_node));
2967
2968 s->node[offline_node] = NULL;
2969 kmem_cache_free(kmalloc_caches, n);
2970 }
2971 }
2972 up_read(&slub_lock);
2973 }
2974
2975 static int slab_mem_going_online_callback(void *arg)
2976 {
2977 struct kmem_cache_node *n;
2978 struct kmem_cache *s;
2979 struct memory_notify *marg = arg;
2980 int nid = marg->status_change_nid;
2981 int ret = 0;
2982
2983 /*
2984 * If the node's memory is already available, then kmem_cache_node is
2985 * already created. Nothing to do.
2986 */
2987 if (nid < 0)
2988 return 0;
2989
2990 /*
2991 * We are bringing a node online. No memory is available yet. We must
2992 * allocate a kmem_cache_node structure in order to bring the node
2993 * online.
2994 */
2995 down_read(&slub_lock);
2996 list_for_each_entry(s, &slab_caches, list) {
2997 /*
2998 * XXX: kmem_cache_alloc_node will fallback to other nodes
2999 * since memory is not yet available from the node that
3000 * is brought up.
3001 */
3002 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3003 if (!n) {
3004 ret = -ENOMEM;
3005 goto out;
3006 }
3007 init_kmem_cache_node(n, s);
3008 s->node[nid] = n;
3009 }
3010 out:
3011 up_read(&slub_lock);
3012 return ret;
3013 }
3014
3015 static int slab_memory_callback(struct notifier_block *self,
3016 unsigned long action, void *arg)
3017 {
3018 int ret = 0;
3019
3020 switch (action) {
3021 case MEM_GOING_ONLINE:
3022 ret = slab_mem_going_online_callback(arg);
3023 break;
3024 case MEM_GOING_OFFLINE:
3025 ret = slab_mem_going_offline_callback(arg);
3026 break;
3027 case MEM_OFFLINE:
3028 case MEM_CANCEL_ONLINE:
3029 slab_mem_offline_callback(arg);
3030 break;
3031 case MEM_ONLINE:
3032 case MEM_CANCEL_OFFLINE:
3033 break;
3034 }
3035 if (ret)
3036 ret = notifier_from_errno(ret);
3037 else
3038 ret = NOTIFY_OK;
3039 return ret;
3040 }
3041
3042 #endif /* CONFIG_MEMORY_HOTPLUG */
3043
3044 /********************************************************************
3045 * Basic setup of slabs
3046 *******************************************************************/
3047
3048 void __init kmem_cache_init(void)
3049 {
3050 int i;
3051 int caches = 0;
3052
3053 #ifdef CONFIG_NUMA
3054 /*
3055 * Must first have the slab cache available for the allocations of the
3056 * struct kmem_cache_node's. There is special bootstrap code in
3057 * kmem_cache_open for slab_state == DOWN.
3058 */
3059 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3060 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3061 kmalloc_caches[0].refcount = -1;
3062 caches++;
3063
3064 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3065 #endif
3066
3067 /* Able to allocate the per node structures */
3068 slab_state = PARTIAL;
3069
3070 /* Caches that are not of the two-to-the-power-of size */
3071 if (KMALLOC_MIN_SIZE <= 32) {
3072 create_kmalloc_cache(&kmalloc_caches[1],
3073 "kmalloc-96", 96, GFP_NOWAIT);
3074 caches++;
3075 }
3076 if (KMALLOC_MIN_SIZE <= 64) {
3077 create_kmalloc_cache(&kmalloc_caches[2],
3078 "kmalloc-192", 192, GFP_NOWAIT);
3079 caches++;
3080 }
3081
3082 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3083 create_kmalloc_cache(&kmalloc_caches[i],
3084 "kmalloc", 1 << i, GFP_NOWAIT);
3085 caches++;
3086 }
3087
3088
3089 /*
3090 * Patch up the size_index table if we have strange large alignment
3091 * requirements for the kmalloc array. This is only the case for
3092 * MIPS it seems. The standard arches will not generate any code here.
3093 *
3094 * Largest permitted alignment is 256 bytes due to the way we
3095 * handle the index determination for the smaller caches.
3096 *
3097 * Make sure that nothing crazy happens if someone starts tinkering
3098 * around with ARCH_KMALLOC_MINALIGN
3099 */
3100 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3101 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3102
3103 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3104 int elem = size_index_elem(i);
3105 if (elem >= ARRAY_SIZE(size_index))
3106 break;
3107 size_index[elem] = KMALLOC_SHIFT_LOW;
3108 }
3109
3110 if (KMALLOC_MIN_SIZE == 64) {
3111 /*
3112 * The 96 byte size cache is not used if the alignment
3113 * is 64 byte.
3114 */
3115 for (i = 64 + 8; i <= 96; i += 8)
3116 size_index[size_index_elem(i)] = 7;
3117 } else if (KMALLOC_MIN_SIZE == 128) {
3118 /*
3119 * The 192 byte sized cache is not used if the alignment
3120 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3121 * instead.
3122 */
3123 for (i = 128 + 8; i <= 192; i += 8)
3124 size_index[size_index_elem(i)] = 8;
3125 }
3126
3127 slab_state = UP;
3128
3129 /* Provide the correct kmalloc names now that the caches are up */
3130 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3131 kmalloc_caches[i]. name =
3132 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3133
3134 #ifdef CONFIG_SMP
3135 register_cpu_notifier(&slab_notifier);
3136 #endif
3137 #ifdef CONFIG_NUMA
3138 kmem_size = offsetof(struct kmem_cache, node) +
3139 nr_node_ids * sizeof(struct kmem_cache_node *);
3140 #else
3141 kmem_size = sizeof(struct kmem_cache);
3142 #endif
3143
3144 printk(KERN_INFO
3145 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3146 " CPUs=%d, Nodes=%d\n",
3147 caches, cache_line_size(),
3148 slub_min_order, slub_max_order, slub_min_objects,
3149 nr_cpu_ids, nr_node_ids);
3150 }
3151
3152 void __init kmem_cache_init_late(void)
3153 {
3154 }
3155
3156 /*
3157 * Find a mergeable slab cache
3158 */
3159 static int slab_unmergeable(struct kmem_cache *s)
3160 {
3161 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3162 return 1;
3163
3164 if (s->ctor)
3165 return 1;
3166
3167 /*
3168 * We may have set a slab to be unmergeable during bootstrap.
