]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/slub.c
UBUNTU: upstream stable to v4.19.98, v5.4.14
[mirror_ubuntu-eoan-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200 /*
201 * Tracking user of a slab.
202 */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212 };
213
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244 /*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 return ptr;
267 #endif
268 }
269
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273 {
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276 }
277
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 return freelist_dereference(s, object + s->offset);
281 }
282
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 prefetch(object + s->offset);
286 }
287
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 unsigned long freepointer_addr;
291 void *p;
292
293 if (!debug_pagealloc_enabled_static())
294 return get_freepointer(s, object);
295
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
299 }
300
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308
309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
317
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 return (kasan_reset_tag(p) - addr) / s->size;
322 }
323
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 unsigned int size)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size)
334 };
335
336 return x;
337 }
338
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 VM_BUG_ON_PAGE(PageTail(page), page);
355 bit_spin_lock(PG_locked, &page->flags);
356 }
357
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 VM_BUG_ON_PAGE(PageTail(page), page);
361 __bit_spin_unlock(PG_locked, &page->flags);
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 page->counters = counters_new;
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 page->counters = counters_new;
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465 }
466
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473 }
474
475 /*
476 * Debug settings:
477 */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486
487 /*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493 static inline void metadata_access_enable(void)
494 {
495 kasan_disable_current();
496 }
497
498 static inline void metadata_access_disable(void)
499 {
500 kasan_enable_current();
501 }
502
503 /*
504 * Object debugging
505 */
506
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510 {
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
517 object = kasan_reset_tag(object);
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525 }
526
527 static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
529 {
530 metadata_access_enable();
531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 length, 1);
533 metadata_access_disable();
534 }
535
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538 {
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547 }
548
549 static void set_track(struct kmem_cache *s, void *object,
550 enum track_item alloc, unsigned long addr)
551 {
552 struct track *p = get_track(s, object, alloc);
553
554 if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 unsigned int nr_entries;
557
558 metadata_access_enable();
559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 metadata_access_disable();
561
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
564 #endif
565 p->addr = addr;
566 p->cpu = smp_processor_id();
567 p->pid = current->pid;
568 p->when = jiffies;
569 } else {
570 memset(p, 0, sizeof(struct track));
571 }
572 }
573
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 if (!t->addr)
586 return;
587
588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
595 pr_err("\t%pS\n", (void *)t->addrs[i]);
596 else
597 break;
598 }
599 #endif
600 }
601
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 unsigned long pr_time = jiffies;
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611
612 static void print_page_info(struct page *page)
613 {
614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 page, page->objects, page->inuse, page->freelist, page->flags);
616
617 }
618
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 struct va_format vaf;
622 va_list args;
623
624 va_start(args, fmt);
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 pr_err("=============================================================================\n");
628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 pr_err("-----------------------------------------------------------------------------\n\n");
630
631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 va_end(args);
633 }
634
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 struct va_format vaf;
638 va_list args;
639
640 va_start(args, fmt);
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
644 va_end(args);
645 }
646
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 unsigned int off; /* Offset of last byte */
650 u8 *addr = page_address(page);
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
658
659 if (s->flags & SLAB_RED_ZONE)
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
662 else if (p > addr + 16)
663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664
665 print_section(KERN_ERR, "Object ", p,
666 min_t(unsigned int, s->object_size, PAGE_SIZE));
667 if (s->flags & SLAB_RED_ZONE)
668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 s->inuse - s->object_size);
670
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
676 if (s->flags & SLAB_STORE_USER)
677 off += 2 * sizeof(struct track);
678
679 off += kasan_metadata_size(s);
680
681 if (off != size_from_object(s))
682 /* Beginning of the filler is the free pointer */
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
685
686 dump_stack();
687 }
688
689 void object_err(struct kmem_cache *s, struct page *page,
690 u8 *object, char *reason)
691 {
692 slab_bug(s, "%s", reason);
693 print_trailer(s, page, object);
694 }
695
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 const char *fmt, ...)
698 {
699 va_list args;
700 char buf[100];
701
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
704 va_end(args);
705 slab_bug(s, "%s", buf);
706 print_page_info(page);
707 dump_stack();
708 }
709
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 u8 *p = object;
713
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
717 if (s->flags & __OBJECT_POISON) {
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
723 memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728 {
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731 }
732
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
735 u8 *start, unsigned int value, unsigned int bytes)
736 {
737 u8 *fault;
738 u8 *end;
739
740 metadata_access_enable();
741 fault = memchr_inv(start, value, bytes);
742 metadata_access_disable();
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
757 }
758
759 /*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
766 *
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
770 * object + s->object_size
771 * Padding to reach word boundary. This is also used for Redzoning.
772 * Padding is extended by another word if Redzoning is enabled and
773 * object_size == inuse.
774 *
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
779 * Meta data starts here.
780 *
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
783 * C. Padding to reach required alignment boundary or at mininum
784 * one word if debugging is on to be able to detect writes
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
788 *
789 * object + s->size
790 * Nothing is used beyond s->size.
791 *
792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
793 * ignored. And therefore no slab options that rely on these boundaries
794 * may be used with merged slabcaches.
795 */
796
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
809 off += kasan_metadata_size(s);
810
811 if (size_from_object(s) == off)
812 return 1;
813
814 return check_bytes_and_report(s, page, p, "Object padding",
815 p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 u8 *start;
822 u8 *fault;
823 u8 *end;
824 u8 *pad;
825 int length;
826 int remainder;
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
831 start = page_address(page);
832 length = PAGE_SIZE << compound_order(page);
833 end = start + length;
834 remainder = length % s->size;
835 if (!remainder)
836 return 1;
837
838 pad = end - remainder;
839 metadata_access_enable();
840 fault = memchr_inv(pad, POISON_INUSE, remainder);
841 metadata_access_disable();
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 print_section(KERN_ERR, "Padding ", pad, remainder);
849
850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 return 0;
852 }
853
854 static int check_object(struct kmem_cache *s, struct page *page,
855 void *object, u8 val)
856 {
857 u8 *p = object;
858 u8 *endobject = object + s->object_size;
859
860 if (s->flags & SLAB_RED_ZONE) {
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
865 if (!check_bytes_and_report(s, page, object, "Redzone",
866 endobject, val, s->inuse - s->object_size))
867 return 0;
868 } else {
869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 check_bytes_and_report(s, page, p, "Alignment padding",
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
873 }
874 }
875
876 if (s->flags & SLAB_POISON) {
877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 (!check_bytes_and_report(s, page, p, "Poison", p,
879 POISON_FREE, s->object_size - 1) ||
880 !check_bytes_and_report(s, page, p, "Poison",
881 p + s->object_size - 1, POISON_END, 1)))
882 return 0;
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
889 if (!s->offset && val == SLUB_RED_ACTIVE)
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
900 * No choice but to zap it and thus lose the remainder
901 * of the free objects in this slab. May cause
902 * another error because the object count is now wrong.
903 */
904 set_freepointer(s, p, NULL);
905 return 0;
906 }
907 return 1;
908 }
909
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 int maxobj;
913
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
917 slab_err(s, page, "Not a valid slab page");
918 return 0;
919 }
920
921 maxobj = order_objects(compound_order(page), s->size);
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
924 page->objects, maxobj);
925 return 0;
926 }
927 if (page->inuse > page->objects) {
928 slab_err(s, page, "inuse %u > max %u",
929 page->inuse, page->objects);
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935 }
936
937 /*
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
940 */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 int nr = 0;
944 void *fp;
945 void *object = NULL;
946 int max_objects;
947
948 fp = page->freelist;
949 while (fp && nr <= page->objects) {
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
956 set_freepointer(s, object, NULL);
957 } else {
958 slab_err(s, page, "Freepointer corrupt");
959 page->freelist = NULL;
960 page->inuse = page->objects;
961 slab_fix(s, "Freelist cleared");
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
971 max_objects = order_objects(compound_order(page), s->size);
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
974
975 if (page->objects != max_objects) {
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
981 if (page->inuse != page->objects - nr) {
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
984 page->inuse = page->objects - nr;
985 slab_fix(s, "Object count adjusted.");
986 }
987 return search == NULL;
988 }
989
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
992 {
993 if (s->flags & SLAB_TRACE) {
994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
1001 print_section(KERN_INFO, "Object ", (void *)object,
1002 s->object_size);
1003
1004 dump_stack();
1005 }
1006 }
1007
1008 /*
1009 * Tracking of fully allocated slabs for debugging purposes.
1010 */
1011 static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
1013 {
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
1017 lockdep_assert_held(&n->list_lock);
1018 list_add(&page->slab_list, &n->full);
1019 }
1020
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
1026 lockdep_assert_held(&n->list_lock);
1027 list_del(&page->slab_list);
1028 }
1029
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036 }
1037
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 return atomic_long_read(&n->nr_slabs);
1041 }
1042
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
1053 if (likely(n)) {
1054 atomic_long_inc(&n->nr_slabs);
1055 atomic_long_add(objects, &n->total_objects);
1056 }
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
1063 atomic_long_sub(objects, &n->total_objects);
1064 }
1065
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069 {
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
1073 init_object(s, object, SLUB_RED_INACTIVE);
1074 init_tracking(s, object);
1075 }
1076
1077 static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078 {
1079 if (!(s->flags & SLAB_POISON))
1080 return;
1081
1082 metadata_access_enable();
1083 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 metadata_access_disable();
1085 }
1086
1087 static inline int alloc_consistency_checks(struct kmem_cache *s,
1088 struct page *page, void *object)
1089 {
1090 if (!check_slab(s, page))
1091 return 0;
1092
1093 if (!check_valid_pointer(s, page, object)) {
1094 object_err(s, page, object, "Freelist Pointer check fails");
1095 return 0;
1096 }
1097
1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 return 0;
1100
1101 return 1;
1102 }
1103
1104 static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 struct page *page,
1106 void *object, unsigned long addr)
1107 {
1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109 if (!alloc_consistency_checks(s, page, object))
1110 goto bad;
1111 }
1112
1113 /* Success perform special debug activities for allocs */
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_ALLOC, addr);
1116 trace(s, page, object, 1);
1117 init_object(s, object, SLUB_RED_ACTIVE);
1118 return 1;
1119
1120 bad:
1121 if (PageSlab(page)) {
1122 /*
1123 * If this is a slab page then lets do the best we can
1124 * to avoid issues in the future. Marking all objects
1125 * as used avoids touching the remaining objects.
1126 */
1127 slab_fix(s, "Marking all objects used");
1128 page->inuse = page->objects;
1129 page->freelist = NULL;
1130 }
1131 return 0;
1132 }
1133
1134 static inline int free_consistency_checks(struct kmem_cache *s,
1135 struct page *page, void *object, unsigned long addr)
1136 {
1137 if (!check_valid_pointer(s, page, object)) {
1138 slab_err(s, page, "Invalid object pointer 0x%p", object);
1139 return 0;
1140 }
1141
1142 if (on_freelist(s, page, object)) {
1143 object_err(s, page, object, "Object already free");
1144 return 0;
1145 }
1146
1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148 return 0;
1149
1150 if (unlikely(s != page->slab_cache)) {
1151 if (!PageSlab(page)) {
1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 object);
1154 } else if (!page->slab_cache) {
1155 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 object);
1157 dump_stack();
1158 } else
1159 object_err(s, page, object,
1160 "page slab pointer corrupt.");
1161 return 0;
1162 }
1163 return 1;
1164 }
1165
1166 /* Supports checking bulk free of a constructed freelist */
1167 static noinline int free_debug_processing(
1168 struct kmem_cache *s, struct page *page,
1169 void *head, void *tail, int bulk_cnt,
1170 unsigned long addr)
1171 {
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 void *object = head;
1174 int cnt = 0;
1175 unsigned long uninitialized_var(flags);
1176 int ret = 0;
1177
1178 spin_lock_irqsave(&n->list_lock, flags);
1179 slab_lock(page);
1180
1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 if (!check_slab(s, page))
1183 goto out;
1184 }
1185
1186 next_object:
1187 cnt++;
1188
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!free_consistency_checks(s, page, object, addr))
1191 goto out;
1192 }
1193
1194 if (s->flags & SLAB_STORE_USER)
1195 set_track(s, object, TRACK_FREE, addr);
1196 trace(s, page, object, 0);
1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198 init_object(s, object, SLUB_RED_INACTIVE);
1199
1200 /* Reached end of constructed freelist yet? */
1201 if (object != tail) {
1202 object = get_freepointer(s, object);
1203 goto next_object;
1204 }
1205 ret = 1;
1206
1207 out:
1208 if (cnt != bulk_cnt)
1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 bulk_cnt, cnt);
1211
1212 slab_unlock(page);
1213 spin_unlock_irqrestore(&n->list_lock, flags);
1214 if (!ret)
1215 slab_fix(s, "Object at 0x%p not freed", object);
1216 return ret;
1217 }
1218
1219 static int __init setup_slub_debug(char *str)
1220 {
1221 slub_debug = DEBUG_DEFAULT_FLAGS;
1222 if (*str++ != '=' || !*str)
1223 /*
1224 * No options specified. Switch on full debugging.
1225 */
1226 goto out;
1227
1228 if (*str == ',')
1229 /*
1230 * No options but restriction on slabs. This means full
1231 * debugging for slabs matching a pattern.
1232 */
1233 goto check_slabs;
1234
1235 slub_debug = 0;
1236 if (*str == '-')
1237 /*
1238 * Switch off all debugging measures.
1239 */
1240 goto out;
1241
1242 /*
1243 * Determine which debug features should be switched on
1244 */
1245 for (; *str && *str != ','; str++) {
1246 switch (tolower(*str)) {
1247 case 'f':
1248 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 break;
1250 case 'z':
1251 slub_debug |= SLAB_RED_ZONE;
1252 break;
1253 case 'p':
1254 slub_debug |= SLAB_POISON;
1255 break;
1256 case 'u':
1257 slub_debug |= SLAB_STORE_USER;
1258 break;
1259 case 't':
1260 slub_debug |= SLAB_TRACE;
1261 break;
1262 case 'a':
1263 slub_debug |= SLAB_FAILSLAB;
1264 break;
1265 case 'o':
1266 /*
1267 * Avoid enabling debugging on caches if its minimum
1268 * order would increase as a result.
1269 */
1270 disable_higher_order_debug = 1;
1271 break;
1272 default:
1273 pr_err("slub_debug option '%c' unknown. skipped\n",
1274 *str);
1275 }
1276 }
1277
1278 check_slabs:
1279 if (*str == ',')
1280 slub_debug_slabs = str + 1;
1281 out:
1282 if ((static_branch_unlikely(&init_on_alloc) ||
1283 static_branch_unlikely(&init_on_free)) &&
1284 (slub_debug & SLAB_POISON))
1285 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1286 return 1;
1287 }
1288
1289 __setup("slub_debug", setup_slub_debug);
1290
1291 /*
1292 * kmem_cache_flags - apply debugging options to the cache
1293 * @object_size: the size of an object without meta data
1294 * @flags: flags to set
1295 * @name: name of the cache
1296 * @ctor: constructor function
1297 *
1298 * Debug option(s) are applied to @flags. In addition to the debug
1299 * option(s), if a slab name (or multiple) is specified i.e.
1300 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1301 * then only the select slabs will receive the debug option(s).
1302 */
1303 slab_flags_t kmem_cache_flags(unsigned int object_size,
1304 slab_flags_t flags, const char *name,
1305 void (*ctor)(void *))
1306 {
1307 char *iter;
1308 size_t len;
1309
1310 /* If slub_debug = 0, it folds into the if conditional. */
1311 if (!slub_debug_slabs)
1312 return flags | slub_debug;
1313
1314 len = strlen(name);
1315 iter = slub_debug_slabs;
1316 while (*iter) {
1317 char *end, *glob;
1318 size_t cmplen;
1319
1320 end = strchrnul(iter, ',');
1321
1322 glob = strnchr(iter, end - iter, '*');
1323 if (glob)
1324 cmplen = glob - iter;
1325 else
1326 cmplen = max_t(size_t, len, (end - iter));
1327
1328 if (!strncmp(name, iter, cmplen)) {
1329 flags |= slub_debug;
1330 break;
1331 }
1332
1333 if (!*end)
1334 break;
1335 iter = end + 1;
1336 }
1337
1338 return flags;
1339 }
1340 #else /* !CONFIG_SLUB_DEBUG */
1341 static inline void setup_object_debug(struct kmem_cache *s,
1342 struct page *page, void *object) {}
1343 static inline void setup_page_debug(struct kmem_cache *s,
1344 void *addr, int order) {}
1345
1346 static inline int alloc_debug_processing(struct kmem_cache *s,
1347 struct page *page, void *object, unsigned long addr) { return 0; }
1348
1349 static inline int free_debug_processing(
1350 struct kmem_cache *s, struct page *page,
1351 void *head, void *tail, int bulk_cnt,
1352 unsigned long addr) { return 0; }
1353
1354 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1355 { return 1; }
1356 static inline int check_object(struct kmem_cache *s, struct page *page,
1357 void *object, u8 val) { return 1; }
1358 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359 struct page *page) {}
1360 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 struct page *page) {}
1362 slab_flags_t kmem_cache_flags(unsigned int object_size,
1363 slab_flags_t flags, const char *name,
1364 void (*ctor)(void *))
1365 {
1366 return flags;
1367 }
1368 #define slub_debug 0
1369
1370 #define disable_higher_order_debug 0
1371
1372 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1373 { return 0; }
1374 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1375 { return 0; }
1376 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1377 int objects) {}
1378 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1379 int objects) {}
1380
1381 #endif /* CONFIG_SLUB_DEBUG */
1382
1383 /*
1384 * Hooks for other subsystems that check memory allocations. In a typical
1385 * production configuration these hooks all should produce no code at all.
1386 */
1387 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1388 {
1389 ptr = kasan_kmalloc_large(ptr, size, flags);
1390 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1391 kmemleak_alloc(ptr, size, 1, flags);
1392 return ptr;
1393 }
1394
1395 static __always_inline void kfree_hook(void *x)
1396 {
1397 kmemleak_free(x);
1398 kasan_kfree_large(x, _RET_IP_);
1399 }
1400
1401 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1402 {
1403 kmemleak_free_recursive(x, s->flags);
1404
1405 /*
1406 * Trouble is that we may no longer disable interrupts in the fast path
1407 * So in order to make the debug calls that expect irqs to be
1408 * disabled we need to disable interrupts temporarily.
