]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
KVM: x86/xen: Remove extra unlock in kvm_xen_hvm_set_attr()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 p += s->red_left_pad;
134
135 return p;
136 }
137
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142 #else
143 return false;
144 #endif
145 }
146
147 /*
148 * Issues still to be resolved:
149 *
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
152 * - Variable sizing of the per node arrays
153 */
154
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160
161 /*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
165 #define MIN_PARTIAL 5
166
167 /*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
170 * sort the partial list by the number of objects in use.
171 */
172 #define MAX_PARTIAL 10
173
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_STORE_USER)
176
177 /*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
185 /*
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
189 */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191
192 #define OO_SHIFT 16
193 #define OO_MASK ((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
195
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201
202 /*
203 * Tracking user of a slab.
204 */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 unsigned long addr; /* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210 #endif
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214 };
215
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 /*
252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 return ptr;
265 #endif
266 }
267
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271 {
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274 }
275
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 object = kasan_reset_tag(object);
279 return freelist_dereference(s, object + s->offset);
280 }
281
282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 prefetch(object + s->offset);
285 }
286
287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 unsigned long freepointer_addr;
290 void *p;
291
292 if (!debug_pagealloc_enabled_static())
293 return get_freepointer(s, object);
294
295 freepointer_addr = (unsigned long)object + s->offset;
296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
297 return freelist_ptr(s, p, freepointer_addr);
298 }
299
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307
308 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
317
318 static inline unsigned int order_objects(unsigned int order, unsigned int size)
319 {
320 return ((unsigned int)PAGE_SIZE << order) / size;
321 }
322
323 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
324 unsigned int size)
325 {
326 struct kmem_cache_order_objects x = {
327 (order << OO_SHIFT) + order_objects(order, size)
328 };
329
330 return x;
331 }
332
333 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
334 {
335 return x.x >> OO_SHIFT;
336 }
337
338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
339 {
340 return x.x & OO_MASK;
341 }
342
343 /*
344 * Per slab locking using the pagelock
345 */
346 static __always_inline void slab_lock(struct page *page)
347 {
348 VM_BUG_ON_PAGE(PageTail(page), page);
349 bit_spin_lock(PG_locked, &page->flags);
350 }
351
352 static __always_inline void slab_unlock(struct page *page)
353 {
354 VM_BUG_ON_PAGE(PageTail(page), page);
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363 {
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s->flags & __CMPXCHG_DOUBLE) {
368 if (cmpxchg_double(&page->freelist, &page->counters,
369 freelist_old, counters_old,
370 freelist_new, counters_new))
371 return true;
372 } else
373 #endif
374 {
375 slab_lock(page);
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
378 page->freelist = freelist_new;
379 page->counters = counters_new;
380 slab_unlock(page);
381 return true;
382 }
383 slab_unlock(page);
384 }
385
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
388
389 #ifdef SLUB_DEBUG_CMPXCHG
390 pr_info("%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392
393 return false;
394 }
395
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 if (s->flags & __CMPXCHG_DOUBLE) {
404 if (cmpxchg_double(&page->freelist, &page->counters,
405 freelist_old, counters_old,
406 freelist_new, counters_new))
407 return true;
408 } else
409 #endif
410 {
411 unsigned long flags;
412
413 local_irq_save(flags);
414 slab_lock(page);
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return true;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430 #ifdef SLUB_DEBUG_CMPXCHG
431 pr_info("%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433
434 return false;
435 }
436
437 #ifdef CONFIG_SLUB_DEBUG
438 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
439 static DEFINE_SPINLOCK(object_map_lock);
440
441 /*
442 * Determine a map of object in use on a page.
443 *
444 * Node listlock must be held to guarantee that the page does
445 * not vanish from under us.
446 */
447 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
448 __acquires(&object_map_lock)
449 {
450 void *p;
451 void *addr = page_address(page);
452
453 VM_BUG_ON(!irqs_disabled());
454
455 spin_lock(&object_map_lock);
456
457 bitmap_zero(object_map, page->objects);
458
459 for (p = page->freelist; p; p = get_freepointer(s, p))
460 set_bit(__obj_to_index(s, addr, p), object_map);
461
462 return object_map;
463 }
464
465 static void put_map(unsigned long *map) __releases(&object_map_lock)
466 {
467 VM_BUG_ON(map != object_map);
468 spin_unlock(&object_map_lock);
469 }
470
471 static inline unsigned int size_from_object(struct kmem_cache *s)
472 {
473 if (s->flags & SLAB_RED_ZONE)
474 return s->size - s->red_left_pad;
475
476 return s->size;
477 }
478
479 static inline void *restore_red_left(struct kmem_cache *s, void *p)
480 {
481 if (s->flags & SLAB_RED_ZONE)
482 p -= s->red_left_pad;
483
484 return p;
485 }
486
487 /*
488 * Debug settings:
489 */
490 #if defined(CONFIG_SLUB_DEBUG_ON)
491 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
492 #else
493 static slab_flags_t slub_debug;
494 #endif
495
496 static char *slub_debug_string;
497 static int disable_higher_order_debug;
498
499 /*
500 * slub is about to manipulate internal object metadata. This memory lies
501 * outside the range of the allocated object, so accessing it would normally
502 * be reported by kasan as a bounds error. metadata_access_enable() is used
503 * to tell kasan that these accesses are OK.
504 */
505 static inline void metadata_access_enable(void)
506 {
507 kasan_disable_current();
508 }
509
510 static inline void metadata_access_disable(void)
511 {
512 kasan_enable_current();
513 }
514
515 /*
516 * Object debugging
517 */
518
519 /* Verify that a pointer has an address that is valid within a slab page */
520 static inline int check_valid_pointer(struct kmem_cache *s,
521 struct page *page, void *object)
522 {
523 void *base;
524
525 if (!object)
526 return 1;
527
528 base = page_address(page);
529 object = kasan_reset_tag(object);
530 object = restore_red_left(s, object);
531 if (object < base || object >= base + page->objects * s->size ||
532 (object - base) % s->size) {
533 return 0;
534 }
535
536 return 1;
537 }
538
539 static void print_section(char *level, char *text, u8 *addr,
540 unsigned int length)
541 {
542 metadata_access_enable();
543 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
544 16, 1, addr, length, 1);
545 metadata_access_disable();
546 }
547
548 /*
549 * See comment in calculate_sizes().
550 */
551 static inline bool freeptr_outside_object(struct kmem_cache *s)
552 {
553 return s->offset >= s->inuse;
554 }
555
556 /*
557 * Return offset of the end of info block which is inuse + free pointer if
558 * not overlapping with object.
559 */
560 static inline unsigned int get_info_end(struct kmem_cache *s)
561 {
562 if (freeptr_outside_object(s))
563 return s->inuse + sizeof(void *);
564 else
565 return s->inuse;
566 }
567
568 static struct track *get_track(struct kmem_cache *s, void *object,
569 enum track_item alloc)
570 {
571 struct track *p;
572
573 p = object + get_info_end(s);
574
575 return kasan_reset_tag(p + alloc);
576 }
577
578 static void set_track(struct kmem_cache *s, void *object,
579 enum track_item alloc, unsigned long addr)
580 {
581 struct track *p = get_track(s, object, alloc);
582
583 if (addr) {
584 #ifdef CONFIG_STACKTRACE
585 unsigned int nr_entries;
586
587 metadata_access_enable();
588 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
589 TRACK_ADDRS_COUNT, 3);
590 metadata_access_disable();
591
592 if (nr_entries < TRACK_ADDRS_COUNT)
593 p->addrs[nr_entries] = 0;
594 #endif
595 p->addr = addr;
596 p->cpu = smp_processor_id();
597 p->pid = current->pid;
598 p->when = jiffies;
599 } else {
600 memset(p, 0, sizeof(struct track));
601 }
602 }
603
604 static void init_tracking(struct kmem_cache *s, void *object)
605 {
606 if (!(s->flags & SLAB_STORE_USER))
607 return;
608
609 set_track(s, object, TRACK_FREE, 0UL);
610 set_track(s, object, TRACK_ALLOC, 0UL);
611 }
612
613 static void print_track(const char *s, struct track *t, unsigned long pr_time)
614 {
615 if (!t->addr)
616 return;
617
618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
619 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
620 #ifdef CONFIG_STACKTRACE
621 {
622 int i;
623 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
624 if (t->addrs[i])
625 pr_err("\t%pS\n", (void *)t->addrs[i]);
626 else
627 break;
628 }
629 #endif
630 }
631
632 void print_tracking(struct kmem_cache *s, void *object)
633 {
634 unsigned long pr_time = jiffies;
635 if (!(s->flags & SLAB_STORE_USER))
636 return;
637
638 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
639 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
640 }
641
642 static void print_page_info(struct page *page)
643 {
644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
645 page, page->objects, page->inuse, page->freelist, page->flags);
646
647 }
648
649 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
650 {
651 struct va_format vaf;
652 va_list args;
653
654 va_start(args, fmt);
655 vaf.fmt = fmt;
656 vaf.va = &args;
657 pr_err("=============================================================================\n");
658 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
659 pr_err("-----------------------------------------------------------------------------\n\n");
660
661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
662 va_end(args);
663 }
664
665 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
666 {
667 struct va_format vaf;
668 va_list args;
669
670 va_start(args, fmt);
671 vaf.fmt = fmt;
672 vaf.va = &args;
673 pr_err("FIX %s: %pV\n", s->name, &vaf);
674 va_end(args);
675 }
676
677 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
678 void **freelist, void *nextfree)
679 {
680 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
681 !check_valid_pointer(s, page, nextfree) && freelist) {
682 object_err(s, page, *freelist, "Freechain corrupt");
683 *freelist = NULL;
684 slab_fix(s, "Isolate corrupted freechain");
685 return true;
686 }
687
688 return false;
689 }
690
691 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
692 {
693 unsigned int off; /* Offset of last byte */
694 u8 *addr = page_address(page);
695
696 print_tracking(s, p);
697
698 print_page_info(page);
699
700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 p, p - addr, get_freepointer(s, p));
702
703 if (s->flags & SLAB_RED_ZONE)
704 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
705 s->red_left_pad);
706 else if (p > addr + 16)
707 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
708
709 print_section(KERN_ERR, "Object ", p,
710 min_t(unsigned int, s->object_size, PAGE_SIZE));
711 if (s->flags & SLAB_RED_ZONE)
712 print_section(KERN_ERR, "Redzone ", p + s->object_size,
713 s->inuse - s->object_size);
714
715 off = get_info_end(s);
716
717 if (s->flags & SLAB_STORE_USER)
718 off += 2 * sizeof(struct track);
719
720 off += kasan_metadata_size(s);
721
722 if (off != size_from_object(s))
723 /* Beginning of the filler is the free pointer */
724 print_section(KERN_ERR, "Padding ", p + off,
725 size_from_object(s) - off);
726
727 dump_stack();
728 }
729
730 void object_err(struct kmem_cache *s, struct page *page,
731 u8 *object, char *reason)
732 {
733 slab_bug(s, "%s", reason);
734 print_trailer(s, page, object);
735 }
736
737 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
738 const char *fmt, ...)
739 {
740 va_list args;
741 char buf[100];
742
743 va_start(args, fmt);
744 vsnprintf(buf, sizeof(buf), fmt, args);
745 va_end(args);
746 slab_bug(s, "%s", buf);
747 print_page_info(page);
748 dump_stack();
749 }
750
751 static void init_object(struct kmem_cache *s, void *object, u8 val)
752 {
753 u8 *p = kasan_reset_tag(object);
754
755 if (s->flags & SLAB_RED_ZONE)
756 memset(p - s->red_left_pad, val, s->red_left_pad);
757
758 if (s->flags & __OBJECT_POISON) {
759 memset(p, POISON_FREE, s->object_size - 1);
760 p[s->object_size - 1] = POISON_END;
761 }
762
763 if (s->flags & SLAB_RED_ZONE)
764 memset(p + s->object_size, val, s->inuse - s->object_size);
765 }
766
767 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
768 void *from, void *to)
769 {
770 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
771 memset(from, data, to - from);
772 }
773
774 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
775 u8 *object, char *what,
776 u8 *start, unsigned int value, unsigned int bytes)
777 {
778 u8 *fault;
779 u8 *end;
780 u8 *addr = page_address(page);
781
782 metadata_access_enable();
783 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
784 metadata_access_disable();
785 if (!fault)
786 return 1;
787
788 end = start + bytes;
789 while (end > fault && end[-1] == value)
790 end--;
791
792 slab_bug(s, "%s overwritten", what);
793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 fault, end - 1, fault - addr,
795 fault[0], value);
796 print_trailer(s, page, object);
797
798 restore_bytes(s, what, value, fault, end);
799 return 0;
800 }
801
802 /*
803 * Object layout:
804 *
805 * object address
806 * Bytes of the object to be managed.
807 * If the freepointer may overlay the object then the free
808 * pointer is at the middle of the object.
809 *
810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
811 * 0xa5 (POISON_END)
812 *
813 * object + s->object_size
814 * Padding to reach word boundary. This is also used for Redzoning.
815 * Padding is extended by another word if Redzoning is enabled and
816 * object_size == inuse.
817 *
818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819 * 0xcc (RED_ACTIVE) for objects in use.
820 *
821 * object + s->inuse
822 * Meta data starts here.
823 *
824 * A. Free pointer (if we cannot overwrite object on free)
825 * B. Tracking data for SLAB_STORE_USER
826 * C. Padding to reach required alignment boundary or at mininum
827 * one word if debugging is on to be able to detect writes
828 * before the word boundary.
829 *
830 * Padding is done using 0x5a (POISON_INUSE)
831 *
832 * object + s->size
833 * Nothing is used beyond s->size.
834 *
835 * If slabcaches are merged then the object_size and inuse boundaries are mostly
836 * ignored. And therefore no slab options that rely on these boundaries
837 * may be used with merged slabcaches.
838 */
839
840 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
841 {
842 unsigned long off = get_info_end(s); /* The end of info */
843
844 if (s->flags & SLAB_STORE_USER)
845 /* We also have user information there */
846 off += 2 * sizeof(struct track);
847
848 off += kasan_metadata_size(s);
849
850 if (size_from_object(s) == off)
851 return 1;
852
853 return check_bytes_and_report(s, page, p, "Object padding",
854 p + off, POISON_INUSE, size_from_object(s) - off);
855 }
856
857 /* Check the pad bytes at the end of a slab page */
858 static int slab_pad_check(struct kmem_cache *s, struct page *page)
859 {
860 u8 *start;
861 u8 *fault;
862 u8 *end;
863 u8 *pad;
864 int length;
865 int remainder;
866
867 if (!(s->flags & SLAB_POISON))
868 return 1;
869
870 start = page_address(page);
871 length = page_size(page);
872 end = start + length;
873 remainder = length % s->size;
874 if (!remainder)
875 return 1;
876
877 pad = end - remainder;
878 metadata_access_enable();
879 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
880 metadata_access_disable();
881 if (!fault)
882 return 1;
883 while (end > fault && end[-1] == POISON_INUSE)
884 end--;
885
886 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 fault, end - 1, fault - start);
888 print_section(KERN_ERR, "Padding ", pad, remainder);
889
890 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
891 return 0;
892 }
893
894 static int check_object(struct kmem_cache *s, struct page *page,
895 void *object, u8 val)
896 {
897 u8 *p = object;
898 u8 *endobject = object + s->object_size;
899
900 if (s->flags & SLAB_RED_ZONE) {
901 if (!check_bytes_and_report(s, page, object, "Redzone",
902 object - s->red_left_pad, val, s->red_left_pad))
903 return 0;
904
905 if (!check_bytes_and_report(s, page, object, "Redzone",
906 endobject, val, s->inuse - s->object_size))
907 return 0;
908 } else {
909 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
910 check_bytes_and_report(s, page, p, "Alignment padding",
911 endobject, POISON_INUSE,
912 s->inuse - s->object_size);
913 }
914 }
915
916 if (s->flags & SLAB_POISON) {
917 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
918 (!check_bytes_and_report(s, page, p, "Poison", p,
919 POISON_FREE, s->object_size - 1) ||
920 !check_bytes_and_report(s, page, p, "Poison",
921 p + s->object_size - 1, POISON_END, 1)))
922 return 0;
923 /*
924 * check_pad_bytes cleans up on its own.
925 */
926 check_pad_bytes(s, page, p);
927 }
928
929 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
930 /*
931 * Object and freepointer overlap. Cannot check
932 * freepointer while object is allocated.
933 */
934 return 1;
935
936 /* Check free pointer validity */
937 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
938 object_err(s, page, p, "Freepointer corrupt");
939 /*
940 * No choice but to zap it and thus lose the remainder
941 * of the free objects in this slab. May cause
942 * another error because the object count is now wrong.
943 */
944 set_freepointer(s, p, NULL);
945 return 0;
946 }
947 return 1;
948 }
949
950 static int check_slab(struct kmem_cache *s, struct page *page)
951 {
952 int maxobj;
953
954 VM_BUG_ON(!irqs_disabled());
955
956 if (!PageSlab(page)) {
957 slab_err(s, page, "Not a valid slab page");
958 return 0;
959 }
960
961 maxobj = order_objects(compound_order(page), s->size);
962 if (page->objects > maxobj) {
963 slab_err(s, page, "objects %u > max %u",
964 page->objects, maxobj);
965 return 0;
966 }
967 if (page->inuse > page->objects) {
968 slab_err(s, page, "inuse %u > max %u",
969 page->inuse, page->objects);
970 return 0;
971 }
972 /* Slab_pad_check fixes things up after itself */
973 slab_pad_check(s, page);
974 return 1;
975 }
976
977 /*
978 * Determine if a certain object on a page is on the freelist. Must hold the
979 * slab lock to guarantee that the chains are in a consistent state.
980 */
981 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
982 {
983 int nr = 0;
984 void *fp;
985 void *object = NULL;
986 int max_objects;
987
988 fp = page->freelist;
989 while (fp && nr <= page->objects) {
990 if (fp == search)
991 return 1;
992 if (!check_valid_pointer(s, page, fp)) {
993 if (object) {
994 object_err(s, page, object,
995 "Freechain corrupt");
996 set_freepointer(s, object, NULL);
997 } else {
998 slab_err(s, page, "Freepointer corrupt");
999 page->freelist = NULL;
1000 page->inuse = page->objects;
1001 slab_fix(s, "Freelist cleared");
1002 return 0;
1003 }
1004 break;
1005 }
1006 object = fp;
1007 fp = get_freepointer(s, object);
1008 nr++;
1009 }
1010
1011 max_objects = order_objects(compound_order(page), s->size);
1012 if (max_objects > MAX_OBJS_PER_PAGE)
1013 max_objects = MAX_OBJS_PER_PAGE;
1014
1015 if (page->objects != max_objects) {
1016 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1017 page->objects, max_objects);
1018 page->objects = max_objects;
1019 slab_fix(s, "Number of objects adjusted.");
1020 }
1021 if (page->inuse != page->objects - nr) {
1022 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1023 page->inuse, page->objects - nr);
1024 page->inuse = page->objects - nr;
1025 slab_fix(s, "Object count adjusted.");
1026 }
1027 return search == NULL;
1028 }
1029
1030 static void trace(struct kmem_cache *s, struct page *page, void *object,
1031 int alloc)
1032 {
1033 if (s->flags & SLAB_TRACE) {
1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1035 s->name,
1036 alloc ? "alloc" : "free",
1037 object, page->inuse,
1038 page->freelist);
1039
1040 if (!alloc)
1041 print_section(KERN_INFO, "Object ", (void *)object,
1042 s->object_size);
1043
1044 dump_stack();
1045 }
1046 }
1047
1048 /*
1049 * Tracking of fully allocated slabs for debugging purposes.
