]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/slub.c
slub: Allow removal of slab caches during boot
[mirror_ubuntu-focal-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
111 SLAB_TRACE | SLAB_DEBUG_FREE)
112
113 static inline int kmem_cache_debug(struct kmem_cache *s)
114 {
115 #ifdef CONFIG_SLUB_DEBUG
116 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
117 #else
118 return 0;
119 #endif
120 }
121
122 /*
123 * Issues still to be resolved:
124 *
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 *
127 * - Variable sizing of the per node arrays
128 */
129
130 /* Enable to test recovery from slab corruption on boot */
131 #undef SLUB_RESILIENCY_TEST
132
133 /*
134 * Mininum number of partial slabs. These will be left on the partial
135 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 */
137 #define MIN_PARTIAL 5
138
139 /*
140 * Maximum number of desirable partial slabs.
141 * The existence of more partial slabs makes kmem_cache_shrink
142 * sort the partial list by the number of objects in the.
143 */
144 #define MAX_PARTIAL 10
145
146 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
147 SLAB_POISON | SLAB_STORE_USER)
148
149 /*
150 * Debugging flags that require metadata to be stored in the slab. These get
151 * disabled when slub_debug=O is used and a cache's min order increases with
152 * metadata.
153 */
154 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
155
156 /*
157 * Set of flags that will prevent slab merging
158 */
159 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
160 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
161 SLAB_FAILSLAB)
162
163 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
164 SLAB_CACHE_DMA | SLAB_NOTRACK)
165
166 #define OO_SHIFT 16
167 #define OO_MASK ((1 << OO_SHIFT) - 1)
168 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
169
170 /* Internal SLUB flags */
171 #define __OBJECT_POISON 0x80000000UL /* Poison object */
172 #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
173
174 static int kmem_size = sizeof(struct kmem_cache);
175
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
179
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
186
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190
191 /*
192 * Tracking user of a slab.
193 */
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199 };
200
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203 #ifdef CONFIG_SLUB_DEBUG
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 kfree(s);
215 }
216
217 #endif
218
219 static inline void stat(struct kmem_cache *s, enum stat_item si)
220 {
221 #ifdef CONFIG_SLUB_STATS
222 __this_cpu_inc(s->cpu_slab->stat[si]);
223 #endif
224 }
225
226 /********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
229
230 int slab_is_available(void)
231 {
232 return slab_state >= UP;
233 }
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 #ifdef CONFIG_NUMA
238 return s->node[node];
239 #else
240 return &s->local_node;
241 #endif
242 }
243
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
247 {
248 void *base;
249
250 if (!object)
251 return 1;
252
253 base = page_address(page);
254 if (object < base || object >= base + page->objects * s->size ||
255 (object - base) % s->size) {
256 return 0;
257 }
258
259 return 1;
260 }
261
262 static inline void *get_freepointer(struct kmem_cache *s, void *object)
263 {
264 return *(void **)(object + s->offset);
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 /* Scan freelist */
278 #define for_each_free_object(__p, __s, __free) \
279 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size)
289 {
290 struct kmem_cache_order_objects x = {
291 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
292 };
293
294 return x;
295 }
296
297 static inline int oo_order(struct kmem_cache_order_objects x)
298 {
299 return x.x >> OO_SHIFT;
300 }
301
302 static inline int oo_objects(struct kmem_cache_order_objects x)
303 {
304 return x.x & OO_MASK;
305 }
306
307 #ifdef CONFIG_SLUB_DEBUG
308 /*
309 * Debug settings:
310 */
311 #ifdef CONFIG_SLUB_DEBUG_ON
312 static int slub_debug = DEBUG_DEFAULT_FLAGS;
313 #else
314 static int slub_debug;
315 #endif
316
317 static char *slub_debug_slabs;
318 static int disable_higher_order_debug;
319
320 /*
321 * Object debugging
322 */
323 static void print_section(char *text, u8 *addr, unsigned int length)
324 {
325 int i, offset;
326 int newline = 1;
327 char ascii[17];
328
329 ascii[16] = 0;
330
331 for (i = 0; i < length; i++) {
332 if (newline) {
333 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334 newline = 0;
335 }
336 printk(KERN_CONT " %02x", addr[i]);
337 offset = i % 16;
338 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339 if (offset == 15) {
340 printk(KERN_CONT " %s\n", ascii);
341 newline = 1;
342 }
343 }
344 if (!newline) {
345 i %= 16;
346 while (i < 16) {
347 printk(KERN_CONT " ");
348 ascii[i] = ' ';
349 i++;
350 }
351 printk(KERN_CONT " %s\n", ascii);
352 }
353 }
354
355 static struct track *get_track(struct kmem_cache *s, void *object,
356 enum track_item alloc)
357 {
358 struct track *p;
359
360 if (s->offset)
361 p = object + s->offset + sizeof(void *);
362 else
363 p = object + s->inuse;
364
365 return p + alloc;
366 }
367
368 static void set_track(struct kmem_cache *s, void *object,
369 enum track_item alloc, unsigned long addr)
370 {
371 struct track *p = get_track(s, object, alloc);
372
373 if (addr) {
374 p->addr = addr;
375 p->cpu = smp_processor_id();
376 p->pid = current->pid;
377 p->when = jiffies;
378 } else
379 memset(p, 0, sizeof(struct track));
380 }
381
382 static void init_tracking(struct kmem_cache *s, void *object)
383 {
384 if (!(s->flags & SLAB_STORE_USER))
385 return;
386
387 set_track(s, object, TRACK_FREE, 0UL);
388 set_track(s, object, TRACK_ALLOC, 0UL);
389 }
390
391 static void print_track(const char *s, struct track *t)
392 {
393 if (!t->addr)
394 return;
395
396 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
397 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
398 }
399
400 static void print_tracking(struct kmem_cache *s, void *object)
401 {
402 if (!(s->flags & SLAB_STORE_USER))
403 return;
404
405 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
406 print_track("Freed", get_track(s, object, TRACK_FREE));
407 }
408
409 static void print_page_info(struct page *page)
410 {
411 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
412 page, page->objects, page->inuse, page->freelist, page->flags);
413
414 }
415
416 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
417 {
418 va_list args;
419 char buf[100];
420
421 va_start(args, fmt);
422 vsnprintf(buf, sizeof(buf), fmt, args);
423 va_end(args);
424 printk(KERN_ERR "========================================"