1409 */
1410 #ifdef CONFIG_LOCKDEP
1411 {
1412 unsigned long flags;
1413
1414 local_irq_save(flags);
1415 debug_check_no_locks_freed(x, s->object_size);
1416 local_irq_restore(flags);
1417 }
1418 #endif
1419 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1420 debug_check_no_obj_freed(x, s->object_size);
1421
1422 /* KASAN might put x into memory quarantine, delaying its reuse */
1423 return kasan_slab_free(s, x, _RET_IP_);
1424 }
1425
1426 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1427 void **head, void **tail)
1428 {
1429
1430 void *object;
1431 void *next = *head;
1432 void *old_tail = *tail ? *tail : *head;
1433 int rsize;
1434
1435 /* Head and tail of the reconstructed freelist */
1436 *head = NULL;
1437 *tail = NULL;
1438
1439 do {
1440 object = next;
1441 next = get_freepointer(s, object);
1442
1443 if (slab_want_init_on_free(s)) {
1444 /*
1445 * Clear the object and the metadata, but don't touch
1446 * the redzone.
1447 */
1448 memset(object, 0, s->object_size);
1449 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1450 : 0;
1451 memset((char *)object + s->inuse, 0,
1452 s->size - s->inuse - rsize);
1453
1454 }
1455 /* If object's reuse doesn't have to be delayed */
1456 if (!slab_free_hook(s, object)) {
1457 /* Move object to the new freelist */
1458 set_freepointer(s, object, *head);
1459 *head = object;
1460 if (!*tail)
1461 *tail = object;
1462 }
1463 } while (object != old_tail);
1464
1465 if (*head == *tail)
1466 *tail = NULL;
1467
1468 return *head != NULL;
1469 }
1470
1471 static void *setup_object(struct kmem_cache *s, struct page *page,
1472 void *object)
1473 {
1474 setup_object_debug(s, page, object);
1475 object = kasan_init_slab_obj(s, object);
1476 if (unlikely(s->ctor)) {
1477 kasan_unpoison_object_data(s, object);
1478 s->ctor(object);
1479 kasan_poison_object_data(s, object);
1480 }
1481 return object;
1482 }
1483
1484 /*
1485 * Slab allocation and freeing
1486 */
1487 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1488 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1489 {
1490 struct page *page;
1491 unsigned int order = oo_order(oo);
1492
1493 if (node == NUMA_NO_NODE)
1494 page = alloc_pages(flags, order);
1495 else
1496 page = __alloc_pages_node(node, flags, order);
1497
1498 if (page && charge_slab_page(page, flags, order, s)) {
1499 __free_pages(page, order);
1500 page = NULL;
1501 }
1502
1503 return page;
1504 }
1505
1506 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1507 /* Pre-initialize the random sequence cache */
1508 static int init_cache_random_seq(struct kmem_cache *s)
1509 {
1510 unsigned int count = oo_objects(s->oo);
1511 int err;
1512
1513 /* Bailout if already initialised */
1514 if (s->random_seq)
1515 return 0;
1516
1517 err = cache_random_seq_create(s, count, GFP_KERNEL);
1518 if (err) {
1519 pr_err("SLUB: Unable to initialize free list for %s\n",
1520 s->name);
1521 return err;
1522 }
1523
1524 /* Transform to an offset on the set of pages */
1525 if (s->random_seq) {
1526 unsigned int i;
1527
1528 for (i = 0; i < count; i++)
1529 s->random_seq[i] *= s->size;
1530 }
1531 return 0;
1532 }
1533
1534 /* Initialize each random sequence freelist per cache */
1535 static void __init init_freelist_randomization(void)
1536 {
1537 struct kmem_cache *s;
1538
1539 mutex_lock(&slab_mutex);
1540
1541 list_for_each_entry(s, &slab_caches, list)
1542 init_cache_random_seq(s);
1543
1544 mutex_unlock(&slab_mutex);
1545 }
1546
1547 /* Get the next entry on the pre-computed freelist randomized */
1548 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1549 unsigned long *pos, void *start,
1550 unsigned long page_limit,
1551 unsigned long freelist_count)
1552 {
1553 unsigned int idx;
1554
1555 /*
1556 * If the target page allocation failed, the number of objects on the
1557 * page might be smaller than the usual size defined by the cache.
1558 */
1559 do {
1560 idx = s->random_seq[*pos];
1561 *pos += 1;
1562 if (*pos >= freelist_count)
1563 *pos = 0;
1564 } while (unlikely(idx >= page_limit));
1565
1566 return (char *)start + idx;
1567 }
1568
1569 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1570 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1571 {
1572 void *start;
1573 void *cur;
1574 void *next;
1575 unsigned long idx, pos, page_limit, freelist_count;
1576
1577 if (page->objects < 2 || !s->random_seq)
1578 return false;
1579
1580 freelist_count = oo_objects(s->oo);
1581 pos = get_random_int() % freelist_count;
1582
1583 page_limit = page->objects * s->size;
1584 start = fixup_red_left(s, page_address(page));
1585
1586 /* First entry is used as the base of the freelist */
1587 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1588 freelist_count);
1589 cur = setup_object(s, page, cur);
1590 page->freelist = cur;
1591
1592 for (idx = 1; idx < page->objects; idx++) {
1593 next = next_freelist_entry(s, page, &pos, start, page_limit,
1594 freelist_count);
1595 next = setup_object(s, page, next);
1596 set_freepointer(s, cur, next);
1597 cur = next;
1598 }
1599 set_freepointer(s, cur, NULL);
1600
1601 return true;
1602 }
1603 #else
1604 static inline int init_cache_random_seq(struct kmem_cache *s)
1605 {
1606 return 0;
1607 }
1608 static inline void init_freelist_randomization(void) { }
1609 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1610 {
1611 return false;
1612 }
1613 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1614
1615 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1616 {
1617 struct page *page;
1618 struct kmem_cache_order_objects oo = s->oo;
1619 gfp_t alloc_gfp;
1620 void *start, *p, *next;
1621 int idx, order;
1622 bool shuffle;
1623
1624 flags &= gfp_allowed_mask;
1625
1626 if (gfpflags_allow_blocking(flags))
1627 local_irq_enable();
1628
1629 flags |= s->allocflags;
1630
1631 /*
1632 * Let the initial higher-order allocation fail under memory pressure
1633 * so we fall-back to the minimum order allocation.
1634 */
1635 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1636 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1637 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1638
1639 page = alloc_slab_page(s, alloc_gfp, node, oo);
1640 if (unlikely(!page)) {
1641 oo = s->min;
1642 alloc_gfp = flags;
1643 /*
1644 * Allocation may have failed due to fragmentation.
1645 * Try a lower order alloc if possible
1646 */
1647 page = alloc_slab_page(s, alloc_gfp, node, oo);
1648 if (unlikely(!page))
1649 goto out;
1650 stat(s, ORDER_FALLBACK);
1651 }
1652
1653 page->objects = oo_objects(oo);
1654
1655 order = compound_order(page);
1656 page->slab_cache = s;
1657 __SetPageSlab(page);
1658 if (page_is_pfmemalloc(page))
1659 SetPageSlabPfmemalloc(page);
1660
1661 kasan_poison_slab(page);
1662
1663 start = page_address(page);
1664
1665 setup_page_debug(s, start, order);
1666
1667 shuffle = shuffle_freelist(s, page);
1668
1669 if (!shuffle) {
1670 start = fixup_red_left(s, start);
1671 start = setup_object(s, page, start);
1672 page->freelist = start;
1673 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1674 next = p + s->size;
1675 next = setup_object(s, page, next);
1676 set_freepointer(s, p, next);
1677 p = next;
1678 }
1679 set_freepointer(s, p, NULL);
1680 }
1681
1682 page->inuse = page->objects;
1683 page->frozen = 1;
1684
1685 out:
1686 if (gfpflags_allow_blocking(flags))
1687 local_irq_disable();
1688 if (!page)
1689 return NULL;
1690
1691 inc_slabs_node(s, page_to_nid(page), page->objects);
1692
1693 return page;
1694 }
1695
1696 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697 {
1698 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700 flags &= ~GFP_SLAB_BUG_MASK;
1701 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702 invalid_mask, &invalid_mask, flags, &flags);
1703 dump_stack();
1704 }
1705
1706 return allocate_slab(s,
1707 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708 }
1709
1710 static void __free_slab(struct kmem_cache *s, struct page *page)
1711 {
1712 int order = compound_order(page);
1713 int pages = 1 << order;
1714
1715 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1716 void *p;
1717
1718 slab_pad_check(s, page);
1719 for_each_object(p, s, page_address(page),
1720 page->objects)
1721 check_object(s, page, p, SLUB_RED_INACTIVE);
1722 }
1723
1724 __ClearPageSlabPfmemalloc(page);
1725 __ClearPageSlab(page);
1726
1727 page->mapping = NULL;
1728 if (current->reclaim_state)
1729 current->reclaim_state->reclaimed_slab += pages;
1730 uncharge_slab_page(page, order, s);
1731 __free_pages(page, order);
1732 }
1733
1734 static void rcu_free_slab(struct rcu_head *h)
1735 {
1736 struct page *page = container_of(h, struct page, rcu_head);
1737
1738 __free_slab(page->slab_cache, page);
1739 }
1740
1741 static void free_slab(struct kmem_cache *s, struct page *page)
1742 {
1743 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1744 call_rcu(&page->rcu_head, rcu_free_slab);
1745 } else
1746 __free_slab(s, page);
1747 }
1748
1749 static void discard_slab(struct kmem_cache *s, struct page *page)
1750 {
1751 dec_slabs_node(s, page_to_nid(page), page->objects);
1752 free_slab(s, page);
1753 }
1754
1755 /*
1756 * Management of partially allocated slabs.
1757 */
1758 static inline void
1759 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1760 {
1761 n->nr_partial++;
1762 if (tail == DEACTIVATE_TO_TAIL)
1763 list_add_tail(&page->slab_list, &n->partial);
1764 else
1765 list_add(&page->slab_list, &n->partial);
1766 }
1767
1768 static inline void add_partial(struct kmem_cache_node *n,
1769 struct page *page, int tail)
1770 {
1771 lockdep_assert_held(&n->list_lock);
1772 __add_partial(n, page, tail);
1773 }
1774
1775 static inline void remove_partial(struct kmem_cache_node *n,
1776 struct page *page)
1777 {
1778 lockdep_assert_held(&n->list_lock);
1779 list_del(&page->slab_list);
1780 n->nr_partial--;
1781 }
1782
1783 /*
1784 * Remove slab from the partial list, freeze it and
1785 * return the pointer to the freelist.
1786 *
1787 * Returns a list of objects or NULL if it fails.
1788 */
1789 static inline void *acquire_slab(struct kmem_cache *s,
1790 struct kmem_cache_node *n, struct page *page,
1791 int mode, int *objects)
1792 {
1793 void *freelist;
1794 unsigned long counters;
1795 struct page new;
1796
1797 lockdep_assert_held(&n->list_lock);
1798
1799 /*
1800 * Zap the freelist and set the frozen bit.
1801 * The old freelist is the list of objects for the
1802 * per cpu allocation list.
1803 */
1804 freelist = page->freelist;
1805 counters = page->counters;
1806 new.counters = counters;
1807 *objects = new.objects - new.inuse;
1808 if (mode) {
1809 new.inuse = page->objects;
1810 new.freelist = NULL;
1811 } else {
1812 new.freelist = freelist;
1813 }
1814
1815 VM_BUG_ON(new.frozen);
1816 new.frozen = 1;
1817
1818 if (!__cmpxchg_double_slab(s, page,
1819 freelist, counters,
1820 new.freelist, new.counters,
1821 "acquire_slab"))
1822 return NULL;
1823
1824 remove_partial(n, page);
1825 WARN_ON(!freelist);
1826 return freelist;
1827 }
1828
1829 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1830 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1831
1832 /*
1833 * Try to allocate a partial slab from a specific node.
1834 */
1835 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1836 struct kmem_cache_cpu *c, gfp_t flags)
1837 {
1838 struct page *page, *page2;
1839 void *object = NULL;
1840 unsigned int available = 0;
1841 int objects;
1842
1843 /*
1844 * Racy check. If we mistakenly see no partial slabs then we
1845 * just allocate an empty slab. If we mistakenly try to get a
1846 * partial slab and there is none available then get_partials()
1847 * will return NULL.
1848 */
1849 if (!n || !n->nr_partial)
1850 return NULL;
1851
1852 spin_lock(&n->list_lock);
1853 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1854 void *t;
1855
1856 if (!pfmemalloc_match(page, flags))
1857 continue;
1858
1859 t = acquire_slab(s, n, page, object == NULL, &objects);
1860 if (!t)
1861 break;
1862
1863 available += objects;
1864 if (!object) {
1865 c->page = page;
1866 stat(s, ALLOC_FROM_PARTIAL);
1867 object = t;
1868 } else {
1869 put_cpu_partial(s, page, 0);
1870 stat(s, CPU_PARTIAL_NODE);
1871 }
1872 if (!kmem_cache_has_cpu_partial(s)
1873 || available > slub_cpu_partial(s) / 2)
1874 break;
1875
1876 }
1877 spin_unlock(&n->list_lock);
1878 return object;
1879 }
1880
1881 /*
1882 * Get a page from somewhere. Search in increasing NUMA distances.
1883 */
1884 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1885 struct kmem_cache_cpu *c)
1886 {
1887 #ifdef CONFIG_NUMA
1888 struct zonelist *zonelist;
1889 struct zoneref *z;
1890 struct zone *zone;
1891 enum zone_type high_zoneidx = gfp_zone(flags);
1892 void *object;
1893 unsigned int cpuset_mems_cookie;
1894
1895 /*
1896 * The defrag ratio allows a configuration of the tradeoffs between
1897 * inter node defragmentation and node local allocations. A lower
1898 * defrag_ratio increases the tendency to do local allocations
1899 * instead of attempting to obtain partial slabs from other nodes.
1900 *
1901 * If the defrag_ratio is set to 0 then kmalloc() always
1902 * returns node local objects. If the ratio is higher then kmalloc()
1903 * may return off node objects because partial slabs are obtained
1904 * from other nodes and filled up.
1905 *
1906 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1907 * (which makes defrag_ratio = 1000) then every (well almost)
1908 * allocation will first attempt to defrag slab caches on other nodes.
1909 * This means scanning over all nodes to look for partial slabs which
1910 * may be expensive if we do it every time we are trying to find a slab
1911 * with available objects.
1912 */
1913 if (!s->remote_node_defrag_ratio ||
1914 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1915 return NULL;
1916
1917 do {
1918 cpuset_mems_cookie = read_mems_allowed_begin();
1919 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1920 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1921 struct kmem_cache_node *n;
1922
1923 n = get_node(s, zone_to_nid(zone));
1924
1925 if (n && cpuset_zone_allowed(zone, flags) &&
1926 n->nr_partial > s->min_partial) {
1927 object = get_partial_node(s, n, c, flags);
1928 if (object) {
1929 /*
1930 * Don't check read_mems_allowed_retry()
1931 * here - if mems_allowed was updated in
1932 * parallel, that was a harmless race
1933 * between allocation and the cpuset
1934 * update
1935 */
1936 return object;
1937 }
1938 }
1939 }
1940 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1941 #endif /* CONFIG_NUMA */
1942 return NULL;
1943 }
1944
1945 /*
1946 * Get a partial page, lock it and return it.
1947 */
1948 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1949 struct kmem_cache_cpu *c)
1950 {
1951 void *object;
1952 int searchnode = node;
1953
1954 if (node == NUMA_NO_NODE)
1955 searchnode = numa_mem_id();
1956 else if (!node_present_pages(node))
1957 searchnode = node_to_mem_node(node);
1958
1959 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1960 if (object || node != NUMA_NO_NODE)
1961 return object;
1962
1963 return get_any_partial(s, flags, c);
1964 }
1965
1966 #ifdef CONFIG_PREEMPT
1967 /*
1968 * Calculate the next globally unique transaction for disambiguiation
1969 * during cmpxchg. The transactions start with the cpu number and are then
1970 * incremented by CONFIG_NR_CPUS.
1971 */
1972 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1973 #else
1974 /*
1975 * No preemption supported therefore also no need to check for
1976 * different cpus.
1977 */
1978 #define TID_STEP 1
1979 #endif
1980
1981 static inline unsigned long next_tid(unsigned long tid)
1982 {
1983 return tid + TID_STEP;
1984 }
1985
1986 static inline unsigned int tid_to_cpu(unsigned long tid)
1987 {
1988 return tid % TID_STEP;
1989 }
1990
1991 static inline unsigned long tid_to_event(unsigned long tid)
1992 {
1993 return tid / TID_STEP;
1994 }
1995
1996 static inline unsigned int init_tid(int cpu)
1997 {
1998 return cpu;
1999 }
2000
2001 static inline void note_cmpxchg_failure(const char *n,
2002 const struct kmem_cache *s, unsigned long tid)
2003 {
2004 #ifdef SLUB_DEBUG_CMPXCHG
2005 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2006
2007 pr_info("%s %s: cmpxchg redo ", n, s->name);
2008
2009 #ifdef CONFIG_PREEMPT
2010 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2011 pr_warn("due to cpu change %d -> %d\n",
2012 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2013 else
2014 #endif
2015 if (tid_to_event(tid) != tid_to_event(actual_tid))
2016 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2017 tid_to_event(tid), tid_to_event(actual_tid));
2018 else
2019 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2020 actual_tid, tid, next_tid(tid));
2021 #endif
2022 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2023 }
2024
2025 static void init_kmem_cache_cpus(struct kmem_cache *s)
2026 {
2027 int cpu;
2028
2029 for_each_possible_cpu(cpu)
2030 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2031 }
2032
2033 /*
2034 * Remove the cpu slab
2035 */
2036 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2037 void *freelist, struct kmem_cache_cpu *c)
2038 {
2039 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2040 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2041 int lock = 0;
2042 enum slab_modes l = M_NONE, m = M_NONE;
2043 void *nextfree;
2044 int tail = DEACTIVATE_TO_HEAD;
2045 struct page new;
2046 struct page old;
2047
2048 if (page->freelist) {
2049 stat(s, DEACTIVATE_REMOTE_FREES);
2050 tail = DEACTIVATE_TO_TAIL;
2051 }
2052
2053 /*
2054 * Stage one: Free all available per cpu objects back
2055 * to the page freelist while it is still frozen. Leave the
2056 * last one.
2057 *
2058 * There is no need to take the list->lock because the page
2059 * is still frozen.
