]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
hugetlb: Move update_and_free_page
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23
24 /*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
100 */
101
102 #define FROZEN (1 << PG_active)
103
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109
110 static inline int SlabFrozen(struct page *page)
111 {
112 return page->flags & FROZEN;
113 }
114
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 page->flags |= FROZEN;
118 }
119
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 page->flags &= ~FROZEN;
123 }
124
125 static inline int SlabDebug(struct page *page)
126 {
127 return page->flags & SLABDEBUG;
128 }
129
130 static inline void SetSlabDebug(struct page *page)
131 {
132 page->flags |= SLABDEBUG;
133 }
134
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 page->flags &= ~SLABDEBUG;
138 }
139
140 /*
141 * Issues still to be resolved:
142 *
143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
144 *
145 * - Variable sizing of the per node arrays
146 */
147
148 /* Enable to test recovery from slab corruption on boot */
149 #undef SLUB_RESILIENCY_TEST
150
151 #if PAGE_SHIFT <= 12
152
153 /*
154 * Small page size. Make sure that we do not fragment memory
155 */
156 #define DEFAULT_MAX_ORDER 1
157 #define DEFAULT_MIN_OBJECTS 4
158
159 #else
160
161 /*
162 * Large page machines are customarily able to handle larger
163 * page orders.
164 */
165 #define DEFAULT_MAX_ORDER 2
166 #define DEFAULT_MIN_OBJECTS 8
167
168 #endif
169
170 /*
171 * Mininum number of partial slabs. These will be left on the partial
172 * lists even if they are empty. kmem_cache_shrink may reclaim them.
173 */
174 #define MIN_PARTIAL 2
175
176 /*
177 * Maximum number of desirable partial slabs.
178 * The existence of more partial slabs makes kmem_cache_shrink
179 * sort the partial list by the number of objects in the.
180 */
181 #define MAX_PARTIAL 10
182
183 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184 SLAB_POISON | SLAB_STORE_USER)
185
186 /*
187 * Set of flags that will prevent slab merging
188 */
189 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
191
192 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
193 SLAB_CACHE_DMA)
194
195 #ifndef ARCH_KMALLOC_MINALIGN
196 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
197 #endif
198
199 #ifndef ARCH_SLAB_MINALIGN
200 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
201 #endif
202
203 /* Internal SLUB flags */
204 #define __OBJECT_POISON 0x80000000 /* Poison object */
205 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
206
207 /* Not all arches define cache_line_size */
208 #ifndef cache_line_size
209 #define cache_line_size() L1_CACHE_BYTES
210 #endif
211
212 static int kmem_size = sizeof(struct kmem_cache);
213
214 #ifdef CONFIG_SMP
215 static struct notifier_block slab_notifier;
216 #endif
217
218 static enum {
219 DOWN, /* No slab functionality available */
220 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
221 UP, /* Everything works but does not show up in sysfs */
222 SYSFS /* Sysfs up */
223 } slab_state = DOWN;
224
225 /* A list of all slab caches on the system */
226 static DECLARE_RWSEM(slub_lock);
227 static LIST_HEAD(slab_caches);
228
229 /*
230 * Tracking user of a slab.
231 */
232 struct track {
233 void *addr; /* Called from address */
234 int cpu; /* Was running on cpu */
235 int pid; /* Pid context */
236 unsigned long when; /* When did the operation occur */
237 };
238
239 enum track_item { TRACK_ALLOC, TRACK_FREE };
240
241 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
242 static int sysfs_slab_add(struct kmem_cache *);
243 static int sysfs_slab_alias(struct kmem_cache *, const char *);
244 static void sysfs_slab_remove(struct kmem_cache *);
245 #else
246 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
247 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
248 { return 0; }
249 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
250 #endif
251
252 /********************************************************************
253 * Core slab cache functions
254 *******************************************************************/
255
256 int slab_is_available(void)
257 {
258 return slab_state >= UP;
259 }
260
261 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
262 {
263 #ifdef CONFIG_NUMA
264 return s->node[node];
265 #else
266 return &s->local_node;
267 #endif
268 }
269
270 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
271 {
272 #ifdef CONFIG_SMP
273 return s->cpu_slab[cpu];
274 #else
275 return &s->cpu_slab;
276 #endif
277 }
278
279 static inline int check_valid_pointer(struct kmem_cache *s,
280 struct page *page, const void *object)
281 {
282 void *base;
283
284 if (!object)
285 return 1;
286
287 base = page_address(page);
288 if (object < base || object >= base + s->objects * s->size ||
289 (object - base) % s->size) {
290 return 0;
291 }
292
293 return 1;
294 }
295
296 /*
297 * Slow version of get and set free pointer.
298 *
299 * This version requires touching the cache lines of kmem_cache which
300 * we avoid to do in the fast alloc free paths. There we obtain the offset
301 * from the page struct.
302 */
303 static inline void *get_freepointer(struct kmem_cache *s, void *object)
304 {
305 return *(void **)(object + s->offset);
306 }
307
308 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309 {
310 *(void **)(object + s->offset) = fp;
311 }
312
313 /* Loop over all objects in a slab */
314 #define for_each_object(__p, __s, __addr) \
315 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
316 __p += (__s)->size)
317
318 /* Scan freelist */
319 #define for_each_free_object(__p, __s, __free) \
320 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
321
322 /* Determine object index from a given position */
323 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
324 {
325 return (p - addr) / s->size;
326 }
327
328 #ifdef CONFIG_SLUB_DEBUG
329 /*
330 * Debug settings:
331 */
332 #ifdef CONFIG_SLUB_DEBUG_ON
333 static int slub_debug = DEBUG_DEFAULT_FLAGS;
334 #else
335 static int slub_debug;
336 #endif
337
338 static char *slub_debug_slabs;
339
340 /*
341 * Object debugging
342 */
343 static void print_section(char *text, u8 *addr, unsigned int length)
344 {
345 int i, offset;
346 int newline = 1;
347 char ascii[17];
348
349 ascii[16] = 0;
350
351 for (i = 0; i < length; i++) {
352 if (newline) {
353 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
354 newline = 0;
355 }
356 printk(" %02x", addr[i]);
357 offset = i % 16;
358 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
359 if (offset == 15) {
360 printk(" %s\n",ascii);
361 newline = 1;
362 }
363 }
364 if (!newline) {
365 i %= 16;
366 while (i < 16) {
367 printk(" ");
368 ascii[i] = ' ';
369 i++;
370 }
371 printk(" %s\n", ascii);
372 }
373 }
374
375 static struct track *get_track(struct kmem_cache *s, void *object,
376 enum track_item alloc)
377 {
378 struct track *p;
379
380 if (s->offset)
381 p = object + s->offset + sizeof(void *);
382 else
383 p = object + s->inuse;
384
385 return p + alloc;
386 }
387
388 static void set_track(struct kmem_cache *s, void *object,
389 enum track_item alloc, void *addr)
390 {
391 struct track *p;
392
393 if (s->offset)
394 p = object + s->offset + sizeof(void *);
395 else
396 p = object + s->inuse;
397
398 p += alloc;
399 if (addr) {
400 p->addr = addr;
401 p->cpu = smp_processor_id();
402 p->pid = current ? current->pid : -1;
403 p->when = jiffies;
404 } else
405 memset(p, 0, sizeof(struct track));
406 }
407
408 static void init_tracking(struct kmem_cache *s, void *object)
409 {
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 set_track(s, object, TRACK_FREE, NULL);
414 set_track(s, object, TRACK_ALLOC, NULL);
415 }
416
417 static void print_track(const char *s, struct track *t)
418 {
419 if (!t->addr)
420 return;
421
422 printk(KERN_ERR "INFO: %s in ", s);
423 __print_symbol("%s", (unsigned long)t->addr);
424 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
425 }
426
427 static void print_tracking(struct kmem_cache *s, void *object)
428 {
429 if (!(s->flags & SLAB_STORE_USER))
430 return;
431
432 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
433 print_track("Freed", get_track(s, object, TRACK_FREE));
434 }
435
436 static void print_page_info(struct page *page)
437 {
438 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439 page, page->inuse, page->freelist, page->flags);
440
441 }
442
443 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
444 {
445 va_list args;
446 char buf[100];
447
448 va_start(args, fmt);
449 vsnprintf(buf, sizeof(buf), fmt, args);
450 va_end(args);
451 printk(KERN_ERR "========================================"
452 "=====================================\n");
453 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
454 printk(KERN_ERR "----------------------------------------"
455 "-------------------------------------\n\n");
456 }
457
458 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
459 {
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
467 }
468
469 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
470 {
471 unsigned int off; /* Offset of last byte */
472 u8 *addr = page_address(page);
473
474 print_tracking(s, p);
475
476 print_page_info(page);
477
478 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479 p, p - addr, get_freepointer(s, p));
480
481 if (p > addr + 16)
482 print_section("Bytes b4", p - 16, 16);
483
484 print_section("Object", p, min(s->objsize, 128));
485
486 if (s->flags & SLAB_RED_ZONE)
487 print_section("Redzone", p + s->objsize,
488 s->inuse - s->objsize);
489
490 if (s->offset)
491 off = s->offset + sizeof(void *);
492 else
493 off = s->inuse;
494
495 if (s->flags & SLAB_STORE_USER)
496 off += 2 * sizeof(struct track);
497
498 if (off != s->size)
499 /* Beginning of the filler is the free pointer */
500 print_section("Padding", p + off, s->size - off);
501
502 dump_stack();
503 }
504
505 static void object_err(struct kmem_cache *s, struct page *page,
506 u8 *object, char *reason)
507 {
508 slab_bug(s, reason);
509 print_trailer(s, page, object);
510 }
511
512 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
513 {
514 va_list args;
515 char buf[100];
516
517 va_start(args, fmt);
518 vsnprintf(buf, sizeof(buf), fmt, args);
519 va_end(args);
520 slab_bug(s, fmt);
521 print_page_info(page);
522 dump_stack();
523 }
524
525 static void init_object(struct kmem_cache *s, void *object, int active)
526 {
527 u8 *p = object;
528
529 if (s->flags & __OBJECT_POISON) {
530 memset(p, POISON_FREE, s->objsize - 1);
531 p[s->objsize -1] = POISON_END;
532 }
533
534 if (s->flags & SLAB_RED_ZONE)
535 memset(p + s->objsize,
536 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
537 s->inuse - s->objsize);
538 }
539
540 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
541 {
542 while (bytes) {
543 if (*start != (u8)value)
544 return start;
545 start++;
546 bytes--;
547 }
548 return NULL;
549 }
550
551 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
552 void *from, void *to)
553 {
554 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
555 memset(from, data, to - from);
556 }
557
558 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
559 u8 *object, char *what,
560 u8* start, unsigned int value, unsigned int bytes)
561 {
562 u8 *fault;
563 u8 *end;
564
565 fault = check_bytes(start, value, bytes);
566 if (!fault)
567 return 1;
568
569 end = start + bytes;
570 while (end > fault && end[-1] == value)
571 end--;
572
573 slab_bug(s, "%s overwritten", what);
574 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575 fault, end - 1, fault[0], value);
576 print_trailer(s, page, object);
577
578 restore_bytes(s, what, value, fault, end);
579 return 0;
580 }
581
582 /*
583 * Object layout:
584 *
585 * object address
586 * Bytes of the object to be managed.
587 * If the freepointer may overlay the object then the free
588 * pointer is the first word of the object.
589 *
590 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
591 * 0xa5 (POISON_END)
592 *
593 * object + s->objsize
594 * Padding to reach word boundary. This is also used for Redzoning.
595 * Padding is extended by another word if Redzoning is enabled and
596 * objsize == inuse.
597 *
598 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599 * 0xcc (RED_ACTIVE) for objects in use.
600 *
601 * object + s->inuse
602 * Meta data starts here.
603 *
604 * A. Free pointer (if we cannot overwrite object on free)
605 * B. Tracking data for SLAB_STORE_USER
606 * C. Padding to reach required alignment boundary or at mininum
607 * one word if debuggin is on to be able to detect writes
608 * before the word boundary.
609 *
610 * Padding is done using 0x5a (POISON_INUSE)
611 *
612 * object + s->size
613 * Nothing is used beyond s->size.
614 *
615 * If slabcaches are merged then the objsize and inuse boundaries are mostly
616 * ignored. And therefore no slab options that rely on these boundaries
617 * may be used with merged slabcaches.
618 */
619
620 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
621 {
622 unsigned long off = s->inuse; /* The end of info */
623
624 if (s->offset)
625 /* Freepointer is placed after the object. */
626 off += sizeof(void *);
627
628 if (s->flags & SLAB_STORE_USER)
629 /* We also have user information there */
630 off += 2 * sizeof(struct track);
631
632 if (s->size == off)
633 return 1;
634
635 return check_bytes_and_report(s, page, p, "Object padding",
636 p + off, POISON_INUSE, s->size - off);
637 }
638
639 static int slab_pad_check(struct kmem_cache *s, struct page *page)
640 {
641 u8 *start;
642 u8 *fault;
643 u8 *end;
644 int length;
645 int remainder;
646
647 if (!(s->flags & SLAB_POISON))
648 return 1;
649
650 start = page_address(page);
651 end = start + (PAGE_SIZE << s->order);
652 length = s->objects * s->size;
653 remainder = end - (start + length);
654 if (!remainder)
655 return 1;
656
657 fault = check_bytes(start + length, POISON_INUSE, remainder);
658 if (!fault)
659 return 1;
660 while (end > fault && end[-1] == POISON_INUSE)
661 end--;
662
663 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
664 print_section("Padding", start, length);
665
666 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
667 return 0;
668 }
669
670 static int check_object(struct kmem_cache *s, struct page *page,
671 void *object, int active)
672 {
673 u8 *p = object;
674 u8 *endobject = object + s->objsize;
675
676 if (s->flags & SLAB_RED_ZONE) {
677 unsigned int red =
678 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
679
680 if (!check_bytes_and_report(s, page, object, "Redzone",
681 endobject, red, s->inuse - s->objsize))
682 return 0;
683 } else {
684 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
685 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
686 POISON_INUSE, s->inuse - s->objsize);
687 }
688
689 if (s->flags & SLAB_POISON) {
690 if (!active && (s->flags & __OBJECT_POISON) &&
691 (!check_bytes_and_report(s, page, p, "Poison", p,
692 POISON_FREE, s->objsize - 1) ||
693 !check_bytes_and_report(s, page, p, "Poison",
694 p + s->objsize -1, POISON_END, 1)))
695 return 0;
696 /*
697 * check_pad_bytes cleans up on its own.