425 "=====================================\n");
426 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
427 printk(KERN_ERR "----------------------------------------"
428 "-------------------------------------\n\n");
429 }
430
431 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
432 {
433 va_list args;
434 char buf[100];
435
436 va_start(args, fmt);
437 vsnprintf(buf, sizeof(buf), fmt, args);
438 va_end(args);
439 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
440 }
441
442 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
443 {
444 unsigned int off; /* Offset of last byte */
445 u8 *addr = page_address(page);
446
447 print_tracking(s, p);
448
449 print_page_info(page);
450
451 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
452 p, p - addr, get_freepointer(s, p));
453
454 if (p > addr + 16)
455 print_section("Bytes b4", p - 16, 16);
456
457 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
458
459 if (s->flags & SLAB_RED_ZONE)
460 print_section("Redzone", p + s->objsize,
461 s->inuse - s->objsize);
462
463 if (s->offset)
464 off = s->offset + sizeof(void *);
465 else
466 off = s->inuse;
467
468 if (s->flags & SLAB_STORE_USER)
469 off += 2 * sizeof(struct track);
470
471 if (off != s->size)
472 /* Beginning of the filler is the free pointer */
473 print_section("Padding", p + off, s->size - off);
474
475 dump_stack();
476 }
477
478 static void object_err(struct kmem_cache *s, struct page *page,
479 u8 *object, char *reason)
480 {
481 slab_bug(s, "%s", reason);
482 print_trailer(s, page, object);
483 }
484
485 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
486 {
487 va_list args;
488 char buf[100];
489
490 va_start(args, fmt);
491 vsnprintf(buf, sizeof(buf), fmt, args);
492 va_end(args);
493 slab_bug(s, "%s", buf);
494 print_page_info(page);
495 dump_stack();
496 }
497
498 static void init_object(struct kmem_cache *s, void *object, int active)
499 {
500 u8 *p = object;
501
502 if (s->flags & __OBJECT_POISON) {
503 memset(p, POISON_FREE, s->objsize - 1);
504 p[s->objsize - 1] = POISON_END;
505 }
506
507 if (s->flags & SLAB_RED_ZONE)
508 memset(p + s->objsize,
509 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
510 s->inuse - s->objsize);
511 }
512
513 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
514 {
515 while (bytes) {
516 if (*start != (u8)value)
517 return start;
518 start++;
519 bytes--;
520 }
521 return NULL;
522 }
523
524 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
525 void *from, void *to)
526 {
527 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
528 memset(from, data, to - from);
529 }
530
531 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
532 u8 *object, char *what,
533 u8 *start, unsigned int value, unsigned int bytes)
534 {
535 u8 *fault;
536 u8 *end;
537
538 fault = check_bytes(start, value, bytes);
539 if (!fault)
540 return 1;
541
542 end = start + bytes;
543 while (end > fault && end[-1] == value)
544 end--;
545
546 slab_bug(s, "%s overwritten", what);
547 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
548 fault, end - 1, fault[0], value);
549 print_trailer(s, page, object);
550
551 restore_bytes(s, what, value, fault, end);
552 return 0;
553 }
554
555 /*
556 * Object layout:
557 *
558 * object address
559 * Bytes of the object to be managed.
560 * If the freepointer may overlay the object then the free
561 * pointer is the first word of the object.
562 *
563 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
564 * 0xa5 (POISON_END)
565 *
566 * object + s->objsize
567 * Padding to reach word boundary. This is also used for Redzoning.
568 * Padding is extended by another word if Redzoning is enabled and
569 * objsize == inuse.
570 *
571 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
572 * 0xcc (RED_ACTIVE) for objects in use.
573 *
574 * object + s->inuse
575 * Meta data starts here.
576 *
577 * A. Free pointer (if we cannot overwrite object on free)
578 * B. Tracking data for SLAB_STORE_USER
579 * C. Padding to reach required alignment boundary or at mininum
580 * one word if debugging is on to be able to detect writes
581 * before the word boundary.
582 *
583 * Padding is done using 0x5a (POISON_INUSE)
584 *
585 * object + s->size
586 * Nothing is used beyond s->size.
587 *
588 * If slabcaches are merged then the objsize and inuse boundaries are mostly
589 * ignored. And therefore no slab options that rely on these boundaries
590 * may be used with merged slabcaches.
591 */
592
593 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
594 {
595 unsigned long off = s->inuse; /* The end of info */
596
597 if (s->offset)
598 /* Freepointer is placed after the object. */
599 off += sizeof(void *);
600
601 if (s->flags & SLAB_STORE_USER)
602 /* We also have user information there */
603 off += 2 * sizeof(struct track);
604
605 if (s->size == off)
606 return 1;
607
608 return check_bytes_and_report(s, page, p, "Object padding",
609 p + off, POISON_INUSE, s->size - off);
610 }
611
612 /* Check the pad bytes at the end of a slab page */
613 static int slab_pad_check(struct kmem_cache *s, struct page *page)
614 {
615 u8 *start;
616 u8 *fault;
617 u8 *end;
618 int length;
619 int remainder;
620
621 if (!(s->flags & SLAB_POISON))
622 return 1;
623
624 start = page_address(page);
625 length = (PAGE_SIZE << compound_order(page));
626 end = start + length;
627 remainder = length % s->size;
628 if (!remainder)
629 return 1;
630
631 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
632 if (!fault)
633 return 1;
634 while (end > fault && end[-1] == POISON_INUSE)
635 end--;
636
637 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
638 print_section("Padding", end - remainder, remainder);
639
640 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
641 return 0;
642 }
643
644 static int check_object(struct kmem_cache *s, struct page *page,
645 void *object, int active)
646 {
647 u8 *p = object;
648 u8 *endobject = object + s->objsize;
649
650 if (s->flags & SLAB_RED_ZONE) {
651 unsigned int red =
652 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
653
654 if (!check_bytes_and_report(s, page, object, "Redzone",
655 endobject, red, s->inuse - s->objsize))
656 return 0;
657 } else {
658 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
659 check_bytes_and_report(s, page, p, "Alignment padding",
660 endobject, POISON_INUSE, s->inuse - s->objsize);
661 }
662 }
663
664 if (s->flags & SLAB_POISON) {
665 if (!active && (s->flags & __OBJECT_POISON) &&
666 (!check_bytes_and_report(s, page, p, "Poison", p,
667 POISON_FREE, s->objsize - 1) ||
668 !check_bytes_and_report(s, page, p, "Poison",
669 p + s->objsize - 1, POISON_END, 1)))
670 return 0;
671 /*
672 * check_pad_bytes cleans up on its own.