3169 */
3170 if (s->refcount < 0)
3171 return 1;
3172
3173 return 0;
3174 }
3175
3176 static struct kmem_cache *find_mergeable(size_t size,
3177 size_t align, unsigned long flags, const char *name,
3178 void (*ctor)(void *))
3179 {
3180 struct kmem_cache *s;
3181
3182 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3183 return NULL;
3184
3185 if (ctor)
3186 return NULL;
3187
3188 size = ALIGN(size, sizeof(void *));
3189 align = calculate_alignment(flags, align, size);
3190 size = ALIGN(size, align);
3191 flags = kmem_cache_flags(size, flags, name, NULL);
3192
3193 list_for_each_entry(s, &slab_caches, list) {
3194 if (slab_unmergeable(s))
3195 continue;
3196
3197 if (size > s->size)
3198 continue;
3199
3200 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3201 continue;
3202 /*
3203 * Check if alignment is compatible.
3204 * Courtesy of Adrian Drzewiecki
3205 */
3206 if ((s->size & ~(align - 1)) != s->size)
3207 continue;
3208
3209 if (s->size - size >= sizeof(void *))
3210 continue;
3211
3212 return s;
3213 }
3214 return NULL;
3215 }
3216
3217 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3218 size_t align, unsigned long flags, void (*ctor)(void *))
3219 {
3220 struct kmem_cache *s;
3221
3222 if (WARN_ON(!name))
3223 return NULL;
3224
3225 down_write(&slub_lock);
3226 s = find_mergeable(size, align, flags, name, ctor);
3227 if (s) {
3228 s->refcount++;
3229 /*
3230 * Adjust the object sizes so that we clear
3231 * the complete object on kzalloc.
3232 */
3233 s->objsize = max(s->objsize, (int)size);
3234 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3235 up_write(&slub_lock);
3236
3237 if (sysfs_slab_alias(s, name)) {
3238 down_write(&slub_lock);
3239 s->refcount--;
3240 up_write(&slub_lock);
3241 goto err;
3242 }
3243 return s;
3244 }
3245
3246 s = kmalloc(kmem_size, GFP_KERNEL);
3247 if (s) {
3248 if (kmem_cache_open(s, GFP_KERNEL, name,
3249 size, align, flags, ctor)) {
3250 list_add(&s->list, &slab_caches);
3251 up_write(&slub_lock);
3252 if (sysfs_slab_add(s)) {
3253 down_write(&slub_lock);
3254 list_del(&s->list);
3255 up_write(&slub_lock);
3256 kfree(s);
3257 goto err;
3258 }
3259 return s;
3260 }
3261 kfree(s);
3262 }
3263 up_write(&slub_lock);
3264
3265 err:
3266 if (flags & SLAB_PANIC)
3267 panic("Cannot create slabcache %s\n", name);
3268 else
3269 s = NULL;
3270 return s;
3271 }
3272 EXPORT_SYMBOL(kmem_cache_create);
3273
3274 #ifdef CONFIG_SMP
3275 /*
3276 * Use the cpu notifier to insure that the cpu slabs are flushed when
3277 * necessary.
3278 */
3279 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3280 unsigned long action, void *hcpu)
3281 {
3282 long cpu = (long)hcpu;
3283 struct kmem_cache *s;
3284 unsigned long flags;
3285
3286 switch (action) {
3287 case CPU_UP_CANCELED:
3288 case CPU_UP_CANCELED_FROZEN:
3289 case CPU_DEAD:
3290 case CPU_DEAD_FROZEN:
3291 down_read(&slub_lock);
3292 list_for_each_entry(s, &slab_caches, list) {
3293 local_irq_save(flags);
3294 __flush_cpu_slab(s, cpu);
3295 local_irq_restore(flags);
3296 }
3297 up_read(&slub_lock);
3298 break;
3299 default:
3300 break;
3301 }
3302 return NOTIFY_OK;
3303 }
3304
3305 static struct notifier_block __cpuinitdata slab_notifier = {
3306 .notifier_call = slab_cpuup_callback
3307 };
3308
3309 #endif
3310
3311 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3312 {
3313 struct kmem_cache *s;
3314 void *ret;
3315
3316 if (unlikely(size > SLUB_MAX_SIZE))
3317 return kmalloc_large(size, gfpflags);
3318
3319 s = get_slab(size, gfpflags);
3320
3321 if (unlikely(ZERO_OR_NULL_PTR(s)))
3322 return s;
3323
3324 ret = slab_alloc(s, gfpflags, -1, caller);
3325
3326 /* Honor the call site pointer we recieved. */
3327 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3328
3329 return ret;
3330 }
3331
3332 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3333 int node, unsigned long caller)
3334 {
3335 struct kmem_cache *s;
3336 void *ret;
3337
3338 if (unlikely(size > SLUB_MAX_SIZE))
3339 return kmalloc_large_node(size, gfpflags, node);
3340
3341 s = get_slab(size, gfpflags);
3342
3343 if (unlikely(ZERO_OR_NULL_PTR(s)))
3344 return s;
3345
3346 ret = slab_alloc(s, gfpflags, node, caller);
3347
3348 /* Honor the call site pointer we recieved. */
3349 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3350
3351 return ret;
3352 }
3353
3354 #ifdef CONFIG_SLUB_DEBUG
3355 static int count_inuse(struct page *page)
3356 {
3357 return page->inuse;
3358 }
3359
3360 static int count_total(struct page *page)
3361 {
3362 return page->objects;
3363 }
3364
3365 static int validate_slab(struct kmem_cache *s, struct page *page,
3366 unsigned long *map)
3367 {
3368 void *p;
3369 void *addr = page_address(page);
3370
3371 if (!check_slab(s, page) ||
3372 !on_freelist(s, page, NULL))
3373 return 0;
3374
3375 /* Now we know that a valid freelist exists */
3376 bitmap_zero(map, page->objects);
3377
3378 for_each_free_object(p, s, page->freelist) {
3379 set_bit(slab_index(p, s, addr), map);
3380 if (!check_object(s, page, p, 0))
3381 return 0;
3382 }
3383
3384 for_each_object(p, s, addr, page->objects)
3385 if (!test_bit(slab_index(p, s, addr), map))
3386 if (!check_object(s, page, p, 1))
3387 return 0;
3388 return 1;
3389 }
3390
3391 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3392 unsigned long *map)
3393 {
