]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slub.c
slub: pack objects denser
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 /*
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
155 */
156 #define MIN_PARTIAL 5
157
158 /*
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
162 */
163 #define MAX_PARTIAL 10
164
165 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
167
168 /*
169 * Set of flags that will prevent slab merging
170 */
171 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
173
174 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
175 SLAB_CACHE_DMA)
176
177 #ifndef ARCH_KMALLOC_MINALIGN
178 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
179 #endif
180
181 #ifndef ARCH_SLAB_MINALIGN
182 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
183 #endif
184
185 /* Internal SLUB flags */
186 #define __OBJECT_POISON 0x80000000 /* Poison object */
187 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
188
189 /* Not all arches define cache_line_size */
190 #ifndef cache_line_size
191 #define cache_line_size() L1_CACHE_BYTES
192 #endif
193
194 static int kmem_size = sizeof(struct kmem_cache);
195
196 #ifdef CONFIG_SMP
197 static struct notifier_block slab_notifier;
198 #endif
199
200 static enum {
201 DOWN, /* No slab functionality available */
202 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
203 UP, /* Everything works but does not show up in sysfs */
204 SYSFS /* Sysfs up */
205 } slab_state = DOWN;
206
207 /* A list of all slab caches on the system */
208 static DECLARE_RWSEM(slub_lock);
209 static LIST_HEAD(slab_caches);
210
211 /*
212 * Tracking user of a slab.
213 */
214 struct track {
215 void *addr; /* Called from address */
216 int cpu; /* Was running on cpu */
217 int pid; /* Pid context */
218 unsigned long when; /* When did the operation occur */
219 };
220
221 enum track_item { TRACK_ALLOC, TRACK_FREE };
222
223 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
224 static int sysfs_slab_add(struct kmem_cache *);
225 static int sysfs_slab_alias(struct kmem_cache *, const char *);
226 static void sysfs_slab_remove(struct kmem_cache *);
227
228 #else
229 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
230 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
231 { return 0; }
232 static inline void sysfs_slab_remove(struct kmem_cache *s)
233 {
234 kfree(s);
235 }
236
237 #endif
238
239 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
240 {
241 #ifdef CONFIG_SLUB_STATS
242 c->stat[si]++;
243 #endif
244 }
245
246 /********************************************************************
247 * Core slab cache functions
248 *******************************************************************/
249
250 int slab_is_available(void)
251 {
252 return slab_state >= UP;
253 }
254
255 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
256 {
257 #ifdef CONFIG_NUMA
258 return s->node[node];
259 #else
260 return &s->local_node;
261 #endif
262 }
263
264 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
265 {
266 #ifdef CONFIG_SMP
267 return s->cpu_slab[cpu];
268 #else
269 return &s->cpu_slab;
270 #endif
271 }
272
273 /* Verify that a pointer has an address that is valid within a slab page */
274 static inline int check_valid_pointer(struct kmem_cache *s,
275 struct page *page, const void *object)
276 {
277 void *base;
278
279 if (!object)
280 return 1;
281
282 base = page_address(page);
283 if (object < base || object >= base + page->objects * s->size ||
284 (object - base) % s->size) {
285 return 0;
286 }
287
288 return 1;
289 }
290
291 /*
292 * Slow version of get and set free pointer.
293 *
294 * This version requires touching the cache lines of kmem_cache which
295 * we avoid to do in the fast alloc free paths. There we obtain the offset
296 * from the page struct.
297 */
298 static inline void *get_freepointer(struct kmem_cache *s, void *object)
299 {
300 return *(void **)(object + s->offset);
301 }
302
303 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
304 {
305 *(void **)(object + s->offset) = fp;
306 }
307
308 /* Loop over all objects in a slab */
309 #define for_each_object(__p, __s, __addr, __objects) \
310 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
311 __p += (__s)->size)
312
313 /* Scan freelist */
314 #define for_each_free_object(__p, __s, __free) \
315 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
316
317 /* Determine object index from a given position */
318 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
319 {
320 return (p - addr) / s->size;
321 }
322
323 static inline struct kmem_cache_order_objects oo_make(int order,
324 unsigned long size)
325 {
326 struct kmem_cache_order_objects x = {
327 (order << 16) + (PAGE_SIZE << order) / size
328 };
329
330 return x;
331 }
332
333 static inline int oo_order(struct kmem_cache_order_objects x)
334 {
335 return x.x >> 16;
336 }
337
338 static inline int oo_objects(struct kmem_cache_order_objects x)
339 {
340 return x.x & ((1 << 16) - 1);
341 }
342
343 #ifdef CONFIG_SLUB_DEBUG
344 /*
345 * Debug settings:
346 */
347 #ifdef CONFIG_SLUB_DEBUG_ON
348 static int slub_debug = DEBUG_DEFAULT_FLAGS;
349 #else
350 static int slub_debug;
351 #endif
352
353 static char *slub_debug_slabs;
354
355 /*
356 * Object debugging
357 */
358 static void print_section(char *text, u8 *addr, unsigned int length)
359 {
360 int i, offset;
361 int newline = 1;
362 char ascii[17];
363
364 ascii[16] = 0;
365
366 for (i = 0; i < length; i++) {
367 if (newline) {
368 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
369 newline = 0;
370 }
371 printk(KERN_CONT " %02x", addr[i]);
372 offset = i % 16;
373 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
374 if (offset == 15) {
375 printk(KERN_CONT " %s\n", ascii);
376 newline = 1;
377 }
378 }
379 if (!newline) {
380 i %= 16;
381 while (i < 16) {
382 printk(KERN_CONT " ");
383 ascii[i] = ' ';
384 i++;
385 }
386 printk(KERN_CONT " %s\n", ascii);
387 }
388 }
389
390 static struct track *get_track(struct kmem_cache *s, void *object,
391 enum track_item alloc)
392 {
393 struct track *p;
394
395 if (s->offset)
396 p = object + s->offset + sizeof(void *);
397 else
398 p = object + s->inuse;
399
400 return p + alloc;
401 }
402
403 static void set_track(struct kmem_cache *s, void *object,
404 enum track_item alloc, void *addr)
405 {
406 struct track *p;
407
408 if (s->offset)
409 p = object + s->offset + sizeof(void *);
410 else
411 p = object + s->inuse;
412
413 p += alloc;
414 if (addr) {
415 p->addr = addr;
416 p->cpu = smp_processor_id();
417 p->pid = current ? current->pid : -1;
418 p->when = jiffies;
419 } else
420 memset(p, 0, sizeof(struct track));
421 }
422
423 static void init_tracking(struct kmem_cache *s, void *object)
424 {
425 if (!(s->flags & SLAB_STORE_USER))
426 return;
427
428 set_track(s, object, TRACK_FREE, NULL);
429 set_track(s, object, TRACK_ALLOC, NULL);
430 }
431
432 static void print_track(const char *s, struct track *t)
433 {
434 if (!t->addr)
435 return;
436
437 printk(KERN_ERR "INFO: %s in ", s);
438 __print_symbol("%s", (unsigned long)t->addr);
439 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
440 }
441
442 static void print_tracking(struct kmem_cache *s, void *object)
443 {
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
448 print_track("Freed", get_track(s, object, TRACK_FREE));
449 }
450
451 static void print_page_info(struct page *page)
452 {
453 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
454 page, page->objects, page->inuse, page->freelist, page->flags);
455
456 }
457
458 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
459 {
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "========================================"
467 "=====================================\n");
468 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
469 printk(KERN_ERR "----------------------------------------"
470 "-------------------------------------\n\n");
471 }
472
473 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
474 {
475 va_list args;
476 char buf[100];
477
478 va_start(args, fmt);
479 vsnprintf(buf, sizeof(buf), fmt, args);
480 va_end(args);
481 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
482 }
483
484 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
485 {
486 unsigned int off; /* Offset of last byte */
487 u8 *addr = page_address(page);
488
489 print_tracking(s, p);
490
491 print_page_info(page);
492
493 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
494 p, p - addr, get_freepointer(s, p));
495
496 if (p > addr + 16)
497 print_section("Bytes b4", p - 16, 16);
498
499 print_section("Object", p, min(s->objsize, 128));
500
501 if (s->flags & SLAB_RED_ZONE)
502 print_section("Redzone", p + s->objsize,
503 s->inuse - s->objsize);
504
505 if (s->offset)
506 off = s->offset + sizeof(void *);
507 else
508 off = s->inuse;
509
510 if (s->flags & SLAB_STORE_USER)
511 off += 2 * sizeof(struct track);
512
513 if (off != s->size)
514 /* Beginning of the filler is the free pointer */
515 print_section("Padding", p + off, s->size - off);
516
517 dump_stack();
518 }
519
520 static void object_err(struct kmem_cache *s, struct page *page,
521 u8 *object, char *reason)
522 {
523 slab_bug(s, "%s", reason);
524 print_trailer(s, page, object);
525 }
526
527 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
528 {
529 va_list args;
530 char buf[100];
531
532 va_start(args, fmt);
533 vsnprintf(buf, sizeof(buf), fmt, args);
534 va_end(args);
535 slab_bug(s, "%s", buf);
536 print_page_info(page);
537 dump_stack();
538 }
539
540 static void init_object(struct kmem_cache *s, void *object, int active)
541 {
542 u8 *p = object;
543
544 if (s->flags & __OBJECT_POISON) {
545 memset(p, POISON_FREE, s->objsize - 1);
546 p[s->objsize - 1] = POISON_END;
547 }
548
549 if (s->flags & SLAB_RED_ZONE)
550 memset(p + s->objsize,
551 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
552 s->inuse - s->objsize);
553 }
554
555 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
556 {
557 while (bytes) {
558 if (*start != (u8)value)
559 return start;
560 start++;
561 bytes--;
562 }
563 return NULL;
564 }
565
566 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
567 void *from, void *to)
568 {
569 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
570 memset(from, data, to - from);
571 }
572
573 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
574 u8 *object, char *what,
575 u8 *start, unsigned int value, unsigned int bytes)
576 {
577 u8 *fault;
578 u8 *end;
579
580 fault = check_bytes(start, value, bytes);
581 if (!fault)
582 return 1;
583
584 end = start + bytes;
585 while (end > fault && end[-1] == value)
586 end--;
587
588 slab_bug(s, "%s overwritten", what);
589 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
590 fault, end - 1, fault[0], value);
591 print_trailer(s, page, object);
592
593 restore_bytes(s, what, value, fault, end);
594 return 0;
595 }
596
597 /*
598 * Object layout:
599 *
600 * object address
601 * Bytes of the object to be managed.
602 * If the freepointer may overlay the object then the free
603 * pointer is the first word of the object.
604 *
605 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
606 * 0xa5 (POISON_END)
607 *
608 * object + s->objsize
609 * Padding to reach word boundary. This is also used for Redzoning.
610 * Padding is extended by another word if Redzoning is enabled and
611 * objsize == inuse.
612 *
613 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
614 * 0xcc (RED_ACTIVE) for objects in use.
615 *
616 * object + s->inuse
617 * Meta data starts here.
618 *
619 * A. Free pointer (if we cannot overwrite object on free)
620 * B. Tracking data for SLAB_STORE_USER
621 * C. Padding to reach required alignment boundary or at mininum
622 * one word if debugging is on to be able to detect writes
623 * before the word boundary.
624 *
625 * Padding is done using 0x5a (POISON_INUSE)
626 *
627 * object + s->size
628 * Nothing is used beyond s->size.
629 *
630 * If slabcaches are merged then the objsize and inuse boundaries are mostly
631 * ignored. And therefore no slab options that rely on these boundaries
632 * may be used with merged slabcaches.
633 */
634
635 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
636 {
637 unsigned long off = s->inuse; /* The end of info */
638
639 if (s->offset)
640 /* Freepointer is placed after the object. */
641 off += sizeof(void *);
642
643 if (s->flags & SLAB_STORE_USER)
644 /* We also have user information there */
645 off += 2 * sizeof(struct track);
646
647 if (s->size == off)
648 return 1;
649
650 return check_bytes_and_report(s, page, p, "Object padding",
651 p + off, POISON_INUSE, s->size - off);
652 }
653
654 /* Check the pad bytes at the end of a slab page */
655 static int slab_pad_check(struct kmem_cache *s, struct page *page)
656 {
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
666 start = page_address(page);
667 length = (PAGE_SIZE << compound_order(page));
668 end = start + length;
669 remainder = length % s->size;
670 if (!remainder)
671 return 1;
672
673 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", end - remainder, remainder);
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
684 }
685
686 static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688 {
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
698 return 0;
699 } else {
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
711 p + s->objsize - 1, POISON_END, 1)))
712 return 0;
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
732 * another error because the object count is now wrong.
733 */
734 set_freepointer(s, p, NULL);
735 return 0;
736 }
737 return 1;
738 }
739
740 static int check_slab(struct kmem_cache *s, struct page *page)
741 {
742 int maxobj;
743
744 VM_BUG_ON(!irqs_disabled());
745
746 if (!PageSlab(page)) {
747 slab_err(s, page, "Not a valid slab page");
748 return 0;
749 }
750
751 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
752 if (page->objects > maxobj) {
753 slab_err(s, page, "objects %u > max %u",
754 s->name, page->objects, maxobj);
755 return 0;
756 }
757 if (page->inuse > page->objects) {
758 slab_err(s, page, "inuse %u > max %u",
759 s->name, page->inuse, page->objects);
760 return 0;
761 }
762 /* Slab_pad_check fixes things up after itself */
763 slab_pad_check(s, page);
764 return 1;
765 }
766
767 /*
768 * Determine if a certain object on a page is on the freelist. Must hold the
769 * slab lock to guarantee that the chains are in a consistent state.
770 */
771 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
772 {
773 int nr = 0;
774 void *fp = page->freelist;
775 void *object = NULL;
776 unsigned long max_objects;
777
778 while (fp && nr <= page->objects) {
779 if (fp == search)
780 return 1;
781 if (!check_valid_pointer(s, page, fp)) {
782 if (object) {
783 object_err(s, page, object,
784 "Freechain corrupt");
785 set_freepointer(s, object, NULL);
786 break;
787 } else {
788 slab_err(s, page, "Freepointer corrupt");
789 page->freelist = NULL;
790 page->inuse = page->objects;
791 slab_fix(s, "Freelist cleared");
792 return 0;
793 }
794 break;
795 }
796 object = fp;
797 fp = get_freepointer(s, object);
798 nr++;
799 }
800
801 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
802 if (max_objects > 65535)
803 max_objects = 65535;
804
805 if (page->objects != max_objects) {
806 slab_err(s, page, "Wrong number of objects. Found %d but "
807 "should be %d", page->objects, max_objects);
808 page->objects = max_objects;
809 slab_fix(s, "Number of objects adjusted.");
810 }
811 if (page->inuse != page->objects - nr) {
812 slab_err(s, page, "Wrong object count. Counter is %d but "
813 "counted were %d", page->inuse, page->objects - nr);
814 page->inuse = page->objects - nr;
815 slab_fix(s, "Object count adjusted.");
816 }
817 return search == NULL;
818 }
819
820 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
821 {
822 if (s->flags & SLAB_TRACE) {
823 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
824 s->name,
825 alloc ? "alloc" : "free",
826 object, page->inuse,
827 page->freelist);
828
829 if (!alloc)
830 print_section("Object", (void *)object, s->objsize);
831
832 dump_stack();
833 }
834 }
835
836 /*
837 * Tracking of fully allocated slabs for debugging purposes.