698 */
699 check_pad_bytes(s, page, p);
700 }
701
702 if (!s->offset && active)
703 /*
704 * Object and freepointer overlap. Cannot check
705 * freepointer while object is allocated.
706 */
707 return 1;
708
709 /* Check free pointer validity */
710 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
711 object_err(s, page, p, "Freepointer corrupt");
712 /*
713 * No choice but to zap it and thus loose the remainder
714 * of the free objects in this slab. May cause
715 * another error because the object count is now wrong.
716 */
717 set_freepointer(s, p, NULL);
718 return 0;
719 }
720 return 1;
721 }
722
723 static int check_slab(struct kmem_cache *s, struct page *page)
724 {
725 VM_BUG_ON(!irqs_disabled());
726
727 if (!PageSlab(page)) {
728 slab_err(s, page, "Not a valid slab page");
729 return 0;
730 }
731 if (page->inuse > s->objects) {
732 slab_err(s, page, "inuse %u > max %u",
733 s->name, page->inuse, s->objects);
734 return 0;
735 }
736 /* Slab_pad_check fixes things up after itself */
737 slab_pad_check(s, page);
738 return 1;
739 }
740
741 /*
742 * Determine if a certain object on a page is on the freelist. Must hold the
743 * slab lock to guarantee that the chains are in a consistent state.
744 */
745 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
746 {
747 int nr = 0;
748 void *fp = page->freelist;
749 void *object = NULL;
750
751 while (fp && nr <= s->objects) {
752 if (fp == search)
753 return 1;
754 if (!check_valid_pointer(s, page, fp)) {
755 if (object) {
756 object_err(s, page, object,
757 "Freechain corrupt");
758 set_freepointer(s, object, NULL);
759 break;
760 } else {
761 slab_err(s, page, "Freepointer corrupt");
762 page->freelist = NULL;
763 page->inuse = s->objects;
764 slab_fix(s, "Freelist cleared");
765 return 0;
766 }
767 break;
768 }
769 object = fp;
770 fp = get_freepointer(s, object);
771 nr++;
772 }
773
774 if (page->inuse != s->objects - nr) {
775 slab_err(s, page, "Wrong object count. Counter is %d but "
776 "counted were %d", page->inuse, s->objects - nr);
777 page->inuse = s->objects - nr;
778 slab_fix(s, "Object count adjusted.");
779 }
780 return search == NULL;
781 }
782
783 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
784 {
785 if (s->flags & SLAB_TRACE) {
786 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
787 s->name,
788 alloc ? "alloc" : "free",
789 object, page->inuse,
790 page->freelist);
791
792 if (!alloc)
793 print_section("Object", (void *)object, s->objsize);
794
795 dump_stack();
796 }
797 }
798
799 /*
800 * Tracking of fully allocated slabs for debugging purposes.
801 */
802 static void add_full(struct kmem_cache_node *n, struct page *page)
803 {
804 spin_lock(&n->list_lock);
805 list_add(&page->lru, &n->full);
806 spin_unlock(&n->list_lock);
807 }
808
809 static void remove_full(struct kmem_cache *s, struct page *page)
810 {
811 struct kmem_cache_node *n;
812
813 if (!(s->flags & SLAB_STORE_USER))
814 return;
815
816 n = get_node(s, page_to_nid(page));
817
818 spin_lock(&n->list_lock);
819 list_del(&page->lru);
820 spin_unlock(&n->list_lock);
821 }
822
823 static void setup_object_debug(struct kmem_cache *s, struct page *page,
824 void *object)
825 {
826 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
827 return;
828
829 init_object(s, object, 0);
830 init_tracking(s, object);
831 }
832
833 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
834 void *object, void *addr)
835 {
836 if (!check_slab(s, page))
837 goto bad;
838
839 if (object && !on_freelist(s, page, object)) {
840 object_err(s, page, object, "Object already allocated");
841 goto bad;
842 }
843
844 if (!check_valid_pointer(s, page, object)) {
845 object_err(s, page, object, "Freelist Pointer check fails");
846 goto bad;
847 }
848
849 if (object && !check_object(s, page, object, 0))
850 goto bad;
851
852 /* Success perform special debug activities for allocs */
853 if (s->flags & SLAB_STORE_USER)
854 set_track(s, object, TRACK_ALLOC, addr);
855 trace(s, page, object, 1);
856 init_object(s, object, 1);
857 return 1;
858
859 bad:
860 if (PageSlab(page)) {
861 /*
862 * If this is a slab page then lets do the best we can
863 * to avoid issues in the future. Marking all objects
864 * as used avoids touching the remaining objects.
865 */
866 slab_fix(s, "Marking all objects used");
867 page->inuse = s->objects;
868 page->freelist = NULL;
869 }
870 return 0;
871 }
872
873 static int free_debug_processing(struct kmem_cache *s, struct page *page,
874 void *object, void *addr)
875 {
876 if (!check_slab(s, page))
877 goto fail;
878
879 if (!check_valid_pointer(s, page, object)) {
880 slab_err(s, page, "Invalid object pointer 0x%p", object);
881 goto fail;
882 }
883
884 if (on_freelist(s, page, object)) {
885 object_err(s, page, object, "Object already free");
886 goto fail;
887 }
888
889 if (!check_object(s, page, object, 1))
890 return 0;
891
892 if (unlikely(s != page->slab)) {
893 if (!PageSlab(page))
894 slab_err(s, page, "Attempt to free object(0x%p) "
895 "outside of slab", object);
896 else
897 if (!page->slab) {
898 printk(KERN_ERR
899 "SLUB <none>: no slab for object 0x%p.\n",
900 object);
901 dump_stack();
902 }
903 else
904 object_err(s, page, object,
905 "page slab pointer corrupt.");
906 goto fail;
907 }
908
909 /* Special debug activities for freeing objects */
910 if (!SlabFrozen(page) && !page->freelist)
911 remove_full(s, page);
912 if (s->flags & SLAB_STORE_USER)
913 set_track(s, object, TRACK_FREE, addr);
914 trace(s, page, object, 0);
915 init_object(s, object, 0);
916 return 1;
917
918 fail:
919 slab_fix(s, "Object at 0x%p not freed", object);
920 return 0;
921 }
922
923 static int __init setup_slub_debug(char *str)
924 {
925 slub_debug = DEBUG_DEFAULT_FLAGS;
926 if (*str++ != '=' || !*str)
927 /*
928 * No options specified. Switch on full debugging.
929 */
930 goto out;
931
932 if (*str == ',')
933 /*
934 * No options but restriction on slabs. This means full
935 * debugging for slabs matching a pattern.
936 */
937 goto check_slabs;
938
939 slub_debug = 0;
940 if (*str == '-')
941 /*
942 * Switch off all debugging measures.
943 */
944 goto out;
945
946 /*
947 * Determine which debug features should be switched on
948 */
949 for ( ;*str && *str != ','; str++) {
950 switch (tolower(*str)) {
951 case 'f':
952 slub_debug |= SLAB_DEBUG_FREE;
953 break;
954 case 'z':
955 slub_debug |= SLAB_RED_ZONE;
956 break;
957 case 'p':
958 slub_debug |= SLAB_POISON;
959 break;
960 case 'u':
961 slub_debug |= SLAB_STORE_USER;
962 break;
963 case 't':
964 slub_debug |= SLAB_TRACE;
965 break;
966 default:
967 printk(KERN_ERR "slub_debug option '%c' "
968 "unknown. skipped\n",*str);
969 }
970 }
971
972 check_slabs:
973 if (*str == ',')
974 slub_debug_slabs = str + 1;
975 out:
976 return 1;
977 }
978
979 __setup("slub_debug", setup_slub_debug);
980
981 static unsigned long kmem_cache_flags(unsigned long objsize,
982 unsigned long flags, const char *name,
983 void (*ctor)(void *, struct kmem_cache *, unsigned long))
984 {
985 /*
986 * The page->offset field is only 16 bit wide. This is an offset
987 * in units of words from the beginning of an object. If the slab
988 * size is bigger then we cannot move the free pointer behind the
989 * object anymore.
990 *
991 * On 32 bit platforms the limit is 256k. On 64bit platforms
992 * the limit is 512k.
993 *
994 * Debugging or ctor may create a need to move the free
995 * pointer. Fail if this happens.
996 */
997 if (objsize >= 65535 * sizeof(void *)) {
998 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
999 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1000 BUG_ON(ctor);
1001 } else {
1002 /*
1003 * Enable debugging if selected on the kernel commandline.
1004 */
1005 if (slub_debug && (!slub_debug_slabs ||
1006 strncmp(slub_debug_slabs, name,
1007 strlen(slub_debug_slabs)) == 0))
1008 flags |= slub_debug;
1009 }
1010
1011 return flags;
1012 }
1013 #else
1014 static inline void setup_object_debug(struct kmem_cache *s,
1015 struct page *page, void *object) {}
1016
1017 static inline int alloc_debug_processing(struct kmem_cache *s,
1018 struct page *page, void *object, void *addr) { return 0; }
1019
1020 static inline int free_debug_processing(struct kmem_cache *s,
1021 struct page *page, void *object, void *addr) { return 0; }
1022
1023 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1024 { return 1; }
1025 static inline int check_object(struct kmem_cache *s, struct page *page,
1026 void *object, int active) { return 1; }
1027 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1028 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1029 unsigned long flags, const char *name,
1030 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1031 {
1032 return flags;
1033 }
1034 #define slub_debug 0
1035 #endif
1036 /*
1037 * Slab allocation and freeing
1038 */
1039 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1040 {
1041 struct page * page;
1042 int pages = 1 << s->order;
1043
1044 if (s->order)
1045 flags |= __GFP_COMP;
1046
1047 if (s->flags & SLAB_CACHE_DMA)
1048 flags |= SLUB_DMA;
1049
1050 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1051 flags |= __GFP_RECLAIMABLE;
1052
1053 if (node == -1)
1054 page = alloc_pages(flags, s->order);
1055 else
1056 page = alloc_pages_node(node, flags, s->order);
1057
1058 if (!page)
1059 return NULL;
1060
1061 mod_zone_page_state(page_zone(page),
1062 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1063 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1064 pages);
1065
1066 return page;
1067 }
1068
1069 static void setup_object(struct kmem_cache *s, struct page *page,
1070 void *object)
1071 {
1072 setup_object_debug(s, page, object);
1073 if (unlikely(s->ctor))
1074 s->ctor(object, s, 0);
1075 }
1076
1077 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1078 {
1079 struct page *page;
1080 struct kmem_cache_node *n;
1081 void *start;
1082 void *end;
1083 void *last;
1084 void *p;
1085
1086 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087
1088 if (flags & __GFP_WAIT)
1089 local_irq_enable();
1090
1091 page = allocate_slab(s,
1092 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1093 if (!page)
1094 goto out;
1095
1096 n = get_node(s, page_to_nid(page));
1097 if (n)
1098 atomic_long_inc(&n->nr_slabs);
1099 page->slab = s;
1100 page->flags |= 1 << PG_slab;
1101 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1102 SLAB_STORE_USER | SLAB_TRACE))
1103 SetSlabDebug(page);
1104
1105 start = page_address(page);
1106 end = start + s->objects * s->size;
1107
1108 if (unlikely(s->flags & SLAB_POISON))
1109 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1110
1111 last = start;
1112 for_each_object(p, s, start) {
1113 setup_object(s, page, last);
1114 set_freepointer(s, last, p);
1115 last = p;
1116 }
1117 setup_object(s, page, last);
1118 set_freepointer(s, last, NULL);
1119
1120 page->freelist = start;
1121 page->inuse = 0;
1122 out:
1123 if (flags & __GFP_WAIT)
1124 local_irq_disable();
1125 return page;
1126 }
1127
1128 static void __free_slab(struct kmem_cache *s, struct page *page)
1129 {
1130 int pages = 1 << s->order;
1131
1132 if (unlikely(SlabDebug(page))) {
1133 void *p;
1134
1135 slab_pad_check(s, page);
1136 for_each_object(p, s, page_address(page))
1137 check_object(s, page, p, 0);
1138 ClearSlabDebug(page);
1139 }
1140
1141 mod_zone_page_state(page_zone(page),
1142 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1143 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1144 - pages);
1145
1146 __free_pages(page, s->order);
1147 }
1148
1149 static void rcu_free_slab(struct rcu_head *h)
1150 {
1151 struct page *page;
1152
1153 page = container_of((struct list_head *)h, struct page, lru);
1154 __free_slab(page->slab, page);
1155 }
1156
1157 static void free_slab(struct kmem_cache *s, struct page *page)
1158 {
1159 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1160 /*
1161 * RCU free overloads the RCU head over the LRU
1162 */
1163 struct rcu_head *head = (void *)&page->lru;
1164
1165 call_rcu(head, rcu_free_slab);
1166 } else
1167 __free_slab(s, page);
1168 }
1169
1170 static void discard_slab(struct kmem_cache *s, struct page *page)
1171 {
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173
1174 atomic_long_dec(&n->nr_slabs);
1175 reset_page_mapcount(page);
1176 __ClearPageSlab(page);
1177 free_slab(s, page);
1178 }
1179
1180 /*
1181 * Per slab locking using the pagelock
1182 */
1183 static __always_inline void slab_lock(struct page *page)
1184 {
1185 bit_spin_lock(PG_locked, &page->flags);
1186 }
1187
1188 static __always_inline void slab_unlock(struct page *page)
1189 {
1190 bit_spin_unlock(PG_locked, &page->flags);
1191 }
1192
1193 static __always_inline int slab_trylock(struct page *page)
1194 {
1195 int rc = 1;
1196
1197 rc = bit_spin_trylock(PG_locked, &page->flags);
1198 return rc;
1199 }
1200
1201 /*
1202 * Management of partially allocated slabs
1203 */
1204 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1205 {
1206 spin_lock(&n->list_lock);
1207 n->nr_partial++;
1208 list_add_tail(&page->lru, &n->partial);
1209 spin_unlock(&n->list_lock);
1210 }
1211
1212 static void add_partial(struct kmem_cache_node *n, struct page *page)
1213 {
1214 spin_lock(&n->list_lock);
1215 n->nr_partial++;
1216 list_add(&page->lru, &n->partial);
1217 spin_unlock(&n->list_lock);
1218 }
1219
1220 static void remove_partial(struct kmem_cache *s,
1221 struct page *page)
1222 {
1223 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224
1225 spin_lock(&n->list_lock);
1226 list_del(&page->lru);
1227 n->nr_partial--;
1228 spin_unlock(&n->list_lock);
1229 }
1230
1231 /*
1232 * Lock slab and remove from the partial list.