3394 if (slab_trylock(page)) {
3395 validate_slab(s, page, map);
3396 slab_unlock(page);
3397 } else
3398 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3399 s->name, page);
3400
3401 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3402 if (!PageSlubDebug(page))
3403 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3404 "on slab 0x%p\n", s->name, page);
3405 } else {
3406 if (PageSlubDebug(page))
3407 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3408 "slab 0x%p\n", s->name, page);
3409 }
3410 }
3411
3412 static int validate_slab_node(struct kmem_cache *s,
3413 struct kmem_cache_node *n, unsigned long *map)
3414 {
3415 unsigned long count = 0;
3416 struct page *page;
3417 unsigned long flags;
3418
3419 spin_lock_irqsave(&n->list_lock, flags);
3420
3421 list_for_each_entry(page, &n->partial, lru) {
3422 validate_slab_slab(s, page, map);
3423 count++;
3424 }
3425 if (count != n->nr_partial)
3426 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3427 "counter=%ld\n", s->name, count, n->nr_partial);
3428
3429 if (!(s->flags & SLAB_STORE_USER))
3430 goto out;
3431
3432 list_for_each_entry(page, &n->full, lru) {
3433 validate_slab_slab(s, page, map);
3434 count++;
3435 }
3436 if (count != atomic_long_read(&n->nr_slabs))
3437 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3438 "counter=%ld\n", s->name, count,
3439 atomic_long_read(&n->nr_slabs));
3440
3441 out:
3442 spin_unlock_irqrestore(&n->list_lock, flags);
3443 return count;
3444 }
3445
3446 static long validate_slab_cache(struct kmem_cache *s)
3447 {
3448 int node;
3449 unsigned long count = 0;
3450 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3451 sizeof(unsigned long), GFP_KERNEL);
3452
3453 if (!map)
3454 return -ENOMEM;
3455
3456 flush_all(s);
3457 for_each_node_state(node, N_NORMAL_MEMORY) {
3458 struct kmem_cache_node *n = get_node(s, node);
3459
3460 count += validate_slab_node(s, n, map);
3461 }
3462 kfree(map);
3463 return count;
3464 }
3465
3466 #ifdef SLUB_RESILIENCY_TEST
3467 static void resiliency_test(void)
3468 {
3469 u8 *p;
3470
3471 printk(KERN_ERR "SLUB resiliency testing\n");
3472 printk(KERN_ERR "-----------------------\n");
3473 printk(KERN_ERR "A. Corruption after allocation\n");
3474
3475 p = kzalloc(16, GFP_KERNEL);
3476 p[16] = 0x12;
3477 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3478 " 0x12->0x%p\n\n", p + 16);
3479
3480 validate_slab_cache(kmalloc_caches + 4);
3481
3482 /* Hmmm... The next two are dangerous */
3483 p = kzalloc(32, GFP_KERNEL);
3484 p[32 + sizeof(void *)] = 0x34;
3485 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3486 " 0x34 -> -0x%p\n", p);
3487 printk(KERN_ERR
3488 "If allocated object is overwritten then not detectable\n\n");
3489
3490 validate_slab_cache(kmalloc_caches + 5);
3491 p = kzalloc(64, GFP_KERNEL);
3492 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3493 *p = 0x56;
3494 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3495 p);
3496 printk(KERN_ERR
3497 "If allocated object is overwritten then not detectable\n\n");
3498 validate_slab_cache(kmalloc_caches + 6);
3499
3500 printk(KERN_ERR "\nB. Corruption after free\n");
3501 p = kzalloc(128, GFP_KERNEL);
3502 kfree(p);
3503 *p = 0x78;
3504 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3505 validate_slab_cache(kmalloc_caches + 7);
3506
3507 p = kzalloc(256, GFP_KERNEL);
3508 kfree(p);
3509 p[50] = 0x9a;
3510 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3511 p);
3512 validate_slab_cache(kmalloc_caches + 8);
3513
3514 p = kzalloc(512, GFP_KERNEL);
3515 kfree(p);
3516 p[512] = 0xab;
3517 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3518 validate_slab_cache(kmalloc_caches + 9);
3519 }
3520 #else
3521 static void resiliency_test(void) {};
3522 #endif
3523
3524 /*
3525 * Generate lists of code addresses where slabcache objects are allocated
3526 * and freed.
3527 */
3528
3529 struct location {
3530 unsigned long count;
3531 unsigned long addr;
3532 long long sum_time;
3533 long min_time;
3534 long max_time;
3535 long min_pid;
3536 long max_pid;
3537 DECLARE_BITMAP(cpus, NR_CPUS);
3538 nodemask_t nodes;
3539 };
3540
3541 struct loc_track {
3542 unsigned long max;
3543 unsigned long count;
3544 struct location *loc;
3545 };
3546
3547 static void free_loc_track(struct loc_track *t)
3548 {
3549 if (t->max)
3550 free_pages((unsigned long)t->loc,
3551 get_order(sizeof(struct location) * t->max));
3552 }
3553
3554 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3555 {
3556 struct location *l;
3557 int order;
3558
3559 order = get_order(sizeof(struct location) * max);
3560
3561 l = (void *)__get_free_pages(flags, order);
3562 if (!l)
3563 return 0;
3564
3565 if (t->count) {
3566 memcpy(l, t->loc, sizeof(struct location) * t->count);
3567 free_loc_track(t);
3568 }
3569 t->max = max;
3570 t->loc = l;
3571 return 1;
3572 }
3573
3574 static int add_location(struct loc_track *t, struct kmem_cache *s,
3575 const struct track *track)
3576 {
3577 long start, end, pos;
3578 struct location *l;
3579 unsigned long caddr;
3580 unsigned long age = jiffies - track->when;
3581
3582 start = -1;
3583 end = t->count;
3584
3585 for ( ; ; ) {
3586 pos = start + (end - start + 1) / 2;
3587
3588 /*
3589 * There is nothing at "end". If we end up there
3590 * we need to add something to before end.