2060 */
2061 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2062 void *prior;
2063 unsigned long counters;
2064
2065 do {
2066 prior = page->freelist;
2067 counters = page->counters;
2068 set_freepointer(s, freelist, prior);
2069 new.counters = counters;
2070 new.inuse--;
2071 VM_BUG_ON(!new.frozen);
2072
2073 } while (!__cmpxchg_double_slab(s, page,
2074 prior, counters,
2075 freelist, new.counters,
2076 "drain percpu freelist"));
2077
2078 freelist = nextfree;
2079 }
2080
2081 /*
2082 * Stage two: Ensure that the page is unfrozen while the
2083 * list presence reflects the actual number of objects
2084 * during unfreeze.
2085 *
2086 * We setup the list membership and then perform a cmpxchg
2087 * with the count. If there is a mismatch then the page
2088 * is not unfrozen but the page is on the wrong list.
2089 *
2090 * Then we restart the process which may have to remove
2091 * the page from the list that we just put it on again
2092 * because the number of objects in the slab may have
2093 * changed.
2094 */
2095 redo:
2096
2097 old.freelist = page->freelist;
2098 old.counters = page->counters;
2099 VM_BUG_ON(!old.frozen);
2100
2101 /* Determine target state of the slab */
2102 new.counters = old.counters;
2103 if (freelist) {
2104 new.inuse--;
2105 set_freepointer(s, freelist, old.freelist);
2106 new.freelist = freelist;
2107 } else
2108 new.freelist = old.freelist;
2109
2110 new.frozen = 0;
2111
2112 if (!new.inuse && n->nr_partial >= s->min_partial)
2113 m = M_FREE;
2114 else if (new.freelist) {
2115 m = M_PARTIAL;
2116 if (!lock) {
2117 lock = 1;
2118 /*
2119 * Taking the spinlock removes the possibility
2120 * that acquire_slab() will see a slab page that
2121 * is frozen
2122 */
2123 spin_lock(&n->list_lock);
2124 }
2125 } else {
2126 m = M_FULL;
2127 if (kmem_cache_debug(s) && !lock) {
2128 lock = 1;
2129 /*
2130 * This also ensures that the scanning of full
2131 * slabs from diagnostic functions will not see
2132 * any frozen slabs.
2133 */
2134 spin_lock(&n->list_lock);
2135 }
2136 }
2137
2138 if (l != m) {
2139 if (l == M_PARTIAL)
2140 remove_partial(n, page);
2141 else if (l == M_FULL)
2142 remove_full(s, n, page);
2143
2144 if (m == M_PARTIAL)
2145 add_partial(n, page, tail);
2146 else if (m == M_FULL)
2147 add_full(s, n, page);
2148 }
2149
2150 l = m;
2151 if (!__cmpxchg_double_slab(s, page,
2152 old.freelist, old.counters,
2153 new.freelist, new.counters,
2154 "unfreezing slab"))
2155 goto redo;
2156
2157 if (lock)
2158 spin_unlock(&n->list_lock);
2159
2160 if (m == M_PARTIAL)
2161 stat(s, tail);
2162 else if (m == M_FULL)
2163 stat(s, DEACTIVATE_FULL);
2164 else if (m == M_FREE) {
2165 stat(s, DEACTIVATE_EMPTY);
2166 discard_slab(s, page);
2167 stat(s, FREE_SLAB);
2168 }
2169
2170 c->page = NULL;
2171 c->freelist = NULL;
2172 }
2173
2174 /*
2175 * Unfreeze all the cpu partial slabs.
2176 *
2177 * This function must be called with interrupts disabled
2178 * for the cpu using c (or some other guarantee must be there
2179 * to guarantee no concurrent accesses).
2180 */
2181 static void unfreeze_partials(struct kmem_cache *s,
2182 struct kmem_cache_cpu *c)
2183 {
2184 #ifdef CONFIG_SLUB_CPU_PARTIAL
2185 struct kmem_cache_node *n = NULL, *n2 = NULL;
2186 struct page *page, *discard_page = NULL;
2187
2188 while ((page = c->partial)) {
2189 struct page new;
2190 struct page old;
2191
2192 c->partial = page->next;
2193
2194 n2 = get_node(s, page_to_nid(page));
2195 if (n != n2) {
2196 if (n)
2197 spin_unlock(&n->list_lock);
2198
2199 n = n2;
2200 spin_lock(&n->list_lock);
2201 }
2202
2203 do {
2204
2205 old.freelist = page->freelist;
2206 old.counters = page->counters;
2207 VM_BUG_ON(!old.frozen);
2208
2209 new.counters = old.counters;
2210 new.freelist = old.freelist;
2211
2212 new.frozen = 0;
2213
2214 } while (!__cmpxchg_double_slab(s, page,
2215 old.freelist, old.counters,
2216 new.freelist, new.counters,
2217 "unfreezing slab"));
2218
2219 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2220 page->next = discard_page;
2221 discard_page = page;
2222 } else {
2223 add_partial(n, page, DEACTIVATE_TO_TAIL);
2224 stat(s, FREE_ADD_PARTIAL);
2225 }
2226 }
2227
2228 if (n)
2229 spin_unlock(&n->list_lock);
2230
2231 while (discard_page) {
2232 page = discard_page;
2233 discard_page = discard_page->next;
2234
2235 stat(s, DEACTIVATE_EMPTY);
2236 discard_slab(s, page);
2237 stat(s, FREE_SLAB);
2238 }
2239 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2240 }
2241
2242 /*
2243 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2244 * partial page slot if available.
2245 *
2246 * If we did not find a slot then simply move all the partials to the
2247 * per node partial list.
2248 */
2249 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2250 {
2251 #ifdef CONFIG_SLUB_CPU_PARTIAL
2252 struct page *oldpage;
2253 int pages;
2254 int pobjects;
2255
2256 preempt_disable();
2257 do {
2258 pages = 0;
2259 pobjects = 0;
2260 oldpage = this_cpu_read(s->cpu_slab->partial);
2261
2262 if (oldpage) {
2263 pobjects = oldpage->pobjects;
2264 pages = oldpage->pages;
2265 if (drain && pobjects > s->cpu_partial) {
2266 unsigned long flags;
2267 /*
2268 * partial array is full. Move the existing
2269 * set to the per node partial list.
2270 */
2271 local_irq_save(flags);
2272 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2273 local_irq_restore(flags);
2274 oldpage = NULL;
2275 pobjects = 0;
2276 pages = 0;
2277 stat(s, CPU_PARTIAL_DRAIN);
2278 }
2279 }
2280
2281 pages++;
2282 pobjects += page->objects - page->inuse;
2283
2284 page->pages = pages;
2285 page->pobjects = pobjects;
2286 page->next = oldpage;
2287
2288 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2289 != oldpage);
2290 if (unlikely(!s->cpu_partial)) {
2291 unsigned long flags;
2292
2293 local_irq_save(flags);
2294 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2295 local_irq_restore(flags);
2296 }
2297 preempt_enable();
2298 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2299 }
2300
2301 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2302 {
2303 stat(s, CPUSLAB_FLUSH);
2304 deactivate_slab(s, c->page, c->freelist, c);
2305
2306 c->tid = next_tid(c->tid);
2307 }
2308
2309 /*
2310 * Flush cpu slab.
2311 *
2312 * Called from IPI handler with interrupts disabled.
2313 */
2314 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2315 {
2316 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2317
2318 if (c->page)
2319 flush_slab(s, c);
2320
2321 unfreeze_partials(s, c);
2322 }
2323
2324 static void flush_cpu_slab(void *d)
2325 {
2326 struct kmem_cache *s = d;
2327
2328 __flush_cpu_slab(s, smp_processor_id());
2329 }
2330
2331 static bool has_cpu_slab(int cpu, void *info)
2332 {
2333 struct kmem_cache *s = info;
2334 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2335
2336 return c->page || slub_percpu_partial(c);
2337 }
2338
2339 static void flush_all(struct kmem_cache *s)
2340 {
2341 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2342 }
2343
2344 /*
2345 * Use the cpu notifier to insure that the cpu slabs are flushed when
2346 * necessary.
2347 */
2348 static int slub_cpu_dead(unsigned int cpu)
2349 {
2350 struct kmem_cache *s;
2351 unsigned long flags;
2352
2353 mutex_lock(&slab_mutex);
2354 list_for_each_entry(s, &slab_caches, list) {
2355 local_irq_save(flags);
2356 __flush_cpu_slab(s, cpu);
2357 local_irq_restore(flags);
2358 }
2359 mutex_unlock(&slab_mutex);
2360 return 0;
2361 }
2362
2363 /*
2364 * Check if the objects in a per cpu structure fit numa
2365 * locality expectations.
2366 */
2367 static inline int node_match(struct page *page, int node)
2368 {
2369 #ifdef CONFIG_NUMA
2370 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2371 return 0;
2372 #endif
2373 return 1;
2374 }
2375
2376 #ifdef CONFIG_SLUB_DEBUG
2377 static int count_free(struct page *page)
2378 {
2379 return page->objects - page->inuse;
2380 }
2381
2382 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2383 {
2384 return atomic_long_read(&n->total_objects);
2385 }
2386 #endif /* CONFIG_SLUB_DEBUG */
2387
2388 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2389 static unsigned long count_partial(struct kmem_cache_node *n,
2390 int (*get_count)(struct page *))
2391 {
2392 unsigned long flags;
2393 unsigned long x = 0;
2394 struct page *page;
2395
2396 spin_lock_irqsave(&n->list_lock, flags);
2397 list_for_each_entry(page, &n->partial, slab_list)
2398 x += get_count(page);
2399 spin_unlock_irqrestore(&n->list_lock, flags);
2400 return x;
2401 }
2402 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2403
2404 static noinline void
2405 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2406 {
2407 #ifdef CONFIG_SLUB_DEBUG
2408 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2409 DEFAULT_RATELIMIT_BURST);
2410 int node;
2411 struct kmem_cache_node *n;
2412
2413 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2414 return;
2415
2416 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2417 nid, gfpflags, &gfpflags);
2418 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2419 s->name, s->object_size, s->size, oo_order(s->oo),
2420 oo_order(s->min));
2421
2422 if (oo_order(s->min) > get_order(s->object_size))
2423 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2424 s->name);
2425
2426 for_each_kmem_cache_node(s, node, n) {
2427 unsigned long nr_slabs;
2428 unsigned long nr_objs;
2429 unsigned long nr_free;
2430
2431 nr_free = count_partial(n, count_free);
2432 nr_slabs = node_nr_slabs(n);
2433 nr_objs = node_nr_objs(n);
2434
2435 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2436 node, nr_slabs, nr_objs, nr_free);
2437 }
2438 #endif
2439 }
2440
2441 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2442 int node, struct kmem_cache_cpu **pc)
2443 {
2444 void *freelist;
2445 struct kmem_cache_cpu *c = *pc;
2446 struct page *page;
2447
2448 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2449
2450 freelist = get_partial(s, flags, node, c);
2451
2452 if (freelist)
2453 return freelist;
2454
2455 page = new_slab(s, flags, node);
2456 if (page) {
2457 c = raw_cpu_ptr(s->cpu_slab);
2458 if (c->page)
2459 flush_slab(s, c);
2460
2461 /*
2462 * No other reference to the page yet so we can
2463 * muck around with it freely without cmpxchg
2464 */
2465 freelist = page->freelist;
2466 page->freelist = NULL;
2467
2468 stat(s, ALLOC_SLAB);
2469 c->page = page;
2470 *pc = c;
2471 }
2472
2473 return freelist;
2474 }
2475
2476 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2477 {
2478 if (unlikely(PageSlabPfmemalloc(page)))
2479 return gfp_pfmemalloc_allowed(gfpflags);
2480
2481 return true;
2482 }
2483
2484 /*
2485 * Check the page->freelist of a page and either transfer the freelist to the
2486 * per cpu freelist or deactivate the page.
2487 *
2488 * The page is still frozen if the return value is not NULL.
2489 *
2490 * If this function returns NULL then the page has been unfrozen.
2491 *
2492 * This function must be called with interrupt disabled.
2493 */
2494 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2495 {
2496 struct page new;
2497 unsigned long counters;
2498 void *freelist;
2499
2500 do {
2501 freelist = page->freelist;
2502 counters = page->counters;
2503
2504 new.counters = counters;
2505 VM_BUG_ON(!new.frozen);
2506
2507 new.inuse = page->objects;
2508 new.frozen = freelist != NULL;
2509
2510 } while (!__cmpxchg_double_slab(s, page,
2511 freelist, counters,
2512 NULL, new.counters,
2513 "get_freelist"));
2514
2515 return freelist;
2516 }
2517
2518 /*
2519 * Slow path. The lockless freelist is empty or we need to perform
2520 * debugging duties.
2521 *
2522 * Processing is still very fast if new objects have been freed to the
2523 * regular freelist. In that case we simply take over the regular freelist
2524 * as the lockless freelist and zap the regular freelist.
2525 *
2526 * If that is not working then we fall back to the partial lists. We take the
2527 * first element of the freelist as the object to allocate now and move the
2528 * rest of the freelist to the lockless freelist.
2529 *
2530 * And if we were unable to get a new slab from the partial slab lists then
2531 * we need to allocate a new slab. This is the slowest path since it involves
2532 * a call to the page allocator and the setup of a new slab.
2533 *
2534 * Version of __slab_alloc to use when we know that interrupts are
2535 * already disabled (which is the case for bulk allocation).
2536 */
2537 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2538 unsigned long addr, struct kmem_cache_cpu *c)
2539 {
2540 void *freelist;
2541 struct page *page;
2542
2543 page = c->page;
2544 if (!page)
2545 goto new_slab;
2546 redo:
2547
2548 if (unlikely(!node_match(page, node))) {
2549 int searchnode = node;
2550
2551 if (node != NUMA_NO_NODE && !node_present_pages(node))
2552 searchnode = node_to_mem_node(node);
2553
2554 if (unlikely(!node_match(page, searchnode))) {
2555 stat(s, ALLOC_NODE_MISMATCH);
2556 deactivate_slab(s, page, c->freelist, c);
2557 goto new_slab;
2558 }
2559 }
2560
2561 /*
2562 * By rights, we should be searching for a slab page that was
2563 * PFMEMALLOC but right now, we are losing the pfmemalloc
2564 * information when the page leaves the per-cpu allocator
2565 */
2566 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2567 deactivate_slab(s, page, c->freelist, c);
2568 goto new_slab;
2569 }
2570
2571 /* must check again c->freelist in case of cpu migration or IRQ */
2572 freelist = c->freelist;
2573 if (freelist)
2574 goto load_freelist;
2575
2576 freelist = get_freelist(s, page);
2577
2578 if (!freelist) {
2579 c->page = NULL;
2580 stat(s, DEACTIVATE_BYPASS);
2581 goto new_slab;
2582 }
2583
2584 stat(s, ALLOC_REFILL);
2585
2586 load_freelist:
2587 /*
2588 * freelist is pointing to the list of objects to be used.
2589 * page is pointing to the page from which the objects are obtained.
2590 * That page must be frozen for per cpu allocations to work.
2591 */
2592 VM_BUG_ON(!c->page->frozen);
2593 c->freelist = get_freepointer(s, freelist);
2594 c->tid = next_tid(c->tid);
2595 return freelist;
2596
2597 new_slab:
2598
2599 if (slub_percpu_partial(c)) {
2600 page = c->page = slub_percpu_partial(c);
2601 slub_set_percpu_partial(c, page);
2602 stat(s, CPU_PARTIAL_ALLOC);
2603 goto redo;
2604 }
2605
2606 freelist = new_slab_objects(s, gfpflags, node, &c);
2607
2608 if (unlikely(!freelist)) {
2609 slab_out_of_memory(s, gfpflags, node);
2610 return NULL;
2611 }
2612
2613 page = c->page;
2614 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2615 goto load_freelist;
2616
2617 /* Only entered in the debug case */
2618 if (kmem_cache_debug(s) &&
2619 !alloc_debug_processing(s, page, freelist, addr))
2620 goto new_slab; /* Slab failed checks. Next slab needed */
2621
2622 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2623 return freelist;
2624 }
2625
2626 /*
2627 * Another one that disabled interrupt and compensates for possible
2628 * cpu changes by refetching the per cpu area pointer.
2629 */
2630 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2631 unsigned long addr, struct kmem_cache_cpu *c)
2632 {
2633 void *p;
2634 unsigned long flags;
2635
2636 local_irq_save(flags);
2637 #ifdef CONFIG_PREEMPT
2638 /*
2639 * We may have been preempted and rescheduled on a different
2640 * cpu before disabling interrupts. Need to reload cpu area
2641 * pointer.
2642 */
2643 c = this_cpu_ptr(s->cpu_slab);
2644 #endif
2645
2646 p = ___slab_alloc(s, gfpflags, node, addr, c);
2647 local_irq_restore(flags);
2648 return p;
2649 }
2650
2651 /*
2652 * If the object has been wiped upon free, make sure it's fully initialized by
2653 * zeroing out freelist pointer.
2654 */
2655 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2656 void *obj)
2657 {
2658 if (unlikely(slab_want_init_on_free(s)) && obj)
2659 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2660 }
2661
2662 /*
2663 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2664 * have the fastpath folded into their functions. So no function call
2665 * overhead for requests that can be satisfied on the fastpath.
2666 *
2667 * The fastpath works by first checking if the lockless freelist can be used.
2668 * If not then __slab_alloc is called for slow processing.
2669 *
2670 * Otherwise we can simply pick the next object from the lockless free list.
2671 */
2672 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2673 gfp_t gfpflags, int node, unsigned long addr)
2674 {
2675 void *object;
2676 struct kmem_cache_cpu *c;
2677 struct page *page;
2678 unsigned long tid;
2679
2680 s = slab_pre_alloc_hook(s, gfpflags);
2681 if (!s)
2682 return NULL;
2683 redo:
2684 /*
2685 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2686 * enabled. We may switch back and forth between cpus while
2687 * reading from one cpu area. That does not matter as long
2688 * as we end up on the original cpu again when doing the cmpxchg.
2689 *
2690 * We should guarantee that tid and kmem_cache are retrieved on
2691 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2692 * to check if it is matched or not.
2693 */
2694 do {
2695 tid = this_cpu_read(s->cpu_slab->tid);
2696 c = raw_cpu_ptr(s->cpu_slab);
2697 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2698 unlikely(tid != READ_ONCE(c->tid)));
2699
2700 /*
2701 * Irqless object alloc/free algorithm used here depends on sequence
2702 * of fetching cpu_slab's data. tid should be fetched before anything
2703 * on c to guarantee that object and page associated with previous tid
2704 * won't be used with current tid. If we fetch tid first, object and
2705 * page could be one associated with next tid and our alloc/free
2706 * request will be failed. In this case, we will retry. So, no problem.