1233 *
1234 * Must hold list_lock.
1235 */
1236 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1237 {
1238 if (slab_trylock(page)) {
1239 list_del(&page->lru);
1240 n->nr_partial--;
1241 SetSlabFrozen(page);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246
1247 /*
1248 * Try to allocate a partial slab from a specific node.
1249 */
1250 static struct page *get_partial_node(struct kmem_cache_node *n)
1251 {
1252 struct page *page;
1253
1254 /*
1255 * Racy check. If we mistakenly see no partial slabs then we
1256 * just allocate an empty slab. If we mistakenly try to get a
1257 * partial slab and there is none available then get_partials()
1258 * will return NULL.
1259 */
1260 if (!n || !n->nr_partial)
1261 return NULL;
1262
1263 spin_lock(&n->list_lock);
1264 list_for_each_entry(page, &n->partial, lru)
1265 if (lock_and_freeze_slab(n, page))
1266 goto out;
1267 page = NULL;
1268 out:
1269 spin_unlock(&n->list_lock);
1270 return page;
1271 }
1272
1273 /*
1274 * Get a page from somewhere. Search in increasing NUMA distances.
1275 */
1276 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1277 {
1278 #ifdef CONFIG_NUMA
1279 struct zonelist *zonelist;
1280 struct zone **z;
1281 struct page *page;
1282
1283 /*
1284 * The defrag ratio allows a configuration of the tradeoffs between
1285 * inter node defragmentation and node local allocations. A lower
1286 * defrag_ratio increases the tendency to do local allocations
1287 * instead of attempting to obtain partial slabs from other nodes.
1288 *
1289 * If the defrag_ratio is set to 0 then kmalloc() always
1290 * returns node local objects. If the ratio is higher then kmalloc()
1291 * may return off node objects because partial slabs are obtained
1292 * from other nodes and filled up.
1293 *
1294 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1295 * defrag_ratio = 1000) then every (well almost) allocation will
1296 * first attempt to defrag slab caches on other nodes. This means
1297 * scanning over all nodes to look for partial slabs which may be
1298 * expensive if we do it every time we are trying to find a slab
1299 * with available objects.
1300 */
1301 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1302 return NULL;
1303
1304 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1305 ->node_zonelists[gfp_zone(flags)];
1306 for (z = zonelist->zones; *z; z++) {
1307 struct kmem_cache_node *n;
1308
1309 n = get_node(s, zone_to_nid(*z));
1310
1311 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1312 n->nr_partial > MIN_PARTIAL) {
1313 page = get_partial_node(n);
1314 if (page)
1315 return page;
1316 }
1317 }
1318 #endif
1319 return NULL;
1320 }
1321
1322 /*
1323 * Get a partial page, lock it and return it.
1324 */
1325 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1326 {
1327 struct page *page;
1328 int searchnode = (node == -1) ? numa_node_id() : node;
1329
1330 page = get_partial_node(get_node(s, searchnode));
1331 if (page || (flags & __GFP_THISNODE))
1332 return page;
1333
1334 return get_any_partial(s, flags);
1335 }
1336
1337 /*
1338 * Move a page back to the lists.
1339 *
1340 * Must be called with the slab lock held.
1341 *
1342 * On exit the slab lock will have been dropped.
1343 */
1344 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1345 {
1346 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1347
1348 ClearSlabFrozen(page);
1349 if (page->inuse) {
1350
1351 if (page->freelist)
1352 add_partial(n, page);
1353 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1354 add_full(n, page);
1355 slab_unlock(page);
1356
1357 } else {
1358 if (n->nr_partial < MIN_PARTIAL) {
1359 /*
1360 * Adding an empty slab to the partial slabs in order
1361 * to avoid page allocator overhead. This slab needs
1362 * to come after the other slabs with objects in
1363 * order to fill them up. That way the size of the
1364 * partial list stays small. kmem_cache_shrink can
1365 * reclaim empty slabs from the partial list.
1366 */
1367 add_partial_tail(n, page);
1368 slab_unlock(page);
1369 } else {
1370 slab_unlock(page);
1371 discard_slab(s, page);
1372 }
1373 }
1374 }
1375
1376 /*
1377 * Remove the cpu slab
1378 */
1379 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1380 {
1381 struct page *page = c->page;
1382 /*
1383 * Merge cpu freelist into freelist. Typically we get here
1384 * because both freelists are empty. So this is unlikely
1385 * to occur.
1386 */
1387 while (unlikely(c->freelist)) {
1388 void **object;
1389
1390 /* Retrieve object from cpu_freelist */
1391 object = c->freelist;
1392 c->freelist = c->freelist[c->offset];
1393
1394 /* And put onto the regular freelist */
1395 object[c->offset] = page->freelist;
1396 page->freelist = object;
1397 page->inuse--;
1398 }
1399 c->page = NULL;
1400 unfreeze_slab(s, page);
1401 }
1402
1403 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1404 {
1405 slab_lock(c->page);
1406 deactivate_slab(s, c);
1407 }
1408
1409 /*
1410 * Flush cpu slab.
1411 * Called from IPI handler with interrupts disabled.
1412 */
1413 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1414 {
1415 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1416
1417 if (likely(c && c->page))
1418 flush_slab(s, c);
1419 }
1420
1421 static void flush_cpu_slab(void *d)
1422 {
1423 struct kmem_cache *s = d;
1424
1425 __flush_cpu_slab(s, smp_processor_id());
1426 }
1427
1428 static void flush_all(struct kmem_cache *s)
1429 {
1430 #ifdef CONFIG_SMP
1431 on_each_cpu(flush_cpu_slab, s, 1, 1);
1432 #else
1433 unsigned long flags;
1434
1435 local_irq_save(flags);
1436 flush_cpu_slab(s);
1437 local_irq_restore(flags);
1438 #endif
1439 }
1440
1441 /*
1442 * Check if the objects in a per cpu structure fit numa
1443 * locality expectations.
1444 */
1445 static inline int node_match(struct kmem_cache_cpu *c, int node)
1446 {
1447 #ifdef CONFIG_NUMA
1448 if (node != -1 && c->node != node)
1449 return 0;
1450 #endif
1451 return 1;
1452 }
1453
1454 /*
1455 * Slow path. The lockless freelist is empty or we need to perform
1456 * debugging duties.
1457 *
1458 * Interrupts are disabled.
1459 *
1460 * Processing is still very fast if new objects have been freed to the
1461 * regular freelist. In that case we simply take over the regular freelist
1462 * as the lockless freelist and zap the regular freelist.
1463 *
1464 * If that is not working then we fall back to the partial lists. We take the
1465 * first element of the freelist as the object to allocate now and move the
1466 * rest of the freelist to the lockless freelist.
1467 *
1468 * And if we were unable to get a new slab from the partial slab lists then
1469 * we need to allocate a new slab. This is slowest path since we may sleep.
1470 */
1471 static void *__slab_alloc(struct kmem_cache *s,
1472 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1473 {
1474 void **object;
1475 struct page *new;
1476
1477 if (!c->page)
1478 goto new_slab;
1479
1480 slab_lock(c->page);
1481 if (unlikely(!node_match(c, node)))
1482 goto another_slab;
1483 load_freelist:
1484 object = c->page->freelist;
1485 if (unlikely(!object))
1486 goto another_slab;
1487 if (unlikely(SlabDebug(c->page)))
1488 goto debug;
1489
1490 object = c->page->freelist;
1491 c->freelist = object[c->offset];
1492 c->page->inuse = s->objects;
1493 c->page->freelist = NULL;
1494 c->node = page_to_nid(c->page);
1495 slab_unlock(c->page);
1496 return object;
1497
1498 another_slab:
1499 deactivate_slab(s, c);
1500
1501 new_slab:
1502 new = get_partial(s, gfpflags, node);
1503 if (new) {
1504 c->page = new;
1505 goto load_freelist;
1506 }
1507
1508 new = new_slab(s, gfpflags, node);
1509 if (new) {
1510 c = get_cpu_slab(s, smp_processor_id());
1511 if (c->page) {
1512 /*
1513 * Someone else populated the cpu_slab while we
1514 * enabled interrupts, or we have gotten scheduled
1515 * on another cpu. The page may not be on the
1516 * requested node even if __GFP_THISNODE was
1517 * specified. So we need to recheck.
1518 */
1519 if (node_match(c, node)) {
1520 /*
1521 * Current cpuslab is acceptable and we
1522 * want the current one since its cache hot
1523 */
1524 discard_slab(s, new);
1525 slab_lock(c->page);
1526 goto load_freelist;
1527 }
1528 /* New slab does not fit our expectations */
1529 flush_slab(s, c);
1530 }
1531 slab_lock(new);
1532 SetSlabFrozen(new);
1533 c->page = new;
1534 goto load_freelist;
1535 }
1536 return NULL;
1537 debug:
1538 object = c->page->freelist;
1539 if (!alloc_debug_processing(s, c->page, object, addr))
1540 goto another_slab;
1541
1542 c->page->inuse++;
1543 c->page->freelist = object[c->offset];
1544 c->node = -1;
1545 slab_unlock(c->page);
1546 return object;
1547 }
1548
1549 /*
1550 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1551 * have the fastpath folded into their functions. So no function call
1552 * overhead for requests that can be satisfied on the fastpath.
1553 *
1554 * The fastpath works by first checking if the lockless freelist can be used.
1555 * If not then __slab_alloc is called for slow processing.
1556 *
1557 * Otherwise we can simply pick the next object from the lockless free list.
1558 */
1559 static void __always_inline *slab_alloc(struct kmem_cache *s,
1560 gfp_t gfpflags, int node, void *addr)
1561 {
1562 void **object;
1563 unsigned long flags;
1564 struct kmem_cache_cpu *c;
1565
1566 local_irq_save(flags);
1567 c = get_cpu_slab(s, smp_processor_id());
1568 if (unlikely(!c->freelist || !node_match(c, node)))
1569
1570 object = __slab_alloc(s, gfpflags, node, addr, c);
1571
1572 else {
1573 object = c->freelist;
1574 c->freelist = object[c->offset];
1575 }
1576 local_irq_restore(flags);
1577
1578 if (unlikely((gfpflags & __GFP_ZERO) && object))
1579 memset(object, 0, c->objsize);
1580
1581 return object;
1582 }
1583
1584 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1585 {
1586 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1587 }
1588 EXPORT_SYMBOL(kmem_cache_alloc);
1589
1590 #ifdef CONFIG_NUMA
1591 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1592 {
1593 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1594 }
1595 EXPORT_SYMBOL(kmem_cache_alloc_node);
1596 #endif
1597
1598 /*
1599 * Slow patch handling. This may still be called frequently since objects
1600 * have a longer lifetime than the cpu slabs in most processing loads.
1601 *
1602 * So we still attempt to reduce cache line usage. Just take the slab
1603 * lock and free the item. If there is no additional partial page
1604 * handling required then we can return immediately.
1605 */
1606 static void __slab_free(struct kmem_cache *s, struct page *page,
1607 void *x, void *addr, unsigned int offset)
1608 {
1609 void *prior;
1610 void **object = (void *)x;
1611
1612 slab_lock(page);
1613
1614 if (unlikely(SlabDebug(page)))
1615 goto debug;
1616 checks_ok:
1617 prior = object[offset] = page->freelist;
1618 page->freelist = object;
1619 page->inuse--;
1620
1621 if (unlikely(SlabFrozen(page)))
1622 goto out_unlock;
1623
1624 if (unlikely(!page->inuse))
1625 goto slab_empty;
1626
1627 /*
1628 * Objects left in the slab. If it
1629 * was not on the partial list before
1630 * then add it.
1631 */
1632 if (unlikely(!prior))
1633 add_partial(get_node(s, page_to_nid(page)), page);
1634
1635 out_unlock:
1636 slab_unlock(page);
1637 return;
1638
1639 slab_empty:
1640 if (prior)
1641 /*
1642 * Slab still on the partial list.