838 */
839 static void add_full(struct kmem_cache_node *n, struct page *page)
840 {
841 spin_lock(&n->list_lock);
842 list_add(&page->lru, &n->full);
843 spin_unlock(&n->list_lock);
844 }
845
846 static void remove_full(struct kmem_cache *s, struct page *page)
847 {
848 struct kmem_cache_node *n;
849
850 if (!(s->flags & SLAB_STORE_USER))
851 return;
852
853 n = get_node(s, page_to_nid(page));
854
855 spin_lock(&n->list_lock);
856 list_del(&page->lru);
857 spin_unlock(&n->list_lock);
858 }
859
860 /* Tracking of the number of slabs for debugging purposes */
861 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
862 {
863 struct kmem_cache_node *n = get_node(s, node);
864
865 return atomic_long_read(&n->nr_slabs);
866 }
867
868 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
869 {
870 struct kmem_cache_node *n = get_node(s, node);
871
872 /*
873 * May be called early in order to allocate a slab for the
874 * kmem_cache_node structure. Solve the chicken-egg
875 * dilemma by deferring the increment of the count during
876 * bootstrap (see early_kmem_cache_node_alloc).
877 */
878 if (!NUMA_BUILD || n) {
879 atomic_long_inc(&n->nr_slabs);
880 atomic_long_add(objects, &n->total_objects);
881 }
882 }
883 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
884 {
885 struct kmem_cache_node *n = get_node(s, node);
886
887 atomic_long_dec(&n->nr_slabs);
888 atomic_long_sub(objects, &n->total_objects);
889 }
890
891 /* Object debug checks for alloc/free paths */
892 static void setup_object_debug(struct kmem_cache *s, struct page *page,
893 void *object)
894 {
895 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
896 return;
897
898 init_object(s, object, 0);
899 init_tracking(s, object);
900 }
901
902 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
903 void *object, void *addr)
904 {
905 if (!check_slab(s, page))
906 goto bad;
907
908 if (!on_freelist(s, page, object)) {
909 object_err(s, page, object, "Object already allocated");
910 goto bad;
911 }
912
913 if (!check_valid_pointer(s, page, object)) {
914 object_err(s, page, object, "Freelist Pointer check fails");
915 goto bad;
916 }
917
918 if (!check_object(s, page, object, 0))
919 goto bad;
920
921 /* Success perform special debug activities for allocs */
922 if (s->flags & SLAB_STORE_USER)
923 set_track(s, object, TRACK_ALLOC, addr);
924 trace(s, page, object, 1);
925 init_object(s, object, 1);
926 return 1;
927
928 bad:
929 if (PageSlab(page)) {
930 /*
931 * If this is a slab page then lets do the best we can
932 * to avoid issues in the future. Marking all objects
933 * as used avoids touching the remaining objects.
934 */
935 slab_fix(s, "Marking all objects used");
936 page->inuse = page->objects;
937 page->freelist = NULL;
938 }
939 return 0;
940 }
941
942 static int free_debug_processing(struct kmem_cache *s, struct page *page,
943 void *object, void *addr)
944 {
945 if (!check_slab(s, page))
946 goto fail;
947
948 if (!check_valid_pointer(s, page, object)) {
949 slab_err(s, page, "Invalid object pointer 0x%p", object);
950 goto fail;
951 }
952
953 if (on_freelist(s, page, object)) {
954 object_err(s, page, object, "Object already free");
955 goto fail;
956 }
957
958 if (!check_object(s, page, object, 1))
959 return 0;
960
961 if (unlikely(s != page->slab)) {
962 if (!PageSlab(page)) {
963 slab_err(s, page, "Attempt to free object(0x%p) "
964 "outside of slab", object);
965 } else if (!page->slab) {
966 printk(KERN_ERR
967 "SLUB <none>: no slab for object 0x%p.\n",
968 object);
969 dump_stack();
970 } else
971 object_err(s, page, object,
972 "page slab pointer corrupt.");
973 goto fail;
974 }
975
976 /* Special debug activities for freeing objects */
977 if (!SlabFrozen(page) && !page->freelist)
978 remove_full(s, page);
979 if (s->flags & SLAB_STORE_USER)
980 set_track(s, object, TRACK_FREE, addr);
981 trace(s, page, object, 0);
982 init_object(s, object, 0);
983 return 1;
984
985 fail:
986 slab_fix(s, "Object at 0x%p not freed", object);
987 return 0;
988 }
989
990 static int __init setup_slub_debug(char *str)
991 {
992 slub_debug = DEBUG_DEFAULT_FLAGS;
993 if (*str++ != '=' || !*str)
994 /*
995 * No options specified. Switch on full debugging.
996 */
997 goto out;
998
999 if (*str == ',')
1000 /*
1001 * No options but restriction on slabs. This means full
1002 * debugging for slabs matching a pattern.
1003 */
1004 goto check_slabs;
1005
1006 slub_debug = 0;
1007 if (*str == '-')
1008 /*
1009 * Switch off all debugging measures.
1010 */
1011 goto out;
1012
1013 /*
1014 * Determine which debug features should be switched on
1015 */
1016 for (; *str && *str != ','; str++) {
1017 switch (tolower(*str)) {
1018 case 'f':
1019 slub_debug |= SLAB_DEBUG_FREE;
1020 break;
1021 case 'z':
1022 slub_debug |= SLAB_RED_ZONE;
1023 break;
1024 case 'p':
1025 slub_debug |= SLAB_POISON;
1026 break;
1027 case 'u':
1028 slub_debug |= SLAB_STORE_USER;
1029 break;
1030 case 't':
1031 slub_debug |= SLAB_TRACE;
1032 break;
1033 default:
1034 printk(KERN_ERR "slub_debug option '%c' "
1035 "unknown. skipped\n", *str);
1036 }
1037 }
1038
1039 check_slabs:
1040 if (*str == ',')
1041 slub_debug_slabs = str + 1;
1042 out:
1043 return 1;
1044 }
1045
1046 __setup("slub_debug", setup_slub_debug);
1047
1048 static unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
1050 void (*ctor)(struct kmem_cache *, void *))
1051 {
1052 /*
1053 * Enable debugging if selected on the kernel commandline.
1054 */
1055 if (slub_debug && (!slub_debug_slabs ||
1056 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1057 flags |= slub_debug;
1058
1059 return flags;
1060 }
1061 #else
1062 static inline void setup_object_debug(struct kmem_cache *s,
1063 struct page *page, void *object) {}
1064
1065 static inline int alloc_debug_processing(struct kmem_cache *s,
1066 struct page *page, void *object, void *addr) { return 0; }
1067
1068 static inline int free_debug_processing(struct kmem_cache *s,
1069 struct page *page, void *object, void *addr) { return 0; }
1070
1071 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1072 { return 1; }
1073 static inline int check_object(struct kmem_cache *s, struct page *page,
1074 void *object, int active) { return 1; }
1075 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1076 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1077 unsigned long flags, const char *name,
1078 void (*ctor)(struct kmem_cache *, void *))
1079 {
1080 return flags;
1081 }
1082 #define slub_debug 0
1083
1084 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1085 { return 0; }
1086 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
1088 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1089 int objects) {}
1090 #endif
1091
1092 /*
1093 * Slab allocation and freeing
1094 */
1095 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1096 struct kmem_cache_order_objects oo)
1097 {
1098 int order = oo_order(oo);
1099
1100 if (node == -1)
1101 return alloc_pages(flags, order);
1102 else
1103 return alloc_pages_node(node, flags, order);
1104 }
1105
1106 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1107 {
1108 struct page *page;
1109 struct kmem_cache_order_objects oo = s->oo;
1110
1111 flags |= s->allocflags;
1112
1113 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1114 oo);
1115 if (unlikely(!page)) {
1116 oo = s->min;
1117 /*
1118 * Allocation may have failed due to fragmentation.
1119 * Try a lower order alloc if possible
1120 */
1121 page = alloc_slab_page(flags, node, oo);
1122 if (!page)
1123 return NULL;
1124
1125 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1126 }
1127 page->objects = oo_objects(oo);
1128 mod_zone_page_state(page_zone(page),
1129 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1130 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1131 1 << oo_order(oo));
1132
1133 return page;
1134 }
1135
1136 static void setup_object(struct kmem_cache *s, struct page *page,
1137 void *object)
1138 {
1139 setup_object_debug(s, page, object);
1140 if (unlikely(s->ctor))
1141 s->ctor(s, object);
1142 }
1143
1144 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1145 {
1146 struct page *page;
1147 void *start;
1148 void *last;
1149 void *p;
1150
1151 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1152
1153 page = allocate_slab(s,
1154 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1155 if (!page)
1156 goto out;
1157
1158 inc_slabs_node(s, page_to_nid(page), page->objects);
1159 page->slab = s;
1160 page->flags |= 1 << PG_slab;
1161 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1162 SLAB_STORE_USER | SLAB_TRACE))
1163 SetSlabDebug(page);
1164
1165 start = page_address(page);
1166
1167 if (unlikely(s->flags & SLAB_POISON))
1168 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1169
1170 last = start;
1171 for_each_object(p, s, start, page->objects) {
1172 setup_object(s, page, last);
1173 set_freepointer(s, last, p);
1174 last = p;
1175 }
1176 setup_object(s, page, last);
1177 set_freepointer(s, last, NULL);
1178
1179 page->freelist = start;
1180 page->inuse = 0;
1181 out:
1182 return page;
1183 }
1184
1185 static void __free_slab(struct kmem_cache *s, struct page *page)
1186 {
1187 int order = compound_order(page);
1188 int pages = 1 << order;
1189
1190 if (unlikely(SlabDebug(page))) {
1191 void *p;
1192
1193 slab_pad_check(s, page);
1194 for_each_object(p, s, page_address(page),
1195 page->objects)
1196 check_object(s, page, p, 0);
1197 ClearSlabDebug(page);
1198 }
1199
1200 mod_zone_page_state(page_zone(page),
1201 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1202 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1203 -pages);
1204
1205 __ClearPageSlab(page);
1206 reset_page_mapcount(page);
1207 __free_pages(page, order);
1208 }
1209
1210 static void rcu_free_slab(struct rcu_head *h)
1211 {
1212 struct page *page;
1213
1214 page = container_of((struct list_head *)h, struct page, lru);
1215 __free_slab(page->slab, page);
1216 }
1217
1218 static void free_slab(struct kmem_cache *s, struct page *page)
1219 {
1220 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1221 /*
1222 * RCU free overloads the RCU head over the LRU
1223 */
1224 struct rcu_head *head = (void *)&page->lru;
1225
1226 call_rcu(head, rcu_free_slab);
1227 } else
1228 __free_slab(s, page);
1229 }
1230
1231 static void discard_slab(struct kmem_cache *s, struct page *page)
1232 {
1233 dec_slabs_node(s, page_to_nid(page), page->objects);
1234 free_slab(s, page);
1235 }
1236
1237 /*
1238 * Per slab locking using the pagelock
1239 */
1240 static __always_inline void slab_lock(struct page *page)
1241 {
1242 bit_spin_lock(PG_locked, &page->flags);
1243 }
1244
1245 static __always_inline void slab_unlock(struct page *page)
1246 {
1247 __bit_spin_unlock(PG_locked, &page->flags);
1248 }
1249
1250 static __always_inline int slab_trylock(struct page *page)
1251 {
1252 int rc = 1;
1253
1254 rc = bit_spin_trylock(PG_locked, &page->flags);
1255 return rc;
1256 }
1257
1258 /*
1259 * Management of partially allocated slabs
1260 */
1261 static void add_partial(struct kmem_cache_node *n,
1262 struct page *page, int tail)
1263 {
1264 spin_lock(&n->list_lock);
1265 n->nr_partial++;
1266 if (tail)
1267 list_add_tail(&page->lru, &n->partial);
1268 else
1269 list_add(&page->lru, &n->partial);
1270 spin_unlock(&n->list_lock);
1271 }
1272
1273 static void remove_partial(struct kmem_cache *s,
1274 struct page *page)
1275 {
1276 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1277
1278 spin_lock(&n->list_lock);
1279 list_del(&page->lru);
1280 n->nr_partial--;
1281 spin_unlock(&n->list_lock);
1282 }
1283
1284 /*
1285 * Lock slab and remove from the partial list.
1286 *
1287 * Must hold list_lock.
1288 */
1289 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1290 {
1291 if (slab_trylock(page)) {
1292 list_del(&page->lru);
1293 n->nr_partial--;
1294 SetSlabFrozen(page);
1295 return 1;
1296 }
1297 return 0;
1298 }
1299
1300 /*
1301 * Try to allocate a partial slab from a specific node.
1302 */
1303 static struct page *get_partial_node(struct kmem_cache_node *n)
1304 {
1305 struct page *page;
1306
1307 /*
1308 * Racy check. If we mistakenly see no partial slabs then we
1309 * just allocate an empty slab. If we mistakenly try to get a
1310 * partial slab and there is none available then get_partials()
1311 * will return NULL.
1312 */
1313 if (!n || !n->nr_partial)
1314 return NULL;
1315
1316 spin_lock(&n->list_lock);
1317 list_for_each_entry(page, &n->partial, lru)
1318 if (lock_and_freeze_slab(n, page))
1319 goto out;
1320 page = NULL;
1321 out:
1322 spin_unlock(&n->list_lock);
1323 return page;
1324 }
1325
1326 /*
1327 * Get a page from somewhere. Search in increasing NUMA distances.
1328 */
1329 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1330 {
1331 #ifdef CONFIG_NUMA
1332 struct zonelist *zonelist;
1333 struct zone **z;
1334 struct page *page;
1335
1336 /*
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
1341 *
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
1346 *
1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
1353 */
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1356 return NULL;
1357
1358 zonelist = &NODE_DATA(
1359 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1360 for (z = zonelist->zones; *z; z++) {
1361 struct kmem_cache_node *n;
1362
1363 n = get_node(s, zone_to_nid(*z));
1364
1365 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1366 n->nr_partial > MIN_PARTIAL) {
1367 page = get_partial_node(n);
1368 if (page)
1369 return page;
1370 }
1371 }
1372 #endif
1373 return NULL;
1374 }
1375
1376 /*
1377 * Get a partial page, lock it and return it.