2707 */
2708 barrier();
2709
2710 /*
2711 * The transaction ids are globally unique per cpu and per operation on
2712 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2713 * occurs on the right processor and that there was no operation on the
2714 * linked list in between.
2715 */
2716
2717 object = c->freelist;
2718 page = c->page;
2719 if (unlikely(!object || !node_match(page, node))) {
2720 object = __slab_alloc(s, gfpflags, node, addr, c);
2721 stat(s, ALLOC_SLOWPATH);
2722 } else {
2723 void *next_object = get_freepointer_safe(s, object);
2724
2725 /*
2726 * The cmpxchg will only match if there was no additional
2727 * operation and if we are on the right processor.
2728 *
2729 * The cmpxchg does the following atomically (without lock
2730 * semantics!)
2731 * 1. Relocate first pointer to the current per cpu area.
2732 * 2. Verify that tid and freelist have not been changed
2733 * 3. If they were not changed replace tid and freelist
2734 *
2735 * Since this is without lock semantics the protection is only
2736 * against code executing on this cpu *not* from access by
2737 * other cpus.
2738 */
2739 if (unlikely(!this_cpu_cmpxchg_double(
2740 s->cpu_slab->freelist, s->cpu_slab->tid,
2741 object, tid,
2742 next_object, next_tid(tid)))) {
2743
2744 note_cmpxchg_failure("slab_alloc", s, tid);
2745 goto redo;
2746 }
2747 prefetch_freepointer(s, next_object);
2748 stat(s, ALLOC_FASTPATH);
2749 }
2750
2751 maybe_wipe_obj_freeptr(s, object);
2752
2753 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2754 memset(object, 0, s->object_size);
2755
2756 slab_post_alloc_hook(s, gfpflags, 1, &object);
2757
2758 return object;
2759 }
2760
2761 static __always_inline void *slab_alloc(struct kmem_cache *s,
2762 gfp_t gfpflags, unsigned long addr)
2763 {
2764 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2765 }
2766
2767 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2768 {
2769 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2770
2771 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2772 s->size, gfpflags);
2773
2774 return ret;
2775 }
2776 EXPORT_SYMBOL(kmem_cache_alloc);
2777
2778 #ifdef CONFIG_TRACING
2779 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2780 {
2781 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2782 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2783 ret = kasan_kmalloc(s, ret, size, gfpflags);
2784 return ret;
2785 }
2786 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2787 #endif
2788
2789 #ifdef CONFIG_NUMA
2790 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2791 {
2792 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2793
2794 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2795 s->object_size, s->size, gfpflags, node);
2796
2797 return ret;
2798 }
2799 EXPORT_SYMBOL(kmem_cache_alloc_node);
2800
2801 #ifdef CONFIG_TRACING
2802 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2803 gfp_t gfpflags,
2804 int node, size_t size)
2805 {
2806 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2807
2808 trace_kmalloc_node(_RET_IP_, ret,
2809 size, s->size, gfpflags, node);
2810
2811 ret = kasan_kmalloc(s, ret, size, gfpflags);
2812 return ret;
2813 }
2814 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2815 #endif
2816 #endif /* CONFIG_NUMA */
2817
2818 /*
2819 * Slow path handling. This may still be called frequently since objects
2820 * have a longer lifetime than the cpu slabs in most processing loads.
2821 *
2822 * So we still attempt to reduce cache line usage. Just take the slab
2823 * lock and free the item. If there is no additional partial page
2824 * handling required then we can return immediately.
2825 */
2826 static void __slab_free(struct kmem_cache *s, struct page *page,
2827 void *head, void *tail, int cnt,
2828 unsigned long addr)
2829
2830 {
2831 void *prior;
2832 int was_frozen;
2833 struct page new;
2834 unsigned long counters;
2835 struct kmem_cache_node *n = NULL;
2836 unsigned long uninitialized_var(flags);
2837
2838 stat(s, FREE_SLOWPATH);
2839
2840 if (kmem_cache_debug(s) &&
2841 !free_debug_processing(s, page, head, tail, cnt, addr))
2842 return;
2843
2844 do {
2845 if (unlikely(n)) {
2846 spin_unlock_irqrestore(&n->list_lock, flags);
2847 n = NULL;
2848 }
2849 prior = page->freelist;
2850 counters = page->counters;
2851 set_freepointer(s, tail, prior);
2852 new.counters = counters;
2853 was_frozen = new.frozen;
2854 new.inuse -= cnt;
2855 if ((!new.inuse || !prior) && !was_frozen) {
2856
2857 if (kmem_cache_has_cpu_partial(s) && !prior) {
2858
2859 /*
2860 * Slab was on no list before and will be
2861 * partially empty
2862 * We can defer the list move and instead
2863 * freeze it.
2864 */
2865 new.frozen = 1;
2866
2867 } else { /* Needs to be taken off a list */
2868
2869 n = get_node(s, page_to_nid(page));
2870 /*
2871 * Speculatively acquire the list_lock.
2872 * If the cmpxchg does not succeed then we may
2873 * drop the list_lock without any processing.
2874 *
2875 * Otherwise the list_lock will synchronize with
2876 * other processors updating the list of slabs.
2877 */
2878 spin_lock_irqsave(&n->list_lock, flags);
2879
2880 }
2881 }
2882
2883 } while (!cmpxchg_double_slab(s, page,
2884 prior, counters,
2885 head, new.counters,
2886 "__slab_free"));
2887
2888 if (likely(!n)) {
2889
2890 /*
2891 * If we just froze the page then put it onto the
2892 * per cpu partial list.
2893 */
2894 if (new.frozen && !was_frozen) {
2895 put_cpu_partial(s, page, 1);
2896 stat(s, CPU_PARTIAL_FREE);
2897 }
2898 /*
2899 * The list lock was not taken therefore no list
2900 * activity can be necessary.
2901 */
2902 if (was_frozen)
2903 stat(s, FREE_FROZEN);
2904 return;
2905 }
2906
2907 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2908 goto slab_empty;
2909
2910 /*
2911 * Objects left in the slab. If it was not on the partial list before
2912 * then add it.
2913 */
2914 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2915 remove_full(s, n, page);
2916 add_partial(n, page, DEACTIVATE_TO_TAIL);
2917 stat(s, FREE_ADD_PARTIAL);
2918 }
2919 spin_unlock_irqrestore(&n->list_lock, flags);
2920 return;
2921
2922 slab_empty:
2923 if (prior) {
2924 /*
2925 * Slab on the partial list.
2926 */
2927 remove_partial(n, page);
2928 stat(s, FREE_REMOVE_PARTIAL);
2929 } else {
2930 /* Slab must be on the full list */
2931 remove_full(s, n, page);
2932 }
2933
2934 spin_unlock_irqrestore(&n->list_lock, flags);
2935 stat(s, FREE_SLAB);
2936 discard_slab(s, page);
2937 }
2938
2939 /*
2940 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2941 * can perform fastpath freeing without additional function calls.
2942 *
2943 * The fastpath is only possible if we are freeing to the current cpu slab
2944 * of this processor. This typically the case if we have just allocated
2945 * the item before.
2946 *
2947 * If fastpath is not possible then fall back to __slab_free where we deal
2948 * with all sorts of special processing.
2949 *
2950 * Bulk free of a freelist with several objects (all pointing to the
2951 * same page) possible by specifying head and tail ptr, plus objects
2952 * count (cnt). Bulk free indicated by tail pointer being set.
2953 */
2954 static __always_inline void do_slab_free(struct kmem_cache *s,
2955 struct page *page, void *head, void *tail,
2956 int cnt, unsigned long addr)
2957 {
2958 void *tail_obj = tail ? : head;
2959 struct kmem_cache_cpu *c;
2960 unsigned long tid;
2961 redo:
2962 /*
2963 * Determine the currently cpus per cpu slab.
2964 * The cpu may change afterward. However that does not matter since
2965 * data is retrieved via this pointer. If we are on the same cpu
2966 * during the cmpxchg then the free will succeed.
2967 */
2968 do {
2969 tid = this_cpu_read(s->cpu_slab->tid);
2970 c = raw_cpu_ptr(s->cpu_slab);
2971 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2972 unlikely(tid != READ_ONCE(c->tid)));
2973
2974 /* Same with comment on barrier() in slab_alloc_node() */
2975 barrier();
2976
2977 if (likely(page == c->page)) {
2978 set_freepointer(s, tail_obj, c->freelist);
2979
2980 if (unlikely(!this_cpu_cmpxchg_double(
2981 s->cpu_slab->freelist, s->cpu_slab->tid,
2982 c->freelist, tid,
2983 head, next_tid(tid)))) {
2984
2985 note_cmpxchg_failure("slab_free", s, tid);
2986 goto redo;
2987 }
2988 stat(s, FREE_FASTPATH);
2989 } else
2990 __slab_free(s, page, head, tail_obj, cnt, addr);
2991
2992 }
2993
2994 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2995 void *head, void *tail, int cnt,
2996 unsigned long addr)
2997 {
2998 /*
2999 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3000 * to remove objects, whose reuse must be delayed.
3001 */
3002 if (slab_free_freelist_hook(s, &head, &tail))
3003 do_slab_free(s, page, head, tail, cnt, addr);
3004 }
3005
3006 #ifdef CONFIG_KASAN_GENERIC
3007 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3008 {
3009 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3010 }
3011 #endif
3012
3013 void kmem_cache_free(struct kmem_cache *s, void *x)
3014 {
3015 s = cache_from_obj(s, x);
3016 if (!s)
3017 return;
3018 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3019 trace_kmem_cache_free(_RET_IP_, x);
3020 }
3021 EXPORT_SYMBOL(kmem_cache_free);
3022
3023 struct detached_freelist {
3024 struct page *page;
3025 void *tail;
3026 void *freelist;
3027 int cnt;
3028 struct kmem_cache *s;
3029 };
3030
3031 /*
3032 * This function progressively scans the array with free objects (with
3033 * a limited look ahead) and extract objects belonging to the same
3034 * page. It builds a detached freelist directly within the given
3035 * page/objects. This can happen without any need for
3036 * synchronization, because the objects are owned by running process.
3037 * The freelist is build up as a single linked list in the objects.
3038 * The idea is, that this detached freelist can then be bulk
3039 * transferred to the real freelist(s), but only requiring a single
3040 * synchronization primitive. Look ahead in the array is limited due
3041 * to performance reasons.
3042 */
3043 static inline
3044 int build_detached_freelist(struct kmem_cache *s, size_t size,
3045 void **p, struct detached_freelist *df)
3046 {
3047 size_t first_skipped_index = 0;
3048 int lookahead = 3;
3049 void *object;
3050 struct page *page;
3051
3052 /* Always re-init detached_freelist */
3053 df->page = NULL;
3054
3055 do {
3056 object = p[--size];
3057 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3058 } while (!object && size);
3059
3060 if (!object)
3061 return 0;
3062
3063 page = virt_to_head_page(object);
3064 if (!s) {
3065 /* Handle kalloc'ed objects */
3066 if (unlikely(!PageSlab(page))) {
3067 BUG_ON(!PageCompound(page));
3068 kfree_hook(object);
3069 __free_pages(page, compound_order(page));
3070 p[size] = NULL; /* mark object processed */
3071 return size;
3072 }
3073 /* Derive kmem_cache from object */
3074 df->s = page->slab_cache;
3075 } else {
3076 df->s = cache_from_obj(s, object); /* Support for memcg */
3077 }
3078
3079 /* Start new detached freelist */
3080 df->page = page;
3081 set_freepointer(df->s, object, NULL);
3082 df->tail = object;
3083 df->freelist = object;
3084 p[size] = NULL; /* mark object processed */
3085 df->cnt = 1;
3086
3087 while (size) {
3088 object = p[--size];
3089 if (!object)
3090 continue; /* Skip processed objects */
3091
3092 /* df->page is always set at this point */
3093 if (df->page == virt_to_head_page(object)) {
3094 /* Opportunity build freelist */
3095 set_freepointer(df->s, object, df->freelist);
3096 df->freelist = object;
3097 df->cnt++;
3098 p[size] = NULL; /* mark object processed */
3099
3100 continue;
3101 }
3102
3103 /* Limit look ahead search */
3104 if (!--lookahead)
3105 break;
3106
3107 if (!first_skipped_index)
3108 first_skipped_index = size + 1;
3109 }
3110
3111 return first_skipped_index;
3112 }
3113
3114 /* Note that interrupts must be enabled when calling this function. */
3115 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3116 {
3117 if (WARN_ON(!size))
3118 return;
3119
3120 do {
3121 struct detached_freelist df;
3122
3123 size = build_detached_freelist(s, size, p, &df);
3124 if (!df.page)
3125 continue;
3126
3127 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3128 } while (likely(size));
3129 }
3130 EXPORT_SYMBOL(kmem_cache_free_bulk);
3131
3132 /* Note that interrupts must be enabled when calling this function. */
3133 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3134 void **p)
3135 {
3136 struct kmem_cache_cpu *c;
3137 int i;
3138
3139 /* memcg and kmem_cache debug support */
3140 s = slab_pre_alloc_hook(s, flags);
3141 if (unlikely(!s))
3142 return false;
3143 /*
3144 * Drain objects in the per cpu slab, while disabling local
3145 * IRQs, which protects against PREEMPT and interrupts
3146 * handlers invoking normal fastpath.
3147 */
3148 local_irq_disable();
3149 c = this_cpu_ptr(s->cpu_slab);
3150
3151 for (i = 0; i < size; i++) {
3152 void *object = c->freelist;
3153
3154 if (unlikely(!object)) {
3155 /*
3156 * Invoking slow path likely have side-effect
3157 * of re-populating per CPU c->freelist
3158 */
3159 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3160 _RET_IP_, c);
3161 if (unlikely(!p[i]))
3162 goto error;
3163
3164 c = this_cpu_ptr(s->cpu_slab);
3165 maybe_wipe_obj_freeptr(s, p[i]);
3166
3167 continue; /* goto for-loop */
3168 }
3169 c->freelist = get_freepointer(s, object);
3170 p[i] = object;
3171 maybe_wipe_obj_freeptr(s, p[i]);
3172 }
3173 c->tid = next_tid(c->tid);
3174 local_irq_enable();
3175
3176 /* Clear memory outside IRQ disabled fastpath loop */
3177 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3178 int j;
3179
3180 for (j = 0; j < i; j++)
3181 memset(p[j], 0, s->object_size);
3182 }
3183
3184 /* memcg and kmem_cache debug support */
3185 slab_post_alloc_hook(s, flags, size, p);
3186 return i;
3187 error:
3188 local_irq_enable();
3189 slab_post_alloc_hook(s, flags, i, p);
3190 __kmem_cache_free_bulk(s, i, p);
3191 return 0;
3192 }
3193 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3194
3195
3196 /*
3197 * Object placement in a slab is made very easy because we always start at
3198 * offset 0. If we tune the size of the object to the alignment then we can
3199 * get the required alignment by putting one properly sized object after
3200 * another.
3201 *
3202 * Notice that the allocation order determines the sizes of the per cpu
3203 * caches. Each processor has always one slab available for allocations.
3204 * Increasing the allocation order reduces the number of times that slabs
3205 * must be moved on and off the partial lists and is therefore a factor in
3206 * locking overhead.
3207 */
3208
3209 /*
3210 * Mininum / Maximum order of slab pages. This influences locking overhead
3211 * and slab fragmentation. A higher order reduces the number of partial slabs
3212 * and increases the number of allocations possible without having to
3213 * take the list_lock.
3214 */
3215 static unsigned int slub_min_order;
3216 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3217 static unsigned int slub_min_objects;
3218
3219 /*
3220 * Calculate the order of allocation given an slab object size.
3221 *
3222 * The order of allocation has significant impact on performance and other
3223 * system components. Generally order 0 allocations should be preferred since
3224 * order 0 does not cause fragmentation in the page allocator. Larger objects
3225 * be problematic to put into order 0 slabs because there may be too much
3226 * unused space left. We go to a higher order if more than 1/16th of the slab
3227 * would be wasted.
3228 *
3229 * In order to reach satisfactory performance we must ensure that a minimum
3230 * number of objects is in one slab. Otherwise we may generate too much
3231 * activity on the partial lists which requires taking the list_lock. This is
3232 * less a concern for large slabs though which are rarely used.
3233 *
3234 * slub_max_order specifies the order where we begin to stop considering the
3235 * number of objects in a slab as critical. If we reach slub_max_order then
3236 * we try to keep the page order as low as possible. So we accept more waste
3237 * of space in favor of a small page order.
3238 *
3239 * Higher order allocations also allow the placement of more objects in a
3240 * slab and thereby reduce object handling overhead. If the user has
3241 * requested a higher mininum order then we start with that one instead of
3242 * the smallest order which will fit the object.
3243 */
3244 static inline unsigned int slab_order(unsigned int size,
3245 unsigned int min_objects, unsigned int max_order,
3246 unsigned int fract_leftover)
3247 {
3248 unsigned int min_order = slub_min_order;
3249 unsigned int order;
3250
3251 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3252 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3253
3254 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3255 order <= max_order; order++) {
3256
3257 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3258 unsigned int rem;
3259
3260 rem = slab_size % size;
3261
3262 if (rem <= slab_size / fract_leftover)
3263 break;
3264 }
3265
3266 return order;
3267 }
3268
3269 static inline int calculate_order(unsigned int size)
3270 {
3271 unsigned int order;
3272 unsigned int min_objects;
3273 unsigned int max_objects;
3274
3275 /*
3276 * Attempt to find best configuration for a slab. This
3277 * works by first attempting to generate a layout with
3278 * the best configuration and backing off gradually.
3279 *
3280 * First we increase the acceptable waste in a slab. Then
3281 * we reduce the minimum objects required in a slab.
3282 */
3283 min_objects = slub_min_objects;
3284 if (!min_objects)
3285 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3286 max_objects = order_objects(slub_max_order, size);
3287 min_objects = min(min_objects, max_objects);
3288
3289 while (min_objects > 1) {
3290 unsigned int fraction;
3291
3292 fraction = 16;
3293 while (fraction >= 4) {
3294 order = slab_order(size, min_objects,
3295 slub_max_order, fraction);
3296 if (order <= slub_max_order)
3297 return order;
3298 fraction /= 2;
3299 }
3300 min_objects--;
3301 }
3302
3303 /*
3304 * We were unable to place multiple objects in a slab. Now
3305 * lets see if we can place a single object there.
3306 */
3307 order = slab_order(size, 1, slub_max_order, 1);
3308 if (order <= slub_max_order)
3309 return order;
3310
3311 /*
3312 * Doh this slab cannot be placed using slub_max_order.
