]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200 /*
201 * Tracking user of a slab.
202 */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212 };
213
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244 /*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
257 }
258
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262 {
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return freelist_dereference(s, object + s->offset);
270 }
271
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 unsigned long freepointer_addr;
281 void *p;
282
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
289 }
290
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
307
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
312
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 return (p - addr) / s->size;
317 }
318
319 static inline int order_objects(int order, unsigned long size, int reserved)
320 {
321 return ((PAGE_SIZE << order) - reserved) / size;
322 }
323
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
326 {
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
329 };
330
331 return x;
332 }
333
334 static inline int oo_order(struct kmem_cache_order_objects x)
335 {
336 return x.x >> OO_SHIFT;
337 }
338
339 static inline int oo_objects(struct kmem_cache_order_objects x)
340 {
341 return x.x & OO_MASK;
342 }
343
344 /*
345 * Per slab locking using the pagelock
346 */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return false;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return false;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 static inline int size_from_object(struct kmem_cache *s)
470 {
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475 }
476
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483 }
484
485 /*
486 * Debug settings:
487 */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
496
497 /*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503 static inline void metadata_access_enable(void)
504 {
505 kasan_disable_current();
506 }
507
508 static inline void metadata_access_disable(void)
509 {
510 kasan_enable_current();
511 }
512
513 /*
514 * Object debugging
515 */
516
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520 {
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534 }
535
536 static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
538 {
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
543 }
544
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547 {
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556 }
557
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
560 {
561 struct track *p = get_track(s, object, alloc);
562
563 if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583 #endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590 }
591
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600
601 static void print_track(const char *s, struct track *t)
602 {
603 if (!t->addr)
604 return;
605
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
616 }
617 #endif
618 }
619
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
626 print_track("Freed", get_track(s, object, TRACK_FREE));
627 }
628
629 static void print_page_info(struct page *page)
630 {
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page, page->objects, page->inuse, page->freelist, page->flags);
633
634 }
635
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 struct va_format vaf;
639 va_list args;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 pr_err("-----------------------------------------------------------------------------\n\n");
647
648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 va_end(args);
650 }
651
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 va_start(args, fmt);
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
661 va_end(args);
662 }
663
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 unsigned int off; /* Offset of last byte */
667 u8 *addr = page_address(page);
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
675
676 if (s->flags & SLAB_RED_ZONE)
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
679 else if (p > addr + 16)
680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681
682 print_section(KERN_ERR, "Object ", p,
683 min_t(unsigned long, s->object_size, PAGE_SIZE));
684 if (s->flags & SLAB_RED_ZONE)
685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 s->inuse - s->object_size);
687
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
693 if (s->flags & SLAB_STORE_USER)
694 off += 2 * sizeof(struct track);
695
696 off += kasan_metadata_size(s);
697
698 if (off != size_from_object(s))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
702
703 dump_stack();
704 }
705
706 void object_err(struct kmem_cache *s, struct page *page,
707 u8 *object, char *reason)
708 {
709 slab_bug(s, "%s", reason);
710 print_trailer(s, page, object);
711 }
712
713 static void slab_err(struct kmem_cache *s, struct page *page,
714 const char *fmt, ...)
715 {
716 va_list args;
717 char buf[100];
718
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
721 va_end(args);
722 slab_bug(s, "%s", buf);
723 print_page_info(page);
724 dump_stack();
725 }
726
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 u8 *p = object;
730
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
734 if (s->flags & __OBJECT_POISON) {
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
740 memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745 {
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748 }
749
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
752 u8 *start, unsigned int value, unsigned int bytes)
753 {
754 u8 *fault;
755 u8 *end;
756
757 metadata_access_enable();
758 fault = memchr_inv(start, value, bytes);
759 metadata_access_disable();
760 if (!fault)
761 return 1;
762
763 end = start + bytes;
764 while (end > fault && end[-1] == value)
765 end--;
766
767 slab_bug(s, "%s overwritten", what);
768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 fault, end - 1, fault[0], value);
770 print_trailer(s, page, object);
771
772 restore_bytes(s, what, value, fault, end);
773 return 0;
774 }
775
776 /*
777 * Object layout:
778 *
779 * object address
780 * Bytes of the object to be managed.
781 * If the freepointer may overlay the object then the free
782 * pointer is the first word of the object.
783 *
784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
785 * 0xa5 (POISON_END)
786 *
787 * object + s->object_size
788 * Padding to reach word boundary. This is also used for Redzoning.
789 * Padding is extended by another word if Redzoning is enabled and
790 * object_size == inuse.
791 *
792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793 * 0xcc (RED_ACTIVE) for objects in use.
794 *
795 * object + s->inuse
796 * Meta data starts here.
797 *
798 * A. Free pointer (if we cannot overwrite object on free)
799 * B. Tracking data for SLAB_STORE_USER
800 * C. Padding to reach required alignment boundary or at mininum
801 * one word if debugging is on to be able to detect writes
802 * before the word boundary.
803 *
804 * Padding is done using 0x5a (POISON_INUSE)
805 *
806 * object + s->size
807 * Nothing is used beyond s->size.
808 *
809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
810 * ignored. And therefore no slab options that rely on these boundaries
811 * may be used with merged slabcaches.
812 */
813
814 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
815 {
816 unsigned long off = s->inuse; /* The end of info */
817
818 if (s->offset)
819 /* Freepointer is placed after the object. */
820 off += sizeof(void *);
821
822 if (s->flags & SLAB_STORE_USER)
823 /* We also have user information there */
824 off += 2 * sizeof(struct track);
825
826 off += kasan_metadata_size(s);
827
828 if (size_from_object(s) == off)
829 return 1;
830
831 return check_bytes_and_report(s, page, p, "Object padding",
832 p + off, POISON_INUSE, size_from_object(s) - off);
833 }
834
835 /* Check the pad bytes at the end of a slab page */
836 static int slab_pad_check(struct kmem_cache *s, struct page *page)
837 {
838 u8 *start;
839 u8 *fault;
840 u8 *end;
841 int length;
842 int remainder;
843
844 if (!(s->flags & SLAB_POISON))
845 return 1;
846
847 start = page_address(page);
848 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
849 end = start + length;
850 remainder = length % s->size;
851 if (!remainder)
852 return 1;
853
854 metadata_access_enable();
855 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
856 metadata_access_disable();
857 if (!fault)
858 return 1;
859 while (end > fault && end[-1] == POISON_INUSE)
860 end--;
861
862 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
863 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
864
865 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
866 return 0;
867 }
868
869 static int check_object(struct kmem_cache *s, struct page *page,
870 void *object, u8 val)
871 {
872 u8 *p = object;
873 u8 *endobject = object + s->object_size;
874
875 if (s->flags & SLAB_RED_ZONE) {
876 if (!check_bytes_and_report(s, page, object, "Redzone",
877 object - s->red_left_pad, val, s->red_left_pad))
878 return 0;
879
880 if (!check_bytes_and_report(s, page, object, "Redzone",
881 endobject, val, s->inuse - s->object_size))
882 return 0;
883 } else {
884 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
885 check_bytes_and_report(s, page, p, "Alignment padding",
886 endobject, POISON_INUSE,
887 s->inuse - s->object_size);
888 }
889 }
890
891 if (s->flags & SLAB_POISON) {
892 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
893 (!check_bytes_and_report(s, page, p, "Poison", p,
894 POISON_FREE, s->object_size - 1) ||
895 !check_bytes_and_report(s, page, p, "Poison",
896 p + s->object_size - 1, POISON_END, 1)))
897 return 0;
898 /*
899 * check_pad_bytes cleans up on its own.
900 */
901 check_pad_bytes(s, page, p);
902 }
903
904 if (!s->offset && val == SLUB_RED_ACTIVE)
905 /*
906 * Object and freepointer overlap. Cannot check
907 * freepointer while object is allocated.
908 */
909 return 1;
910
911 /* Check free pointer validity */
912 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
913 object_err(s, page, p, "Freepointer corrupt");
914 /*
915 * No choice but to zap it and thus lose the remainder
916 * of the free objects in this slab. May cause
917 * another error because the object count is now wrong.
918 */
919 set_freepointer(s, p, NULL);
920 return 0;
921 }
922 return 1;
923 }
924
925 static int check_slab(struct kmem_cache *s, struct page *page)
926 {
927 int maxobj;
928
929 VM_BUG_ON(!irqs_disabled());
930
931 if (!PageSlab(page)) {
932 slab_err(s, page, "Not a valid slab page");
933 return 0;
934 }
935
936 maxobj = order_objects(compound_order(page), s->size, s->reserved);
937 if (page->objects > maxobj) {
938 slab_err(s, page, "objects %u > max %u",
939 page->objects, maxobj);
940 return 0;
941 }
942 if (page->inuse > page->objects) {
943 slab_err(s, page, "inuse %u > max %u",
944 page->inuse, page->objects);
945 return 0;
946 }
947 /* Slab_pad_check fixes things up after itself */
948 slab_pad_check(s, page);
949 return 1;
950 }
951
952 /*
953 * Determine if a certain object on a page is on the freelist. Must hold the
954 * slab lock to guarantee that the chains are in a consistent state.
955 */
956 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
957 {
958 int nr = 0;
959 void *fp;
960 void *object = NULL;
961 int max_objects;
962
963 fp = page->freelist;
964 while (fp && nr <= page->objects) {
965 if (fp == search)
966 return 1;
967 if (!check_valid_pointer(s, page, fp)) {
968 if (object) {
969 object_err(s, page, object,
970 "Freechain corrupt");
971 set_freepointer(s, object, NULL);
972 } else {
973 slab_err(s, page, "Freepointer corrupt");
974 page->freelist = NULL;
975 page->inuse = page->objects;
976 slab_fix(s, "Freelist cleared");
977 return 0;
978 }
979 break;
980 }
981 object = fp;
982 fp = get_freepointer(s, object);
983 nr++;
984 }
985
986 max_objects = order_objects(compound_order(page), s->size, s->reserved);
987 if (max_objects > MAX_OBJS_PER_PAGE)
988 max_objects = MAX_OBJS_PER_PAGE;
989
990 if (page->objects != max_objects) {
991 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
992 page->objects, max_objects);
993 page->objects = max_objects;
994 slab_fix(s, "Number of objects adjusted.");
995 }
996 if (page->inuse != page->objects - nr) {
997 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
998 page->inuse, page->objects - nr);
999 page->inuse = page->objects - nr;
1000 slab_fix(s, "Object count adjusted.");
1001 }
1002 return search == NULL;
1003 }
1004
1005 static void trace(struct kmem_cache *s, struct page *page, void *object,
1006 int alloc)
1007 {
1008 if (s->flags & SLAB_TRACE) {
1009 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1010 s->name,
1011 alloc ? "alloc" : "free",
1012 object, page->inuse,
1013 page->freelist);
1014
1015 if (!alloc)
1016 print_section(KERN_INFO, "Object ", (void *)object,
1017 s->object_size);
1018
1019 dump_stack();
1020 }
1021 }
1022
1023 /*
1024 * Tracking of fully allocated slabs for debugging purposes.
1025 */
1026 static void add_full(struct kmem_cache *s,
1027 struct kmem_cache_node *n, struct page *page)
1028 {
1029 if (!(s->flags & SLAB_STORE_USER))
1030 return;
1031
1032 lockdep_assert_held(&n->list_lock);
1033 list_add(&page->lru, &n->full);
1034 }
1035
1036 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1037 {
1038 if (!(s->flags & SLAB_STORE_USER))
1039 return;
1040
1041 lockdep_assert_held(&n->list_lock);
1042 list_del(&page->lru);
1043 }
1044
1045 /* Tracking of the number of slabs for debugging purposes */
1046 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1047 {
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 return atomic_long_read(&n->nr_slabs);
1051 }
1052
1053 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1054 {
1055 return atomic_long_read(&n->nr_slabs);
1056 }
1057
1058 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 /*
1063 * May be called early in order to allocate a slab for the
1064 * kmem_cache_node structure. Solve the chicken-egg
1065 * dilemma by deferring the increment of the count during
1066 * bootstrap (see early_kmem_cache_node_alloc).
1067 */
1068 if (likely(n)) {
1069 atomic_long_inc(&n->nr_slabs);
1070 atomic_long_add(objects, &n->total_objects);
1071 }
1072 }
1073 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1074 {
1075 struct kmem_cache_node *n = get_node(s, node);
1076
1077 atomic_long_dec(&n->nr_slabs);
1078 atomic_long_sub(objects, &n->total_objects);
1079 }
1080
1081 /* Object debug checks for alloc/free paths */
1082 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1083 void *object)
1084 {
1085 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1086 return;
1087
1088 init_object(s, object, SLUB_RED_INACTIVE);
1089 init_tracking(s, object);
1090 }
1091
1092 static inline int alloc_consistency_checks(struct kmem_cache *s,
1093 struct page *page,
1094 void *object, unsigned long addr)
1095 {
1096 if (!check_slab(s, page))
1097 return 0;
1098
1099 if (!check_valid_pointer(s, page, object)) {
1100 object_err(s, page, object, "Freelist Pointer check fails");
1101 return 0;
1102 }
1103
1104 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1105 return 0;
1106
1107 return 1;
1108 }
1109
1110 static noinline int alloc_debug_processing(struct kmem_cache *s,
1111 struct page *page,
1112 void *object, unsigned long addr)
1113 {
1114 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1115 if (!alloc_consistency_checks(s, page, object, addr))
1116 goto bad;
1117 }
1118
1119 /* Success perform special debug activities for allocs */
1120 if (s->flags & SLAB_STORE_USER)
1121 set_track(s, object, TRACK_ALLOC, addr);
1122 trace(s, page, object, 1);
1123 init_object(s, object, SLUB_RED_ACTIVE);
1124 return 1;
1125
1126 bad:
1127 if (PageSlab(page)) {
1128 /*
1129 * If this is a slab page then lets do the best we can
1130 * to avoid issues in the future. Marking all objects
1131 * as used avoids touching the remaining objects.
1132 */
1133 slab_fix(s, "Marking all objects used");
1134 page->inuse = page->objects;
1135 page->freelist = NULL;
1136 }
1137 return 0;
1138 }
1139
1140 static inline int free_consistency_checks(struct kmem_cache *s,
1141 struct page *page, void *object, unsigned long addr)
1142 {
1143 if (!check_valid_pointer(s, page, object)) {
1144 slab_err(s, page, "Invalid object pointer 0x%p", object);
1145 return 0;
1146 }
1147
1148 if (on_freelist(s, page, object)) {
1149 object_err(s, page, object, "Object already free");
1150 return 0;
1151 }
1152
1153 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1154 return 0;
1155
1156 if (unlikely(s != page->slab_cache)) {
1157 if (!PageSlab(page)) {
1158 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1159 object);
1160 } else if (!page->slab_cache) {
1161 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1162 object);
1163 dump_stack();
1164 } else
1165 object_err(s, page, object,
1166 "page slab pointer corrupt.");
1167 return 0;
1168 }
1169 return 1;
1170 }
1171
1172 /* Supports checking bulk free of a constructed freelist */
1173 static noinline int free_debug_processing(
1174 struct kmem_cache *s, struct page *page,
1175 void *head, void *tail, int bulk_cnt,
1176 unsigned long addr)
1177 {
1178 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1179 void *object = head;
1180 int cnt = 0;
1181 unsigned long uninitialized_var(flags);
1182 int ret = 0;
1183
1184 spin_lock_irqsave(&n->list_lock, flags);
1185 slab_lock(page);
1186
1187 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1188 if (!check_slab(s, page))
1189 goto out;
1190 }
1191
1192 next_object:
1193 cnt++;
1194
1195 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1196 if (!free_consistency_checks(s, page, object, addr))
1197 goto out;
1198 }
1199
1200 if (s->flags & SLAB_STORE_USER)
1201 set_track(s, object, TRACK_FREE, addr);
1202 trace(s, page, object, 0);
1203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1204 init_object(s, object, SLUB_RED_INACTIVE);
1205
1206 /* Reached end of constructed freelist yet? */
1207 if (object != tail) {
1208 object = get_freepointer(s, object);
1209 goto next_object;
1210 }
1211 ret = 1;
1212
1213 out:
1214 if (cnt != bulk_cnt)
1215 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1216 bulk_cnt, cnt);
1217
1218 slab_unlock(page);
1219 spin_unlock_irqrestore(&n->list_lock, flags);
1220 if (!ret)
1221 slab_fix(s, "Object at 0x%p not freed", object);
1222 return ret;
1223 }
1224
1225 static int __init setup_slub_debug(char *str)
1226 {
1227 slub_debug = DEBUG_DEFAULT_FLAGS;
1228 if (*str++ != '=' || !*str)
1229 /*
1230 * No options specified. Switch on full debugging.
1231 */
1232 goto out;
1233
1234 if (*str == ',')
1235 /*
1236 * No options but restriction on slabs. This means full
1237 * debugging for slabs matching a pattern.
1238 */
1239 goto check_slabs;
1240
1241 slub_debug = 0;
1242 if (*str == '-')
1243 /*
1244 * Switch off all debugging measures.
1245 */
1246 goto out;
1247
1248 /*
1249 * Determine which debug features should be switched on
1250 */
1251 for (; *str && *str != ','; str++) {
1252 switch (tolower(*str)) {
1253 case 'f':
1254 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1255 break;
1256 case 'z':
1257 slub_debug |= SLAB_RED_ZONE;
1258 break;
1259 case 'p':
1260 slub_debug |= SLAB_POISON;
1261 break;
1262 case 'u':
1263 slub_debug |= SLAB_STORE_USER;
1264 break;
1265 case 't':
1266 slub_debug |= SLAB_TRACE;
1267 break;
1268 case 'a':
1269 slub_debug |= SLAB_FAILSLAB;
1270 break;
1271 case 'o':
1272 /*
1273 * Avoid enabling debugging on caches if its minimum
1274 * order would increase as a result.
1275 */
1276 disable_higher_order_debug = 1;
1277 break;
1278 default:
1279 pr_err("slub_debug option '%c' unknown. skipped\n",
1280 *str);
1281 }
1282 }
1283
1284 check_slabs:
1285 if (*str == ',')
1286 slub_debug_slabs = str + 1;
1287 out:
1288 return 1;
1289 }
1290
1291 __setup("slub_debug", setup_slub_debug);
1292
1293 slab_flags_t kmem_cache_flags(unsigned long object_size,
1294 slab_flags_t flags, const char *name,
1295 void (*ctor)(void *))
1296 {
1297 /*
1298 * Enable debugging if selected on the kernel commandline.