1378 */
1379 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1380 {
1381 struct page *page;
1382 int searchnode = (node == -1) ? numa_node_id() : node;
1383
1384 page = get_partial_node(get_node(s, searchnode));
1385 if (page || (flags & __GFP_THISNODE))
1386 return page;
1387
1388 return get_any_partial(s, flags);
1389 }
1390
1391 /*
1392 * Move a page back to the lists.
1393 *
1394 * Must be called with the slab lock held.
1395 *
1396 * On exit the slab lock will have been dropped.
1397 */
1398 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1399 {
1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1401 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1402
1403 ClearSlabFrozen(page);
1404 if (page->inuse) {
1405
1406 if (page->freelist) {
1407 add_partial(n, page, tail);
1408 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1409 } else {
1410 stat(c, DEACTIVATE_FULL);
1411 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1412 add_full(n, page);
1413 }
1414 slab_unlock(page);
1415 } else {
1416 stat(c, DEACTIVATE_EMPTY);
1417 if (n->nr_partial < MIN_PARTIAL) {
1418 /*
1419 * Adding an empty slab to the partial slabs in order
1420 * to avoid page allocator overhead. This slab needs
1421 * to come after the other slabs with objects in
1422 * so that the others get filled first. That way the
1423 * size of the partial list stays small.
1424 *
1425 * kmem_cache_shrink can reclaim any empty slabs from the
1426 * partial list.
1427 */
1428 add_partial(n, page, 1);
1429 slab_unlock(page);
1430 } else {
1431 slab_unlock(page);
1432 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1433 discard_slab(s, page);
1434 }
1435 }
1436 }
1437
1438 /*
1439 * Remove the cpu slab
1440 */
1441 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1442 {
1443 struct page *page = c->page;
1444 int tail = 1;
1445
1446 if (page->freelist)
1447 stat(c, DEACTIVATE_REMOTE_FREES);
1448 /*
1449 * Merge cpu freelist into slab freelist. Typically we get here
1450 * because both freelists are empty. So this is unlikely
1451 * to occur.
1452 */
1453 while (unlikely(c->freelist)) {
1454 void **object;
1455
1456 tail = 0; /* Hot objects. Put the slab first */
1457
1458 /* Retrieve object from cpu_freelist */
1459 object = c->freelist;
1460 c->freelist = c->freelist[c->offset];
1461
1462 /* And put onto the regular freelist */
1463 object[c->offset] = page->freelist;
1464 page->freelist = object;
1465 page->inuse--;
1466 }
1467 c->page = NULL;
1468 unfreeze_slab(s, page, tail);
1469 }
1470
1471 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1472 {
1473 stat(c, CPUSLAB_FLUSH);
1474 slab_lock(c->page);
1475 deactivate_slab(s, c);
1476 }
1477
1478 /*
1479 * Flush cpu slab.
1480 *
1481 * Called from IPI handler with interrupts disabled.
1482 */
1483 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1484 {
1485 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1486
1487 if (likely(c && c->page))
1488 flush_slab(s, c);
1489 }
1490
1491 static void flush_cpu_slab(void *d)
1492 {
1493 struct kmem_cache *s = d;
1494
1495 __flush_cpu_slab(s, smp_processor_id());
1496 }
1497
1498 static void flush_all(struct kmem_cache *s)
1499 {
1500 #ifdef CONFIG_SMP
1501 on_each_cpu(flush_cpu_slab, s, 1, 1);
1502 #else
1503 unsigned long flags;
1504
1505 local_irq_save(flags);
1506 flush_cpu_slab(s);
1507 local_irq_restore(flags);
1508 #endif
1509 }
1510
1511 /*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1522 }
1523
1524 /*
1525 * Slow path. The lockless freelist is empty or we need to perform
1526 * debugging duties.
1527 *
1528 * Interrupts are disabled.
1529 *
1530 * Processing is still very fast if new objects have been freed to the
1531 * regular freelist. In that case we simply take over the regular freelist
1532 * as the lockless freelist and zap the regular freelist.
1533 *
1534 * If that is not working then we fall back to the partial lists. We take the
1535 * first element of the freelist as the object to allocate now and move the
1536 * rest of the freelist to the lockless freelist.
1537 *
1538 * And if we were unable to get a new slab from the partial slab lists then
1539 * we need to allocate a new slab. This is the slowest path since it involves
1540 * a call to the page allocator and the setup of a new slab.
1541 */
1542 static void *__slab_alloc(struct kmem_cache *s,
1543 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1544 {
1545 void **object;
1546 struct page *new;
1547
1548 /* We handle __GFP_ZERO in the caller */
1549 gfpflags &= ~__GFP_ZERO;
1550
1551 if (!c->page)
1552 goto new_slab;
1553
1554 slab_lock(c->page);
1555 if (unlikely(!node_match(c, node)))
1556 goto another_slab;
1557
1558 stat(c, ALLOC_REFILL);
1559
1560 load_freelist:
1561 object = c->page->freelist;
1562 if (unlikely(!object))
1563 goto another_slab;
1564 if (unlikely(SlabDebug(c->page)))
1565 goto debug;
1566
1567 c->freelist = object[c->offset];
1568 c->page->inuse = c->page->objects;
1569 c->page->freelist = NULL;
1570 c->node = page_to_nid(c->page);
1571 unlock_out:
1572 slab_unlock(c->page);
1573 stat(c, ALLOC_SLOWPATH);
1574 return object;
1575
1576 another_slab:
1577 deactivate_slab(s, c);
1578
1579 new_slab:
1580 new = get_partial(s, gfpflags, node);
1581 if (new) {
1582 c->page = new;
1583 stat(c, ALLOC_FROM_PARTIAL);
1584 goto load_freelist;
1585 }
1586
1587 if (gfpflags & __GFP_WAIT)
1588 local_irq_enable();
1589
1590 new = new_slab(s, gfpflags, node);
1591
1592 if (gfpflags & __GFP_WAIT)
1593 local_irq_disable();
1594
1595 if (new) {
1596 c = get_cpu_slab(s, smp_processor_id());
1597 stat(c, ALLOC_SLAB);
1598 if (c->page)
1599 flush_slab(s, c);
1600 slab_lock(new);
1601 SetSlabFrozen(new);
1602 c->page = new;
1603 goto load_freelist;
1604 }
1605 return NULL;
1606 debug:
1607 if (!alloc_debug_processing(s, c->page, object, addr))
1608 goto another_slab;
1609
1610 c->page->inuse++;
1611 c->page->freelist = object[c->offset];
1612 c->node = -1;
1613 goto unlock_out;
1614 }
1615
1616 /*
1617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1618 * have the fastpath folded into their functions. So no function call
1619 * overhead for requests that can be satisfied on the fastpath.
1620 *
1621 * The fastpath works by first checking if the lockless freelist can be used.
1622 * If not then __slab_alloc is called for slow processing.
1623 *
1624 * Otherwise we can simply pick the next object from the lockless free list.
1625 */
1626 static __always_inline void *slab_alloc(struct kmem_cache *s,
1627 gfp_t gfpflags, int node, void *addr)
1628 {
1629 void **object;
1630 struct kmem_cache_cpu *c;
1631 unsigned long flags;
1632
1633 local_irq_save(flags);
1634 c = get_cpu_slab(s, smp_processor_id());
1635 if (unlikely(!c->freelist || !node_match(c, node)))
1636
1637 object = __slab_alloc(s, gfpflags, node, addr, c);
1638
1639 else {
1640 object = c->freelist;
1641 c->freelist = object[c->offset];
1642 stat(c, ALLOC_FASTPATH);
1643 }
1644 local_irq_restore(flags);
1645
1646 if (unlikely((gfpflags & __GFP_ZERO) && object))
1647 memset(object, 0, c->objsize);
1648
1649 return object;
1650 }
1651
1652 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1653 {
1654 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1655 }
1656 EXPORT_SYMBOL(kmem_cache_alloc);
1657
1658 #ifdef CONFIG_NUMA
1659 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1660 {
1661 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1662 }
1663 EXPORT_SYMBOL(kmem_cache_alloc_node);
1664 #endif
1665
1666 /*
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
1669 *
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
1673 */
1674 static void __slab_free(struct kmem_cache *s, struct page *page,
1675 void *x, void *addr, unsigned int offset)
1676 {
1677 void *prior;
1678 void **object = (void *)x;
1679 struct kmem_cache_cpu *c;
1680
1681 c = get_cpu_slab(s, raw_smp_processor_id());
1682 stat(c, FREE_SLOWPATH);
1683 slab_lock(page);
1684
1685 if (unlikely(SlabDebug(page)))
1686 goto debug;
1687
1688 checks_ok:
1689 prior = object[offset] = page->freelist;
1690 page->freelist = object;
1691 page->inuse--;
1692
1693 if (unlikely(SlabFrozen(page))) {
1694 stat(c, FREE_FROZEN);
1695 goto out_unlock;
1696 }
1697
1698 if (unlikely(!page->inuse))
1699 goto slab_empty;
1700
1701 /*
1702 * Objects left in the slab. If it was not on the partial list before
1703 * then add it.
1704 */
1705 if (unlikely(!prior)) {
1706 add_partial(get_node(s, page_to_nid(page)), page, 1);
1707 stat(c, FREE_ADD_PARTIAL);
1708 }
1709
1710 out_unlock:
1711 slab_unlock(page);
1712 return;
1713
1714 slab_empty:
1715 if (prior) {
1716 /*
1717 * Slab still on the partial list.
1718 */
1719 remove_partial(s, page);
1720 stat(c, FREE_REMOVE_PARTIAL);
1721 }
1722 slab_unlock(page);
1723 stat(c, FREE_SLAB);
1724 discard_slab(s, page);
1725 return;
1726
1727 debug:
1728 if (!free_debug_processing(s, page, x, addr))
1729 goto out_unlock;
1730 goto checks_ok;
1731 }
1732
1733 /*
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1736 *
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1739 * the item before.
1740 *
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1743 */
1744 static __always_inline void slab_free(struct kmem_cache *s,
1745 struct page *page, void *x, void *addr)
1746 {
1747 void **object = (void *)x;
1748 struct kmem_cache_cpu *c;
1749 unsigned long flags;
1750
1751 local_irq_save(flags);
1752 c = get_cpu_slab(s, smp_processor_id());
1753 debug_check_no_locks_freed(object, c->objsize);
1754 if (likely(page == c->page && c->node >= 0)) {
1755 object[c->offset] = c->freelist;
1756 c->freelist = object;
1757 stat(c, FREE_FASTPATH);
1758 } else
1759 __slab_free(s, page, x, addr, c->offset);
1760
1761 local_irq_restore(flags);
1762 }
1763
1764 void kmem_cache_free(struct kmem_cache *s, void *x)
1765 {
1766 struct page *page;
1767
1768 page = virt_to_head_page(x);
1769
1770 slab_free(s, page, x, __builtin_return_address(0));
1771 }
1772 EXPORT_SYMBOL(kmem_cache_free);
1773
1774 /* Figure out on which slab object the object resides */
1775 static struct page *get_object_page(const void *x)
1776 {
1777 struct page *page = virt_to_head_page(x);
1778
1779 if (!PageSlab(page))
1780 return NULL;
1781
1782 return page;
1783 }
1784
1785 /*
1786 * Object placement in a slab is made very easy because we always start at
1787 * offset 0. If we tune the size of the object to the alignment then we can
1788 * get the required alignment by putting one properly sized object after
1789 * another.
1790 *
1791 * Notice that the allocation order determines the sizes of the per cpu
1792 * caches. Each processor has always one slab available for allocations.
1793 * Increasing the allocation order reduces the number of times that slabs
1794 * must be moved on and off the partial lists and is therefore a factor in
1795 * locking overhead.
1796 */
1797
1798 /*
1799 * Mininum / Maximum order of slab pages. This influences locking overhead
1800 * and slab fragmentation. A higher order reduces the number of partial slabs
1801 * and increases the number of allocations possible without having to
1802 * take the list_lock.
1803 */
1804 static int slub_min_order;
1805 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1806 static int slub_min_objects;
1807
1808 /*
1809 * Merge control. If this is set then no merging of slab caches will occur.
1810 * (Could be removed. This was introduced to pacify the merge skeptics.)
1811 */
1812 static int slub_nomerge;
1813
1814 /*
1815 * Calculate the order of allocation given an slab object size.
1816 *
1817 * The order of allocation has significant impact on performance and other
1818 * system components. Generally order 0 allocations should be preferred since
1819 * order 0 does not cause fragmentation in the page allocator. Larger objects
1820 * be problematic to put into order 0 slabs because there may be too much
1821 * unused space left. We go to a higher order if more than 1/16th of the slab
1822 * would be wasted.
1823 *
1824 * In order to reach satisfactory performance we must ensure that a minimum
1825 * number of objects is in one slab. Otherwise we may generate too much
1826 * activity on the partial lists which requires taking the list_lock. This is
1827 * less a concern for large slabs though which are rarely used.
1828 *
1829 * slub_max_order specifies the order where we begin to stop considering the
1830 * number of objects in a slab as critical. If we reach slub_max_order then
1831 * we try to keep the page order as low as possible. So we accept more waste
1832 * of space in favor of a small page order.
1833 *
1834 * Higher order allocations also allow the placement of more objects in a
1835 * slab and thereby reduce object handling overhead. If the user has
1836 * requested a higher mininum order then we start with that one instead of
1837 * the smallest order which will fit the object.
1838 */
1839 static inline int slab_order(int size, int min_objects,
1840 int max_order, int fract_leftover)
1841 {
1842 int order;
1843 int rem;
1844 int min_order = slub_min_order;
1845
1846 if ((PAGE_SIZE << min_order) / size > 65535)
1847 return get_order(size * 65535) - 1;
1848
1849 for (order = max(min_order,
1850 fls(min_objects * size - 1) - PAGE_SHIFT);
1851 order <= max_order; order++) {
1852
1853 unsigned long slab_size = PAGE_SIZE << order;
1854
1855 if (slab_size < min_objects * size)
1856 continue;
1857
1858 rem = slab_size % size;
1859
1860 if (rem <= slab_size / fract_leftover)
1861 break;
1862
1863 }
1864
1865 return order;
1866 }
1867
1868 static inline int calculate_order(int size)
1869 {
1870 int order;
1871 int min_objects;
1872 int fraction;
1873
1874 /*
1875 * Attempt to find best configuration for a slab. This
1876 * works by first attempting to generate a layout with
1877 * the best configuration and backing off gradually.
1878 *
1879 * First we reduce the acceptable waste in a slab. Then
1880 * we reduce the minimum objects required in a slab.
1881 */
1882 min_objects = slub_min_objects;
1883 if (!min_objects)
1884 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1885 while (min_objects > 1) {
1886 fraction = 16;
1887 while (fraction >= 4) {
1888 order = slab_order(size, min_objects,
1889 slub_max_order, fraction);
1890 if (order <= slub_max_order)
1891 return order;
1892 fraction /= 2;
1893 }
1894 min_objects /= 2;
1895 }
1896
1897 /*
1898 * We were unable to place multiple objects in a slab. Now
1899 * lets see if we can place a single object there.