3591 */
3592 if (pos == end)
3593 break;
3594
3595 caddr = t->loc[pos].addr;
3596 if (track->addr == caddr) {
3597
3598 l = &t->loc[pos];
3599 l->count++;
3600 if (track->when) {
3601 l->sum_time += age;
3602 if (age < l->min_time)
3603 l->min_time = age;
3604 if (age > l->max_time)
3605 l->max_time = age;
3606
3607 if (track->pid < l->min_pid)
3608 l->min_pid = track->pid;
3609 if (track->pid > l->max_pid)
3610 l->max_pid = track->pid;
3611
3612 cpumask_set_cpu(track->cpu,
3613 to_cpumask(l->cpus));
3614 }
3615 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3616 return 1;
3617 }
3618
3619 if (track->addr < caddr)
3620 end = pos;
3621 else
3622 start = pos;
3623 }
3624
3625 /*
3626 * Not found. Insert new tracking element.
3627 */
3628 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3629 return 0;
3630
3631 l = t->loc + pos;
3632 if (pos < t->count)
3633 memmove(l + 1, l,
3634 (t->count - pos) * sizeof(struct location));
3635 t->count++;
3636 l->count = 1;
3637 l->addr = track->addr;
3638 l->sum_time = age;
3639 l->min_time = age;
3640 l->max_time = age;
3641 l->min_pid = track->pid;
3642 l->max_pid = track->pid;
3643 cpumask_clear(to_cpumask(l->cpus));
3644 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3645 nodes_clear(l->nodes);
3646 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3647 return 1;
3648 }
3649
3650 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3651 struct page *page, enum track_item alloc)
3652 {
3653 void *addr = page_address(page);
3654 DECLARE_BITMAP(map, page->objects);
3655 void *p;
3656
3657 bitmap_zero(map, page->objects);
3658 for_each_free_object(p, s, page->freelist)
3659 set_bit(slab_index(p, s, addr), map);
3660
3661 for_each_object(p, s, addr, page->objects)
3662 if (!test_bit(slab_index(p, s, addr), map))
3663 add_location(t, s, get_track(s, p, alloc));
3664 }
3665
3666 static int list_locations(struct kmem_cache *s, char *buf,
3667 enum track_item alloc)
3668 {
3669 int len = 0;
3670 unsigned long i;
3671 struct loc_track t = { 0, 0, NULL };
3672 int node;
3673
3674 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3675 GFP_TEMPORARY))
3676 return sprintf(buf, "Out of memory\n");
3677
3678 /* Push back cpu slabs */
3679 flush_all(s);
3680
3681 for_each_node_state(node, N_NORMAL_MEMORY) {
3682 struct kmem_cache_node *n = get_node(s, node);
3683 unsigned long flags;
3684 struct page *page;
3685
3686 if (!atomic_long_read(&n->nr_slabs))
3687 continue;
3688
3689 spin_lock_irqsave(&n->list_lock, flags);
3690 list_for_each_entry(page, &n->partial, lru)
3691 process_slab(&t, s, page, alloc);
3692 list_for_each_entry(page, &n->full, lru)
3693 process_slab(&t, s, page, alloc);
3694 spin_unlock_irqrestore(&n->list_lock, flags);
3695 }
3696
3697 for (i = 0; i < t.count; i++) {
3698 struct location *l = &t.loc[i];
3699
3700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3701 break;
3702 len += sprintf(buf + len, "%7ld ", l->count);
3703
3704 if (l->addr)
3705 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3706 else
3707 len += sprintf(buf + len, "<not-available>");
3708
3709 if (l->sum_time != l->min_time) {
3710 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3711 l->min_time,
3712 (long)div_u64(l->sum_time, l->count),
3713 l->max_time);
3714 } else
3715 len += sprintf(buf + len, " age=%ld",
3716 l->min_time);
3717
3718 if (l->min_pid != l->max_pid)
3719 len += sprintf(buf + len, " pid=%ld-%ld",
3720 l->min_pid, l->max_pid);
3721 else
3722 len += sprintf(buf + len, " pid=%ld",
3723 l->min_pid);
3724
3725 if (num_online_cpus() > 1 &&
3726 !cpumask_empty(to_cpumask(l->cpus)) &&
3727 len < PAGE_SIZE - 60) {
3728 len += sprintf(buf + len, " cpus=");
3729 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3730 to_cpumask(l->cpus));
3731 }
3732
3733 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3734 len < PAGE_SIZE - 60) {
3735 len += sprintf(buf + len, " nodes=");
3736 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3737 l->nodes);
3738 }
3739
3740 len += sprintf(buf + len, "\n");
3741 }
3742
3743 free_loc_track(&t);
3744 if (!t.count)
3745 len += sprintf(buf, "No data\n");
3746 return len;
3747 }
3748
3749 enum slab_stat_type {
3750 SL_ALL, /* All slabs */
3751 SL_PARTIAL, /* Only partially allocated slabs */
3752 SL_CPU, /* Only slabs used for cpu caches */
3753 SL_OBJECTS, /* Determine allocated objects not slabs */
3754 SL_TOTAL /* Determine object capacity not slabs */
3755 };
3756
3757 #define SO_ALL (1 << SL_ALL)
3758 #define SO_PARTIAL (1 << SL_PARTIAL)
3759 #define SO_CPU (1 << SL_CPU)
3760 #define SO_OBJECTS (1 << SL_OBJECTS)
3761 #define SO_TOTAL (1 << SL_TOTAL)
3762
3763 static ssize_t show_slab_objects(struct kmem_cache *s,
3764 char *buf, unsigned long flags)
3765 {
3766 unsigned long total = 0;
3767 int node;
3768 int x;
3769 unsigned long *nodes;
3770 unsigned long *per_cpu;
3771
3772 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3773 if (!nodes)
3774 return -ENOMEM;
3775 per_cpu = nodes + nr_node_ids;
3776
3777 if (flags & SO_CPU) {
3778 int cpu;
3779
3780 for_each_possible_cpu(cpu) {
3781 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3782
3783 if (!c || c->node < 0)
3784 continue;
3785
3786 if (c->page) {
3787 if (flags & SO_TOTAL)
3788 x = c->page->objects;
3789 else if (flags & SO_OBJECTS)
3790 x = c->page->inuse;
3791 else
3792 x = 1;
3793
3794 total += x;
3795 nodes[c->node] += x;
3796 }
3797 per_cpu[c->node]++;
3798 }
3799 }
3800
3801 if (flags & SO_ALL) {
3802 for_each_node_state(node, N_NORMAL_MEMORY) {