1050 */
1051 static void add_full(struct kmem_cache *s,
1052 struct kmem_cache_node *n, struct page *page)
1053 {
1054 if (!(s->flags & SLAB_STORE_USER))
1055 return;
1056
1057 lockdep_assert_held(&n->list_lock);
1058 list_add(&page->slab_list, &n->full);
1059 }
1060
1061 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1062 {
1063 if (!(s->flags & SLAB_STORE_USER))
1064 return;
1065
1066 lockdep_assert_held(&n->list_lock);
1067 list_del(&page->slab_list);
1068 }
1069
1070 /* Tracking of the number of slabs for debugging purposes */
1071 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072 {
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 return atomic_long_read(&n->nr_slabs);
1076 }
1077
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079 {
1080 return atomic_long_read(&n->nr_slabs);
1081 }
1082
1083 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1084 {
1085 struct kmem_cache_node *n = get_node(s, node);
1086
1087 /*
1088 * May be called early in order to allocate a slab for the
1089 * kmem_cache_node structure. Solve the chicken-egg
1090 * dilemma by deferring the increment of the count during
1091 * bootstrap (see early_kmem_cache_node_alloc).
1092 */
1093 if (likely(n)) {
1094 atomic_long_inc(&n->nr_slabs);
1095 atomic_long_add(objects, &n->total_objects);
1096 }
1097 }
1098 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1099 {
1100 struct kmem_cache_node *n = get_node(s, node);
1101
1102 atomic_long_dec(&n->nr_slabs);
1103 atomic_long_sub(objects, &n->total_objects);
1104 }
1105
1106 /* Object debug checks for alloc/free paths */
1107 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1108 void *object)
1109 {
1110 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1111 return;
1112
1113 init_object(s, object, SLUB_RED_INACTIVE);
1114 init_tracking(s, object);
1115 }
1116
1117 static
1118 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1119 {
1120 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1121 return;
1122
1123 metadata_access_enable();
1124 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1125 metadata_access_disable();
1126 }
1127
1128 static inline int alloc_consistency_checks(struct kmem_cache *s,
1129 struct page *page, void *object)
1130 {
1131 if (!check_slab(s, page))
1132 return 0;
1133
1134 if (!check_valid_pointer(s, page, object)) {
1135 object_err(s, page, object, "Freelist Pointer check fails");
1136 return 0;
1137 }
1138
1139 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1140 return 0;
1141
1142 return 1;
1143 }
1144
1145 static noinline int alloc_debug_processing(struct kmem_cache *s,
1146 struct page *page,
1147 void *object, unsigned long addr)
1148 {
1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150 if (!alloc_consistency_checks(s, page, object))
1151 goto bad;
1152 }
1153
1154 /* Success perform special debug activities for allocs */
1155 if (s->flags & SLAB_STORE_USER)
1156 set_track(s, object, TRACK_ALLOC, addr);
1157 trace(s, page, object, 1);
1158 init_object(s, object, SLUB_RED_ACTIVE);
1159 return 1;
1160
1161 bad:
1162 if (PageSlab(page)) {
1163 /*
1164 * If this is a slab page then lets do the best we can
1165 * to avoid issues in the future. Marking all objects
1166 * as used avoids touching the remaining objects.
1167 */
1168 slab_fix(s, "Marking all objects used");
1169 page->inuse = page->objects;
1170 page->freelist = NULL;
1171 }
1172 return 0;
1173 }
1174
1175 static inline int free_consistency_checks(struct kmem_cache *s,
1176 struct page *page, void *object, unsigned long addr)
1177 {
1178 if (!check_valid_pointer(s, page, object)) {
1179 slab_err(s, page, "Invalid object pointer 0x%p", object);
1180 return 0;
1181 }
1182
1183 if (on_freelist(s, page, object)) {
1184 object_err(s, page, object, "Object already free");
1185 return 0;
1186 }
1187
1188 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1189 return 0;
1190
1191 if (unlikely(s != page->slab_cache)) {
1192 if (!PageSlab(page)) {
1193 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1194 object);
1195 } else if (!page->slab_cache) {
1196 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1197 object);
1198 dump_stack();
1199 } else
1200 object_err(s, page, object,
1201 "page slab pointer corrupt.");
1202 return 0;
1203 }
1204 return 1;
1205 }
1206
1207 /* Supports checking bulk free of a constructed freelist */
1208 static noinline int free_debug_processing(
1209 struct kmem_cache *s, struct page *page,
1210 void *head, void *tail, int bulk_cnt,
1211 unsigned long addr)
1212 {
1213 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1214 void *object = head;
1215 int cnt = 0;
1216 unsigned long flags;
1217 int ret = 0;
1218
1219 spin_lock_irqsave(&n->list_lock, flags);
1220 slab_lock(page);
1221
1222 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1223 if (!check_slab(s, page))
1224 goto out;
1225 }
1226
1227 next_object:
1228 cnt++;
1229
1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 if (!free_consistency_checks(s, page, object, addr))
1232 goto out;
1233 }
1234
1235 if (s->flags & SLAB_STORE_USER)
1236 set_track(s, object, TRACK_FREE, addr);
1237 trace(s, page, object, 0);
1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1239 init_object(s, object, SLUB_RED_INACTIVE);
1240
1241 /* Reached end of constructed freelist yet? */
1242 if (object != tail) {
1243 object = get_freepointer(s, object);
1244 goto next_object;
1245 }
1246 ret = 1;
1247
1248 out:
1249 if (cnt != bulk_cnt)
1250 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1251 bulk_cnt, cnt);
1252
1253 slab_unlock(page);
1254 spin_unlock_irqrestore(&n->list_lock, flags);
1255 if (!ret)
1256 slab_fix(s, "Object at 0x%p not freed", object);
1257 return ret;
1258 }
1259
1260 /*
1261 * Parse a block of slub_debug options. Blocks are delimited by ';'
1262 *
1263 * @str: start of block
1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265 * @slabs: return start of list of slabs, or NULL when there's no list
1266 * @init: assume this is initial parsing and not per-kmem-create parsing
1267 *
1268 * returns the start of next block if there's any, or NULL
1269 */
1270 static char *
1271 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1272 {
1273 bool higher_order_disable = false;
1274
1275 /* Skip any completely empty blocks */
1276 while (*str && *str == ';')
1277 str++;
1278
1279 if (*str == ',') {
1280 /*
1281 * No options but restriction on slabs. This means full
1282 * debugging for slabs matching a pattern.
1283 */
1284 *flags = DEBUG_DEFAULT_FLAGS;
1285 goto check_slabs;
1286 }
1287 *flags = 0;
1288
1289 /* Determine which debug features should be switched on */
1290 for (; *str && *str != ',' && *str != ';'; str++) {
1291 switch (tolower(*str)) {
1292 case '-':
1293 *flags = 0;
1294 break;
1295 case 'f':
1296 *flags |= SLAB_CONSISTENCY_CHECKS;
1297 break;
1298 case 'z':
1299 *flags |= SLAB_RED_ZONE;
1300 break;
1301 case 'p':
1302 *flags |= SLAB_POISON;
1303 break;
1304 case 'u':
1305 *flags |= SLAB_STORE_USER;
1306 break;
1307 case 't':
1308 *flags |= SLAB_TRACE;
1309 break;
1310 case 'a':
1311 *flags |= SLAB_FAILSLAB;
1312 break;
1313 case 'o':
1314 /*
1315 * Avoid enabling debugging on caches if its minimum
1316 * order would increase as a result.
1317 */
1318 higher_order_disable = true;
1319 break;
1320 default:
1321 if (init)
1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1323 }
1324 }
1325 check_slabs:
1326 if (*str == ',')
1327 *slabs = ++str;
1328 else
1329 *slabs = NULL;
1330
1331 /* Skip over the slab list */
1332 while (*str && *str != ';')
1333 str++;
1334
1335 /* Skip any completely empty blocks */
1336 while (*str && *str == ';')
1337 str++;
1338
1339 if (init && higher_order_disable)
1340 disable_higher_order_debug = 1;
1341
1342 if (*str)
1343 return str;
1344 else
1345 return NULL;
1346 }
1347
1348 static int __init setup_slub_debug(char *str)
1349 {
1350 slab_flags_t flags;
1351 char *saved_str;
1352 char *slab_list;
1353 bool global_slub_debug_changed = false;
1354 bool slab_list_specified = false;
1355
1356 slub_debug = DEBUG_DEFAULT_FLAGS;
1357 if (*str++ != '=' || !*str)
1358 /*
1359 * No options specified. Switch on full debugging.
1360 */
1361 goto out;
1362
1363 saved_str = str;
1364 while (str) {
1365 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1366
1367 if (!slab_list) {
1368 slub_debug = flags;
1369 global_slub_debug_changed = true;
1370 } else {
1371 slab_list_specified = true;
1372 }
1373 }
1374
1375 /*
1376 * For backwards compatibility, a single list of flags with list of
1377 * slabs means debugging is only enabled for those slabs, so the global
1378 * slub_debug should be 0. We can extended that to multiple lists as
1379 * long as there is no option specifying flags without a slab list.
1380 */
1381 if (slab_list_specified) {
1382 if (!global_slub_debug_changed)
1383 slub_debug = 0;
1384 slub_debug_string = saved_str;
1385 }
1386 out:
1387 if (slub_debug != 0 || slub_debug_string)
1388 static_branch_enable(&slub_debug_enabled);
1389 if ((static_branch_unlikely(&init_on_alloc) ||
1390 static_branch_unlikely(&init_on_free)) &&
1391 (slub_debug & SLAB_POISON))
1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1393 return 1;
1394 }
1395
1396 __setup("slub_debug", setup_slub_debug);
1397
1398 /*
1399 * kmem_cache_flags - apply debugging options to the cache
1400 * @object_size: the size of an object without meta data
1401 * @flags: flags to set
1402 * @name: name of the cache
1403 * @ctor: constructor function
1404 *
1405 * Debug option(s) are applied to @flags. In addition to the debug
1406 * option(s), if a slab name (or multiple) is specified i.e.
1407 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408 * then only the select slabs will receive the debug option(s).
1409 */
1410 slab_flags_t kmem_cache_flags(unsigned int object_size,
1411 slab_flags_t flags, const char *name,
1412 void (*ctor)(void *))
1413 {
1414 char *iter;
1415 size_t len;
1416 char *next_block;
1417 slab_flags_t block_flags;
1418
1419 len = strlen(name);
1420 next_block = slub_debug_string;
1421 /* Go through all blocks of debug options, see if any matches our slab's name */
1422 while (next_block) {
1423 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1424 if (!iter)
1425 continue;
1426 /* Found a block that has a slab list, search it */
1427 while (*iter) {
1428 char *end, *glob;
1429 size_t cmplen;
1430
1431 end = strchrnul(iter, ',');
1432 if (next_block && next_block < end)
1433 end = next_block - 1;
1434
1435 glob = strnchr(iter, end - iter, '*');
1436 if (glob)
1437 cmplen = glob - iter;
1438 else
1439 cmplen = max_t(size_t, len, (end - iter));
1440
1441 if (!strncmp(name, iter, cmplen)) {
1442 flags |= block_flags;
1443 return flags;
1444 }
1445
1446 if (!*end || *end == ';')
1447 break;
1448 iter = end + 1;
1449 }
1450 }
1451
1452 return flags | slub_debug;
1453 }
1454 #else /* !CONFIG_SLUB_DEBUG */
1455 static inline void setup_object_debug(struct kmem_cache *s,
1456 struct page *page, void *object) {}
1457 static inline
1458 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1459
1460 static inline int alloc_debug_processing(struct kmem_cache *s,
1461 struct page *page, void *object, unsigned long addr) { return 0; }
1462
1463 static inline int free_debug_processing(
1464 struct kmem_cache *s, struct page *page,
1465 void *head, void *tail, int bulk_cnt,
1466 unsigned long addr) { return 0; }
1467
1468 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1469 { return 1; }
1470 static inline int check_object(struct kmem_cache *s, struct page *page,
1471 void *object, u8 val) { return 1; }
1472 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1473 struct page *page) {}
1474 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1475 struct page *page) {}
1476 slab_flags_t kmem_cache_flags(unsigned int object_size,
1477 slab_flags_t flags, const char *name,
1478 void (*ctor)(void *))
1479 {
1480 return flags;
1481 }
1482 #define slub_debug 0
1483
1484 #define disable_higher_order_debug 0
1485
1486 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1487 { return 0; }
1488 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1489 { return 0; }
1490 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1491 int objects) {}
1492 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1493 int objects) {}
1494
1495 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1496 void **freelist, void *nextfree)
1497 {
1498 return false;
1499 }
1500 #endif /* CONFIG_SLUB_DEBUG */
1501
1502 /*
1503 * Hooks for other subsystems that check memory allocations. In a typical
1504 * production configuration these hooks all should produce no code at all.
1505 */
1506 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1507 {
1508 ptr = kasan_kmalloc_large(ptr, size, flags);
1509 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1510 kmemleak_alloc(ptr, size, 1, flags);
1511 return ptr;
1512 }
1513
1514 static __always_inline void kfree_hook(void *x)
1515 {
1516 kmemleak_free(x);
1517 kasan_kfree_large(x, _RET_IP_);
1518 }
1519
1520 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1521 {
1522 kmemleak_free_recursive(x, s->flags);
1523
1524 /*
1525 * Trouble is that we may no longer disable interrupts in the fast path
1526 * So in order to make the debug calls that expect irqs to be
1527 * disabled we need to disable interrupts temporarily.
1528 */
1529 #ifdef CONFIG_LOCKDEP
1530 {
1531 unsigned long flags;
1532
1533 local_irq_save(flags);
1534 debug_check_no_locks_freed(x, s->object_size);
1535 local_irq_restore(flags);
1536 }
1537 #endif
1538 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1539 debug_check_no_obj_freed(x, s->object_size);
1540
1541 /* Use KCSAN to help debug racy use-after-free. */
1542 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1543 __kcsan_check_access(x, s->object_size,
1544 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1545
1546 /* KASAN might put x into memory quarantine, delaying its reuse */
1547 return kasan_slab_free(s, x, _RET_IP_);
1548 }
1549
1550 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1551 void **head, void **tail)
1552 {
1553
1554 void *object;
1555 void *next = *head;
1556 void *old_tail = *tail ? *tail : *head;
1557 int rsize;
1558
1559 /* Head and tail of the reconstructed freelist */
1560 *head = NULL;
1561 *tail = NULL;
1562
1563 do {
1564 object = next;
1565 next = get_freepointer(s, object);
1566
1567 if (slab_want_init_on_free(s)) {
1568 /*
1569 * Clear the object and the metadata, but don't touch
1570 * the redzone.
1571 */
1572 memset(kasan_reset_tag(object), 0, s->object_size);
1573 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1574 : 0;
1575 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1576 s->size - s->inuse - rsize);
1577
1578 }
1579 /* If object's reuse doesn't have to be delayed */
1580 if (!slab_free_hook(s, object)) {
1581 /* Move object to the new freelist */
1582 set_freepointer(s, object, *head);
1583 *head = object;
1584 if (!*tail)
1585 *tail = object;
1586 }
1587 } while (object != old_tail);
1588
1589 if (*head == *tail)
1590 *tail = NULL;
1591
1592 return *head != NULL;
1593 }
1594
1595 static void *setup_object(struct kmem_cache *s, struct page *page,
1596 void *object)
1597 {
1598 setup_object_debug(s, page, object);
1599 object = kasan_init_slab_obj(s, object);
1600 if (unlikely(s->ctor)) {
1601 kasan_unpoison_object_data(s, object);
1602 s->ctor(object);
1603 kasan_poison_object_data(s, object);
1604 }
1605 return object;
1606 }
1607
1608 /*
1609 * Slab allocation and freeing
1610 */
1611 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1612 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1613 {
1614 struct page *page;
1615 unsigned int order = oo_order(oo);
1616
1617 if (node == NUMA_NO_NODE)
1618 page = alloc_pages(flags, order);
1619 else
1620 page = __alloc_pages_node(node, flags, order);
1621
1622 return page;
1623 }
1624
1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1626 /* Pre-initialize the random sequence cache */
1627 static int init_cache_random_seq(struct kmem_cache *s)
1628 {
1629 unsigned int count = oo_objects(s->oo);
1630 int err;
1631
1632 /* Bailout if already initialised */
1633 if (s->random_seq)
1634 return 0;
1635
1636 err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 if (err) {
1638 pr_err("SLUB: Unable to initialize free list for %s\n",
1639 s->name);
1640 return err;
1641 }
1642
1643 /* Transform to an offset on the set of pages */
1644 if (s->random_seq) {
1645 unsigned int i;
1646
1647 for (i = 0; i < count; i++)
1648 s->random_seq[i] *= s->size;
1649 }
1650 return 0;
1651 }
1652
1653 /* Initialize each random sequence freelist per cache */
1654 static void __init init_freelist_randomization(void)
1655 {
1656 struct kmem_cache *s;
1657
1658 mutex_lock(&slab_mutex);
1659
1660 list_for_each_entry(s, &slab_caches, list)
1661 init_cache_random_seq(s);
1662
1663 mutex_unlock(&slab_mutex);
1664 }
1665
1666 /* Get the next entry on the pre-computed freelist randomized */
1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 unsigned long *pos, void *start,
1669 unsigned long page_limit,
1670 unsigned long freelist_count)
1671 {
1672 unsigned int idx;
1673
1674 /*
1675 * If the target page allocation failed, the number of objects on the
1676 * page might be smaller than the usual size defined by the cache.
1677 */
1678 do {
1679 idx = s->random_seq[*pos];
1680 *pos += 1;
1681 if (*pos >= freelist_count)
1682 *pos = 0;
1683 } while (unlikely(idx >= page_limit));
1684
1685 return (char *)start + idx;
1686 }
1687
1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690 {
1691 void *start;
1692 void *cur;
1693 void *next;
1694 unsigned long idx, pos, page_limit, freelist_count;
1695
1696 if (page->objects < 2 || !s->random_seq)
1697 return false;
1698
1699 freelist_count = oo_objects(s->oo);
1700 pos = get_random_int() % freelist_count;
1701
1702 page_limit = page->objects * s->size;
1703 start = fixup_red_left(s, page_address(page));
1704
1705 /* First entry is used as the base of the freelist */
1706 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 freelist_count);
1708 cur = setup_object(s, page, cur);
1709 page->freelist = cur;
1710
1711 for (idx = 1; idx < page->objects; idx++) {
1712 next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 freelist_count);
1714 next = setup_object(s, page, next);
1715 set_freepointer(s, cur, next);
1716 cur = next;
1717 }
1718 set_freepointer(s, cur, NULL);
1719
1720 return true;
1721 }
1722 #else
1723 static inline int init_cache_random_seq(struct kmem_cache *s)
1724 {
1725 return 0;
1726 }
1727 static inline void init_freelist_randomization(void) { }
1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729 {
1730 return false;
1731 }
1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733
1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735 {
1736 struct page *page;
1737 struct kmem_cache_order_objects oo = s->oo;
1738 gfp_t alloc_gfp;
1739 void *start, *p, *next;
1740 int idx;
1741 bool shuffle;
1742
1743 flags &= gfp_allowed_mask;
1744
1745 if (gfpflags_allow_blocking(flags))
1746 local_irq_enable();
1747
1748 flags |= s->allocflags;
1749
1750 /*
1751 * Let the initial higher-order allocation fail under memory pressure
1752 * so we fall-back to the minimum order allocation.