1643 */
1644 remove_partial(s, page);
1645
1646 slab_unlock(page);
1647 discard_slab(s, page);
1648 return;
1649
1650 debug:
1651 if (!free_debug_processing(s, page, x, addr))
1652 goto out_unlock;
1653 goto checks_ok;
1654 }
1655
1656 /*
1657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1658 * can perform fastpath freeing without additional function calls.
1659 *
1660 * The fastpath is only possible if we are freeing to the current cpu slab
1661 * of this processor. This typically the case if we have just allocated
1662 * the item before.
1663 *
1664 * If fastpath is not possible then fall back to __slab_free where we deal
1665 * with all sorts of special processing.
1666 */
1667 static void __always_inline slab_free(struct kmem_cache *s,
1668 struct page *page, void *x, void *addr)
1669 {
1670 void **object = (void *)x;
1671 unsigned long flags;
1672 struct kmem_cache_cpu *c;
1673
1674 local_irq_save(flags);
1675 debug_check_no_locks_freed(object, s->objsize);
1676 c = get_cpu_slab(s, smp_processor_id());
1677 if (likely(page == c->page && c->node >= 0)) {
1678 object[c->offset] = c->freelist;
1679 c->freelist = object;
1680 } else
1681 __slab_free(s, page, x, addr, c->offset);
1682
1683 local_irq_restore(flags);
1684 }
1685
1686 void kmem_cache_free(struct kmem_cache *s, void *x)
1687 {
1688 struct page *page;
1689
1690 page = virt_to_head_page(x);
1691
1692 slab_free(s, page, x, __builtin_return_address(0));
1693 }
1694 EXPORT_SYMBOL(kmem_cache_free);
1695
1696 /* Figure out on which slab object the object resides */
1697 static struct page *get_object_page(const void *x)
1698 {
1699 struct page *page = virt_to_head_page(x);
1700
1701 if (!PageSlab(page))
1702 return NULL;
1703
1704 return page;
1705 }
1706
1707 /*
1708 * Object placement in a slab is made very easy because we always start at
1709 * offset 0. If we tune the size of the object to the alignment then we can
1710 * get the required alignment by putting one properly sized object after
1711 * another.
1712 *
1713 * Notice that the allocation order determines the sizes of the per cpu
1714 * caches. Each processor has always one slab available for allocations.
1715 * Increasing the allocation order reduces the number of times that slabs
1716 * must be moved on and off the partial lists and is therefore a factor in
1717 * locking overhead.
1718 */
1719
1720 /*
1721 * Mininum / Maximum order of slab pages. This influences locking overhead
1722 * and slab fragmentation. A higher order reduces the number of partial slabs
1723 * and increases the number of allocations possible without having to
1724 * take the list_lock.
1725 */
1726 static int slub_min_order;
1727 static int slub_max_order = DEFAULT_MAX_ORDER;
1728 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1729
1730 /*
1731 * Merge control. If this is set then no merging of slab caches will occur.
1732 * (Could be removed. This was introduced to pacify the merge skeptics.)
1733 */
1734 static int slub_nomerge;
1735
1736 /*
1737 * Calculate the order of allocation given an slab object size.
1738 *
1739 * The order of allocation has significant impact on performance and other
1740 * system components. Generally order 0 allocations should be preferred since
1741 * order 0 does not cause fragmentation in the page allocator. Larger objects
1742 * be problematic to put into order 0 slabs because there may be too much
1743 * unused space left. We go to a higher order if more than 1/8th of the slab
1744 * would be wasted.
1745 *
1746 * In order to reach satisfactory performance we must ensure that a minimum
1747 * number of objects is in one slab. Otherwise we may generate too much
1748 * activity on the partial lists which requires taking the list_lock. This is
1749 * less a concern for large slabs though which are rarely used.
1750 *
1751 * slub_max_order specifies the order where we begin to stop considering the
1752 * number of objects in a slab as critical. If we reach slub_max_order then
1753 * we try to keep the page order as low as possible. So we accept more waste
1754 * of space in favor of a small page order.
1755 *
1756 * Higher order allocations also allow the placement of more objects in a
1757 * slab and thereby reduce object handling overhead. If the user has
1758 * requested a higher mininum order then we start with that one instead of
1759 * the smallest order which will fit the object.
1760 */
1761 static inline int slab_order(int size, int min_objects,
1762 int max_order, int fract_leftover)
1763 {
1764 int order;
1765 int rem;
1766 int min_order = slub_min_order;
1767
1768 for (order = max(min_order,
1769 fls(min_objects * size - 1) - PAGE_SHIFT);
1770 order <= max_order; order++) {
1771
1772 unsigned long slab_size = PAGE_SIZE << order;
1773
1774 if (slab_size < min_objects * size)
1775 continue;
1776
1777 rem = slab_size % size;
1778
1779 if (rem <= slab_size / fract_leftover)
1780 break;
1781
1782 }
1783
1784 return order;
1785 }
1786
1787 static inline int calculate_order(int size)
1788 {
1789 int order;
1790 int min_objects;
1791 int fraction;
1792
1793 /*
1794 * Attempt to find best configuration for a slab. This
1795 * works by first attempting to generate a layout with
1796 * the best configuration and backing off gradually.
1797 *
1798 * First we reduce the acceptable waste in a slab. Then
1799 * we reduce the minimum objects required in a slab.
1800 */
1801 min_objects = slub_min_objects;
1802 while (min_objects > 1) {
1803 fraction = 8;
1804 while (fraction >= 4) {
1805 order = slab_order(size, min_objects,
1806 slub_max_order, fraction);
1807 if (order <= slub_max_order)
1808 return order;
1809 fraction /= 2;
1810 }
1811 min_objects /= 2;
1812 }
1813
1814 /*
1815 * We were unable to place multiple objects in a slab. Now
1816 * lets see if we can place a single object there.
1817 */
1818 order = slab_order(size, 1, slub_max_order, 1);
1819 if (order <= slub_max_order)
1820 return order;
1821
1822 /*
1823 * Doh this slab cannot be placed using slub_max_order.
1824 */
1825 order = slab_order(size, 1, MAX_ORDER, 1);
1826 if (order <= MAX_ORDER)
1827 return order;
1828 return -ENOSYS;
1829 }
1830
1831 /*
1832 * Figure out what the alignment of the objects will be.
1833 */
1834 static unsigned long calculate_alignment(unsigned long flags,
1835 unsigned long align, unsigned long size)
1836 {
1837 /*
1838 * If the user wants hardware cache aligned objects then
1839 * follow that suggestion if the object is sufficiently
1840 * large.
1841 *
1842 * The hardware cache alignment cannot override the
1843 * specified alignment though. If that is greater
1844 * then use it.
1845 */
1846 if ((flags & SLAB_HWCACHE_ALIGN) &&
1847 size > cache_line_size() / 2)
1848 return max_t(unsigned long, align, cache_line_size());
1849
1850 if (align < ARCH_SLAB_MINALIGN)
1851 return ARCH_SLAB_MINALIGN;
1852
1853 return ALIGN(align, sizeof(void *));
1854 }
1855
1856 static void init_kmem_cache_cpu(struct kmem_cache *s,
1857 struct kmem_cache_cpu *c)
1858 {
1859 c->page = NULL;
1860 c->freelist = NULL;
1861 c->node = 0;
1862 c->offset = s->offset / sizeof(void *);
1863 c->objsize = s->objsize;
1864 }
1865
1866 static void init_kmem_cache_node(struct kmem_cache_node *n)
1867 {
1868 n->nr_partial = 0;
1869 atomic_long_set(&n->nr_slabs, 0);
1870 spin_lock_init(&n->list_lock);
1871 INIT_LIST_HEAD(&n->partial);
1872 #ifdef CONFIG_SLUB_DEBUG
1873 INIT_LIST_HEAD(&n->full);
1874 #endif
1875 }
1876
1877 #ifdef CONFIG_SMP
1878 /*
1879 * Per cpu array for per cpu structures.
1880 *
1881 * The per cpu array places all kmem_cache_cpu structures from one processor
1882 * close together meaning that it becomes possible that multiple per cpu
1883 * structures are contained in one cacheline. This may be particularly
1884 * beneficial for the kmalloc caches.
1885 *
1886 * A desktop system typically has around 60-80 slabs. With 100 here we are
1887 * likely able to get per cpu structures for all caches from the array defined
1888 * here. We must be able to cover all kmalloc caches during bootstrap.
1889 *
1890 * If the per cpu array is exhausted then fall back to kmalloc
1891 * of individual cachelines. No sharing is possible then.
1892 */
1893 #define NR_KMEM_CACHE_CPU 100
1894
1895 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1896 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1897
1898 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1899 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1900
1901 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1902 int cpu, gfp_t flags)
1903 {
1904 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1905
1906 if (c)
1907 per_cpu(kmem_cache_cpu_free, cpu) =
1908 (void *)c->freelist;
1909 else {
1910 /* Table overflow: So allocate ourselves */
1911 c = kmalloc_node(
1912 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1913 flags, cpu_to_node(cpu));
1914 if (!c)
1915 return NULL;
1916 }
1917
1918 init_kmem_cache_cpu(s, c);
1919 return c;
1920 }
1921
1922 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1923 {
1924 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1925 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1926 kfree(c);
1927 return;
1928 }
1929 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1930 per_cpu(kmem_cache_cpu_free, cpu) = c;
1931 }
1932
1933 static void free_kmem_cache_cpus(struct kmem_cache *s)
1934 {
1935 int cpu;
1936
1937 for_each_online_cpu(cpu) {
1938 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1939
1940 if (c) {
1941 s->cpu_slab[cpu] = NULL;
1942 free_kmem_cache_cpu(c, cpu);
1943 }
1944 }
1945 }
1946
1947 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1948 {
1949 int cpu;
1950
1951 for_each_online_cpu(cpu) {
1952 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1953
1954 if (c)
1955 continue;
1956
1957 c = alloc_kmem_cache_cpu(s, cpu, flags);
1958 if (!c) {
1959 free_kmem_cache_cpus(s);
1960 return 0;
1961 }
1962 s->cpu_slab[cpu] = c;
1963 }
1964 return 1;
1965 }
1966
1967 /*
1968 * Initialize the per cpu array.
1969 */
1970 static void init_alloc_cpu_cpu(int cpu)
1971 {
1972 int i;
1973
1974 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1975 return;
1976
1977 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1978 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1979
1980 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1981 }
1982
1983 static void __init init_alloc_cpu(void)
1984 {
1985 int cpu;
1986
1987 for_each_online_cpu(cpu)
1988 init_alloc_cpu_cpu(cpu);
1989 }
1990
1991 #else
1992 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1993 static inline void init_alloc_cpu(void) {}
1994
1995 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1996 {
1997 init_kmem_cache_cpu(s, &s->cpu_slab);
1998 return 1;
1999 }
2000 #endif
2001
2002 #ifdef CONFIG_NUMA
2003 /*
2004 * No kmalloc_node yet so do it by hand. We know that this is the first
2005 * slab on the node for this slabcache. There are no concurrent accesses
2006 * possible.
2007 *
2008 * Note that this function only works on the kmalloc_node_cache
2009 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2010 * memory on a fresh node that has no slab structures yet.
2011 */
2012 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2013 int node)
2014 {
2015 struct page *page;
2016 struct kmem_cache_node *n;
2017
2018 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2019
2020 page = new_slab(kmalloc_caches, gfpflags, node);
2021
2022 BUG_ON(!page);
2023 if (page_to_nid(page) != node) {
2024 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2025 "node %d\n", node);
2026 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2027 "in order to be able to continue\n");
2028 }
2029
2030 n = page->freelist;
2031 BUG_ON(!n);
2032 page->freelist = get_freepointer(kmalloc_caches, n);
2033 page->inuse++;
2034 kmalloc_caches->node[node] = n;
2035 #ifdef CONFIG_SLUB_DEBUG
2036 init_object(kmalloc_caches, n, 1);
2037 init_tracking(kmalloc_caches, n);
2038 #endif
2039 init_kmem_cache_node(n);
2040 atomic_long_inc(&n->nr_slabs);
2041 add_partial(n, page);
2042
2043 /*
2044 * new_slab() disables interupts. If we do not reenable interrupts here
2045 * then bootup would continue with interrupts disabled.
2046 */
2047 local_irq_enable();
2048 return n;
2049 }
2050
2051 static void free_kmem_cache_nodes(struct kmem_cache *s)
2052 {
2053 int node;
2054
2055 for_each_node_state(node, N_NORMAL_MEMORY) {
2056 struct kmem_cache_node *n = s->node[node];
2057 if (n && n != &s->local_node)
2058 kmem_cache_free(kmalloc_caches, n);
2059 s->node[node] = NULL;
2060 }
2061 }
2062
2063 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2064 {
2065 int node;
2066 int local_node;
2067
2068 if (slab_state >= UP)
2069 local_node = page_to_nid(virt_to_page(s));
2070 else
2071 local_node = 0;
2072
2073 for_each_node_state(node, N_NORMAL_MEMORY) {
2074 struct kmem_cache_node *n;
2075
2076 if (local_node == node)
2077 n = &s->local_node;
2078 else {
2079 if (slab_state == DOWN) {
2080 n = early_kmem_cache_node_alloc(gfpflags,
2081 node);
2082 continue;
2083 }
2084 n = kmem_cache_alloc_node(kmalloc_caches,
2085 gfpflags, node);
2086
2087 if (!n) {
2088 free_kmem_cache_nodes(s);
2089 return 0;
2090 }
2091
2092 }
2093 s->node[node] = n;
2094 init_kmem_cache_node(n);
2095 }
2096 return 1;
2097 }
2098 #else
2099 static void free_kmem_cache_nodes(struct kmem_cache *s)
2100 {
2101 }
2102
2103 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2104 {
2105 init_kmem_cache_node(&s->local_node);
2106 return 1;
2107 }
2108 #endif
2109
2110 /*
2111 * calculate_sizes() determines the order and the distribution of data within
2112 * a slab object.