1299 */
1300 if (slub_debug && (!slub_debug_slabs || (name &&
1301 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1302 flags |= slub_debug;
1303
1304 return flags;
1305 }
1306 #else /* !CONFIG_SLUB_DEBUG */
1307 static inline void setup_object_debug(struct kmem_cache *s,
1308 struct page *page, void *object) {}
1309
1310 static inline int alloc_debug_processing(struct kmem_cache *s,
1311 struct page *page, void *object, unsigned long addr) { return 0; }
1312
1313 static inline int free_debug_processing(
1314 struct kmem_cache *s, struct page *page,
1315 void *head, void *tail, int bulk_cnt,
1316 unsigned long addr) { return 0; }
1317
1318 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1319 { return 1; }
1320 static inline int check_object(struct kmem_cache *s, struct page *page,
1321 void *object, u8 val) { return 1; }
1322 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
1324 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325 struct page *page) {}
1326 slab_flags_t kmem_cache_flags(unsigned long object_size,
1327 slab_flags_t flags, const char *name,
1328 void (*ctor)(void *))
1329 {
1330 return flags;
1331 }
1332 #define slub_debug 0
1333
1334 #define disable_higher_order_debug 0
1335
1336 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1337 { return 0; }
1338 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1339 { return 0; }
1340 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
1342 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1343 int objects) {}
1344
1345 #endif /* CONFIG_SLUB_DEBUG */
1346
1347 /*
1348 * Hooks for other subsystems that check memory allocations. In a typical
1349 * production configuration these hooks all should produce no code at all.
1350 */
1351 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1352 {
1353 kmemleak_alloc(ptr, size, 1, flags);
1354 kasan_kmalloc_large(ptr, size, flags);
1355 }
1356
1357 static inline void kfree_hook(const void *x)
1358 {
1359 kmemleak_free(x);
1360 kasan_kfree_large(x);
1361 }
1362
1363 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1364 {
1365 void *freeptr;
1366
1367 kmemleak_free_recursive(x, s->flags);
1368
1369 /*
1370 * Trouble is that we may no longer disable interrupts in the fast path
1371 * So in order to make the debug calls that expect irqs to be
1372 * disabled we need to disable interrupts temporarily.
1373 */
1374 #ifdef CONFIG_LOCKDEP
1375 {
1376 unsigned long flags;
1377
1378 local_irq_save(flags);
1379 debug_check_no_locks_freed(x, s->object_size);
1380 local_irq_restore(flags);
1381 }
1382 #endif
1383 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1384 debug_check_no_obj_freed(x, s->object_size);
1385
1386 freeptr = get_freepointer(s, x);
1387 /*
1388 * kasan_slab_free() may put x into memory quarantine, delaying its
1389 * reuse. In this case the object's freelist pointer is changed.
1390 */
1391 kasan_slab_free(s, x);
1392 return freeptr;
1393 }
1394
1395 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1396 void *head, void *tail)
1397 {
1398 /*
1399 * Compiler cannot detect this function can be removed if slab_free_hook()
1400 * evaluates to nothing. Thus, catch all relevant config debug options here.
1401 */
1402 #if defined(CONFIG_LOCKDEP) || \
1403 defined(CONFIG_DEBUG_KMEMLEAK) || \
1404 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1405 defined(CONFIG_KASAN)
1406
1407 void *object = head;
1408 void *tail_obj = tail ? : head;
1409 void *freeptr;
1410
1411 do {
1412 freeptr = slab_free_hook(s, object);
1413 } while ((object != tail_obj) && (object = freeptr));
1414 #endif
1415 }
1416
1417 static void setup_object(struct kmem_cache *s, struct page *page,
1418 void *object)
1419 {
1420 setup_object_debug(s, page, object);
1421 kasan_init_slab_obj(s, object);
1422 if (unlikely(s->ctor)) {
1423 kasan_unpoison_object_data(s, object);
1424 s->ctor(object);
1425 kasan_poison_object_data(s, object);
1426 }
1427 }
1428
1429 /*
1430 * Slab allocation and freeing
1431 */
1432 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1433 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1434 {
1435 struct page *page;
1436 int order = oo_order(oo);
1437
1438 if (node == NUMA_NO_NODE)
1439 page = alloc_pages(flags, order);
1440 else
1441 page = __alloc_pages_node(node, flags, order);
1442
1443 if (page && memcg_charge_slab(page, flags, order, s)) {
1444 __free_pages(page, order);
1445 page = NULL;
1446 }
1447
1448 return page;
1449 }
1450
1451 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1452 /* Pre-initialize the random sequence cache */
1453 static int init_cache_random_seq(struct kmem_cache *s)
1454 {
1455 int err;
1456 unsigned long i, count = oo_objects(s->oo);
1457
1458 /* Bailout if already initialised */
1459 if (s->random_seq)
1460 return 0;
1461
1462 err = cache_random_seq_create(s, count, GFP_KERNEL);
1463 if (err) {
1464 pr_err("SLUB: Unable to initialize free list for %s\n",
1465 s->name);
1466 return err;
1467 }
1468
1469 /* Transform to an offset on the set of pages */
1470 if (s->random_seq) {
1471 for (i = 0; i < count; i++)
1472 s->random_seq[i] *= s->size;
1473 }
1474 return 0;
1475 }
1476
1477 /* Initialize each random sequence freelist per cache */
1478 static void __init init_freelist_randomization(void)
1479 {
1480 struct kmem_cache *s;
1481
1482 mutex_lock(&slab_mutex);
1483
1484 list_for_each_entry(s, &slab_caches, list)
1485 init_cache_random_seq(s);
1486
1487 mutex_unlock(&slab_mutex);
1488 }
1489
1490 /* Get the next entry on the pre-computed freelist randomized */
1491 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1492 unsigned long *pos, void *start,
1493 unsigned long page_limit,
1494 unsigned long freelist_count)
1495 {
1496 unsigned int idx;
1497
1498 /*
1499 * If the target page allocation failed, the number of objects on the
1500 * page might be smaller than the usual size defined by the cache.
1501 */
1502 do {
1503 idx = s->random_seq[*pos];
1504 *pos += 1;
1505 if (*pos >= freelist_count)
1506 *pos = 0;
1507 } while (unlikely(idx >= page_limit));
1508
1509 return (char *)start + idx;
1510 }
1511
1512 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1513 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1514 {
1515 void *start;
1516 void *cur;
1517 void *next;
1518 unsigned long idx, pos, page_limit, freelist_count;
1519
1520 if (page->objects < 2 || !s->random_seq)
1521 return false;
1522
1523 freelist_count = oo_objects(s->oo);
1524 pos = get_random_int() % freelist_count;
1525
1526 page_limit = page->objects * s->size;
1527 start = fixup_red_left(s, page_address(page));
1528
1529 /* First entry is used as the base of the freelist */
1530 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1531 freelist_count);
1532 page->freelist = cur;
1533
1534 for (idx = 1; idx < page->objects; idx++) {
1535 setup_object(s, page, cur);
1536 next = next_freelist_entry(s, page, &pos, start, page_limit,
1537 freelist_count);
1538 set_freepointer(s, cur, next);
1539 cur = next;
1540 }
1541 setup_object(s, page, cur);
1542 set_freepointer(s, cur, NULL);
1543
1544 return true;
1545 }
1546 #else
1547 static inline int init_cache_random_seq(struct kmem_cache *s)
1548 {
1549 return 0;
1550 }
1551 static inline void init_freelist_randomization(void) { }
1552 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1553 {
1554 return false;
1555 }
1556 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1557
1558 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1559 {
1560 struct page *page;
1561 struct kmem_cache_order_objects oo = s->oo;
1562 gfp_t alloc_gfp;
1563 void *start, *p;
1564 int idx, order;
1565 bool shuffle;
1566
1567 flags &= gfp_allowed_mask;
1568
1569 if (gfpflags_allow_blocking(flags))
1570 local_irq_enable();
1571
1572 flags |= s->allocflags;
1573
1574 /*
1575 * Let the initial higher-order allocation fail under memory pressure
1576 * so we fall-back to the minimum order allocation.
1577 */
1578 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1579 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1580 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1581
1582 page = alloc_slab_page(s, alloc_gfp, node, oo);
1583 if (unlikely(!page)) {
1584 oo = s->min;
1585 alloc_gfp = flags;
1586 /*
1587 * Allocation may have failed due to fragmentation.
1588 * Try a lower order alloc if possible
1589 */
1590 page = alloc_slab_page(s, alloc_gfp, node, oo);
1591 if (unlikely(!page))
1592 goto out;
1593 stat(s, ORDER_FALLBACK);
1594 }
1595
1596 page->objects = oo_objects(oo);
1597
1598 order = compound_order(page);
1599 page->slab_cache = s;
1600 __SetPageSlab(page);
1601 if (page_is_pfmemalloc(page))
1602 SetPageSlabPfmemalloc(page);
1603
1604 start = page_address(page);
1605
1606 if (unlikely(s->flags & SLAB_POISON))
1607 memset(start, POISON_INUSE, PAGE_SIZE << order);
1608
1609 kasan_poison_slab(page);
1610
1611 shuffle = shuffle_freelist(s, page);
1612
1613 if (!shuffle) {
1614 for_each_object_idx(p, idx, s, start, page->objects) {
1615 setup_object(s, page, p);
1616 if (likely(idx < page->objects))
1617 set_freepointer(s, p, p + s->size);
1618 else
1619 set_freepointer(s, p, NULL);
1620 }
1621 page->freelist = fixup_red_left(s, start);
1622 }
1623
1624 page->inuse = page->objects;
1625 page->frozen = 1;
1626
1627 out:
1628 if (gfpflags_allow_blocking(flags))
1629 local_irq_disable();
1630 if (!page)
1631 return NULL;
1632
1633 mod_lruvec_page_state(page,
1634 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1635 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1636 1 << oo_order(oo));
1637
1638 inc_slabs_node(s, page_to_nid(page), page->objects);
1639
1640 return page;
1641 }
1642
1643 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1644 {
1645 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1646 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1647 flags &= ~GFP_SLAB_BUG_MASK;
1648 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1649 invalid_mask, &invalid_mask, flags, &flags);
1650 dump_stack();
1651 }
1652
1653 return allocate_slab(s,
1654 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1655 }
1656
1657 static void __free_slab(struct kmem_cache *s, struct page *page)
1658 {
1659 int order = compound_order(page);
1660 int pages = 1 << order;
1661
1662 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1663 void *p;
1664
1665 slab_pad_check(s, page);
1666 for_each_object(p, s, page_address(page),
1667 page->objects)
1668 check_object(s, page, p, SLUB_RED_INACTIVE);
1669 }
1670
1671 mod_lruvec_page_state(page,
1672 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1673 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1674 -pages);
1675
1676 __ClearPageSlabPfmemalloc(page);
1677 __ClearPageSlab(page);
1678
1679 page_mapcount_reset(page);
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += pages;
1682 memcg_uncharge_slab(page, order, s);
1683 __free_pages(page, order);
1684 }
1685
1686 #define need_reserve_slab_rcu \
1687 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1688
1689 static void rcu_free_slab(struct rcu_head *h)
1690 {
1691 struct page *page;
1692
1693 if (need_reserve_slab_rcu)
1694 page = virt_to_head_page(h);
1695 else
1696 page = container_of((struct list_head *)h, struct page, lru);
1697
1698 __free_slab(page->slab_cache, page);
1699 }
1700
1701 static void free_slab(struct kmem_cache *s, struct page *page)
1702 {
1703 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1704 struct rcu_head *head;
1705
1706 if (need_reserve_slab_rcu) {
1707 int order = compound_order(page);
1708 int offset = (PAGE_SIZE << order) - s->reserved;
1709
1710 VM_BUG_ON(s->reserved != sizeof(*head));
1711 head = page_address(page) + offset;
1712 } else {
1713 head = &page->rcu_head;
1714 }
1715
1716 call_rcu(head, rcu_free_slab);
1717 } else
1718 __free_slab(s, page);
1719 }
1720
1721 static void discard_slab(struct kmem_cache *s, struct page *page)
1722 {
1723 dec_slabs_node(s, page_to_nid(page), page->objects);
1724 free_slab(s, page);
1725 }
1726
1727 /*
1728 * Management of partially allocated slabs.
1729 */
1730 static inline void
1731 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1732 {
1733 n->nr_partial++;
1734 if (tail == DEACTIVATE_TO_TAIL)
1735 list_add_tail(&page->lru, &n->partial);
1736 else
1737 list_add(&page->lru, &n->partial);
1738 }
1739
1740 static inline void add_partial(struct kmem_cache_node *n,
1741 struct page *page, int tail)
1742 {
1743 lockdep_assert_held(&n->list_lock);
1744 __add_partial(n, page, tail);
1745 }
1746
1747 static inline void remove_partial(struct kmem_cache_node *n,
1748 struct page *page)
1749 {
1750 lockdep_assert_held(&n->list_lock);
1751 list_del(&page->lru);
1752 n->nr_partial--;
1753 }
1754
1755 /*
1756 * Remove slab from the partial list, freeze it and
1757 * return the pointer to the freelist.
1758 *
1759 * Returns a list of objects or NULL if it fails.
1760 */
1761 static inline void *acquire_slab(struct kmem_cache *s,
1762 struct kmem_cache_node *n, struct page *page,
1763 int mode, int *objects)
1764 {
1765 void *freelist;
1766 unsigned long counters;
1767 struct page new;
1768
1769 lockdep_assert_held(&n->list_lock);
1770
1771 /*
1772 * Zap the freelist and set the frozen bit.
1773 * The old freelist is the list of objects for the
1774 * per cpu allocation list.
1775 */
1776 freelist = page->freelist;
1777 counters = page->counters;
1778 new.counters = counters;
1779 *objects = new.objects - new.inuse;
1780 if (mode) {
1781 new.inuse = page->objects;
1782 new.freelist = NULL;
1783 } else {
1784 new.freelist = freelist;
1785 }
1786
1787 VM_BUG_ON(new.frozen);
1788 new.frozen = 1;
1789
1790 if (!__cmpxchg_double_slab(s, page,
1791 freelist, counters,
1792 new.freelist, new.counters,
1793 "acquire_slab"))
1794 return NULL;
1795
1796 remove_partial(n, page);
1797 WARN_ON(!freelist);
1798 return freelist;
1799 }
1800
1801 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1802 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1803
1804 /*
1805 * Try to allocate a partial slab from a specific node.
1806 */
1807 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1808 struct kmem_cache_cpu *c, gfp_t flags)
1809 {
1810 struct page *page, *page2;
1811 void *object = NULL;
1812 int available = 0;
1813 int objects;
1814
1815 /*
1816 * Racy check. If we mistakenly see no partial slabs then we
1817 * just allocate an empty slab. If we mistakenly try to get a
1818 * partial slab and there is none available then get_partials()
1819 * will return NULL.
1820 */
1821 if (!n || !n->nr_partial)
1822 return NULL;
1823
1824 spin_lock(&n->list_lock);
1825 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1826 void *t;
1827
1828 if (!pfmemalloc_match(page, flags))
1829 continue;
1830
1831 t = acquire_slab(s, n, page, object == NULL, &objects);
1832 if (!t)
1833 break;
1834
1835 available += objects;
1836 if (!object) {
1837 c->page = page;
1838 stat(s, ALLOC_FROM_PARTIAL);
1839 object = t;
1840 } else {
1841 put_cpu_partial(s, page, 0);
1842 stat(s, CPU_PARTIAL_NODE);
1843 }
1844 if (!kmem_cache_has_cpu_partial(s)
1845 || available > slub_cpu_partial(s) / 2)
1846 break;
1847
1848 }
1849 spin_unlock(&n->list_lock);
1850 return object;
1851 }
1852
1853 /*
1854 * Get a page from somewhere. Search in increasing NUMA distances.
1855 */
1856 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1857 struct kmem_cache_cpu *c)
1858 {
1859 #ifdef CONFIG_NUMA
1860 struct zonelist *zonelist;
1861 struct zoneref *z;
1862 struct zone *zone;
1863 enum zone_type high_zoneidx = gfp_zone(flags);
1864 void *object;
1865 unsigned int cpuset_mems_cookie;
1866
1867 /*
1868 * The defrag ratio allows a configuration of the tradeoffs between
1869 * inter node defragmentation and node local allocations. A lower
1870 * defrag_ratio increases the tendency to do local allocations
1871 * instead of attempting to obtain partial slabs from other nodes.
1872 *
1873 * If the defrag_ratio is set to 0 then kmalloc() always
1874 * returns node local objects. If the ratio is higher then kmalloc()
1875 * may return off node objects because partial slabs are obtained
1876 * from other nodes and filled up.
1877 *
1878 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1879 * (which makes defrag_ratio = 1000) then every (well almost)
1880 * allocation will first attempt to defrag slab caches on other nodes.
1881 * This means scanning over all nodes to look for partial slabs which
1882 * may be expensive if we do it every time we are trying to find a slab
1883 * with available objects.
1884 */
1885 if (!s->remote_node_defrag_ratio ||
1886 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1887 return NULL;
1888
1889 do {
1890 cpuset_mems_cookie = read_mems_allowed_begin();
1891 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1892 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1893 struct kmem_cache_node *n;
1894
1895 n = get_node(s, zone_to_nid(zone));
1896
1897 if (n && cpuset_zone_allowed(zone, flags) &&
1898 n->nr_partial > s->min_partial) {
1899 object = get_partial_node(s, n, c, flags);
1900 if (object) {
1901 /*
1902 * Don't check read_mems_allowed_retry()
1903 * here - if mems_allowed was updated in
1904 * parallel, that was a harmless race
1905 * between allocation and the cpuset
1906 * update
1907 */
1908 return object;
1909 }
1910 }
1911 }
1912 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1913 #endif
1914 return NULL;
1915 }
1916
1917 /*
1918 * Get a partial page, lock it and return it.
1919 */
1920 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1921 struct kmem_cache_cpu *c)
1922 {
1923 void *object;
1924 int searchnode = node;
1925
1926 if (node == NUMA_NO_NODE)
1927 searchnode = numa_mem_id();
1928 else if (!node_present_pages(node))
1929 searchnode = node_to_mem_node(node);
1930
1931 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1932 if (object || node != NUMA_NO_NODE)
1933 return object;
1934
1935 return get_any_partial(s, flags, c);
1936 }
1937
1938 #ifdef CONFIG_PREEMPT
1939 /*
1940 * Calculate the next globally unique transaction for disambiguiation
1941 * during cmpxchg. The transactions start with the cpu number and are then
1942 * incremented by CONFIG_NR_CPUS.
1943 */
1944 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1945 #else
1946 /*
1947 * No preemption supported therefore also no need to check for
1948 * different cpus.