1753 */
1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1757
1758 page = alloc_slab_page(s, alloc_gfp, node, oo);
1759 if (unlikely(!page)) {
1760 oo = s->min;
1761 alloc_gfp = flags;
1762 /*
1763 * Allocation may have failed due to fragmentation.
1764 * Try a lower order alloc if possible
1765 */
1766 page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 if (unlikely(!page))
1768 goto out;
1769 stat(s, ORDER_FALLBACK);
1770 }
1771
1772 page->objects = oo_objects(oo);
1773
1774 account_slab_page(page, oo_order(oo), s);
1775
1776 page->slab_cache = s;
1777 __SetPageSlab(page);
1778 if (page_is_pfmemalloc(page))
1779 SetPageSlabPfmemalloc(page);
1780
1781 kasan_poison_slab(page);
1782
1783 start = page_address(page);
1784
1785 setup_page_debug(s, page, start);
1786
1787 shuffle = shuffle_freelist(s, page);
1788
1789 if (!shuffle) {
1790 start = fixup_red_left(s, start);
1791 start = setup_object(s, page, start);
1792 page->freelist = start;
1793 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1794 next = p + s->size;
1795 next = setup_object(s, page, next);
1796 set_freepointer(s, p, next);
1797 p = next;
1798 }
1799 set_freepointer(s, p, NULL);
1800 }
1801
1802 page->inuse = page->objects;
1803 page->frozen = 1;
1804
1805 out:
1806 if (gfpflags_allow_blocking(flags))
1807 local_irq_disable();
1808 if (!page)
1809 return NULL;
1810
1811 inc_slabs_node(s, page_to_nid(page), page->objects);
1812
1813 return page;
1814 }
1815
1816 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1817 {
1818 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1819 flags = kmalloc_fix_flags(flags);
1820
1821 return allocate_slab(s,
1822 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1823 }
1824
1825 static void __free_slab(struct kmem_cache *s, struct page *page)
1826 {
1827 int order = compound_order(page);
1828 int pages = 1 << order;
1829
1830 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1831 void *p;
1832
1833 slab_pad_check(s, page);
1834 for_each_object(p, s, page_address(page),
1835 page->objects)
1836 check_object(s, page, p, SLUB_RED_INACTIVE);
1837 }
1838
1839 __ClearPageSlabPfmemalloc(page);
1840 __ClearPageSlab(page);
1841 /* In union with page->mapping where page allocator expects NULL */
1842 page->slab_cache = NULL;
1843 if (current->reclaim_state)
1844 current->reclaim_state->reclaimed_slab += pages;
1845 unaccount_slab_page(page, order, s);
1846 __free_pages(page, order);
1847 }
1848
1849 static void rcu_free_slab(struct rcu_head *h)
1850 {
1851 struct page *page = container_of(h, struct page, rcu_head);
1852
1853 __free_slab(page->slab_cache, page);
1854 }
1855
1856 static void free_slab(struct kmem_cache *s, struct page *page)
1857 {
1858 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1859 call_rcu(&page->rcu_head, rcu_free_slab);
1860 } else
1861 __free_slab(s, page);
1862 }
1863
1864 static void discard_slab(struct kmem_cache *s, struct page *page)
1865 {
1866 dec_slabs_node(s, page_to_nid(page), page->objects);
1867 free_slab(s, page);
1868 }
1869
1870 /*
1871 * Management of partially allocated slabs.
1872 */
1873 static inline void
1874 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1875 {
1876 n->nr_partial++;
1877 if (tail == DEACTIVATE_TO_TAIL)
1878 list_add_tail(&page->slab_list, &n->partial);
1879 else
1880 list_add(&page->slab_list, &n->partial);
1881 }
1882
1883 static inline void add_partial(struct kmem_cache_node *n,
1884 struct page *page, int tail)
1885 {
1886 lockdep_assert_held(&n->list_lock);
1887 __add_partial(n, page, tail);
1888 }
1889
1890 static inline void remove_partial(struct kmem_cache_node *n,
1891 struct page *page)
1892 {
1893 lockdep_assert_held(&n->list_lock);
1894 list_del(&page->slab_list);
1895 n->nr_partial--;
1896 }
1897
1898 /*
1899 * Remove slab from the partial list, freeze it and
1900 * return the pointer to the freelist.
1901 *
1902 * Returns a list of objects or NULL if it fails.
1903 */
1904 static inline void *acquire_slab(struct kmem_cache *s,
1905 struct kmem_cache_node *n, struct page *page,
1906 int mode, int *objects)
1907 {
1908 void *freelist;
1909 unsigned long counters;
1910 struct page new;
1911
1912 lockdep_assert_held(&n->list_lock);
1913
1914 /*
1915 * Zap the freelist and set the frozen bit.
1916 * The old freelist is the list of objects for the
1917 * per cpu allocation list.
1918 */
1919 freelist = page->freelist;
1920 counters = page->counters;
1921 new.counters = counters;
1922 *objects = new.objects - new.inuse;
1923 if (mode) {
1924 new.inuse = page->objects;
1925 new.freelist = NULL;
1926 } else {
1927 new.freelist = freelist;
1928 }
1929
1930 VM_BUG_ON(new.frozen);
1931 new.frozen = 1;
1932
1933 if (!__cmpxchg_double_slab(s, page,
1934 freelist, counters,
1935 new.freelist, new.counters,
1936 "acquire_slab"))
1937 return NULL;
1938
1939 remove_partial(n, page);
1940 WARN_ON(!freelist);
1941 return freelist;
1942 }
1943
1944 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1945 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1946
1947 /*
1948 * Try to allocate a partial slab from a specific node.
1949 */
1950 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1951 struct kmem_cache_cpu *c, gfp_t flags)
1952 {
1953 struct page *page, *page2;
1954 void *object = NULL;
1955 unsigned int available = 0;
1956 int objects;
1957
1958 /*
1959 * Racy check. If we mistakenly see no partial slabs then we
1960 * just allocate an empty slab. If we mistakenly try to get a
1961 * partial slab and there is none available then get_partial()
1962 * will return NULL.
1963 */
1964 if (!n || !n->nr_partial)
1965 return NULL;
1966
1967 spin_lock(&n->list_lock);
1968 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1969 void *t;
1970
1971 if (!pfmemalloc_match(page, flags))
1972 continue;
1973
1974 t = acquire_slab(s, n, page, object == NULL, &objects);
1975 if (!t)
1976 break;
1977
1978 available += objects;
1979 if (!object) {
1980 c->page = page;
1981 stat(s, ALLOC_FROM_PARTIAL);
1982 object = t;
1983 } else {
1984 put_cpu_partial(s, page, 0);
1985 stat(s, CPU_PARTIAL_NODE);
1986 }
1987 if (!kmem_cache_has_cpu_partial(s)
1988 || available > slub_cpu_partial(s) / 2)
1989 break;
1990
1991 }
1992 spin_unlock(&n->list_lock);
1993 return object;
1994 }
1995
1996 /*
1997 * Get a page from somewhere. Search in increasing NUMA distances.
1998 */
1999 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2000 struct kmem_cache_cpu *c)
2001 {
2002 #ifdef CONFIG_NUMA
2003 struct zonelist *zonelist;
2004 struct zoneref *z;
2005 struct zone *zone;
2006 enum zone_type highest_zoneidx = gfp_zone(flags);
2007 void *object;
2008 unsigned int cpuset_mems_cookie;
2009
2010 /*
2011 * The defrag ratio allows a configuration of the tradeoffs between
2012 * inter node defragmentation and node local allocations. A lower
2013 * defrag_ratio increases the tendency to do local allocations
2014 * instead of attempting to obtain partial slabs from other nodes.
2015 *
2016 * If the defrag_ratio is set to 0 then kmalloc() always
2017 * returns node local objects. If the ratio is higher then kmalloc()
2018 * may return off node objects because partial slabs are obtained
2019 * from other nodes and filled up.
2020 *
2021 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2022 * (which makes defrag_ratio = 1000) then every (well almost)
2023 * allocation will first attempt to defrag slab caches on other nodes.
2024 * This means scanning over all nodes to look for partial slabs which
2025 * may be expensive if we do it every time we are trying to find a slab
2026 * with available objects.
2027 */
2028 if (!s->remote_node_defrag_ratio ||
2029 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2030 return NULL;
2031
2032 do {
2033 cpuset_mems_cookie = read_mems_allowed_begin();
2034 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2035 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2036 struct kmem_cache_node *n;
2037
2038 n = get_node(s, zone_to_nid(zone));
2039
2040 if (n && cpuset_zone_allowed(zone, flags) &&
2041 n->nr_partial > s->min_partial) {
2042 object = get_partial_node(s, n, c, flags);
2043 if (object) {
2044 /*
2045 * Don't check read_mems_allowed_retry()
2046 * here - if mems_allowed was updated in
2047 * parallel, that was a harmless race
2048 * between allocation and the cpuset
2049 * update
2050 */
2051 return object;
2052 }
2053 }
2054 }
2055 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2056 #endif /* CONFIG_NUMA */
2057 return NULL;
2058 }
2059
2060 /*
2061 * Get a partial page, lock it and return it.
2062 */
2063 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2064 struct kmem_cache_cpu *c)
2065 {
2066 void *object;
2067 int searchnode = node;
2068
2069 if (node == NUMA_NO_NODE)
2070 searchnode = numa_mem_id();
2071
2072 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2073 if (object || node != NUMA_NO_NODE)
2074 return object;
2075
2076 return get_any_partial(s, flags, c);
2077 }
2078
2079 #ifdef CONFIG_PREEMPTION
2080 /*
2081 * Calculate the next globally unique transaction for disambiguation
2082 * during cmpxchg. The transactions start with the cpu number and are then
2083 * incremented by CONFIG_NR_CPUS.
2084 */
2085 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2086 #else
2087 /*
2088 * No preemption supported therefore also no need to check for
2089 * different cpus.
2090 */
2091 #define TID_STEP 1
2092 #endif
2093
2094 static inline unsigned long next_tid(unsigned long tid)
2095 {
2096 return tid + TID_STEP;
2097 }
2098
2099 #ifdef SLUB_DEBUG_CMPXCHG
2100 static inline unsigned int tid_to_cpu(unsigned long tid)
2101 {
2102 return tid % TID_STEP;
2103 }
2104
2105 static inline unsigned long tid_to_event(unsigned long tid)
2106 {
2107 return tid / TID_STEP;
2108 }
2109 #endif
2110
2111 static inline unsigned int init_tid(int cpu)
2112 {
2113 return cpu;
2114 }
2115
2116 static inline void note_cmpxchg_failure(const char *n,
2117 const struct kmem_cache *s, unsigned long tid)
2118 {
2119 #ifdef SLUB_DEBUG_CMPXCHG
2120 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2121
2122 pr_info("%s %s: cmpxchg redo ", n, s->name);
2123
2124 #ifdef CONFIG_PREEMPTION
2125 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2126 pr_warn("due to cpu change %d -> %d\n",
2127 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2128 else
2129 #endif
2130 if (tid_to_event(tid) != tid_to_event(actual_tid))
2131 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2132 tid_to_event(tid), tid_to_event(actual_tid));
2133 else
2134 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2135 actual_tid, tid, next_tid(tid));
2136 #endif
2137 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2138 }
2139
2140 static void init_kmem_cache_cpus(struct kmem_cache *s)
2141 {
2142 int cpu;
2143
2144 for_each_possible_cpu(cpu)
2145 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2146 }
2147
2148 /*
2149 * Remove the cpu slab
2150 */
2151 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2152 void *freelist, struct kmem_cache_cpu *c)
2153 {
2154 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2155 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2156 int lock = 0;
2157 enum slab_modes l = M_NONE, m = M_NONE;
2158 void *nextfree;
2159 int tail = DEACTIVATE_TO_HEAD;
2160 struct page new;
2161 struct page old;
2162
2163 if (page->freelist) {
2164 stat(s, DEACTIVATE_REMOTE_FREES);
2165 tail = DEACTIVATE_TO_TAIL;
2166 }
2167
2168 /*
2169 * Stage one: Free all available per cpu objects back
2170 * to the page freelist while it is still frozen. Leave the
2171 * last one.
2172 *
2173 * There is no need to take the list->lock because the page
2174 * is still frozen.
2175 */
2176 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2177 void *prior;
2178 unsigned long counters;
2179
2180 /*
2181 * If 'nextfree' is invalid, it is possible that the object at
2182 * 'freelist' is already corrupted. So isolate all objects
2183 * starting at 'freelist'.
2184 */
2185 if (freelist_corrupted(s, page, &freelist, nextfree))
2186 break;
2187
2188 do {
2189 prior = page->freelist;
2190 counters = page->counters;
2191 set_freepointer(s, freelist, prior);
2192 new.counters = counters;
2193 new.inuse--;
2194 VM_BUG_ON(!new.frozen);
2195
2196 } while (!__cmpxchg_double_slab(s, page,
2197 prior, counters,
2198 freelist, new.counters,
2199 "drain percpu freelist"));
2200
2201 freelist = nextfree;
2202 }
2203
2204 /*
2205 * Stage two: Ensure that the page is unfrozen while the
2206 * list presence reflects the actual number of objects
2207 * during unfreeze.
2208 *
2209 * We setup the list membership and then perform a cmpxchg
2210 * with the count. If there is a mismatch then the page
2211 * is not unfrozen but the page is on the wrong list.
2212 *
2213 * Then we restart the process which may have to remove
2214 * the page from the list that we just put it on again
2215 * because the number of objects in the slab may have
2216 * changed.
2217 */
2218 redo:
2219
2220 old.freelist = page->freelist;
2221 old.counters = page->counters;
2222 VM_BUG_ON(!old.frozen);
2223
2224 /* Determine target state of the slab */
2225 new.counters = old.counters;
2226 if (freelist) {
2227 new.inuse--;
2228 set_freepointer(s, freelist, old.freelist);
2229 new.freelist = freelist;
2230 } else
2231 new.freelist = old.freelist;
2232
2233 new.frozen = 0;
2234
2235 if (!new.inuse && n->nr_partial >= s->min_partial)
2236 m = M_FREE;
2237 else if (new.freelist) {
2238 m = M_PARTIAL;
2239 if (!lock) {
2240 lock = 1;
2241 /*
2242 * Taking the spinlock removes the possibility
2243 * that acquire_slab() will see a slab page that
2244 * is frozen
2245 */
2246 spin_lock(&n->list_lock);
2247 }
2248 } else {
2249 m = M_FULL;
2250 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2251 lock = 1;
2252 /*
2253 * This also ensures that the scanning of full
2254 * slabs from diagnostic functions will not see
2255 * any frozen slabs.
2256 */
2257 spin_lock(&n->list_lock);
2258 }
2259 }
2260
2261 if (l != m) {
2262 if (l == M_PARTIAL)
2263 remove_partial(n, page);
2264 else if (l == M_FULL)
2265 remove_full(s, n, page);
2266
2267 if (m == M_PARTIAL)
2268 add_partial(n, page, tail);
2269 else if (m == M_FULL)
2270 add_full(s, n, page);
2271 }
2272
2273 l = m;
2274 if (!__cmpxchg_double_slab(s, page,
2275 old.freelist, old.counters,
2276 new.freelist, new.counters,
2277 "unfreezing slab"))
2278 goto redo;
2279
2280 if (lock)
2281 spin_unlock(&n->list_lock);
2282
2283 if (m == M_PARTIAL)
2284 stat(s, tail);
2285 else if (m == M_FULL)
2286 stat(s, DEACTIVATE_FULL);
2287 else if (m == M_FREE) {
2288 stat(s, DEACTIVATE_EMPTY);
2289 discard_slab(s, page);
2290 stat(s, FREE_SLAB);
2291 }
2292
2293 c->page = NULL;
2294 c->freelist = NULL;
2295 }
2296
2297 /*
2298 * Unfreeze all the cpu partial slabs.
2299 *
2300 * This function must be called with interrupts disabled
2301 * for the cpu using c (or some other guarantee must be there
2302 * to guarantee no concurrent accesses).
2303 */
2304 static void unfreeze_partials(struct kmem_cache *s,
2305 struct kmem_cache_cpu *c)
2306 {
2307 #ifdef CONFIG_SLUB_CPU_PARTIAL
2308 struct kmem_cache_node *n = NULL, *n2 = NULL;
2309 struct page *page, *discard_page = NULL;
2310
2311 while ((page = slub_percpu_partial(c))) {
2312 struct page new;
2313 struct page old;
2314
2315 slub_set_percpu_partial(c, page);
2316
2317 n2 = get_node(s, page_to_nid(page));
2318 if (n != n2) {
2319 if (n)
2320 spin_unlock(&n->list_lock);
2321
2322 n = n2;
2323 spin_lock(&n->list_lock);
2324 }
2325
2326 do {
2327
2328 old.freelist = page->freelist;
2329 old.counters = page->counters;
2330 VM_BUG_ON(!old.frozen);
2331
2332 new.counters = old.counters;
2333 new.freelist = old.freelist;
2334
2335 new.frozen = 0;
2336
2337 } while (!__cmpxchg_double_slab(s, page,
2338 old.freelist, old.counters,
2339 new.freelist, new.counters,
2340 "unfreezing slab"));
2341
2342 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2343 page->next = discard_page;
2344 discard_page = page;
2345 } else {
2346 add_partial(n, page, DEACTIVATE_TO_TAIL);
2347 stat(s, FREE_ADD_PARTIAL);
2348 }
2349 }
2350
2351 if (n)
2352 spin_unlock(&n->list_lock);
2353
2354 while (discard_page) {
2355 page = discard_page;
2356 discard_page = discard_page->next;
2357
2358 stat(s, DEACTIVATE_EMPTY);
2359 discard_slab(s, page);
2360 stat(s, FREE_SLAB);
2361 }
2362 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2363 }
2364
2365 /*
2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2367 * partial page slot if available.
2368 *
2369 * If we did not find a slot then simply move all the partials to the
2370 * per node partial list.