1900 */
1901 order = slab_order(size, 1, slub_max_order, 1);
1902 if (order <= slub_max_order)
1903 return order;
1904
1905 /*
1906 * Doh this slab cannot be placed using slub_max_order.
1907 */
1908 order = slab_order(size, 1, MAX_ORDER, 1);
1909 if (order <= MAX_ORDER)
1910 return order;
1911 return -ENOSYS;
1912 }
1913
1914 /*
1915 * Figure out what the alignment of the objects will be.
1916 */
1917 static unsigned long calculate_alignment(unsigned long flags,
1918 unsigned long align, unsigned long size)
1919 {
1920 /*
1921 * If the user wants hardware cache aligned objects then follow that
1922 * suggestion if the object is sufficiently large.
1923 *
1924 * The hardware cache alignment cannot override the specified
1925 * alignment though. If that is greater then use it.
1926 */
1927 if (flags & SLAB_HWCACHE_ALIGN) {
1928 unsigned long ralign = cache_line_size();
1929 while (size <= ralign / 2)
1930 ralign /= 2;
1931 align = max(align, ralign);
1932 }
1933
1934 if (align < ARCH_SLAB_MINALIGN)
1935 align = ARCH_SLAB_MINALIGN;
1936
1937 return ALIGN(align, sizeof(void *));
1938 }
1939
1940 static void init_kmem_cache_cpu(struct kmem_cache *s,
1941 struct kmem_cache_cpu *c)
1942 {
1943 c->page = NULL;
1944 c->freelist = NULL;
1945 c->node = 0;
1946 c->offset = s->offset / sizeof(void *);
1947 c->objsize = s->objsize;
1948 #ifdef CONFIG_SLUB_STATS
1949 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1950 #endif
1951 }
1952
1953 static void init_kmem_cache_node(struct kmem_cache_node *n)
1954 {
1955 n->nr_partial = 0;
1956 spin_lock_init(&n->list_lock);
1957 INIT_LIST_HEAD(&n->partial);
1958 #ifdef CONFIG_SLUB_DEBUG
1959 atomic_long_set(&n->nr_slabs, 0);
1960 INIT_LIST_HEAD(&n->full);
1961 #endif
1962 }
1963
1964 #ifdef CONFIG_SMP
1965 /*
1966 * Per cpu array for per cpu structures.
1967 *
1968 * The per cpu array places all kmem_cache_cpu structures from one processor
1969 * close together meaning that it becomes possible that multiple per cpu
1970 * structures are contained in one cacheline. This may be particularly
1971 * beneficial for the kmalloc caches.
1972 *
1973 * A desktop system typically has around 60-80 slabs. With 100 here we are
1974 * likely able to get per cpu structures for all caches from the array defined
1975 * here. We must be able to cover all kmalloc caches during bootstrap.
1976 *
1977 * If the per cpu array is exhausted then fall back to kmalloc
1978 * of individual cachelines. No sharing is possible then.
1979 */
1980 #define NR_KMEM_CACHE_CPU 100
1981
1982 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1983 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1984
1985 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1986 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1987
1988 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1989 int cpu, gfp_t flags)
1990 {
1991 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1992
1993 if (c)
1994 per_cpu(kmem_cache_cpu_free, cpu) =
1995 (void *)c->freelist;
1996 else {
1997 /* Table overflow: So allocate ourselves */
1998 c = kmalloc_node(
1999 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2000 flags, cpu_to_node(cpu));
2001 if (!c)
2002 return NULL;
2003 }
2004
2005 init_kmem_cache_cpu(s, c);
2006 return c;
2007 }
2008
2009 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2010 {
2011 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2012 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2013 kfree(c);
2014 return;
2015 }
2016 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2017 per_cpu(kmem_cache_cpu_free, cpu) = c;
2018 }
2019
2020 static void free_kmem_cache_cpus(struct kmem_cache *s)
2021 {
2022 int cpu;
2023
2024 for_each_online_cpu(cpu) {
2025 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2026
2027 if (c) {
2028 s->cpu_slab[cpu] = NULL;
2029 free_kmem_cache_cpu(c, cpu);
2030 }
2031 }
2032 }
2033
2034 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2035 {
2036 int cpu;
2037
2038 for_each_online_cpu(cpu) {
2039 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2040
2041 if (c)
2042 continue;
2043
2044 c = alloc_kmem_cache_cpu(s, cpu, flags);
2045 if (!c) {
2046 free_kmem_cache_cpus(s);
2047 return 0;
2048 }
2049 s->cpu_slab[cpu] = c;
2050 }
2051 return 1;
2052 }
2053
2054 /*
2055 * Initialize the per cpu array.
2056 */
2057 static void init_alloc_cpu_cpu(int cpu)
2058 {
2059 int i;
2060
2061 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2062 return;
2063
2064 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2065 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2066
2067 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2068 }
2069
2070 static void __init init_alloc_cpu(void)
2071 {
2072 int cpu;
2073
2074 for_each_online_cpu(cpu)
2075 init_alloc_cpu_cpu(cpu);
2076 }
2077
2078 #else
2079 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2080 static inline void init_alloc_cpu(void) {}
2081
2082 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2083 {
2084 init_kmem_cache_cpu(s, &s->cpu_slab);
2085 return 1;
2086 }
2087 #endif
2088
2089 #ifdef CONFIG_NUMA
2090 /*
2091 * No kmalloc_node yet so do it by hand. We know that this is the first
2092 * slab on the node for this slabcache. There are no concurrent accesses
2093 * possible.
2094 *
2095 * Note that this function only works on the kmalloc_node_cache
2096 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2097 * memory on a fresh node that has no slab structures yet.
2098 */
2099 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2100 int node)
2101 {
2102 struct page *page;
2103 struct kmem_cache_node *n;
2104 unsigned long flags;
2105
2106 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2107
2108 page = new_slab(kmalloc_caches, gfpflags, node);
2109
2110 BUG_ON(!page);
2111 if (page_to_nid(page) != node) {
2112 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2113 "node %d\n", node);
2114 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2115 "in order to be able to continue\n");
2116 }
2117
2118 n = page->freelist;
2119 BUG_ON(!n);
2120 page->freelist = get_freepointer(kmalloc_caches, n);
2121 page->inuse++;
2122 kmalloc_caches->node[node] = n;
2123 #ifdef CONFIG_SLUB_DEBUG
2124 init_object(kmalloc_caches, n, 1);
2125 init_tracking(kmalloc_caches, n);
2126 #endif
2127 init_kmem_cache_node(n);
2128 inc_slabs_node(kmalloc_caches, node, page->objects);
2129
2130 /*
2131 * lockdep requires consistent irq usage for each lock
2132 * so even though there cannot be a race this early in
2133 * the boot sequence, we still disable irqs.
2134 */
2135 local_irq_save(flags);
2136 add_partial(n, page, 0);
2137 local_irq_restore(flags);
2138 return n;
2139 }
2140
2141 static void free_kmem_cache_nodes(struct kmem_cache *s)
2142 {
2143 int node;
2144
2145 for_each_node_state(node, N_NORMAL_MEMORY) {
2146 struct kmem_cache_node *n = s->node[node];
2147 if (n && n != &s->local_node)
2148 kmem_cache_free(kmalloc_caches, n);
2149 s->node[node] = NULL;
2150 }
2151 }
2152
2153 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2154 {
2155 int node;
2156 int local_node;
2157
2158 if (slab_state >= UP)
2159 local_node = page_to_nid(virt_to_page(s));
2160 else
2161 local_node = 0;
2162
2163 for_each_node_state(node, N_NORMAL_MEMORY) {
2164 struct kmem_cache_node *n;
2165
2166 if (local_node == node)
2167 n = &s->local_node;
2168 else {
2169 if (slab_state == DOWN) {
2170 n = early_kmem_cache_node_alloc(gfpflags,
2171 node);
2172 continue;
2173 }
2174 n = kmem_cache_alloc_node(kmalloc_caches,
2175 gfpflags, node);
2176
2177 if (!n) {
2178 free_kmem_cache_nodes(s);
2179 return 0;
2180 }
2181
2182 }
2183 s->node[node] = n;
2184 init_kmem_cache_node(n);
2185 }
2186 return 1;
2187 }
2188 #else
2189 static void free_kmem_cache_nodes(struct kmem_cache *s)
2190 {
2191 }
2192
2193 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2194 {
2195 init_kmem_cache_node(&s->local_node);
2196 return 1;
2197 }
2198 #endif
2199
2200 /*
2201 * calculate_sizes() determines the order and the distribution of data within
2202 * a slab object.
2203 */
2204 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2205 {
2206 unsigned long flags = s->flags;
2207 unsigned long size = s->objsize;
2208 unsigned long align = s->align;
2209 int order;
2210
2211 /*
2212 * Round up object size to the next word boundary. We can only
2213 * place the free pointer at word boundaries and this determines
2214 * the possible location of the free pointer.
2215 */
2216 size = ALIGN(size, sizeof(void *));
2217
2218 #ifdef CONFIG_SLUB_DEBUG
2219 /*
2220 * Determine if we can poison the object itself. If the user of
2221 * the slab may touch the object after free or before allocation
2222 * then we should never poison the object itself.
2223 */
2224 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2225 !s->ctor)
2226 s->flags |= __OBJECT_POISON;
2227 else
2228 s->flags &= ~__OBJECT_POISON;
2229
2230
2231 /*
2232 * If we are Redzoning then check if there is some space between the
2233 * end of the object and the free pointer. If not then add an
2234 * additional word to have some bytes to store Redzone information.
2235 */
2236 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2237 size += sizeof(void *);
2238 #endif
2239
2240 /*
2241 * With that we have determined the number of bytes in actual use
2242 * by the object. This is the potential offset to the free pointer.
2243 */
2244 s->inuse = size;
2245
2246 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2247 s->ctor)) {
2248 /*
2249 * Relocate free pointer after the object if it is not
2250 * permitted to overwrite the first word of the object on
2251 * kmem_cache_free.
2252 *
2253 * This is the case if we do RCU, have a constructor or
2254 * destructor or are poisoning the objects.
2255 */
2256 s->offset = size;
2257 size += sizeof(void *);
2258 }
2259
2260 #ifdef CONFIG_SLUB_DEBUG
2261 if (flags & SLAB_STORE_USER)
2262 /*
2263 * Need to store information about allocs and frees after
2264 * the object.
2265 */
2266 size += 2 * sizeof(struct track);
2267
2268 if (flags & SLAB_RED_ZONE)
2269 /*
2270 * Add some empty padding so that we can catch
2271 * overwrites from earlier objects rather than let
2272 * tracking information or the free pointer be
2273 * corrupted if an user writes before the start
2274 * of the object.
2275 */
2276 size += sizeof(void *);
2277 #endif
2278
2279 /*
2280 * Determine the alignment based on various parameters that the
2281 * user specified and the dynamic determination of cache line size
2282 * on bootup.
2283 */
2284 align = calculate_alignment(flags, align, s->objsize);
2285
2286 /*
2287 * SLUB stores one object immediately after another beginning from
2288 * offset 0. In order to align the objects we have to simply size
2289 * each object to conform to the alignment.
2290 */
2291 size = ALIGN(size, align);
2292 s->size = size;
2293 if (forced_order >= 0)
2294 order = forced_order;
2295 else
2296 order = calculate_order(size);
2297
2298 if (order < 0)
2299 return 0;
2300
2301 s->allocflags = 0;
2302 if (order)
2303 s->allocflags |= __GFP_COMP;
2304
2305 if (s->flags & SLAB_CACHE_DMA)
2306 s->allocflags |= SLUB_DMA;
2307
2308 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2309 s->allocflags |= __GFP_RECLAIMABLE;
2310
2311 /*
2312 * Determine the number of objects per slab
2313 */
2314 s->oo = oo_make(order, size);
2315 s->min = oo_make(get_order(size), size);
2316 if (oo_objects(s->oo) > oo_objects(s->max))
2317 s->max = s->oo;
2318
2319 return !!oo_objects(s->oo);
2320
2321 }
2322
2323 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2324 const char *name, size_t size,
2325 size_t align, unsigned long flags,
2326 void (*ctor)(struct kmem_cache *, void *))
2327 {
2328 memset(s, 0, kmem_size);
2329 s->name = name;
2330 s->ctor = ctor;
2331 s->objsize = size;
2332 s->align = align;
2333 s->flags = kmem_cache_flags(size, flags, name, ctor);
2334
2335 if (!calculate_sizes(s, -1))
2336 goto error;
2337
2338 s->refcount = 1;
2339 #ifdef CONFIG_NUMA
2340 s->remote_node_defrag_ratio = 100;
2341 #endif
2342 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2343 goto error;
2344
2345 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2346 return 1;
2347 free_kmem_cache_nodes(s);
2348 error:
2349 if (flags & SLAB_PANIC)
2350 panic("Cannot create slab %s size=%lu realsize=%u "
2351 "order=%u offset=%u flags=%lx\n",
2352 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2353 s->offset, flags);
2354 return 0;
2355 }
2356
2357 /*
2358 * Check if a given pointer is valid
2359 */
2360 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2361 {
2362 struct page *page;
2363
2364 page = get_object_page(object);
2365
2366 if (!page || s != page->slab)
2367 /* No slab or wrong slab */
2368 return 0;
2369
2370 if (!check_valid_pointer(s, page, object))
2371 return 0;
2372
2373 /*
2374 * We could also check if the object is on the slabs freelist.
2375 * But this would be too expensive and it seems that the main
2376 * purpose of kmem_ptr_valid() is to check if the object belongs
2377 * to a certain slab.
2378 */
2379 return 1;
2380 }
2381 EXPORT_SYMBOL(kmem_ptr_validate);
2382
2383 /*
2384 * Determine the size of a slab object
2385 */
2386 unsigned int kmem_cache_size(struct kmem_cache *s)
2387 {
2388 return s->objsize;
2389 }
2390 EXPORT_SYMBOL(kmem_cache_size);
2391
2392 const char *kmem_cache_name(struct kmem_cache *s)
2393 {
2394 return s->name;
2395 }
2396 EXPORT_SYMBOL(kmem_cache_name);
2397
2398 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2399 const char *text)
2400 {
2401 #ifdef CONFIG_SLUB_DEBUG
2402 void *addr = page_address(page);
2403 void *p;
2404 DECLARE_BITMAP(map, page->objects);
2405
2406 bitmap_zero(map, page->objects);
2407 slab_err(s, page, "%s", text);
2408 slab_lock(page);
2409 for_each_free_object(p, s, page->freelist)
2410 set_bit(slab_index(p, s, addr), map);
2411
2412 for_each_object(p, s, addr, page->objects) {
2413
2414 if (!test_bit(slab_index(p, s, addr), map)) {
2415 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2416 p, p - addr);
2417 print_tracking(s, p);
2418 }
2419 }
2420 slab_unlock(page);
2421 #endif
2422 }
2423
2424 /*
2425 * Attempt to free all partial slabs on a node.