1949 */
1950 #define TID_STEP 1
1951 #endif
1952
1953 static inline unsigned long next_tid(unsigned long tid)
1954 {
1955 return tid + TID_STEP;
1956 }
1957
1958 static inline unsigned int tid_to_cpu(unsigned long tid)
1959 {
1960 return tid % TID_STEP;
1961 }
1962
1963 static inline unsigned long tid_to_event(unsigned long tid)
1964 {
1965 return tid / TID_STEP;
1966 }
1967
1968 static inline unsigned int init_tid(int cpu)
1969 {
1970 return cpu;
1971 }
1972
1973 static inline void note_cmpxchg_failure(const char *n,
1974 const struct kmem_cache *s, unsigned long tid)
1975 {
1976 #ifdef SLUB_DEBUG_CMPXCHG
1977 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1978
1979 pr_info("%s %s: cmpxchg redo ", n, s->name);
1980
1981 #ifdef CONFIG_PREEMPT
1982 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1983 pr_warn("due to cpu change %d -> %d\n",
1984 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1985 else
1986 #endif
1987 if (tid_to_event(tid) != tid_to_event(actual_tid))
1988 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1989 tid_to_event(tid), tid_to_event(actual_tid));
1990 else
1991 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1992 actual_tid, tid, next_tid(tid));
1993 #endif
1994 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1995 }
1996
1997 static void init_kmem_cache_cpus(struct kmem_cache *s)
1998 {
1999 int cpu;
2000
2001 for_each_possible_cpu(cpu)
2002 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2003 }
2004
2005 /*
2006 * Remove the cpu slab
2007 */
2008 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2009 void *freelist, struct kmem_cache_cpu *c)
2010 {
2011 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2012 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2013 int lock = 0;
2014 enum slab_modes l = M_NONE, m = M_NONE;
2015 void *nextfree;
2016 int tail = DEACTIVATE_TO_HEAD;
2017 struct page new;
2018 struct page old;
2019
2020 if (page->freelist) {
2021 stat(s, DEACTIVATE_REMOTE_FREES);
2022 tail = DEACTIVATE_TO_TAIL;
2023 }
2024
2025 /*
2026 * Stage one: Free all available per cpu objects back
2027 * to the page freelist while it is still frozen. Leave the
2028 * last one.
2029 *
2030 * There is no need to take the list->lock because the page
2031 * is still frozen.
2032 */
2033 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2034 void *prior;
2035 unsigned long counters;
2036
2037 do {
2038 prior = page->freelist;
2039 counters = page->counters;
2040 set_freepointer(s, freelist, prior);
2041 new.counters = counters;
2042 new.inuse--;
2043 VM_BUG_ON(!new.frozen);
2044
2045 } while (!__cmpxchg_double_slab(s, page,
2046 prior, counters,
2047 freelist, new.counters,
2048 "drain percpu freelist"));
2049
2050 freelist = nextfree;
2051 }
2052
2053 /*
2054 * Stage two: Ensure that the page is unfrozen while the
2055 * list presence reflects the actual number of objects
2056 * during unfreeze.
2057 *
2058 * We setup the list membership and then perform a cmpxchg
2059 * with the count. If there is a mismatch then the page
2060 * is not unfrozen but the page is on the wrong list.
2061 *
2062 * Then we restart the process which may have to remove
2063 * the page from the list that we just put it on again
2064 * because the number of objects in the slab may have
2065 * changed.
2066 */
2067 redo:
2068
2069 old.freelist = page->freelist;
2070 old.counters = page->counters;
2071 VM_BUG_ON(!old.frozen);
2072
2073 /* Determine target state of the slab */
2074 new.counters = old.counters;
2075 if (freelist) {
2076 new.inuse--;
2077 set_freepointer(s, freelist, old.freelist);
2078 new.freelist = freelist;
2079 } else
2080 new.freelist = old.freelist;
2081
2082 new.frozen = 0;
2083
2084 if (!new.inuse && n->nr_partial >= s->min_partial)
2085 m = M_FREE;
2086 else if (new.freelist) {
2087 m = M_PARTIAL;
2088 if (!lock) {
2089 lock = 1;
2090 /*
2091 * Taking the spinlock removes the possiblity
2092 * that acquire_slab() will see a slab page that
2093 * is frozen
2094 */
2095 spin_lock(&n->list_lock);
2096 }
2097 } else {
2098 m = M_FULL;
2099 if (kmem_cache_debug(s) && !lock) {
2100 lock = 1;
2101 /*
2102 * This also ensures that the scanning of full
2103 * slabs from diagnostic functions will not see
2104 * any frozen slabs.
2105 */
2106 spin_lock(&n->list_lock);
2107 }
2108 }
2109
2110 if (l != m) {
2111
2112 if (l == M_PARTIAL)
2113
2114 remove_partial(n, page);
2115
2116 else if (l == M_FULL)
2117
2118 remove_full(s, n, page);
2119
2120 if (m == M_PARTIAL) {
2121
2122 add_partial(n, page, tail);
2123 stat(s, tail);
2124
2125 } else if (m == M_FULL) {
2126
2127 stat(s, DEACTIVATE_FULL);
2128 add_full(s, n, page);
2129
2130 }
2131 }
2132
2133 l = m;
2134 if (!__cmpxchg_double_slab(s, page,
2135 old.freelist, old.counters,
2136 new.freelist, new.counters,
2137 "unfreezing slab"))
2138 goto redo;
2139
2140 if (lock)
2141 spin_unlock(&n->list_lock);
2142
2143 if (m == M_FREE) {
2144 stat(s, DEACTIVATE_EMPTY);
2145 discard_slab(s, page);
2146 stat(s, FREE_SLAB);
2147 }
2148
2149 c->page = NULL;
2150 c->freelist = NULL;
2151 }
2152
2153 /*
2154 * Unfreeze all the cpu partial slabs.
2155 *
2156 * This function must be called with interrupts disabled
2157 * for the cpu using c (or some other guarantee must be there
2158 * to guarantee no concurrent accesses).
2159 */
2160 static void unfreeze_partials(struct kmem_cache *s,
2161 struct kmem_cache_cpu *c)
2162 {
2163 #ifdef CONFIG_SLUB_CPU_PARTIAL
2164 struct kmem_cache_node *n = NULL, *n2 = NULL;
2165 struct page *page, *discard_page = NULL;
2166
2167 while ((page = c->partial)) {
2168 struct page new;
2169 struct page old;
2170
2171 c->partial = page->next;
2172
2173 n2 = get_node(s, page_to_nid(page));
2174 if (n != n2) {
2175 if (n)
2176 spin_unlock(&n->list_lock);
2177
2178 n = n2;
2179 spin_lock(&n->list_lock);
2180 }
2181
2182 do {
2183
2184 old.freelist = page->freelist;
2185 old.counters = page->counters;
2186 VM_BUG_ON(!old.frozen);
2187
2188 new.counters = old.counters;
2189 new.freelist = old.freelist;
2190
2191 new.frozen = 0;
2192
2193 } while (!__cmpxchg_double_slab(s, page,
2194 old.freelist, old.counters,
2195 new.freelist, new.counters,
2196 "unfreezing slab"));
2197
2198 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2199 page->next = discard_page;
2200 discard_page = page;
2201 } else {
2202 add_partial(n, page, DEACTIVATE_TO_TAIL);
2203 stat(s, FREE_ADD_PARTIAL);
2204 }
2205 }
2206
2207 if (n)
2208 spin_unlock(&n->list_lock);
2209
2210 while (discard_page) {
2211 page = discard_page;
2212 discard_page = discard_page->next;
2213
2214 stat(s, DEACTIVATE_EMPTY);
2215 discard_slab(s, page);
2216 stat(s, FREE_SLAB);
2217 }
2218 #endif
2219 }
2220
2221 /*
2222 * Put a page that was just frozen (in __slab_free) into a partial page
2223 * slot if available. This is done without interrupts disabled and without
2224 * preemption disabled. The cmpxchg is racy and may put the partial page
2225 * onto a random cpus partial slot.
2226 *
2227 * If we did not find a slot then simply move all the partials to the
2228 * per node partial list.
2229 */
2230 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2231 {
2232 #ifdef CONFIG_SLUB_CPU_PARTIAL
2233 struct page *oldpage;
2234 int pages;
2235 int pobjects;
2236
2237 preempt_disable();
2238 do {
2239 pages = 0;
2240 pobjects = 0;
2241 oldpage = this_cpu_read(s->cpu_slab->partial);
2242
2243 if (oldpage) {
2244 pobjects = oldpage->pobjects;
2245 pages = oldpage->pages;
2246 if (drain && pobjects > s->cpu_partial) {
2247 unsigned long flags;
2248 /*
2249 * partial array is full. Move the existing
2250 * set to the per node partial list.
2251 */
2252 local_irq_save(flags);
2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 local_irq_restore(flags);
2255 oldpage = NULL;
2256 pobjects = 0;
2257 pages = 0;
2258 stat(s, CPU_PARTIAL_DRAIN);
2259 }
2260 }
2261
2262 pages++;
2263 pobjects += page->objects - page->inuse;
2264
2265 page->pages = pages;
2266 page->pobjects = pobjects;
2267 page->next = oldpage;
2268
2269 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2270 != oldpage);
2271 if (unlikely(!s->cpu_partial)) {
2272 unsigned long flags;
2273
2274 local_irq_save(flags);
2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 local_irq_restore(flags);
2277 }
2278 preempt_enable();
2279 #endif
2280 }
2281
2282 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2283 {
2284 stat(s, CPUSLAB_FLUSH);
2285 deactivate_slab(s, c->page, c->freelist, c);
2286
2287 c->tid = next_tid(c->tid);
2288 }
2289
2290 /*
2291 * Flush cpu slab.
2292 *
2293 * Called from IPI handler with interrupts disabled.
2294 */
2295 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2296 {
2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298
2299 if (likely(c)) {
2300 if (c->page)
2301 flush_slab(s, c);
2302
2303 unfreeze_partials(s, c);
2304 }
2305 }
2306
2307 static void flush_cpu_slab(void *d)
2308 {
2309 struct kmem_cache *s = d;
2310
2311 __flush_cpu_slab(s, smp_processor_id());
2312 }
2313
2314 static bool has_cpu_slab(int cpu, void *info)
2315 {
2316 struct kmem_cache *s = info;
2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2318
2319 return c->page || slub_percpu_partial(c);
2320 }
2321
2322 static void flush_all(struct kmem_cache *s)
2323 {
2324 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2325 }
2326
2327 /*
2328 * Use the cpu notifier to insure that the cpu slabs are flushed when
2329 * necessary.
2330 */
2331 static int slub_cpu_dead(unsigned int cpu)
2332 {
2333 struct kmem_cache *s;
2334 unsigned long flags;
2335
2336 mutex_lock(&slab_mutex);
2337 list_for_each_entry(s, &slab_caches, list) {
2338 local_irq_save(flags);
2339 __flush_cpu_slab(s, cpu);
2340 local_irq_restore(flags);
2341 }
2342 mutex_unlock(&slab_mutex);
2343 return 0;
2344 }
2345
2346 /*
2347 * Check if the objects in a per cpu structure fit numa
2348 * locality expectations.
2349 */
2350 static inline int node_match(struct page *page, int node)
2351 {
2352 #ifdef CONFIG_NUMA
2353 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2354 return 0;
2355 #endif
2356 return 1;
2357 }
2358
2359 #ifdef CONFIG_SLUB_DEBUG
2360 static int count_free(struct page *page)
2361 {
2362 return page->objects - page->inuse;
2363 }
2364
2365 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2366 {
2367 return atomic_long_read(&n->total_objects);
2368 }
2369 #endif /* CONFIG_SLUB_DEBUG */
2370
2371 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2372 static unsigned long count_partial(struct kmem_cache_node *n,
2373 int (*get_count)(struct page *))
2374 {
2375 unsigned long flags;
2376 unsigned long x = 0;
2377 struct page *page;
2378
2379 spin_lock_irqsave(&n->list_lock, flags);
2380 list_for_each_entry(page, &n->partial, lru)
2381 x += get_count(page);
2382 spin_unlock_irqrestore(&n->list_lock, flags);
2383 return x;
2384 }
2385 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2386
2387 static noinline void
2388 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2389 {
2390 #ifdef CONFIG_SLUB_DEBUG
2391 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2392 DEFAULT_RATELIMIT_BURST);
2393 int node;
2394 struct kmem_cache_node *n;
2395
2396 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2397 return;
2398
2399 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2400 nid, gfpflags, &gfpflags);
2401 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2402 s->name, s->object_size, s->size, oo_order(s->oo),
2403 oo_order(s->min));
2404
2405 if (oo_order(s->min) > get_order(s->object_size))
2406 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2407 s->name);
2408
2409 for_each_kmem_cache_node(s, node, n) {
2410 unsigned long nr_slabs;
2411 unsigned long nr_objs;
2412 unsigned long nr_free;
2413
2414 nr_free = count_partial(n, count_free);
2415 nr_slabs = node_nr_slabs(n);
2416 nr_objs = node_nr_objs(n);
2417
2418 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2419 node, nr_slabs, nr_objs, nr_free);
2420 }
2421 #endif
2422 }
2423
2424 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2425 int node, struct kmem_cache_cpu **pc)
2426 {
2427 void *freelist;
2428 struct kmem_cache_cpu *c = *pc;
2429 struct page *page;
2430
2431 freelist = get_partial(s, flags, node, c);
2432
2433 if (freelist)
2434 return freelist;
2435
2436 page = new_slab(s, flags, node);
2437 if (page) {
2438 c = raw_cpu_ptr(s->cpu_slab);
2439 if (c->page)
2440 flush_slab(s, c);
2441
2442 /*
2443 * No other reference to the page yet so we can
2444 * muck around with it freely without cmpxchg
2445 */
2446 freelist = page->freelist;
2447 page->freelist = NULL;
2448
2449 stat(s, ALLOC_SLAB);
2450 c->page = page;
2451 *pc = c;
2452 } else
2453 freelist = NULL;
2454
2455 return freelist;
2456 }
2457
2458 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2459 {
2460 if (unlikely(PageSlabPfmemalloc(page)))
2461 return gfp_pfmemalloc_allowed(gfpflags);
2462
2463 return true;
2464 }
2465
2466 /*
2467 * Check the page->freelist of a page and either transfer the freelist to the
2468 * per cpu freelist or deactivate the page.
2469 *
2470 * The page is still frozen if the return value is not NULL.
2471 *
2472 * If this function returns NULL then the page has been unfrozen.
2473 *
2474 * This function must be called with interrupt disabled.
2475 */
2476 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2477 {
2478 struct page new;
2479 unsigned long counters;
2480 void *freelist;
2481
2482 do {
2483 freelist = page->freelist;
2484 counters = page->counters;
2485
2486 new.counters = counters;
2487 VM_BUG_ON(!new.frozen);
2488
2489 new.inuse = page->objects;
2490 new.frozen = freelist != NULL;
2491
2492 } while (!__cmpxchg_double_slab(s, page,
2493 freelist, counters,
2494 NULL, new.counters,
2495 "get_freelist"));
2496
2497 return freelist;
2498 }
2499
2500 /*
2501 * Slow path. The lockless freelist is empty or we need to perform
2502 * debugging duties.
2503 *
2504 * Processing is still very fast if new objects have been freed to the
2505 * regular freelist. In that case we simply take over the regular freelist
2506 * as the lockless freelist and zap the regular freelist.
2507 *
2508 * If that is not working then we fall back to the partial lists. We take the
2509 * first element of the freelist as the object to allocate now and move the
2510 * rest of the freelist to the lockless freelist.
2511 *
2512 * And if we were unable to get a new slab from the partial slab lists then
2513 * we need to allocate a new slab. This is the slowest path since it involves
2514 * a call to the page allocator and the setup of a new slab.
2515 *
2516 * Version of __slab_alloc to use when we know that interrupts are
2517 * already disabled (which is the case for bulk allocation).
2518 */
2519 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2520 unsigned long addr, struct kmem_cache_cpu *c)
2521 {
2522 void *freelist;
2523 struct page *page;
2524
2525 page = c->page;
2526 if (!page)
2527 goto new_slab;
2528 redo:
2529
2530 if (unlikely(!node_match(page, node))) {
2531 int searchnode = node;
2532
2533 if (node != NUMA_NO_NODE && !node_present_pages(node))
2534 searchnode = node_to_mem_node(node);
2535
2536 if (unlikely(!node_match(page, searchnode))) {
2537 stat(s, ALLOC_NODE_MISMATCH);
2538 deactivate_slab(s, page, c->freelist, c);
2539 goto new_slab;
2540 }
2541 }
2542
2543 /*
2544 * By rights, we should be searching for a slab page that was
2545 * PFMEMALLOC but right now, we are losing the pfmemalloc
2546 * information when the page leaves the per-cpu allocator
2547 */
2548 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2549 deactivate_slab(s, page, c->freelist, c);
2550 goto new_slab;
2551 }
2552
2553 /* must check again c->freelist in case of cpu migration or IRQ */
2554 freelist = c->freelist;
2555 if (freelist)
2556 goto load_freelist;
2557
2558 freelist = get_freelist(s, page);
2559
2560 if (!freelist) {
2561 c->page = NULL;
2562 stat(s, DEACTIVATE_BYPASS);
2563 goto new_slab;
2564 }
2565
2566 stat(s, ALLOC_REFILL);
2567
2568 load_freelist:
2569 /*
2570 * freelist is pointing to the list of objects to be used.
2571 * page is pointing to the page from which the objects are obtained.
2572 * That page must be frozen for per cpu allocations to work.
2573 */
2574 VM_BUG_ON(!c->page->frozen);
2575 c->freelist = get_freepointer(s, freelist);
2576 c->tid = next_tid(c->tid);
2577 return freelist;
2578
2579 new_slab:
2580
2581 if (slub_percpu_partial(c)) {
2582 page = c->page = slub_percpu_partial(c);
2583 slub_set_percpu_partial(c, page);
2584 stat(s, CPU_PARTIAL_ALLOC);
2585 goto redo;
2586 }
2587
2588 freelist = new_slab_objects(s, gfpflags, node, &c);
2589
2590 if (unlikely(!freelist)) {
2591 slab_out_of_memory(s, gfpflags, node);
2592 return NULL;
2593 }
2594
2595 page = c->page;
2596 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2597 goto load_freelist;
2598
2599 /* Only entered in the debug case */
2600 if (kmem_cache_debug(s) &&
2601 !alloc_debug_processing(s, page, freelist, addr))
2602 goto new_slab; /* Slab failed checks. Next slab needed */
2603
2604 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2605 return freelist;
2606 }
2607
2608 /*
2609 * Another one that disabled interrupt and compensates for possible
2610 * cpu changes by refetching the per cpu area pointer.
2611 */
2612 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2613 unsigned long addr, struct kmem_cache_cpu *c)
2614 {
2615 void *p;
2616 unsigned long flags;
2617
2618 local_irq_save(flags);
2619 #ifdef CONFIG_PREEMPT
2620 /*
2621 * We may have been preempted and rescheduled on a different
2622 * cpu before disabling interrupts. Need to reload cpu area
2623 * pointer.