673 */
674 check_pad_bytes(s, page, p);
675 }
676
677 if (!s->offset && active)
678 /*
679 * Object and freepointer overlap. Cannot check
680 * freepointer while object is allocated.
681 */
682 return 1;
683
684 /* Check free pointer validity */
685 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
686 object_err(s, page, p, "Freepointer corrupt");
687 /*
688 * No choice but to zap it and thus lose the remainder
689 * of the free objects in this slab. May cause
690 * another error because the object count is now wrong.
691 */
692 set_freepointer(s, p, NULL);
693 return 0;
694 }
695 return 1;
696 }
697
698 static int check_slab(struct kmem_cache *s, struct page *page)
699 {
700 int maxobj;
701
702 VM_BUG_ON(!irqs_disabled());
703
704 if (!PageSlab(page)) {
705 slab_err(s, page, "Not a valid slab page");
706 return 0;
707 }
708
709 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
710 if (page->objects > maxobj) {
711 slab_err(s, page, "objects %u > max %u",
712 s->name, page->objects, maxobj);
713 return 0;
714 }
715 if (page->inuse > page->objects) {
716 slab_err(s, page, "inuse %u > max %u",
717 s->name, page->inuse, page->objects);
718 return 0;
719 }
720 /* Slab_pad_check fixes things up after itself */
721 slab_pad_check(s, page);
722 return 1;
723 }
724
725 /*
726 * Determine if a certain object on a page is on the freelist. Must hold the
727 * slab lock to guarantee that the chains are in a consistent state.
728 */
729 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
730 {
731 int nr = 0;
732 void *fp = page->freelist;
733 void *object = NULL;
734 unsigned long max_objects;
735
736 while (fp && nr <= page->objects) {
737 if (fp == search)
738 return 1;
739 if (!check_valid_pointer(s, page, fp)) {
740 if (object) {
741 object_err(s, page, object,
742 "Freechain corrupt");
743 set_freepointer(s, object, NULL);
744 break;
745 } else {
746 slab_err(s, page, "Freepointer corrupt");
747 page->freelist = NULL;
748 page->inuse = page->objects;
749 slab_fix(s, "Freelist cleared");
750 return 0;
751 }
752 break;
753 }
754 object = fp;
755 fp = get_freepointer(s, object);
756 nr++;
757 }
758
759 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
760 if (max_objects > MAX_OBJS_PER_PAGE)
761 max_objects = MAX_OBJS_PER_PAGE;
762
763 if (page->objects != max_objects) {
764 slab_err(s, page, "Wrong number of objects. Found %d but "
765 "should be %d", page->objects, max_objects);
766 page->objects = max_objects;
767 slab_fix(s, "Number of objects adjusted.");
768 }
769 if (page->inuse != page->objects - nr) {
770 slab_err(s, page, "Wrong object count. Counter is %d but "
771 "counted were %d", page->inuse, page->objects - nr);
772 page->inuse = page->objects - nr;
773 slab_fix(s, "Object count adjusted.");
774 }
775 return search == NULL;
776 }
777
778 static void trace(struct kmem_cache *s, struct page *page, void *object,
779 int alloc)
780 {
781 if (s->flags & SLAB_TRACE) {
782 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
783 s->name,
784 alloc ? "alloc" : "free",
785 object, page->inuse,
786 page->freelist);
787
788 if (!alloc)
789 print_section("Object", (void *)object, s->objsize);
790
791 dump_stack();
792 }
793 }
794
795 /*
796 * Tracking of fully allocated slabs for debugging purposes.
797 */
798 static void add_full(struct kmem_cache_node *n, struct page *page)
799 {
800 spin_lock(&n->list_lock);
801 list_add(&page->lru, &n->full);
802 spin_unlock(&n->list_lock);
803 }
804
805 static void remove_full(struct kmem_cache *s, struct page *page)
806 {
807 struct kmem_cache_node *n;
808
809 if (!(s->flags & SLAB_STORE_USER))
810 return;
811
812 n = get_node(s, page_to_nid(page));
813
814 spin_lock(&n->list_lock);
815 list_del(&page->lru);
816 spin_unlock(&n->list_lock);
817 }
818
819 /* Tracking of the number of slabs for debugging purposes */
820 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
821 {
822 struct kmem_cache_node *n = get_node(s, node);
823
824 return atomic_long_read(&n->nr_slabs);
825 }
826
827 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
828 {
829 return atomic_long_read(&n->nr_slabs);
830 }
831
832 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
833 {
834 struct kmem_cache_node *n = get_node(s, node);
835
836 /*
837 * May be called early in order to allocate a slab for the
838 * kmem_cache_node structure. Solve the chicken-egg
839 * dilemma by deferring the increment of the count during
840 * bootstrap (see early_kmem_cache_node_alloc).