2371 */
2372 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2373 {
2374 #ifdef CONFIG_SLUB_CPU_PARTIAL
2375 struct page *oldpage;
2376 int pages;
2377 int pobjects;
2378
2379 preempt_disable();
2380 do {
2381 pages = 0;
2382 pobjects = 0;
2383 oldpage = this_cpu_read(s->cpu_slab->partial);
2384
2385 if (oldpage) {
2386 pobjects = oldpage->pobjects;
2387 pages = oldpage->pages;
2388 if (drain && pobjects > slub_cpu_partial(s)) {
2389 unsigned long flags;
2390 /*
2391 * partial array is full. Move the existing
2392 * set to the per node partial list.
2393 */
2394 local_irq_save(flags);
2395 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2396 local_irq_restore(flags);
2397 oldpage = NULL;
2398 pobjects = 0;
2399 pages = 0;
2400 stat(s, CPU_PARTIAL_DRAIN);
2401 }
2402 }
2403
2404 pages++;
2405 pobjects += page->objects - page->inuse;
2406
2407 page->pages = pages;
2408 page->pobjects = pobjects;
2409 page->next = oldpage;
2410
2411 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2412 != oldpage);
2413 if (unlikely(!slub_cpu_partial(s))) {
2414 unsigned long flags;
2415
2416 local_irq_save(flags);
2417 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2418 local_irq_restore(flags);
2419 }
2420 preempt_enable();
2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2422 }
2423
2424 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2425 {
2426 stat(s, CPUSLAB_FLUSH);
2427 deactivate_slab(s, c->page, c->freelist, c);
2428
2429 c->tid = next_tid(c->tid);
2430 }
2431
2432 /*
2433 * Flush cpu slab.
2434 *
2435 * Called from IPI handler with interrupts disabled.
2436 */
2437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2438 {
2439 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2440
2441 if (c->page)
2442 flush_slab(s, c);
2443
2444 unfreeze_partials(s, c);
2445 }
2446
2447 static void flush_cpu_slab(void *d)
2448 {
2449 struct kmem_cache *s = d;
2450
2451 __flush_cpu_slab(s, smp_processor_id());
2452 }
2453
2454 static bool has_cpu_slab(int cpu, void *info)
2455 {
2456 struct kmem_cache *s = info;
2457 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2458
2459 return c->page || slub_percpu_partial(c);
2460 }
2461
2462 static void flush_all(struct kmem_cache *s)
2463 {
2464 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2465 }
2466
2467 /*
2468 * Use the cpu notifier to insure that the cpu slabs are flushed when
2469 * necessary.
2470 */
2471 static int slub_cpu_dead(unsigned int cpu)
2472 {
2473 struct kmem_cache *s;
2474 unsigned long flags;
2475
2476 mutex_lock(&slab_mutex);
2477 list_for_each_entry(s, &slab_caches, list) {
2478 local_irq_save(flags);
2479 __flush_cpu_slab(s, cpu);
2480 local_irq_restore(flags);
2481 }
2482 mutex_unlock(&slab_mutex);
2483 return 0;
2484 }
2485
2486 /*
2487 * Check if the objects in a per cpu structure fit numa
2488 * locality expectations.
2489 */
2490 static inline int node_match(struct page *page, int node)
2491 {
2492 #ifdef CONFIG_NUMA
2493 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2494 return 0;
2495 #endif
2496 return 1;
2497 }
2498
2499 #ifdef CONFIG_SLUB_DEBUG
2500 static int count_free(struct page *page)
2501 {
2502 return page->objects - page->inuse;
2503 }
2504
2505 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2506 {
2507 return atomic_long_read(&n->total_objects);
2508 }
2509 #endif /* CONFIG_SLUB_DEBUG */
2510
2511 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2512 static unsigned long count_partial(struct kmem_cache_node *n,
2513 int (*get_count)(struct page *))
2514 {
2515 unsigned long flags;
2516 unsigned long x = 0;
2517 struct page *page;
2518
2519 spin_lock_irqsave(&n->list_lock, flags);
2520 list_for_each_entry(page, &n->partial, slab_list)
2521 x += get_count(page);
2522 spin_unlock_irqrestore(&n->list_lock, flags);
2523 return x;
2524 }
2525 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2526
2527 static noinline void
2528 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2529 {
2530 #ifdef CONFIG_SLUB_DEBUG
2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 DEFAULT_RATELIMIT_BURST);
2533 int node;
2534 struct kmem_cache_node *n;
2535
2536 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2537 return;
2538
2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2540 nid, gfpflags, &gfpflags);
2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2542 s->name, s->object_size, s->size, oo_order(s->oo),
2543 oo_order(s->min));
2544
2545 if (oo_order(s->min) > get_order(s->object_size))
2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2547 s->name);
2548
2549 for_each_kmem_cache_node(s, node, n) {
2550 unsigned long nr_slabs;
2551 unsigned long nr_objs;
2552 unsigned long nr_free;
2553
2554 nr_free = count_partial(n, count_free);
2555 nr_slabs = node_nr_slabs(n);
2556 nr_objs = node_nr_objs(n);
2557
2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2559 node, nr_slabs, nr_objs, nr_free);
2560 }
2561 #endif
2562 }
2563
2564 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2565 int node, struct kmem_cache_cpu **pc)
2566 {
2567 void *freelist;
2568 struct kmem_cache_cpu *c = *pc;
2569 struct page *page;
2570
2571 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2572
2573 freelist = get_partial(s, flags, node, c);
2574
2575 if (freelist)
2576 return freelist;
2577
2578 page = new_slab(s, flags, node);
2579 if (page) {
2580 c = raw_cpu_ptr(s->cpu_slab);
2581 if (c->page)
2582 flush_slab(s, c);
2583
2584 /*
2585 * No other reference to the page yet so we can
2586 * muck around with it freely without cmpxchg
2587 */
2588 freelist = page->freelist;
2589 page->freelist = NULL;
2590
2591 stat(s, ALLOC_SLAB);
2592 c->page = page;
2593 *pc = c;
2594 }
2595
2596 return freelist;
2597 }
2598
2599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2600 {
2601 if (unlikely(PageSlabPfmemalloc(page)))
2602 return gfp_pfmemalloc_allowed(gfpflags);
2603
2604 return true;
2605 }
2606
2607 /*
2608 * Check the page->freelist of a page and either transfer the freelist to the
2609 * per cpu freelist or deactivate the page.
2610 *
2611 * The page is still frozen if the return value is not NULL.
2612 *
2613 * If this function returns NULL then the page has been unfrozen.
2614 *
2615 * This function must be called with interrupt disabled.
2616 */
2617 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2618 {
2619 struct page new;
2620 unsigned long counters;
2621 void *freelist;
2622
2623 do {
2624 freelist = page->freelist;
2625 counters = page->counters;
2626
2627 new.counters = counters;
2628 VM_BUG_ON(!new.frozen);
2629
2630 new.inuse = page->objects;
2631 new.frozen = freelist != NULL;
2632
2633 } while (!__cmpxchg_double_slab(s, page,
2634 freelist, counters,
2635 NULL, new.counters,
2636 "get_freelist"));
2637
2638 return freelist;
2639 }
2640
2641 /*
2642 * Slow path. The lockless freelist is empty or we need to perform
2643 * debugging duties.
2644 *
2645 * Processing is still very fast if new objects have been freed to the
2646 * regular freelist. In that case we simply take over the regular freelist
2647 * as the lockless freelist and zap the regular freelist.
2648 *
2649 * If that is not working then we fall back to the partial lists. We take the
2650 * first element of the freelist as the object to allocate now and move the
2651 * rest of the freelist to the lockless freelist.
2652 *
2653 * And if we were unable to get a new slab from the partial slab lists then
2654 * we need to allocate a new slab. This is the slowest path since it involves
2655 * a call to the page allocator and the setup of a new slab.
2656 *
2657 * Version of __slab_alloc to use when we know that interrupts are
2658 * already disabled (which is the case for bulk allocation).
2659 */
2660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2661 unsigned long addr, struct kmem_cache_cpu *c)
2662 {
2663 void *freelist;
2664 struct page *page;
2665
2666 stat(s, ALLOC_SLOWPATH);
2667
2668 page = c->page;
2669 if (!page) {
2670 /*
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2673 */
2674 if (unlikely(node != NUMA_NO_NODE &&
2675 !node_state(node, N_NORMAL_MEMORY)))
2676 node = NUMA_NO_NODE;
2677 goto new_slab;
2678 }
2679 redo:
2680
2681 if (unlikely(!node_match(page, node))) {
2682 /*
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2685 */
2686 if (!node_state(node, N_NORMAL_MEMORY)) {
2687 node = NUMA_NO_NODE;
2688 goto redo;
2689 } else {
2690 stat(s, ALLOC_NODE_MISMATCH);
2691 deactivate_slab(s, page, c->freelist, c);
2692 goto new_slab;
2693 }
2694 }
2695
2696 /*
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2700 */
2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2702 deactivate_slab(s, page, c->freelist, c);
2703 goto new_slab;
2704 }
2705
2706 /* must check again c->freelist in case of cpu migration or IRQ */
2707 freelist = c->freelist;
2708 if (freelist)
2709 goto load_freelist;
2710
2711 freelist = get_freelist(s, page);
2712
2713 if (!freelist) {
2714 c->page = NULL;
2715 stat(s, DEACTIVATE_BYPASS);
2716 goto new_slab;
2717 }
2718
2719 stat(s, ALLOC_REFILL);
2720
2721 load_freelist:
2722 /*
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2726 */
2727 VM_BUG_ON(!c->page->frozen);
2728 c->freelist = get_freepointer(s, freelist);
2729 c->tid = next_tid(c->tid);
2730 return freelist;
2731
2732 new_slab:
2733
2734 if (slub_percpu_partial(c)) {
2735 page = c->page = slub_percpu_partial(c);
2736 slub_set_percpu_partial(c, page);
2737 stat(s, CPU_PARTIAL_ALLOC);
2738 goto redo;
2739 }
2740
2741 freelist = new_slab_objects(s, gfpflags, node, &c);
2742
2743 if (unlikely(!freelist)) {
2744 slab_out_of_memory(s, gfpflags, node);
2745 return NULL;
2746 }
2747
2748 page = c->page;
2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2750 goto load_freelist;
2751
2752 /* Only entered in the debug case */
2753 if (kmem_cache_debug(s) &&
2754 !alloc_debug_processing(s, page, freelist, addr))
2755 goto new_slab; /* Slab failed checks. Next slab needed */
2756
2757 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2758 return freelist;
2759 }
2760
2761 /*
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2764 */
2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 unsigned long addr, struct kmem_cache_cpu *c)
2767 {
2768 void *p;
2769 unsigned long flags;
2770
2771 local_irq_save(flags);
2772 #ifdef CONFIG_PREEMPTION
2773 /*
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2776 * pointer.
2777 */
2778 c = this_cpu_ptr(s->cpu_slab);
2779 #endif
2780
2781 p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 local_irq_restore(flags);
2783 return p;
2784 }
2785
2786 /*
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2789 */
2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 void *obj)
2792 {
2793 if (unlikely(slab_want_init_on_free(s)) && obj)
2794 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2795 }
2796
2797 /*
2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799 * have the fastpath folded into their functions. So no function call
2800 * overhead for requests that can be satisfied on the fastpath.
2801 *
2802 * The fastpath works by first checking if the lockless freelist can be used.
2803 * If not then __slab_alloc is called for slow processing.
2804 *
2805 * Otherwise we can simply pick the next object from the lockless free list.
2806 */
2807 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2808 gfp_t gfpflags, int node, unsigned long addr)
2809 {
2810 void *object;
2811 struct kmem_cache_cpu *c;
2812 struct page *page;
2813 unsigned long tid;
2814 struct obj_cgroup *objcg = NULL;
2815
2816 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2817 if (!s)
2818 return NULL;
2819 redo:
2820 /*
2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 * enabled. We may switch back and forth between cpus while
2823 * reading from one cpu area. That does not matter as long
2824 * as we end up on the original cpu again when doing the cmpxchg.
2825 *
2826 * We should guarantee that tid and kmem_cache are retrieved on
2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2828 * to check if it is matched or not.
2829 */
2830 do {
2831 tid = this_cpu_read(s->cpu_slab->tid);
2832 c = raw_cpu_ptr(s->cpu_slab);
2833 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2834 unlikely(tid != READ_ONCE(c->tid)));
2835
2836 /*
2837 * Irqless object alloc/free algorithm used here depends on sequence
2838 * of fetching cpu_slab's data. tid should be fetched before anything
2839 * on c to guarantee that object and page associated with previous tid
2840 * won't be used with current tid. If we fetch tid first, object and
2841 * page could be one associated with next tid and our alloc/free
2842 * request will be failed. In this case, we will retry. So, no problem.
2843 */
2844 barrier();
2845
2846 /*
2847 * The transaction ids are globally unique per cpu and per operation on
2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 * occurs on the right processor and that there was no operation on the
2850 * linked list in between.
2851 */
2852
2853 object = c->freelist;
2854 page = c->page;
2855 if (unlikely(!object || !page || !node_match(page, node))) {
2856 object = __slab_alloc(s, gfpflags, node, addr, c);
2857 } else {
2858 void *next_object = get_freepointer_safe(s, object);
2859
2860 /*
2861 * The cmpxchg will only match if there was no additional
2862 * operation and if we are on the right processor.
2863 *
2864 * The cmpxchg does the following atomically (without lock
2865 * semantics!)
2866 * 1. Relocate first pointer to the current per cpu area.
2867 * 2. Verify that tid and freelist have not been changed
2868 * 3. If they were not changed replace tid and freelist
2869 *
2870 * Since this is without lock semantics the protection is only
2871 * against code executing on this cpu *not* from access by
2872 * other cpus.
2873 */
2874 if (unlikely(!this_cpu_cmpxchg_double(
2875 s->cpu_slab->freelist, s->cpu_slab->tid,
2876 object, tid,
2877 next_object, next_tid(tid)))) {
2878
2879 note_cmpxchg_failure("slab_alloc", s, tid);
2880 goto redo;
2881 }
2882 prefetch_freepointer(s, next_object);
2883 stat(s, ALLOC_FASTPATH);
2884 }
2885
2886 maybe_wipe_obj_freeptr(s, kasan_reset_tag(object));
2887
2888 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2889 memset(kasan_reset_tag(object), 0, s->object_size);
2890
2891 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2892
2893 return object;
2894 }
2895
2896 static __always_inline void *slab_alloc(struct kmem_cache *s,
2897 gfp_t gfpflags, unsigned long addr)
2898 {
2899 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2900 }
2901
2902 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2903 {
2904 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2905
2906 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2907 s->size, gfpflags);
2908
2909 return ret;
2910 }
2911 EXPORT_SYMBOL(kmem_cache_alloc);
2912
2913 #ifdef CONFIG_TRACING
2914 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2915 {
2916 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2917 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2918 ret = kasan_kmalloc(s, ret, size, gfpflags);
2919 return ret;
2920 }
2921 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2922 #endif
2923
2924 #ifdef CONFIG_NUMA
2925 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2926 {
2927 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2928
2929 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2930 s->object_size, s->size, gfpflags, node);
2931
2932 return ret;
2933 }
2934 EXPORT_SYMBOL(kmem_cache_alloc_node);
2935
2936 #ifdef CONFIG_TRACING
2937 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2938 gfp_t gfpflags,
2939 int node, size_t size)
2940 {
2941 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2942
2943 trace_kmalloc_node(_RET_IP_, ret,
2944 size, s->size, gfpflags, node);
2945
2946 ret = kasan_kmalloc(s, ret, size, gfpflags);
2947 return ret;
2948 }
2949 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2950 #endif
2951 #endif /* CONFIG_NUMA */
2952
2953 /*
2954 * Slow path handling. This may still be called frequently since objects
2955 * have a longer lifetime than the cpu slabs in most processing loads.
2956 *
2957 * So we still attempt to reduce cache line usage. Just take the slab
2958 * lock and free the item. If there is no additional partial page
2959 * handling required then we can return immediately.
2960 */
2961 static void __slab_free(struct kmem_cache *s, struct page *page,
2962 void *head, void *tail, int cnt,
2963 unsigned long addr)
2964
2965 {
2966 void *prior;
2967 int was_frozen;
2968 struct page new;
2969 unsigned long counters;
2970 struct kmem_cache_node *n = NULL;
2971 unsigned long flags;
2972
2973 stat(s, FREE_SLOWPATH);
2974
2975 if (kmem_cache_debug(s) &&
2976 !free_debug_processing(s, page, head, tail, cnt, addr))
2977 return;
2978
2979 do {
2980 if (unlikely(n)) {
2981 spin_unlock_irqrestore(&n->list_lock, flags);
2982 n = NULL;
2983 }
2984 prior = page->freelist;
2985 counters = page->counters;
2986 set_freepointer(s, tail, prior);
2987 new.counters = counters;
2988 was_frozen = new.frozen;
2989 new.inuse -= cnt;
2990 if ((!new.inuse || !prior) && !was_frozen) {
2991
2992 if (kmem_cache_has_cpu_partial(s) && !prior) {
2993
2994 /*
2995 * Slab was on no list before and will be
2996 * partially empty
2997 * We can defer the list move and instead
2998 * freeze it.
2999 */
3000 new.frozen = 1;
3001
3002 } else { /* Needs to be taken off a list */
3003
3004 n = get_node(s, page_to_nid(page));
3005 /*
3006 * Speculatively acquire the list_lock.
3007 * If the cmpxchg does not succeed then we may
3008 * drop the list_lock without any processing.
3009 *
3010 * Otherwise the list_lock will synchronize with
3011 * other processors updating the list of slabs.
3012 */
3013 spin_lock_irqsave(&n->list_lock, flags);
3014
3015 }
3016 }
3017
3018 } while (!cmpxchg_double_slab(s, page,
3019 prior, counters,
3020 head, new.counters,
3021 "__slab_free"));
3022
3023 if (likely(!n)) {
3024
3025 if (likely(was_frozen)) {
3026 /*
3027 * The list lock was not taken therefore no list
3028 * activity can be necessary.
3029 */
3030 stat(s, FREE_FROZEN);
3031 } else if (new.frozen) {
3032 /*
3033 * If we just froze the page then put it onto the
3034 * per cpu partial list.
3035 */
3036 put_cpu_partial(s, page, 1);
3037 stat(s, CPU_PARTIAL_FREE);
3038 }
3039
3040 return;
3041 }
3042
3043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3044 goto slab_empty;
3045
3046 /*
3047 * Objects left in the slab. If it was not on the partial list before
3048 * then add it.
3049 */
3050 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3051 remove_full(s, n, page);
3052 add_partial(n, page, DEACTIVATE_TO_TAIL);
3053 stat(s, FREE_ADD_PARTIAL);
3054 }
3055 spin_unlock_irqrestore(&n->list_lock, flags);
3056 return;
3057
3058 slab_empty:
3059 if (prior) {
3060 /*
3061 * Slab on the partial list.
3062 */
3063 remove_partial(n, page);
3064 stat(s, FREE_REMOVE_PARTIAL);
3065 } else {
3066 /* Slab must be on the full list */
3067 remove_full(s, n, page);
3068 }
3069
3070 spin_unlock_irqrestore(&n->list_lock, flags);
3071 stat(s, FREE_SLAB);
3072 discard_slab(s, page);
3073 }
3074
3075 /*
3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077 * can perform fastpath freeing without additional function calls.