3803 struct kmem_cache_node *n = get_node(s, node);
3804
3805 if (flags & SO_TOTAL)
3806 x = atomic_long_read(&n->total_objects);
3807 else if (flags & SO_OBJECTS)
3808 x = atomic_long_read(&n->total_objects) -
3809 count_partial(n, count_free);
3810
3811 else
3812 x = atomic_long_read(&n->nr_slabs);
3813 total += x;
3814 nodes[node] += x;
3815 }
3816
3817 } else if (flags & SO_PARTIAL) {
3818 for_each_node_state(node, N_NORMAL_MEMORY) {
3819 struct kmem_cache_node *n = get_node(s, node);
3820
3821 if (flags & SO_TOTAL)
3822 x = count_partial(n, count_total);
3823 else if (flags & SO_OBJECTS)
3824 x = count_partial(n, count_inuse);
3825 else
3826 x = n->nr_partial;
3827 total += x;
3828 nodes[node] += x;
3829 }
3830 }
3831 x = sprintf(buf, "%lu", total);
3832 #ifdef CONFIG_NUMA
3833 for_each_node_state(node, N_NORMAL_MEMORY)
3834 if (nodes[node])
3835 x += sprintf(buf + x, " N%d=%lu",
3836 node, nodes[node]);
3837 #endif
3838 kfree(nodes);
3839 return x + sprintf(buf + x, "\n");
3840 }
3841
3842 static int any_slab_objects(struct kmem_cache *s)
3843 {
3844 int node;
3845
3846 for_each_online_node(node) {
3847 struct kmem_cache_node *n = get_node(s, node);
3848
3849 if (!n)
3850 continue;
3851
3852 if (atomic_long_read(&n->total_objects))
3853 return 1;
3854 }
3855 return 0;
3856 }
3857
3858 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3859 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3860
3861 struct slab_attribute {
3862 struct attribute attr;
3863 ssize_t (*show)(struct kmem_cache *s, char *buf);
3864 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3865 };
3866
3867 #define SLAB_ATTR_RO(_name) \
3868 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3869
3870 #define SLAB_ATTR(_name) \
3871 static struct slab_attribute _name##_attr = \
3872 __ATTR(_name, 0644, _name##_show, _name##_store)
3873
3874 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3875 {
3876 return sprintf(buf, "%d\n", s->size);
3877 }
3878 SLAB_ATTR_RO(slab_size);
3879
3880 static ssize_t align_show(struct kmem_cache *s, char *buf)
3881 {
3882 return sprintf(buf, "%d\n", s->align);
3883 }
3884 SLAB_ATTR_RO(align);
3885
3886 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3887 {
3888 return sprintf(buf, "%d\n", s->objsize);
3889 }
3890 SLAB_ATTR_RO(object_size);
3891
3892 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3893 {
3894 return sprintf(buf, "%d\n", oo_objects(s->oo));
3895 }
3896 SLAB_ATTR_RO(objs_per_slab);
3897
3898 static ssize_t order_store(struct kmem_cache *s,
3899 const char *buf, size_t length)
3900 {
3901 unsigned long order;
3902 int err;
3903
3904 err = strict_strtoul(buf, 10, &order);
3905 if (err)
3906 return err;
3907
3908 if (order > slub_max_order || order < slub_min_order)
3909 return -EINVAL;
3910
3911 calculate_sizes(s, order);
3912 return length;
3913 }
3914
3915 static ssize_t order_show(struct kmem_cache *s, char *buf)
3916 {
3917 return sprintf(buf, "%d\n", oo_order(s->oo));
3918 }
3919 SLAB_ATTR(order);
3920
3921 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3922 {
3923 return sprintf(buf, "%lu\n", s->min_partial);
3924 }
3925
3926 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3927 size_t length)
3928 {
3929 unsigned long min;
3930 int err;
3931
3932 err = strict_strtoul(buf, 10, &min);
3933 if (err)
3934 return err;
3935
3936 set_min_partial(s, min);
3937 return length;
3938 }
3939 SLAB_ATTR(min_partial);
3940
3941 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3942 {
3943 if (s->ctor) {
3944 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3945
3946 return n + sprintf(buf + n, "\n");
3947 }
3948 return 0;
3949 }
3950 SLAB_ATTR_RO(ctor);
3951
3952 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3953 {
3954 return sprintf(buf, "%d\n", s->refcount - 1);
3955 }
3956 SLAB_ATTR_RO(aliases);
3957
3958 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3959 {
3960 return show_slab_objects(s, buf, SO_ALL);
3961 }
3962 SLAB_ATTR_RO(slabs);
3963
3964 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3965 {
3966 return show_slab_objects(s, buf, SO_PARTIAL);
3967 }
3968 SLAB_ATTR_RO(partial);
3969
3970 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3971 {
3972 return show_slab_objects(s, buf, SO_CPU);
3973 }
3974 SLAB_ATTR_RO(cpu_slabs);
3975
3976 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3977 {
3978 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3979 }
3980 SLAB_ATTR_RO(objects);
3981
3982 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3983 {
3984 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3985 }
3986 SLAB_ATTR_RO(objects_partial);
3987
3988 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3989 {
3990 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3991 }
3992 SLAB_ATTR_RO(total_objects);
3993
3994 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3995 {
3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3997 }
3998
3999 static ssize_t sanity_checks_store(struct kmem_cache *s,
4000 const char *buf, size_t length)
4001 {
4002 s->flags &= ~SLAB_DEBUG_FREE;
4003 if (buf[0] == '1')
4004 s->flags |= SLAB_DEBUG_FREE;
4005 return length;
4006 }
4007 SLAB_ATTR(sanity_checks);
4008
4009 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4010 {
4011 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4012 }
4013
4014 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4015 size_t length)
4016 {
4017 s->flags &= ~SLAB_TRACE;
4018 if (buf[0] == '1')
4019 s->flags |= SLAB_TRACE;
4020 return length;
4021 }
4022 SLAB_ATTR(trace);
4023