3313 */
3314 order = slab_order(size, 1, MAX_ORDER, 1);
3315 if (order < MAX_ORDER)
3316 return order;
3317 return -ENOSYS;
3318 }
3319
3320 static void
3321 init_kmem_cache_node(struct kmem_cache_node *n)
3322 {
3323 n->nr_partial = 0;
3324 spin_lock_init(&n->list_lock);
3325 INIT_LIST_HEAD(&n->partial);
3326 #ifdef CONFIG_SLUB_DEBUG
3327 atomic_long_set(&n->nr_slabs, 0);
3328 atomic_long_set(&n->total_objects, 0);
3329 INIT_LIST_HEAD(&n->full);
3330 #endif
3331 }
3332
3333 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3334 {
3335 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3336 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3337
3338 /*
3339 * Must align to double word boundary for the double cmpxchg
3340 * instructions to work; see __pcpu_double_call_return_bool().
3341 */
3342 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3343 2 * sizeof(void *));
3344
3345 if (!s->cpu_slab)
3346 return 0;
3347
3348 init_kmem_cache_cpus(s);
3349
3350 return 1;
3351 }
3352
3353 static struct kmem_cache *kmem_cache_node;
3354
3355 /*
3356 * No kmalloc_node yet so do it by hand. We know that this is the first
3357 * slab on the node for this slabcache. There are no concurrent accesses
3358 * possible.
3359 *
3360 * Note that this function only works on the kmem_cache_node
3361 * when allocating for the kmem_cache_node. This is used for bootstrapping
3362 * memory on a fresh node that has no slab structures yet.
3363 */
3364 static void early_kmem_cache_node_alloc(int node)
3365 {
3366 struct page *page;
3367 struct kmem_cache_node *n;
3368
3369 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3370
3371 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3372
3373 BUG_ON(!page);
3374 if (page_to_nid(page) != node) {
3375 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3376 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3377 }
3378
3379 n = page->freelist;
3380 BUG_ON(!n);
3381 #ifdef CONFIG_SLUB_DEBUG
3382 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3383 init_tracking(kmem_cache_node, n);
3384 #endif
3385 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3386 GFP_KERNEL);
3387 page->freelist = get_freepointer(kmem_cache_node, n);
3388 page->inuse = 1;
3389 page->frozen = 0;
3390 kmem_cache_node->node[node] = n;
3391 init_kmem_cache_node(n);
3392 inc_slabs_node(kmem_cache_node, node, page->objects);
3393
3394 /*
3395 * No locks need to be taken here as it has just been
3396 * initialized and there is no concurrent access.
3397 */
3398 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3399 }
3400
3401 static void free_kmem_cache_nodes(struct kmem_cache *s)
3402 {
3403 int node;
3404 struct kmem_cache_node *n;
3405
3406 for_each_kmem_cache_node(s, node, n) {
3407 s->node[node] = NULL;
3408 kmem_cache_free(kmem_cache_node, n);
3409 }
3410 }
3411
3412 void __kmem_cache_release(struct kmem_cache *s)
3413 {
3414 cache_random_seq_destroy(s);
3415 free_percpu(s->cpu_slab);
3416 free_kmem_cache_nodes(s);
3417 }
3418
3419 static int init_kmem_cache_nodes(struct kmem_cache *s)
3420 {
3421 int node;
3422
3423 for_each_node_state(node, N_NORMAL_MEMORY) {
3424 struct kmem_cache_node *n;
3425
3426 if (slab_state == DOWN) {
3427 early_kmem_cache_node_alloc(node);
3428 continue;
3429 }
3430 n = kmem_cache_alloc_node(kmem_cache_node,
3431 GFP_KERNEL, node);
3432
3433 if (!n) {
3434 free_kmem_cache_nodes(s);
3435 return 0;
3436 }
3437
3438 init_kmem_cache_node(n);
3439 s->node[node] = n;
3440 }
3441 return 1;
3442 }
3443
3444 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3445 {
3446 if (min < MIN_PARTIAL)
3447 min = MIN_PARTIAL;
3448 else if (min > MAX_PARTIAL)
3449 min = MAX_PARTIAL;
3450 s->min_partial = min;
3451 }
3452
3453 static void set_cpu_partial(struct kmem_cache *s)
3454 {
3455 #ifdef CONFIG_SLUB_CPU_PARTIAL
3456 /*
3457 * cpu_partial determined the maximum number of objects kept in the
3458 * per cpu partial lists of a processor.
3459 *
3460 * Per cpu partial lists mainly contain slabs that just have one
3461 * object freed. If they are used for allocation then they can be
3462 * filled up again with minimal effort. The slab will never hit the
3463 * per node partial lists and therefore no locking will be required.
3464 *
3465 * This setting also determines
3466 *
3467 * A) The number of objects from per cpu partial slabs dumped to the
3468 * per node list when we reach the limit.
3469 * B) The number of objects in cpu partial slabs to extract from the
3470 * per node list when we run out of per cpu objects. We only fetch
3471 * 50% to keep some capacity around for frees.
3472 */
3473 if (!kmem_cache_has_cpu_partial(s))
3474 s->cpu_partial = 0;
3475 else if (s->size >= PAGE_SIZE)
3476 s->cpu_partial = 2;
3477 else if (s->size >= 1024)
3478 s->cpu_partial = 6;
3479 else if (s->size >= 256)
3480 s->cpu_partial = 13;
3481 else
3482 s->cpu_partial = 30;
3483 #endif
3484 }
3485
3486 /*
3487 * calculate_sizes() determines the order and the distribution of data within
3488 * a slab object.
3489 */
3490 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3491 {
3492 slab_flags_t flags = s->flags;
3493 unsigned int size = s->object_size;
3494 unsigned int order;
3495
3496 /*
3497 * Round up object size to the next word boundary. We can only
3498 * place the free pointer at word boundaries and this determines
3499 * the possible location of the free pointer.
3500 */
3501 size = ALIGN(size, sizeof(void *));
3502
3503 #ifdef CONFIG_SLUB_DEBUG
3504 /*
3505 * Determine if we can poison the object itself. If the user of
3506 * the slab may touch the object after free or before allocation
3507 * then we should never poison the object itself.
3508 */
3509 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3510 !s->ctor)
3511 s->flags |= __OBJECT_POISON;
3512 else
3513 s->flags &= ~__OBJECT_POISON;
3514
3515
3516 /*
3517 * If we are Redzoning then check if there is some space between the
3518 * end of the object and the free pointer. If not then add an
3519 * additional word to have some bytes to store Redzone information.
3520 */
3521 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3522 size += sizeof(void *);
3523 #endif
3524
3525 /*
3526 * With that we have determined the number of bytes in actual use
3527 * by the object. This is the potential offset to the free pointer.
3528 */
3529 s->inuse = size;
3530
3531 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3532 s->ctor)) {
3533 /*
3534 * Relocate free pointer after the object if it is not
3535 * permitted to overwrite the first word of the object on
3536 * kmem_cache_free.
3537 *
3538 * This is the case if we do RCU, have a constructor or
3539 * destructor or are poisoning the objects.
3540 */
3541 s->offset = size;
3542 size += sizeof(void *);
3543 }
3544
3545 #ifdef CONFIG_SLUB_DEBUG
3546 if (flags & SLAB_STORE_USER)
3547 /*
3548 * Need to store information about allocs and frees after
3549 * the object.
3550 */
3551 size += 2 * sizeof(struct track);
3552 #endif
3553
3554 kasan_cache_create(s, &size, &s->flags);
3555 #ifdef CONFIG_SLUB_DEBUG
3556 if (flags & SLAB_RED_ZONE) {
3557 /*
3558 * Add some empty padding so that we can catch
3559 * overwrites from earlier objects rather than let
3560 * tracking information or the free pointer be
3561 * corrupted if a user writes before the start
3562 * of the object.
3563 */
3564 size += sizeof(void *);
3565
3566 s->red_left_pad = sizeof(void *);
3567 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3568 size += s->red_left_pad;
3569 }
3570 #endif
3571
3572 /*
3573 * SLUB stores one object immediately after another beginning from
3574 * offset 0. In order to align the objects we have to simply size
3575 * each object to conform to the alignment.
3576 */
3577 size = ALIGN(size, s->align);
3578 s->size = size;
3579 if (forced_order >= 0)
3580 order = forced_order;
3581 else
3582 order = calculate_order(size);
3583
3584 if ((int)order < 0)
3585 return 0;
3586
3587 s->allocflags = 0;
3588 if (order)
3589 s->allocflags |= __GFP_COMP;
3590
3591 if (s->flags & SLAB_CACHE_DMA)
3592 s->allocflags |= GFP_DMA;
3593
3594 if (s->flags & SLAB_CACHE_DMA32)
3595 s->allocflags |= GFP_DMA32;
3596
3597 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3598 s->allocflags |= __GFP_RECLAIMABLE;
3599
3600 /*
3601 * Determine the number of objects per slab
3602 */
3603 s->oo = oo_make(order, size);
3604 s->min = oo_make(get_order(size), size);
3605 if (oo_objects(s->oo) > oo_objects(s->max))
3606 s->max = s->oo;
3607
3608 return !!oo_objects(s->oo);
3609 }
3610
3611 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3612 {
3613 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3614 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3615 s->random = get_random_long();
3616 #endif
3617
3618 if (!calculate_sizes(s, -1))
3619 goto error;
3620 if (disable_higher_order_debug) {
3621 /*
3622 * Disable debugging flags that store metadata if the min slab
3623 * order increased.
3624 */
3625 if (get_order(s->size) > get_order(s->object_size)) {
3626 s->flags &= ~DEBUG_METADATA_FLAGS;
3627 s->offset = 0;
3628 if (!calculate_sizes(s, -1))
3629 goto error;
3630 }
3631 }
3632
3633 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3634 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3635 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3636 /* Enable fast mode */
3637 s->flags |= __CMPXCHG_DOUBLE;
3638 #endif
3639
3640 /*
3641 * The larger the object size is, the more pages we want on the partial
3642 * list to avoid pounding the page allocator excessively.
3643 */
3644 set_min_partial(s, ilog2(s->size) / 2);
3645
3646 set_cpu_partial(s);
3647
3648 #ifdef CONFIG_NUMA
3649 s->remote_node_defrag_ratio = 1000;
3650 #endif
3651
3652 /* Initialize the pre-computed randomized freelist if slab is up */
3653 if (slab_state >= UP) {
3654 if (init_cache_random_seq(s))
3655 goto error;
3656 }
3657
3658 if (!init_kmem_cache_nodes(s))
3659 goto error;
3660
3661 if (alloc_kmem_cache_cpus(s))
3662 return 0;
3663
3664 free_kmem_cache_nodes(s);
3665 error:
3666 return -EINVAL;
3667 }
3668
3669 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3670 const char *text)
3671 {
3672 #ifdef CONFIG_SLUB_DEBUG
3673 void *addr = page_address(page);
3674 void *p;
3675 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3676 if (!map)
3677 return;
3678 slab_err(s, page, text, s->name);
3679 slab_lock(page);
3680
3681 get_map(s, page, map);
3682 for_each_object(p, s, addr, page->objects) {
3683
3684 if (!test_bit(slab_index(p, s, addr), map)) {
3685 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3686 print_tracking(s, p);
3687 }
3688 }
3689 slab_unlock(page);
3690 bitmap_free(map);
3691 #endif
3692 }
3693
3694 /*
3695 * Attempt to free all partial slabs on a node.
3696 * This is called from __kmem_cache_shutdown(). We must take list_lock
3697 * because sysfs file might still access partial list after the shutdowning.
3698 */
3699 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3700 {
3701 LIST_HEAD(discard);
3702 struct page *page, *h;
3703
3704 BUG_ON(irqs_disabled());
3705 spin_lock_irq(&n->list_lock);
3706 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3707 if (!page->inuse) {
3708 remove_partial(n, page);
3709 list_add(&page->slab_list, &discard);
3710 } else {
3711 list_slab_objects(s, page,
3712 "Objects remaining in %s on __kmem_cache_shutdown()");
3713 }
3714 }
3715 spin_unlock_irq(&n->list_lock);
3716
3717 list_for_each_entry_safe(page, h, &discard, slab_list)
3718 discard_slab(s, page);
3719 }
3720
3721 bool __kmem_cache_empty(struct kmem_cache *s)
3722 {
3723 int node;
3724 struct kmem_cache_node *n;
3725
3726 for_each_kmem_cache_node(s, node, n)
3727 if (n->nr_partial || slabs_node(s, node))
3728 return false;
3729 return true;
3730 }
3731
3732 /*
3733 * Release all resources used by a slab cache.
3734 */
3735 int __kmem_cache_shutdown(struct kmem_cache *s)
3736 {
3737 int node;
3738 struct kmem_cache_node *n;
3739
3740 flush_all(s);
3741 /* Attempt to free all objects */
3742 for_each_kmem_cache_node(s, node, n) {
3743 free_partial(s, n);
3744 if (n->nr_partial || slabs_node(s, node))
3745 return 1;
3746 }
3747 sysfs_slab_remove(s);
3748 return 0;
3749 }
3750
3751 /********************************************************************
3752 * Kmalloc subsystem
3753 *******************************************************************/
3754
3755 static int __init setup_slub_min_order(char *str)
3756 {
3757 get_option(&str, (int *)&slub_min_order);
3758
3759 return 1;
3760 }
3761
3762 __setup("slub_min_order=", setup_slub_min_order);
3763
3764 static int __init setup_slub_max_order(char *str)
3765 {
3766 get_option(&str, (int *)&slub_max_order);
3767 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3768
3769 return 1;
3770 }
3771
3772 __setup("slub_max_order=", setup_slub_max_order);
3773
3774 static int __init setup_slub_min_objects(char *str)
3775 {
3776 get_option(&str, (int *)&slub_min_objects);
3777
3778 return 1;
3779 }
3780
3781 __setup("slub_min_objects=", setup_slub_min_objects);
3782
3783 void *__kmalloc(size_t size, gfp_t flags)
3784 {
3785 struct kmem_cache *s;
3786 void *ret;
3787
3788 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3789 return kmalloc_large(size, flags);
3790
3791 s = kmalloc_slab(size, flags);
3792
3793 if (unlikely(ZERO_OR_NULL_PTR(s)))
3794 return s;
3795
3796 ret = slab_alloc(s, flags, _RET_IP_);
3797
3798 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3799
3800 ret = kasan_kmalloc(s, ret, size, flags);
3801
3802 return ret;
3803 }
3804 EXPORT_SYMBOL(__kmalloc);
3805
3806 #ifdef CONFIG_NUMA
3807 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3808 {
3809 struct page *page;
3810 void *ptr = NULL;
3811
3812 flags |= __GFP_COMP;
3813 page = alloc_pages_node(node, flags, get_order(size));
3814 if (page)
3815 ptr = page_address(page);
3816
3817 return kmalloc_large_node_hook(ptr, size, flags);
3818 }
3819
3820 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3821 {
3822 struct kmem_cache *s;
3823 void *ret;
3824
3825 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3826 ret = kmalloc_large_node(size, flags, node);
3827
3828 trace_kmalloc_node(_RET_IP_, ret,
3829 size, PAGE_SIZE << get_order(size),
3830 flags, node);
3831
3832 return ret;
3833 }
3834
3835 s = kmalloc_slab(size, flags);
3836
3837 if (unlikely(ZERO_OR_NULL_PTR(s)))
3838 return s;
3839
3840 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3841
3842 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3843
3844 ret = kasan_kmalloc(s, ret, size, flags);
3845
3846 return ret;
3847 }
3848 EXPORT_SYMBOL(__kmalloc_node);
3849 #endif /* CONFIG_NUMA */
3850
3851 #ifdef CONFIG_HARDENED_USERCOPY
3852 /*
3853 * Rejects incorrectly sized objects and objects that are to be copied
3854 * to/from userspace but do not fall entirely within the containing slab
3855 * cache's usercopy region.
3856 *
3857 * Returns NULL if check passes, otherwise const char * to name of cache
3858 * to indicate an error.
3859 */
3860 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3861 bool to_user)
3862 {
3863 struct kmem_cache *s;
3864 unsigned int offset;
3865 size_t object_size;
3866
3867 ptr = kasan_reset_tag(ptr);
3868
3869 /* Find object and usable object size. */
3870 s = page->slab_cache;
3871
3872 /* Reject impossible pointers. */
3873 if (ptr < page_address(page))
3874 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3875 to_user, 0, n);
3876
3877 /* Find offset within object. */
3878 offset = (ptr - page_address(page)) % s->size;
3879
3880 /* Adjust for redzone and reject if within the redzone. */
3881 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3882 if (offset < s->red_left_pad)
3883 usercopy_abort("SLUB object in left red zone",
3884 s->name, to_user, offset, n);
3885 offset -= s->red_left_pad;
3886 }
3887
3888 /* Allow address range falling entirely within usercopy region. */
3889 if (offset >= s->useroffset &&
3890 offset - s->useroffset <= s->usersize &&
3891 n <= s->useroffset - offset + s->usersize)
3892 return;
3893
3894 /*
3895 * If the copy is still within the allocated object, produce
3896 * a warning instead of rejecting the copy. This is intended
3897 * to be a temporary method to find any missing usercopy
3898 * whitelists.
3899 */
3900 object_size = slab_ksize(s);
3901 if (usercopy_fallback &&
3902 offset <= object_size && n <= object_size - offset) {
3903 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3904 return;
3905 }
3906
3907 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3908 }
3909 #endif /* CONFIG_HARDENED_USERCOPY */
3910
3911 size_t __ksize(const void *object)
3912 {
3913 struct page *page;
3914
3915 if (unlikely(object == ZERO_SIZE_PTR))
3916 return 0;
3917
3918 page = virt_to_head_page(object);
3919
3920 if (unlikely(!PageSlab(page))) {
3921 WARN_ON(!PageCompound(page));
3922 return PAGE_SIZE << compound_order(page);
3923 }
3924
3925 return slab_ksize(page->slab_cache);
3926 }
3927 EXPORT_SYMBOL(__ksize);
3928
3929 void kfree(const void *x)
3930 {
3931 struct page *page;
3932 void *object = (void *)x;
3933
3934 trace_kfree(_RET_IP_, x);
3935
3936 if (unlikely(ZERO_OR_NULL_PTR(x)))
3937 return;
3938
3939 page = virt_to_head_page(x);
3940 if (unlikely(!PageSlab(page))) {
3941 BUG_ON(!PageCompound(page));
3942 kfree_hook(object);
3943 __free_pages(page, compound_order(page));
3944 return;
3945 }
3946 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3947 }
3948 EXPORT_SYMBOL(kfree);
3949
3950 #define SHRINK_PROMOTE_MAX 32
3951
3952 /*
3953 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3954 * up most to the head of the partial lists. New allocations will then
3955 * fill those up and thus they can be removed from the partial lists.