3078 *
3079 * The fastpath is only possible if we are freeing to the current cpu slab
3080 * of this processor. This typically the case if we have just allocated
3081 * the item before.
3082 *
3083 * If fastpath is not possible then fall back to __slab_free where we deal
3084 * with all sorts of special processing.
3085 *
3086 * Bulk free of a freelist with several objects (all pointing to the
3087 * same page) possible by specifying head and tail ptr, plus objects
3088 * count (cnt). Bulk free indicated by tail pointer being set.
3089 */
3090 static __always_inline void do_slab_free(struct kmem_cache *s,
3091 struct page *page, void *head, void *tail,
3092 int cnt, unsigned long addr)
3093 {
3094 void *tail_obj = tail ? : head;
3095 struct kmem_cache_cpu *c;
3096 unsigned long tid;
3097
3098 memcg_slab_free_hook(s, &head, 1);
3099 redo:
3100 /*
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
3104 * during the cmpxchg then the free will succeed.
3105 */
3106 do {
3107 tid = this_cpu_read(s->cpu_slab->tid);
3108 c = raw_cpu_ptr(s->cpu_slab);
3109 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3110 unlikely(tid != READ_ONCE(c->tid)));
3111
3112 /* Same with comment on barrier() in slab_alloc_node() */
3113 barrier();
3114
3115 if (likely(page == c->page)) {
3116 void **freelist = READ_ONCE(c->freelist);
3117
3118 set_freepointer(s, tail_obj, freelist);
3119
3120 if (unlikely(!this_cpu_cmpxchg_double(
3121 s->cpu_slab->freelist, s->cpu_slab->tid,
3122 freelist, tid,
3123 head, next_tid(tid)))) {
3124
3125 note_cmpxchg_failure("slab_free", s, tid);
3126 goto redo;
3127 }
3128 stat(s, FREE_FASTPATH);
3129 } else
3130 __slab_free(s, page, head, tail_obj, cnt, addr);
3131
3132 }
3133
3134 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 void *head, void *tail, int cnt,
3136 unsigned long addr)
3137 {
3138 /*
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
3141 */
3142 if (slab_free_freelist_hook(s, &head, &tail))
3143 do_slab_free(s, page, head, tail, cnt, addr);
3144 }
3145
3146 #ifdef CONFIG_KASAN_GENERIC
3147 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148 {
3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150 }
3151 #endif
3152
3153 void kmem_cache_free(struct kmem_cache *s, void *x)
3154 {
3155 s = cache_from_obj(s, x);
3156 if (!s)
3157 return;
3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3159 trace_kmem_cache_free(_RET_IP_, x);
3160 }
3161 EXPORT_SYMBOL(kmem_cache_free);
3162
3163 struct detached_freelist {
3164 struct page *page;
3165 void *tail;
3166 void *freelist;
3167 int cnt;
3168 struct kmem_cache *s;
3169 };
3170
3171 /*
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3182 */
3183 static inline
3184 int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 void **p, struct detached_freelist *df)
3186 {
3187 size_t first_skipped_index = 0;
3188 int lookahead = 3;
3189 void *object;
3190 struct page *page;
3191
3192 /* Always re-init detached_freelist */
3193 df->page = NULL;
3194
3195 do {
3196 object = p[--size];
3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3198 } while (!object && size);
3199
3200 if (!object)
3201 return 0;
3202
3203 page = virt_to_head_page(object);
3204 if (!s) {
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page))) {
3207 BUG_ON(!PageCompound(page));
3208 kfree_hook(object);
3209 __free_pages(page, compound_order(page));
3210 p[size] = NULL; /* mark object processed */
3211 return size;
3212 }
3213 /* Derive kmem_cache from object */
3214 df->s = page->slab_cache;
3215 } else {
3216 df->s = cache_from_obj(s, object); /* Support for memcg */
3217 }
3218
3219 /* Start new detached freelist */
3220 df->page = page;
3221 set_freepointer(df->s, object, NULL);
3222 df->tail = object;
3223 df->freelist = object;
3224 p[size] = NULL; /* mark object processed */
3225 df->cnt = 1;
3226
3227 while (size) {
3228 object = p[--size];
3229 if (!object)
3230 continue; /* Skip processed objects */
3231
3232 /* df->page is always set at this point */
3233 if (df->page == virt_to_head_page(object)) {
3234 /* Opportunity build freelist */
3235 set_freepointer(df->s, object, df->freelist);
3236 df->freelist = object;
3237 df->cnt++;
3238 p[size] = NULL; /* mark object processed */
3239
3240 continue;
3241 }
3242
3243 /* Limit look ahead search */
3244 if (!--lookahead)
3245 break;
3246
3247 if (!first_skipped_index)
3248 first_skipped_index = size + 1;
3249 }
3250
3251 return first_skipped_index;
3252 }
3253
3254 /* Note that interrupts must be enabled when calling this function. */
3255 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3256 {
3257 if (WARN_ON(!size))
3258 return;
3259
3260 memcg_slab_free_hook(s, p, size);
3261 do {
3262 struct detached_freelist df;
3263
3264 size = build_detached_freelist(s, size, p, &df);
3265 if (!df.page)
3266 continue;
3267
3268 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3269 } while (likely(size));
3270 }
3271 EXPORT_SYMBOL(kmem_cache_free_bulk);
3272
3273 /* Note that interrupts must be enabled when calling this function. */
3274 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3275 void **p)
3276 {
3277 struct kmem_cache_cpu *c;
3278 int i;
3279 struct obj_cgroup *objcg = NULL;
3280
3281 /* memcg and kmem_cache debug support */
3282 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3283 if (unlikely(!s))
3284 return false;
3285 /*
3286 * Drain objects in the per cpu slab, while disabling local
3287 * IRQs, which protects against PREEMPT and interrupts
3288 * handlers invoking normal fastpath.
3289 */
3290 local_irq_disable();
3291 c = this_cpu_ptr(s->cpu_slab);
3292
3293 for (i = 0; i < size; i++) {
3294 void *object = c->freelist;
3295
3296 if (unlikely(!object)) {
3297 /*
3298 * We may have removed an object from c->freelist using
3299 * the fastpath in the previous iteration; in that case,
3300 * c->tid has not been bumped yet.
3301 * Since ___slab_alloc() may reenable interrupts while
3302 * allocating memory, we should bump c->tid now.
3303 */
3304 c->tid = next_tid(c->tid);
3305
3306 /*
3307 * Invoking slow path likely have side-effect
3308 * of re-populating per CPU c->freelist
3309 */
3310 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3311 _RET_IP_, c);
3312 if (unlikely(!p[i]))
3313 goto error;
3314
3315 c = this_cpu_ptr(s->cpu_slab);
3316 maybe_wipe_obj_freeptr(s, p[i]);
3317
3318 continue; /* goto for-loop */
3319 }
3320 c->freelist = get_freepointer(s, object);
3321 p[i] = object;
3322 maybe_wipe_obj_freeptr(s, p[i]);
3323 }
3324 c->tid = next_tid(c->tid);
3325 local_irq_enable();
3326
3327 /* Clear memory outside IRQ disabled fastpath loop */
3328 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3329 int j;
3330
3331 for (j = 0; j < i; j++)
3332 memset(p[j], 0, s->object_size);
3333 }
3334
3335 /* memcg and kmem_cache debug support */
3336 slab_post_alloc_hook(s, objcg, flags, size, p);
3337 return i;
3338 error:
3339 local_irq_enable();
3340 slab_post_alloc_hook(s, objcg, flags, i, p);
3341 __kmem_cache_free_bulk(s, i, p);
3342 return 0;
3343 }
3344 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3345
3346
3347 /*
3348 * Object placement in a slab is made very easy because we always start at
3349 * offset 0. If we tune the size of the object to the alignment then we can
3350 * get the required alignment by putting one properly sized object after
3351 * another.
3352 *
3353 * Notice that the allocation order determines the sizes of the per cpu
3354 * caches. Each processor has always one slab available for allocations.
3355 * Increasing the allocation order reduces the number of times that slabs
3356 * must be moved on and off the partial lists and is therefore a factor in
3357 * locking overhead.
3358 */
3359
3360 /*
3361 * Mininum / Maximum order of slab pages. This influences locking overhead
3362 * and slab fragmentation. A higher order reduces the number of partial slabs
3363 * and increases the number of allocations possible without having to
3364 * take the list_lock.
3365 */
3366 static unsigned int slub_min_order;
3367 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3368 static unsigned int slub_min_objects;
3369
3370 /*
3371 * Calculate the order of allocation given an slab object size.
3372 *
3373 * The order of allocation has significant impact on performance and other
3374 * system components. Generally order 0 allocations should be preferred since
3375 * order 0 does not cause fragmentation in the page allocator. Larger objects
3376 * be problematic to put into order 0 slabs because there may be too much
3377 * unused space left. We go to a higher order if more than 1/16th of the slab
3378 * would be wasted.
3379 *
3380 * In order to reach satisfactory performance we must ensure that a minimum
3381 * number of objects is in one slab. Otherwise we may generate too much
3382 * activity on the partial lists which requires taking the list_lock. This is
3383 * less a concern for large slabs though which are rarely used.
3384 *
3385 * slub_max_order specifies the order where we begin to stop considering the
3386 * number of objects in a slab as critical. If we reach slub_max_order then
3387 * we try to keep the page order as low as possible. So we accept more waste
3388 * of space in favor of a small page order.
3389 *
3390 * Higher order allocations also allow the placement of more objects in a
3391 * slab and thereby reduce object handling overhead. If the user has
3392 * requested a higher mininum order then we start with that one instead of
3393 * the smallest order which will fit the object.
3394 */
3395 static inline unsigned int slab_order(unsigned int size,
3396 unsigned int min_objects, unsigned int max_order,
3397 unsigned int fract_leftover)
3398 {
3399 unsigned int min_order = slub_min_order;
3400 unsigned int order;
3401
3402 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3403 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3404
3405 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3406 order <= max_order; order++) {
3407
3408 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3409 unsigned int rem;
3410
3411 rem = slab_size % size;
3412
3413 if (rem <= slab_size / fract_leftover)
3414 break;
3415 }
3416
3417 return order;
3418 }
3419
3420 static inline int calculate_order(unsigned int size)
3421 {
3422 unsigned int order;
3423 unsigned int min_objects;
3424 unsigned int max_objects;
3425
3426 /*
3427 * Attempt to find best configuration for a slab. This
3428 * works by first attempting to generate a layout with
3429 * the best configuration and backing off gradually.
3430 *
3431 * First we increase the acceptable waste in a slab. Then
3432 * we reduce the minimum objects required in a slab.
3433 */
3434 min_objects = slub_min_objects;
3435 if (!min_objects)
3436 min_objects = 4 * (fls(num_online_cpus()) + 1);
3437 max_objects = order_objects(slub_max_order, size);
3438 min_objects = min(min_objects, max_objects);
3439
3440 while (min_objects > 1) {
3441 unsigned int fraction;
3442
3443 fraction = 16;
3444 while (fraction >= 4) {
3445 order = slab_order(size, min_objects,
3446 slub_max_order, fraction);
3447 if (order <= slub_max_order)
3448 return order;
3449 fraction /= 2;
3450 }
3451 min_objects--;
3452 }
3453
3454 /*
3455 * We were unable to place multiple objects in a slab. Now
3456 * lets see if we can place a single object there.
3457 */
3458 order = slab_order(size, 1, slub_max_order, 1);
3459 if (order <= slub_max_order)
3460 return order;
3461
3462 /*
3463 * Doh this slab cannot be placed using slub_max_order.
3464 */
3465 order = slab_order(size, 1, MAX_ORDER, 1);
3466 if (order < MAX_ORDER)
3467 return order;
3468 return -ENOSYS;
3469 }
3470
3471 static void
3472 init_kmem_cache_node(struct kmem_cache_node *n)
3473 {
3474 n->nr_partial = 0;
3475 spin_lock_init(&n->list_lock);
3476 INIT_LIST_HEAD(&n->partial);
3477 #ifdef CONFIG_SLUB_DEBUG
3478 atomic_long_set(&n->nr_slabs, 0);
3479 atomic_long_set(&n->total_objects, 0);
3480 INIT_LIST_HEAD(&n->full);
3481 #endif
3482 }
3483
3484 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3485 {
3486 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3487 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3488
3489 /*
3490 * Must align to double word boundary for the double cmpxchg
3491 * instructions to work; see __pcpu_double_call_return_bool().
3492 */
3493 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3494 2 * sizeof(void *));
3495
3496 if (!s->cpu_slab)
3497 return 0;
3498
3499 init_kmem_cache_cpus(s);
3500
3501 return 1;
3502 }
3503
3504 static struct kmem_cache *kmem_cache_node;
3505
3506 /*
3507 * No kmalloc_node yet so do it by hand. We know that this is the first
3508 * slab on the node for this slabcache. There are no concurrent accesses
3509 * possible.
3510 *
3511 * Note that this function only works on the kmem_cache_node
3512 * when allocating for the kmem_cache_node. This is used for bootstrapping
3513 * memory on a fresh node that has no slab structures yet.
3514 */
3515 static void early_kmem_cache_node_alloc(int node)
3516 {
3517 struct page *page;
3518 struct kmem_cache_node *n;
3519
3520 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3521
3522 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3523
3524 BUG_ON(!page);
3525 if (page_to_nid(page) != node) {
3526 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3527 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3528 }
3529
3530 n = page->freelist;
3531 BUG_ON(!n);
3532 #ifdef CONFIG_SLUB_DEBUG
3533 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3534 init_tracking(kmem_cache_node, n);
3535 #endif
3536 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3537 GFP_KERNEL);
3538 page->freelist = get_freepointer(kmem_cache_node, n);
3539 page->inuse = 1;
3540 page->frozen = 0;
3541 kmem_cache_node->node[node] = n;
3542 init_kmem_cache_node(n);
3543 inc_slabs_node(kmem_cache_node, node, page->objects);
3544
3545 /*
3546 * No locks need to be taken here as it has just been
3547 * initialized and there is no concurrent access.
3548 */
3549 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3550 }
3551
3552 static void free_kmem_cache_nodes(struct kmem_cache *s)
3553 {
3554 int node;
3555 struct kmem_cache_node *n;
3556
3557 for_each_kmem_cache_node(s, node, n) {
3558 s->node[node] = NULL;
3559 kmem_cache_free(kmem_cache_node, n);
3560 }
3561 }
3562
3563 void __kmem_cache_release(struct kmem_cache *s)
3564 {
3565 cache_random_seq_destroy(s);
3566 free_percpu(s->cpu_slab);
3567 free_kmem_cache_nodes(s);
3568 }
3569
3570 static int init_kmem_cache_nodes(struct kmem_cache *s)
3571 {
3572 int node;
3573
3574 for_each_node_state(node, N_NORMAL_MEMORY) {
3575 struct kmem_cache_node *n;
3576
3577 if (slab_state == DOWN) {
3578 early_kmem_cache_node_alloc(node);
3579 continue;
3580 }
3581 n = kmem_cache_alloc_node(kmem_cache_node,
3582 GFP_KERNEL, node);
3583
3584 if (!n) {
3585 free_kmem_cache_nodes(s);
3586 return 0;
3587 }
3588
3589 init_kmem_cache_node(n);
3590 s->node[node] = n;
3591 }
3592 return 1;
3593 }
3594
3595 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3596 {
3597 if (min < MIN_PARTIAL)
3598 min = MIN_PARTIAL;
3599 else if (min > MAX_PARTIAL)
3600 min = MAX_PARTIAL;
3601 s->min_partial = min;
3602 }
3603
3604 static void set_cpu_partial(struct kmem_cache *s)
3605 {
3606 #ifdef CONFIG_SLUB_CPU_PARTIAL
3607 /*
3608 * cpu_partial determined the maximum number of objects kept in the
3609 * per cpu partial lists of a processor.
3610 *
3611 * Per cpu partial lists mainly contain slabs that just have one
3612 * object freed. If they are used for allocation then they can be
3613 * filled up again with minimal effort. The slab will never hit the
3614 * per node partial lists and therefore no locking will be required.
3615 *
3616 * This setting also determines
3617 *
3618 * A) The number of objects from per cpu partial slabs dumped to the
3619 * per node list when we reach the limit.
3620 * B) The number of objects in cpu partial slabs to extract from the
3621 * per node list when we run out of per cpu objects. We only fetch
3622 * 50% to keep some capacity around for frees.
3623 */
3624 if (!kmem_cache_has_cpu_partial(s))
3625 slub_set_cpu_partial(s, 0);
3626 else if (s->size >= PAGE_SIZE)
3627 slub_set_cpu_partial(s, 2);
3628 else if (s->size >= 1024)
3629 slub_set_cpu_partial(s, 6);
3630 else if (s->size >= 256)
3631 slub_set_cpu_partial(s, 13);
3632 else
3633 slub_set_cpu_partial(s, 30);
3634 #endif
3635 }
3636
3637 /*
3638 * calculate_sizes() determines the order and the distribution of data within
3639 * a slab object.
3640 */
3641 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3642 {
3643 slab_flags_t flags = s->flags;
3644 unsigned int size = s->object_size;
3645 unsigned int freepointer_area;
3646 unsigned int order;
3647
3648 /*
3649 * Round up object size to the next word boundary. We can only
3650 * place the free pointer at word boundaries and this determines
3651 * the possible location of the free pointer.
3652 */
3653 size = ALIGN(size, sizeof(void *));
3654 /*
3655 * This is the area of the object where a freepointer can be
3656 * safely written. If redzoning adds more to the inuse size, we
3657 * can't use that portion for writing the freepointer, so
3658 * s->offset must be limited within this for the general case.
3659 */
3660 freepointer_area = size;
3661
3662 #ifdef CONFIG_SLUB_DEBUG
3663 /*
3664 * Determine if we can poison the object itself. If the user of
3665 * the slab may touch the object after free or before allocation
3666 * then we should never poison the object itself.
3667 */
3668 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3669 !s->ctor)
3670 s->flags |= __OBJECT_POISON;
3671 else
3672 s->flags &= ~__OBJECT_POISON;
3673
3674
3675 /*
3676 * If we are Redzoning then check if there is some space between the
3677 * end of the object and the free pointer. If not then add an
3678 * additional word to have some bytes to store Redzone information.
3679 */
3680 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3681 size += sizeof(void *);
3682 #endif
3683
3684 /*
3685 * With that we have determined the number of bytes in actual use
3686 * by the object. This is the potential offset to the free pointer.
3687 */
3688 s->inuse = size;
3689
3690 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3691 s->ctor)) {
3692 /*
3693 * Relocate free pointer after the object if it is not
3694 * permitted to overwrite the first word of the object on
3695 * kmem_cache_free.
3696 *
3697 * This is the case if we do RCU, have a constructor or
3698 * destructor or are poisoning the objects.
3699 *
3700 * The assumption that s->offset >= s->inuse means free
3701 * pointer is outside of the object is used in the
3702 * freeptr_outside_object() function. If that is no
3703 * longer true, the function needs to be modified.
3704 */
3705 s->offset = size;
3706 size += sizeof(void *);
3707 } else if (freepointer_area > sizeof(void *)) {
3708 /*
3709 * Store freelist pointer near middle of object to keep
3710 * it away from the edges of the object to avoid small
3711 * sized over/underflows from neighboring allocations.