4024 #ifdef CONFIG_FAILSLAB
4025 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4026 {
4027 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4028 }
4029
4030 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4031 size_t length)
4032 {
4033 s->flags &= ~SLAB_FAILSLAB;
4034 if (buf[0] == '1')
4035 s->flags |= SLAB_FAILSLAB;
4036 return length;
4037 }
4038 SLAB_ATTR(failslab);
4039 #endif
4040
4041 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4042 {
4043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4044 }
4045
4046 static ssize_t reclaim_account_store(struct kmem_cache *s,
4047 const char *buf, size_t length)
4048 {
4049 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4050 if (buf[0] == '1')
4051 s->flags |= SLAB_RECLAIM_ACCOUNT;
4052 return length;
4053 }
4054 SLAB_ATTR(reclaim_account);
4055
4056 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4057 {
4058 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4059 }
4060 SLAB_ATTR_RO(hwcache_align);
4061
4062 #ifdef CONFIG_ZONE_DMA
4063 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4064 {
4065 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4066 }
4067 SLAB_ATTR_RO(cache_dma);
4068 #endif
4069
4070 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4071 {
4072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4073 }
4074 SLAB_ATTR_RO(destroy_by_rcu);
4075
4076 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4077 {
4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4079 }
4080
4081 static ssize_t red_zone_store(struct kmem_cache *s,
4082 const char *buf, size_t length)
4083 {
4084 if (any_slab_objects(s))
4085 return -EBUSY;
4086
4087 s->flags &= ~SLAB_RED_ZONE;
4088 if (buf[0] == '1')
4089 s->flags |= SLAB_RED_ZONE;
4090 calculate_sizes(s, -1);
4091 return length;
4092 }
4093 SLAB_ATTR(red_zone);
4094
4095 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4096 {
4097 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4098 }
4099
4100 static ssize_t poison_store(struct kmem_cache *s,
4101 const char *buf, size_t length)
4102 {
4103 if (any_slab_objects(s))
4104 return -EBUSY;
4105
4106 s->flags &= ~SLAB_POISON;
4107 if (buf[0] == '1')
4108 s->flags |= SLAB_POISON;
4109 calculate_sizes(s, -1);
4110 return length;
4111 }
4112 SLAB_ATTR(poison);
4113
4114 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4115 {
4116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4117 }
4118
4119 static ssize_t store_user_store(struct kmem_cache *s,
4120 const char *buf, size_t length)
4121 {
4122 if (any_slab_objects(s))
4123 return -EBUSY;
4124
4125 s->flags &= ~SLAB_STORE_USER;
4126 if (buf[0] == '1')
4127 s->flags |= SLAB_STORE_USER;
4128 calculate_sizes(s, -1);
4129 return length;
4130 }
4131 SLAB_ATTR(store_user);
4132
4133 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4134 {
4135 return 0;
4136 }
4137
4138 static ssize_t validate_store(struct kmem_cache *s,
4139 const char *buf, size_t length)
4140 {
4141 int ret = -EINVAL;
4142
4143 if (buf[0] == '1') {
4144 ret = validate_slab_cache(s);
4145 if (ret >= 0)
4146 ret = length;
4147 }
4148 return ret;
4149 }
4150 SLAB_ATTR(validate);
4151
4152 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4153 {
4154 return 0;
4155 }
4156
4157 static ssize_t shrink_store(struct kmem_cache *s,
4158 const char *buf, size_t length)
4159 {
4160 if (buf[0] == '1') {
4161 int rc = kmem_cache_shrink(s);
4162
4163 if (rc)
4164 return rc;
4165 } else
4166 return -EINVAL;
4167 return length;
4168 }
4169 SLAB_ATTR(shrink);
4170
4171 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4172 {
4173 if (!(s->flags & SLAB_STORE_USER))
4174 return -ENOSYS;
4175 return list_locations(s, buf, TRACK_ALLOC);
4176 }
4177 SLAB_ATTR_RO(alloc_calls);
4178
4179 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4180 {
4181 if (!(s->flags & SLAB_STORE_USER))
4182 return -ENOSYS;
4183 return list_locations(s, buf, TRACK_FREE);
4184 }
4185 SLAB_ATTR_RO(free_calls);
4186
4187 #ifdef CONFIG_NUMA
4188 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4189 {
4190 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4191 }
4192
4193 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4194 const char *buf, size_t length)
4195 {
4196 unsigned long ratio;
4197 int err;
4198
4199 err = strict_strtoul(buf, 10, &ratio);
4200 if (err)
4201 return err;
4202
4203 if (ratio <= 100)
4204 s->remote_node_defrag_ratio = ratio * 10;
4205
4206 return length;
4207 }
4208 SLAB_ATTR(remote_node_defrag_ratio);
4209 #endif
4210
4211 #ifdef CONFIG_SLUB_STATS
4212 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4213 {
4214 unsigned long sum = 0;
4215 int cpu;
4216 int len;
4217 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4218
4219 if (!data)
4220 return -ENOMEM;
4221
4222 for_each_online_cpu(cpu) {
4223 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4224
4225 data[cpu] = x;
4226 sum += x;
4227 }
4228
4229 len = sprintf(buf, "%lu", sum);
4230
4231 #ifdef CONFIG_SMP
4232 for_each_online_cpu(cpu) {
4233 if (data[cpu] && len < PAGE_SIZE - 20)
4234 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4235 }
4236 #endif
4237 kfree(data);
4238 return len + sprintf(buf + len, "\n");
4239 }
4240
4241 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4242 {
4243 int cpu;
4244
4245 for_each_online_cpu(cpu)
4246 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4247 }
4248
4249 #define STAT_ATTR(si, text) \
4250 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4251 { \
4252 return show_stat(s, buf, si); \
4253 } \