2426 */
2427 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2428 {
2429 unsigned long flags;
2430 struct page *page, *h;
2431
2432 spin_lock_irqsave(&n->list_lock, flags);
2433 list_for_each_entry_safe(page, h, &n->partial, lru) {
2434 if (!page->inuse) {
2435 list_del(&page->lru);
2436 discard_slab(s, page);
2437 n->nr_partial--;
2438 } else {
2439 list_slab_objects(s, page,
2440 "Objects remaining on kmem_cache_close()");
2441 }
2442 }
2443 spin_unlock_irqrestore(&n->list_lock, flags);
2444 }
2445
2446 /*
2447 * Release all resources used by a slab cache.
2448 */
2449 static inline int kmem_cache_close(struct kmem_cache *s)
2450 {
2451 int node;
2452
2453 flush_all(s);
2454
2455 /* Attempt to free all objects */
2456 free_kmem_cache_cpus(s);
2457 for_each_node_state(node, N_NORMAL_MEMORY) {
2458 struct kmem_cache_node *n = get_node(s, node);
2459
2460 free_partial(s, n);
2461 if (n->nr_partial || slabs_node(s, node))
2462 return 1;
2463 }
2464 free_kmem_cache_nodes(s);
2465 return 0;
2466 }
2467
2468 /*
2469 * Close a cache and release the kmem_cache structure
2470 * (must be used for caches created using kmem_cache_create)
2471 */
2472 void kmem_cache_destroy(struct kmem_cache *s)
2473 {
2474 down_write(&slub_lock);
2475 s->refcount--;
2476 if (!s->refcount) {
2477 list_del(&s->list);
2478 up_write(&slub_lock);
2479 if (kmem_cache_close(s)) {
2480 printk(KERN_ERR "SLUB %s: %s called for cache that "
2481 "still has objects.\n", s->name, __func__);
2482 dump_stack();
2483 }
2484 sysfs_slab_remove(s);
2485 } else
2486 up_write(&slub_lock);
2487 }
2488 EXPORT_SYMBOL(kmem_cache_destroy);
2489
2490 /********************************************************************
2491 * Kmalloc subsystem
2492 *******************************************************************/
2493
2494 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2495 EXPORT_SYMBOL(kmalloc_caches);
2496
2497 static int __init setup_slub_min_order(char *str)
2498 {
2499 get_option(&str, &slub_min_order);
2500
2501 return 1;
2502 }
2503
2504 __setup("slub_min_order=", setup_slub_min_order);
2505
2506 static int __init setup_slub_max_order(char *str)
2507 {
2508 get_option(&str, &slub_max_order);
2509
2510 return 1;
2511 }
2512
2513 __setup("slub_max_order=", setup_slub_max_order);
2514
2515 static int __init setup_slub_min_objects(char *str)
2516 {
2517 get_option(&str, &slub_min_objects);
2518
2519 return 1;
2520 }
2521
2522 __setup("slub_min_objects=", setup_slub_min_objects);
2523
2524 static int __init setup_slub_nomerge(char *str)
2525 {
2526 slub_nomerge = 1;
2527 return 1;
2528 }
2529
2530 __setup("slub_nomerge", setup_slub_nomerge);
2531
2532 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2533 const char *name, int size, gfp_t gfp_flags)
2534 {
2535 unsigned int flags = 0;
2536
2537 if (gfp_flags & SLUB_DMA)
2538 flags = SLAB_CACHE_DMA;
2539
2540 down_write(&slub_lock);
2541 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2542 flags, NULL))
2543 goto panic;
2544
2545 list_add(&s->list, &slab_caches);
2546 up_write(&slub_lock);
2547 if (sysfs_slab_add(s))
2548 goto panic;
2549 return s;
2550
2551 panic:
2552 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2553 }
2554
2555 #ifdef CONFIG_ZONE_DMA
2556 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2557
2558 static void sysfs_add_func(struct work_struct *w)
2559 {
2560 struct kmem_cache *s;
2561
2562 down_write(&slub_lock);
2563 list_for_each_entry(s, &slab_caches, list) {
2564 if (s->flags & __SYSFS_ADD_DEFERRED) {
2565 s->flags &= ~__SYSFS_ADD_DEFERRED;
2566 sysfs_slab_add(s);
2567 }
2568 }
2569 up_write(&slub_lock);
2570 }
2571
2572 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2573
2574 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2575 {
2576 struct kmem_cache *s;
2577 char *text;
2578 size_t realsize;
2579
2580 s = kmalloc_caches_dma[index];
2581 if (s)
2582 return s;
2583
2584 /* Dynamically create dma cache */
2585 if (flags & __GFP_WAIT)
2586 down_write(&slub_lock);
2587 else {
2588 if (!down_write_trylock(&slub_lock))
2589 goto out;
2590 }
2591
2592 if (kmalloc_caches_dma[index])
2593 goto unlock_out;
2594
2595 realsize = kmalloc_caches[index].objsize;
2596 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2597 (unsigned int)realsize);
2598 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2599
2600 if (!s || !text || !kmem_cache_open(s, flags, text,
2601 realsize, ARCH_KMALLOC_MINALIGN,
2602 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2603 kfree(s);
2604 kfree(text);
2605 goto unlock_out;
2606 }
2607
2608 list_add(&s->list, &slab_caches);
2609 kmalloc_caches_dma[index] = s;
2610
2611 schedule_work(&sysfs_add_work);
2612
2613 unlock_out:
2614 up_write(&slub_lock);
2615 out:
2616 return kmalloc_caches_dma[index];
2617 }
2618 #endif
2619
2620 /*
2621 * Conversion table for small slabs sizes / 8 to the index in the
2622 * kmalloc array. This is necessary for slabs < 192 since we have non power
2623 * of two cache sizes there. The size of larger slabs can be determined using
2624 * fls.
2625 */
2626 static s8 size_index[24] = {
2627 3, /* 8 */
2628 4, /* 16 */
2629 5, /* 24 */
2630 5, /* 32 */
2631 6, /* 40 */
2632 6, /* 48 */
2633 6, /* 56 */
2634 6, /* 64 */
2635 1, /* 72 */
2636 1, /* 80 */
2637 1, /* 88 */
2638 1, /* 96 */
2639 7, /* 104 */
2640 7, /* 112 */
2641 7, /* 120 */
2642 7, /* 128 */
2643 2, /* 136 */
2644 2, /* 144 */
2645 2, /* 152 */
2646 2, /* 160 */
2647 2, /* 168 */
2648 2, /* 176 */
2649 2, /* 184 */
2650 2 /* 192 */
2651 };
2652
2653 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2654 {
2655 int index;
2656
2657 if (size <= 192) {
2658 if (!size)
2659 return ZERO_SIZE_PTR;
2660
2661 index = size_index[(size - 1) / 8];
2662 } else
2663 index = fls(size - 1);
2664
2665 #ifdef CONFIG_ZONE_DMA
2666 if (unlikely((flags & SLUB_DMA)))
2667 return dma_kmalloc_cache(index, flags);
2668
2669 #endif
2670 return &kmalloc_caches[index];
2671 }
2672
2673 void *__kmalloc(size_t size, gfp_t flags)
2674 {
2675 struct kmem_cache *s;
2676
2677 if (unlikely(size > PAGE_SIZE))
2678 return kmalloc_large(size, flags);
2679
2680 s = get_slab(size, flags);
2681
2682 if (unlikely(ZERO_OR_NULL_PTR(s)))
2683 return s;
2684
2685 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2686 }
2687 EXPORT_SYMBOL(__kmalloc);
2688
2689 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2690 {
2691 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2692 get_order(size));
2693
2694 if (page)
2695 return page_address(page);
2696 else
2697 return NULL;
2698 }
2699
2700 #ifdef CONFIG_NUMA
2701 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2702 {
2703 struct kmem_cache *s;
2704
2705 if (unlikely(size > PAGE_SIZE))
2706 return kmalloc_large_node(size, flags, node);
2707
2708 s = get_slab(size, flags);
2709
2710 if (unlikely(ZERO_OR_NULL_PTR(s)))
2711 return s;
2712
2713 return slab_alloc(s, flags, node, __builtin_return_address(0));
2714 }
2715 EXPORT_SYMBOL(__kmalloc_node);
2716 #endif
2717
2718 size_t ksize(const void *object)
2719 {
2720 struct page *page;
2721 struct kmem_cache *s;
2722
2723 if (unlikely(object == ZERO_SIZE_PTR))
2724 return 0;
2725
2726 page = virt_to_head_page(object);
2727
2728 if (unlikely(!PageSlab(page)))
2729 return PAGE_SIZE << compound_order(page);
2730
2731 s = page->slab;
2732
2733 #ifdef CONFIG_SLUB_DEBUG
2734 /*
2735 * Debugging requires use of the padding between object
2736 * and whatever may come after it.
2737 */
2738 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2739 return s->objsize;
2740
2741 #endif
2742 /*
2743 * If we have the need to store the freelist pointer
2744 * back there or track user information then we can
2745 * only use the space before that information.
2746 */
2747 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2748 return s->inuse;
2749 /*
2750 * Else we can use all the padding etc for the allocation
2751 */
2752 return s->size;
2753 }
2754 EXPORT_SYMBOL(ksize);
2755
2756 void kfree(const void *x)
2757 {
2758 struct page *page;
2759 void *object = (void *)x;
2760
2761 if (unlikely(ZERO_OR_NULL_PTR(x)))
2762 return;
2763
2764 page = virt_to_head_page(x);
2765 if (unlikely(!PageSlab(page))) {
2766 put_page(page);
2767 return;
2768 }
2769 slab_free(page->slab, page, object, __builtin_return_address(0));
2770 }
2771 EXPORT_SYMBOL(kfree);
2772
2773 /*
2774 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2775 * the remaining slabs by the number of items in use. The slabs with the
2776 * most items in use come first. New allocations will then fill those up
2777 * and thus they can be removed from the partial lists.
2778 *
2779 * The slabs with the least items are placed last. This results in them
2780 * being allocated from last increasing the chance that the last objects
2781 * are freed in them.
2782 */
2783 int kmem_cache_shrink(struct kmem_cache *s)
2784 {
2785 int node;
2786 int i;
2787 struct kmem_cache_node *n;
2788 struct page *page;
2789 struct page *t;
2790 int objects = oo_objects(s->max);
2791 struct list_head *slabs_by_inuse =
2792 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2793 unsigned long flags;
2794
2795 if (!slabs_by_inuse)
2796 return -ENOMEM;
2797
2798 flush_all(s);
2799 for_each_node_state(node, N_NORMAL_MEMORY) {
2800 n = get_node(s, node);
2801
2802 if (!n->nr_partial)
2803 continue;
2804
2805 for (i = 0; i < objects; i++)
2806 INIT_LIST_HEAD(slabs_by_inuse + i);
2807
2808 spin_lock_irqsave(&n->list_lock, flags);
2809
2810 /*
2811 * Build lists indexed by the items in use in each slab.
2812 *
2813 * Note that concurrent frees may occur while we hold the
2814 * list_lock. page->inuse here is the upper limit.
2815 */
2816 list_for_each_entry_safe(page, t, &n->partial, lru) {
2817 if (!page->inuse && slab_trylock(page)) {
2818 /*
2819 * Must hold slab lock here because slab_free
2820 * may have freed the last object and be
2821 * waiting to release the slab.
2822 */
2823 list_del(&page->lru);
2824 n->nr_partial--;
2825 slab_unlock(page);
2826 discard_slab(s, page);
2827 } else {
2828 list_move(&page->lru,
2829 slabs_by_inuse + page->inuse);
2830 }
2831 }
2832
2833 /*
2834 * Rebuild the partial list with the slabs filled up most
2835 * first and the least used slabs at the end.
2836 */
2837 for (i = objects - 1; i >= 0; i--)
2838 list_splice(slabs_by_inuse + i, n->partial.prev);
2839
2840 spin_unlock_irqrestore(&n->list_lock, flags);
2841 }
2842
2843 kfree(slabs_by_inuse);
2844 return 0;
2845 }
2846 EXPORT_SYMBOL(kmem_cache_shrink);
2847
2848 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2849 static int slab_mem_going_offline_callback(void *arg)
2850 {
2851 struct kmem_cache *s;
2852
2853 down_read(&slub_lock);
2854 list_for_each_entry(s, &slab_caches, list)
2855 kmem_cache_shrink(s);
2856 up_read(&slub_lock);
2857
2858 return 0;
2859 }
2860
2861 static void slab_mem_offline_callback(void *arg)
2862 {
2863 struct kmem_cache_node *n;
2864 struct kmem_cache *s;
2865 struct memory_notify *marg = arg;
2866 int offline_node;
2867
2868 offline_node = marg->status_change_nid;
2869
2870 /*
2871 * If the node still has available memory. we need kmem_cache_node
2872 * for it yet.
2873 */
2874 if (offline_node < 0)
2875 return;
2876
2877 down_read(&slub_lock);
2878 list_for_each_entry(s, &slab_caches, list) {
2879 n = get_node(s, offline_node);
2880 if (n) {
2881 /*
2882 * if n->nr_slabs > 0, slabs still exist on the node
2883 * that is going down. We were unable to free them,
2884 * and offline_pages() function shoudn't call this
2885 * callback. So, we must fail.
2886 */
2887 BUG_ON(slabs_node(s, offline_node));
2888
2889 s->node[offline_node] = NULL;
2890 kmem_cache_free(kmalloc_caches, n);
2891 }
2892 }
2893 up_read(&slub_lock);
2894 }
2895
2896 static int slab_mem_going_online_callback(void *arg)
2897 {
2898 struct kmem_cache_node *n;
2899 struct kmem_cache *s;
2900 struct memory_notify *marg = arg;
2901 int nid = marg->status_change_nid;
2902 int ret = 0;
2903
2904 /*
2905 * If the node's memory is already available, then kmem_cache_node is
2906 * already created. Nothing to do.
2907 */
2908 if (nid < 0)
2909 return 0;
2910
2911 /*
2912 * We are bringing a node online. No memory is availabe yet. We must
2913 * allocate a kmem_cache_node structure in order to bring the node
2914 * online.
2915 */
2916 down_read(&slub_lock);
2917 list_for_each_entry(s, &slab_caches, list) {
2918 /*
2919 * XXX: kmem_cache_alloc_node will fallback to other nodes
2920 * since memory is not yet available from the node that
2921 * is brought up.