2624 */
2625 c = this_cpu_ptr(s->cpu_slab);
2626 #endif
2627
2628 p = ___slab_alloc(s, gfpflags, node, addr, c);
2629 local_irq_restore(flags);
2630 return p;
2631 }
2632
2633 /*
2634 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2635 * have the fastpath folded into their functions. So no function call
2636 * overhead for requests that can be satisfied on the fastpath.
2637 *
2638 * The fastpath works by first checking if the lockless freelist can be used.
2639 * If not then __slab_alloc is called for slow processing.
2640 *
2641 * Otherwise we can simply pick the next object from the lockless free list.
2642 */
2643 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2644 gfp_t gfpflags, int node, unsigned long addr)
2645 {
2646 void *object;
2647 struct kmem_cache_cpu *c;
2648 struct page *page;
2649 unsigned long tid;
2650
2651 s = slab_pre_alloc_hook(s, gfpflags);
2652 if (!s)
2653 return NULL;
2654 redo:
2655 /*
2656 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2657 * enabled. We may switch back and forth between cpus while
2658 * reading from one cpu area. That does not matter as long
2659 * as we end up on the original cpu again when doing the cmpxchg.
2660 *
2661 * We should guarantee that tid and kmem_cache are retrieved on
2662 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2663 * to check if it is matched or not.
2664 */
2665 do {
2666 tid = this_cpu_read(s->cpu_slab->tid);
2667 c = raw_cpu_ptr(s->cpu_slab);
2668 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2669 unlikely(tid != READ_ONCE(c->tid)));
2670
2671 /*
2672 * Irqless object alloc/free algorithm used here depends on sequence
2673 * of fetching cpu_slab's data. tid should be fetched before anything
2674 * on c to guarantee that object and page associated with previous tid
2675 * won't be used with current tid. If we fetch tid first, object and
2676 * page could be one associated with next tid and our alloc/free
2677 * request will be failed. In this case, we will retry. So, no problem.
2678 */
2679 barrier();
2680
2681 /*
2682 * The transaction ids are globally unique per cpu and per operation on
2683 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2684 * occurs on the right processor and that there was no operation on the
2685 * linked list in between.
2686 */
2687
2688 object = c->freelist;
2689 page = c->page;
2690 if (unlikely(!object || !node_match(page, node))) {
2691 object = __slab_alloc(s, gfpflags, node, addr, c);
2692 stat(s, ALLOC_SLOWPATH);
2693 } else {
2694 void *next_object = get_freepointer_safe(s, object);
2695
2696 /*
2697 * The cmpxchg will only match if there was no additional
2698 * operation and if we are on the right processor.
2699 *
2700 * The cmpxchg does the following atomically (without lock
2701 * semantics!)
2702 * 1. Relocate first pointer to the current per cpu area.
2703 * 2. Verify that tid and freelist have not been changed
2704 * 3. If they were not changed replace tid and freelist
2705 *
2706 * Since this is without lock semantics the protection is only
2707 * against code executing on this cpu *not* from access by
2708 * other cpus.
2709 */
2710 if (unlikely(!this_cpu_cmpxchg_double(
2711 s->cpu_slab->freelist, s->cpu_slab->tid,
2712 object, tid,
2713 next_object, next_tid(tid)))) {
2714
2715 note_cmpxchg_failure("slab_alloc", s, tid);
2716 goto redo;
2717 }
2718 prefetch_freepointer(s, next_object);
2719 stat(s, ALLOC_FASTPATH);
2720 }
2721
2722 if (unlikely(gfpflags & __GFP_ZERO) && object)
2723 memset(object, 0, s->object_size);
2724
2725 slab_post_alloc_hook(s, gfpflags, 1, &object);
2726
2727 return object;
2728 }
2729
2730 static __always_inline void *slab_alloc(struct kmem_cache *s,
2731 gfp_t gfpflags, unsigned long addr)
2732 {
2733 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2734 }
2735
2736 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2737 {
2738 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2739
2740 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2741 s->size, gfpflags);
2742
2743 return ret;
2744 }
2745 EXPORT_SYMBOL(kmem_cache_alloc);
2746
2747 #ifdef CONFIG_TRACING
2748 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2749 {
2750 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2751 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2752 kasan_kmalloc(s, ret, size, gfpflags);
2753 return ret;
2754 }
2755 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2756 #endif
2757
2758 #ifdef CONFIG_NUMA
2759 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2760 {
2761 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2762
2763 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2764 s->object_size, s->size, gfpflags, node);
2765
2766 return ret;
2767 }
2768 EXPORT_SYMBOL(kmem_cache_alloc_node);
2769
2770 #ifdef CONFIG_TRACING
2771 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2772 gfp_t gfpflags,
2773 int node, size_t size)
2774 {
2775 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2776
2777 trace_kmalloc_node(_RET_IP_, ret,
2778 size, s->size, gfpflags, node);
2779
2780 kasan_kmalloc(s, ret, size, gfpflags);
2781 return ret;
2782 }
2783 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2784 #endif
2785 #endif
2786
2787 /*
2788 * Slow path handling. This may still be called frequently since objects
2789 * have a longer lifetime than the cpu slabs in most processing loads.
2790 *
2791 * So we still attempt to reduce cache line usage. Just take the slab
2792 * lock and free the item. If there is no additional partial page
2793 * handling required then we can return immediately.
2794 */
2795 static void __slab_free(struct kmem_cache *s, struct page *page,
2796 void *head, void *tail, int cnt,
2797 unsigned long addr)
2798
2799 {
2800 void *prior;
2801 int was_frozen;
2802 struct page new;
2803 unsigned long counters;
2804 struct kmem_cache_node *n = NULL;
2805 unsigned long uninitialized_var(flags);
2806
2807 stat(s, FREE_SLOWPATH);
2808
2809 if (kmem_cache_debug(s) &&
2810 !free_debug_processing(s, page, head, tail, cnt, addr))
2811 return;
2812
2813 do {
2814 if (unlikely(n)) {
2815 spin_unlock_irqrestore(&n->list_lock, flags);
2816 n = NULL;
2817 }
2818 prior = page->freelist;
2819 counters = page->counters;
2820 set_freepointer(s, tail, prior);
2821 new.counters = counters;
2822 was_frozen = new.frozen;
2823 new.inuse -= cnt;
2824 if ((!new.inuse || !prior) && !was_frozen) {
2825
2826 if (kmem_cache_has_cpu_partial(s) && !prior) {
2827
2828 /*
2829 * Slab was on no list before and will be
2830 * partially empty
2831 * We can defer the list move and instead
2832 * freeze it.
2833 */
2834 new.frozen = 1;
2835
2836 } else { /* Needs to be taken off a list */
2837
2838 n = get_node(s, page_to_nid(page));
2839 /*
2840 * Speculatively acquire the list_lock.
2841 * If the cmpxchg does not succeed then we may
2842 * drop the list_lock without any processing.
2843 *
2844 * Otherwise the list_lock will synchronize with
2845 * other processors updating the list of slabs.
2846 */
2847 spin_lock_irqsave(&n->list_lock, flags);
2848
2849 }
2850 }
2851
2852 } while (!cmpxchg_double_slab(s, page,
2853 prior, counters,
2854 head, new.counters,
2855 "__slab_free"));
2856
2857 if (likely(!n)) {
2858
2859 /*
2860 * If we just froze the page then put it onto the
2861 * per cpu partial list.
2862 */
2863 if (new.frozen && !was_frozen) {
2864 put_cpu_partial(s, page, 1);
2865 stat(s, CPU_PARTIAL_FREE);
2866 }
2867 /*
2868 * The list lock was not taken therefore no list
2869 * activity can be necessary.
2870 */
2871 if (was_frozen)
2872 stat(s, FREE_FROZEN);
2873 return;
2874 }
2875
2876 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2877 goto slab_empty;
2878
2879 /*
2880 * Objects left in the slab. If it was not on the partial list before
2881 * then add it.
2882 */
2883 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2884 if (kmem_cache_debug(s))
2885 remove_full(s, n, page);
2886 add_partial(n, page, DEACTIVATE_TO_TAIL);
2887 stat(s, FREE_ADD_PARTIAL);
2888 }
2889 spin_unlock_irqrestore(&n->list_lock, flags);
2890 return;
2891
2892 slab_empty:
2893 if (prior) {
2894 /*
2895 * Slab on the partial list.
2896 */
2897 remove_partial(n, page);
2898 stat(s, FREE_REMOVE_PARTIAL);
2899 } else {
2900 /* Slab must be on the full list */
2901 remove_full(s, n, page);
2902 }
2903
2904 spin_unlock_irqrestore(&n->list_lock, flags);
2905 stat(s, FREE_SLAB);
2906 discard_slab(s, page);
2907 }
2908
2909 /*
2910 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2911 * can perform fastpath freeing without additional function calls.
2912 *
2913 * The fastpath is only possible if we are freeing to the current cpu slab
2914 * of this processor. This typically the case if we have just allocated
2915 * the item before.
2916 *
2917 * If fastpath is not possible then fall back to __slab_free where we deal
2918 * with all sorts of special processing.
2919 *
2920 * Bulk free of a freelist with several objects (all pointing to the
2921 * same page) possible by specifying head and tail ptr, plus objects
2922 * count (cnt). Bulk free indicated by tail pointer being set.
2923 */
2924 static __always_inline void do_slab_free(struct kmem_cache *s,
2925 struct page *page, void *head, void *tail,
2926 int cnt, unsigned long addr)
2927 {
2928 void *tail_obj = tail ? : head;
2929 struct kmem_cache_cpu *c;
2930 unsigned long tid;
2931 redo:
2932 /*
2933 * Determine the currently cpus per cpu slab.
2934 * The cpu may change afterward. However that does not matter since
2935 * data is retrieved via this pointer. If we are on the same cpu
2936 * during the cmpxchg then the free will succeed.
2937 */
2938 do {
2939 tid = this_cpu_read(s->cpu_slab->tid);
2940 c = raw_cpu_ptr(s->cpu_slab);
2941 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2942 unlikely(tid != READ_ONCE(c->tid)));
2943
2944 /* Same with comment on barrier() in slab_alloc_node() */
2945 barrier();
2946
2947 if (likely(page == c->page)) {
2948 set_freepointer(s, tail_obj, c->freelist);
2949
2950 if (unlikely(!this_cpu_cmpxchg_double(
2951 s->cpu_slab->freelist, s->cpu_slab->tid,
2952 c->freelist, tid,
2953 head, next_tid(tid)))) {
2954
2955 note_cmpxchg_failure("slab_free", s, tid);
2956 goto redo;
2957 }
2958 stat(s, FREE_FASTPATH);
2959 } else
2960 __slab_free(s, page, head, tail_obj, cnt, addr);
2961
2962 }
2963
2964 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2965 void *head, void *tail, int cnt,
2966 unsigned long addr)
2967 {
2968 slab_free_freelist_hook(s, head, tail);
2969 /*
2970 * slab_free_freelist_hook() could have put the items into quarantine.
2971 * If so, no need to free them.
2972 */
2973 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2974 return;
2975 do_slab_free(s, page, head, tail, cnt, addr);
2976 }
2977
2978 #ifdef CONFIG_KASAN
2979 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2980 {
2981 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2982 }
2983 #endif
2984
2985 void kmem_cache_free(struct kmem_cache *s, void *x)
2986 {
2987 s = cache_from_obj(s, x);
2988 if (!s)
2989 return;
2990 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2991 trace_kmem_cache_free(_RET_IP_, x);
2992 }
2993 EXPORT_SYMBOL(kmem_cache_free);
2994
2995 struct detached_freelist {
2996 struct page *page;
2997 void *tail;
2998 void *freelist;
2999 int cnt;
3000 struct kmem_cache *s;
3001 };
3002
3003 /*
3004 * This function progressively scans the array with free objects (with
3005 * a limited look ahead) and extract objects belonging to the same
3006 * page. It builds a detached freelist directly within the given
3007 * page/objects. This can happen without any need for
3008 * synchronization, because the objects are owned by running process.
3009 * The freelist is build up as a single linked list in the objects.
3010 * The idea is, that this detached freelist can then be bulk
3011 * transferred to the real freelist(s), but only requiring a single
3012 * synchronization primitive. Look ahead in the array is limited due
3013 * to performance reasons.
3014 */
3015 static inline
3016 int build_detached_freelist(struct kmem_cache *s, size_t size,
3017 void **p, struct detached_freelist *df)
3018 {
3019 size_t first_skipped_index = 0;
3020 int lookahead = 3;
3021 void *object;
3022 struct page *page;
3023
3024 /* Always re-init detached_freelist */
3025 df->page = NULL;
3026
3027 do {
3028 object = p[--size];
3029 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3030 } while (!object && size);
3031
3032 if (!object)
3033 return 0;
3034
3035 page = virt_to_head_page(object);
3036 if (!s) {
3037 /* Handle kalloc'ed objects */
3038 if (unlikely(!PageSlab(page))) {
3039 BUG_ON(!PageCompound(page));
3040 kfree_hook(object);
3041 __free_pages(page, compound_order(page));
3042 p[size] = NULL; /* mark object processed */
3043 return size;
3044 }
3045 /* Derive kmem_cache from object */
3046 df->s = page->slab_cache;
3047 } else {
3048 df->s = cache_from_obj(s, object); /* Support for memcg */
3049 }
3050
3051 /* Start new detached freelist */
3052 df->page = page;
3053 set_freepointer(df->s, object, NULL);
3054 df->tail = object;
3055 df->freelist = object;
3056 p[size] = NULL; /* mark object processed */
3057 df->cnt = 1;
3058
3059 while (size) {
3060 object = p[--size];
3061 if (!object)
3062 continue; /* Skip processed objects */
3063
3064 /* df->page is always set at this point */
3065 if (df->page == virt_to_head_page(object)) {
3066 /* Opportunity build freelist */
3067 set_freepointer(df->s, object, df->freelist);
3068 df->freelist = object;
3069 df->cnt++;
3070 p[size] = NULL; /* mark object processed */
3071
3072 continue;
3073 }
3074
3075 /* Limit look ahead search */
3076 if (!--lookahead)
3077 break;
3078
3079 if (!first_skipped_index)
3080 first_skipped_index = size + 1;
3081 }
3082
3083 return first_skipped_index;
3084 }
3085
3086 /* Note that interrupts must be enabled when calling this function. */
3087 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3088 {
3089 if (WARN_ON(!size))
3090 return;
3091
3092 do {
3093 struct detached_freelist df;
3094
3095 size = build_detached_freelist(s, size, p, &df);
3096 if (!df.page)
3097 continue;
3098
3099 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3100 } while (likely(size));
3101 }
3102 EXPORT_SYMBOL(kmem_cache_free_bulk);
3103
3104 /* Note that interrupts must be enabled when calling this function. */
3105 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3106 void **p)
3107 {
3108 struct kmem_cache_cpu *c;
3109 int i;
3110
3111 /* memcg and kmem_cache debug support */
3112 s = slab_pre_alloc_hook(s, flags);
3113 if (unlikely(!s))
3114 return false;
3115 /*
3116 * Drain objects in the per cpu slab, while disabling local
3117 * IRQs, which protects against PREEMPT and interrupts
3118 * handlers invoking normal fastpath.
3119 */
3120 local_irq_disable();
3121 c = this_cpu_ptr(s->cpu_slab);
3122
3123 for (i = 0; i < size; i++) {
3124 void *object = c->freelist;
3125
3126 if (unlikely(!object)) {
3127 /*
3128 * Invoking slow path likely have side-effect
3129 * of re-populating per CPU c->freelist
3130 */
3131 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3132 _RET_IP_, c);
3133 if (unlikely(!p[i]))
3134 goto error;
3135
3136 c = this_cpu_ptr(s->cpu_slab);
3137 continue; /* goto for-loop */
3138 }
3139 c->freelist = get_freepointer(s, object);
3140 p[i] = object;
3141 }
3142 c->tid = next_tid(c->tid);
3143 local_irq_enable();
3144
3145 /* Clear memory outside IRQ disabled fastpath loop */
3146 if (unlikely(flags & __GFP_ZERO)) {
3147 int j;
3148
3149 for (j = 0; j < i; j++)
3150 memset(p[j], 0, s->object_size);
3151 }
3152
3153 /* memcg and kmem_cache debug support */
3154 slab_post_alloc_hook(s, flags, size, p);
3155 return i;
3156 error:
3157 local_irq_enable();
3158 slab_post_alloc_hook(s, flags, i, p);
3159 __kmem_cache_free_bulk(s, i, p);
3160 return 0;
3161 }
3162 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3163
3164
3165 /*
3166 * Object placement in a slab is made very easy because we always start at
3167 * offset 0. If we tune the size of the object to the alignment then we can
3168 * get the required alignment by putting one properly sized object after
3169 * another.
3170 *
3171 * Notice that the allocation order determines the sizes of the per cpu
3172 * caches. Each processor has always one slab available for allocations.
3173 * Increasing the allocation order reduces the number of times that slabs
3174 * must be moved on and off the partial lists and is therefore a factor in
3175 * locking overhead.
3176 */
3177
3178 /*
3179 * Mininum / Maximum order of slab pages. This influences locking overhead
3180 * and slab fragmentation. A higher order reduces the number of partial slabs
3181 * and increases the number of allocations possible without having to
3182 * take the list_lock.
3183 */
3184 static int slub_min_order;
3185 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3186 static int slub_min_objects;
3187
3188 /*
3189 * Calculate the order of allocation given an slab object size.
3190 *
3191 * The order of allocation has significant impact on performance and other
3192 * system components. Generally order 0 allocations should be preferred since
3193 * order 0 does not cause fragmentation in the page allocator. Larger objects
3194 * be problematic to put into order 0 slabs because there may be too much
3195 * unused space left. We go to a higher order if more than 1/16th of the slab
3196 * would be wasted.
3197 *
3198 * In order to reach satisfactory performance we must ensure that a minimum
3199 * number of objects is in one slab. Otherwise we may generate too much
3200 * activity on the partial lists which requires taking the list_lock. This is
3201 * less a concern for large slabs though which are rarely used.
3202 *
3203 * slub_max_order specifies the order where we begin to stop considering the
3204 * number of objects in a slab as critical. If we reach slub_max_order then
3205 * we try to keep the page order as low as possible. So we accept more waste
3206 * of space in favor of a small page order.
3207 *
3208 * Higher order allocations also allow the placement of more objects in a
3209 * slab and thereby reduce object handling overhead. If the user has
3210 * requested a higher mininum order then we start with that one instead of
3211 * the smallest order which will fit the object.