3712 */
3713 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3714 }
3715
3716 #ifdef CONFIG_SLUB_DEBUG
3717 if (flags & SLAB_STORE_USER)
3718 /*
3719 * Need to store information about allocs and frees after
3720 * the object.
3721 */
3722 size += 2 * sizeof(struct track);
3723 #endif
3724
3725 kasan_cache_create(s, &size, &s->flags);
3726 #ifdef CONFIG_SLUB_DEBUG
3727 if (flags & SLAB_RED_ZONE) {
3728 /*
3729 * Add some empty padding so that we can catch
3730 * overwrites from earlier objects rather than let
3731 * tracking information or the free pointer be
3732 * corrupted if a user writes before the start
3733 * of the object.
3734 */
3735 size += sizeof(void *);
3736
3737 s->red_left_pad = sizeof(void *);
3738 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3739 size += s->red_left_pad;
3740 }
3741 #endif
3742
3743 /*
3744 * SLUB stores one object immediately after another beginning from
3745 * offset 0. In order to align the objects we have to simply size
3746 * each object to conform to the alignment.
3747 */
3748 size = ALIGN(size, s->align);
3749 s->size = size;
3750 s->reciprocal_size = reciprocal_value(size);
3751 if (forced_order >= 0)
3752 order = forced_order;
3753 else
3754 order = calculate_order(size);
3755
3756 if ((int)order < 0)
3757 return 0;
3758
3759 s->allocflags = 0;
3760 if (order)
3761 s->allocflags |= __GFP_COMP;
3762
3763 if (s->flags & SLAB_CACHE_DMA)
3764 s->allocflags |= GFP_DMA;
3765
3766 if (s->flags & SLAB_CACHE_DMA32)
3767 s->allocflags |= GFP_DMA32;
3768
3769 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3770 s->allocflags |= __GFP_RECLAIMABLE;
3771
3772 /*
3773 * Determine the number of objects per slab
3774 */
3775 s->oo = oo_make(order, size);
3776 s->min = oo_make(get_order(size), size);
3777 if (oo_objects(s->oo) > oo_objects(s->max))
3778 s->max = s->oo;
3779
3780 return !!oo_objects(s->oo);
3781 }
3782
3783 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3784 {
3785 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3786 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3787 s->random = get_random_long();
3788 #endif
3789
3790 if (!calculate_sizes(s, -1))
3791 goto error;
3792 if (disable_higher_order_debug) {
3793 /*
3794 * Disable debugging flags that store metadata if the min slab
3795 * order increased.
3796 */
3797 if (get_order(s->size) > get_order(s->object_size)) {
3798 s->flags &= ~DEBUG_METADATA_FLAGS;
3799 s->offset = 0;
3800 if (!calculate_sizes(s, -1))
3801 goto error;
3802 }
3803 }
3804
3805 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3806 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3807 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3808 /* Enable fast mode */
3809 s->flags |= __CMPXCHG_DOUBLE;
3810 #endif
3811
3812 /*
3813 * The larger the object size is, the more pages we want on the partial
3814 * list to avoid pounding the page allocator excessively.
3815 */
3816 set_min_partial(s, ilog2(s->size) / 2);
3817
3818 set_cpu_partial(s);
3819
3820 #ifdef CONFIG_NUMA
3821 s->remote_node_defrag_ratio = 1000;
3822 #endif
3823
3824 /* Initialize the pre-computed randomized freelist if slab is up */
3825 if (slab_state >= UP) {
3826 if (init_cache_random_seq(s))
3827 goto error;
3828 }
3829
3830 if (!init_kmem_cache_nodes(s))
3831 goto error;
3832
3833 if (alloc_kmem_cache_cpus(s))
3834 return 0;
3835
3836 free_kmem_cache_nodes(s);
3837 error:
3838 return -EINVAL;
3839 }
3840
3841 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3842 const char *text)
3843 {
3844 #ifdef CONFIG_SLUB_DEBUG
3845 void *addr = page_address(page);
3846 unsigned long *map;
3847 void *p;
3848
3849 slab_err(s, page, text, s->name);
3850 slab_lock(page);
3851
3852 map = get_map(s, page);
3853 for_each_object(p, s, addr, page->objects) {
3854
3855 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3856 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3857 print_tracking(s, p);
3858 }
3859 }
3860 put_map(map);
3861 slab_unlock(page);
3862 #endif
3863 }
3864
3865 /*
3866 * Attempt to free all partial slabs on a node.
3867 * This is called from __kmem_cache_shutdown(). We must take list_lock
3868 * because sysfs file might still access partial list after the shutdowning.
3869 */
3870 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3871 {
3872 LIST_HEAD(discard);
3873 struct page *page, *h;
3874
3875 BUG_ON(irqs_disabled());
3876 spin_lock_irq(&n->list_lock);
3877 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3878 if (!page->inuse) {
3879 remove_partial(n, page);
3880 list_add(&page->slab_list, &discard);
3881 } else {
3882 list_slab_objects(s, page,
3883 "Objects remaining in %s on __kmem_cache_shutdown()");
3884 }
3885 }
3886 spin_unlock_irq(&n->list_lock);
3887
3888 list_for_each_entry_safe(page, h, &discard, slab_list)
3889 discard_slab(s, page);
3890 }
3891
3892 bool __kmem_cache_empty(struct kmem_cache *s)
3893 {
3894 int node;
3895 struct kmem_cache_node *n;
3896
3897 for_each_kmem_cache_node(s, node, n)
3898 if (n->nr_partial || slabs_node(s, node))
3899 return false;
3900 return true;
3901 }
3902
3903 /*
3904 * Release all resources used by a slab cache.
3905 */
3906 int __kmem_cache_shutdown(struct kmem_cache *s)
3907 {
3908 int node;
3909 struct kmem_cache_node *n;
3910
3911 flush_all(s);
3912 /* Attempt to free all objects */
3913 for_each_kmem_cache_node(s, node, n) {
3914 free_partial(s, n);
3915 if (n->nr_partial || slabs_node(s, node))
3916 return 1;
3917 }
3918 return 0;
3919 }
3920
3921 /********************************************************************
3922 * Kmalloc subsystem
3923 *******************************************************************/
3924
3925 static int __init setup_slub_min_order(char *str)
3926 {
3927 get_option(&str, (int *)&slub_min_order);
3928
3929 return 1;
3930 }
3931
3932 __setup("slub_min_order=", setup_slub_min_order);
3933
3934 static int __init setup_slub_max_order(char *str)
3935 {
3936 get_option(&str, (int *)&slub_max_order);
3937 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3938
3939 return 1;
3940 }
3941
3942 __setup("slub_max_order=", setup_slub_max_order);
3943
3944 static int __init setup_slub_min_objects(char *str)
3945 {
3946 get_option(&str, (int *)&slub_min_objects);
3947
3948 return 1;
3949 }
3950
3951 __setup("slub_min_objects=", setup_slub_min_objects);
3952
3953 void *__kmalloc(size_t size, gfp_t flags)
3954 {
3955 struct kmem_cache *s;
3956 void *ret;
3957
3958 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3959 return kmalloc_large(size, flags);
3960
3961 s = kmalloc_slab(size, flags);
3962
3963 if (unlikely(ZERO_OR_NULL_PTR(s)))
3964 return s;
3965
3966 ret = slab_alloc(s, flags, _RET_IP_);
3967
3968 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3969
3970 ret = kasan_kmalloc(s, ret, size, flags);
3971
3972 return ret;
3973 }
3974 EXPORT_SYMBOL(__kmalloc);
3975
3976 #ifdef CONFIG_NUMA
3977 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3978 {
3979 struct page *page;
3980 void *ptr = NULL;
3981 unsigned int order = get_order(size);
3982
3983 flags |= __GFP_COMP;
3984 page = alloc_pages_node(node, flags, order);
3985 if (page) {
3986 ptr = page_address(page);
3987 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3988 PAGE_SIZE << order);
3989 }
3990
3991 return kmalloc_large_node_hook(ptr, size, flags);
3992 }
3993
3994 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3995 {
3996 struct kmem_cache *s;
3997 void *ret;
3998
3999 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4000 ret = kmalloc_large_node(size, flags, node);
4001
4002 trace_kmalloc_node(_RET_IP_, ret,
4003 size, PAGE_SIZE << get_order(size),
4004 flags, node);
4005
4006 return ret;
4007 }
4008
4009 s = kmalloc_slab(size, flags);
4010
4011 if (unlikely(ZERO_OR_NULL_PTR(s)))
4012 return s;
4013
4014 ret = slab_alloc_node(s, flags, node, _RET_IP_);
4015
4016 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4017
4018 ret = kasan_kmalloc(s, ret, size, flags);
4019
4020 return ret;
4021 }
4022 EXPORT_SYMBOL(__kmalloc_node);
4023 #endif /* CONFIG_NUMA */
4024
4025 #ifdef CONFIG_HARDENED_USERCOPY
4026 /*
4027 * Rejects incorrectly sized objects and objects that are to be copied
4028 * to/from userspace but do not fall entirely within the containing slab
4029 * cache's usercopy region.
4030 *
4031 * Returns NULL if check passes, otherwise const char * to name of cache
4032 * to indicate an error.
4033 */
4034 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4035 bool to_user)
4036 {
4037 struct kmem_cache *s;
4038 unsigned int offset;
4039 size_t object_size;
4040
4041 ptr = kasan_reset_tag(ptr);
4042
4043 /* Find object and usable object size. */
4044 s = page->slab_cache;
4045
4046 /* Reject impossible pointers. */
4047 if (ptr < page_address(page))
4048 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4049 to_user, 0, n);
4050
4051 /* Find offset within object. */
4052 offset = (ptr - page_address(page)) % s->size;
4053
4054 /* Adjust for redzone and reject if within the redzone. */
4055 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4056 if (offset < s->red_left_pad)
4057 usercopy_abort("SLUB object in left red zone",
4058 s->name, to_user, offset, n);
4059 offset -= s->red_left_pad;
4060 }
4061
4062 /* Allow address range falling entirely within usercopy region. */
4063 if (offset >= s->useroffset &&
4064 offset - s->useroffset <= s->usersize &&
4065 n <= s->useroffset - offset + s->usersize)
4066 return;
4067
4068 /*
4069 * If the copy is still within the allocated object, produce
4070 * a warning instead of rejecting the copy. This is intended
4071 * to be a temporary method to find any missing usercopy
4072 * whitelists.
4073 */
4074 object_size = slab_ksize(s);
4075 if (usercopy_fallback &&
4076 offset <= object_size && n <= object_size - offset) {
4077 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4078 return;
4079 }
4080
4081 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4082 }
4083 #endif /* CONFIG_HARDENED_USERCOPY */
4084
4085 size_t __ksize(const void *object)
4086 {
4087 struct page *page;
4088
4089 if (unlikely(object == ZERO_SIZE_PTR))
4090 return 0;
4091
4092 page = virt_to_head_page(object);
4093
4094 if (unlikely(!PageSlab(page))) {
4095 WARN_ON(!PageCompound(page));
4096 return page_size(page);
4097 }
4098
4099 return slab_ksize(page->slab_cache);
4100 }
4101 EXPORT_SYMBOL(__ksize);
4102
4103 void kfree(const void *x)
4104 {
4105 struct page *page;
4106 void *object = (void *)x;
4107
4108 trace_kfree(_RET_IP_, x);
4109
4110 if (unlikely(ZERO_OR_NULL_PTR(x)))
4111 return;
4112
4113 page = virt_to_head_page(x);
4114 if (unlikely(!PageSlab(page))) {
4115 unsigned int order = compound_order(page);
4116
4117 BUG_ON(!PageCompound(page));
4118 kfree_hook(object);
4119 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4120 -(PAGE_SIZE << order));
4121 __free_pages(page, order);
4122 return;
4123 }
4124 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4125 }
4126 EXPORT_SYMBOL(kfree);
4127
4128 #define SHRINK_PROMOTE_MAX 32
4129
4130 /*
4131 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4132 * up most to the head of the partial lists. New allocations will then
4133 * fill those up and thus they can be removed from the partial lists.
4134 *
4135 * The slabs with the least items are placed last. This results in them
4136 * being allocated from last increasing the chance that the last objects
4137 * are freed in them.
4138 */
4139 int __kmem_cache_shrink(struct kmem_cache *s)
4140 {
4141 int node;
4142 int i;
4143 struct kmem_cache_node *n;
4144 struct page *page;
4145 struct page *t;
4146 struct list_head discard;
4147 struct list_head promote[SHRINK_PROMOTE_MAX];
4148 unsigned long flags;
4149 int ret = 0;
4150
4151 flush_all(s);
4152 for_each_kmem_cache_node(s, node, n) {
4153 INIT_LIST_HEAD(&discard);
4154 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4155 INIT_LIST_HEAD(promote + i);
4156
4157 spin_lock_irqsave(&n->list_lock, flags);
4158
4159 /*
4160 * Build lists of slabs to discard or promote.
4161 *
4162 * Note that concurrent frees may occur while we hold the
4163 * list_lock. page->inuse here is the upper limit.
4164 */
4165 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4166 int free = page->objects - page->inuse;
4167
4168 /* Do not reread page->inuse */
4169 barrier();
4170
4171 /* We do not keep full slabs on the list */
4172 BUG_ON(free <= 0);
4173
4174 if (free == page->objects) {
4175 list_move(&page->slab_list, &discard);
4176 n->nr_partial--;
4177 } else if (free <= SHRINK_PROMOTE_MAX)
4178 list_move(&page->slab_list, promote + free - 1);
4179 }
4180
4181 /*
4182 * Promote the slabs filled up most to the head of the
4183 * partial list.
4184 */
4185 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4186 list_splice(promote + i, &n->partial);
4187
4188 spin_unlock_irqrestore(&n->list_lock, flags);
4189
4190 /* Release empty slabs */
4191 list_for_each_entry_safe(page, t, &discard, slab_list)
4192 discard_slab(s, page);
4193
4194 if (slabs_node(s, node))
4195 ret = 1;
4196 }
4197
4198 return ret;
4199 }
4200
4201 static int slab_mem_going_offline_callback(void *arg)
4202 {
4203 struct kmem_cache *s;
4204
4205 mutex_lock(&slab_mutex);
4206 list_for_each_entry(s, &slab_caches, list)
4207 __kmem_cache_shrink(s);
4208 mutex_unlock(&slab_mutex);
4209
4210 return 0;
4211 }
4212
4213 static void slab_mem_offline_callback(void *arg)
4214 {
4215 struct kmem_cache_node *n;
4216 struct kmem_cache *s;
4217 struct memory_notify *marg = arg;
4218 int offline_node;
4219
4220 offline_node = marg->status_change_nid_normal;
4221
4222 /*
4223 * If the node still has available memory. we need kmem_cache_node
4224 * for it yet.
4225 */
4226 if (offline_node < 0)
4227 return;
4228
4229 mutex_lock(&slab_mutex);
4230 list_for_each_entry(s, &slab_caches, list) {
4231 n = get_node(s, offline_node);
4232 if (n) {
4233 /*
4234 * if n->nr_slabs > 0, slabs still exist on the node
4235 * that is going down. We were unable to free them,
4236 * and offline_pages() function shouldn't call this
4237 * callback. So, we must fail.
4238 */
4239 BUG_ON(slabs_node(s, offline_node));
4240
4241 s->node[offline_node] = NULL;
4242 kmem_cache_free(kmem_cache_node, n);
4243 }
4244 }
4245 mutex_unlock(&slab_mutex);
4246 }
4247
4248 static int slab_mem_going_online_callback(void *arg)
4249 {
4250 struct kmem_cache_node *n;
4251 struct kmem_cache *s;
4252 struct memory_notify *marg = arg;
4253 int nid = marg->status_change_nid_normal;
4254 int ret = 0;
4255
4256 /*
4257 * If the node's memory is already available, then kmem_cache_node is
4258 * already created. Nothing to do.
4259 */
4260 if (nid < 0)
4261 return 0;
4262
4263 /*
4264 * We are bringing a node online. No memory is available yet. We must
4265 * allocate a kmem_cache_node structure in order to bring the node
4266 * online.
4267 */
4268 mutex_lock(&slab_mutex);
4269 list_for_each_entry(s, &slab_caches, list) {
4270 /*
4271 * XXX: kmem_cache_alloc_node will fallback to other nodes
4272 * since memory is not yet available from the node that
4273 * is brought up.
4274 */
4275 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4276 if (!n) {
4277 ret = -ENOMEM;
4278 goto out;
4279 }
4280 init_kmem_cache_node(n);
4281 s->node[nid] = n;
4282 }
4283 out:
4284 mutex_unlock(&slab_mutex);
4285 return ret;
4286 }
4287
4288 static int slab_memory_callback(struct notifier_block *self,
4289 unsigned long action, void *arg)
4290 {
4291 int ret = 0;
4292
4293 switch (action) {
4294 case MEM_GOING_ONLINE:
4295 ret = slab_mem_going_online_callback(arg);
4296 break;
4297 case MEM_GOING_OFFLINE:
4298 ret = slab_mem_going_offline_callback(arg);
4299 break;
4300 case MEM_OFFLINE:
4301 case MEM_CANCEL_ONLINE:
4302 slab_mem_offline_callback(arg);
4303 break;
4304 case MEM_ONLINE:
4305 case MEM_CANCEL_OFFLINE:
4306 break;
4307 }
4308 if (ret)
4309 ret = notifier_from_errno(ret);
4310 else
4311 ret = NOTIFY_OK;
4312 return ret;
4313 }
4314
4315 static struct notifier_block slab_memory_callback_nb = {
4316 .notifier_call = slab_memory_callback,
4317 .priority = SLAB_CALLBACK_PRI,
4318 };
4319
4320 /********************************************************************
4321 * Basic setup of slabs
4322 *******************************************************************/
4323
4324 /*
4325 * Used for early kmem_cache structures that were allocated using
4326 * the page allocator. Allocate them properly then fix up the pointers
4327 * that may be pointing to the wrong kmem_cache structure.
4328 */
4329
4330 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4331 {
4332 int node;
4333 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4334 struct kmem_cache_node *n;
4335
4336 memcpy(s, static_cache, kmem_cache->object_size);
4337
4338 /*
4339 * This runs very early, and only the boot processor is supposed to be
4340 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4341 * IPIs around.