2922 */
2923 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2924 if (!n) {
2925 ret = -ENOMEM;
2926 goto out;
2927 }
2928 init_kmem_cache_node(n);
2929 s->node[nid] = n;
2930 }
2931 out:
2932 up_read(&slub_lock);
2933 return ret;
2934 }
2935
2936 static int slab_memory_callback(struct notifier_block *self,
2937 unsigned long action, void *arg)
2938 {
2939 int ret = 0;
2940
2941 switch (action) {
2942 case MEM_GOING_ONLINE:
2943 ret = slab_mem_going_online_callback(arg);
2944 break;
2945 case MEM_GOING_OFFLINE:
2946 ret = slab_mem_going_offline_callback(arg);
2947 break;
2948 case MEM_OFFLINE:
2949 case MEM_CANCEL_ONLINE:
2950 slab_mem_offline_callback(arg);
2951 break;
2952 case MEM_ONLINE:
2953 case MEM_CANCEL_OFFLINE:
2954 break;
2955 }
2956
2957 ret = notifier_from_errno(ret);
2958 return ret;
2959 }
2960
2961 #endif /* CONFIG_MEMORY_HOTPLUG */
2962
2963 /********************************************************************
2964 * Basic setup of slabs
2965 *******************************************************************/
2966
2967 void __init kmem_cache_init(void)
2968 {
2969 int i;
2970 int caches = 0;
2971
2972 init_alloc_cpu();
2973
2974 #ifdef CONFIG_NUMA
2975 /*
2976 * Must first have the slab cache available for the allocations of the
2977 * struct kmem_cache_node's. There is special bootstrap code in
2978 * kmem_cache_open for slab_state == DOWN.
2979 */
2980 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2981 sizeof(struct kmem_cache_node), GFP_KERNEL);
2982 kmalloc_caches[0].refcount = -1;
2983 caches++;
2984
2985 hotplug_memory_notifier(slab_memory_callback, 1);
2986 #endif
2987
2988 /* Able to allocate the per node structures */
2989 slab_state = PARTIAL;
2990
2991 /* Caches that are not of the two-to-the-power-of size */
2992 if (KMALLOC_MIN_SIZE <= 64) {
2993 create_kmalloc_cache(&kmalloc_caches[1],
2994 "kmalloc-96", 96, GFP_KERNEL);
2995 caches++;
2996 }
2997 if (KMALLOC_MIN_SIZE <= 128) {
2998 create_kmalloc_cache(&kmalloc_caches[2],
2999 "kmalloc-192", 192, GFP_KERNEL);
3000 caches++;
3001 }
3002
3003 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3004 create_kmalloc_cache(&kmalloc_caches[i],
3005 "kmalloc", 1 << i, GFP_KERNEL);
3006 caches++;
3007 }
3008
3009
3010 /*
3011 * Patch up the size_index table if we have strange large alignment
3012 * requirements for the kmalloc array. This is only the case for
3013 * MIPS it seems. The standard arches will not generate any code here.
3014 *
3015 * Largest permitted alignment is 256 bytes due to the way we
3016 * handle the index determination for the smaller caches.
3017 *
3018 * Make sure that nothing crazy happens if someone starts tinkering
3019 * around with ARCH_KMALLOC_MINALIGN
3020 */
3021 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3023
3024 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3025 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3026
3027 slab_state = UP;
3028
3029 /* Provide the correct kmalloc names now that the caches are up */
3030 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3031 kmalloc_caches[i]. name =
3032 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3033
3034 #ifdef CONFIG_SMP
3035 register_cpu_notifier(&slab_notifier);
3036 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3037 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3038 #else
3039 kmem_size = sizeof(struct kmem_cache);
3040 #endif
3041
3042 printk(KERN_INFO
3043 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3044 " CPUs=%d, Nodes=%d\n",
3045 caches, cache_line_size(),
3046 slub_min_order, slub_max_order, slub_min_objects,
3047 nr_cpu_ids, nr_node_ids);
3048 }
3049
3050 /*
3051 * Find a mergeable slab cache
3052 */
3053 static int slab_unmergeable(struct kmem_cache *s)
3054 {
3055 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3056 return 1;
3057
3058 if (s->ctor)
3059 return 1;
3060
3061 /*
3062 * We may have set a slab to be unmergeable during bootstrap.
3063 */
3064 if (s->refcount < 0)
3065 return 1;
3066
3067 return 0;
3068 }
3069
3070 static struct kmem_cache *find_mergeable(size_t size,
3071 size_t align, unsigned long flags, const char *name,
3072 void (*ctor)(struct kmem_cache *, void *))
3073 {
3074 struct kmem_cache *s;
3075
3076 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3077 return NULL;
3078
3079 if (ctor)
3080 return NULL;
3081
3082 size = ALIGN(size, sizeof(void *));
3083 align = calculate_alignment(flags, align, size);
3084 size = ALIGN(size, align);
3085 flags = kmem_cache_flags(size, flags, name, NULL);
3086
3087 list_for_each_entry(s, &slab_caches, list) {
3088 if (slab_unmergeable(s))
3089 continue;
3090
3091 if (size > s->size)
3092 continue;
3093
3094 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3095 continue;
3096 /*
3097 * Check if alignment is compatible.
3098 * Courtesy of Adrian Drzewiecki
3099 */
3100 if ((s->size & ~(align - 1)) != s->size)
3101 continue;
3102
3103 if (s->size - size >= sizeof(void *))
3104 continue;
3105
3106 return s;
3107 }
3108 return NULL;
3109 }
3110
3111 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3112 size_t align, unsigned long flags,
3113 void (*ctor)(struct kmem_cache *, void *))
3114 {
3115 struct kmem_cache *s;
3116
3117 down_write(&slub_lock);
3118 s = find_mergeable(size, align, flags, name, ctor);
3119 if (s) {
3120 int cpu;
3121
3122 s->refcount++;
3123 /*
3124 * Adjust the object sizes so that we clear
3125 * the complete object on kzalloc.
3126 */
3127 s->objsize = max(s->objsize, (int)size);
3128
3129 /*
3130 * And then we need to update the object size in the
3131 * per cpu structures
3132 */
3133 for_each_online_cpu(cpu)
3134 get_cpu_slab(s, cpu)->objsize = s->objsize;
3135
3136 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3137 up_write(&slub_lock);
3138
3139 if (sysfs_slab_alias(s, name))
3140 goto err;
3141 return s;
3142 }
3143
3144 s = kmalloc(kmem_size, GFP_KERNEL);
3145 if (s) {
3146 if (kmem_cache_open(s, GFP_KERNEL, name,
3147 size, align, flags, ctor)) {
3148 list_add(&s->list, &slab_caches);
3149 up_write(&slub_lock);
3150 if (sysfs_slab_add(s))
3151 goto err;
3152 return s;
3153 }
3154 kfree(s);
3155 }
3156 up_write(&slub_lock);
3157
3158 err:
3159 if (flags & SLAB_PANIC)
3160 panic("Cannot create slabcache %s\n", name);
3161 else
3162 s = NULL;
3163 return s;
3164 }
3165 EXPORT_SYMBOL(kmem_cache_create);
3166
3167 #ifdef CONFIG_SMP
3168 /*
3169 * Use the cpu notifier to insure that the cpu slabs are flushed when
3170 * necessary.
3171 */
3172 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3173 unsigned long action, void *hcpu)
3174 {
3175 long cpu = (long)hcpu;
3176 struct kmem_cache *s;
3177 unsigned long flags;
3178
3179 switch (action) {
3180 case CPU_UP_PREPARE:
3181 case CPU_UP_PREPARE_FROZEN:
3182 init_alloc_cpu_cpu(cpu);
3183 down_read(&slub_lock);
3184 list_for_each_entry(s, &slab_caches, list)
3185 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3186 GFP_KERNEL);
3187 up_read(&slub_lock);
3188 break;
3189
3190 case CPU_UP_CANCELED:
3191 case CPU_UP_CANCELED_FROZEN:
3192 case CPU_DEAD:
3193 case CPU_DEAD_FROZEN:
3194 down_read(&slub_lock);
3195 list_for_each_entry(s, &slab_caches, list) {
3196 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3197
3198 local_irq_save(flags);
3199 __flush_cpu_slab(s, cpu);
3200 local_irq_restore(flags);
3201 free_kmem_cache_cpu(c, cpu);
3202 s->cpu_slab[cpu] = NULL;
3203 }
3204 up_read(&slub_lock);
3205 break;
3206 default:
3207 break;
3208 }
3209 return NOTIFY_OK;
3210 }
3211
3212 static struct notifier_block __cpuinitdata slab_notifier = {
3213 .notifier_call = slab_cpuup_callback
3214 };
3215
3216 #endif
3217
3218 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3219 {
3220 struct kmem_cache *s;
3221
3222 if (unlikely(size > PAGE_SIZE))
3223 return kmalloc_large(size, gfpflags);
3224
3225 s = get_slab(size, gfpflags);
3226
3227 if (unlikely(ZERO_OR_NULL_PTR(s)))
3228 return s;
3229
3230 return slab_alloc(s, gfpflags, -1, caller);
3231 }
3232
3233 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3234 int node, void *caller)
3235 {
3236 struct kmem_cache *s;
3237
3238 if (unlikely(size > PAGE_SIZE))
3239 return kmalloc_large_node(size, gfpflags, node);
3240
3241 s = get_slab(size, gfpflags);
3242
3243 if (unlikely(ZERO_OR_NULL_PTR(s)))
3244 return s;
3245
3246 return slab_alloc(s, gfpflags, node, caller);
3247 }
3248
3249 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3250 static unsigned long count_partial(struct kmem_cache_node *n,
3251 int (*get_count)(struct page *))
3252 {
3253 unsigned long flags;
3254 unsigned long x = 0;
3255 struct page *page;
3256
3257 spin_lock_irqsave(&n->list_lock, flags);
3258 list_for_each_entry(page, &n->partial, lru)
3259 x += get_count(page);
3260 spin_unlock_irqrestore(&n->list_lock, flags);
3261 return x;
3262 }
3263
3264 static int count_inuse(struct page *page)
3265 {
3266 return page->inuse;
3267 }
3268
3269 static int count_total(struct page *page)
3270 {
3271 return page->objects;
3272 }
3273
3274 static int count_free(struct page *page)
3275 {
3276 return page->objects - page->inuse;
3277 }
3278 #endif
3279
3280 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3281 static int validate_slab(struct kmem_cache *s, struct page *page,
3282 unsigned long *map)
3283 {
3284 void *p;
3285 void *addr = page_address(page);
3286
3287 if (!check_slab(s, page) ||
3288 !on_freelist(s, page, NULL))
3289 return 0;
3290
3291 /* Now we know that a valid freelist exists */
3292 bitmap_zero(map, page->objects);
3293
3294 for_each_free_object(p, s, page->freelist) {
3295 set_bit(slab_index(p, s, addr), map);
3296 if (!check_object(s, page, p, 0))
3297 return 0;
3298 }
3299
3300 for_each_object(p, s, addr, page->objects)
3301 if (!test_bit(slab_index(p, s, addr), map))
3302 if (!check_object(s, page, p, 1))
3303 return 0;
3304 return 1;
3305 }
3306
3307 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3308 unsigned long *map)
3309 {
3310 if (slab_trylock(page)) {
3311 validate_slab(s, page, map);
3312 slab_unlock(page);
3313 } else
3314 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3315 s->name, page);
3316
3317 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3318 if (!SlabDebug(page))
3319 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3320 "on slab 0x%p\n", s->name, page);
3321 } else {
3322 if (SlabDebug(page))
3323 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3324 "slab 0x%p\n", s->name, page);
3325 }
3326 }
3327
3328 static int validate_slab_node(struct kmem_cache *s,
3329 struct kmem_cache_node *n, unsigned long *map)
3330 {
3331 unsigned long count = 0;
3332 struct page *page;
3333 unsigned long flags;
3334
3335 spin_lock_irqsave(&n->list_lock, flags);
3336
3337 list_for_each_entry(page, &n->partial, lru) {
3338 validate_slab_slab(s, page, map);
3339 count++;
3340 }
3341 if (count != n->nr_partial)
3342 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3343 "counter=%ld\n", s->name, count, n->nr_partial);
3344
3345 if (!(s->flags & SLAB_STORE_USER))
3346 goto out;
3347
3348 list_for_each_entry(page, &n->full, lru) {
3349 validate_slab_slab(s, page, map);
3350 count++;
3351 }
3352 if (count != atomic_long_read(&n->nr_slabs))
3353 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3354 "counter=%ld\n", s->name, count,
3355 atomic_long_read(&n->nr_slabs));
3356
3357 out:
3358 spin_unlock_irqrestore(&n->list_lock, flags);
3359 return count;
3360 }
3361
3362 static long validate_slab_cache(struct kmem_cache *s)
3363 {
3364 int node;
3365 unsigned long count = 0;
3366 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3367 sizeof(unsigned long), GFP_KERNEL);
3368
3369 if (!map)
3370 return -ENOMEM;
3371
3372 flush_all(s);
3373 for_each_node_state(node, N_NORMAL_MEMORY) {
3374 struct kmem_cache_node *n = get_node(s, node);
3375
3376 count += validate_slab_node(s, n, map);
3377 }
3378 kfree(map);
3379 return count;
3380 }
3381
3382 #ifdef SLUB_RESILIENCY_TEST
3383 static void resiliency_test(void)
3384 {
3385 u8 *p;
3386
3387 printk(KERN_ERR "SLUB resiliency testing\n");
3388 printk(KERN_ERR "-----------------------\n");
3389 printk(KERN_ERR "A. Corruption after allocation\n");
3390
3391 p = kzalloc(16, GFP_KERNEL);
3392 p[16] = 0x12;
3393 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3394 " 0x12->0x%p\n\n", p + 16);
3395
3396 validate_slab_cache(kmalloc_caches + 4);
3397
3398 /* Hmmm... The next two are dangerous */
3399 p = kzalloc(32, GFP_KERNEL);
3400 p[32 + sizeof(void *)] = 0x34;
3401 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3402 " 0x34 -> -0x%p\n", p);
3403 printk(KERN_ERR
3404 "If allocated object is overwritten then not detectable\n\n");
3405
3406 validate_slab_cache(kmalloc_caches + 5);
3407 p = kzalloc(64, GFP_KERNEL);
3408 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3409 *p = 0x56;
3410 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3411 p);
3412 printk(KERN_ERR
3413 "If allocated object is overwritten then not detectable\n\n");
3414 validate_slab_cache(kmalloc_caches + 6);
3415
3416 printk(KERN_ERR "\nB. Corruption after free\n");
3417 p = kzalloc(128, GFP_KERNEL);
3418 kfree(p);
3419 *p = 0x78;
3420 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3421 validate_slab_cache(kmalloc_caches + 7);
3422
3423 p = kzalloc(256, GFP_KERNEL);
3424 kfree(p);
3425 p[50] = 0x9a;
3426 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3427 p);
3428 validate_slab_cache(kmalloc_caches + 8);
3429
3430 p = kzalloc(512, GFP_KERNEL);
3431 kfree(p);
3432 p[512] = 0xab;
3433 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3434 validate_slab_cache(kmalloc_caches + 9);
3435 }
3436 #else
3437 static void resiliency_test(void) {};
3438 #endif
3439
3440 /*
3441 * Generate lists of code addresses where slabcache objects are allocated
3442 * and freed.