3956 *
3957 * The slabs with the least items are placed last. This results in them
3958 * being allocated from last increasing the chance that the last objects
3959 * are freed in them.
3960 */
3961 int __kmem_cache_shrink(struct kmem_cache *s)
3962 {
3963 int node;
3964 int i;
3965 struct kmem_cache_node *n;
3966 struct page *page;
3967 struct page *t;
3968 struct list_head discard;
3969 struct list_head promote[SHRINK_PROMOTE_MAX];
3970 unsigned long flags;
3971 int ret = 0;
3972
3973 flush_all(s);
3974 for_each_kmem_cache_node(s, node, n) {
3975 INIT_LIST_HEAD(&discard);
3976 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3977 INIT_LIST_HEAD(promote + i);
3978
3979 spin_lock_irqsave(&n->list_lock, flags);
3980
3981 /*
3982 * Build lists of slabs to discard or promote.
3983 *
3984 * Note that concurrent frees may occur while we hold the
3985 * list_lock. page->inuse here is the upper limit.
3986 */
3987 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3988 int free = page->objects - page->inuse;
3989
3990 /* Do not reread page->inuse */
3991 barrier();
3992
3993 /* We do not keep full slabs on the list */
3994 BUG_ON(free <= 0);
3995
3996 if (free == page->objects) {
3997 list_move(&page->slab_list, &discard);
3998 n->nr_partial--;
3999 } else if (free <= SHRINK_PROMOTE_MAX)
4000 list_move(&page->slab_list, promote + free - 1);
4001 }
4002
4003 /*
4004 * Promote the slabs filled up most to the head of the
4005 * partial list.
4006 */
4007 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4008 list_splice(promote + i, &n->partial);
4009
4010 spin_unlock_irqrestore(&n->list_lock, flags);
4011
4012 /* Release empty slabs */
4013 list_for_each_entry_safe(page, t, &discard, slab_list)
4014 discard_slab(s, page);
4015
4016 if (slabs_node(s, node))
4017 ret = 1;
4018 }
4019
4020 return ret;
4021 }
4022
4023 #ifdef CONFIG_MEMCG
4024 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4025 {
4026 /*
4027 * Called with all the locks held after a sched RCU grace period.
4028 * Even if @s becomes empty after shrinking, we can't know that @s
4029 * doesn't have allocations already in-flight and thus can't
4030 * destroy @s until the associated memcg is released.
4031 *
4032 * However, let's remove the sysfs files for empty caches here.
4033 * Each cache has a lot of interface files which aren't
4034 * particularly useful for empty draining caches; otherwise, we can
4035 * easily end up with millions of unnecessary sysfs files on
4036 * systems which have a lot of memory and transient cgroups.
4037 */
4038 if (!__kmem_cache_shrink(s))
4039 sysfs_slab_remove(s);
4040 }
4041
4042 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4043 {
4044 /*
4045 * Disable empty slabs caching. Used to avoid pinning offline
4046 * memory cgroups by kmem pages that can be freed.
4047 */
4048 slub_set_cpu_partial(s, 0);
4049 s->min_partial = 0;
4050 }
4051 #endif /* CONFIG_MEMCG */
4052
4053 static int slab_mem_going_offline_callback(void *arg)
4054 {
4055 struct kmem_cache *s;
4056
4057 mutex_lock(&slab_mutex);
4058 list_for_each_entry(s, &slab_caches, list)
4059 __kmem_cache_shrink(s);
4060 mutex_unlock(&slab_mutex);
4061
4062 return 0;
4063 }
4064
4065 static void slab_mem_offline_callback(void *arg)
4066 {
4067 struct kmem_cache_node *n;
4068 struct kmem_cache *s;
4069 struct memory_notify *marg = arg;
4070 int offline_node;
4071
4072 offline_node = marg->status_change_nid_normal;
4073
4074 /*
4075 * If the node still has available memory. we need kmem_cache_node
4076 * for it yet.
4077 */
4078 if (offline_node < 0)
4079 return;
4080
4081 mutex_lock(&slab_mutex);
4082 list_for_each_entry(s, &slab_caches, list) {
4083 n = get_node(s, offline_node);
4084 if (n) {
4085 /*
4086 * if n->nr_slabs > 0, slabs still exist on the node
4087 * that is going down. We were unable to free them,
4088 * and offline_pages() function shouldn't call this
4089 * callback. So, we must fail.
4090 */
4091 BUG_ON(slabs_node(s, offline_node));
4092
4093 s->node[offline_node] = NULL;
4094 kmem_cache_free(kmem_cache_node, n);
4095 }
4096 }
4097 mutex_unlock(&slab_mutex);
4098 }
4099
4100 static int slab_mem_going_online_callback(void *arg)
4101 {
4102 struct kmem_cache_node *n;
4103 struct kmem_cache *s;
4104 struct memory_notify *marg = arg;
4105 int nid = marg->status_change_nid_normal;
4106 int ret = 0;
4107
4108 /*
4109 * If the node's memory is already available, then kmem_cache_node is
4110 * already created. Nothing to do.
4111 */
4112 if (nid < 0)
4113 return 0;
4114
4115 /*
4116 * We are bringing a node online. No memory is available yet. We must
4117 * allocate a kmem_cache_node structure in order to bring the node
4118 * online.
4119 */
4120 mutex_lock(&slab_mutex);
4121 list_for_each_entry(s, &slab_caches, list) {
4122 /*
4123 * XXX: kmem_cache_alloc_node will fallback to other nodes
4124 * since memory is not yet available from the node that
4125 * is brought up.
4126 */
4127 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4128 if (!n) {
4129 ret = -ENOMEM;
4130 goto out;
4131 }
4132 init_kmem_cache_node(n);
4133 s->node[nid] = n;
4134 }
4135 out:
4136 mutex_unlock(&slab_mutex);
4137 return ret;
4138 }
4139
4140 static int slab_memory_callback(struct notifier_block *self,
4141 unsigned long action, void *arg)
4142 {
4143 int ret = 0;
4144
4145 switch (action) {
4146 case MEM_GOING_ONLINE:
4147 ret = slab_mem_going_online_callback(arg);
4148 break;
4149 case MEM_GOING_OFFLINE:
4150 ret = slab_mem_going_offline_callback(arg);
4151 break;
4152 case MEM_OFFLINE:
4153 case MEM_CANCEL_ONLINE:
4154 slab_mem_offline_callback(arg);
4155 break;
4156 case MEM_ONLINE:
4157 case MEM_CANCEL_OFFLINE:
4158 break;
4159 }
4160 if (ret)
4161 ret = notifier_from_errno(ret);
4162 else
4163 ret = NOTIFY_OK;
4164 return ret;
4165 }
4166
4167 static struct notifier_block slab_memory_callback_nb = {
4168 .notifier_call = slab_memory_callback,
4169 .priority = SLAB_CALLBACK_PRI,
4170 };
4171
4172 /********************************************************************
4173 * Basic setup of slabs
4174 *******************************************************************/
4175
4176 /*
4177 * Used for early kmem_cache structures that were allocated using
4178 * the page allocator. Allocate them properly then fix up the pointers
4179 * that may be pointing to the wrong kmem_cache structure.
4180 */
4181
4182 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4183 {
4184 int node;
4185 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4186 struct kmem_cache_node *n;
4187
4188 memcpy(s, static_cache, kmem_cache->object_size);
4189
4190 /*
4191 * This runs very early, and only the boot processor is supposed to be
4192 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4193 * IPIs around.
4194 */
4195 __flush_cpu_slab(s, smp_processor_id());
4196 for_each_kmem_cache_node(s, node, n) {
4197 struct page *p;
4198
4199 list_for_each_entry(p, &n->partial, slab_list)
4200 p->slab_cache = s;
4201
4202 #ifdef CONFIG_SLUB_DEBUG
4203 list_for_each_entry(p, &n->full, slab_list)
4204 p->slab_cache = s;
4205 #endif
4206 }
4207 slab_init_memcg_params(s);
4208 list_add(&s->list, &slab_caches);
4209 memcg_link_cache(s, NULL);
4210 return s;
4211 }
4212
4213 void __init kmem_cache_init(void)
4214 {
4215 static __initdata struct kmem_cache boot_kmem_cache,
4216 boot_kmem_cache_node;
4217
4218 if (debug_guardpage_minorder())
4219 slub_max_order = 0;
4220
4221 kmem_cache_node = &boot_kmem_cache_node;
4222 kmem_cache = &boot_kmem_cache;
4223
4224 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4225 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4226
4227 register_hotmemory_notifier(&slab_memory_callback_nb);
4228
4229 /* Able to allocate the per node structures */
4230 slab_state = PARTIAL;
4231
4232 create_boot_cache(kmem_cache, "kmem_cache",
4233 offsetof(struct kmem_cache, node) +
4234 nr_node_ids * sizeof(struct kmem_cache_node *),
4235 SLAB_HWCACHE_ALIGN, 0, 0);
4236
4237 kmem_cache = bootstrap(&boot_kmem_cache);
4238 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4239
4240 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4241 setup_kmalloc_cache_index_table();
4242 create_kmalloc_caches(0);
4243
4244 /* Setup random freelists for each cache */
4245 init_freelist_randomization();
4246
4247 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4248 slub_cpu_dead);
4249
4250 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4251 cache_line_size(),
4252 slub_min_order, slub_max_order, slub_min_objects,
4253 nr_cpu_ids, nr_node_ids);
4254 }
4255
4256 void __init kmem_cache_init_late(void)
4257 {
4258 }
4259
4260 struct kmem_cache *
4261 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4262 slab_flags_t flags, void (*ctor)(void *))
4263 {
4264 struct kmem_cache *s, *c;
4265
4266 s = find_mergeable(size, align, flags, name, ctor);
4267 if (s) {
4268 s->refcount++;
4269
4270 /*
4271 * Adjust the object sizes so that we clear
4272 * the complete object on kzalloc.
4273 */
4274 s->object_size = max(s->object_size, size);
4275 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4276
4277 for_each_memcg_cache(c, s) {
4278 c->object_size = s->object_size;
4279 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4280 }
4281
4282 if (sysfs_slab_alias(s, name)) {
4283 s->refcount--;
4284 s = NULL;
4285 }
4286 }
4287
4288 return s;
4289 }
4290
4291 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4292 {
4293 int err;
4294
4295 err = kmem_cache_open(s, flags);
4296 if (err)
4297 return err;
4298
4299 /* Mutex is not taken during early boot */
4300 if (slab_state <= UP)
4301 return 0;
4302
4303 memcg_propagate_slab_attrs(s);
4304 err = sysfs_slab_add(s);
4305 if (err)
4306 __kmem_cache_release(s);
4307
4308 return err;
4309 }
4310
4311 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4312 {
4313 struct kmem_cache *s;
4314 void *ret;
4315
4316 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4317 return kmalloc_large(size, gfpflags);
4318
4319 s = kmalloc_slab(size, gfpflags);
4320
4321 if (unlikely(ZERO_OR_NULL_PTR(s)))
4322 return s;
4323
4324 ret = slab_alloc(s, gfpflags, caller);
4325
4326 /* Honor the call site pointer we received. */
4327 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4328
4329 return ret;
4330 }
4331
4332 #ifdef CONFIG_NUMA
4333 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4334 int node, unsigned long caller)
4335 {
4336 struct kmem_cache *s;
4337 void *ret;
4338
4339 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4340 ret = kmalloc_large_node(size, gfpflags, node);
4341
4342 trace_kmalloc_node(caller, ret,
4343 size, PAGE_SIZE << get_order(size),
4344 gfpflags, node);
4345
4346 return ret;
4347 }
4348
4349 s = kmalloc_slab(size, gfpflags);
4350
4351 if (unlikely(ZERO_OR_NULL_PTR(s)))
4352 return s;
4353
4354 ret = slab_alloc_node(s, gfpflags, node, caller);
4355
4356 /* Honor the call site pointer we received. */
4357 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4358
4359 return ret;
4360 }
4361 #endif
4362
4363 #ifdef CONFIG_SYSFS
4364 static int count_inuse(struct page *page)
4365 {
4366 return page->inuse;
4367 }
4368
4369 static int count_total(struct page *page)
4370 {
4371 return page->objects;
4372 }
4373 #endif
4374
4375 #ifdef CONFIG_SLUB_DEBUG
4376 static int validate_slab(struct kmem_cache *s, struct page *page,
4377 unsigned long *map)
4378 {
4379 void *p;
4380 void *addr = page_address(page);
4381
4382 if (!check_slab(s, page) ||
4383 !on_freelist(s, page, NULL))
4384 return 0;
4385
4386 /* Now we know that a valid freelist exists */
4387 bitmap_zero(map, page->objects);
4388
4389 get_map(s, page, map);
4390 for_each_object(p, s, addr, page->objects) {
4391 if (test_bit(slab_index(p, s, addr), map))
4392 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4393 return 0;
4394 }
4395
4396 for_each_object(p, s, addr, page->objects)
4397 if (!test_bit(slab_index(p, s, addr), map))
4398 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4399 return 0;
4400 return 1;
4401 }
4402
4403 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4404 unsigned long *map)
4405 {
4406 slab_lock(page);
4407 validate_slab(s, page, map);
4408 slab_unlock(page);
4409 }
4410
4411 static int validate_slab_node(struct kmem_cache *s,
4412 struct kmem_cache_node *n, unsigned long *map)
4413 {
4414 unsigned long count = 0;
4415 struct page *page;
4416 unsigned long flags;
4417
4418 spin_lock_irqsave(&n->list_lock, flags);
4419
4420 list_for_each_entry(page, &n->partial, slab_list) {
4421 validate_slab_slab(s, page, map);
4422 count++;
4423 }
4424 if (count != n->nr_partial)
4425 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4426 s->name, count, n->nr_partial);
4427
4428 if (!(s->flags & SLAB_STORE_USER))
4429 goto out;
4430
4431 list_for_each_entry(page, &n->full, slab_list) {
4432 validate_slab_slab(s, page, map);
4433 count++;
4434 }
4435 if (count != atomic_long_read(&n->nr_slabs))
4436 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4437 s->name, count, atomic_long_read(&n->nr_slabs));
4438
4439 out:
4440 spin_unlock_irqrestore(&n->list_lock, flags);
4441 return count;
4442 }
4443
4444 static long validate_slab_cache(struct kmem_cache *s)
4445 {
4446 int node;
4447 unsigned long count = 0;
4448 struct kmem_cache_node *n;
4449 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4450
4451 if (!map)
4452 return -ENOMEM;
4453
4454 flush_all(s);
4455 for_each_kmem_cache_node(s, node, n)
4456 count += validate_slab_node(s, n, map);
4457 bitmap_free(map);
4458 return count;
4459 }
4460 /*
4461 * Generate lists of code addresses where slabcache objects are allocated
4462 * and freed.
4463 */
4464
4465 struct location {
4466 unsigned long count;
4467 unsigned long addr;
4468 long long sum_time;
4469 long min_time;
4470 long max_time;
4471 long min_pid;
4472 long max_pid;
4473 DECLARE_BITMAP(cpus, NR_CPUS);
4474 nodemask_t nodes;
4475 };
4476
4477 struct loc_track {
4478 unsigned long max;
4479 unsigned long count;
4480 struct location *loc;
4481 };
4482
4483 static void free_loc_track(struct loc_track *t)
4484 {
4485 if (t->max)
4486 free_pages((unsigned long)t->loc,
4487 get_order(sizeof(struct location) * t->max));
4488 }
4489
4490 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4491 {
4492 struct location *l;
4493 int order;
4494
4495 order = get_order(sizeof(struct location) * max);
4496
4497 l = (void *)__get_free_pages(flags, order);
4498 if (!l)
4499 return 0;
4500
4501 if (t->count) {
4502 memcpy(l, t->loc, sizeof(struct location) * t->count);
4503 free_loc_track(t);
4504 }
4505 t->max = max;
4506 t->loc = l;
4507 return 1;
4508 }
4509
4510 static int add_location(struct loc_track *t, struct kmem_cache *s,
4511 const struct track *track)
4512 {
4513 long start, end, pos;
4514 struct location *l;
4515 unsigned long caddr;
4516 unsigned long age = jiffies - track->when;
4517
4518 start = -1;
4519 end = t->count;
4520
4521 for ( ; ; ) {
4522 pos = start + (end - start + 1) / 2;
4523
4524 /*
4525 * There is nothing at "end". If we end up there
4526 * we need to add something to before end.
4527 */
4528 if (pos == end)
4529 break;
4530
4531 caddr = t->loc[pos].addr;
4532 if (track->addr == caddr) {
4533
4534 l = &t->loc[pos];
4535 l->count++;
4536 if (track->when) {
4537 l->sum_time += age;
4538 if (age < l->min_time)
4539 l->min_time = age;
4540 if (age > l->max_time)
4541 l->max_time = age;
4542
4543 if (track->pid < l->min_pid)
4544 l->min_pid = track->pid;
4545 if (track->pid > l->max_pid)
4546 l->max_pid = track->pid;
4547
4548 cpumask_set_cpu(track->cpu,
4549 to_cpumask(l->cpus));
4550 }
4551 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4552 return 1;
4553 }
4554
4555 if (track->addr < caddr)
4556 end = pos;
4557 else
4558 start = pos;
4559 }
4560
4561 /*
4562 * Not found. Insert new tracking element.