841 */
842 if (!NUMA_BUILD || n) {
843 atomic_long_inc(&n->nr_slabs);
844 atomic_long_add(objects, &n->total_objects);
845 }
846 }
847 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
848 {
849 struct kmem_cache_node *n = get_node(s, node);
850
851 atomic_long_dec(&n->nr_slabs);
852 atomic_long_sub(objects, &n->total_objects);
853 }
854
855 /* Object debug checks for alloc/free paths */
856 static void setup_object_debug(struct kmem_cache *s, struct page *page,
857 void *object)
858 {
859 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
860 return;
861
862 init_object(s, object, 0);
863 init_tracking(s, object);
864 }
865
866 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
867 void *object, unsigned long addr)
868 {
869 if (!check_slab(s, page))
870 goto bad;
871
872 if (!on_freelist(s, page, object)) {
873 object_err(s, page, object, "Object already allocated");
874 goto bad;
875 }
876
877 if (!check_valid_pointer(s, page, object)) {
878 object_err(s, page, object, "Freelist Pointer check fails");
879 goto bad;
880 }
881
882 if (!check_object(s, page, object, 0))
883 goto bad;
884
885 /* Success perform special debug activities for allocs */
886 if (s->flags & SLAB_STORE_USER)
887 set_track(s, object, TRACK_ALLOC, addr);
888 trace(s, page, object, 1);
889 init_object(s, object, 1);
890 return 1;
891
892 bad:
893 if (PageSlab(page)) {
894 /*
895 * If this is a slab page then lets do the best we can
896 * to avoid issues in the future. Marking all objects
897 * as used avoids touching the remaining objects.
898 */
899 slab_fix(s, "Marking all objects used");
900 page->inuse = page->objects;
901 page->freelist = NULL;
902 }
903 return 0;
904 }
905
906 static int free_debug_processing(struct kmem_cache *s, struct page *page,
907 void *object, unsigned long addr)
908 {
909 if (!check_slab(s, page))
910 goto fail;
911
912 if (!check_valid_pointer(s, page, object)) {
913 slab_err(s, page, "Invalid object pointer 0x%p", object);
914 goto fail;
915 }
916
917 if (on_freelist(s, page, object)) {
918 object_err(s, page, object, "Object already free");
919 goto fail;
920 }
921
922 if (!check_object(s, page, object, 1))
923 return 0;
924
925 if (unlikely(s != page->slab)) {
926 if (!PageSlab(page)) {
927 slab_err(s, page, "Attempt to free object(0x%p) "
928 "outside of slab", object);
929 } else if (!page->slab) {
930 printk(KERN_ERR
931 "SLUB <none>: no slab for object 0x%p.\n",
932 object);
933 dump_stack();
934 } else
935 object_err(s, page, object,
936 "page slab pointer corrupt.");
937 goto fail;
938 }
939
940 /* Special debug activities for freeing objects */
941 if (!PageSlubFrozen(page) && !page->freelist)
942 remove_full(s, page);
943 if (s->flags & SLAB_STORE_USER)
944 set_track(s, object, TRACK_FREE, addr);
945 trace(s, page, object, 0);
946 init_object(s, object, 0);
947 return 1;
948
949 fail:
950 slab_fix(s, "Object at 0x%p not freed", object);
951 return 0;
952 }
953
954 static int __init setup_slub_debug(char *str)
955 {
956 slub_debug = DEBUG_DEFAULT_FLAGS;
957 if (*str++ != '=' || !*str)
958 /*
959 * No options specified. Switch on full debugging.
960 */
961 goto out;
962
963 if (*str == ',')
964 /*
965 * No options but restriction on slabs. This means full
966 * debugging for slabs matching a pattern.
967 */
968 goto check_slabs;
969
970 if (tolower(*str) == 'o') {
971 /*
972 * Avoid enabling debugging on caches if its minimum order
973 * would increase as a result.
974 */
975 disable_higher_order_debug = 1;
976 goto out;
977 }
978
979 slub_debug = 0;
980 if (*str == '-')
981 /*
982 * Switch off all debugging measures.
983 */
984 goto out;
985
986 /*
987 * Determine which debug features should be switched on
988 */
989 for (; *str && *str != ','; str++) {
990 switch (tolower(*str)) {
991 case 'f':
992 slub_debug |= SLAB_DEBUG_FREE;
993 break;
994 case 'z':
995 slub_debug |= SLAB_RED_ZONE;
996 break;
997 case 'p':
998 slub_debug |= SLAB_POISON;
999 break;
1000 case 'u':
1001 slub_debug |= SLAB_STORE_USER;
1002 break;
1003 case 't':
1004 slub_debug |= SLAB_TRACE;
1005 break;
1006 case 'a':
1007 slub_debug |= SLAB_FAILSLAB;
1008 break;
1009 default:
1010 printk(KERN_ERR "slub_debug option '%c' "
1011 "unknown. skipped\n", *str);
1012 }
1013 }
1014
1015 check_slabs:
1016 if (*str == ',')
1017 slub_debug_slabs = str + 1;
1018 out:
1019 return 1;
1020 }
1021
1022 __setup("slub_debug", setup_slub_debug);
1023
1024 static unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
1026 void (*ctor)(void *))
1027 {
1028 /*
1029 * Enable debugging if selected on the kernel commandline.
1030 */
1031 if (slub_debug && (!slub_debug_slabs ||
1032 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1033 flags |= slub_debug;
1034
1035 return flags;
1036 }
1037 #else
1038 static inline void setup_object_debug(struct kmem_cache *s,
1039 struct page *page, void *object) {}
1040
1041 static inline int alloc_debug_processing(struct kmem_cache *s,
1042 struct page *page, void *object, unsigned long addr) { return 0; }
1043
1044 static inline int free_debug_processing(struct kmem_cache *s,
1045 struct page *page, void *object, unsigned long addr) { return 0; }
1046
1047 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1048 { return 1; }
1049 static inline int check_object(struct kmem_cache *s, struct page *page,
1050 void *object, int active) { return 1; }
1051 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1052 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1053 unsigned long flags, const char *name,
1054 void (*ctor)(void *))
1055 {
1056 return flags;
1057 }
1058 #define slub_debug 0
1059
1060 #define disable_higher_order_debug 0
1061
1062 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1063 { return 0; }
1064 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1065 { return 0; }
1066 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1067 int objects) {}
1068 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1069 int objects) {}
1070 #endif
1071
1072 /*
1073 * Slab allocation and freeing
1074 */
1075 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1076 struct kmem_cache_order_objects oo)
1077 {
1078 int order = oo_order(oo);
1079
1080 flags |= __GFP_NOTRACK;
1081
1082 if (node == NUMA_NO_NODE)
1083 return alloc_pages(flags, order);
1084 else
1085 return alloc_pages_exact_node(node, flags, order);
1086 }
1087
1088 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1089 {
1090 struct page *page;
1091 struct kmem_cache_order_objects oo = s->oo;
1092 gfp_t alloc_gfp;
1093
1094 flags |= s->allocflags;
1095
1096 /*
1097 * Let the initial higher-order allocation fail under memory pressure
1098 * so we fall-back to the minimum order allocation.