3443 */
3444
3445 struct location {
3446 unsigned long count;
3447 void *addr;
3448 long long sum_time;
3449 long min_time;
3450 long max_time;
3451 long min_pid;
3452 long max_pid;
3453 cpumask_t cpus;
3454 nodemask_t nodes;
3455 };
3456
3457 struct loc_track {
3458 unsigned long max;
3459 unsigned long count;
3460 struct location *loc;
3461 };
3462
3463 static void free_loc_track(struct loc_track *t)
3464 {
3465 if (t->max)
3466 free_pages((unsigned long)t->loc,
3467 get_order(sizeof(struct location) * t->max));
3468 }
3469
3470 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3471 {
3472 struct location *l;
3473 int order;
3474
3475 order = get_order(sizeof(struct location) * max);
3476
3477 l = (void *)__get_free_pages(flags, order);
3478 if (!l)
3479 return 0;
3480
3481 if (t->count) {
3482 memcpy(l, t->loc, sizeof(struct location) * t->count);
3483 free_loc_track(t);
3484 }
3485 t->max = max;
3486 t->loc = l;
3487 return 1;
3488 }
3489
3490 static int add_location(struct loc_track *t, struct kmem_cache *s,
3491 const struct track *track)
3492 {
3493 long start, end, pos;
3494 struct location *l;
3495 void *caddr;
3496 unsigned long age = jiffies - track->when;
3497
3498 start = -1;
3499 end = t->count;
3500
3501 for ( ; ; ) {
3502 pos = start + (end - start + 1) / 2;
3503
3504 /*
3505 * There is nothing at "end". If we end up there
3506 * we need to add something to before end.
3507 */
3508 if (pos == end)
3509 break;
3510
3511 caddr = t->loc[pos].addr;
3512 if (track->addr == caddr) {
3513
3514 l = &t->loc[pos];
3515 l->count++;
3516 if (track->when) {
3517 l->sum_time += age;
3518 if (age < l->min_time)
3519 l->min_time = age;
3520 if (age > l->max_time)
3521 l->max_time = age;
3522
3523 if (track->pid < l->min_pid)
3524 l->min_pid = track->pid;
3525 if (track->pid > l->max_pid)
3526 l->max_pid = track->pid;
3527
3528 cpu_set(track->cpu, l->cpus);
3529 }
3530 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3531 return 1;
3532 }
3533
3534 if (track->addr < caddr)
3535 end = pos;
3536 else
3537 start = pos;
3538 }
3539
3540 /*
3541 * Not found. Insert new tracking element.
3542 */
3543 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3544 return 0;
3545
3546 l = t->loc + pos;
3547 if (pos < t->count)
3548 memmove(l + 1, l,
3549 (t->count - pos) * sizeof(struct location));
3550 t->count++;
3551 l->count = 1;
3552 l->addr = track->addr;
3553 l->sum_time = age;
3554 l->min_time = age;
3555 l->max_time = age;
3556 l->min_pid = track->pid;
3557 l->max_pid = track->pid;
3558 cpus_clear(l->cpus);
3559 cpu_set(track->cpu, l->cpus);
3560 nodes_clear(l->nodes);
3561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3562 return 1;
3563 }
3564
3565 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3566 struct page *page, enum track_item alloc)
3567 {
3568 void *addr = page_address(page);
3569 DECLARE_BITMAP(map, page->objects);
3570 void *p;
3571
3572 bitmap_zero(map, page->objects);
3573 for_each_free_object(p, s, page->freelist)
3574 set_bit(slab_index(p, s, addr), map);
3575
3576 for_each_object(p, s, addr, page->objects)
3577 if (!test_bit(slab_index(p, s, addr), map))
3578 add_location(t, s, get_track(s, p, alloc));
3579 }
3580
3581 static int list_locations(struct kmem_cache *s, char *buf,
3582 enum track_item alloc)
3583 {
3584 int len = 0;
3585 unsigned long i;
3586 struct loc_track t = { 0, 0, NULL };
3587 int node;
3588
3589 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3590 GFP_TEMPORARY))
3591 return sprintf(buf, "Out of memory\n");
3592
3593 /* Push back cpu slabs */
3594 flush_all(s);
3595
3596 for_each_node_state(node, N_NORMAL_MEMORY) {
3597 struct kmem_cache_node *n = get_node(s, node);
3598 unsigned long flags;
3599 struct page *page;
3600
3601 if (!atomic_long_read(&n->nr_slabs))
3602 continue;
3603
3604 spin_lock_irqsave(&n->list_lock, flags);
3605 list_for_each_entry(page, &n->partial, lru)
3606 process_slab(&t, s, page, alloc);
3607 list_for_each_entry(page, &n->full, lru)
3608 process_slab(&t, s, page, alloc);
3609 spin_unlock_irqrestore(&n->list_lock, flags);
3610 }
3611
3612 for (i = 0; i < t.count; i++) {
3613 struct location *l = &t.loc[i];
3614
3615 if (len > PAGE_SIZE - 100)
3616 break;
3617 len += sprintf(buf + len, "%7ld ", l->count);
3618
3619 if (l->addr)
3620 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3621 else
3622 len += sprintf(buf + len, "<not-available>");
3623
3624 if (l->sum_time != l->min_time) {
3625 unsigned long remainder;
3626
3627 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3628 l->min_time,
3629 div_long_long_rem(l->sum_time, l->count, &remainder),
3630 l->max_time);
3631 } else
3632 len += sprintf(buf + len, " age=%ld",
3633 l->min_time);
3634
3635 if (l->min_pid != l->max_pid)
3636 len += sprintf(buf + len, " pid=%ld-%ld",
3637 l->min_pid, l->max_pid);
3638 else
3639 len += sprintf(buf + len, " pid=%ld",
3640 l->min_pid);
3641
3642 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3643 len < PAGE_SIZE - 60) {
3644 len += sprintf(buf + len, " cpus=");
3645 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3646 l->cpus);
3647 }
3648
3649 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3650 len < PAGE_SIZE - 60) {
3651 len += sprintf(buf + len, " nodes=");
3652 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3653 l->nodes);
3654 }
3655
3656 len += sprintf(buf + len, "\n");
3657 }
3658
3659 free_loc_track(&t);
3660 if (!t.count)
3661 len += sprintf(buf, "No data\n");
3662 return len;
3663 }
3664
3665 enum slab_stat_type {
3666 SL_ALL, /* All slabs */
3667 SL_PARTIAL, /* Only partially allocated slabs */
3668 SL_CPU, /* Only slabs used for cpu caches */
3669 SL_OBJECTS, /* Determine allocated objects not slabs */
3670 SL_TOTAL /* Determine object capacity not slabs */
3671 };
3672
3673 #define SO_ALL (1 << SL_ALL)
3674 #define SO_PARTIAL (1 << SL_PARTIAL)
3675 #define SO_CPU (1 << SL_CPU)
3676 #define SO_OBJECTS (1 << SL_OBJECTS)
3677 #define SO_TOTAL (1 << SL_TOTAL)
3678
3679 static ssize_t show_slab_objects(struct kmem_cache *s,
3680 char *buf, unsigned long flags)
3681 {
3682 unsigned long total = 0;
3683 int node;
3684 int x;
3685 unsigned long *nodes;
3686 unsigned long *per_cpu;
3687
3688 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3689 if (!nodes)
3690 return -ENOMEM;
3691 per_cpu = nodes + nr_node_ids;
3692
3693 if (flags & SO_CPU) {
3694 int cpu;
3695
3696 for_each_possible_cpu(cpu) {
3697 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3698
3699 if (!c || c->node < 0)
3700 continue;
3701
3702 if (c->page) {
3703 if (flags & SO_TOTAL)
3704 x = c->page->objects;
3705 else if (flags & SO_OBJECTS)
3706 x = c->page->inuse;
3707 else
3708 x = 1;
3709
3710 total += x;
3711 nodes[c->node] += x;
3712 }
3713 per_cpu[c->node]++;
3714 }
3715 }
3716
3717 if (flags & SO_ALL) {
3718 for_each_node_state(node, N_NORMAL_MEMORY) {
3719 struct kmem_cache_node *n = get_node(s, node);
3720
3721 if (flags & SO_TOTAL)
3722 x = atomic_long_read(&n->total_objects);
3723 else if (flags & SO_OBJECTS)
3724 x = atomic_long_read(&n->total_objects) -
3725 count_partial(n, count_free);
3726
3727 else
3728 x = atomic_long_read(&n->nr_slabs);
3729 total += x;
3730 nodes[node] += x;
3731 }
3732
3733 } else if (flags & SO_PARTIAL) {
3734 for_each_node_state(node, N_NORMAL_MEMORY) {
3735 struct kmem_cache_node *n = get_node(s, node);
3736
3737 if (flags & SO_TOTAL)
3738 x = count_partial(n, count_total);
3739 else if (flags & SO_OBJECTS)
3740 x = count_partial(n, count_inuse);
3741 else
3742 x = n->nr_partial;
3743 total += x;
3744 nodes[node] += x;
3745 }
3746 }
3747 x = sprintf(buf, "%lu", total);
3748 #ifdef CONFIG_NUMA
3749 for_each_node_state(node, N_NORMAL_MEMORY)
3750 if (nodes[node])
3751 x += sprintf(buf + x, " N%d=%lu",
3752 node, nodes[node]);
3753 #endif
3754 kfree(nodes);
3755 return x + sprintf(buf + x, "\n");
3756 }
3757
3758 static int any_slab_objects(struct kmem_cache *s)
3759 {
3760 int node;
3761
3762 for_each_online_node(node) {
3763 struct kmem_cache_node *n = get_node(s, node);
3764
3765 if (!n)
3766 continue;
3767
3768 if (atomic_read(&n->total_objects))
3769 return 1;
3770 }
3771 return 0;
3772 }
3773
3774 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3775 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3776
3777 struct slab_attribute {
3778 struct attribute attr;
3779 ssize_t (*show)(struct kmem_cache *s, char *buf);
3780 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3781 };
3782
3783 #define SLAB_ATTR_RO(_name) \
3784 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3785
3786 #define SLAB_ATTR(_name) \
3787 static struct slab_attribute _name##_attr = \
3788 __ATTR(_name, 0644, _name##_show, _name##_store)
3789
3790 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3791 {
3792 return sprintf(buf, "%d\n", s->size);
3793 }
3794 SLAB_ATTR_RO(slab_size);
3795
3796 static ssize_t align_show(struct kmem_cache *s, char *buf)
3797 {
3798 return sprintf(buf, "%d\n", s->align);
3799 }
3800 SLAB_ATTR_RO(align);
3801
3802 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3803 {
3804 return sprintf(buf, "%d\n", s->objsize);
3805 }
3806 SLAB_ATTR_RO(object_size);
3807
3808 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3809 {
3810 return sprintf(buf, "%d\n", oo_objects(s->oo));
3811 }
3812 SLAB_ATTR_RO(objs_per_slab);
3813
3814 static ssize_t order_store(struct kmem_cache *s,
3815 const char *buf, size_t length)
3816 {
3817 int order = simple_strtoul(buf, NULL, 10);
3818
3819 if (order > slub_max_order || order < slub_min_order)
3820 return -EINVAL;
3821
3822 calculate_sizes(s, order);
3823 return length;
3824 }
3825
3826 static ssize_t order_show(struct kmem_cache *s, char *buf)
3827 {
3828 return sprintf(buf, "%d\n", oo_order(s->oo));
3829 }
3830 SLAB_ATTR(order);
3831
3832 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3833 {
3834 if (s->ctor) {
3835 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3836
3837 return n + sprintf(buf + n, "\n");
3838 }
3839 return 0;
3840 }
3841 SLAB_ATTR_RO(ctor);
3842
3843 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3844 {
3845 return sprintf(buf, "%d\n", s->refcount - 1);
3846 }
3847 SLAB_ATTR_RO(aliases);
3848
3849 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3850 {
3851 return show_slab_objects(s, buf, SO_ALL);
3852 }
3853 SLAB_ATTR_RO(slabs);
3854
3855 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3856 {
3857 return show_slab_objects(s, buf, SO_PARTIAL);
3858 }
3859 SLAB_ATTR_RO(partial);
3860
3861 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3862 {
3863 return show_slab_objects(s, buf, SO_CPU);
3864 }
3865 SLAB_ATTR_RO(cpu_slabs);
3866
3867 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3868 {
3869 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3870 }
3871 SLAB_ATTR_RO(objects);
3872
3873 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3874 {
3875 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3876 }
3877 SLAB_ATTR_RO(objects_partial);
3878
3879 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3880 {
3881 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3882 }
3883 SLAB_ATTR_RO(total_objects);
3884
3885 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3886 {
3887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3888 }
3889
3890 static ssize_t sanity_checks_store(struct kmem_cache *s,
3891 const char *buf, size_t length)
3892 {
3893 s->flags &= ~SLAB_DEBUG_FREE;
3894 if (buf[0] == '1')
3895 s->flags |= SLAB_DEBUG_FREE;
3896 return length;
3897 }
3898 SLAB_ATTR(sanity_checks);
3899
3900 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3901 {
3902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3903 }
3904
3905 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3906 size_t length)
3907 {
3908 s->flags &= ~SLAB_TRACE;
3909 if (buf[0] == '1')
3910 s->flags |= SLAB_TRACE;
3911 return length;
3912 }
3913 SLAB_ATTR(trace);
3914
3915 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3916 {
3917 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3918 }
3919
3920 static ssize_t reclaim_account_store(struct kmem_cache *s,
3921 const char *buf, size_t length)
3922 {
3923 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3924 if (buf[0] == '1')
3925 s->flags |= SLAB_RECLAIM_ACCOUNT;
3926 return length;
3927 }
3928 SLAB_ATTR(reclaim_account);
3929
3930 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3931 {
3932 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3933 }
3934 SLAB_ATTR_RO(hwcache_align);
3935
3936 #ifdef CONFIG_ZONE_DMA
3937 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3938 {
3939 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3940 }
3941 SLAB_ATTR_RO(cache_dma);
3942 #endif
3943
3944 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3945 {
3946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3947 }
3948 SLAB_ATTR_RO(destroy_by_rcu);
3949
3950 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3951 {
3952 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3953 }
3954
3955 static ssize_t red_zone_store(struct kmem_cache *s,
3956 const char *buf, size_t length)
3957 {
3958 if (any_slab_objects(s))
3959 return -EBUSY;
3960
3961 s->flags &= ~SLAB_RED_ZONE;
3962 if (buf[0] == '1')
3963 s->flags |= SLAB_RED_ZONE;
3964 calculate_sizes(s, -1);
3965 return length;
3966 }
3967 SLAB_ATTR(red_zone);
3968
3969 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3970 {
3971 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3972 }
3973
3974 static ssize_t poison_store(struct kmem_cache *s,
3975 const char *buf, size_t length)