3212 */
3213 static inline int slab_order(int size, int min_objects,
3214 int max_order, int fract_leftover, int reserved)
3215 {
3216 int order;
3217 int rem;
3218 int min_order = slub_min_order;
3219
3220 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3221 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3222
3223 for (order = max(min_order, get_order(min_objects * size + reserved));
3224 order <= max_order; order++) {
3225
3226 unsigned long slab_size = PAGE_SIZE << order;
3227
3228 rem = (slab_size - reserved) % size;
3229
3230 if (rem <= slab_size / fract_leftover)
3231 break;
3232 }
3233
3234 return order;
3235 }
3236
3237 static inline int calculate_order(int size, int reserved)
3238 {
3239 int order;
3240 int min_objects;
3241 int fraction;
3242 int max_objects;
3243
3244 /*
3245 * Attempt to find best configuration for a slab. This
3246 * works by first attempting to generate a layout with
3247 * the best configuration and backing off gradually.
3248 *
3249 * First we increase the acceptable waste in a slab. Then
3250 * we reduce the minimum objects required in a slab.
3251 */
3252 min_objects = slub_min_objects;
3253 if (!min_objects)
3254 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3255 max_objects = order_objects(slub_max_order, size, reserved);
3256 min_objects = min(min_objects, max_objects);
3257
3258 while (min_objects > 1) {
3259 fraction = 16;
3260 while (fraction >= 4) {
3261 order = slab_order(size, min_objects,
3262 slub_max_order, fraction, reserved);
3263 if (order <= slub_max_order)
3264 return order;
3265 fraction /= 2;
3266 }
3267 min_objects--;
3268 }
3269
3270 /*
3271 * We were unable to place multiple objects in a slab. Now
3272 * lets see if we can place a single object there.
3273 */
3274 order = slab_order(size, 1, slub_max_order, 1, reserved);
3275 if (order <= slub_max_order)
3276 return order;
3277
3278 /*
3279 * Doh this slab cannot be placed using slub_max_order.
3280 */
3281 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3282 if (order < MAX_ORDER)
3283 return order;
3284 return -ENOSYS;
3285 }
3286
3287 static void
3288 init_kmem_cache_node(struct kmem_cache_node *n)
3289 {
3290 n->nr_partial = 0;
3291 spin_lock_init(&n->list_lock);
3292 INIT_LIST_HEAD(&n->partial);
3293 #ifdef CONFIG_SLUB_DEBUG
3294 atomic_long_set(&n->nr_slabs, 0);
3295 atomic_long_set(&n->total_objects, 0);
3296 INIT_LIST_HEAD(&n->full);
3297 #endif
3298 }
3299
3300 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3301 {
3302 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3303 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3304
3305 /*
3306 * Must align to double word boundary for the double cmpxchg
3307 * instructions to work; see __pcpu_double_call_return_bool().
3308 */
3309 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3310 2 * sizeof(void *));
3311
3312 if (!s->cpu_slab)
3313 return 0;
3314
3315 init_kmem_cache_cpus(s);
3316
3317 return 1;
3318 }
3319
3320 static struct kmem_cache *kmem_cache_node;
3321
3322 /*
3323 * No kmalloc_node yet so do it by hand. We know that this is the first
3324 * slab on the node for this slabcache. There are no concurrent accesses
3325 * possible.
3326 *
3327 * Note that this function only works on the kmem_cache_node
3328 * when allocating for the kmem_cache_node. This is used for bootstrapping
3329 * memory on a fresh node that has no slab structures yet.
3330 */
3331 static void early_kmem_cache_node_alloc(int node)
3332 {
3333 struct page *page;
3334 struct kmem_cache_node *n;
3335
3336 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3337
3338 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3339
3340 BUG_ON(!page);
3341 if (page_to_nid(page) != node) {
3342 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3343 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3344 }
3345
3346 n = page->freelist;
3347 BUG_ON(!n);
3348 page->freelist = get_freepointer(kmem_cache_node, n);
3349 page->inuse = 1;
3350 page->frozen = 0;
3351 kmem_cache_node->node[node] = n;
3352 #ifdef CONFIG_SLUB_DEBUG
3353 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3354 init_tracking(kmem_cache_node, n);
3355 #endif
3356 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3357 GFP_KERNEL);
3358 init_kmem_cache_node(n);
3359 inc_slabs_node(kmem_cache_node, node, page->objects);
3360
3361 /*
3362 * No locks need to be taken here as it has just been
3363 * initialized and there is no concurrent access.
3364 */
3365 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3366 }
3367
3368 static void free_kmem_cache_nodes(struct kmem_cache *s)
3369 {
3370 int node;
3371 struct kmem_cache_node *n;
3372
3373 for_each_kmem_cache_node(s, node, n) {
3374 s->node[node] = NULL;
3375 kmem_cache_free(kmem_cache_node, n);
3376 }
3377 }
3378
3379 void __kmem_cache_release(struct kmem_cache *s)
3380 {
3381 cache_random_seq_destroy(s);
3382 free_percpu(s->cpu_slab);
3383 free_kmem_cache_nodes(s);
3384 }
3385
3386 static int init_kmem_cache_nodes(struct kmem_cache *s)
3387 {
3388 int node;
3389
3390 for_each_node_state(node, N_NORMAL_MEMORY) {
3391 struct kmem_cache_node *n;
3392
3393 if (slab_state == DOWN) {
3394 early_kmem_cache_node_alloc(node);
3395 continue;
3396 }
3397 n = kmem_cache_alloc_node(kmem_cache_node,
3398 GFP_KERNEL, node);
3399
3400 if (!n) {
3401 free_kmem_cache_nodes(s);
3402 return 0;
3403 }
3404
3405 init_kmem_cache_node(n);
3406 s->node[node] = n;
3407 }
3408 return 1;
3409 }
3410
3411 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3412 {
3413 if (min < MIN_PARTIAL)
3414 min = MIN_PARTIAL;
3415 else if (min > MAX_PARTIAL)
3416 min = MAX_PARTIAL;
3417 s->min_partial = min;
3418 }
3419
3420 static void set_cpu_partial(struct kmem_cache *s)
3421 {
3422 #ifdef CONFIG_SLUB_CPU_PARTIAL
3423 /*
3424 * cpu_partial determined the maximum number of objects kept in the
3425 * per cpu partial lists of a processor.
3426 *
3427 * Per cpu partial lists mainly contain slabs that just have one
3428 * object freed. If they are used for allocation then they can be
3429 * filled up again with minimal effort. The slab will never hit the
3430 * per node partial lists and therefore no locking will be required.
3431 *
3432 * This setting also determines
3433 *
3434 * A) The number of objects from per cpu partial slabs dumped to the
3435 * per node list when we reach the limit.
3436 * B) The number of objects in cpu partial slabs to extract from the
3437 * per node list when we run out of per cpu objects. We only fetch
3438 * 50% to keep some capacity around for frees.
3439 */
3440 if (!kmem_cache_has_cpu_partial(s))
3441 s->cpu_partial = 0;
3442 else if (s->size >= PAGE_SIZE)
3443 s->cpu_partial = 2;
3444 else if (s->size >= 1024)
3445 s->cpu_partial = 6;
3446 else if (s->size >= 256)
3447 s->cpu_partial = 13;
3448 else
3449 s->cpu_partial = 30;
3450 #endif
3451 }
3452
3453 /*
3454 * calculate_sizes() determines the order and the distribution of data within
3455 * a slab object.
3456 */
3457 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3458 {
3459 slab_flags_t flags = s->flags;
3460 size_t size = s->object_size;
3461 int order;
3462
3463 /*
3464 * Round up object size to the next word boundary. We can only
3465 * place the free pointer at word boundaries and this determines
3466 * the possible location of the free pointer.
3467 */
3468 size = ALIGN(size, sizeof(void *));
3469
3470 #ifdef CONFIG_SLUB_DEBUG
3471 /*
3472 * Determine if we can poison the object itself. If the user of
3473 * the slab may touch the object after free or before allocation
3474 * then we should never poison the object itself.
3475 */
3476 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3477 !s->ctor)
3478 s->flags |= __OBJECT_POISON;
3479 else
3480 s->flags &= ~__OBJECT_POISON;
3481
3482
3483 /*
3484 * If we are Redzoning then check if there is some space between the
3485 * end of the object and the free pointer. If not then add an
3486 * additional word to have some bytes to store Redzone information.
3487 */
3488 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3489 size += sizeof(void *);
3490 #endif
3491
3492 /*
3493 * With that we have determined the number of bytes in actual use
3494 * by the object. This is the potential offset to the free pointer.
3495 */
3496 s->inuse = size;
3497
3498 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3499 s->ctor)) {
3500 /*
3501 * Relocate free pointer after the object if it is not
3502 * permitted to overwrite the first word of the object on
3503 * kmem_cache_free.
3504 *
3505 * This is the case if we do RCU, have a constructor or
3506 * destructor or are poisoning the objects.
3507 */
3508 s->offset = size;
3509 size += sizeof(void *);
3510 }
3511
3512 #ifdef CONFIG_SLUB_DEBUG
3513 if (flags & SLAB_STORE_USER)
3514 /*
3515 * Need to store information about allocs and frees after
3516 * the object.
3517 */
3518 size += 2 * sizeof(struct track);
3519 #endif
3520
3521 kasan_cache_create(s, &size, &s->flags);
3522 #ifdef CONFIG_SLUB_DEBUG
3523 if (flags & SLAB_RED_ZONE) {
3524 /*
3525 * Add some empty padding so that we can catch
3526 * overwrites from earlier objects rather than let
3527 * tracking information or the free pointer be
3528 * corrupted if a user writes before the start
3529 * of the object.
3530 */
3531 size += sizeof(void *);
3532
3533 s->red_left_pad = sizeof(void *);
3534 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3535 size += s->red_left_pad;
3536 }
3537 #endif
3538
3539 /*
3540 * SLUB stores one object immediately after another beginning from
3541 * offset 0. In order to align the objects we have to simply size
3542 * each object to conform to the alignment.
3543 */
3544 size = ALIGN(size, s->align);
3545 s->size = size;
3546 if (forced_order >= 0)
3547 order = forced_order;
3548 else
3549 order = calculate_order(size, s->reserved);
3550
3551 if (order < 0)
3552 return 0;
3553
3554 s->allocflags = 0;
3555 if (order)
3556 s->allocflags |= __GFP_COMP;
3557
3558 if (s->flags & SLAB_CACHE_DMA)
3559 s->allocflags |= GFP_DMA;
3560
3561 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3562 s->allocflags |= __GFP_RECLAIMABLE;
3563
3564 /*
3565 * Determine the number of objects per slab
3566 */
3567 s->oo = oo_make(order, size, s->reserved);
3568 s->min = oo_make(get_order(size), size, s->reserved);
3569 if (oo_objects(s->oo) > oo_objects(s->max))
3570 s->max = s->oo;
3571
3572 return !!oo_objects(s->oo);
3573 }
3574
3575 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3576 {
3577 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3578 s->reserved = 0;
3579 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3580 s->random = get_random_long();
3581 #endif
3582
3583 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3584 s->reserved = sizeof(struct rcu_head);
3585
3586 if (!calculate_sizes(s, -1))
3587 goto error;
3588 if (disable_higher_order_debug) {
3589 /*
3590 * Disable debugging flags that store metadata if the min slab
3591 * order increased.
3592 */
3593 if (get_order(s->size) > get_order(s->object_size)) {
3594 s->flags &= ~DEBUG_METADATA_FLAGS;
3595 s->offset = 0;
3596 if (!calculate_sizes(s, -1))
3597 goto error;
3598 }
3599 }
3600
3601 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3602 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3603 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3604 /* Enable fast mode */
3605 s->flags |= __CMPXCHG_DOUBLE;
3606 #endif
3607
3608 /*
3609 * The larger the object size is, the more pages we want on the partial
3610 * list to avoid pounding the page allocator excessively.
3611 */
3612 set_min_partial(s, ilog2(s->size) / 2);
3613
3614 set_cpu_partial(s);
3615
3616 #ifdef CONFIG_NUMA
3617 s->remote_node_defrag_ratio = 1000;
3618 #endif
3619
3620 /* Initialize the pre-computed randomized freelist if slab is up */
3621 if (slab_state >= UP) {
3622 if (init_cache_random_seq(s))
3623 goto error;
3624 }
3625
3626 if (!init_kmem_cache_nodes(s))
3627 goto error;
3628
3629 if (alloc_kmem_cache_cpus(s))
3630 return 0;
3631
3632 free_kmem_cache_nodes(s);
3633 error:
3634 if (flags & SLAB_PANIC)
3635 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3636 s->name, (unsigned long)s->size, s->size,
3637 oo_order(s->oo), s->offset, (unsigned long)flags);
3638 return -EINVAL;
3639 }
3640
3641 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3642 const char *text)
3643 {
3644 #ifdef CONFIG_SLUB_DEBUG
3645 void *addr = page_address(page);
3646 void *p;
3647 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3648 sizeof(long), GFP_ATOMIC);
3649 if (!map)
3650 return;
3651 slab_err(s, page, text, s->name);
3652 slab_lock(page);
3653
3654 get_map(s, page, map);
3655 for_each_object(p, s, addr, page->objects) {
3656
3657 if (!test_bit(slab_index(p, s, addr), map)) {
3658 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3659 print_tracking(s, p);
3660 }
3661 }
3662 slab_unlock(page);
3663 kfree(map);
3664 #endif
3665 }
3666
3667 /*
3668 * Attempt to free all partial slabs on a node.
3669 * This is called from __kmem_cache_shutdown(). We must take list_lock
3670 * because sysfs file might still access partial list after the shutdowning.
3671 */
3672 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3673 {
3674 LIST_HEAD(discard);
3675 struct page *page, *h;
3676
3677 BUG_ON(irqs_disabled());
3678 spin_lock_irq(&n->list_lock);
3679 list_for_each_entry_safe(page, h, &n->partial, lru) {
3680 if (!page->inuse) {
3681 remove_partial(n, page);
3682 list_add(&page->lru, &discard);
3683 } else {
3684 list_slab_objects(s, page,
3685 "Objects remaining in %s on __kmem_cache_shutdown()");
3686 }
3687 }
3688 spin_unlock_irq(&n->list_lock);
3689
3690 list_for_each_entry_safe(page, h, &discard, lru)
3691 discard_slab(s, page);
3692 }
3693
3694 /*
3695 * Release all resources used by a slab cache.
3696 */
3697 int __kmem_cache_shutdown(struct kmem_cache *s)
3698 {
3699 int node;
3700 struct kmem_cache_node *n;
3701
3702 flush_all(s);
3703 /* Attempt to free all objects */
3704 for_each_kmem_cache_node(s, node, n) {
3705 free_partial(s, n);
3706 if (n->nr_partial || slabs_node(s, node))
3707 return 1;
3708 }
3709 sysfs_slab_remove(s);
3710 return 0;
3711 }
3712
3713 /********************************************************************
3714 * Kmalloc subsystem
3715 *******************************************************************/
3716
3717 static int __init setup_slub_min_order(char *str)
3718 {
3719 get_option(&str, &slub_min_order);
3720
3721 return 1;
3722 }
3723
3724 __setup("slub_min_order=", setup_slub_min_order);
3725
3726 static int __init setup_slub_max_order(char *str)
3727 {
3728 get_option(&str, &slub_max_order);
3729 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3730
3731 return 1;
3732 }
3733
3734 __setup("slub_max_order=", setup_slub_max_order);
3735
3736 static int __init setup_slub_min_objects(char *str)
3737 {
3738 get_option(&str, &slub_min_objects);
3739
3740 return 1;
3741 }
3742
3743 __setup("slub_min_objects=", setup_slub_min_objects);
3744
3745 void *__kmalloc(size_t size, gfp_t flags)
3746 {
3747 struct kmem_cache *s;
3748 void *ret;
3749
3750 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3751 return kmalloc_large(size, flags);
3752
3753 s = kmalloc_slab(size, flags);
3754
3755 if (unlikely(ZERO_OR_NULL_PTR(s)))
3756 return s;
3757
3758 ret = slab_alloc(s, flags, _RET_IP_);
3759
3760 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3761
3762 kasan_kmalloc(s, ret, size, flags);
3763
3764 return ret;
3765 }
3766 EXPORT_SYMBOL(__kmalloc);
3767
3768 #ifdef CONFIG_NUMA
3769 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3770 {
3771 struct page *page;
3772 void *ptr = NULL;
3773
3774 flags |= __GFP_COMP;
3775 page = alloc_pages_node(node, flags, get_order(size));
3776 if (page)
3777 ptr = page_address(page);
3778
3779 kmalloc_large_node_hook(ptr, size, flags);
3780 return ptr;
3781 }
3782
3783 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3784 {
3785 struct kmem_cache *s;
3786 void *ret;
3787
3788 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3789 ret = kmalloc_large_node(size, flags, node);
3790
3791 trace_kmalloc_node(_RET_IP_, ret,
3792 size, PAGE_SIZE << get_order(size),
3793 flags, node);
3794
3795 return ret;
3796 }
3797
3798 s = kmalloc_slab(size, flags);
3799
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 return s;
3802
3803 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3804
3805 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3806
3807 kasan_kmalloc(s, ret, size, flags);
3808
3809 return ret;
3810 }
3811 EXPORT_SYMBOL(__kmalloc_node);
3812 #endif
3813
3814 #ifdef CONFIG_HARDENED_USERCOPY
3815 /*
3816 * Rejects objects that are incorrectly sized.
3817 *
3818 * Returns NULL if check passes, otherwise const char * to name of cache
3819 * to indicate an error.
3820 */
3821 const char *__check_heap_object(const void *ptr, unsigned long n,
3822 struct page *page)
3823 {
3824 struct kmem_cache *s;
3825 unsigned long offset;
3826 size_t object_size;
3827
3828 /* Find object and usable object size. */
3829 s = page->slab_cache;
3830 object_size = slab_ksize(s);
3831
3832 /* Reject impossible pointers. */
3833 if (ptr < page_address(page))
3834 return s->name;
3835
3836 /* Find offset within object. */
3837 offset = (ptr - page_address(page)) % s->size;
3838
3839 /* Adjust for redzone and reject if within the redzone. */
3840 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3841 if (offset < s->red_left_pad)
3842 return s->name;
3843 offset -= s->red_left_pad;
3844 }
3845
3846 /* Allow address range falling entirely within object size. */
3847 if (offset <= object_size && n <= object_size - offset)
3848 return NULL;
3849
3850 return s->name;
3851 }
3852 #endif /* CONFIG_HARDENED_USERCOPY */
3853
3854 static size_t __ksize(const void *object)
3855 {
3856 struct page *page;
3857
3858 if (unlikely(object == ZERO_SIZE_PTR))
3859 return 0;
3860
3861 page = virt_to_head_page(object);
3862
3863 if (unlikely(!PageSlab(page))) {
3864 WARN_ON(!PageCompound(page));
3865 return PAGE_SIZE << compound_order(page);
3866 }
3867
3868 return slab_ksize(page->slab_cache);
3869 }
3870
3871 size_t ksize(const void *object)
3872 {
3873 size_t size = __ksize(object);
3874 /* We assume that ksize callers could use whole allocated area,
3875 * so we need to unpoison this area.