2113 */
2114 static int calculate_sizes(struct kmem_cache *s)
2115 {
2116 unsigned long flags = s->flags;
2117 unsigned long size = s->objsize;
2118 unsigned long align = s->align;
2119
2120 /*
2121 * Determine if we can poison the object itself. If the user of
2122 * the slab may touch the object after free or before allocation
2123 * then we should never poison the object itself.
2124 */
2125 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2126 !s->ctor)
2127 s->flags |= __OBJECT_POISON;
2128 else
2129 s->flags &= ~__OBJECT_POISON;
2130
2131 /*
2132 * Round up object size to the next word boundary. We can only
2133 * place the free pointer at word boundaries and this determines
2134 * the possible location of the free pointer.
2135 */
2136 size = ALIGN(size, sizeof(void *));
2137
2138 #ifdef CONFIG_SLUB_DEBUG
2139 /*
2140 * If we are Redzoning then check if there is some space between the
2141 * end of the object and the free pointer. If not then add an
2142 * additional word to have some bytes to store Redzone information.
2143 */
2144 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2145 size += sizeof(void *);
2146 #endif
2147
2148 /*
2149 * With that we have determined the number of bytes in actual use
2150 * by the object. This is the potential offset to the free pointer.
2151 */
2152 s->inuse = size;
2153
2154 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2155 s->ctor)) {
2156 /*
2157 * Relocate free pointer after the object if it is not
2158 * permitted to overwrite the first word of the object on
2159 * kmem_cache_free.
2160 *
2161 * This is the case if we do RCU, have a constructor or
2162 * destructor or are poisoning the objects.
2163 */
2164 s->offset = size;
2165 size += sizeof(void *);
2166 }
2167
2168 #ifdef CONFIG_SLUB_DEBUG
2169 if (flags & SLAB_STORE_USER)
2170 /*
2171 * Need to store information about allocs and frees after
2172 * the object.
2173 */
2174 size += 2 * sizeof(struct track);
2175
2176 if (flags & SLAB_RED_ZONE)
2177 /*
2178 * Add some empty padding so that we can catch
2179 * overwrites from earlier objects rather than let
2180 * tracking information or the free pointer be
2181 * corrupted if an user writes before the start
2182 * of the object.
2183 */
2184 size += sizeof(void *);
2185 #endif
2186
2187 /*
2188 * Determine the alignment based on various parameters that the
2189 * user specified and the dynamic determination of cache line size
2190 * on bootup.
2191 */
2192 align = calculate_alignment(flags, align, s->objsize);
2193
2194 /*
2195 * SLUB stores one object immediately after another beginning from
2196 * offset 0. In order to align the objects we have to simply size
2197 * each object to conform to the alignment.
2198 */
2199 size = ALIGN(size, align);
2200 s->size = size;
2201
2202 s->order = calculate_order(size);
2203 if (s->order < 0)
2204 return 0;
2205
2206 /*
2207 * Determine the number of objects per slab
2208 */
2209 s->objects = (PAGE_SIZE << s->order) / size;
2210
2211 return !!s->objects;
2212
2213 }
2214
2215 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2216 const char *name, size_t size,
2217 size_t align, unsigned long flags,
2218 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2219 {
2220 memset(s, 0, kmem_size);
2221 s->name = name;
2222 s->ctor = ctor;
2223 s->objsize = size;
2224 s->align = align;
2225 s->flags = kmem_cache_flags(size, flags, name, ctor);
2226
2227 if (!calculate_sizes(s))
2228 goto error;
2229
2230 s->refcount = 1;
2231 #ifdef CONFIG_NUMA
2232 s->defrag_ratio = 100;
2233 #endif
2234 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2235 goto error;
2236
2237 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2238 return 1;
2239 free_kmem_cache_nodes(s);
2240 error:
2241 if (flags & SLAB_PANIC)
2242 panic("Cannot create slab %s size=%lu realsize=%u "
2243 "order=%u offset=%u flags=%lx\n",
2244 s->name, (unsigned long)size, s->size, s->order,
2245 s->offset, flags);
2246 return 0;
2247 }
2248
2249 /*
2250 * Check if a given pointer is valid
2251 */
2252 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2253 {
2254 struct page * page;
2255
2256 page = get_object_page(object);
2257
2258 if (!page || s != page->slab)
2259 /* No slab or wrong slab */
2260 return 0;
2261
2262 if (!check_valid_pointer(s, page, object))
2263 return 0;
2264
2265 /*
2266 * We could also check if the object is on the slabs freelist.
2267 * But this would be too expensive and it seems that the main
2268 * purpose of kmem_ptr_valid is to check if the object belongs
2269 * to a certain slab.
2270 */
2271 return 1;
2272 }
2273 EXPORT_SYMBOL(kmem_ptr_validate);
2274
2275 /*
2276 * Determine the size of a slab object
2277 */
2278 unsigned int kmem_cache_size(struct kmem_cache *s)
2279 {
2280 return s->objsize;
2281 }
2282 EXPORT_SYMBOL(kmem_cache_size);
2283
2284 const char *kmem_cache_name(struct kmem_cache *s)
2285 {
2286 return s->name;
2287 }
2288 EXPORT_SYMBOL(kmem_cache_name);
2289
2290 /*
2291 * Attempt to free all slabs on a node. Return the number of slabs we
2292 * were unable to free.
2293 */
2294 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2295 struct list_head *list)
2296 {
2297 int slabs_inuse = 0;
2298 unsigned long flags;
2299 struct page *page, *h;
2300
2301 spin_lock_irqsave(&n->list_lock, flags);
2302 list_for_each_entry_safe(page, h, list, lru)
2303 if (!page->inuse) {
2304 list_del(&page->lru);
2305 discard_slab(s, page);
2306 } else
2307 slabs_inuse++;
2308 spin_unlock_irqrestore(&n->list_lock, flags);
2309 return slabs_inuse;
2310 }
2311
2312 /*
2313 * Release all resources used by a slab cache.
2314 */
2315 static inline int kmem_cache_close(struct kmem_cache *s)
2316 {
2317 int node;
2318
2319 flush_all(s);
2320
2321 /* Attempt to free all objects */
2322 free_kmem_cache_cpus(s);
2323 for_each_node_state(node, N_NORMAL_MEMORY) {
2324 struct kmem_cache_node *n = get_node(s, node);
2325
2326 n->nr_partial -= free_list(s, n, &n->partial);
2327 if (atomic_long_read(&n->nr_slabs))
2328 return 1;
2329 }
2330 free_kmem_cache_nodes(s);
2331 return 0;
2332 }
2333
2334 /*
2335 * Close a cache and release the kmem_cache structure
2336 * (must be used for caches created using kmem_cache_create)
2337 */
2338 void kmem_cache_destroy(struct kmem_cache *s)
2339 {
2340 down_write(&slub_lock);
2341 s->refcount--;
2342 if (!s->refcount) {
2343 list_del(&s->list);
2344 up_write(&slub_lock);
2345 if (kmem_cache_close(s))
2346 WARN_ON(1);
2347 sysfs_slab_remove(s);
2348 kfree(s);
2349 } else
2350 up_write(&slub_lock);
2351 }
2352 EXPORT_SYMBOL(kmem_cache_destroy);
2353
2354 /********************************************************************
2355 * Kmalloc subsystem
2356 *******************************************************************/
2357
2358 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2359 EXPORT_SYMBOL(kmalloc_caches);
2360
2361 #ifdef CONFIG_ZONE_DMA
2362 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2363 #endif
2364
2365 static int __init setup_slub_min_order(char *str)
2366 {
2367 get_option (&str, &slub_min_order);
2368
2369 return 1;
2370 }
2371
2372 __setup("slub_min_order=", setup_slub_min_order);
2373
2374 static int __init setup_slub_max_order(char *str)
2375 {
2376 get_option (&str, &slub_max_order);
2377
2378 return 1;
2379 }
2380
2381 __setup("slub_max_order=", setup_slub_max_order);
2382
2383 static int __init setup_slub_min_objects(char *str)
2384 {
2385 get_option (&str, &slub_min_objects);
2386
2387 return 1;
2388 }
2389
2390 __setup("slub_min_objects=", setup_slub_min_objects);
2391
2392 static int __init setup_slub_nomerge(char *str)
2393 {
2394 slub_nomerge = 1;
2395 return 1;
2396 }
2397
2398 __setup("slub_nomerge", setup_slub_nomerge);
2399
2400 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2401 const char *name, int size, gfp_t gfp_flags)
2402 {
2403 unsigned int flags = 0;
2404
2405 if (gfp_flags & SLUB_DMA)
2406 flags = SLAB_CACHE_DMA;
2407
2408 down_write(&slub_lock);
2409 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2410 flags, NULL))
2411 goto panic;
2412
2413 list_add(&s->list, &slab_caches);
2414 up_write(&slub_lock);
2415 if (sysfs_slab_add(s))
2416 goto panic;
2417 return s;
2418
2419 panic:
2420 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2421 }
2422
2423 #ifdef CONFIG_ZONE_DMA
2424
2425 static void sysfs_add_func(struct work_struct *w)
2426 {
2427 struct kmem_cache *s;
2428
2429 down_write(&slub_lock);
2430 list_for_each_entry(s, &slab_caches, list) {
2431 if (s->flags & __SYSFS_ADD_DEFERRED) {
2432 s->flags &= ~__SYSFS_ADD_DEFERRED;
2433 sysfs_slab_add(s);
2434 }
2435 }
2436 up_write(&slub_lock);
2437 }
2438
2439 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2440
2441 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2442 {
2443 struct kmem_cache *s;
2444 char *text;
2445 size_t realsize;
2446
2447 s = kmalloc_caches_dma[index];
2448 if (s)
2449 return s;
2450
2451 /* Dynamically create dma cache */
2452 if (flags & __GFP_WAIT)
2453 down_write(&slub_lock);
2454 else {
2455 if (!down_write_trylock(&slub_lock))
2456 goto out;
2457 }
2458
2459 if (kmalloc_caches_dma[index])
2460 goto unlock_out;
2461
2462 realsize = kmalloc_caches[index].objsize;
2463 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2464 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2465
2466 if (!s || !text || !kmem_cache_open(s, flags, text,
2467 realsize, ARCH_KMALLOC_MINALIGN,
2468 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2469 kfree(s);
2470 kfree(text);
2471 goto unlock_out;
2472 }
2473
2474 list_add(&s->list, &slab_caches);
2475 kmalloc_caches_dma[index] = s;
2476
2477 schedule_work(&sysfs_add_work);
2478
2479 unlock_out:
2480 up_write(&slub_lock);
2481 out:
2482 return kmalloc_caches_dma[index];
2483 }
2484 #endif
2485
2486 /*
2487 * Conversion table for small slabs sizes / 8 to the index in the
2488 * kmalloc array. This is necessary for slabs < 192 since we have non power
2489 * of two cache sizes there. The size of larger slabs can be determined using
2490 * fls.
2491 */
2492 static s8 size_index[24] = {
2493 3, /* 8 */
2494 4, /* 16 */
2495 5, /* 24 */
2496 5, /* 32 */
2497 6, /* 40 */
2498 6, /* 48 */
2499 6, /* 56 */
2500 6, /* 64 */
2501 1, /* 72 */
2502 1, /* 80 */
2503 1, /* 88 */
2504 1, /* 96 */
2505 7, /* 104 */
2506 7, /* 112 */
2507 7, /* 120 */
2508 7, /* 128 */
2509 2, /* 136 */
2510 2, /* 144 */
2511 2, /* 152 */
2512 2, /* 160 */
2513 2, /* 168 */
2514 2, /* 176 */
2515 2, /* 184 */
2516 2 /* 192 */
2517 };
2518
2519 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2520 {
2521 int index;
2522
2523 if (size <= 192) {
2524 if (!size)
2525 return ZERO_SIZE_PTR;
2526
2527 index = size_index[(size - 1) / 8];
2528 } else
2529 index = fls(size - 1);
2530
2531 #ifdef CONFIG_ZONE_DMA
2532 if (unlikely((flags & SLUB_DMA)))
2533 return dma_kmalloc_cache(index, flags);
2534
2535 #endif
2536 return &kmalloc_caches[index];
2537 }
2538
2539 void *__kmalloc(size_t size, gfp_t flags)
2540 {
2541 struct kmem_cache *s;
2542
2543 if (unlikely(size > PAGE_SIZE / 2))
2544 return (void *)__get_free_pages(flags | __GFP_COMP,
2545 get_order(size));
2546
2547 s = get_slab(size, flags);
2548
2549 if (unlikely(ZERO_OR_NULL_PTR(s)))
2550 return s;
2551
2552 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2553 }
2554 EXPORT_SYMBOL(__kmalloc);
2555
2556 #ifdef CONFIG_NUMA
2557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2558 {
2559 struct kmem_cache *s;
2560
2561 if (unlikely(size > PAGE_SIZE / 2))
2562 return (void *)__get_free_pages(flags | __GFP_COMP,
2563 get_order(size));
2564
2565 s = get_slab(size, flags);
2566
2567 if (unlikely(ZERO_OR_NULL_PTR(s)))
2568 return s;
2569
2570 return slab_alloc(s, flags, node, __builtin_return_address(0));
2571 }
2572 EXPORT_SYMBOL(__kmalloc_node);
2573 #endif
2574
2575 size_t ksize(const void *object)
2576 {
2577 struct page *page;
2578 struct kmem_cache *s;
2579
2580 BUG_ON(!object);
2581 if (unlikely(object == ZERO_SIZE_PTR))
2582 return 0;
2583
2584 page = get_object_page(object);
2585 BUG_ON(!page);
2586 s = page->slab;
2587 BUG_ON(!s);
2588
2589 /*
2590 * Debugging requires use of the padding between object
2591 * and whatever may come after it.