4342 */
4343 __flush_cpu_slab(s, smp_processor_id());
4344 for_each_kmem_cache_node(s, node, n) {
4345 struct page *p;
4346
4347 list_for_each_entry(p, &n->partial, slab_list)
4348 p->slab_cache = s;
4349
4350 #ifdef CONFIG_SLUB_DEBUG
4351 list_for_each_entry(p, &n->full, slab_list)
4352 p->slab_cache = s;
4353 #endif
4354 }
4355 list_add(&s->list, &slab_caches);
4356 return s;
4357 }
4358
4359 void __init kmem_cache_init(void)
4360 {
4361 static __initdata struct kmem_cache boot_kmem_cache,
4362 boot_kmem_cache_node;
4363
4364 if (debug_guardpage_minorder())
4365 slub_max_order = 0;
4366
4367 kmem_cache_node = &boot_kmem_cache_node;
4368 kmem_cache = &boot_kmem_cache;
4369
4370 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4371 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4372
4373 register_hotmemory_notifier(&slab_memory_callback_nb);
4374
4375 /* Able to allocate the per node structures */
4376 slab_state = PARTIAL;
4377
4378 create_boot_cache(kmem_cache, "kmem_cache",
4379 offsetof(struct kmem_cache, node) +
4380 nr_node_ids * sizeof(struct kmem_cache_node *),
4381 SLAB_HWCACHE_ALIGN, 0, 0);
4382
4383 kmem_cache = bootstrap(&boot_kmem_cache);
4384 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4385
4386 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4387 setup_kmalloc_cache_index_table();
4388 create_kmalloc_caches(0);
4389
4390 /* Setup random freelists for each cache */
4391 init_freelist_randomization();
4392
4393 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4394 slub_cpu_dead);
4395
4396 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4397 cache_line_size(),
4398 slub_min_order, slub_max_order, slub_min_objects,
4399 nr_cpu_ids, nr_node_ids);
4400 }
4401
4402 void __init kmem_cache_init_late(void)
4403 {
4404 }
4405
4406 struct kmem_cache *
4407 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4408 slab_flags_t flags, void (*ctor)(void *))
4409 {
4410 struct kmem_cache *s;
4411
4412 s = find_mergeable(size, align, flags, name, ctor);
4413 if (s) {
4414 s->refcount++;
4415
4416 /*
4417 * Adjust the object sizes so that we clear
4418 * the complete object on kzalloc.
4419 */
4420 s->object_size = max(s->object_size, size);
4421 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4422
4423 if (sysfs_slab_alias(s, name)) {
4424 s->refcount--;
4425 s = NULL;
4426 }
4427 }
4428
4429 return s;
4430 }
4431
4432 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4433 {
4434 int err;
4435
4436 err = kmem_cache_open(s, flags);
4437 if (err)
4438 return err;
4439
4440 /* Mutex is not taken during early boot */
4441 if (slab_state <= UP)
4442 return 0;
4443
4444 err = sysfs_slab_add(s);
4445 if (err)
4446 __kmem_cache_release(s);
4447
4448 return err;
4449 }
4450
4451 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4452 {
4453 struct kmem_cache *s;
4454 void *ret;
4455
4456 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4457 return kmalloc_large(size, gfpflags);
4458
4459 s = kmalloc_slab(size, gfpflags);
4460
4461 if (unlikely(ZERO_OR_NULL_PTR(s)))
4462 return s;
4463
4464 ret = slab_alloc(s, gfpflags, caller);
4465
4466 /* Honor the call site pointer we received. */
4467 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4468
4469 return ret;
4470 }
4471 EXPORT_SYMBOL(__kmalloc_track_caller);
4472
4473 #ifdef CONFIG_NUMA
4474 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4475 int node, unsigned long caller)
4476 {
4477 struct kmem_cache *s;
4478 void *ret;
4479
4480 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4481 ret = kmalloc_large_node(size, gfpflags, node);
4482
4483 trace_kmalloc_node(caller, ret,
4484 size, PAGE_SIZE << get_order(size),
4485 gfpflags, node);
4486
4487 return ret;
4488 }
4489
4490 s = kmalloc_slab(size, gfpflags);
4491
4492 if (unlikely(ZERO_OR_NULL_PTR(s)))
4493 return s;
4494
4495 ret = slab_alloc_node(s, gfpflags, node, caller);
4496
4497 /* Honor the call site pointer we received. */
4498 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4499
4500 return ret;
4501 }
4502 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4503 #endif
4504
4505 #ifdef CONFIG_SYSFS
4506 static int count_inuse(struct page *page)
4507 {
4508 return page->inuse;
4509 }
4510
4511 static int count_total(struct page *page)
4512 {
4513 return page->objects;
4514 }
4515 #endif
4516
4517 #ifdef CONFIG_SLUB_DEBUG
4518 static void validate_slab(struct kmem_cache *s, struct page *page)
4519 {
4520 void *p;
4521 void *addr = page_address(page);
4522 unsigned long *map;
4523
4524 slab_lock(page);
4525
4526 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4527 goto unlock;
4528
4529 /* Now we know that a valid freelist exists */
4530 map = get_map(s, page);
4531 for_each_object(p, s, addr, page->objects) {
4532 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4533 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4534
4535 if (!check_object(s, page, p, val))
4536 break;
4537 }
4538 put_map(map);
4539 unlock:
4540 slab_unlock(page);
4541 }
4542
4543 static int validate_slab_node(struct kmem_cache *s,
4544 struct kmem_cache_node *n)
4545 {
4546 unsigned long count = 0;
4547 struct page *page;
4548 unsigned long flags;
4549
4550 spin_lock_irqsave(&n->list_lock, flags);
4551
4552 list_for_each_entry(page, &n->partial, slab_list) {
4553 validate_slab(s, page);
4554 count++;
4555 }
4556 if (count != n->nr_partial)
4557 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4558 s->name, count, n->nr_partial);
4559
4560 if (!(s->flags & SLAB_STORE_USER))
4561 goto out;
4562
4563 list_for_each_entry(page, &n->full, slab_list) {
4564 validate_slab(s, page);
4565 count++;
4566 }
4567 if (count != atomic_long_read(&n->nr_slabs))
4568 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4569 s->name, count, atomic_long_read(&n->nr_slabs));
4570
4571 out:
4572 spin_unlock_irqrestore(&n->list_lock, flags);
4573 return count;
4574 }
4575
4576 static long validate_slab_cache(struct kmem_cache *s)
4577 {
4578 int node;
4579 unsigned long count = 0;
4580 struct kmem_cache_node *n;
4581
4582 flush_all(s);
4583 for_each_kmem_cache_node(s, node, n)
4584 count += validate_slab_node(s, n);
4585
4586 return count;
4587 }
4588 /*
4589 * Generate lists of code addresses where slabcache objects are allocated
4590 * and freed.
4591 */
4592
4593 struct location {
4594 unsigned long count;
4595 unsigned long addr;
4596 long long sum_time;
4597 long min_time;
4598 long max_time;
4599 long min_pid;
4600 long max_pid;
4601 DECLARE_BITMAP(cpus, NR_CPUS);
4602 nodemask_t nodes;
4603 };
4604
4605 struct loc_track {
4606 unsigned long max;
4607 unsigned long count;
4608 struct location *loc;
4609 };
4610
4611 static void free_loc_track(struct loc_track *t)
4612 {
4613 if (t->max)
4614 free_pages((unsigned long)t->loc,
4615 get_order(sizeof(struct location) * t->max));
4616 }
4617
4618 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4619 {
4620 struct location *l;
4621 int order;
4622
4623 order = get_order(sizeof(struct location) * max);
4624
4625 l = (void *)__get_free_pages(flags, order);
4626 if (!l)
4627 return 0;
4628
4629 if (t->count) {
4630 memcpy(l, t->loc, sizeof(struct location) * t->count);
4631 free_loc_track(t);
4632 }
4633 t->max = max;
4634 t->loc = l;
4635 return 1;
4636 }
4637
4638 static int add_location(struct loc_track *t, struct kmem_cache *s,
4639 const struct track *track)
4640 {
4641 long start, end, pos;
4642 struct location *l;
4643 unsigned long caddr;
4644 unsigned long age = jiffies - track->when;
4645
4646 start = -1;
4647 end = t->count;
4648
4649 for ( ; ; ) {
4650 pos = start + (end - start + 1) / 2;
4651
4652 /*
4653 * There is nothing at "end". If we end up there
4654 * we need to add something to before end.
4655 */
4656 if (pos == end)
4657 break;
4658
4659 caddr = t->loc[pos].addr;
4660 if (track->addr == caddr) {
4661
4662 l = &t->loc[pos];
4663 l->count++;
4664 if (track->when) {
4665 l->sum_time += age;
4666 if (age < l->min_time)
4667 l->min_time = age;
4668 if (age > l->max_time)
4669 l->max_time = age;
4670
4671 if (track->pid < l->min_pid)
4672 l->min_pid = track->pid;
4673 if (track->pid > l->max_pid)
4674 l->max_pid = track->pid;
4675
4676 cpumask_set_cpu(track->cpu,
4677 to_cpumask(l->cpus));
4678 }
4679 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4680 return 1;
4681 }
4682
4683 if (track->addr < caddr)
4684 end = pos;
4685 else
4686 start = pos;
4687 }
4688
4689 /*
4690 * Not found. Insert new tracking element.
4691 */
4692 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4693 return 0;
4694
4695 l = t->loc + pos;
4696 if (pos < t->count)
4697 memmove(l + 1, l,
4698 (t->count - pos) * sizeof(struct location));
4699 t->count++;
4700 l->count = 1;
4701 l->addr = track->addr;
4702 l->sum_time = age;
4703 l->min_time = age;
4704 l->max_time = age;
4705 l->min_pid = track->pid;
4706 l->max_pid = track->pid;
4707 cpumask_clear(to_cpumask(l->cpus));
4708 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4709 nodes_clear(l->nodes);
4710 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4711 return 1;
4712 }
4713
4714 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4715 struct page *page, enum track_item alloc)
4716 {
4717 void *addr = page_address(page);
4718 void *p;
4719 unsigned long *map;
4720
4721 map = get_map(s, page);
4722 for_each_object(p, s, addr, page->objects)
4723 if (!test_bit(__obj_to_index(s, addr, p), map))
4724 add_location(t, s, get_track(s, p, alloc));
4725 put_map(map);
4726 }
4727
4728 static int list_locations(struct kmem_cache *s, char *buf,
4729 enum track_item alloc)
4730 {
4731 int len = 0;
4732 unsigned long i;
4733 struct loc_track t = { 0, 0, NULL };
4734 int node;
4735 struct kmem_cache_node *n;
4736
4737 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4738 GFP_KERNEL)) {
4739 return sysfs_emit(buf, "Out of memory\n");
4740 }
4741 /* Push back cpu slabs */
4742 flush_all(s);
4743
4744 for_each_kmem_cache_node(s, node, n) {
4745 unsigned long flags;
4746 struct page *page;
4747
4748 if (!atomic_long_read(&n->nr_slabs))
4749 continue;
4750
4751 spin_lock_irqsave(&n->list_lock, flags);
4752 list_for_each_entry(page, &n->partial, slab_list)
4753 process_slab(&t, s, page, alloc);
4754 list_for_each_entry(page, &n->full, slab_list)
4755 process_slab(&t, s, page, alloc);
4756 spin_unlock_irqrestore(&n->list_lock, flags);
4757 }
4758
4759 for (i = 0; i < t.count; i++) {
4760 struct location *l = &t.loc[i];
4761
4762 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4763
4764 if (l->addr)
4765 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4766 else
4767 len += sysfs_emit_at(buf, len, "<not-available>");
4768
4769 if (l->sum_time != l->min_time)
4770 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4771 l->min_time,
4772 (long)div_u64(l->sum_time,
4773 l->count),
4774 l->max_time);
4775 else
4776 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4777
4778 if (l->min_pid != l->max_pid)
4779 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4780 l->min_pid, l->max_pid);
4781 else
4782 len += sysfs_emit_at(buf, len, " pid=%ld",
4783 l->min_pid);
4784
4785 if (num_online_cpus() > 1 &&
4786 !cpumask_empty(to_cpumask(l->cpus)))
4787 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4788 cpumask_pr_args(to_cpumask(l->cpus)));
4789
4790 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4791 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4792 nodemask_pr_args(&l->nodes));
4793
4794 len += sysfs_emit_at(buf, len, "\n");
4795 }
4796
4797 free_loc_track(&t);
4798 if (!t.count)
4799 len += sysfs_emit_at(buf, len, "No data\n");
4800
4801 return len;
4802 }
4803 #endif /* CONFIG_SLUB_DEBUG */
4804
4805 #ifdef SLUB_RESILIENCY_TEST
4806 static void __init resiliency_test(void)
4807 {
4808 u8 *p;
4809 int type = KMALLOC_NORMAL;
4810
4811 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4812
4813 pr_err("SLUB resiliency testing\n");
4814 pr_err("-----------------------\n");
4815 pr_err("A. Corruption after allocation\n");
4816
4817 p = kzalloc(16, GFP_KERNEL);
4818 p[16] = 0x12;
4819 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4820 p + 16);
4821
4822 validate_slab_cache(kmalloc_caches[type][4]);
4823
4824 /* Hmmm... The next two are dangerous */
4825 p = kzalloc(32, GFP_KERNEL);
4826 p[32 + sizeof(void *)] = 0x34;
4827 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4828 p);
4829 pr_err("If allocated object is overwritten then not detectable\n\n");
4830
4831 validate_slab_cache(kmalloc_caches[type][5]);
4832 p = kzalloc(64, GFP_KERNEL);
4833 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4834 *p = 0x56;
4835 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4836 p);
4837 pr_err("If allocated object is overwritten then not detectable\n\n");
4838 validate_slab_cache(kmalloc_caches[type][6]);
4839
4840 pr_err("\nB. Corruption after free\n");
4841 p = kzalloc(128, GFP_KERNEL);
4842 kfree(p);
4843 *p = 0x78;
4844 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4845 validate_slab_cache(kmalloc_caches[type][7]);
4846
4847 p = kzalloc(256, GFP_KERNEL);
4848 kfree(p);
4849 p[50] = 0x9a;
4850 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4851 validate_slab_cache(kmalloc_caches[type][8]);
4852
4853 p = kzalloc(512, GFP_KERNEL);
4854 kfree(p);
4855 p[512] = 0xab;
4856 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4857 validate_slab_cache(kmalloc_caches[type][9]);
4858 }
4859 #else
4860 #ifdef CONFIG_SYSFS
4861 static void resiliency_test(void) {};
4862 #endif
4863 #endif /* SLUB_RESILIENCY_TEST */
4864
4865 #ifdef CONFIG_SYSFS
4866 enum slab_stat_type {
4867 SL_ALL, /* All slabs */
4868 SL_PARTIAL, /* Only partially allocated slabs */
4869 SL_CPU, /* Only slabs used for cpu caches */
4870 SL_OBJECTS, /* Determine allocated objects not slabs */
4871 SL_TOTAL /* Determine object capacity not slabs */
4872 };
4873
4874 #define SO_ALL (1 << SL_ALL)
4875 #define SO_PARTIAL (1 << SL_PARTIAL)
4876 #define SO_CPU (1 << SL_CPU)
4877 #define SO_OBJECTS (1 << SL_OBJECTS)
4878 #define SO_TOTAL (1 << SL_TOTAL)
4879
4880 #ifdef CONFIG_MEMCG
4881 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4882
4883 static int __init setup_slub_memcg_sysfs(char *str)
4884 {
4885 int v;
4886
4887 if (get_option(&str, &v) > 0)
4888 memcg_sysfs_enabled = v;
4889
4890 return 1;
4891 }
4892
4893 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4894 #endif
4895
4896 static ssize_t show_slab_objects(struct kmem_cache *s,
4897 char *buf, unsigned long flags)
4898 {
4899 unsigned long total = 0;
4900 int node;
4901 int x;
4902 unsigned long *nodes;
4903 int len = 0;
4904
4905 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4906 if (!nodes)
4907 return -ENOMEM;
4908
4909 if (flags & SO_CPU) {
4910 int cpu;
4911
4912 for_each_possible_cpu(cpu) {
4913 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4914 cpu);
4915 int node;
4916 struct page *page;
4917
4918 page = READ_ONCE(c->page);
4919 if (!page)
4920 continue;
4921
4922 node = page_to_nid(page);
4923 if (flags & SO_TOTAL)
4924 x = page->objects;
4925 else if (flags & SO_OBJECTS)
4926 x = page->inuse;
4927 else
4928 x = 1;
4929
4930 total += x;
4931 nodes[node] += x;
4932
4933 page = slub_percpu_partial_read_once(c);
4934 if (page) {
4935 node = page_to_nid(page);
4936 if (flags & SO_TOTAL)
4937 WARN_ON_ONCE(1);
4938 else if (flags & SO_OBJECTS)
4939 WARN_ON_ONCE(1);
4940 else
4941 x = page->pages;
4942 total += x;
4943 nodes[node] += x;
4944 }
4945 }
4946 }
4947
4948 /*
4949 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4950 * already held which will conflict with an existing lock order:
4951 *
4952 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4953 *
4954 * We don't really need mem_hotplug_lock (to hold off
4955 * slab_mem_going_offline_callback) here because slab's memory hot
4956 * unplug code doesn't destroy the kmem_cache->node[] data.