3876 */
3877 kasan_unpoison_shadow(object, size);
3878 return size;
3879 }
3880 EXPORT_SYMBOL(ksize);
3881
3882 void kfree(const void *x)
3883 {
3884 struct page *page;
3885 void *object = (void *)x;
3886
3887 trace_kfree(_RET_IP_, x);
3888
3889 if (unlikely(ZERO_OR_NULL_PTR(x)))
3890 return;
3891
3892 page = virt_to_head_page(x);
3893 if (unlikely(!PageSlab(page))) {
3894 BUG_ON(!PageCompound(page));
3895 kfree_hook(x);
3896 __free_pages(page, compound_order(page));
3897 return;
3898 }
3899 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3900 }
3901 EXPORT_SYMBOL(kfree);
3902
3903 #define SHRINK_PROMOTE_MAX 32
3904
3905 /*
3906 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3907 * up most to the head of the partial lists. New allocations will then
3908 * fill those up and thus they can be removed from the partial lists.
3909 *
3910 * The slabs with the least items are placed last. This results in them
3911 * being allocated from last increasing the chance that the last objects
3912 * are freed in them.
3913 */
3914 int __kmem_cache_shrink(struct kmem_cache *s)
3915 {
3916 int node;
3917 int i;
3918 struct kmem_cache_node *n;
3919 struct page *page;
3920 struct page *t;
3921 struct list_head discard;
3922 struct list_head promote[SHRINK_PROMOTE_MAX];
3923 unsigned long flags;
3924 int ret = 0;
3925
3926 flush_all(s);
3927 for_each_kmem_cache_node(s, node, n) {
3928 INIT_LIST_HEAD(&discard);
3929 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3930 INIT_LIST_HEAD(promote + i);
3931
3932 spin_lock_irqsave(&n->list_lock, flags);
3933
3934 /*
3935 * Build lists of slabs to discard or promote.
3936 *
3937 * Note that concurrent frees may occur while we hold the
3938 * list_lock. page->inuse here is the upper limit.
3939 */
3940 list_for_each_entry_safe(page, t, &n->partial, lru) {
3941 int free = page->objects - page->inuse;
3942
3943 /* Do not reread page->inuse */
3944 barrier();
3945
3946 /* We do not keep full slabs on the list */
3947 BUG_ON(free <= 0);
3948
3949 if (free == page->objects) {
3950 list_move(&page->lru, &discard);
3951 n->nr_partial--;
3952 } else if (free <= SHRINK_PROMOTE_MAX)
3953 list_move(&page->lru, promote + free - 1);
3954 }
3955
3956 /*
3957 * Promote the slabs filled up most to the head of the
3958 * partial list.
3959 */
3960 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3961 list_splice(promote + i, &n->partial);
3962
3963 spin_unlock_irqrestore(&n->list_lock, flags);
3964
3965 /* Release empty slabs */
3966 list_for_each_entry_safe(page, t, &discard, lru)
3967 discard_slab(s, page);
3968
3969 if (slabs_node(s, node))
3970 ret = 1;
3971 }
3972
3973 return ret;
3974 }
3975
3976 #ifdef CONFIG_MEMCG
3977 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3978 {
3979 /*
3980 * Called with all the locks held after a sched RCU grace period.
3981 * Even if @s becomes empty after shrinking, we can't know that @s
3982 * doesn't have allocations already in-flight and thus can't
3983 * destroy @s until the associated memcg is released.
3984 *
3985 * However, let's remove the sysfs files for empty caches here.
3986 * Each cache has a lot of interface files which aren't
3987 * particularly useful for empty draining caches; otherwise, we can
3988 * easily end up with millions of unnecessary sysfs files on
3989 * systems which have a lot of memory and transient cgroups.
3990 */
3991 if (!__kmem_cache_shrink(s))
3992 sysfs_slab_remove(s);
3993 }
3994
3995 void __kmemcg_cache_deactivate(struct kmem_cache *s)
3996 {
3997 /*
3998 * Disable empty slabs caching. Used to avoid pinning offline
3999 * memory cgroups by kmem pages that can be freed.
4000 */
4001 slub_set_cpu_partial(s, 0);
4002 s->min_partial = 0;
4003
4004 /*
4005 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4006 * we have to make sure the change is visible before shrinking.
4007 */
4008 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4009 }
4010 #endif
4011
4012 static int slab_mem_going_offline_callback(void *arg)
4013 {
4014 struct kmem_cache *s;
4015
4016 mutex_lock(&slab_mutex);
4017 list_for_each_entry(s, &slab_caches, list)
4018 __kmem_cache_shrink(s);
4019 mutex_unlock(&slab_mutex);
4020
4021 return 0;
4022 }
4023
4024 static void slab_mem_offline_callback(void *arg)
4025 {
4026 struct kmem_cache_node *n;
4027 struct kmem_cache *s;
4028 struct memory_notify *marg = arg;
4029 int offline_node;
4030
4031 offline_node = marg->status_change_nid_normal;
4032
4033 /*
4034 * If the node still has available memory. we need kmem_cache_node
4035 * for it yet.
4036 */
4037 if (offline_node < 0)
4038 return;
4039
4040 mutex_lock(&slab_mutex);
4041 list_for_each_entry(s, &slab_caches, list) {
4042 n = get_node(s, offline_node);
4043 if (n) {
4044 /*
4045 * if n->nr_slabs > 0, slabs still exist on the node
4046 * that is going down. We were unable to free them,
4047 * and offline_pages() function shouldn't call this
4048 * callback. So, we must fail.
4049 */
4050 BUG_ON(slabs_node(s, offline_node));
4051
4052 s->node[offline_node] = NULL;
4053 kmem_cache_free(kmem_cache_node, n);
4054 }
4055 }
4056 mutex_unlock(&slab_mutex);
4057 }
4058
4059 static int slab_mem_going_online_callback(void *arg)
4060 {
4061 struct kmem_cache_node *n;
4062 struct kmem_cache *s;
4063 struct memory_notify *marg = arg;
4064 int nid = marg->status_change_nid_normal;
4065 int ret = 0;
4066
4067 /*
4068 * If the node's memory is already available, then kmem_cache_node is
4069 * already created. Nothing to do.
4070 */
4071 if (nid < 0)
4072 return 0;
4073
4074 /*
4075 * We are bringing a node online. No memory is available yet. We must
4076 * allocate a kmem_cache_node structure in order to bring the node
4077 * online.
4078 */
4079 mutex_lock(&slab_mutex);
4080 list_for_each_entry(s, &slab_caches, list) {
4081 /*
4082 * XXX: kmem_cache_alloc_node will fallback to other nodes
4083 * since memory is not yet available from the node that
4084 * is brought up.
4085 */
4086 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4087 if (!n) {
4088 ret = -ENOMEM;
4089 goto out;
4090 }
4091 init_kmem_cache_node(n);
4092 s->node[nid] = n;
4093 }
4094 out:
4095 mutex_unlock(&slab_mutex);
4096 return ret;
4097 }
4098
4099 static int slab_memory_callback(struct notifier_block *self,
4100 unsigned long action, void *arg)
4101 {
4102 int ret = 0;
4103
4104 switch (action) {
4105 case MEM_GOING_ONLINE:
4106 ret = slab_mem_going_online_callback(arg);
4107 break;
4108 case MEM_GOING_OFFLINE:
4109 ret = slab_mem_going_offline_callback(arg);
4110 break;
4111 case MEM_OFFLINE:
4112 case MEM_CANCEL_ONLINE:
4113 slab_mem_offline_callback(arg);
4114 break;
4115 case MEM_ONLINE:
4116 case MEM_CANCEL_OFFLINE:
4117 break;
4118 }
4119 if (ret)
4120 ret = notifier_from_errno(ret);
4121 else
4122 ret = NOTIFY_OK;
4123 return ret;
4124 }
4125
4126 static struct notifier_block slab_memory_callback_nb = {
4127 .notifier_call = slab_memory_callback,
4128 .priority = SLAB_CALLBACK_PRI,
4129 };
4130
4131 /********************************************************************
4132 * Basic setup of slabs
4133 *******************************************************************/
4134
4135 /*
4136 * Used for early kmem_cache structures that were allocated using
4137 * the page allocator. Allocate them properly then fix up the pointers
4138 * that may be pointing to the wrong kmem_cache structure.
4139 */
4140
4141 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4142 {
4143 int node;
4144 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4145 struct kmem_cache_node *n;
4146
4147 memcpy(s, static_cache, kmem_cache->object_size);
4148
4149 /*
4150 * This runs very early, and only the boot processor is supposed to be
4151 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4152 * IPIs around.
4153 */
4154 __flush_cpu_slab(s, smp_processor_id());
4155 for_each_kmem_cache_node(s, node, n) {
4156 struct page *p;
4157
4158 list_for_each_entry(p, &n->partial, lru)
4159 p->slab_cache = s;
4160
4161 #ifdef CONFIG_SLUB_DEBUG
4162 list_for_each_entry(p, &n->full, lru)
4163 p->slab_cache = s;
4164 #endif
4165 }
4166 slab_init_memcg_params(s);
4167 list_add(&s->list, &slab_caches);
4168 memcg_link_cache(s);
4169 return s;
4170 }
4171
4172 void __init kmem_cache_init(void)
4173 {
4174 static __initdata struct kmem_cache boot_kmem_cache,
4175 boot_kmem_cache_node;
4176
4177 if (debug_guardpage_minorder())
4178 slub_max_order = 0;
4179
4180 kmem_cache_node = &boot_kmem_cache_node;
4181 kmem_cache = &boot_kmem_cache;
4182
4183 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4184 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4185
4186 register_hotmemory_notifier(&slab_memory_callback_nb);
4187
4188 /* Able to allocate the per node structures */
4189 slab_state = PARTIAL;
4190
4191 create_boot_cache(kmem_cache, "kmem_cache",
4192 offsetof(struct kmem_cache, node) +
4193 nr_node_ids * sizeof(struct kmem_cache_node *),
4194 SLAB_HWCACHE_ALIGN);
4195
4196 kmem_cache = bootstrap(&boot_kmem_cache);
4197
4198 /*
4199 * Allocate kmem_cache_node properly from the kmem_cache slab.
4200 * kmem_cache_node is separately allocated so no need to
4201 * update any list pointers.
4202 */
4203 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4204
4205 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4206 setup_kmalloc_cache_index_table();
4207 create_kmalloc_caches(0);
4208
4209 /* Setup random freelists for each cache */
4210 init_freelist_randomization();
4211
4212 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4213 slub_cpu_dead);
4214
4215 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4216 cache_line_size(),
4217 slub_min_order, slub_max_order, slub_min_objects,
4218 nr_cpu_ids, nr_node_ids);
4219 }
4220
4221 void __init kmem_cache_init_late(void)
4222 {
4223 }
4224
4225 struct kmem_cache *
4226 __kmem_cache_alias(const char *name, size_t size, size_t align,
4227 slab_flags_t flags, void (*ctor)(void *))
4228 {
4229 struct kmem_cache *s, *c;
4230
4231 s = find_mergeable(size, align, flags, name, ctor);
4232 if (s) {
4233 s->refcount++;
4234
4235 /*
4236 * Adjust the object sizes so that we clear
4237 * the complete object on kzalloc.
4238 */
4239 s->object_size = max(s->object_size, (int)size);
4240 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4241
4242 for_each_memcg_cache(c, s) {
4243 c->object_size = s->object_size;
4244 c->inuse = max_t(int, c->inuse,
4245 ALIGN(size, sizeof(void *)));
4246 }
4247
4248 if (sysfs_slab_alias(s, name)) {
4249 s->refcount--;
4250 s = NULL;
4251 }
4252 }
4253
4254 return s;
4255 }
4256
4257 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4258 {
4259 int err;
4260
4261 err = kmem_cache_open(s, flags);
4262 if (err)
4263 return err;
4264
4265 /* Mutex is not taken during early boot */
4266 if (slab_state <= UP)
4267 return 0;
4268
4269 memcg_propagate_slab_attrs(s);
4270 err = sysfs_slab_add(s);
4271 if (err)
4272 __kmem_cache_release(s);
4273
4274 return err;
4275 }
4276
4277 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4278 {
4279 struct kmem_cache *s;
4280 void *ret;
4281
4282 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4283 return kmalloc_large(size, gfpflags);
4284
4285 s = kmalloc_slab(size, gfpflags);
4286
4287 if (unlikely(ZERO_OR_NULL_PTR(s)))
4288 return s;
4289
4290 ret = slab_alloc(s, gfpflags, caller);
4291
4292 /* Honor the call site pointer we received. */
4293 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4294
4295 return ret;
4296 }
4297
4298 #ifdef CONFIG_NUMA
4299 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4300 int node, unsigned long caller)
4301 {
4302 struct kmem_cache *s;
4303 void *ret;
4304
4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4306 ret = kmalloc_large_node(size, gfpflags, node);
4307
4308 trace_kmalloc_node(caller, ret,
4309 size, PAGE_SIZE << get_order(size),
4310 gfpflags, node);
4311
4312 return ret;
4313 }
4314
4315 s = kmalloc_slab(size, gfpflags);
4316
4317 if (unlikely(ZERO_OR_NULL_PTR(s)))
4318 return s;
4319
4320 ret = slab_alloc_node(s, gfpflags, node, caller);
4321
4322 /* Honor the call site pointer we received. */
4323 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4324
4325 return ret;
4326 }
4327 #endif
4328
4329 #ifdef CONFIG_SYSFS
4330 static int count_inuse(struct page *page)
4331 {
4332 return page->inuse;
4333 }
4334
4335 static int count_total(struct page *page)
4336 {
4337 return page->objects;
4338 }
4339 #endif
4340
4341 #ifdef CONFIG_SLUB_DEBUG
4342 static int validate_slab(struct kmem_cache *s, struct page *page,
4343 unsigned long *map)
4344 {
4345 void *p;
4346 void *addr = page_address(page);
4347
4348 if (!check_slab(s, page) ||
4349 !on_freelist(s, page, NULL))
4350 return 0;
4351
4352 /* Now we know that a valid freelist exists */
4353 bitmap_zero(map, page->objects);
4354
4355 get_map(s, page, map);
4356 for_each_object(p, s, addr, page->objects) {
4357 if (test_bit(slab_index(p, s, addr), map))
4358 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4359 return 0;
4360 }
4361
4362 for_each_object(p, s, addr, page->objects)
4363 if (!test_bit(slab_index(p, s, addr), map))
4364 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4365 return 0;
4366 return 1;
4367 }
4368
4369 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4370 unsigned long *map)
4371 {
4372 slab_lock(page);
4373 validate_slab(s, page, map);
4374 slab_unlock(page);
4375 }
4376
4377 static int validate_slab_node(struct kmem_cache *s,
4378 struct kmem_cache_node *n, unsigned long *map)
4379 {
4380 unsigned long count = 0;
4381 struct page *page;
4382 unsigned long flags;
4383
4384 spin_lock_irqsave(&n->list_lock, flags);
4385
4386 list_for_each_entry(page, &n->partial, lru) {
4387 validate_slab_slab(s, page, map);
4388 count++;
4389 }
4390 if (count != n->nr_partial)
4391 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4392 s->name, count, n->nr_partial);
4393
4394 if (!(s->flags & SLAB_STORE_USER))
4395 goto out;
4396
4397 list_for_each_entry(page, &n->full, lru) {
4398 validate_slab_slab(s, page, map);
4399 count++;
4400 }
4401 if (count != atomic_long_read(&n->nr_slabs))
4402 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4403 s->name, count, atomic_long_read(&n->nr_slabs));
4404
4405 out:
4406 spin_unlock_irqrestore(&n->list_lock, flags);
4407 return count;
4408 }
4409
4410 static long validate_slab_cache(struct kmem_cache *s)
4411 {
4412 int node;
4413 unsigned long count = 0;
4414 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4415 sizeof(unsigned long), GFP_KERNEL);
4416 struct kmem_cache_node *n;
4417
4418 if (!map)
4419 return -ENOMEM;
4420
4421 flush_all(s);
4422 for_each_kmem_cache_node(s, node, n)
4423 count += validate_slab_node(s, n, map);
4424 kfree(map);
4425 return count;
4426 }
4427 /*
4428 * Generate lists of code addresses where slabcache objects are allocated
4429 * and freed.
4430 */
4431
4432 struct location {
4433 unsigned long count;
4434 unsigned long addr;
4435 long long sum_time;
4436 long min_time;
4437 long max_time;
4438 long min_pid;
4439 long max_pid;
4440 DECLARE_BITMAP(cpus, NR_CPUS);
4441 nodemask_t nodes;
4442 };
4443
4444 struct loc_track {
4445 unsigned long max;
4446 unsigned long count;
4447 struct location *loc;
4448 };
4449
4450 static void free_loc_track(struct loc_track *t)
4451 {
4452 if (t->max)
4453 free_pages((unsigned long)t->loc,
4454 get_order(sizeof(struct location) * t->max));
4455 }
4456
4457 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4458 {
4459 struct location *l;
4460 int order;
4461
4462 order = get_order(sizeof(struct location) * max);
4463
4464 l = (void *)__get_free_pages(flags, order);
4465 if (!l)
4466 return 0;
4467
4468 if (t->count) {
4469 memcpy(l, t->loc, sizeof(struct location) * t->count);
4470 free_loc_track(t);
4471 }
4472 t->max = max;
4473 t->loc = l;
4474 return 1;
4475 }
4476
4477 static int add_location(struct loc_track *t, struct kmem_cache *s,
4478 const struct track *track)
4479 {
4480 long start, end, pos;
4481 struct location *l;
4482 unsigned long caddr;
4483 unsigned long age = jiffies - track->when;
4484
4485 start = -1;
4486 end = t->count;
4487
4488 for ( ; ; ) {
4489 pos = start + (end - start + 1) / 2;
4490
4491 /*
4492 * There is nothing at "end". If we end up there
4493 * we need to add something to before end.
4494 */
4495 if (pos == end)
4496 break;
4497
4498 caddr = t->loc[pos].addr;
4499 if (track->addr == caddr) {
4500
4501 l = &t->loc[pos];
4502 l->count++;
4503 if (track->when) {
4504 l->sum_time += age;
4505 if (age < l->min_time)
4506 l->min_time = age;
4507 if (age > l->max_time)
4508 l->max_time = age;
4509
4510 if (track->pid < l->min_pid)
4511 l->min_pid = track->pid;
4512 if (track->pid > l->max_pid)
4513 l->max_pid = track->pid;
4514
4515 cpumask_set_cpu(track->cpu,
4516 to_cpumask(l->cpus));
4517 }
4518 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4519 return 1;
4520 }
4521
4522 if (track->addr < caddr)
4523 end = pos;
4524 else
4525 start = pos;
4526 }
4527
4528 /*
4529 * Not found. Insert new tracking element.