4254 static ssize_t text##_store(struct kmem_cache *s, \
4255 const char *buf, size_t length) \
4256 { \
4257 if (buf[0] != '0') \
4258 return -EINVAL; \
4259 clear_stat(s, si); \
4260 return length; \
4261 } \
4262 SLAB_ATTR(text); \
4263
4264 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4265 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4266 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4267 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4268 STAT_ATTR(FREE_FROZEN, free_frozen);
4269 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4270 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4271 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4272 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4273 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4274 STAT_ATTR(FREE_SLAB, free_slab);
4275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4281 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4282 #endif
4283
4284 static struct attribute *slab_attrs[] = {
4285 &slab_size_attr.attr,
4286 &object_size_attr.attr,
4287 &objs_per_slab_attr.attr,
4288 &order_attr.attr,
4289 &min_partial_attr.attr,
4290 &objects_attr.attr,
4291 &objects_partial_attr.attr,
4292 &total_objects_attr.attr,
4293 &slabs_attr.attr,
4294 &partial_attr.attr,
4295 &cpu_slabs_attr.attr,
4296 &ctor_attr.attr,
4297 &aliases_attr.attr,
4298 &align_attr.attr,
4299 &sanity_checks_attr.attr,
4300 &trace_attr.attr,
4301 &hwcache_align_attr.attr,
4302 &reclaim_account_attr.attr,
4303 &destroy_by_rcu_attr.attr,
4304 &red_zone_attr.attr,
4305 &poison_attr.attr,
4306 &store_user_attr.attr,
4307 &validate_attr.attr,
4308 &shrink_attr.attr,
4309 &alloc_calls_attr.attr,
4310 &free_calls_attr.attr,
4311 #ifdef CONFIG_ZONE_DMA
4312 &cache_dma_attr.attr,
4313 #endif
4314 #ifdef CONFIG_NUMA
4315 &remote_node_defrag_ratio_attr.attr,
4316 #endif
4317 #ifdef CONFIG_SLUB_STATS
4318 &alloc_fastpath_attr.attr,
4319 &alloc_slowpath_attr.attr,
4320 &free_fastpath_attr.attr,
4321 &free_slowpath_attr.attr,
4322 &free_frozen_attr.attr,
4323 &free_add_partial_attr.attr,
4324 &free_remove_partial_attr.attr,
4325 &alloc_from_partial_attr.attr,
4326 &alloc_slab_attr.attr,
4327 &alloc_refill_attr.attr,
4328 &free_slab_attr.attr,
4329 &cpuslab_flush_attr.attr,
4330 &deactivate_full_attr.attr,
4331 &deactivate_empty_attr.attr,
4332 &deactivate_to_head_attr.attr,
4333 &deactivate_to_tail_attr.attr,
4334 &deactivate_remote_frees_attr.attr,
4335 &order_fallback_attr.attr,
4336 #endif
4337 #ifdef CONFIG_FAILSLAB
4338 &failslab_attr.attr,
4339 #endif
4340
4341 NULL
4342 };
4343
4344 static struct attribute_group slab_attr_group = {
4345 .attrs = slab_attrs,
4346 };
4347
4348 static ssize_t slab_attr_show(struct kobject *kobj,
4349 struct attribute *attr,
4350 char *buf)
4351 {
4352 struct slab_attribute *attribute;
4353 struct kmem_cache *s;
4354 int err;
4355
4356 attribute = to_slab_attr(attr);
4357 s = to_slab(kobj);
4358
4359 if (!attribute->show)
4360 return -EIO;
4361
4362 err = attribute->show(s, buf);
4363
4364 return err;
4365 }
4366
4367 static ssize_t slab_attr_store(struct kobject *kobj,
4368 struct attribute *attr,
4369 const char *buf, size_t len)
4370 {
4371 struct slab_attribute *attribute;
4372 struct kmem_cache *s;
4373 int err;
4374
4375 attribute = to_slab_attr(attr);
4376 s = to_slab(kobj);
4377
4378 if (!attribute->store)
4379 return -EIO;
4380
4381 err = attribute->store(s, buf, len);
4382
4383 return err;
4384 }
4385
4386 static void kmem_cache_release(struct kobject *kobj)
4387 {
4388 struct kmem_cache *s = to_slab(kobj);
4389
4390 kfree(s);
4391 }
4392
4393 static const struct sysfs_ops slab_sysfs_ops = {
4394 .show = slab_attr_show,
4395 .store = slab_attr_store,
4396 };
4397
4398 static struct kobj_type slab_ktype = {
4399 .sysfs_ops = &slab_sysfs_ops,
4400 .release = kmem_cache_release
4401 };
4402
4403 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4404 {
4405 struct kobj_type *ktype = get_ktype(kobj);
4406
4407 if (ktype == &slab_ktype)
4408 return 1;
4409 return 0;
4410 }
4411
4412 static const struct kset_uevent_ops slab_uevent_ops = {
4413 .filter = uevent_filter,
4414 };
4415
4416 static struct kset *slab_kset;
4417
4418 #define ID_STR_LENGTH 64
4419
4420 /* Create a unique string id for a slab cache:
4421 *
4422 * Format :[flags-]size
4423 */
4424 static char *create_unique_id(struct kmem_cache *s)
4425 {
4426 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4427 char *p = name;
4428
4429 BUG_ON(!name);
4430
4431 *p++ = ':';
4432 /*
4433 * First flags affecting slabcache operations. We will only
4434 * get here for aliasable slabs so we do not need to support
4435 * too many flags. The flags here must cover all flags that
4436 * are matched during merging to guarantee that the id is
4437 * unique.
4438 */
4439 if (s->flags & SLAB_CACHE_DMA)
4440 *p++ = 'd';
4441 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4442 *p++ = 'a';
4443 if (s->flags & SLAB_DEBUG_FREE)
4444 *p++ = 'F';
4445 if (!(s->flags & SLAB_NOTRACK))
4446 *p++ = 't';
4447 if (p != name + 1)
4448 *p++ = '-';
4449 p += sprintf(p, "%07d", s->size);
4450 BUG_ON(p > name + ID_STR_LENGTH - 1);
4451 return name;
4452 }
4453
4454 static int sysfs_slab_add(struct kmem_cache *s)
4455 {
4456 int err;
4457 const char *name;
4458 int unmergeable;
4459
4460 if (slab_state < SYSFS)
4461 /* Defer until later */
4462 return 0;
4463
4464 unmergeable = slab_unmergeable(s);
4465 if (unmergeable) {
4466 /*
4467 * Slabcache can never be merged so we can use the name proper.