2592 */
2593 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2594 return s->objsize;
2595
2596 /*
2597 * If we have the need to store the freelist pointer
2598 * back there or track user information then we can
2599 * only use the space before that information.
2600 */
2601 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2602 return s->inuse;
2603
2604 /*
2605 * Else we can use all the padding etc for the allocation
2606 */
2607 return s->size;
2608 }
2609 EXPORT_SYMBOL(ksize);
2610
2611 void kfree(const void *x)
2612 {
2613 struct page *page;
2614
2615 if (unlikely(ZERO_OR_NULL_PTR(x)))
2616 return;
2617
2618 page = virt_to_head_page(x);
2619 if (unlikely(!PageSlab(page))) {
2620 put_page(page);
2621 return;
2622 }
2623 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2624 }
2625 EXPORT_SYMBOL(kfree);
2626
2627 /*
2628 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2629 * the remaining slabs by the number of items in use. The slabs with the
2630 * most items in use come first. New allocations will then fill those up
2631 * and thus they can be removed from the partial lists.
2632 *
2633 * The slabs with the least items are placed last. This results in them
2634 * being allocated from last increasing the chance that the last objects
2635 * are freed in them.
2636 */
2637 int kmem_cache_shrink(struct kmem_cache *s)
2638 {
2639 int node;
2640 int i;
2641 struct kmem_cache_node *n;
2642 struct page *page;
2643 struct page *t;
2644 struct list_head *slabs_by_inuse =
2645 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2646 unsigned long flags;
2647
2648 if (!slabs_by_inuse)
2649 return -ENOMEM;
2650
2651 flush_all(s);
2652 for_each_node_state(node, N_NORMAL_MEMORY) {
2653 n = get_node(s, node);
2654
2655 if (!n->nr_partial)
2656 continue;
2657
2658 for (i = 0; i < s->objects; i++)
2659 INIT_LIST_HEAD(slabs_by_inuse + i);
2660
2661 spin_lock_irqsave(&n->list_lock, flags);
2662
2663 /*
2664 * Build lists indexed by the items in use in each slab.
2665 *
2666 * Note that concurrent frees may occur while we hold the
2667 * list_lock. page->inuse here is the upper limit.
2668 */
2669 list_for_each_entry_safe(page, t, &n->partial, lru) {
2670 if (!page->inuse && slab_trylock(page)) {
2671 /*
2672 * Must hold slab lock here because slab_free
2673 * may have freed the last object and be
2674 * waiting to release the slab.
2675 */
2676 list_del(&page->lru);
2677 n->nr_partial--;
2678 slab_unlock(page);
2679 discard_slab(s, page);
2680 } else {
2681 list_move(&page->lru,
2682 slabs_by_inuse + page->inuse);
2683 }
2684 }
2685
2686 /*
2687 * Rebuild the partial list with the slabs filled up most
2688 * first and the least used slabs at the end.
2689 */
2690 for (i = s->objects - 1; i >= 0; i--)
2691 list_splice(slabs_by_inuse + i, n->partial.prev);
2692
2693 spin_unlock_irqrestore(&n->list_lock, flags);
2694 }
2695
2696 kfree(slabs_by_inuse);
2697 return 0;
2698 }
2699 EXPORT_SYMBOL(kmem_cache_shrink);
2700
2701 /********************************************************************
2702 * Basic setup of slabs
2703 *******************************************************************/
2704
2705 void __init kmem_cache_init(void)
2706 {
2707 int i;
2708 int caches = 0;
2709
2710 init_alloc_cpu();
2711
2712 #ifdef CONFIG_NUMA
2713 /*
2714 * Must first have the slab cache available for the allocations of the
2715 * struct kmem_cache_node's. There is special bootstrap code in
2716 * kmem_cache_open for slab_state == DOWN.
2717 */
2718 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2719 sizeof(struct kmem_cache_node), GFP_KERNEL);
2720 kmalloc_caches[0].refcount = -1;
2721 caches++;
2722 #endif
2723
2724 /* Able to allocate the per node structures */
2725 slab_state = PARTIAL;
2726
2727 /* Caches that are not of the two-to-the-power-of size */
2728 if (KMALLOC_MIN_SIZE <= 64) {
2729 create_kmalloc_cache(&kmalloc_caches[1],
2730 "kmalloc-96", 96, GFP_KERNEL);
2731 caches++;
2732 }
2733 if (KMALLOC_MIN_SIZE <= 128) {
2734 create_kmalloc_cache(&kmalloc_caches[2],
2735 "kmalloc-192", 192, GFP_KERNEL);
2736 caches++;
2737 }
2738
2739 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2740 create_kmalloc_cache(&kmalloc_caches[i],
2741 "kmalloc", 1 << i, GFP_KERNEL);
2742 caches++;
2743 }
2744
2745
2746 /*
2747 * Patch up the size_index table if we have strange large alignment
2748 * requirements for the kmalloc array. This is only the case for
2749 * mips it seems. The standard arches will not generate any code here.
2750 *
2751 * Largest permitted alignment is 256 bytes due to the way we
2752 * handle the index determination for the smaller caches.
2753 *
2754 * Make sure that nothing crazy happens if someone starts tinkering
2755 * around with ARCH_KMALLOC_MINALIGN
2756 */
2757 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2758 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2759
2760 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2761 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2762
2763 slab_state = UP;
2764
2765 /* Provide the correct kmalloc names now that the caches are up */
2766 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2767 kmalloc_caches[i]. name =
2768 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2769
2770 #ifdef CONFIG_SMP
2771 register_cpu_notifier(&slab_notifier);
2772 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2773 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2774 #else
2775 kmem_size = sizeof(struct kmem_cache);
2776 #endif
2777
2778
2779 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2780 " CPUs=%d, Nodes=%d\n",
2781 caches, cache_line_size(),
2782 slub_min_order, slub_max_order, slub_min_objects,
2783 nr_cpu_ids, nr_node_ids);
2784 }
2785
2786 /*
2787 * Find a mergeable slab cache
2788 */
2789 static int slab_unmergeable(struct kmem_cache *s)
2790 {
2791 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2792 return 1;
2793
2794 if (s->ctor)
2795 return 1;
2796
2797 /*
2798 * We may have set a slab to be unmergeable during bootstrap.
2799 */
2800 if (s->refcount < 0)
2801 return 1;
2802
2803 return 0;
2804 }
2805
2806 static struct kmem_cache *find_mergeable(size_t size,
2807 size_t align, unsigned long flags, const char *name,
2808 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2809 {
2810 struct kmem_cache *s;
2811
2812 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2813 return NULL;
2814
2815 if (ctor)
2816 return NULL;
2817
2818 size = ALIGN(size, sizeof(void *));
2819 align = calculate_alignment(flags, align, size);
2820 size = ALIGN(size, align);
2821 flags = kmem_cache_flags(size, flags, name, NULL);
2822
2823 list_for_each_entry(s, &slab_caches, list) {
2824 if (slab_unmergeable(s))
2825 continue;
2826
2827 if (size > s->size)
2828 continue;
2829
2830 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2831 continue;
2832 /*
2833 * Check if alignment is compatible.
2834 * Courtesy of Adrian Drzewiecki
2835 */
2836 if ((s->size & ~(align -1)) != s->size)
2837 continue;
2838
2839 if (s->size - size >= sizeof(void *))
2840 continue;
2841
2842 return s;
2843 }
2844 return NULL;
2845 }
2846
2847 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2848 size_t align, unsigned long flags,
2849 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2850 {
2851 struct kmem_cache *s;
2852
2853 down_write(&slub_lock);
2854 s = find_mergeable(size, align, flags, name, ctor);
2855 if (s) {
2856 int cpu;
2857
2858 s->refcount++;
2859 /*
2860 * Adjust the object sizes so that we clear
2861 * the complete object on kzalloc.
2862 */
2863 s->objsize = max(s->objsize, (int)size);
2864
2865 /*
2866 * And then we need to update the object size in the
2867 * per cpu structures
2868 */
2869 for_each_online_cpu(cpu)
2870 get_cpu_slab(s, cpu)->objsize = s->objsize;
2871 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2872 up_write(&slub_lock);
2873 if (sysfs_slab_alias(s, name))
2874 goto err;
2875 return s;
2876 }
2877 s = kmalloc(kmem_size, GFP_KERNEL);
2878 if (s) {
2879 if (kmem_cache_open(s, GFP_KERNEL, name,
2880 size, align, flags, ctor)) {
2881 list_add(&s->list, &slab_caches);
2882 up_write(&slub_lock);
2883 if (sysfs_slab_add(s))
2884 goto err;
2885 return s;
2886 }
2887 kfree(s);
2888 }
2889 up_write(&slub_lock);
2890
2891 err:
2892 if (flags & SLAB_PANIC)
2893 panic("Cannot create slabcache %s\n", name);
2894 else
2895 s = NULL;
2896 return s;
2897 }
2898 EXPORT_SYMBOL(kmem_cache_create);
2899
2900 #ifdef CONFIG_SMP
2901 /*
2902 * Use the cpu notifier to insure that the cpu slabs are flushed when
2903 * necessary.
2904 */
2905 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2906 unsigned long action, void *hcpu)
2907 {
2908 long cpu = (long)hcpu;
2909 struct kmem_cache *s;
2910 unsigned long flags;
2911
2912 switch (action) {
2913 case CPU_UP_PREPARE:
2914 case CPU_UP_PREPARE_FROZEN:
2915 init_alloc_cpu_cpu(cpu);
2916 down_read(&slub_lock);
2917 list_for_each_entry(s, &slab_caches, list)
2918 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
2919 GFP_KERNEL);
2920 up_read(&slub_lock);
2921 break;
2922
2923 case CPU_UP_CANCELED:
2924 case CPU_UP_CANCELED_FROZEN:
2925 case CPU_DEAD:
2926 case CPU_DEAD_FROZEN:
2927 down_read(&slub_lock);
2928 list_for_each_entry(s, &slab_caches, list) {
2929 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2930
2931 local_irq_save(flags);
2932 __flush_cpu_slab(s, cpu);
2933 local_irq_restore(flags);
2934 free_kmem_cache_cpu(c, cpu);
2935 s->cpu_slab[cpu] = NULL;
2936 }
2937 up_read(&slub_lock);
2938 break;
2939 default:
2940 break;
2941 }
2942 return NOTIFY_OK;
2943 }
2944
2945 static struct notifier_block __cpuinitdata slab_notifier =
2946 { &slab_cpuup_callback, NULL, 0 };
2947
2948 #endif
2949
2950 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2951 {
2952 struct kmem_cache *s;
2953
2954 if (unlikely(size > PAGE_SIZE / 2))
2955 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2956 get_order(size));
2957 s = get_slab(size, gfpflags);
2958
2959 if (unlikely(ZERO_OR_NULL_PTR(s)))
2960 return s;
2961
2962 return slab_alloc(s, gfpflags, -1, caller);
2963 }
2964
2965 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2966 int node, void *caller)
2967 {
2968 struct kmem_cache *s;
2969
2970 if (unlikely(size > PAGE_SIZE / 2))
2971 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2972 get_order(size));
2973 s = get_slab(size, gfpflags);
2974
2975 if (unlikely(ZERO_OR_NULL_PTR(s)))
2976 return s;
2977
2978 return slab_alloc(s, gfpflags, node, caller);
2979 }
2980
2981 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2982 static int validate_slab(struct kmem_cache *s, struct page *page,
2983 unsigned long *map)
2984 {
2985 void *p;
2986 void *addr = page_address(page);
2987
2988 if (!check_slab(s, page) ||
2989 !on_freelist(s, page, NULL))
2990 return 0;
2991
2992 /* Now we know that a valid freelist exists */
2993 bitmap_zero(map, s->objects);
2994
2995 for_each_free_object(p, s, page->freelist) {
2996 set_bit(slab_index(p, s, addr), map);
2997 if (!check_object(s, page, p, 0))
2998 return 0;
2999 }
3000
3001 for_each_object(p, s, addr)
3002 if (!test_bit(slab_index(p, s, addr), map))
3003 if (!check_object(s, page, p, 1))
3004 return 0;
3005 return 1;
3006 }
3007
3008 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3009 unsigned long *map)
3010 {
3011 if (slab_trylock(page)) {
3012 validate_slab(s, page, map);
3013 slab_unlock(page);
3014 } else
3015 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3016 s->name, page);
3017
3018 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3019 if (!SlabDebug(page))
3020 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3021 "on slab 0x%p\n", s->name, page);
3022 } else {
3023 if (SlabDebug(page))
3024 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3025 "slab 0x%p\n", s->name, page);
3026 }
3027 }
3028
3029 static int validate_slab_node(struct kmem_cache *s,
3030 struct kmem_cache_node *n, unsigned long *map)
3031 {
3032 unsigned long count = 0;
3033 struct page *page;
3034 unsigned long flags;
3035
3036 spin_lock_irqsave(&n->list_lock, flags);
3037
3038 list_for_each_entry(page, &n->partial, lru) {
3039 validate_slab_slab(s, page, map);
3040 count++;
3041 }
3042 if (count != n->nr_partial)
3043 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3044 "counter=%ld\n", s->name, count, n->nr_partial);
3045
3046 if (!(s->flags & SLAB_STORE_USER))
3047 goto out;
3048
3049 list_for_each_entry(page, &n->full, lru) {
3050 validate_slab_slab(s, page, map);
3051 count++;
3052 }
3053 if (count != atomic_long_read(&n->nr_slabs))
3054 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3055 "counter=%ld\n", s->name, count,
3056 atomic_long_read(&n->nr_slabs));
3057
3058 out:
3059 spin_unlock_irqrestore(&n->list_lock, flags);
3060 return count;
3061 }
3062
3063 static long validate_slab_cache(struct kmem_cache *s)
3064 {
3065 int node;
3066 unsigned long count = 0;
3067 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3068 sizeof(unsigned long), GFP_KERNEL);
3069
3070 if (!map)
3071 return -ENOMEM;
3072
3073 flush_all(s);
3074 for_each_node_state(node, N_NORMAL_MEMORY) {
3075 struct kmem_cache_node *n = get_node(s, node);
3076
3077 count += validate_slab_node(s, n, map);
3078 }
3079 kfree(map);
3080 return count;
3081 }
3082
3083 #ifdef SLUB_RESILIENCY_TEST
3084 static void resiliency_test(void)
3085 {
3086 u8 *p;
3087
3088 printk(KERN_ERR "SLUB resiliency testing\n");
3089 printk(KERN_ERR "-----------------------\n");
3090 printk(KERN_ERR "A. Corruption after allocation\n");
3091
3092 p = kzalloc(16, GFP_KERNEL);
3093 p[16] = 0x12;
3094 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3095 " 0x12->0x%p\n\n", p + 16);
3096
3097 validate_slab_cache(kmalloc_caches + 4);
3098
3099 /* Hmmm... The next two are dangerous */
3100 p = kzalloc(32, GFP_KERNEL);
3101 p[32 + sizeof(void *)] = 0x34;
3102 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3103 " 0x34 -> -0x%p\n", p);
3104 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3105
3106 validate_slab_cache(kmalloc_caches + 5);
3107 p = kzalloc(64, GFP_KERNEL);
3108 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3109 *p = 0x56;
3110 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3111 p);
3112 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3113 validate_slab_cache(kmalloc_caches + 6);
3114
3115 printk(KERN_ERR "\nB. Corruption after free\n");
3116 p = kzalloc(128, GFP_KERNEL);
3117 kfree(p);
3118 *p = 0x78;
3119 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3120 validate_slab_cache(kmalloc_caches + 7);
3121
3122 p = kzalloc(256, GFP_KERNEL);
3123 kfree(p);
3124 p[50] = 0x9a;
3125 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3126 validate_slab_cache(kmalloc_caches + 8);
3127
3128 p = kzalloc(512, GFP_KERNEL);
3129 kfree(p);
3130 p[512] = 0xab;
3131 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3132 validate_slab_cache(kmalloc_caches + 9);
3133 }
3134 #else
3135 static void resiliency_test(void) {};
3136 #endif
3137
3138 /*
3139 * Generate lists of code addresses where slabcache objects are allocated
3140 * and freed.