4530 */
4531 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4532 return 0;
4533
4534 l = t->loc + pos;
4535 if (pos < t->count)
4536 memmove(l + 1, l,
4537 (t->count - pos) * sizeof(struct location));
4538 t->count++;
4539 l->count = 1;
4540 l->addr = track->addr;
4541 l->sum_time = age;
4542 l->min_time = age;
4543 l->max_time = age;
4544 l->min_pid = track->pid;
4545 l->max_pid = track->pid;
4546 cpumask_clear(to_cpumask(l->cpus));
4547 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4548 nodes_clear(l->nodes);
4549 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4550 return 1;
4551 }
4552
4553 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4554 struct page *page, enum track_item alloc,
4555 unsigned long *map)
4556 {
4557 void *addr = page_address(page);
4558 void *p;
4559
4560 bitmap_zero(map, page->objects);
4561 get_map(s, page, map);
4562
4563 for_each_object(p, s, addr, page->objects)
4564 if (!test_bit(slab_index(p, s, addr), map))
4565 add_location(t, s, get_track(s, p, alloc));
4566 }
4567
4568 static int list_locations(struct kmem_cache *s, char *buf,
4569 enum track_item alloc)
4570 {
4571 int len = 0;
4572 unsigned long i;
4573 struct loc_track t = { 0, 0, NULL };
4574 int node;
4575 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4576 sizeof(unsigned long), GFP_KERNEL);
4577 struct kmem_cache_node *n;
4578
4579 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4580 GFP_KERNEL)) {
4581 kfree(map);
4582 return sprintf(buf, "Out of memory\n");
4583 }
4584 /* Push back cpu slabs */
4585 flush_all(s);
4586
4587 for_each_kmem_cache_node(s, node, n) {
4588 unsigned long flags;
4589 struct page *page;
4590
4591 if (!atomic_long_read(&n->nr_slabs))
4592 continue;
4593
4594 spin_lock_irqsave(&n->list_lock, flags);
4595 list_for_each_entry(page, &n->partial, lru)
4596 process_slab(&t, s, page, alloc, map);
4597 list_for_each_entry(page, &n->full, lru)
4598 process_slab(&t, s, page, alloc, map);
4599 spin_unlock_irqrestore(&n->list_lock, flags);
4600 }
4601
4602 for (i = 0; i < t.count; i++) {
4603 struct location *l = &t.loc[i];
4604
4605 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4606 break;
4607 len += sprintf(buf + len, "%7ld ", l->count);
4608
4609 if (l->addr)
4610 len += sprintf(buf + len, "%pS", (void *)l->addr);
4611 else
4612 len += sprintf(buf + len, "<not-available>");
4613
4614 if (l->sum_time != l->min_time) {
4615 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4616 l->min_time,
4617 (long)div_u64(l->sum_time, l->count),
4618 l->max_time);
4619 } else
4620 len += sprintf(buf + len, " age=%ld",
4621 l->min_time);
4622
4623 if (l->min_pid != l->max_pid)
4624 len += sprintf(buf + len, " pid=%ld-%ld",
4625 l->min_pid, l->max_pid);
4626 else
4627 len += sprintf(buf + len, " pid=%ld",
4628 l->min_pid);
4629
4630 if (num_online_cpus() > 1 &&
4631 !cpumask_empty(to_cpumask(l->cpus)) &&
4632 len < PAGE_SIZE - 60)
4633 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4634 " cpus=%*pbl",
4635 cpumask_pr_args(to_cpumask(l->cpus)));
4636
4637 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4638 len < PAGE_SIZE - 60)
4639 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4640 " nodes=%*pbl",
4641 nodemask_pr_args(&l->nodes));
4642
4643 len += sprintf(buf + len, "\n");
4644 }
4645
4646 free_loc_track(&t);
4647 kfree(map);
4648 if (!t.count)
4649 len += sprintf(buf, "No data\n");
4650 return len;
4651 }
4652 #endif
4653
4654 #ifdef SLUB_RESILIENCY_TEST
4655 static void __init resiliency_test(void)
4656 {
4657 u8 *p;
4658
4659 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4660
4661 pr_err("SLUB resiliency testing\n");
4662 pr_err("-----------------------\n");
4663 pr_err("A. Corruption after allocation\n");
4664
4665 p = kzalloc(16, GFP_KERNEL);
4666 p[16] = 0x12;
4667 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4668 p + 16);
4669
4670 validate_slab_cache(kmalloc_caches[4]);
4671
4672 /* Hmmm... The next two are dangerous */
4673 p = kzalloc(32, GFP_KERNEL);
4674 p[32 + sizeof(void *)] = 0x34;
4675 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4676 p);
4677 pr_err("If allocated object is overwritten then not detectable\n\n");
4678
4679 validate_slab_cache(kmalloc_caches[5]);
4680 p = kzalloc(64, GFP_KERNEL);
4681 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4682 *p = 0x56;
4683 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4684 p);
4685 pr_err("If allocated object is overwritten then not detectable\n\n");
4686 validate_slab_cache(kmalloc_caches[6]);
4687
4688 pr_err("\nB. Corruption after free\n");
4689 p = kzalloc(128, GFP_KERNEL);
4690 kfree(p);
4691 *p = 0x78;
4692 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4693 validate_slab_cache(kmalloc_caches[7]);
4694
4695 p = kzalloc(256, GFP_KERNEL);
4696 kfree(p);
4697 p[50] = 0x9a;
4698 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4699 validate_slab_cache(kmalloc_caches[8]);
4700
4701 p = kzalloc(512, GFP_KERNEL);
4702 kfree(p);
4703 p[512] = 0xab;
4704 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4705 validate_slab_cache(kmalloc_caches[9]);
4706 }
4707 #else
4708 #ifdef CONFIG_SYSFS
4709 static void resiliency_test(void) {};
4710 #endif
4711 #endif
4712
4713 #ifdef CONFIG_SYSFS
4714 enum slab_stat_type {
4715 SL_ALL, /* All slabs */
4716 SL_PARTIAL, /* Only partially allocated slabs */
4717 SL_CPU, /* Only slabs used for cpu caches */
4718 SL_OBJECTS, /* Determine allocated objects not slabs */
4719 SL_TOTAL /* Determine object capacity not slabs */
4720 };
4721
4722 #define SO_ALL (1 << SL_ALL)
4723 #define SO_PARTIAL (1 << SL_PARTIAL)
4724 #define SO_CPU (1 << SL_CPU)
4725 #define SO_OBJECTS (1 << SL_OBJECTS)
4726 #define SO_TOTAL (1 << SL_TOTAL)
4727
4728 #ifdef CONFIG_MEMCG
4729 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4730
4731 static int __init setup_slub_memcg_sysfs(char *str)
4732 {
4733 int v;
4734
4735 if (get_option(&str, &v) > 0)
4736 memcg_sysfs_enabled = v;
4737
4738 return 1;
4739 }
4740
4741 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4742 #endif
4743
4744 static ssize_t show_slab_objects(struct kmem_cache *s,
4745 char *buf, unsigned long flags)
4746 {
4747 unsigned long total = 0;
4748 int node;
4749 int x;
4750 unsigned long *nodes;
4751
4752 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4753 if (!nodes)
4754 return -ENOMEM;
4755
4756 if (flags & SO_CPU) {
4757 int cpu;
4758
4759 for_each_possible_cpu(cpu) {
4760 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4761 cpu);
4762 int node;
4763 struct page *page;
4764
4765 page = READ_ONCE(c->page);
4766 if (!page)
4767 continue;
4768
4769 node = page_to_nid(page);
4770 if (flags & SO_TOTAL)
4771 x = page->objects;
4772 else if (flags & SO_OBJECTS)
4773 x = page->inuse;
4774 else
4775 x = 1;
4776
4777 total += x;
4778 nodes[node] += x;
4779
4780 page = slub_percpu_partial_read_once(c);
4781 if (page) {
4782 node = page_to_nid(page);
4783 if (flags & SO_TOTAL)
4784 WARN_ON_ONCE(1);
4785 else if (flags & SO_OBJECTS)
4786 WARN_ON_ONCE(1);
4787 else
4788 x = page->pages;
4789 total += x;
4790 nodes[node] += x;
4791 }
4792 }
4793 }
4794
4795 get_online_mems();
4796 #ifdef CONFIG_SLUB_DEBUG
4797 if (flags & SO_ALL) {
4798 struct kmem_cache_node *n;
4799
4800 for_each_kmem_cache_node(s, node, n) {
4801
4802 if (flags & SO_TOTAL)
4803 x = atomic_long_read(&n->total_objects);
4804 else if (flags & SO_OBJECTS)
4805 x = atomic_long_read(&n->total_objects) -
4806 count_partial(n, count_free);
4807 else
4808 x = atomic_long_read(&n->nr_slabs);
4809 total += x;
4810 nodes[node] += x;
4811 }
4812
4813 } else
4814 #endif
4815 if (flags & SO_PARTIAL) {
4816 struct kmem_cache_node *n;
4817
4818 for_each_kmem_cache_node(s, node, n) {
4819 if (flags & SO_TOTAL)
4820 x = count_partial(n, count_total);
4821 else if (flags & SO_OBJECTS)
4822 x = count_partial(n, count_inuse);
4823 else
4824 x = n->nr_partial;
4825 total += x;
4826 nodes[node] += x;
4827 }
4828 }
4829 x = sprintf(buf, "%lu", total);
4830 #ifdef CONFIG_NUMA
4831 for (node = 0; node < nr_node_ids; node++)
4832 if (nodes[node])
4833 x += sprintf(buf + x, " N%d=%lu",
4834 node, nodes[node]);
4835 #endif
4836 put_online_mems();
4837 kfree(nodes);
4838 return x + sprintf(buf + x, "\n");
4839 }
4840
4841 #ifdef CONFIG_SLUB_DEBUG
4842 static int any_slab_objects(struct kmem_cache *s)
4843 {
4844 int node;
4845 struct kmem_cache_node *n;
4846
4847 for_each_kmem_cache_node(s, node, n)
4848 if (atomic_long_read(&n->total_objects))
4849 return 1;
4850
4851 return 0;
4852 }
4853 #endif
4854
4855 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4856 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4857
4858 struct slab_attribute {
4859 struct attribute attr;
4860 ssize_t (*show)(struct kmem_cache *s, char *buf);
4861 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4862 };
4863
4864 #define SLAB_ATTR_RO(_name) \
4865 static struct slab_attribute _name##_attr = \
4866 __ATTR(_name, 0400, _name##_show, NULL)
4867
4868 #define SLAB_ATTR(_name) \
4869 static struct slab_attribute _name##_attr = \
4870 __ATTR(_name, 0600, _name##_show, _name##_store)
4871
4872 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4873 {
4874 return sprintf(buf, "%d\n", s->size);
4875 }
4876 SLAB_ATTR_RO(slab_size);
4877
4878 static ssize_t align_show(struct kmem_cache *s, char *buf)
4879 {
4880 return sprintf(buf, "%d\n", s->align);
4881 }
4882 SLAB_ATTR_RO(align);
4883
4884 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4885 {
4886 return sprintf(buf, "%d\n", s->object_size);
4887 }
4888 SLAB_ATTR_RO(object_size);
4889
4890 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4891 {
4892 return sprintf(buf, "%d\n", oo_objects(s->oo));
4893 }
4894 SLAB_ATTR_RO(objs_per_slab);
4895
4896 static ssize_t order_store(struct kmem_cache *s,
4897 const char *buf, size_t length)
4898 {
4899 unsigned long order;
4900 int err;
4901
4902 err = kstrtoul(buf, 10, &order);
4903 if (err)
4904 return err;
4905
4906 if (order > slub_max_order || order < slub_min_order)
4907 return -EINVAL;
4908
4909 calculate_sizes(s, order);
4910 return length;
4911 }
4912
4913 static ssize_t order_show(struct kmem_cache *s, char *buf)
4914 {
4915 return sprintf(buf, "%d\n", oo_order(s->oo));
4916 }
4917 SLAB_ATTR(order);
4918
4919 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4920 {
4921 return sprintf(buf, "%lu\n", s->min_partial);
4922 }
4923
4924 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4925 size_t length)
4926 {
4927 unsigned long min;
4928 int err;
4929
4930 err = kstrtoul(buf, 10, &min);
4931 if (err)
4932 return err;
4933
4934 set_min_partial(s, min);
4935 return length;
4936 }
4937 SLAB_ATTR(min_partial);
4938
4939 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4940 {
4941 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4942 }
4943
4944 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4945 size_t length)
4946 {
4947 unsigned long objects;
4948 int err;
4949
4950 err = kstrtoul(buf, 10, &objects);
4951 if (err)
4952 return err;
4953 if (objects && !kmem_cache_has_cpu_partial(s))
4954 return -EINVAL;
4955
4956 slub_set_cpu_partial(s, objects);
4957 flush_all(s);
4958 return length;
4959 }
4960 SLAB_ATTR(cpu_partial);
4961
4962 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4963 {
4964 if (!s->ctor)
4965 return 0;
4966 return sprintf(buf, "%pS\n", s->ctor);
4967 }
4968 SLAB_ATTR_RO(ctor);
4969
4970 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4971 {
4972 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4973 }
4974 SLAB_ATTR_RO(aliases);
4975
4976 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4977 {
4978 return show_slab_objects(s, buf, SO_PARTIAL);
4979 }
4980 SLAB_ATTR_RO(partial);
4981
4982 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4983 {
4984 return show_slab_objects(s, buf, SO_CPU);
4985 }
4986 SLAB_ATTR_RO(cpu_slabs);
4987
4988 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4989 {
4990 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4991 }
4992 SLAB_ATTR_RO(objects);
4993
4994 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4995 {
4996 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4997 }
4998 SLAB_ATTR_RO(objects_partial);
4999
5000 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5001 {
5002 int objects = 0;
5003 int pages = 0;
5004 int cpu;
5005 int len;
5006
5007 for_each_online_cpu(cpu) {
5008 struct page *page;
5009
5010 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5011
5012 if (page) {
5013 pages += page->pages;
5014 objects += page->pobjects;
5015 }
5016 }
5017
5018 len = sprintf(buf, "%d(%d)", objects, pages);
5019
5020 #ifdef CONFIG_SMP
5021 for_each_online_cpu(cpu) {
5022 struct page *page;
5023
5024 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5025
5026 if (page && len < PAGE_SIZE - 20)
5027 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5028 page->pobjects, page->pages);
5029 }
5030 #endif
5031 return len + sprintf(buf + len, "\n");
5032 }
5033 SLAB_ATTR_RO(slabs_cpu_partial);
5034
5035 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5036 {
5037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5038 }
5039
5040 static ssize_t reclaim_account_store(struct kmem_cache *s,
5041 const char *buf, size_t length)
5042 {
5043 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5044 if (buf[0] == '1')
5045 s->flags |= SLAB_RECLAIM_ACCOUNT;
5046 return length;
5047 }
5048 SLAB_ATTR(reclaim_account);
5049
5050 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5051 {
5052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5053 }
5054 SLAB_ATTR_RO(hwcache_align);
5055
5056 #ifdef CONFIG_ZONE_DMA
5057 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5058 {
5059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5060 }
5061 SLAB_ATTR_RO(cache_dma);
5062 #endif
5063
5064 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5065 {
5066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5067 }
5068 SLAB_ATTR_RO(destroy_by_rcu);
5069
5070 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5071 {
5072 return sprintf(buf, "%d\n", s->reserved);
5073 }
5074 SLAB_ATTR_RO(reserved);
5075
5076 #ifdef CONFIG_SLUB_DEBUG
5077 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5078 {
5079 return show_slab_objects(s, buf, SO_ALL);
5080 }
5081 SLAB_ATTR_RO(slabs);
5082
5083 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5084 {
5085 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5086 }
5087 SLAB_ATTR_RO(total_objects);
5088
5089 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5090 {
5091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5092 }
5093
5094 static ssize_t sanity_checks_store(struct kmem_cache *s,
5095 const char *buf, size_t length)
5096 {
5097 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5098 if (buf[0] == '1') {
5099 s->flags &= ~__CMPXCHG_DOUBLE;
5100 s->flags |= SLAB_CONSISTENCY_CHECKS;
5101 }
5102 return length;
5103 }
5104 SLAB_ATTR(sanity_checks);
5105
5106 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5107 {
5108 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5109 }
5110
5111 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5112 size_t length)
5113 {
5114 /*
5115 * Tracing a merged cache is going to give confusing results
5116 * as well as cause other issues like converting a mergeable
5117 * cache into an umergeable one.