3976 {
3977 if (any_slab_objects(s))
3978 return -EBUSY;
3979
3980 s->flags &= ~SLAB_POISON;
3981 if (buf[0] == '1')
3982 s->flags |= SLAB_POISON;
3983 calculate_sizes(s, -1);
3984 return length;
3985 }
3986 SLAB_ATTR(poison);
3987
3988 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3989 {
3990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3991 }
3992
3993 static ssize_t store_user_store(struct kmem_cache *s,
3994 const char *buf, size_t length)
3995 {
3996 if (any_slab_objects(s))
3997 return -EBUSY;
3998
3999 s->flags &= ~SLAB_STORE_USER;
4000 if (buf[0] == '1')
4001 s->flags |= SLAB_STORE_USER;
4002 calculate_sizes(s, -1);
4003 return length;
4004 }
4005 SLAB_ATTR(store_user);
4006
4007 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4008 {
4009 return 0;
4010 }
4011
4012 static ssize_t validate_store(struct kmem_cache *s,
4013 const char *buf, size_t length)
4014 {
4015 int ret = -EINVAL;
4016
4017 if (buf[0] == '1') {
4018 ret = validate_slab_cache(s);
4019 if (ret >= 0)
4020 ret = length;
4021 }
4022 return ret;
4023 }
4024 SLAB_ATTR(validate);
4025
4026 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4027 {
4028 return 0;
4029 }
4030
4031 static ssize_t shrink_store(struct kmem_cache *s,
4032 const char *buf, size_t length)
4033 {
4034 if (buf[0] == '1') {
4035 int rc = kmem_cache_shrink(s);
4036
4037 if (rc)
4038 return rc;
4039 } else
4040 return -EINVAL;
4041 return length;
4042 }
4043 SLAB_ATTR(shrink);
4044
4045 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4046 {
4047 if (!(s->flags & SLAB_STORE_USER))
4048 return -ENOSYS;
4049 return list_locations(s, buf, TRACK_ALLOC);
4050 }
4051 SLAB_ATTR_RO(alloc_calls);
4052
4053 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4054 {
4055 if (!(s->flags & SLAB_STORE_USER))
4056 return -ENOSYS;
4057 return list_locations(s, buf, TRACK_FREE);
4058 }
4059 SLAB_ATTR_RO(free_calls);
4060
4061 #ifdef CONFIG_NUMA
4062 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4063 {
4064 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4065 }
4066
4067 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4068 const char *buf, size_t length)
4069 {
4070 int n = simple_strtoul(buf, NULL, 10);
4071
4072 if (n < 100)
4073 s->remote_node_defrag_ratio = n * 10;
4074 return length;
4075 }
4076 SLAB_ATTR(remote_node_defrag_ratio);
4077 #endif
4078
4079 #ifdef CONFIG_SLUB_STATS
4080 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4081 {
4082 unsigned long sum = 0;
4083 int cpu;
4084 int len;
4085 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4086
4087 if (!data)
4088 return -ENOMEM;
4089
4090 for_each_online_cpu(cpu) {
4091 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4092
4093 data[cpu] = x;
4094 sum += x;
4095 }
4096
4097 len = sprintf(buf, "%lu", sum);
4098
4099 #ifdef CONFIG_SMP
4100 for_each_online_cpu(cpu) {
4101 if (data[cpu] && len < PAGE_SIZE - 20)
4102 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4103 }
4104 #endif
4105 kfree(data);
4106 return len + sprintf(buf + len, "\n");
4107 }
4108
4109 #define STAT_ATTR(si, text) \
4110 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4111 { \
4112 return show_stat(s, buf, si); \
4113 } \
4114 SLAB_ATTR_RO(text); \
4115
4116 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4117 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4118 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4119 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4120 STAT_ATTR(FREE_FROZEN, free_frozen);
4121 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4122 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4123 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4124 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4125 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4126 STAT_ATTR(FREE_SLAB, free_slab);
4127 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4128 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4129 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4130 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4131 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4132 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4133 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4134 #endif
4135
4136 static struct attribute *slab_attrs[] = {
4137 &slab_size_attr.attr,
4138 &object_size_attr.attr,
4139 &objs_per_slab_attr.attr,
4140 &order_attr.attr,
4141 &objects_attr.attr,
4142 &objects_partial_attr.attr,
4143 &total_objects_attr.attr,
4144 &slabs_attr.attr,
4145 &partial_attr.attr,
4146 &cpu_slabs_attr.attr,
4147 &ctor_attr.attr,
4148 &aliases_attr.attr,
4149 &align_attr.attr,
4150 &sanity_checks_attr.attr,
4151 &trace_attr.attr,
4152 &hwcache_align_attr.attr,
4153 &reclaim_account_attr.attr,
4154 &destroy_by_rcu_attr.attr,
4155 &red_zone_attr.attr,
4156 &poison_attr.attr,
4157 &store_user_attr.attr,
4158 &validate_attr.attr,
4159 &shrink_attr.attr,
4160 &alloc_calls_attr.attr,
4161 &free_calls_attr.attr,
4162 #ifdef CONFIG_ZONE_DMA
4163 &cache_dma_attr.attr,
4164 #endif
4165 #ifdef CONFIG_NUMA
4166 &remote_node_defrag_ratio_attr.attr,
4167 #endif
4168 #ifdef CONFIG_SLUB_STATS
4169 &alloc_fastpath_attr.attr,
4170 &alloc_slowpath_attr.attr,
4171 &free_fastpath_attr.attr,
4172 &free_slowpath_attr.attr,
4173 &free_frozen_attr.attr,
4174 &free_add_partial_attr.attr,
4175 &free_remove_partial_attr.attr,
4176 &alloc_from_partial_attr.attr,
4177 &alloc_slab_attr.attr,
4178 &alloc_refill_attr.attr,
4179 &free_slab_attr.attr,
4180 &cpuslab_flush_attr.attr,
4181 &deactivate_full_attr.attr,
4182 &deactivate_empty_attr.attr,
4183 &deactivate_to_head_attr.attr,
4184 &deactivate_to_tail_attr.attr,
4185 &deactivate_remote_frees_attr.attr,
4186 &order_fallback_attr.attr,
4187 #endif
4188 NULL
4189 };
4190
4191 static struct attribute_group slab_attr_group = {
4192 .attrs = slab_attrs,
4193 };
4194
4195 static ssize_t slab_attr_show(struct kobject *kobj,
4196 struct attribute *attr,
4197 char *buf)
4198 {
4199 struct slab_attribute *attribute;
4200 struct kmem_cache *s;
4201 int err;
4202
4203 attribute = to_slab_attr(attr);
4204 s = to_slab(kobj);
4205
4206 if (!attribute->show)
4207 return -EIO;
4208
4209 err = attribute->show(s, buf);
4210
4211 return err;
4212 }
4213
4214 static ssize_t slab_attr_store(struct kobject *kobj,
4215 struct attribute *attr,
4216 const char *buf, size_t len)
4217 {
4218 struct slab_attribute *attribute;
4219 struct kmem_cache *s;
4220 int err;
4221
4222 attribute = to_slab_attr(attr);
4223 s = to_slab(kobj);
4224
4225 if (!attribute->store)
4226 return -EIO;
4227
4228 err = attribute->store(s, buf, len);
4229
4230 return err;
4231 }
4232
4233 static void kmem_cache_release(struct kobject *kobj)
4234 {
4235 struct kmem_cache *s = to_slab(kobj);
4236
4237 kfree(s);
4238 }
4239
4240 static struct sysfs_ops slab_sysfs_ops = {
4241 .show = slab_attr_show,
4242 .store = slab_attr_store,
4243 };
4244
4245 static struct kobj_type slab_ktype = {
4246 .sysfs_ops = &slab_sysfs_ops,
4247 .release = kmem_cache_release
4248 };
4249
4250 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4251 {
4252 struct kobj_type *ktype = get_ktype(kobj);
4253
4254 if (ktype == &slab_ktype)
4255 return 1;
4256 return 0;
4257 }
4258
4259 static struct kset_uevent_ops slab_uevent_ops = {
4260 .filter = uevent_filter,
4261 };
4262
4263 static struct kset *slab_kset;
4264
4265 #define ID_STR_LENGTH 64
4266
4267 /* Create a unique string id for a slab cache:
4268 *
4269 * Format :[flags-]size
4270 */
4271 static char *create_unique_id(struct kmem_cache *s)
4272 {
4273 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4274 char *p = name;
4275
4276 BUG_ON(!name);
4277
4278 *p++ = ':';
4279 /*
4280 * First flags affecting slabcache operations. We will only
4281 * get here for aliasable slabs so we do not need to support
4282 * too many flags. The flags here must cover all flags that
4283 * are matched during merging to guarantee that the id is
4284 * unique.
4285 */
4286 if (s->flags & SLAB_CACHE_DMA)
4287 *p++ = 'd';
4288 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4289 *p++ = 'a';
4290 if (s->flags & SLAB_DEBUG_FREE)
4291 *p++ = 'F';
4292 if (p != name + 1)
4293 *p++ = '-';
4294 p += sprintf(p, "%07d", s->size);
4295 BUG_ON(p > name + ID_STR_LENGTH - 1);
4296 return name;
4297 }
4298
4299 static int sysfs_slab_add(struct kmem_cache *s)
4300 {
4301 int err;
4302 const char *name;
4303 int unmergeable;
4304
4305 if (slab_state < SYSFS)
4306 /* Defer until later */
4307 return 0;
4308
4309 unmergeable = slab_unmergeable(s);
4310 if (unmergeable) {
4311 /*
4312 * Slabcache can never be merged so we can use the name proper.
4313 * This is typically the case for debug situations. In that
4314 * case we can catch duplicate names easily.
4315 */
4316 sysfs_remove_link(&slab_kset->kobj, s->name);
4317 name = s->name;
4318 } else {
4319 /*
4320 * Create a unique name for the slab as a target
4321 * for the symlinks.
4322 */
4323 name = create_unique_id(s);
4324 }
4325
4326 s->kobj.kset = slab_kset;
4327 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4328 if (err) {
4329 kobject_put(&s->kobj);
4330 return err;
4331 }
4332
4333 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4334 if (err)
4335 return err;
4336 kobject_uevent(&s->kobj, KOBJ_ADD);
4337 if (!unmergeable) {
4338 /* Setup first alias */
4339 sysfs_slab_alias(s, s->name);
4340 kfree(name);
4341 }
4342 return 0;
4343 }
4344
4345 static void sysfs_slab_remove(struct kmem_cache *s)
4346 {
4347 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4348 kobject_del(&s->kobj);
4349 kobject_put(&s->kobj);
4350 }
4351
4352 /*
4353 * Need to buffer aliases during bootup until sysfs becomes
4354 * available lest we loose that information.
4355 */
4356 struct saved_alias {
4357 struct kmem_cache *s;
4358 const char *name;
4359 struct saved_alias *next;
4360 };
4361
4362 static struct saved_alias *alias_list;
4363
4364 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4365 {
4366 struct saved_alias *al;
4367
4368 if (slab_state == SYSFS) {
4369 /*
4370 * If we have a leftover link then remove it.
4371 */
4372 sysfs_remove_link(&slab_kset->kobj, name);
4373 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4374 }
4375
4376 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4377 if (!al)
4378 return -ENOMEM;
4379
4380 al->s = s;
4381 al->name = name;
4382 al->next = alias_list;
4383 alias_list = al;
4384 return 0;
4385 }
4386
4387 static int __init slab_sysfs_init(void)
4388 {
4389 struct kmem_cache *s;
4390 int err;
4391
4392 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4393 if (!slab_kset) {
4394 printk(KERN_ERR "Cannot register slab subsystem.\n");
4395 return -ENOSYS;
4396 }
4397
4398 slab_state = SYSFS;
4399
4400 list_for_each_entry(s, &slab_caches, list) {
4401 err = sysfs_slab_add(s);
4402 if (err)
4403 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4404 " to sysfs\n", s->name);
4405 }
4406
4407 while (alias_list) {
4408 struct saved_alias *al = alias_list;
4409
4410 alias_list = alias_list->next;
4411 err = sysfs_slab_alias(al->s, al->name);
4412 if (err)
4413 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4414 " %s to sysfs\n", s->name);
4415 kfree(al);
4416 }
4417
4418 resiliency_test();
4419 return 0;
4420 }
4421
4422 __initcall(slab_sysfs_init);
4423 #endif
4424
4425 /*
4426 * The /proc/slabinfo ABI
4427 */
4428 #ifdef CONFIG_SLABINFO
4429
4430 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4431 size_t count, loff_t *ppos)
4432 {
4433 return -EINVAL;
4434 }
4435
4436
4437 static void print_slabinfo_header(struct seq_file *m)
4438 {
4439 seq_puts(m, "slabinfo - version: 2.1\n");
4440 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4441 "<objperslab> <pagesperslab>");
4442 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4443 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4444 seq_putc(m, '\n');
4445 }
4446
4447 static void *s_start(struct seq_file *m, loff_t *pos)
4448 {
4449 loff_t n = *pos;
4450
4451 down_read(&slub_lock);
4452 if (!n)
4453 print_slabinfo_header(m);
4454
4455 return seq_list_start(&slab_caches, *pos);
4456 }
4457
4458 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4459 {
4460 return seq_list_next(p, &slab_caches, pos);
4461 }
4462
4463 static void s_stop(struct seq_file *m, void *p)
4464 {
4465 up_read(&slub_lock);
4466 }
4467
4468 static int s_show(struct seq_file *m, void *p)
4469 {
4470 unsigned long nr_partials = 0;
4471 unsigned long nr_slabs = 0;
4472 unsigned long nr_inuse = 0;
4473 unsigned long nr_objs = 0;
4474 unsigned long nr_free = 0;
4475 struct kmem_cache *s;
4476 int node;
4477
4478 s = list_entry(p, struct kmem_cache, list);
4479
4480 for_each_online_node(node) {
4481 struct kmem_cache_node *n = get_node(s, node);
4482
4483 if (!n)
4484 continue;
4485
4486 nr_partials += n->nr_partial;
4487 nr_slabs += atomic_long_read(&n->nr_slabs);
4488 nr_objs += atomic_long_read(&n->total_objects);
4489 nr_free += count_partial(n, count_free);
4490 }
4491
4492 nr_inuse = nr_objs - nr_free;
4493
4494 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4495 nr_objs, s->size, oo_objects(s->oo),
4496 (1 << oo_order(s->oo)));
4497 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4498 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4499 0UL);
4500 seq_putc(m, '\n');
4501 return 0;
4502 }
4503
4504 const struct seq_operations slabinfo_op = {
4505 .start = s_start,
4506 .next = s_next,
4507 .stop = s_stop,
4508 .show = s_show,
4509 };
4510
4511 #endif /* CONFIG_SLABINFO */