1099 */
1100 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1101
1102 page = alloc_slab_page(alloc_gfp, node, oo);
1103 if (unlikely(!page)) {
1104 oo = s->min;
1105 /*
1106 * Allocation may have failed due to fragmentation.
1107 * Try a lower order alloc if possible
1108 */
1109 page = alloc_slab_page(flags, node, oo);
1110 if (!page)
1111 return NULL;
1112
1113 stat(s, ORDER_FALLBACK);
1114 }
1115
1116 if (kmemcheck_enabled
1117 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1118 int pages = 1 << oo_order(oo);
1119
1120 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1121
1122 /*
1123 * Objects from caches that have a constructor don't get
1124 * cleared when they're allocated, so we need to do it here.
1125 */
1126 if (s->ctor)
1127 kmemcheck_mark_uninitialized_pages(page, pages);
1128 else
1129 kmemcheck_mark_unallocated_pages(page, pages);
1130 }
1131
1132 page->objects = oo_objects(oo);
1133 mod_zone_page_state(page_zone(page),
1134 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1135 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1136 1 << oo_order(oo));
1137
1138 return page;
1139 }
1140
1141 static void setup_object(struct kmem_cache *s, struct page *page,
1142 void *object)
1143 {
1144 setup_object_debug(s, page, object);
1145 if (unlikely(s->ctor))
1146 s->ctor(object);
1147 }
1148
1149 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1150 {
1151 struct page *page;
1152 void *start;
1153 void *last;
1154 void *p;
1155
1156 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1157
1158 page = allocate_slab(s,
1159 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1160 if (!page)
1161 goto out;
1162
1163 inc_slabs_node(s, page_to_nid(page), page->objects);
1164 page->slab = s;
1165 page->flags |= 1 << PG_slab;
1166
1167 start = page_address(page);
1168
1169 if (unlikely(s->flags & SLAB_POISON))
1170 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1171
1172 last = start;
1173 for_each_object(p, s, start, page->objects) {
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, p);
1176 last = p;
1177 }
1178 setup_object(s, page, last);
1179 set_freepointer(s, last, NULL);
1180
1181 page->freelist = start;
1182 page->inuse = 0;
1183 out:
1184 return page;
1185 }
1186
1187 static void __free_slab(struct kmem_cache *s, struct page *page)
1188 {
1189 int order = compound_order(page);
1190 int pages = 1 << order;
1191
1192 if (kmem_cache_debug(s)) {
1193 void *p;
1194
1195 slab_pad_check(s, page);
1196 for_each_object(p, s, page_address(page),
1197 page->objects)
1198 check_object(s, page, p, 0);
1199 }
1200
1201 kmemcheck_free_shadow(page, compound_order(page));
1202
1203 mod_zone_page_state(page_zone(page),
1204 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1205 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1206 -pages);
1207
1208 __ClearPageSlab(page);
1209 reset_page_mapcount(page);
1210 if (current->reclaim_state)
1211 current->reclaim_state->reclaimed_slab += pages;
1212 __free_pages(page, order);
1213 }
1214
1215 static void rcu_free_slab(struct rcu_head *h)
1216 {
1217 struct page *page;
1218
1219 page = container_of((struct list_head *)h, struct page, lru);
1220 __free_slab(page->slab, page);
1221 }
1222
1223 static void free_slab(struct kmem_cache *s, struct page *page)
1224 {
1225 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1226 /*
1227 * RCU free overloads the RCU head over the LRU
1228 */
1229 struct rcu_head *head = (void *)&page->lru;
1230
1231 call_rcu(head, rcu_free_slab);
1232 } else
1233 __free_slab(s, page);
1234 }
1235
1236 static void discard_slab(struct kmem_cache *s, struct page *page)
1237 {
1238 dec_slabs_node(s, page_to_nid(page), page->objects);
1239 free_slab(s, page);
1240 }
1241
1242 /*
1243 * Per slab locking using the pagelock
1244 */
1245 static __always_inline void slab_lock(struct page *page)
1246 {
1247 bit_spin_lock(PG_locked, &page->flags);
1248 }
1249
1250 static __always_inline void slab_unlock(struct page *page)
1251 {
1252 __bit_spin_unlock(PG_locked, &page->flags);
1253 }
1254
1255 static __always_inline int slab_trylock(struct page *page)
1256 {
1257 int rc = 1;
1258
1259 rc = bit_spin_trylock(PG_locked, &page->flags);
1260 return rc;
1261 }
1262
1263 /*
1264 * Management of partially allocated slabs
1265 */
1266 static void add_partial(struct kmem_cache_node *n,
1267 struct page *page, int tail)
1268 {
1269 spin_lock(&n->list_lock);
1270 n->nr_partial++;
1271 if (tail)
1272 list_add_tail(&page->lru, &n->partial);
1273 else
1274 list_add(&page->lru, &n->partial);
1275 spin_unlock(&n->list_lock);
1276 }
1277
1278 static void remove_partial(struct kmem_cache *s, struct page *page)
1279 {
1280 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1281
1282 spin_lock(&n->list_lock);
1283 list_del(&page->lru);
1284 n->nr_partial--;
1285 spin_unlock(&n->list_lock);
1286 }
1287
1288 /*
1289 * Lock slab and remove from the partial list.
1290 *
1291 * Must hold list_lock.
1292 */
1293 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1294 struct page *page)
1295 {
1296 if (slab_trylock(page)) {
1297 list_del(&page->lru);
1298 n->nr_partial--;
1299 __SetPageSlubFrozen(page);
1300 return 1;
1301 }
1302 return 0;
1303 }
1304
1305 /*
1306 * Try to allocate a partial slab from a specific node.