5118 */
5119 if (s->refcount > 1)
5120 return -EINVAL;
5121
5122 s->flags &= ~SLAB_TRACE;
5123 if (buf[0] == '1') {
5124 s->flags &= ~__CMPXCHG_DOUBLE;
5125 s->flags |= SLAB_TRACE;
5126 }
5127 return length;
5128 }
5129 SLAB_ATTR(trace);
5130
5131 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5132 {
5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5134 }
5135
5136 static ssize_t red_zone_store(struct kmem_cache *s,
5137 const char *buf, size_t length)
5138 {
5139 if (any_slab_objects(s))
5140 return -EBUSY;
5141
5142 s->flags &= ~SLAB_RED_ZONE;
5143 if (buf[0] == '1') {
5144 s->flags |= SLAB_RED_ZONE;
5145 }
5146 calculate_sizes(s, -1);
5147 return length;
5148 }
5149 SLAB_ATTR(red_zone);
5150
5151 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5152 {
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5154 }
5155
5156 static ssize_t poison_store(struct kmem_cache *s,
5157 const char *buf, size_t length)
5158 {
5159 if (any_slab_objects(s))
5160 return -EBUSY;
5161
5162 s->flags &= ~SLAB_POISON;
5163 if (buf[0] == '1') {
5164 s->flags |= SLAB_POISON;
5165 }
5166 calculate_sizes(s, -1);
5167 return length;
5168 }
5169 SLAB_ATTR(poison);
5170
5171 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5172 {
5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5174 }
5175
5176 static ssize_t store_user_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178 {
5179 if (any_slab_objects(s))
5180 return -EBUSY;
5181
5182 s->flags &= ~SLAB_STORE_USER;
5183 if (buf[0] == '1') {
5184 s->flags &= ~__CMPXCHG_DOUBLE;
5185 s->flags |= SLAB_STORE_USER;
5186 }
5187 calculate_sizes(s, -1);
5188 return length;
5189 }
5190 SLAB_ATTR(store_user);
5191
5192 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5193 {
5194 return 0;
5195 }
5196
5197 static ssize_t validate_store(struct kmem_cache *s,
5198 const char *buf, size_t length)
5199 {
5200 int ret = -EINVAL;
5201
5202 if (buf[0] == '1') {
5203 ret = validate_slab_cache(s);
5204 if (ret >= 0)
5205 ret = length;
5206 }
5207 return ret;
5208 }
5209 SLAB_ATTR(validate);
5210
5211 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5212 {
5213 if (!(s->flags & SLAB_STORE_USER))
5214 return -ENOSYS;
5215 return list_locations(s, buf, TRACK_ALLOC);
5216 }
5217 SLAB_ATTR_RO(alloc_calls);
5218
5219 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5220 {
5221 if (!(s->flags & SLAB_STORE_USER))
5222 return -ENOSYS;
5223 return list_locations(s, buf, TRACK_FREE);
5224 }
5225 SLAB_ATTR_RO(free_calls);
5226 #endif /* CONFIG_SLUB_DEBUG */
5227
5228 #ifdef CONFIG_FAILSLAB
5229 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5230 {
5231 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5232 }
5233
5234 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5235 size_t length)
5236 {
5237 if (s->refcount > 1)
5238 return -EINVAL;
5239
5240 s->flags &= ~SLAB_FAILSLAB;
5241 if (buf[0] == '1')
5242 s->flags |= SLAB_FAILSLAB;
5243 return length;
5244 }
5245 SLAB_ATTR(failslab);
5246 #endif
5247
5248 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5249 {
5250 return 0;
5251 }
5252
5253 static ssize_t shrink_store(struct kmem_cache *s,
5254 const char *buf, size_t length)
5255 {
5256 if (buf[0] == '1')
5257 kmem_cache_shrink(s);
5258 else
5259 return -EINVAL;
5260 return length;
5261 }
5262 SLAB_ATTR(shrink);
5263
5264 #ifdef CONFIG_NUMA
5265 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5266 {
5267 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5268 }
5269
5270 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5271 const char *buf, size_t length)
5272 {
5273 unsigned long ratio;
5274 int err;
5275
5276 err = kstrtoul(buf, 10, &ratio);
5277 if (err)
5278 return err;
5279
5280 if (ratio <= 100)
5281 s->remote_node_defrag_ratio = ratio * 10;
5282
5283 return length;
5284 }
5285 SLAB_ATTR(remote_node_defrag_ratio);
5286 #endif
5287
5288 #ifdef CONFIG_SLUB_STATS
5289 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5290 {
5291 unsigned long sum = 0;
5292 int cpu;
5293 int len;
5294 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5295
5296 if (!data)
5297 return -ENOMEM;
5298
5299 for_each_online_cpu(cpu) {
5300 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5301
5302 data[cpu] = x;
5303 sum += x;
5304 }
5305
5306 len = sprintf(buf, "%lu", sum);
5307
5308 #ifdef CONFIG_SMP
5309 for_each_online_cpu(cpu) {
5310 if (data[cpu] && len < PAGE_SIZE - 20)
5311 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5312 }
5313 #endif
5314 kfree(data);
5315 return len + sprintf(buf + len, "\n");
5316 }
5317
5318 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5319 {
5320 int cpu;
5321
5322 for_each_online_cpu(cpu)
5323 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5324 }
5325
5326 #define STAT_ATTR(si, text) \
5327 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5328 { \
5329 return show_stat(s, buf, si); \
5330 } \
5331 static ssize_t text##_store(struct kmem_cache *s, \
5332 const char *buf, size_t length) \
5333 { \
5334 if (buf[0] != '0') \
5335 return -EINVAL; \
5336 clear_stat(s, si); \
5337 return length; \
5338 } \
5339 SLAB_ATTR(text); \
5340
5341 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5342 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5343 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5344 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5345 STAT_ATTR(FREE_FROZEN, free_frozen);
5346 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5347 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5348 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5349 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5350 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5351 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5352 STAT_ATTR(FREE_SLAB, free_slab);
5353 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5354 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5355 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5356 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5357 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5358 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5359 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5360 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5361 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5362 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5363 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5364 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5365 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5366 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5367 #endif
5368
5369 static struct attribute *slab_attrs[] = {
5370 &slab_size_attr.attr,
5371 &object_size_attr.attr,
5372 &objs_per_slab_attr.attr,
5373 &order_attr.attr,
5374 &min_partial_attr.attr,
5375 &cpu_partial_attr.attr,
5376 &objects_attr.attr,
5377 &objects_partial_attr.attr,
5378 &partial_attr.attr,
5379 &cpu_slabs_attr.attr,
5380 &ctor_attr.attr,
5381 &aliases_attr.attr,
5382 &align_attr.attr,
5383 &hwcache_align_attr.attr,
5384 &reclaim_account_attr.attr,
5385 &destroy_by_rcu_attr.attr,
5386 &shrink_attr.attr,
5387 &reserved_attr.attr,
5388 &slabs_cpu_partial_attr.attr,
5389 #ifdef CONFIG_SLUB_DEBUG
5390 &total_objects_attr.attr,
5391 &slabs_attr.attr,
5392 &sanity_checks_attr.attr,
5393 &trace_attr.attr,
5394 &red_zone_attr.attr,
5395 &poison_attr.attr,
5396 &store_user_attr.attr,
5397 &validate_attr.attr,
5398 &alloc_calls_attr.attr,
5399 &free_calls_attr.attr,
5400 #endif
5401 #ifdef CONFIG_ZONE_DMA
5402 &cache_dma_attr.attr,
5403 #endif
5404 #ifdef CONFIG_NUMA
5405 &remote_node_defrag_ratio_attr.attr,
5406 #endif
5407 #ifdef CONFIG_SLUB_STATS
5408 &alloc_fastpath_attr.attr,
5409 &alloc_slowpath_attr.attr,
5410 &free_fastpath_attr.attr,
5411 &free_slowpath_attr.attr,
5412 &free_frozen_attr.attr,
5413 &free_add_partial_attr.attr,
5414 &free_remove_partial_attr.attr,
5415 &alloc_from_partial_attr.attr,
5416 &alloc_slab_attr.attr,
5417 &alloc_refill_attr.attr,
5418 &alloc_node_mismatch_attr.attr,
5419 &free_slab_attr.attr,
5420 &cpuslab_flush_attr.attr,
5421 &deactivate_full_attr.attr,
5422 &deactivate_empty_attr.attr,
5423 &deactivate_to_head_attr.attr,
5424 &deactivate_to_tail_attr.attr,
5425 &deactivate_remote_frees_attr.attr,
5426 &deactivate_bypass_attr.attr,
5427 &order_fallback_attr.attr,
5428 &cmpxchg_double_fail_attr.attr,
5429 &cmpxchg_double_cpu_fail_attr.attr,
5430 &cpu_partial_alloc_attr.attr,
5431 &cpu_partial_free_attr.attr,
5432 &cpu_partial_node_attr.attr,
5433 &cpu_partial_drain_attr.attr,
5434 #endif
5435 #ifdef CONFIG_FAILSLAB
5436 &failslab_attr.attr,
5437 #endif
5438
5439 NULL
5440 };
5441
5442 static const struct attribute_group slab_attr_group = {
5443 .attrs = slab_attrs,
5444 };
5445
5446 static ssize_t slab_attr_show(struct kobject *kobj,
5447 struct attribute *attr,
5448 char *buf)
5449 {
5450 struct slab_attribute *attribute;
5451 struct kmem_cache *s;
5452 int err;
5453
5454 attribute = to_slab_attr(attr);
5455 s = to_slab(kobj);
5456
5457 if (!attribute->show)
5458 return -EIO;
5459
5460 err = attribute->show(s, buf);
5461
5462 return err;
5463 }
5464
5465 static ssize_t slab_attr_store(struct kobject *kobj,
5466 struct attribute *attr,
5467 const char *buf, size_t len)
5468 {
5469 struct slab_attribute *attribute;
5470 struct kmem_cache *s;
5471 int err;
5472
5473 attribute = to_slab_attr(attr);
5474 s = to_slab(kobj);
5475
5476 if (!attribute->store)
5477 return -EIO;
5478
5479 err = attribute->store(s, buf, len);
5480 #ifdef CONFIG_MEMCG
5481 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5482 struct kmem_cache *c;
5483
5484 mutex_lock(&slab_mutex);
5485 if (s->max_attr_size < len)
5486 s->max_attr_size = len;
5487
5488 /*
5489 * This is a best effort propagation, so this function's return
5490 * value will be determined by the parent cache only. This is
5491 * basically because not all attributes will have a well
5492 * defined semantics for rollbacks - most of the actions will
5493 * have permanent effects.
5494 *
5495 * Returning the error value of any of the children that fail
5496 * is not 100 % defined, in the sense that users seeing the
5497 * error code won't be able to know anything about the state of
5498 * the cache.
5499 *
5500 * Only returning the error code for the parent cache at least
5501 * has well defined semantics. The cache being written to
5502 * directly either failed or succeeded, in which case we loop
5503 * through the descendants with best-effort propagation.
5504 */
5505 for_each_memcg_cache(c, s)
5506 attribute->store(c, buf, len);
5507 mutex_unlock(&slab_mutex);
5508 }
5509 #endif
5510 return err;
5511 }
5512
5513 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5514 {
5515 #ifdef CONFIG_MEMCG
5516 int i;
5517 char *buffer = NULL;
5518 struct kmem_cache *root_cache;
5519
5520 if (is_root_cache(s))
5521 return;
5522
5523 root_cache = s->memcg_params.root_cache;
5524
5525 /*
5526 * This mean this cache had no attribute written. Therefore, no point
5527 * in copying default values around
5528 */
5529 if (!root_cache->max_attr_size)
5530 return;
5531
5532 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5533 char mbuf[64];
5534 char *buf;
5535 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5536 ssize_t len;
5537
5538 if (!attr || !attr->store || !attr->show)
5539 continue;
5540
5541 /*
5542 * It is really bad that we have to allocate here, so we will
5543 * do it only as a fallback. If we actually allocate, though,
5544 * we can just use the allocated buffer until the end.
5545 *
5546 * Most of the slub attributes will tend to be very small in
5547 * size, but sysfs allows buffers up to a page, so they can
5548 * theoretically happen.
5549 */
5550 if (buffer)
5551 buf = buffer;
5552 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5553 buf = mbuf;
5554 else {
5555 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5556 if (WARN_ON(!buffer))
5557 continue;
5558 buf = buffer;
5559 }
5560
5561 len = attr->show(root_cache, buf);
5562 if (len > 0)
5563 attr->store(s, buf, len);
5564 }
5565
5566 if (buffer)
5567 free_page((unsigned long)buffer);
5568 #endif
5569 }
5570
5571 static void kmem_cache_release(struct kobject *k)
5572 {
5573 slab_kmem_cache_release(to_slab(k));
5574 }
5575
5576 static const struct sysfs_ops slab_sysfs_ops = {
5577 .show = slab_attr_show,
5578 .store = slab_attr_store,
5579 };
5580
5581 static struct kobj_type slab_ktype = {
5582 .sysfs_ops = &slab_sysfs_ops,
5583 .release = kmem_cache_release,
5584 };
5585
5586 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5587 {
5588 struct kobj_type *ktype = get_ktype(kobj);
5589
5590 if (ktype == &slab_ktype)
5591 return 1;
5592 return 0;
5593 }
5594
5595 static const struct kset_uevent_ops slab_uevent_ops = {
5596 .filter = uevent_filter,
5597 };
5598
5599 static struct kset *slab_kset;
5600
5601 static inline struct kset *cache_kset(struct kmem_cache *s)
5602 {
5603 #ifdef CONFIG_MEMCG
5604 if (!is_root_cache(s))
5605 return s->memcg_params.root_cache->memcg_kset;
5606 #endif
5607 return slab_kset;
5608 }
5609
5610 #define ID_STR_LENGTH 64
5611
5612 /* Create a unique string id for a slab cache:
5613 *
5614 * Format :[flags-]size
5615 */
5616 static char *create_unique_id(struct kmem_cache *s)
5617 {
5618 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5619 char *p = name;
5620
5621 BUG_ON(!name);
5622
5623 *p++ = ':';
5624 /*
5625 * First flags affecting slabcache operations. We will only
5626 * get here for aliasable slabs so we do not need to support
5627 * too many flags. The flags here must cover all flags that
5628 * are matched during merging to guarantee that the id is
5629 * unique.
5630 */
5631 if (s->flags & SLAB_CACHE_DMA)
5632 *p++ = 'd';
5633 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5634 *p++ = 'a';
5635 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5636 *p++ = 'F';
5637 if (s->flags & SLAB_ACCOUNT)
5638 *p++ = 'A';
5639 if (p != name + 1)
5640 *p++ = '-';
5641 p += sprintf(p, "%07d", s->size);
5642
5643 BUG_ON(p > name + ID_STR_LENGTH - 1);
5644 return name;
5645 }
5646
5647 static void sysfs_slab_remove_workfn(struct work_struct *work)
5648 {
5649 struct kmem_cache *s =
5650 container_of(work, struct kmem_cache, kobj_remove_work);
5651
5652 if (!s->kobj.state_in_sysfs)
5653 /*
5654 * For a memcg cache, this may be called during
5655 * deactivation and again on shutdown. Remove only once.
5656 * A cache is never shut down before deactivation is
5657 * complete, so no need to worry about synchronization.
5658 */
5659 goto out;
5660
5661 #ifdef CONFIG_MEMCG
5662 kset_unregister(s->memcg_kset);
5663 #endif
5664 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5665 kobject_del(&s->kobj);
5666 out:
5667 kobject_put(&s->kobj);
5668 }
5669
5670 static int sysfs_slab_add(struct kmem_cache *s)
5671 {
5672 int err;
5673 const char *name;
5674 struct kset *kset = cache_kset(s);
5675 int unmergeable = slab_unmergeable(s);
5676
5677 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5678
5679 if (!kset) {
5680 kobject_init(&s->kobj, &slab_ktype);
5681 return 0;
5682 }
5683
5684 if (!unmergeable && disable_higher_order_debug &&
5685 (slub_debug & DEBUG_METADATA_FLAGS))
5686 unmergeable = 1;
5687
5688 if (unmergeable) {
5689 /*
5690 * Slabcache can never be merged so we can use the name proper.
5691 * This is typically the case for debug situations. In that
5692 * case we can catch duplicate names easily.
5693 */
5694 sysfs_remove_link(&slab_kset->kobj, s->name);
5695 name = s->name;
5696 } else {
5697 /*
5698 * Create a unique name for the slab as a target
5699 * for the symlinks.
5700 */
5701 name = create_unique_id(s);
5702 }
5703
5704 s->kobj.kset = kset;
5705 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5706 if (err)
5707 goto out;
5708
5709 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5710 if (err)
5711 goto out_del_kobj;
5712
5713 #ifdef CONFIG_MEMCG
5714 if (is_root_cache(s) && memcg_sysfs_enabled) {
5715 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5716 if (!s->memcg_kset) {
5717 err = -ENOMEM;
5718 goto out_del_kobj;
5719 }
5720 }
5721 #endif
5722
5723 kobject_uevent(&s->kobj, KOBJ_ADD);
5724 if (!unmergeable) {
5725 /* Setup first alias */
5726 sysfs_slab_alias(s, s->name);
5727 }
5728 out:
5729 if (!unmergeable)
5730 kfree(name);
5731 return err;
5732 out_del_kobj:
5733 kobject_del(&s->kobj);
5734 goto out;
5735 }
5736
5737 static void sysfs_slab_remove(struct kmem_cache *s)
5738 {
5739 if (slab_state < FULL)
5740 /*
5741 * Sysfs has not been setup yet so no need to remove the
5742 * cache from sysfs.
5743 */
5744 return;
5745
5746 kobject_get(&s->kobj);
5747 schedule_work(&s->kobj_remove_work);
5748 }
5749
5750 void sysfs_slab_release(struct kmem_cache *s)
5751 {
5752 if (slab_state >= FULL)
5753 kobject_put(&s->kobj);
5754 }
5755
5756 /*
5757 * Need to buffer aliases during bootup until sysfs becomes
5758 * available lest we lose that information.
5759 */
5760 struct saved_alias {
5761 struct kmem_cache *s;
5762 const char *name;
5763 struct saved_alias *next;
5764 };
5765
5766 static struct saved_alias *alias_list;
5767
5768 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5769 {
5770 struct saved_alias *al;
5771
5772 if (slab_state == FULL) {
5773 /*
5774 * If we have a leftover link then remove it.
5775 */
5776 sysfs_remove_link(&slab_kset->kobj, name);
5777 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5778 }
5779
5780 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5781 if (!al)
5782 return -ENOMEM;
5783
5784 al->s = s;
5785 al->name = name;
5786 al->next = alias_list;
5787 alias_list = al;
5788 return 0;
5789 }
5790
5791 static int __init slab_sysfs_init(void)
5792 {
5793 struct kmem_cache *s;
5794 int err;
5795
5796 mutex_lock(&slab_mutex);
5797
5798 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5799 if (!slab_kset) {
5800 mutex_unlock(&slab_mutex);
5801 pr_err("Cannot register slab subsystem.\n");
5802 return -ENOSYS;
5803 }
5804
5805 slab_state = FULL;
5806
5807 list_for_each_entry(s, &slab_caches, list) {
5808 err = sysfs_slab_add(s);
5809 if (err)
5810 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5811 s->name);
5812 }
5813
5814 while (alias_list) {
5815 struct saved_alias *al = alias_list;
5816
5817 alias_list = alias_list->next;
5818 err = sysfs_slab_alias(al->s, al->name);
5819 if (err)
5820 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5821 al->name);
5822 kfree(al);
5823 }
5824
5825 mutex_unlock(&slab_mutex);
5826 resiliency_test();
5827 return 0;
5828 }
5829
5830 __initcall(slab_sysfs_init);
5831 #endif /* CONFIG_SYSFS */
5832
5833 /*
5834 * The /proc/slabinfo ABI
5835 */
5836 #ifdef CONFIG_SLUB_DEBUG
5837 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5838 {
5839 unsigned long nr_slabs = 0;
5840 unsigned long nr_objs = 0;
5841 unsigned long nr_free = 0;
5842 int node;
5843 struct kmem_cache_node *n;
5844
5845 for_each_kmem_cache_node(s, node, n) {
5846 nr_slabs += node_nr_slabs(n);
5847 nr_objs += node_nr_objs(n);
5848 nr_free += count_partial(n, count_free);
5849 }
5850
5851 sinfo->active_objs = nr_objs - nr_free;
5852 sinfo->num_objs = nr_objs;
5853 sinfo->active_slabs = nr_slabs;
5854 sinfo->num_slabs = nr_slabs;
5855 sinfo->objects_per_slab = oo_objects(s->oo);
5856 sinfo->cache_order = oo_order(s->oo);
5857 }
5858
5859 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5860 {
5861 }
5862
5863 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5864 size_t count, loff_t *ppos)
5865 {
5866 return -EIO;
5867 }
5868 #endif /* CONFIG_SLUB_DEBUG */