3141 */
3142
3143 struct location {
3144 unsigned long count;
3145 void *addr;
3146 long long sum_time;
3147 long min_time;
3148 long max_time;
3149 long min_pid;
3150 long max_pid;
3151 cpumask_t cpus;
3152 nodemask_t nodes;
3153 };
3154
3155 struct loc_track {
3156 unsigned long max;
3157 unsigned long count;
3158 struct location *loc;
3159 };
3160
3161 static void free_loc_track(struct loc_track *t)
3162 {
3163 if (t->max)
3164 free_pages((unsigned long)t->loc,
3165 get_order(sizeof(struct location) * t->max));
3166 }
3167
3168 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3169 {
3170 struct location *l;
3171 int order;
3172
3173 order = get_order(sizeof(struct location) * max);
3174
3175 l = (void *)__get_free_pages(flags, order);
3176 if (!l)
3177 return 0;
3178
3179 if (t->count) {
3180 memcpy(l, t->loc, sizeof(struct location) * t->count);
3181 free_loc_track(t);
3182 }
3183 t->max = max;
3184 t->loc = l;
3185 return 1;
3186 }
3187
3188 static int add_location(struct loc_track *t, struct kmem_cache *s,
3189 const struct track *track)
3190 {
3191 long start, end, pos;
3192 struct location *l;
3193 void *caddr;
3194 unsigned long age = jiffies - track->when;
3195
3196 start = -1;
3197 end = t->count;
3198
3199 for ( ; ; ) {
3200 pos = start + (end - start + 1) / 2;
3201
3202 /*
3203 * There is nothing at "end". If we end up there
3204 * we need to add something to before end.
3205 */
3206 if (pos == end)
3207 break;
3208
3209 caddr = t->loc[pos].addr;
3210 if (track->addr == caddr) {
3211
3212 l = &t->loc[pos];
3213 l->count++;
3214 if (track->when) {
3215 l->sum_time += age;
3216 if (age < l->min_time)
3217 l->min_time = age;
3218 if (age > l->max_time)
3219 l->max_time = age;
3220
3221 if (track->pid < l->min_pid)
3222 l->min_pid = track->pid;
3223 if (track->pid > l->max_pid)
3224 l->max_pid = track->pid;
3225
3226 cpu_set(track->cpu, l->cpus);
3227 }
3228 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3229 return 1;
3230 }
3231
3232 if (track->addr < caddr)
3233 end = pos;
3234 else
3235 start = pos;
3236 }
3237
3238 /*
3239 * Not found. Insert new tracking element.
3240 */
3241 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3242 return 0;
3243
3244 l = t->loc + pos;
3245 if (pos < t->count)
3246 memmove(l + 1, l,
3247 (t->count - pos) * sizeof(struct location));
3248 t->count++;
3249 l->count = 1;
3250 l->addr = track->addr;
3251 l->sum_time = age;
3252 l->min_time = age;
3253 l->max_time = age;
3254 l->min_pid = track->pid;
3255 l->max_pid = track->pid;
3256 cpus_clear(l->cpus);
3257 cpu_set(track->cpu, l->cpus);
3258 nodes_clear(l->nodes);
3259 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3260 return 1;
3261 }
3262
3263 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3264 struct page *page, enum track_item alloc)
3265 {
3266 void *addr = page_address(page);
3267 DECLARE_BITMAP(map, s->objects);
3268 void *p;
3269
3270 bitmap_zero(map, s->objects);
3271 for_each_free_object(p, s, page->freelist)
3272 set_bit(slab_index(p, s, addr), map);
3273
3274 for_each_object(p, s, addr)
3275 if (!test_bit(slab_index(p, s, addr), map))
3276 add_location(t, s, get_track(s, p, alloc));
3277 }
3278
3279 static int list_locations(struct kmem_cache *s, char *buf,
3280 enum track_item alloc)
3281 {
3282 int n = 0;
3283 unsigned long i;
3284 struct loc_track t = { 0, 0, NULL };
3285 int node;
3286
3287 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3288 GFP_TEMPORARY))
3289 return sprintf(buf, "Out of memory\n");
3290
3291 /* Push back cpu slabs */
3292 flush_all(s);
3293
3294 for_each_node_state(node, N_NORMAL_MEMORY) {
3295 struct kmem_cache_node *n = get_node(s, node);
3296 unsigned long flags;
3297 struct page *page;
3298
3299 if (!atomic_long_read(&n->nr_slabs))
3300 continue;
3301
3302 spin_lock_irqsave(&n->list_lock, flags);
3303 list_for_each_entry(page, &n->partial, lru)
3304 process_slab(&t, s, page, alloc);
3305 list_for_each_entry(page, &n->full, lru)
3306 process_slab(&t, s, page, alloc);
3307 spin_unlock_irqrestore(&n->list_lock, flags);
3308 }
3309
3310 for (i = 0; i < t.count; i++) {
3311 struct location *l = &t.loc[i];
3312
3313 if (n > PAGE_SIZE - 100)
3314 break;
3315 n += sprintf(buf + n, "%7ld ", l->count);
3316
3317 if (l->addr)
3318 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3319 else
3320 n += sprintf(buf + n, "<not-available>");
3321
3322 if (l->sum_time != l->min_time) {
3323 unsigned long remainder;
3324
3325 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3326 l->min_time,
3327 div_long_long_rem(l->sum_time, l->count, &remainder),
3328 l->max_time);
3329 } else
3330 n += sprintf(buf + n, " age=%ld",
3331 l->min_time);
3332
3333 if (l->min_pid != l->max_pid)
3334 n += sprintf(buf + n, " pid=%ld-%ld",
3335 l->min_pid, l->max_pid);
3336 else
3337 n += sprintf(buf + n, " pid=%ld",
3338 l->min_pid);
3339
3340 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3341 n < PAGE_SIZE - 60) {
3342 n += sprintf(buf + n, " cpus=");
3343 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3344 l->cpus);
3345 }
3346
3347 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3348 n < PAGE_SIZE - 60) {
3349 n += sprintf(buf + n, " nodes=");
3350 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3351 l->nodes);
3352 }
3353
3354 n += sprintf(buf + n, "\n");
3355 }
3356
3357 free_loc_track(&t);
3358 if (!t.count)
3359 n += sprintf(buf, "No data\n");
3360 return n;
3361 }
3362
3363 static unsigned long count_partial(struct kmem_cache_node *n)
3364 {
3365 unsigned long flags;
3366 unsigned long x = 0;
3367 struct page *page;
3368
3369 spin_lock_irqsave(&n->list_lock, flags);
3370 list_for_each_entry(page, &n->partial, lru)
3371 x += page->inuse;
3372 spin_unlock_irqrestore(&n->list_lock, flags);
3373 return x;
3374 }
3375
3376 enum slab_stat_type {
3377 SL_FULL,
3378 SL_PARTIAL,
3379 SL_CPU,
3380 SL_OBJECTS
3381 };
3382
3383 #define SO_FULL (1 << SL_FULL)
3384 #define SO_PARTIAL (1 << SL_PARTIAL)
3385 #define SO_CPU (1 << SL_CPU)
3386 #define SO_OBJECTS (1 << SL_OBJECTS)
3387
3388 static unsigned long slab_objects(struct kmem_cache *s,
3389 char *buf, unsigned long flags)
3390 {
3391 unsigned long total = 0;
3392 int cpu;
3393 int node;
3394 int x;
3395 unsigned long *nodes;
3396 unsigned long *per_cpu;
3397
3398 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3399 per_cpu = nodes + nr_node_ids;
3400
3401 for_each_possible_cpu(cpu) {
3402 struct page *page;
3403 int node;
3404 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3405
3406 if (!c)
3407 continue;
3408
3409 page = c->page;
3410 node = c->node;
3411 if (node < 0)
3412 continue;
3413 if (page) {
3414 if (flags & SO_CPU) {
3415 int x = 0;
3416
3417 if (flags & SO_OBJECTS)
3418 x = page->inuse;
3419 else
3420 x = 1;
3421 total += x;
3422 nodes[node] += x;
3423 }
3424 per_cpu[node]++;
3425 }
3426 }
3427
3428 for_each_node_state(node, N_NORMAL_MEMORY) {
3429 struct kmem_cache_node *n = get_node(s, node);
3430
3431 if (flags & SO_PARTIAL) {
3432 if (flags & SO_OBJECTS)
3433 x = count_partial(n);
3434 else
3435 x = n->nr_partial;
3436 total += x;
3437 nodes[node] += x;
3438 }
3439
3440 if (flags & SO_FULL) {
3441 int full_slabs = atomic_long_read(&n->nr_slabs)
3442 - per_cpu[node]
3443 - n->nr_partial;
3444
3445 if (flags & SO_OBJECTS)
3446 x = full_slabs * s->objects;
3447 else
3448 x = full_slabs;
3449 total += x;
3450 nodes[node] += x;
3451 }
3452 }
3453
3454 x = sprintf(buf, "%lu", total);
3455 #ifdef CONFIG_NUMA
3456 for_each_node_state(node, N_NORMAL_MEMORY)
3457 if (nodes[node])
3458 x += sprintf(buf + x, " N%d=%lu",
3459 node, nodes[node]);
3460 #endif
3461 kfree(nodes);
3462 return x + sprintf(buf + x, "\n");
3463 }
3464
3465 static int any_slab_objects(struct kmem_cache *s)
3466 {
3467 int node;
3468 int cpu;
3469
3470 for_each_possible_cpu(cpu) {
3471 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3472
3473 if (c && c->page)
3474 return 1;
3475 }
3476
3477 for_each_online_node(node) {
3478 struct kmem_cache_node *n = get_node(s, node);
3479
3480 if (!n)
3481 continue;
3482
3483 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3484 return 1;
3485 }
3486 return 0;
3487 }
3488
3489 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3490 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3491
3492 struct slab_attribute {
3493 struct attribute attr;
3494 ssize_t (*show)(struct kmem_cache *s, char *buf);
3495 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3496 };
3497
3498 #define SLAB_ATTR_RO(_name) \
3499 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3500
3501 #define SLAB_ATTR(_name) \
3502 static struct slab_attribute _name##_attr = \
3503 __ATTR(_name, 0644, _name##_show, _name##_store)
3504
3505 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3506 {
3507 return sprintf(buf, "%d\n", s->size);
3508 }
3509 SLAB_ATTR_RO(slab_size);
3510
3511 static ssize_t align_show(struct kmem_cache *s, char *buf)
3512 {
3513 return sprintf(buf, "%d\n", s->align);
3514 }
3515 SLAB_ATTR_RO(align);
3516
3517 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3518 {
3519 return sprintf(buf, "%d\n", s->objsize);
3520 }
3521 SLAB_ATTR_RO(object_size);
3522
3523 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3524 {
3525 return sprintf(buf, "%d\n", s->objects);
3526 }
3527 SLAB_ATTR_RO(objs_per_slab);
3528
3529 static ssize_t order_show(struct kmem_cache *s, char *buf)
3530 {
3531 return sprintf(buf, "%d\n", s->order);
3532 }
3533 SLAB_ATTR_RO(order);
3534
3535 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3536 {
3537 if (s->ctor) {
3538 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3539
3540 return n + sprintf(buf + n, "\n");
3541 }
3542 return 0;
3543 }
3544 SLAB_ATTR_RO(ctor);
3545
3546 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3547 {
3548 return sprintf(buf, "%d\n", s->refcount - 1);
3549 }
3550 SLAB_ATTR_RO(aliases);
3551
3552 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3553 {
3554 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3555 }
3556 SLAB_ATTR_RO(slabs);
3557
3558 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3559 {
3560 return slab_objects(s, buf, SO_PARTIAL);
3561 }
3562 SLAB_ATTR_RO(partial);
3563
3564 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3565 {
3566 return slab_objects(s, buf, SO_CPU);
3567 }
3568 SLAB_ATTR_RO(cpu_slabs);
3569
3570 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3571 {
3572 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3573 }
3574 SLAB_ATTR_RO(objects);
3575
3576 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3577 {
3578 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3579 }
3580
3581 static ssize_t sanity_checks_store(struct kmem_cache *s,
3582 const char *buf, size_t length)