1307 */
1308 static struct page *get_partial_node(struct kmem_cache_node *n)
1309 {
1310 struct page *page;
1311
1312 /*
1313 * Racy check. If we mistakenly see no partial slabs then we
1314 * just allocate an empty slab. If we mistakenly try to get a
1315 * partial slab and there is none available then get_partials()
1316 * will return NULL.
1317 */
1318 if (!n || !n->nr_partial)
1319 return NULL;
1320
1321 spin_lock(&n->list_lock);
1322 list_for_each_entry(page, &n->partial, lru)
1323 if (lock_and_freeze_slab(n, page))
1324 goto out;
1325 page = NULL;
1326 out:
1327 spin_unlock(&n->list_lock);
1328 return page;
1329 }
1330
1331 /*
1332 * Get a page from somewhere. Search in increasing NUMA distances.
1333 */
1334 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335 {
1336 #ifdef CONFIG_NUMA
1337 struct zonelist *zonelist;
1338 struct zoneref *z;
1339 struct zone *zone;
1340 enum zone_type high_zoneidx = gfp_zone(flags);
1341 struct page *page;
1342
1343 /*
1344 * The defrag ratio allows a configuration of the tradeoffs between
1345 * inter node defragmentation and node local allocations. A lower
1346 * defrag_ratio increases the tendency to do local allocations
1347 * instead of attempting to obtain partial slabs from other nodes.
1348 *
1349 * If the defrag_ratio is set to 0 then kmalloc() always
1350 * returns node local objects. If the ratio is higher then kmalloc()
1351 * may return off node objects because partial slabs are obtained
1352 * from other nodes and filled up.
1353 *
1354 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1355 * defrag_ratio = 1000) then every (well almost) allocation will
1356 * first attempt to defrag slab caches on other nodes. This means
1357 * scanning over all nodes to look for partial slabs which may be
1358 * expensive if we do it every time we are trying to find a slab
1359 * with available objects.
1360 */
1361 if (!s->remote_node_defrag_ratio ||
1362 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1363 return NULL;
1364
1365 get_mems_allowed();
1366 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1367 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1368 struct kmem_cache_node *n;
1369
1370 n = get_node(s, zone_to_nid(zone));
1371
1372 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1373 n->nr_partial > s->min_partial) {
1374 page = get_partial_node(n);
1375 if (page) {
1376 put_mems_allowed();
1377 return page;
1378 }
1379 }
1380 }
1381 put_mems_allowed();
1382 #endif
1383 return NULL;
1384 }
1385
1386 /*
1387 * Get a partial page, lock it and return it.
1388 */
1389 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1390 {
1391 struct page *page;
1392 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1393
1394 page = get_partial_node(get_node(s, searchnode));
1395 if (page || (flags & __GFP_THISNODE))
1396 return page;
1397
1398 return get_any_partial(s, flags);
1399 }
1400
1401 /*
1402 * Move a page back to the lists.
1403 *
1404 * Must be called with the slab lock held.
1405 *
1406 * On exit the slab lock will have been dropped.
1407 */
1408 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1409 {
1410 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1411
1412 __ClearPageSlubFrozen(page);
1413 if (page->inuse) {
1414
1415 if (page->freelist) {
1416 add_partial(n, page, tail);
1417 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1418 } else {
1419 stat(s, DEACTIVATE_FULL);
1420 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1421 add_full(n, page);
1422 }
1423 slab_unlock(page);
1424 } else {
1425 stat(s, DEACTIVATE_EMPTY);
1426 if (n->nr_partial < s->min_partial) {
1427 /*
1428 * Adding an empty slab to the partial slabs in order
1429 * to avoid page allocator overhead. This slab needs
1430 * to come after the other slabs with objects in
1431 * so that the others get filled first. That way the
1432 * size of the partial list stays small.
1433 *
1434 * kmem_cache_shrink can reclaim any empty slabs from
1435 * the partial list.
1436 */
1437 add_partial(n, page, 1);
1438 slab_unlock(page);
1439 } else {
1440 slab_unlock(page);
1441 stat(s, FREE_SLAB);
1442 discard_slab(s, page);
1443 }
1444 }
1445 }
1446
1447 /*
1448 * Remove the cpu slab
1449 */
1450 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1451 {
1452 struct page *page = c->page;
1453 int tail = 1;
1454
1455 if (page->freelist)
1456 stat(s, DEACTIVATE_REMOTE_FREES);
1457 /*
1458 * Merge cpu freelist into slab freelist. Typically we get here
1459 * because both freelists are empty. So this is unlikely
1460 * to occur.
1461 */
1462 while (unlikely(c->freelist)) {
1463 void **object;
1464
1465 tail = 0; /* Hot objects. Put the slab first */
1466
1467 /* Retrieve object from cpu_freelist */
1468 object = c->freelist;
1469 c->freelist = get_freepointer(s, c->freelist);
1470
1471 /* And put onto the regular freelist */
1472 set_freepointer(s, object, page->freelist);
1473 page->freelist = object;
1474 page->inuse--;
1475 }
1476 c->page = NULL;
1477 unfreeze_slab(s, page, tail);
1478 }
1479
1480 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1481 {
1482 stat(s, CPUSLAB_FLUSH);
1483 slab_lock(c->page);
1484 deactivate_slab(s, c);
1485 }
1486
1487 /*
1488 * Flush cpu slab.
1489 *
1490 * Called from IPI handler with interrupts disabled.
1491 */
1492 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1493 {
1494 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1495
1496 if (likely(c && c->page))
1497 flush_slab(s, c);
1498 }
1499
1500 static void flush_cpu_slab(void *d)
1501 {
1502 struct kmem_cache *s = d;
1503
1504 __flush_cpu_slab(s, smp_processor_id());
1505 }
1506
1507 static void flush_all(struct kmem_cache *s)
1508 {
1509 on_each_cpu(flush_cpu_slab, s, 1);
1510 }
1511
1512 /*
1513 * Check if the objects in a per cpu structure fit numa
1514 * locality expectations.