4563 */
4564 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4565 return 0;
4566
4567 l = t->loc + pos;
4568 if (pos < t->count)
4569 memmove(l + 1, l,
4570 (t->count - pos) * sizeof(struct location));
4571 t->count++;
4572 l->count = 1;
4573 l->addr = track->addr;
4574 l->sum_time = age;
4575 l->min_time = age;
4576 l->max_time = age;
4577 l->min_pid = track->pid;
4578 l->max_pid = track->pid;
4579 cpumask_clear(to_cpumask(l->cpus));
4580 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4581 nodes_clear(l->nodes);
4582 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4583 return 1;
4584 }
4585
4586 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4587 struct page *page, enum track_item alloc,
4588 unsigned long *map)
4589 {
4590 void *addr = page_address(page);
4591 void *p;
4592
4593 bitmap_zero(map, page->objects);
4594 get_map(s, page, map);
4595
4596 for_each_object(p, s, addr, page->objects)
4597 if (!test_bit(slab_index(p, s, addr), map))
4598 add_location(t, s, get_track(s, p, alloc));
4599 }
4600
4601 static int list_locations(struct kmem_cache *s, char *buf,
4602 enum track_item alloc)
4603 {
4604 int len = 0;
4605 unsigned long i;
4606 struct loc_track t = { 0, 0, NULL };
4607 int node;
4608 struct kmem_cache_node *n;
4609 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4610
4611 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4612 GFP_KERNEL)) {
4613 bitmap_free(map);
4614 return sprintf(buf, "Out of memory\n");
4615 }
4616 /* Push back cpu slabs */
4617 flush_all(s);
4618
4619 for_each_kmem_cache_node(s, node, n) {
4620 unsigned long flags;
4621 struct page *page;
4622
4623 if (!atomic_long_read(&n->nr_slabs))
4624 continue;
4625
4626 spin_lock_irqsave(&n->list_lock, flags);
4627 list_for_each_entry(page, &n->partial, slab_list)
4628 process_slab(&t, s, page, alloc, map);
4629 list_for_each_entry(page, &n->full, slab_list)
4630 process_slab(&t, s, page, alloc, map);
4631 spin_unlock_irqrestore(&n->list_lock, flags);
4632 }
4633
4634 for (i = 0; i < t.count; i++) {
4635 struct location *l = &t.loc[i];
4636
4637 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4638 break;
4639 len += sprintf(buf + len, "%7ld ", l->count);
4640
4641 if (l->addr)
4642 len += sprintf(buf + len, "%pS", (void *)l->addr);
4643 else
4644 len += sprintf(buf + len, "<not-available>");
4645
4646 if (l->sum_time != l->min_time) {
4647 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4648 l->min_time,
4649 (long)div_u64(l->sum_time, l->count),
4650 l->max_time);
4651 } else
4652 len += sprintf(buf + len, " age=%ld",
4653 l->min_time);
4654
4655 if (l->min_pid != l->max_pid)
4656 len += sprintf(buf + len, " pid=%ld-%ld",
4657 l->min_pid, l->max_pid);
4658 else
4659 len += sprintf(buf + len, " pid=%ld",
4660 l->min_pid);
4661
4662 if (num_online_cpus() > 1 &&
4663 !cpumask_empty(to_cpumask(l->cpus)) &&
4664 len < PAGE_SIZE - 60)
4665 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4666 " cpus=%*pbl",
4667 cpumask_pr_args(to_cpumask(l->cpus)));
4668
4669 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4670 len < PAGE_SIZE - 60)
4671 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4672 " nodes=%*pbl",
4673 nodemask_pr_args(&l->nodes));
4674
4675 len += sprintf(buf + len, "\n");
4676 }
4677
4678 free_loc_track(&t);
4679 bitmap_free(map);
4680 if (!t.count)
4681 len += sprintf(buf, "No data\n");
4682 return len;
4683 }
4684 #endif /* CONFIG_SLUB_DEBUG */
4685
4686 #ifdef SLUB_RESILIENCY_TEST
4687 static void __init resiliency_test(void)
4688 {
4689 u8 *p;
4690 int type = KMALLOC_NORMAL;
4691
4692 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4693
4694 pr_err("SLUB resiliency testing\n");
4695 pr_err("-----------------------\n");
4696 pr_err("A. Corruption after allocation\n");
4697
4698 p = kzalloc(16, GFP_KERNEL);
4699 p[16] = 0x12;
4700 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4701 p + 16);
4702
4703 validate_slab_cache(kmalloc_caches[type][4]);
4704
4705 /* Hmmm... The next two are dangerous */
4706 p = kzalloc(32, GFP_KERNEL);
4707 p[32 + sizeof(void *)] = 0x34;
4708 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4709 p);
4710 pr_err("If allocated object is overwritten then not detectable\n\n");
4711
4712 validate_slab_cache(kmalloc_caches[type][5]);
4713 p = kzalloc(64, GFP_KERNEL);
4714 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4715 *p = 0x56;
4716 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4717 p);
4718 pr_err("If allocated object is overwritten then not detectable\n\n");
4719 validate_slab_cache(kmalloc_caches[type][6]);
4720
4721 pr_err("\nB. Corruption after free\n");
4722 p = kzalloc(128, GFP_KERNEL);
4723 kfree(p);
4724 *p = 0x78;
4725 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4726 validate_slab_cache(kmalloc_caches[type][7]);
4727
4728 p = kzalloc(256, GFP_KERNEL);
4729 kfree(p);
4730 p[50] = 0x9a;
4731 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4732 validate_slab_cache(kmalloc_caches[type][8]);
4733
4734 p = kzalloc(512, GFP_KERNEL);
4735 kfree(p);
4736 p[512] = 0xab;
4737 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4738 validate_slab_cache(kmalloc_caches[type][9]);
4739 }
4740 #else
4741 #ifdef CONFIG_SYSFS
4742 static void resiliency_test(void) {};
4743 #endif
4744 #endif /* SLUB_RESILIENCY_TEST */
4745
4746 #ifdef CONFIG_SYSFS
4747 enum slab_stat_type {
4748 SL_ALL, /* All slabs */
4749 SL_PARTIAL, /* Only partially allocated slabs */
4750 SL_CPU, /* Only slabs used for cpu caches */
4751 SL_OBJECTS, /* Determine allocated objects not slabs */
4752 SL_TOTAL /* Determine object capacity not slabs */
4753 };
4754
4755 #define SO_ALL (1 << SL_ALL)
4756 #define SO_PARTIAL (1 << SL_PARTIAL)
4757 #define SO_CPU (1 << SL_CPU)
4758 #define SO_OBJECTS (1 << SL_OBJECTS)
4759 #define SO_TOTAL (1 << SL_TOTAL)
4760
4761 #ifdef CONFIG_MEMCG
4762 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4763
4764 static int __init setup_slub_memcg_sysfs(char *str)
4765 {
4766 int v;
4767
4768 if (get_option(&str, &v) > 0)
4769 memcg_sysfs_enabled = v;
4770
4771 return 1;
4772 }
4773
4774 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4775 #endif
4776
4777 static ssize_t show_slab_objects(struct kmem_cache *s,
4778 char *buf, unsigned long flags)
4779 {
4780 unsigned long total = 0;
4781 int node;
4782 int x;
4783 unsigned long *nodes;
4784
4785 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4786 if (!nodes)
4787 return -ENOMEM;
4788
4789 if (flags & SO_CPU) {
4790 int cpu;
4791
4792 for_each_possible_cpu(cpu) {
4793 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4794 cpu);
4795 int node;
4796 struct page *page;
4797
4798 page = READ_ONCE(c->page);
4799 if (!page)
4800 continue;
4801
4802 node = page_to_nid(page);
4803 if (flags & SO_TOTAL)
4804 x = page->objects;
4805 else if (flags & SO_OBJECTS)
4806 x = page->inuse;
4807 else
4808 x = 1;
4809
4810 total += x;
4811 nodes[node] += x;
4812
4813 page = slub_percpu_partial_read_once(c);
4814 if (page) {
4815 node = page_to_nid(page);
4816 if (flags & SO_TOTAL)
4817 WARN_ON_ONCE(1);
4818 else if (flags & SO_OBJECTS)
4819 WARN_ON_ONCE(1);
4820 else
4821 x = page->pages;
4822 total += x;
4823 nodes[node] += x;
4824 }
4825 }
4826 }
4827
4828 /*
4829 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4830 * already held which will conflict with an existing lock order:
4831 *
4832 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4833 *
4834 * We don't really need mem_hotplug_lock (to hold off
4835 * slab_mem_going_offline_callback) here because slab's memory hot
4836 * unplug code doesn't destroy the kmem_cache->node[] data.
4837 */
4838
4839 #ifdef CONFIG_SLUB_DEBUG
4840 if (flags & SO_ALL) {
4841 struct kmem_cache_node *n;
4842
4843 for_each_kmem_cache_node(s, node, n) {
4844
4845 if (flags & SO_TOTAL)
4846 x = atomic_long_read(&n->total_objects);
4847 else if (flags & SO_OBJECTS)
4848 x = atomic_long_read(&n->total_objects) -
4849 count_partial(n, count_free);
4850 else
4851 x = atomic_long_read(&n->nr_slabs);
4852 total += x;
4853 nodes[node] += x;
4854 }
4855
4856 } else
4857 #endif
4858 if (flags & SO_PARTIAL) {
4859 struct kmem_cache_node *n;
4860
4861 for_each_kmem_cache_node(s, node, n) {
4862 if (flags & SO_TOTAL)
4863 x = count_partial(n, count_total);
4864 else if (flags & SO_OBJECTS)
4865 x = count_partial(n, count_inuse);
4866 else
4867 x = n->nr_partial;
4868 total += x;
4869 nodes[node] += x;
4870 }
4871 }
4872 x = sprintf(buf, "%lu", total);
4873 #ifdef CONFIG_NUMA
4874 for (node = 0; node < nr_node_ids; node++)
4875 if (nodes[node])
4876 x += sprintf(buf + x, " N%d=%lu",
4877 node, nodes[node]);
4878 #endif
4879 kfree(nodes);
4880 return x + sprintf(buf + x, "\n");
4881 }
4882
4883 #ifdef CONFIG_SLUB_DEBUG
4884 static int any_slab_objects(struct kmem_cache *s)
4885 {
4886 int node;
4887 struct kmem_cache_node *n;
4888
4889 for_each_kmem_cache_node(s, node, n)
4890 if (atomic_long_read(&n->total_objects))
4891 return 1;
4892
4893 return 0;
4894 }
4895 #endif
4896
4897 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4898 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4899
4900 struct slab_attribute {
4901 struct attribute attr;
4902 ssize_t (*show)(struct kmem_cache *s, char *buf);
4903 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4904 };
4905
4906 #define SLAB_ATTR_RO(_name) \
4907 static struct slab_attribute _name##_attr = \
4908 __ATTR(_name, 0400, _name##_show, NULL)
4909
4910 #define SLAB_ATTR(_name) \
4911 static struct slab_attribute _name##_attr = \
4912 __ATTR(_name, 0600, _name##_show, _name##_store)
4913
4914 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4915 {
4916 return sprintf(buf, "%u\n", s->size);
4917 }
4918 SLAB_ATTR_RO(slab_size);
4919
4920 static ssize_t align_show(struct kmem_cache *s, char *buf)
4921 {
4922 return sprintf(buf, "%u\n", s->align);
4923 }
4924 SLAB_ATTR_RO(align);
4925
4926 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4927 {
4928 return sprintf(buf, "%u\n", s->object_size);
4929 }
4930 SLAB_ATTR_RO(object_size);
4931
4932 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4933 {
4934 return sprintf(buf, "%u\n", oo_objects(s->oo));
4935 }
4936 SLAB_ATTR_RO(objs_per_slab);
4937
4938 static ssize_t order_store(struct kmem_cache *s,
4939 const char *buf, size_t length)
4940 {
4941 unsigned int order;
4942 int err;
4943
4944 err = kstrtouint(buf, 10, &order);
4945 if (err)
4946 return err;
4947
4948 if (order > slub_max_order || order < slub_min_order)
4949 return -EINVAL;
4950
4951 calculate_sizes(s, order);
4952 return length;
4953 }
4954
4955 static ssize_t order_show(struct kmem_cache *s, char *buf)
4956 {
4957 return sprintf(buf, "%u\n", oo_order(s->oo));
4958 }
4959 SLAB_ATTR(order);
4960
4961 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4962 {
4963 return sprintf(buf, "%lu\n", s->min_partial);
4964 }
4965
4966 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4967 size_t length)
4968 {
4969 unsigned long min;
4970 int err;
4971
4972 err = kstrtoul(buf, 10, &min);
4973 if (err)
4974 return err;
4975
4976 set_min_partial(s, min);
4977 return length;
4978 }
4979 SLAB_ATTR(min_partial);
4980
4981 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4982 {
4983 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4984 }
4985
4986 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4987 size_t length)
4988 {
4989 unsigned int objects;
4990 int err;
4991
4992 err = kstrtouint(buf, 10, &objects);
4993 if (err)
4994 return err;
4995 if (objects && !kmem_cache_has_cpu_partial(s))
4996 return -EINVAL;
4997
4998 slub_set_cpu_partial(s, objects);
4999 flush_all(s);
5000 return length;
5001 }
5002 SLAB_ATTR(cpu_partial);
5003
5004 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5005 {
5006 if (!s->ctor)
5007 return 0;
5008 return sprintf(buf, "%pS\n", s->ctor);
5009 }
5010 SLAB_ATTR_RO(ctor);
5011
5012 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5013 {
5014 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5015 }
5016 SLAB_ATTR_RO(aliases);
5017
5018 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5019 {
5020 return show_slab_objects(s, buf, SO_PARTIAL);
5021 }
5022 SLAB_ATTR_RO(partial);
5023
5024 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5025 {
5026 return show_slab_objects(s, buf, SO_CPU);
5027 }
5028 SLAB_ATTR_RO(cpu_slabs);
5029
5030 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5031 {
5032 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5033 }
5034 SLAB_ATTR_RO(objects);
5035
5036 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5037 {
5038 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5039 }
5040 SLAB_ATTR_RO(objects_partial);
5041
5042 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5043 {
5044 int objects = 0;
5045 int pages = 0;
5046 int cpu;
5047 int len;
5048
5049 for_each_online_cpu(cpu) {
5050 struct page *page;
5051
5052 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5053
5054 if (page) {
5055 pages += page->pages;
5056 objects += page->pobjects;
5057 }
5058 }
5059
5060 len = sprintf(buf, "%d(%d)", objects, pages);
5061
5062 #ifdef CONFIG_SMP
5063 for_each_online_cpu(cpu) {
5064 struct page *page;
5065
5066 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5067
5068 if (page && len < PAGE_SIZE - 20)
5069 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5070 page->pobjects, page->pages);
5071 }
5072 #endif
5073 return len + sprintf(buf + len, "\n");
5074 }
5075 SLAB_ATTR_RO(slabs_cpu_partial);
5076
5077 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5078 {
5079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5080 }
5081
5082 static ssize_t reclaim_account_store(struct kmem_cache *s,
5083 const char *buf, size_t length)
5084 {
5085 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5086 if (buf[0] == '1')
5087 s->flags |= SLAB_RECLAIM_ACCOUNT;
5088 return length;
5089 }
5090 SLAB_ATTR(reclaim_account);
5091
5092 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5093 {
5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5095 }
5096 SLAB_ATTR_RO(hwcache_align);
5097
5098 #ifdef CONFIG_ZONE_DMA
5099 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5100 {
5101 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5102 }
5103 SLAB_ATTR_RO(cache_dma);
5104 #endif
5105
5106 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5107 {
5108 return sprintf(buf, "%u\n", s->usersize);
5109 }
5110 SLAB_ATTR_RO(usersize);
5111
5112 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5113 {
5114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5115 }
5116 SLAB_ATTR_RO(destroy_by_rcu);
5117
5118 #ifdef CONFIG_SLUB_DEBUG
5119 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5120 {
5121 return show_slab_objects(s, buf, SO_ALL);
5122 }
5123 SLAB_ATTR_RO(slabs);
5124
5125 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5126 {
5127 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5128 }
5129 SLAB_ATTR_RO(total_objects);
5130
5131 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5132 {
5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5134 }
5135
5136 static ssize_t sanity_checks_store(struct kmem_cache *s,
5137 const char *buf, size_t length)
5138 {
5139 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5140 if (buf[0] == '1') {
5141 s->flags &= ~__CMPXCHG_DOUBLE;
5142 s->flags |= SLAB_CONSISTENCY_CHECKS;
5143 }
5144 return length;
5145 }
5146 SLAB_ATTR(sanity_checks);
5147
5148 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5149 {
5150 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5151 }
5152
5153 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5154 size_t length)
5155 {
5156 /*
5157 * Tracing a merged cache is going to give confusing results
5158 * as well as cause other issues like converting a mergeable
5159 * cache into an umergeable one.