4957 */
4958
4959 #ifdef CONFIG_SLUB_DEBUG
4960 if (flags & SO_ALL) {
4961 struct kmem_cache_node *n;
4962
4963 for_each_kmem_cache_node(s, node, n) {
4964
4965 if (flags & SO_TOTAL)
4966 x = atomic_long_read(&n->total_objects);
4967 else if (flags & SO_OBJECTS)
4968 x = atomic_long_read(&n->total_objects) -
4969 count_partial(n, count_free);
4970 else
4971 x = atomic_long_read(&n->nr_slabs);
4972 total += x;
4973 nodes[node] += x;
4974 }
4975
4976 } else
4977 #endif
4978 if (flags & SO_PARTIAL) {
4979 struct kmem_cache_node *n;
4980
4981 for_each_kmem_cache_node(s, node, n) {
4982 if (flags & SO_TOTAL)
4983 x = count_partial(n, count_total);
4984 else if (flags & SO_OBJECTS)
4985 x = count_partial(n, count_inuse);
4986 else
4987 x = n->nr_partial;
4988 total += x;
4989 nodes[node] += x;
4990 }
4991 }
4992
4993 len += sysfs_emit_at(buf, len, "%lu", total);
4994 #ifdef CONFIG_NUMA
4995 for (node = 0; node < nr_node_ids; node++) {
4996 if (nodes[node])
4997 len += sysfs_emit_at(buf, len, " N%d=%lu",
4998 node, nodes[node]);
4999 }
5000 #endif
5001 len += sysfs_emit_at(buf, len, "\n");
5002 kfree(nodes);
5003
5004 return len;
5005 }
5006
5007 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5008 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5009
5010 struct slab_attribute {
5011 struct attribute attr;
5012 ssize_t (*show)(struct kmem_cache *s, char *buf);
5013 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5014 };
5015
5016 #define SLAB_ATTR_RO(_name) \
5017 static struct slab_attribute _name##_attr = \
5018 __ATTR(_name, 0400, _name##_show, NULL)
5019
5020 #define SLAB_ATTR(_name) \
5021 static struct slab_attribute _name##_attr = \
5022 __ATTR(_name, 0600, _name##_show, _name##_store)
5023
5024 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5025 {
5026 return sysfs_emit(buf, "%u\n", s->size);
5027 }
5028 SLAB_ATTR_RO(slab_size);
5029
5030 static ssize_t align_show(struct kmem_cache *s, char *buf)
5031 {
5032 return sysfs_emit(buf, "%u\n", s->align);
5033 }
5034 SLAB_ATTR_RO(align);
5035
5036 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5037 {
5038 return sysfs_emit(buf, "%u\n", s->object_size);
5039 }
5040 SLAB_ATTR_RO(object_size);
5041
5042 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5043 {
5044 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5045 }
5046 SLAB_ATTR_RO(objs_per_slab);
5047
5048 static ssize_t order_show(struct kmem_cache *s, char *buf)
5049 {
5050 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5051 }
5052 SLAB_ATTR_RO(order);
5053
5054 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5055 {
5056 return sysfs_emit(buf, "%lu\n", s->min_partial);
5057 }
5058
5059 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5060 size_t length)
5061 {
5062 unsigned long min;
5063 int err;
5064
5065 err = kstrtoul(buf, 10, &min);
5066 if (err)
5067 return err;
5068
5069 set_min_partial(s, min);
5070 return length;
5071 }
5072 SLAB_ATTR(min_partial);
5073
5074 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5075 {
5076 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5077 }
5078
5079 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5080 size_t length)
5081 {
5082 unsigned int objects;
5083 int err;
5084
5085 err = kstrtouint(buf, 10, &objects);
5086 if (err)
5087 return err;
5088 if (objects && !kmem_cache_has_cpu_partial(s))
5089 return -EINVAL;
5090
5091 slub_set_cpu_partial(s, objects);
5092 flush_all(s);
5093 return length;
5094 }
5095 SLAB_ATTR(cpu_partial);
5096
5097 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5098 {
5099 if (!s->ctor)
5100 return 0;
5101 return sysfs_emit(buf, "%pS\n", s->ctor);
5102 }
5103 SLAB_ATTR_RO(ctor);
5104
5105 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5106 {
5107 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5108 }
5109 SLAB_ATTR_RO(aliases);
5110
5111 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5112 {
5113 return show_slab_objects(s, buf, SO_PARTIAL);
5114 }
5115 SLAB_ATTR_RO(partial);
5116
5117 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5118 {
5119 return show_slab_objects(s, buf, SO_CPU);
5120 }
5121 SLAB_ATTR_RO(cpu_slabs);
5122
5123 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5124 {
5125 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5126 }
5127 SLAB_ATTR_RO(objects);
5128
5129 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5130 {
5131 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5132 }
5133 SLAB_ATTR_RO(objects_partial);
5134
5135 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5136 {
5137 int objects = 0;
5138 int pages = 0;
5139 int cpu;
5140 int len = 0;
5141
5142 for_each_online_cpu(cpu) {
5143 struct page *page;
5144
5145 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5146
5147 if (page) {
5148 pages += page->pages;
5149 objects += page->pobjects;
5150 }
5151 }
5152
5153 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5154
5155 #ifdef CONFIG_SMP
5156 for_each_online_cpu(cpu) {
5157 struct page *page;
5158
5159 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5160 if (page)
5161 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5162 cpu, page->pobjects, page->pages);
5163 }
5164 #endif
5165 len += sysfs_emit_at(buf, len, "\n");
5166
5167 return len;
5168 }
5169 SLAB_ATTR_RO(slabs_cpu_partial);
5170
5171 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5172 {
5173 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5174 }
5175 SLAB_ATTR_RO(reclaim_account);
5176
5177 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5178 {
5179 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5180 }
5181 SLAB_ATTR_RO(hwcache_align);
5182
5183 #ifdef CONFIG_ZONE_DMA
5184 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5185 {
5186 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5187 }
5188 SLAB_ATTR_RO(cache_dma);
5189 #endif
5190
5191 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5192 {
5193 return sysfs_emit(buf, "%u\n", s->usersize);
5194 }
5195 SLAB_ATTR_RO(usersize);
5196
5197 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5198 {
5199 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5200 }
5201 SLAB_ATTR_RO(destroy_by_rcu);
5202
5203 #ifdef CONFIG_SLUB_DEBUG
5204 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5205 {
5206 return show_slab_objects(s, buf, SO_ALL);
5207 }
5208 SLAB_ATTR_RO(slabs);
5209
5210 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5211 {
5212 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5213 }
5214 SLAB_ATTR_RO(total_objects);
5215
5216 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5217 {
5218 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5219 }
5220 SLAB_ATTR_RO(sanity_checks);
5221
5222 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5223 {
5224 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5225 }
5226 SLAB_ATTR_RO(trace);
5227
5228 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5229 {
5230 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5231 }
5232
5233 SLAB_ATTR_RO(red_zone);
5234
5235 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5236 {
5237 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5238 }
5239
5240 SLAB_ATTR_RO(poison);
5241
5242 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5243 {
5244 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5245 }
5246
5247 SLAB_ATTR_RO(store_user);
5248
5249 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5250 {
5251 return 0;
5252 }
5253
5254 static ssize_t validate_store(struct kmem_cache *s,
5255 const char *buf, size_t length)
5256 {
5257 int ret = -EINVAL;
5258
5259 if (buf[0] == '1') {
5260 ret = validate_slab_cache(s);
5261 if (ret >= 0)
5262 ret = length;
5263 }
5264 return ret;
5265 }
5266 SLAB_ATTR(validate);
5267
5268 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5269 {
5270 if (!(s->flags & SLAB_STORE_USER))
5271 return -ENOSYS;
5272 return list_locations(s, buf, TRACK_ALLOC);
5273 }
5274 SLAB_ATTR_RO(alloc_calls);
5275
5276 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5277 {
5278 if (!(s->flags & SLAB_STORE_USER))
5279 return -ENOSYS;
5280 return list_locations(s, buf, TRACK_FREE);
5281 }
5282 SLAB_ATTR_RO(free_calls);
5283 #endif /* CONFIG_SLUB_DEBUG */
5284
5285 #ifdef CONFIG_FAILSLAB
5286 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5287 {
5288 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5289 }
5290 SLAB_ATTR_RO(failslab);
5291 #endif
5292
5293 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5294 {
5295 return 0;
5296 }
5297
5298 static ssize_t shrink_store(struct kmem_cache *s,
5299 const char *buf, size_t length)
5300 {
5301 if (buf[0] == '1')
5302 kmem_cache_shrink(s);
5303 else
5304 return -EINVAL;
5305 return length;
5306 }
5307 SLAB_ATTR(shrink);
5308
5309 #ifdef CONFIG_NUMA
5310 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5311 {
5312 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5313 }
5314
5315 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5316 const char *buf, size_t length)
5317 {
5318 unsigned int ratio;
5319 int err;
5320
5321 err = kstrtouint(buf, 10, &ratio);
5322 if (err)
5323 return err;
5324 if (ratio > 100)
5325 return -ERANGE;
5326
5327 s->remote_node_defrag_ratio = ratio * 10;
5328
5329 return length;
5330 }
5331 SLAB_ATTR(remote_node_defrag_ratio);
5332 #endif
5333
5334 #ifdef CONFIG_SLUB_STATS
5335 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5336 {
5337 unsigned long sum = 0;
5338 int cpu;
5339 int len = 0;
5340 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5341
5342 if (!data)
5343 return -ENOMEM;
5344
5345 for_each_online_cpu(cpu) {
5346 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5347
5348 data[cpu] = x;
5349 sum += x;
5350 }
5351
5352 len += sysfs_emit_at(buf, len, "%lu", sum);
5353
5354 #ifdef CONFIG_SMP
5355 for_each_online_cpu(cpu) {
5356 if (data[cpu])
5357 len += sysfs_emit_at(buf, len, " C%d=%u",
5358 cpu, data[cpu]);
5359 }
5360 #endif
5361 kfree(data);
5362 len += sysfs_emit_at(buf, len, "\n");
5363
5364 return len;
5365 }
5366
5367 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5368 {
5369 int cpu;
5370
5371 for_each_online_cpu(cpu)
5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5373 }
5374
5375 #define STAT_ATTR(si, text) \
5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5377 { \
5378 return show_stat(s, buf, si); \
5379 } \
5380 static ssize_t text##_store(struct kmem_cache *s, \
5381 const char *buf, size_t length) \
5382 { \
5383 if (buf[0] != '0') \
5384 return -EINVAL; \
5385 clear_stat(s, si); \
5386 return length; \
5387 } \
5388 SLAB_ATTR(text); \
5389
5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5392 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5394 STAT_ATTR(FREE_FROZEN, free_frozen);
5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5398 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5399 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5401 STAT_ATTR(FREE_SLAB, free_slab);
5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5409 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5416 #endif /* CONFIG_SLUB_STATS */
5417
5418 static struct attribute *slab_attrs[] = {
5419 &slab_size_attr.attr,
5420 &object_size_attr.attr,
5421 &objs_per_slab_attr.attr,
5422 &order_attr.attr,
5423 &min_partial_attr.attr,
5424 &cpu_partial_attr.attr,
5425 &objects_attr.attr,
5426 &objects_partial_attr.attr,
5427 &partial_attr.attr,
5428 &cpu_slabs_attr.attr,
5429 &ctor_attr.attr,
5430 &aliases_attr.attr,
5431 &align_attr.attr,
5432 &hwcache_align_attr.attr,
5433 &reclaim_account_attr.attr,
5434 &destroy_by_rcu_attr.attr,
5435 &shrink_attr.attr,
5436 &slabs_cpu_partial_attr.attr,
5437 #ifdef CONFIG_SLUB_DEBUG
5438 &total_objects_attr.attr,
5439 &slabs_attr.attr,
5440 &sanity_checks_attr.attr,
5441 &trace_attr.attr,
5442 &red_zone_attr.attr,
5443 &poison_attr.attr,
5444 &store_user_attr.attr,
5445 &validate_attr.attr,
5446 &alloc_calls_attr.attr,
5447 &free_calls_attr.attr,
5448 #endif
5449 #ifdef CONFIG_ZONE_DMA
5450 &cache_dma_attr.attr,
5451 #endif
5452 #ifdef CONFIG_NUMA
5453 &remote_node_defrag_ratio_attr.attr,
5454 #endif
5455 #ifdef CONFIG_SLUB_STATS
5456 &alloc_fastpath_attr.attr,
5457 &alloc_slowpath_attr.attr,
5458 &free_fastpath_attr.attr,
5459 &free_slowpath_attr.attr,
5460 &free_frozen_attr.attr,
5461 &free_add_partial_attr.attr,
5462 &free_remove_partial_attr.attr,
5463 &alloc_from_partial_attr.attr,
5464 &alloc_slab_attr.attr,
5465 &alloc_refill_attr.attr,
5466 &alloc_node_mismatch_attr.attr,
5467 &free_slab_attr.attr,
5468 &cpuslab_flush_attr.attr,
5469 &deactivate_full_attr.attr,
5470 &deactivate_empty_attr.attr,
5471 &deactivate_to_head_attr.attr,
5472 &deactivate_to_tail_attr.attr,
5473 &deactivate_remote_frees_attr.attr,
5474 &deactivate_bypass_attr.attr,
5475 &order_fallback_attr.attr,
5476 &cmpxchg_double_fail_attr.attr,
5477 &cmpxchg_double_cpu_fail_attr.attr,
5478 &cpu_partial_alloc_attr.attr,
5479 &cpu_partial_free_attr.attr,
5480 &cpu_partial_node_attr.attr,
5481 &cpu_partial_drain_attr.attr,
5482 #endif
5483 #ifdef CONFIG_FAILSLAB
5484 &failslab_attr.attr,
5485 #endif
5486 &usersize_attr.attr,
5487
5488 NULL
5489 };
5490
5491 static const struct attribute_group slab_attr_group = {
5492 .attrs = slab_attrs,
5493 };
5494
5495 static ssize_t slab_attr_show(struct kobject *kobj,
5496 struct attribute *attr,
5497 char *buf)
5498 {
5499 struct slab_attribute *attribute;
5500 struct kmem_cache *s;
5501 int err;
5502
5503 attribute = to_slab_attr(attr);
5504 s = to_slab(kobj);
5505
5506 if (!attribute->show)
5507 return -EIO;
5508
5509 err = attribute->show(s, buf);
5510
5511 return err;
5512 }
5513
5514 static ssize_t slab_attr_store(struct kobject *kobj,
5515 struct attribute *attr,
5516 const char *buf, size_t len)
5517 {
5518 struct slab_attribute *attribute;
5519 struct kmem_cache *s;
5520 int err;
5521
5522 attribute = to_slab_attr(attr);
5523 s = to_slab(kobj);
5524
5525 if (!attribute->store)
5526 return -EIO;
5527
5528 err = attribute->store(s, buf, len);
5529 return err;
5530 }
5531
5532 static void kmem_cache_release(struct kobject *k)
5533 {
5534 slab_kmem_cache_release(to_slab(k));
5535 }
5536
5537 static const struct sysfs_ops slab_sysfs_ops = {
5538 .show = slab_attr_show,
5539 .store = slab_attr_store,
5540 };
5541
5542 static struct kobj_type slab_ktype = {
5543 .sysfs_ops = &slab_sysfs_ops,
5544 .release = kmem_cache_release,
5545 };
5546
5547 static struct kset *slab_kset;
5548
5549 static inline struct kset *cache_kset(struct kmem_cache *s)
5550 {
5551 return slab_kset;
5552 }
5553
5554 #define ID_STR_LENGTH 64
5555
5556 /* Create a unique string id for a slab cache:
5557 *
5558 * Format :[flags-]size
5559 */
5560 static char *create_unique_id(struct kmem_cache *s)
5561 {
5562 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5563 char *p = name;
5564
5565 BUG_ON(!name);
5566
5567 *p++ = ':';
5568 /*
5569 * First flags affecting slabcache operations. We will only
5570 * get here for aliasable slabs so we do not need to support
5571 * too many flags. The flags here must cover all flags that
5572 * are matched during merging to guarantee that the id is
5573 * unique.
5574 */
5575 if (s->flags & SLAB_CACHE_DMA)
5576 *p++ = 'd';
5577 if (s->flags & SLAB_CACHE_DMA32)
5578 *p++ = 'D';
5579 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5580 *p++ = 'a';
5581 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5582 *p++ = 'F';
5583 if (s->flags & SLAB_ACCOUNT)
5584 *p++ = 'A';
5585 if (p != name + 1)
5586 *p++ = '-';
5587 p += sprintf(p, "%07u", s->size);
5588
5589 BUG_ON(p > name + ID_STR_LENGTH - 1);
5590 return name;
5591 }
5592
5593 static int sysfs_slab_add(struct kmem_cache *s)
5594 {
5595 int err;
5596 const char *name;
5597 struct kset *kset = cache_kset(s);
5598 int unmergeable = slab_unmergeable(s);
5599
5600 if (!kset) {
5601 kobject_init(&s->kobj, &slab_ktype);
5602 return 0;
5603 }
5604
5605 if (!unmergeable && disable_higher_order_debug &&
5606 (slub_debug & DEBUG_METADATA_FLAGS))
5607 unmergeable = 1;
5608
5609 if (unmergeable) {
5610 /*
5611 * Slabcache can never be merged so we can use the name proper.
5612 * This is typically the case for debug situations. In that
5613 * case we can catch duplicate names easily.
5614 */
5615 sysfs_remove_link(&slab_kset->kobj, s->name);
5616 name = s->name;
5617 } else {
5618 /*
5619 * Create a unique name for the slab as a target
5620 * for the symlinks.
5621 */
5622 name = create_unique_id(s);
5623 }
5624
5625 s->kobj.kset = kset;
5626 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5627 if (err) {
5628 kobject_put(&s->kobj);
5629 goto out;
5630 }
5631
5632 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5633 if (err)
5634 goto out_del_kobj;
5635
5636 if (!unmergeable) {
5637 /* Setup first alias */
5638 sysfs_slab_alias(s, s->name);
5639 }
5640 out:
5641 if (!unmergeable)
5642 kfree(name);
5643 return err;
5644 out_del_kobj:
5645 kobject_del(&s->kobj);
5646 goto out;
5647 }
5648
5649 void sysfs_slab_unlink(struct kmem_cache *s)
5650 {
5651 if (slab_state >= FULL)
5652 kobject_del(&s->kobj);
5653 }
5654
5655 void sysfs_slab_release(struct kmem_cache *s)
5656 {
5657 if (slab_state >= FULL)
5658 kobject_put(&s->kobj);
5659 }
5660
5661 /*
5662 * Need to buffer aliases during bootup until sysfs becomes
5663 * available lest we lose that information.
5664 */
5665 struct saved_alias {
5666 struct kmem_cache *s;
5667 const char *name;
5668 struct saved_alias *next;
5669 };
5670
5671 static struct saved_alias *alias_list;
5672
5673 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5674 {
5675 struct saved_alias *al;
5676
5677 if (slab_state == FULL) {
5678 /*
5679 * If we have a leftover link then remove it.
5680 */
5681 sysfs_remove_link(&slab_kset->kobj, name);
5682 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5683 }
5684
5685 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5686 if (!al)
5687 return -ENOMEM;
5688
5689 al->s = s;
5690 al->name = name;
5691 al->next = alias_list;
5692 alias_list = al;
5693 return 0;
5694 }
5695
5696 static int __init slab_sysfs_init(void)
5697 {
5698 struct kmem_cache *s;
5699 int err;
5700
5701 mutex_lock(&slab_mutex);
5702
5703 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5704 if (!slab_kset) {
5705 mutex_unlock(&slab_mutex);
5706 pr_err("Cannot register slab subsystem.\n");
5707 return -ENOSYS;
5708 }
5709
5710 slab_state = FULL;
5711
5712 list_for_each_entry(s, &slab_caches, list) {
5713 err = sysfs_slab_add(s);
5714 if (err)
5715 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5716 s->name);
5717 }
5718
5719 while (alias_list) {
5720 struct saved_alias *al = alias_list;
5721
5722 alias_list = alias_list->next;
5723 err = sysfs_slab_alias(al->s, al->name);
5724 if (err)
5725 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5726 al->name);
5727 kfree(al);
5728 }
5729
5730 mutex_unlock(&slab_mutex);
5731 resiliency_test();
5732 return 0;
5733 }
5734
5735 __initcall(slab_sysfs_init);
5736 #endif /* CONFIG_SYSFS */
5737
5738 /*
5739 * The /proc/slabinfo ABI
5740 */
5741 #ifdef CONFIG_SLUB_DEBUG
5742 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5743 {
5744 unsigned long nr_slabs = 0;
5745 unsigned long nr_objs = 0;
5746 unsigned long nr_free = 0;
5747 int node;
5748 struct kmem_cache_node *n;
5749
5750 for_each_kmem_cache_node(s, node, n) {
5751 nr_slabs += node_nr_slabs(n);
5752 nr_objs += node_nr_objs(n);
5753 nr_free += count_partial(n, count_free);
5754 }
5755
5756 sinfo->active_objs = nr_objs - nr_free;
5757 sinfo->num_objs = nr_objs;
5758 sinfo->active_slabs = nr_slabs;
5759 sinfo->num_slabs = nr_slabs;
5760 sinfo->objects_per_slab = oo_objects(s->oo);
5761 sinfo->cache_order = oo_order(s->oo);
5762 }
5763
5764 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5765 {
5766 }
5767
5768 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5769 size_t count, loff_t *ppos)
5770 {
5771 return -EIO;
5772 }
5773 #endif /* CONFIG_SLUB_DEBUG */