1515 */
1516 static inline int node_match(struct kmem_cache_cpu *c, int node)
1517 {
1518 #ifdef CONFIG_NUMA
1519 if (node != NUMA_NO_NODE && c->node != node)
1520 return 0;
1521 #endif
1522 return 1;
1523 }
1524
1525 static int count_free(struct page *page)
1526 {
1527 return page->objects - page->inuse;
1528 }
1529
1530 static unsigned long count_partial(struct kmem_cache_node *n,
1531 int (*get_count)(struct page *))
1532 {
1533 unsigned long flags;
1534 unsigned long x = 0;
1535 struct page *page;
1536
1537 spin_lock_irqsave(&n->list_lock, flags);
1538 list_for_each_entry(page, &n->partial, lru)
1539 x += get_count(page);
1540 spin_unlock_irqrestore(&n->list_lock, flags);
1541 return x;
1542 }
1543
1544 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1545 {
1546 #ifdef CONFIG_SLUB_DEBUG
1547 return atomic_long_read(&n->total_objects);
1548 #else
1549 return 0;
1550 #endif
1551 }
1552
1553 static noinline void
1554 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1555 {
1556 int node;
1557
1558 printk(KERN_WARNING
1559 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1560 nid, gfpflags);
1561 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1562 "default order: %d, min order: %d\n", s->name, s->objsize,
1563 s->size, oo_order(s->oo), oo_order(s->min));
1564
1565 if (oo_order(s->min) > get_order(s->objsize))
1566 printk(KERN_WARNING " %s debugging increased min order, use "
1567 "slub_debug=O to disable.\n", s->name);
1568
1569 for_each_online_node(node) {
1570 struct kmem_cache_node *n = get_node(s, node);
1571 unsigned long nr_slabs;
1572 unsigned long nr_objs;
1573 unsigned long nr_free;
1574
1575 if (!n)
1576 continue;
1577
1578 nr_free = count_partial(n, count_free);
1579 nr_slabs = node_nr_slabs(n);
1580 nr_objs = node_nr_objs(n);
1581
1582 printk(KERN_WARNING
1583 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1584 node, nr_slabs, nr_objs, nr_free);
1585 }
1586 }
1587
1588 /*
1589 * Slow path. The lockless freelist is empty or we need to perform
1590 * debugging duties.
1591 *
1592 * Interrupts are disabled.
1593 *
1594 * Processing is still very fast if new objects have been freed to the
1595 * regular freelist. In that case we simply take over the regular freelist
1596 * as the lockless freelist and zap the regular freelist.
1597 *
1598 * If that is not working then we fall back to the partial lists. We take the
1599 * first element of the freelist as the object to allocate now and move the
1600 * rest of the freelist to the lockless freelist.
1601 *
1602 * And if we were unable to get a new slab from the partial slab lists then
1603 * we need to allocate a new slab. This is the slowest path since it involves
1604 * a call to the page allocator and the setup of a new slab.
1605 */
1606 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1607 unsigned long addr, struct kmem_cache_cpu *c)
1608 {
1609 void **object;
1610 struct page *new;
1611
1612 /* We handle __GFP_ZERO in the caller */
1613 gfpflags &= ~__GFP_ZERO;
1614
1615 if (!c->page)
1616 goto new_slab;
1617
1618 slab_lock(c->page);
1619 if (unlikely(!node_match(c, node)))
1620 goto another_slab;
1621
1622 stat(s, ALLOC_REFILL);
1623
1624 load_freelist:
1625 object = c->page->freelist;
1626 if (unlikely(!object))
1627 goto another_slab;
1628 if (kmem_cache_debug(s))
1629 goto debug;
1630
1631 c->freelist = get_freepointer(s, object);
1632 c->page->inuse = c->page->objects;
1633 c->page->freelist = NULL;
1634 c->node = page_to_nid(c->page);
1635 unlock_out:
1636 slab_unlock(c->page);
1637 stat(s, ALLOC_SLOWPATH);
1638 return object;
1639
1640 another_slab:
1641 deactivate_slab(s, c);
1642
1643 new_slab:
1644 new = get_partial(s, gfpflags, node);
1645 if (new) {
1646 c->page = new;
1647 stat(s, ALLOC_FROM_PARTIAL);
1648 goto load_freelist;
1649 }
1650
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_enable();
1653
1654 new = new_slab(s, gfpflags, node);
1655
1656 if (gfpflags & __GFP_WAIT)
1657 local_irq_disable();
1658
1659 if (new) {
1660 c = __this_cpu_ptr(s->cpu_slab);
1661 stat(s, ALLOC_SLAB);
1662 if (c->page)
1663 flush_slab(s, c);
1664 slab_lock(new);
1665 __SetPageSlubFrozen(new);
1666 c->page = new;
1667 goto load_freelist;
1668 }
1669 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1670 slab_out_of_memory(s, gfpflags, node);
1671 return NULL;
1672 debug:
1673 if (!alloc_debug_processing(s, c->page, object, addr))
1674 goto another_slab;
1675
1676 c->page->inuse++;
1677 c->page->freelist = get_freepointer(s, object);
1678 c->node = -1;
1679 goto unlock_out;
1680 }
1681
1682 /*
1683 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1684 * have the fastpath folded into their functions. So no function call
1685 * overhead for requests that can be satisfied on the fastpath.
1686 *
1687 * The fastpath works by first checking if the lockless freelist can be used.
1688 * If not then __slab_alloc is called for slow processing.
1689 *
1690 * Otherwise we can simply pick the next object from the lockless free list.