5160 */
5161 if (s->refcount > 1)
5162 return -EINVAL;
5163
5164 s->flags &= ~SLAB_TRACE;
5165 if (buf[0] == '1') {
5166 s->flags &= ~__CMPXCHG_DOUBLE;
5167 s->flags |= SLAB_TRACE;
5168 }
5169 return length;
5170 }
5171 SLAB_ATTR(trace);
5172
5173 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5174 {
5175 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5176 }
5177
5178 static ssize_t red_zone_store(struct kmem_cache *s,
5179 const char *buf, size_t length)
5180 {
5181 if (any_slab_objects(s))
5182 return -EBUSY;
5183
5184 s->flags &= ~SLAB_RED_ZONE;
5185 if (buf[0] == '1') {
5186 s->flags |= SLAB_RED_ZONE;
5187 }
5188 calculate_sizes(s, -1);
5189 return length;
5190 }
5191 SLAB_ATTR(red_zone);
5192
5193 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5194 {
5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5196 }
5197
5198 static ssize_t poison_store(struct kmem_cache *s,
5199 const char *buf, size_t length)
5200 {
5201 if (any_slab_objects(s))
5202 return -EBUSY;
5203
5204 s->flags &= ~SLAB_POISON;
5205 if (buf[0] == '1') {
5206 s->flags |= SLAB_POISON;
5207 }
5208 calculate_sizes(s, -1);
5209 return length;
5210 }
5211 SLAB_ATTR(poison);
5212
5213 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5214 {
5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5216 }
5217
5218 static ssize_t store_user_store(struct kmem_cache *s,
5219 const char *buf, size_t length)
5220 {
5221 if (any_slab_objects(s))
5222 return -EBUSY;
5223
5224 s->flags &= ~SLAB_STORE_USER;
5225 if (buf[0] == '1') {
5226 s->flags &= ~__CMPXCHG_DOUBLE;
5227 s->flags |= SLAB_STORE_USER;
5228 }
5229 calculate_sizes(s, -1);
5230 return length;
5231 }
5232 SLAB_ATTR(store_user);
5233
5234 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5235 {
5236 return 0;
5237 }
5238
5239 static ssize_t validate_store(struct kmem_cache *s,
5240 const char *buf, size_t length)
5241 {
5242 int ret = -EINVAL;
5243
5244 if (buf[0] == '1') {
5245 ret = validate_slab_cache(s);
5246 if (ret >= 0)
5247 ret = length;
5248 }
5249 return ret;
5250 }
5251 SLAB_ATTR(validate);
5252
5253 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5254 {
5255 if (!(s->flags & SLAB_STORE_USER))
5256 return -ENOSYS;
5257 return list_locations(s, buf, TRACK_ALLOC);
5258 }
5259 SLAB_ATTR_RO(alloc_calls);
5260
5261 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5262 {
5263 if (!(s->flags & SLAB_STORE_USER))
5264 return -ENOSYS;
5265 return list_locations(s, buf, TRACK_FREE);
5266 }
5267 SLAB_ATTR_RO(free_calls);
5268 #endif /* CONFIG_SLUB_DEBUG */
5269
5270 #ifdef CONFIG_FAILSLAB
5271 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5272 {
5273 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5274 }
5275
5276 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5277 size_t length)
5278 {
5279 if (s->refcount > 1)
5280 return -EINVAL;
5281
5282 s->flags &= ~SLAB_FAILSLAB;
5283 if (buf[0] == '1')
5284 s->flags |= SLAB_FAILSLAB;
5285 return length;
5286 }
5287 SLAB_ATTR(failslab);
5288 #endif
5289
5290 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5291 {
5292 return 0;
5293 }
5294
5295 static ssize_t shrink_store(struct kmem_cache *s,
5296 const char *buf, size_t length)
5297 {
5298 if (buf[0] == '1')
5299 kmem_cache_shrink(s);
5300 else
5301 return -EINVAL;
5302 return length;
5303 }
5304 SLAB_ATTR(shrink);
5305
5306 #ifdef CONFIG_NUMA
5307 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5308 {
5309 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5310 }
5311
5312 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5313 const char *buf, size_t length)
5314 {
5315 unsigned int ratio;
5316 int err;
5317
5318 err = kstrtouint(buf, 10, &ratio);
5319 if (err)
5320 return err;
5321 if (ratio > 100)
5322 return -ERANGE;
5323
5324 s->remote_node_defrag_ratio = ratio * 10;
5325
5326 return length;
5327 }
5328 SLAB_ATTR(remote_node_defrag_ratio);
5329 #endif
5330
5331 #ifdef CONFIG_SLUB_STATS
5332 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5333 {
5334 unsigned long sum = 0;
5335 int cpu;
5336 int len;
5337 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5338
5339 if (!data)
5340 return -ENOMEM;
5341
5342 for_each_online_cpu(cpu) {
5343 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5344
5345 data[cpu] = x;
5346 sum += x;
5347 }
5348
5349 len = sprintf(buf, "%lu", sum);
5350
5351 #ifdef CONFIG_SMP
5352 for_each_online_cpu(cpu) {
5353 if (data[cpu] && len < PAGE_SIZE - 20)
5354 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5355 }
5356 #endif
5357 kfree(data);
5358 return len + sprintf(buf + len, "\n");
5359 }
5360
5361 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362 {
5363 int cpu;
5364
5365 for_each_online_cpu(cpu)
5366 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5367 }
5368
5369 #define STAT_ATTR(si, text) \
5370 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5371 { \
5372 return show_stat(s, buf, si); \
5373 } \
5374 static ssize_t text##_store(struct kmem_cache *s, \
5375 const char *buf, size_t length) \
5376 { \
5377 if (buf[0] != '0') \
5378 return -EINVAL; \
5379 clear_stat(s, si); \
5380 return length; \
5381 } \
5382 SLAB_ATTR(text); \
5383
5384 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388 STAT_ATTR(FREE_FROZEN, free_frozen);
5389 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5394 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5395 STAT_ATTR(FREE_SLAB, free_slab);
5396 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5402 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5403 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5404 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5406 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5408 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5410 #endif /* CONFIG_SLUB_STATS */
5411
5412 static struct attribute *slab_attrs[] = {
5413 &slab_size_attr.attr,
5414 &object_size_attr.attr,
5415 &objs_per_slab_attr.attr,
5416 &order_attr.attr,
5417 &min_partial_attr.attr,
5418 &cpu_partial_attr.attr,
5419 &objects_attr.attr,
5420 &objects_partial_attr.attr,
5421 &partial_attr.attr,
5422 &cpu_slabs_attr.attr,
5423 &ctor_attr.attr,
5424 &aliases_attr.attr,
5425 &align_attr.attr,
5426 &hwcache_align_attr.attr,
5427 &reclaim_account_attr.attr,
5428 &destroy_by_rcu_attr.attr,
5429 &shrink_attr.attr,
5430 &slabs_cpu_partial_attr.attr,
5431 #ifdef CONFIG_SLUB_DEBUG
5432 &total_objects_attr.attr,
5433 &slabs_attr.attr,
5434 &sanity_checks_attr.attr,
5435 &trace_attr.attr,
5436 &red_zone_attr.attr,
5437 &poison_attr.attr,
5438 &store_user_attr.attr,
5439 &validate_attr.attr,
5440 &alloc_calls_attr.attr,
5441 &free_calls_attr.attr,
5442 #endif
5443 #ifdef CONFIG_ZONE_DMA
5444 &cache_dma_attr.attr,
5445 #endif
5446 #ifdef CONFIG_NUMA
5447 &remote_node_defrag_ratio_attr.attr,
5448 #endif
5449 #ifdef CONFIG_SLUB_STATS
5450 &alloc_fastpath_attr.attr,
5451 &alloc_slowpath_attr.attr,
5452 &free_fastpath_attr.attr,
5453 &free_slowpath_attr.attr,
5454 &free_frozen_attr.attr,
5455 &free_add_partial_attr.attr,
5456 &free_remove_partial_attr.attr,
5457 &alloc_from_partial_attr.attr,
5458 &alloc_slab_attr.attr,
5459 &alloc_refill_attr.attr,
5460 &alloc_node_mismatch_attr.attr,
5461 &free_slab_attr.attr,
5462 &cpuslab_flush_attr.attr,
5463 &deactivate_full_attr.attr,
5464 &deactivate_empty_attr.attr,
5465 &deactivate_to_head_attr.attr,
5466 &deactivate_to_tail_attr.attr,
5467 &deactivate_remote_frees_attr.attr,
5468 &deactivate_bypass_attr.attr,
5469 &order_fallback_attr.attr,
5470 &cmpxchg_double_fail_attr.attr,
5471 &cmpxchg_double_cpu_fail_attr.attr,
5472 &cpu_partial_alloc_attr.attr,
5473 &cpu_partial_free_attr.attr,
5474 &cpu_partial_node_attr.attr,
5475 &cpu_partial_drain_attr.attr,
5476 #endif
5477 #ifdef CONFIG_FAILSLAB
5478 &failslab_attr.attr,
5479 #endif
5480 &usersize_attr.attr,
5481
5482 NULL
5483 };
5484
5485 static const struct attribute_group slab_attr_group = {
5486 .attrs = slab_attrs,
5487 };
5488
5489 static ssize_t slab_attr_show(struct kobject *kobj,
5490 struct attribute *attr,
5491 char *buf)
5492 {
5493 struct slab_attribute *attribute;
5494 struct kmem_cache *s;
5495 int err;
5496
5497 attribute = to_slab_attr(attr);
5498 s = to_slab(kobj);
5499
5500 if (!attribute->show)
5501 return -EIO;
5502
5503 err = attribute->show(s, buf);
5504
5505 return err;
5506 }
5507
5508 static ssize_t slab_attr_store(struct kobject *kobj,
5509 struct attribute *attr,
5510 const char *buf, size_t len)
5511 {
5512 struct slab_attribute *attribute;
5513 struct kmem_cache *s;
5514 int err;
5515
5516 attribute = to_slab_attr(attr);
5517 s = to_slab(kobj);
5518
5519 if (!attribute->store)
5520 return -EIO;
5521
5522 err = attribute->store(s, buf, len);
5523 #ifdef CONFIG_MEMCG
5524 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5525 struct kmem_cache *c;
5526
5527 mutex_lock(&slab_mutex);
5528 if (s->max_attr_size < len)
5529 s->max_attr_size = len;
5530
5531 /*
5532 * This is a best effort propagation, so this function's return
5533 * value will be determined by the parent cache only. This is
5534 * basically because not all attributes will have a well
5535 * defined semantics for rollbacks - most of the actions will
5536 * have permanent effects.
5537 *
5538 * Returning the error value of any of the children that fail
5539 * is not 100 % defined, in the sense that users seeing the
5540 * error code won't be able to know anything about the state of
5541 * the cache.
5542 *
5543 * Only returning the error code for the parent cache at least
5544 * has well defined semantics. The cache being written to
5545 * directly either failed or succeeded, in which case we loop
5546 * through the descendants with best-effort propagation.
5547 */
5548 for_each_memcg_cache(c, s)
5549 attribute->store(c, buf, len);
5550 mutex_unlock(&slab_mutex);
5551 }
5552 #endif
5553 return err;
5554 }
5555
5556 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5557 {
5558 #ifdef CONFIG_MEMCG
5559 int i;
5560 char *buffer = NULL;
5561 struct kmem_cache *root_cache;
5562
5563 if (is_root_cache(s))
5564 return;
5565
5566 root_cache = s->memcg_params.root_cache;
5567
5568 /*
5569 * This mean this cache had no attribute written. Therefore, no point
5570 * in copying default values around
5571 */
5572 if (!root_cache->max_attr_size)
5573 return;
5574
5575 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5576 char mbuf[64];
5577 char *buf;
5578 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5579 ssize_t len;
5580
5581 if (!attr || !attr->store || !attr->show)
5582 continue;
5583
5584 /*
5585 * It is really bad that we have to allocate here, so we will
5586 * do it only as a fallback. If we actually allocate, though,
5587 * we can just use the allocated buffer until the end.
5588 *
5589 * Most of the slub attributes will tend to be very small in
5590 * size, but sysfs allows buffers up to a page, so they can
5591 * theoretically happen.
5592 */
5593 if (buffer)
5594 buf = buffer;
5595 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5596 buf = mbuf;
5597 else {
5598 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5599 if (WARN_ON(!buffer))
5600 continue;
5601 buf = buffer;
5602 }
5603
5604 len = attr->show(root_cache, buf);
5605 if (len > 0)
5606 attr->store(s, buf, len);
5607 }
5608
5609 if (buffer)
5610 free_page((unsigned long)buffer);
5611 #endif /* CONFIG_MEMCG */
5612 }
5613
5614 static void kmem_cache_release(struct kobject *k)
5615 {
5616 slab_kmem_cache_release(to_slab(k));
5617 }
5618
5619 static const struct sysfs_ops slab_sysfs_ops = {
5620 .show = slab_attr_show,
5621 .store = slab_attr_store,
5622 };
5623
5624 static struct kobj_type slab_ktype = {
5625 .sysfs_ops = &slab_sysfs_ops,
5626 .release = kmem_cache_release,
5627 };
5628
5629 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5630 {
5631 struct kobj_type *ktype = get_ktype(kobj);
5632
5633 if (ktype == &slab_ktype)
5634 return 1;
5635 return 0;
5636 }
5637
5638 static const struct kset_uevent_ops slab_uevent_ops = {
5639 .filter = uevent_filter,
5640 };
5641
5642 static struct kset *slab_kset;
5643
5644 static inline struct kset *cache_kset(struct kmem_cache *s)
5645 {
5646 #ifdef CONFIG_MEMCG
5647 if (!is_root_cache(s))
5648 return s->memcg_params.root_cache->memcg_kset;
5649 #endif
5650 return slab_kset;
5651 }
5652
5653 #define ID_STR_LENGTH 64
5654
5655 /* Create a unique string id for a slab cache:
5656 *
5657 * Format :[flags-]size
5658 */
5659 static char *create_unique_id(struct kmem_cache *s)
5660 {
5661 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5662 char *p = name;
5663
5664 BUG_ON(!name);
5665
5666 *p++ = ':';
5667 /*
5668 * First flags affecting slabcache operations. We will only
5669 * get here for aliasable slabs so we do not need to support
5670 * too many flags. The flags here must cover all flags that
5671 * are matched during merging to guarantee that the id is
5672 * unique.
5673 */
5674 if (s->flags & SLAB_CACHE_DMA)
5675 *p++ = 'd';
5676 if (s->flags & SLAB_CACHE_DMA32)
5677 *p++ = 'D';
5678 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5679 *p++ = 'a';
5680 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5681 *p++ = 'F';
5682 if (s->flags & SLAB_ACCOUNT)
5683 *p++ = 'A';
5684 if (p != name + 1)
5685 *p++ = '-';
5686 p += sprintf(p, "%07u", s->size);
5687
5688 BUG_ON(p > name + ID_STR_LENGTH - 1);
5689 return name;
5690 }
5691
5692 static void sysfs_slab_remove_workfn(struct work_struct *work)
5693 {
5694 struct kmem_cache *s =
5695 container_of(work, struct kmem_cache, kobj_remove_work);
5696
5697 if (!s->kobj.state_in_sysfs)
5698 /*
5699 * For a memcg cache, this may be called during
5700 * deactivation and again on shutdown. Remove only once.
5701 * A cache is never shut down before deactivation is
5702 * complete, so no need to worry about synchronization.
5703 */
5704 goto out;
5705
5706 #ifdef CONFIG_MEMCG
5707 kset_unregister(s->memcg_kset);
5708 #endif
5709 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5710 out:
5711 kobject_put(&s->kobj);
5712 }
5713
5714 static int sysfs_slab_add(struct kmem_cache *s)
5715 {
5716 int err;
5717 const char *name;
5718 struct kset *kset = cache_kset(s);
5719 int unmergeable = slab_unmergeable(s);
5720
5721 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5722
5723 if (!kset) {
5724 kobject_init(&s->kobj, &slab_ktype);
5725 return 0;
5726 }
5727
5728 if (!unmergeable && disable_higher_order_debug &&
5729 (slub_debug & DEBUG_METADATA_FLAGS))
5730 unmergeable = 1;
5731
5732 if (unmergeable) {
5733 /*
5734 * Slabcache can never be merged so we can use the name proper.
5735 * This is typically the case for debug situations. In that
5736 * case we can catch duplicate names easily.
5737 */
5738 sysfs_remove_link(&slab_kset->kobj, s->name);
5739 name = s->name;
5740 } else {
5741 /*
5742 * Create a unique name for the slab as a target
5743 * for the symlinks.
5744 */
5745 name = create_unique_id(s);
5746 }
5747
5748 s->kobj.kset = kset;
5749 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5750 if (err)
5751 goto out;
5752
5753 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5754 if (err)
5755 goto out_del_kobj;
5756
5757 #ifdef CONFIG_MEMCG
5758 if (is_root_cache(s) && memcg_sysfs_enabled) {
5759 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5760 if (!s->memcg_kset) {
5761 err = -ENOMEM;
5762 goto out_del_kobj;
5763 }
5764 }
5765 #endif
5766
5767 kobject_uevent(&s->kobj, KOBJ_ADD);
5768 if (!unmergeable) {
5769 /* Setup first alias */
5770 sysfs_slab_alias(s, s->name);
5771 }
5772 out:
5773 if (!unmergeable)
5774 kfree(name);
5775 return err;
5776 out_del_kobj:
5777 kobject_del(&s->kobj);
5778 goto out;
5779 }
5780
5781 static void sysfs_slab_remove(struct kmem_cache *s)
5782 {
5783 if (slab_state < FULL)
5784 /*
5785 * Sysfs has not been setup yet so no need to remove the
5786 * cache from sysfs.
5787 */
5788 return;
5789
5790 kobject_get(&s->kobj);
5791 schedule_work(&s->kobj_remove_work);
5792 }
5793
5794 void sysfs_slab_unlink(struct kmem_cache *s)
5795 {
5796 if (slab_state >= FULL)
5797 kobject_del(&s->kobj);
5798 }
5799
5800 void sysfs_slab_release(struct kmem_cache *s)
5801 {
5802 if (slab_state >= FULL)
5803 kobject_put(&s->kobj);
5804 }
5805
5806 /*
5807 * Need to buffer aliases during bootup until sysfs becomes
5808 * available lest we lose that information.
5809 */
5810 struct saved_alias {
5811 struct kmem_cache *s;
5812 const char *name;
5813 struct saved_alias *next;
5814 };
5815
5816 static struct saved_alias *alias_list;
5817
5818 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5819 {
5820 struct saved_alias *al;
5821
5822 if (slab_state == FULL) {
5823 /*
5824 * If we have a leftover link then remove it.
5825 */
5826 sysfs_remove_link(&slab_kset->kobj, name);
5827 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5828 }
5829
5830 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5831 if (!al)
5832 return -ENOMEM;
5833
5834 al->s = s;
5835 al->name = name;
5836 al->next = alias_list;
5837 alias_list = al;
5838 return 0;
5839 }
5840
5841 static int __init slab_sysfs_init(void)
5842 {
5843 struct kmem_cache *s;
5844 int err;
5845
5846 mutex_lock(&slab_mutex);
5847
5848 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5849 if (!slab_kset) {
5850 mutex_unlock(&slab_mutex);
5851 pr_err("Cannot register slab subsystem.\n");
5852 return -ENOSYS;
5853 }
5854
5855 slab_state = FULL;
5856
5857 list_for_each_entry(s, &slab_caches, list) {
5858 err = sysfs_slab_add(s);
5859 if (err)
5860 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5861 s->name);
5862 }
5863
5864 while (alias_list) {
5865 struct saved_alias *al = alias_list;
5866
5867 alias_list = alias_list->next;
5868 err = sysfs_slab_alias(al->s, al->name);
5869 if (err)
5870 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5871 al->name);
5872 kfree(al);
5873 }
5874
5875 mutex_unlock(&slab_mutex);
5876 resiliency_test();
5877 return 0;
5878 }
5879
5880 __initcall(slab_sysfs_init);
5881 #endif /* CONFIG_SYSFS */
5882
5883 /*
5884 * The /proc/slabinfo ABI
5885 */
5886 #ifdef CONFIG_SLUB_DEBUG
5887 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5888 {
5889 unsigned long nr_slabs = 0;
5890 unsigned long nr_objs = 0;
5891 unsigned long nr_free = 0;
5892 int node;
5893 struct kmem_cache_node *n;
5894
5895 for_each_kmem_cache_node(s, node, n) {
5896 nr_slabs += node_nr_slabs(n);
5897 nr_objs += node_nr_objs(n);
5898 nr_free += count_partial(n, count_free);
5899 }
5900
5901 sinfo->active_objs = nr_objs - nr_free;
5902 sinfo->num_objs = nr_objs;
5903 sinfo->active_slabs = nr_slabs;
5904 sinfo->num_slabs = nr_slabs;
5905 sinfo->objects_per_slab = oo_objects(s->oo);
5906 sinfo->cache_order = oo_order(s->oo);
5907 }
5908
5909 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5910 {
5911 }
5912
5913 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5914 size_t count, loff_t *ppos)
5915 {
5916 return -EIO;
5917 }
5918 #endif /* CONFIG_SLUB_DEBUG */