3583 {
3584 s->flags &= ~SLAB_DEBUG_FREE;
3585 if (buf[0] == '1')
3586 s->flags |= SLAB_DEBUG_FREE;
3587 return length;
3588 }
3589 SLAB_ATTR(sanity_checks);
3590
3591 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3592 {
3593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3594 }
3595
3596 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3597 size_t length)
3598 {
3599 s->flags &= ~SLAB_TRACE;
3600 if (buf[0] == '1')
3601 s->flags |= SLAB_TRACE;
3602 return length;
3603 }
3604 SLAB_ATTR(trace);
3605
3606 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3607 {
3608 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3609 }
3610
3611 static ssize_t reclaim_account_store(struct kmem_cache *s,
3612 const char *buf, size_t length)
3613 {
3614 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3615 if (buf[0] == '1')
3616 s->flags |= SLAB_RECLAIM_ACCOUNT;
3617 return length;
3618 }
3619 SLAB_ATTR(reclaim_account);
3620
3621 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3622 {
3623 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3624 }
3625 SLAB_ATTR_RO(hwcache_align);
3626
3627 #ifdef CONFIG_ZONE_DMA
3628 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3629 {
3630 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3631 }
3632 SLAB_ATTR_RO(cache_dma);
3633 #endif
3634
3635 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3636 {
3637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3638 }
3639 SLAB_ATTR_RO(destroy_by_rcu);
3640
3641 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3642 {
3643 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3644 }
3645
3646 static ssize_t red_zone_store(struct kmem_cache *s,
3647 const char *buf, size_t length)
3648 {
3649 if (any_slab_objects(s))
3650 return -EBUSY;
3651
3652 s->flags &= ~SLAB_RED_ZONE;
3653 if (buf[0] == '1')
3654 s->flags |= SLAB_RED_ZONE;
3655 calculate_sizes(s);
3656 return length;
3657 }
3658 SLAB_ATTR(red_zone);
3659
3660 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3661 {
3662 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3663 }
3664
3665 static ssize_t poison_store(struct kmem_cache *s,
3666 const char *buf, size_t length)
3667 {
3668 if (any_slab_objects(s))
3669 return -EBUSY;
3670
3671 s->flags &= ~SLAB_POISON;
3672 if (buf[0] == '1')
3673 s->flags |= SLAB_POISON;
3674 calculate_sizes(s);
3675 return length;
3676 }
3677 SLAB_ATTR(poison);
3678
3679 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3680 {
3681 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3682 }
3683
3684 static ssize_t store_user_store(struct kmem_cache *s,
3685 const char *buf, size_t length)
3686 {
3687 if (any_slab_objects(s))
3688 return -EBUSY;
3689
3690 s->flags &= ~SLAB_STORE_USER;
3691 if (buf[0] == '1')
3692 s->flags |= SLAB_STORE_USER;
3693 calculate_sizes(s);
3694 return length;
3695 }
3696 SLAB_ATTR(store_user);
3697
3698 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3699 {
3700 return 0;
3701 }
3702
3703 static ssize_t validate_store(struct kmem_cache *s,
3704 const char *buf, size_t length)
3705 {
3706 int ret = -EINVAL;
3707
3708 if (buf[0] == '1') {
3709 ret = validate_slab_cache(s);
3710 if (ret >= 0)
3711 ret = length;
3712 }
3713 return ret;
3714 }
3715 SLAB_ATTR(validate);
3716
3717 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3718 {
3719 return 0;
3720 }
3721
3722 static ssize_t shrink_store(struct kmem_cache *s,
3723 const char *buf, size_t length)
3724 {
3725 if (buf[0] == '1') {
3726 int rc = kmem_cache_shrink(s);
3727
3728 if (rc)
3729 return rc;
3730 } else
3731 return -EINVAL;
3732 return length;
3733 }
3734 SLAB_ATTR(shrink);
3735
3736 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3737 {
3738 if (!(s->flags & SLAB_STORE_USER))
3739 return -ENOSYS;
3740 return list_locations(s, buf, TRACK_ALLOC);
3741 }
3742 SLAB_ATTR_RO(alloc_calls);
3743
3744 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3745 {
3746 if (!(s->flags & SLAB_STORE_USER))
3747 return -ENOSYS;
3748 return list_locations(s, buf, TRACK_FREE);
3749 }
3750 SLAB_ATTR_RO(free_calls);
3751
3752 #ifdef CONFIG_NUMA
3753 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3754 {
3755 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3756 }
3757
3758 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3759 const char *buf, size_t length)
3760 {
3761 int n = simple_strtoul(buf, NULL, 10);
3762
3763 if (n < 100)
3764 s->defrag_ratio = n * 10;
3765 return length;
3766 }
3767 SLAB_ATTR(defrag_ratio);
3768 #endif
3769
3770 static struct attribute * slab_attrs[] = {
3771 &slab_size_attr.attr,
3772 &object_size_attr.attr,
3773 &objs_per_slab_attr.attr,
3774 &order_attr.attr,
3775 &objects_attr.attr,
3776 &slabs_attr.attr,
3777 &partial_attr.attr,
3778 &cpu_slabs_attr.attr,
3779 &ctor_attr.attr,
3780 &aliases_attr.attr,
3781 &align_attr.attr,
3782 &sanity_checks_attr.attr,
3783 &trace_attr.attr,
3784 &hwcache_align_attr.attr,
3785 &reclaim_account_attr.attr,
3786 &destroy_by_rcu_attr.attr,
3787 &red_zone_attr.attr,
3788 &poison_attr.attr,
3789 &store_user_attr.attr,
3790 &validate_attr.attr,
3791 &shrink_attr.attr,
3792 &alloc_calls_attr.attr,
3793 &free_calls_attr.attr,
3794 #ifdef CONFIG_ZONE_DMA
3795 &cache_dma_attr.attr,
3796 #endif
3797 #ifdef CONFIG_NUMA
3798 &defrag_ratio_attr.attr,
3799 #endif
3800 NULL
3801 };
3802
3803 static struct attribute_group slab_attr_group = {
3804 .attrs = slab_attrs,
3805 };
3806
3807 static ssize_t slab_attr_show(struct kobject *kobj,
3808 struct attribute *attr,
3809 char *buf)
3810 {
3811 struct slab_attribute *attribute;
3812 struct kmem_cache *s;
3813 int err;
3814
3815 attribute = to_slab_attr(attr);
3816 s = to_slab(kobj);
3817
3818 if (!attribute->show)
3819 return -EIO;
3820
3821 err = attribute->show(s, buf);
3822
3823 return err;
3824 }
3825
3826 static ssize_t slab_attr_store(struct kobject *kobj,
3827 struct attribute *attr,
3828 const char *buf, size_t len)
3829 {
3830 struct slab_attribute *attribute;
3831 struct kmem_cache *s;
3832 int err;
3833
3834 attribute = to_slab_attr(attr);
3835 s = to_slab(kobj);
3836
3837 if (!attribute->store)
3838 return -EIO;
3839
3840 err = attribute->store(s, buf, len);
3841
3842 return err;
3843 }
3844
3845 static struct sysfs_ops slab_sysfs_ops = {
3846 .show = slab_attr_show,
3847 .store = slab_attr_store,
3848 };
3849
3850 static struct kobj_type slab_ktype = {
3851 .sysfs_ops = &slab_sysfs_ops,
3852 };
3853
3854 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3855 {
3856 struct kobj_type *ktype = get_ktype(kobj);
3857
3858 if (ktype == &slab_ktype)
3859 return 1;
3860 return 0;
3861 }
3862
3863 static struct kset_uevent_ops slab_uevent_ops = {
3864 .filter = uevent_filter,
3865 };
3866
3867 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3868
3869 #define ID_STR_LENGTH 64
3870
3871 /* Create a unique string id for a slab cache:
3872 * format
3873 * :[flags-]size:[memory address of kmemcache]
3874 */
3875 static char *create_unique_id(struct kmem_cache *s)
3876 {
3877 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3878 char *p = name;
3879
3880 BUG_ON(!name);
3881
3882 *p++ = ':';
3883 /*
3884 * First flags affecting slabcache operations. We will only
3885 * get here for aliasable slabs so we do not need to support
3886 * too many flags. The flags here must cover all flags that
3887 * are matched during merging to guarantee that the id is
3888 * unique.
3889 */
3890 if (s->flags & SLAB_CACHE_DMA)
3891 *p++ = 'd';
3892 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3893 *p++ = 'a';
3894 if (s->flags & SLAB_DEBUG_FREE)
3895 *p++ = 'F';
3896 if (p != name + 1)
3897 *p++ = '-';
3898 p += sprintf(p, "%07d", s->size);
3899 BUG_ON(p > name + ID_STR_LENGTH - 1);
3900 return name;
3901 }
3902
3903 static int sysfs_slab_add(struct kmem_cache *s)
3904 {
3905 int err;
3906 const char *name;
3907 int unmergeable;
3908
3909 if (slab_state < SYSFS)
3910 /* Defer until later */
3911 return 0;
3912
3913 unmergeable = slab_unmergeable(s);
3914 if (unmergeable) {
3915 /*
3916 * Slabcache can never be merged so we can use the name proper.
3917 * This is typically the case for debug situations. In that
3918 * case we can catch duplicate names easily.
3919 */
3920 sysfs_remove_link(&slab_subsys.kobj, s->name);
3921 name = s->name;
3922 } else {
3923 /*
3924 * Create a unique name for the slab as a target
3925 * for the symlinks.
3926 */
3927 name = create_unique_id(s);
3928 }
3929
3930 kobj_set_kset_s(s, slab_subsys);
3931 kobject_set_name(&s->kobj, name);
3932 kobject_init(&s->kobj);
3933 err = kobject_add(&s->kobj);
3934 if (err)
3935 return err;
3936
3937 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3938 if (err)
3939 return err;
3940 kobject_uevent(&s->kobj, KOBJ_ADD);
3941 if (!unmergeable) {
3942 /* Setup first alias */
3943 sysfs_slab_alias(s, s->name);
3944 kfree(name);
3945 }
3946 return 0;
3947 }
3948
3949 static void sysfs_slab_remove(struct kmem_cache *s)
3950 {
3951 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3952 kobject_del(&s->kobj);
3953 }
3954
3955 /*
3956 * Need to buffer aliases during bootup until sysfs becomes
3957 * available lest we loose that information.
3958 */
3959 struct saved_alias {
3960 struct kmem_cache *s;
3961 const char *name;
3962 struct saved_alias *next;
3963 };
3964
3965 static struct saved_alias *alias_list;
3966
3967 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3968 {
3969 struct saved_alias *al;
3970
3971 if (slab_state == SYSFS) {
3972 /*
3973 * If we have a leftover link then remove it.
3974 */
3975 sysfs_remove_link(&slab_subsys.kobj, name);
3976 return sysfs_create_link(&slab_subsys.kobj,
3977 &s->kobj, name);
3978 }
3979
3980 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3981 if (!al)
3982 return -ENOMEM;
3983
3984 al->s = s;
3985 al->name = name;
3986 al->next = alias_list;
3987 alias_list = al;
3988 return 0;
3989 }
3990
3991 static int __init slab_sysfs_init(void)
3992 {
3993 struct kmem_cache *s;
3994 int err;
3995
3996 err = subsystem_register(&slab_subsys);
3997 if (err) {
3998 printk(KERN_ERR "Cannot register slab subsystem.\n");
3999 return -ENOSYS;
4000 }
4001
4002 slab_state = SYSFS;
4003
4004 list_for_each_entry(s, &slab_caches, list) {
4005 err = sysfs_slab_add(s);
4006 if (err)
4007 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4008 " to sysfs\n", s->name);
4009 }
4010
4011 while (alias_list) {
4012 struct saved_alias *al = alias_list;
4013
4014 alias_list = alias_list->next;
4015 err = sysfs_slab_alias(al->s, al->name);
4016 if (err)
4017 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4018 " %s to sysfs\n", s->name);
4019 kfree(al);
4020 }
4021
4022 resiliency_test();
4023 return 0;
4024 }
4025
4026 __initcall(slab_sysfs_init);
4027 #endif