4468 * This is typically the case for debug situations. In that
4469 * case we can catch duplicate names easily.
4470 */
4471 sysfs_remove_link(&slab_kset->kobj, s->name);
4472 name = s->name;
4473 } else {
4474 /*
4475 * Create a unique name for the slab as a target
4476 * for the symlinks.
4477 */
4478 name = create_unique_id(s);
4479 }
4480
4481 s->kobj.kset = slab_kset;
4482 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4483 if (err) {
4484 kobject_put(&s->kobj);
4485 return err;
4486 }
4487
4488 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4489 if (err) {
4490 kobject_del(&s->kobj);
4491 kobject_put(&s->kobj);
4492 return err;
4493 }
4494 kobject_uevent(&s->kobj, KOBJ_ADD);
4495 if (!unmergeable) {
4496 /* Setup first alias */
4497 sysfs_slab_alias(s, s->name);
4498 kfree(name);
4499 }
4500 return 0;
4501 }
4502
4503 static void sysfs_slab_remove(struct kmem_cache *s)
4504 {
4505 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4506 kobject_del(&s->kobj);
4507 kobject_put(&s->kobj);
4508 }
4509
4510 /*
4511 * Need to buffer aliases during bootup until sysfs becomes
4512 * available lest we lose that information.
4513 */
4514 struct saved_alias {
4515 struct kmem_cache *s;
4516 const char *name;
4517 struct saved_alias *next;
4518 };
4519
4520 static struct saved_alias *alias_list;
4521
4522 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4523 {
4524 struct saved_alias *al;
4525
4526 if (slab_state == SYSFS) {
4527 /*
4528 * If we have a leftover link then remove it.
4529 */
4530 sysfs_remove_link(&slab_kset->kobj, name);
4531 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4532 }
4533
4534 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4535 if (!al)
4536 return -ENOMEM;
4537
4538 al->s = s;
4539 al->name = name;
4540 al->next = alias_list;
4541 alias_list = al;
4542 return 0;
4543 }
4544
4545 static int __init slab_sysfs_init(void)
4546 {
4547 struct kmem_cache *s;
4548 int err;
4549
4550 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4551 if (!slab_kset) {
4552 printk(KERN_ERR "Cannot register slab subsystem.\n");
4553 return -ENOSYS;
4554 }
4555
4556 slab_state = SYSFS;
4557
4558 list_for_each_entry(s, &slab_caches, list) {
4559 err = sysfs_slab_add(s);
4560 if (err)
4561 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4562 " to sysfs\n", s->name);
4563 }
4564
4565 while (alias_list) {
4566 struct saved_alias *al = alias_list;
4567
4568 alias_list = alias_list->next;
4569 err = sysfs_slab_alias(al->s, al->name);
4570 if (err)
4571 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4572 " %s to sysfs\n", s->name);
4573 kfree(al);
4574 }
4575
4576 resiliency_test();
4577 return 0;
4578 }
4579
4580 __initcall(slab_sysfs_init);
4581 #endif
4582
4583 /*
4584 * The /proc/slabinfo ABI
4585 */
4586 #ifdef CONFIG_SLABINFO
4587 static void print_slabinfo_header(struct seq_file *m)
4588 {
4589 seq_puts(m, "slabinfo - version: 2.1\n");
4590 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4591 "<objperslab> <pagesperslab>");
4592 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4593 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4594 seq_putc(m, '\n');
4595 }
4596
4597 static void *s_start(struct seq_file *m, loff_t *pos)
4598 {
4599 loff_t n = *pos;
4600
4601 down_read(&slub_lock);
4602 if (!n)
4603 print_slabinfo_header(m);
4604
4605 return seq_list_start(&slab_caches, *pos);
4606 }
4607
4608 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4609 {
4610 return seq_list_next(p, &slab_caches, pos);
4611 }
4612
4613 static void s_stop(struct seq_file *m, void *p)
4614 {
4615 up_read(&slub_lock);
4616 }
4617
4618 static int s_show(struct seq_file *m, void *p)
4619 {
4620 unsigned long nr_partials = 0;
4621 unsigned long nr_slabs = 0;
4622 unsigned long nr_inuse = 0;
4623 unsigned long nr_objs = 0;
4624 unsigned long nr_free = 0;
4625 struct kmem_cache *s;
4626 int node;
4627
4628 s = list_entry(p, struct kmem_cache, list);
4629
4630 for_each_online_node(node) {
4631 struct kmem_cache_node *n = get_node(s, node);
4632
4633 if (!n)
4634 continue;
4635
4636 nr_partials += n->nr_partial;
4637 nr_slabs += atomic_long_read(&n->nr_slabs);
4638 nr_objs += atomic_long_read(&n->total_objects);
4639 nr_free += count_partial(n, count_free);
4640 }
4641
4642 nr_inuse = nr_objs - nr_free;
4643
4644 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4645 nr_objs, s->size, oo_objects(s->oo),
4646 (1 << oo_order(s->oo)));
4647 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4648 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4649 0UL);
4650 seq_putc(m, '\n');
4651 return 0;
4652 }
4653
4654 static const struct seq_operations slabinfo_op = {
4655 .start = s_start,
4656 .next = s_next,
4657 .stop = s_stop,
4658 .show = s_show,
4659 };
4660
4661 static int slabinfo_open(struct inode *inode, struct file *file)
4662 {
4663 return seq_open(file, &slabinfo_op);
4664 }
4665
4666 static const struct file_operations proc_slabinfo_operations = {
4667 .open = slabinfo_open,
4668 .read = seq_read,
4669 .llseek = seq_lseek,
4670 .release = seq_release,
4671 };
4672
4673 static int __init slab_proc_init(void)
4674 {
4675 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4676 return 0;
4677 }
4678 module_init(slab_proc_init);
4679 #endif /* CONFIG_SLABINFO */