1691 */
1692 static __always_inline void *slab_alloc(struct kmem_cache *s,
1693 gfp_t gfpflags, int node, unsigned long addr)
1694 {
1695 void **object;
1696 struct kmem_cache_cpu *c;
1697 unsigned long flags;
1698
1699 gfpflags &= gfp_allowed_mask;
1700
1701 lockdep_trace_alloc(gfpflags);
1702 might_sleep_if(gfpflags & __GFP_WAIT);
1703
1704 if (should_failslab(s->objsize, gfpflags, s->flags))
1705 return NULL;
1706
1707 local_irq_save(flags);
1708 c = __this_cpu_ptr(s->cpu_slab);
1709 object = c->freelist;
1710 if (unlikely(!object || !node_match(c, node)))
1711
1712 object = __slab_alloc(s, gfpflags, node, addr, c);
1713
1714 else {
1715 c->freelist = get_freepointer(s, object);
1716 stat(s, ALLOC_FASTPATH);
1717 }
1718 local_irq_restore(flags);
1719
1720 if (unlikely(gfpflags & __GFP_ZERO) && object)
1721 memset(object, 0, s->objsize);
1722
1723 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1724 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1725
1726 return object;
1727 }
1728
1729 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1730 {
1731 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1732
1733 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1734
1735 return ret;
1736 }
1737 EXPORT_SYMBOL(kmem_cache_alloc);
1738
1739 #ifdef CONFIG_TRACING
1740 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1741 {
1742 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1743 }
1744 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1745 #endif
1746
1747 #ifdef CONFIG_NUMA
1748 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1749 {
1750 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1751
1752 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1753 s->objsize, s->size, gfpflags, node);
1754
1755 return ret;
1756 }
1757 EXPORT_SYMBOL(kmem_cache_alloc_node);
1758 #endif
1759
1760 #ifdef CONFIG_TRACING
1761 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1762 gfp_t gfpflags,
1763 int node)
1764 {
1765 return slab_alloc(s, gfpflags, node, _RET_IP_);
1766 }
1767 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1768 #endif
1769
1770 /*
1771 * Slow patch handling. This may still be called frequently since objects
1772 * have a longer lifetime than the cpu slabs in most processing loads.
1773 *
1774 * So we still attempt to reduce cache line usage. Just take the slab
1775 * lock and free the item. If there is no additional partial page
1776 * handling required then we can return immediately.
1777 */
1778 static void __slab_free(struct kmem_cache *s, struct page *page,
1779 void *x, unsigned long addr)
1780 {
1781 void *prior;
1782 void **object = (void *)x;
1783
1784 stat(s, FREE_SLOWPATH);
1785 slab_lock(page);
1786
1787 if (kmem_cache_debug(s))
1788 goto debug;
1789
1790 checks_ok:
1791 prior = page->freelist;
1792 set_freepointer(s, object, prior);
1793 page->freelist = object;
1794 page->inuse--;
1795
1796 if (unlikely(PageSlubFrozen(page))) {
1797 stat(s, FREE_FROZEN);
1798 goto out_unlock;
1799 }
1800
1801 if (unlikely(!page->inuse))
1802 goto slab_empty;
1803
1804 /*
1805 * Objects left in the slab. If it was not on the partial list before
1806 * then add it.
1807 */
1808 if (unlikely(!prior)) {
1809 add_partial(get_node(s, page_to_nid(page)), page, 1);
1810 stat(s, FREE_ADD_PARTIAL);
1811 }
1812
1813 out_unlock:
1814 slab_unlock(page);
1815 return;
1816
1817 slab_empty:
1818 if (prior) {
1819 /*
1820 * Slab still on the partial list.
1821 */
1822 remove_partial(s, page);
1823 stat(s, FREE_REMOVE_PARTIAL);
1824 }
1825 slab_unlock(page);
1826 stat(s, FREE_SLAB);
1827 discard_slab(s, page);
1828 return;
1829
1830 debug:
1831 if (!free_debug_processing(s, page, x, addr))
1832 goto out_unlock;
1833 goto checks_ok;
1834 }
1835
1836 /*
1837 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1838 * can perform fastpath freeing without additional function calls.
1839 *
1840 * The fastpath is only possible if we are freeing to the current cpu slab
1841 * of this processor. This typically the case if we have just allocated
1842 * the item before.
1843 *
1844 * If fastpath is not possible then fall back to __slab_free where we deal
1845 * with all sorts of special processing.
1846 */
1847 static __always_inline void slab_free(struct kmem_cache *s,
1848 struct page *page, void *x, unsigned long addr)
1849 {
1850 void **object = (void *)x;
1851 struct kmem_cache_cpu *c;
1852 unsigned long flags;
1853
1854 kmemleak_free_recursive(x, s->flags);
1855 local_irq_save(flags);
1856 c = __this_cpu_ptr(s->cpu_slab);
1857 kmemcheck_slab_free(s, object, s->objsize);
1858 debug_check_no_locks_freed(object, s->objsize);
1859 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1860 debug_check_no_obj_freed(object, s->objsize);
1861 if (likely(page == c->page && c->node >= 0)) {
1862 set_freepointer(s, object, c->freelist);
1863 c->freelist = object;
1864 stat(s, FREE_FASTPATH);
1865 } else
1866 __slab_free(s, page, x, addr);
1867
1868 local_irq_restore(flags);
1869 }
1870
1871 void kmem_cache_free(struct kmem_cache *s, void *x)
1872 {
1873 struct page *page;
1874
1875 page = virt_to_head_page(x);
1876
1877 slab_free(s, page, x, _RET_IP_);
1878
1879 trace_kmem_cache_free(_RET_IP_, x);
1880 }
1881 EXPORT_SYMBOL(kmem_cache_free);
1882
1883 /* Figure out on which slab page the object resides */
1884 static struct page *get_object_page(const void *x)
1885 {
1886 struct page *page = virt_to_head_page(x);
1887
1888 if (!PageSlab(page))
1889 return NULL;
1890
1891 return page;
1892 }
1893
1894 /*
1895 * Object placement in a slab is made very easy because we always start at
1896 * offset 0. If we tune the size of the object to the alignment then we can
1897 * get the required alignment by putting one properly sized object after
1898 * another.
1899 *
1900 * Notice that the allocation order determines the sizes of the per cpu
1901 * caches. Each processor has always one slab available for allocations.
1902 * Increasing the allocation order reduces the number of times that slabs
1903 * must be moved on and off the partial lists and is therefore a factor in
1904 * locking overhead.
1905 */
1906
1907 /*
1908 * Mininum / Maximum order of slab pages. This influences locking overhead
1909 * and slab fragmentation. A higher order reduces the number of partial slabs
1910 * and increases the number of allocations possible without having to
1911 * take the list_lock.
1912 */
1913 static int slub_min_order;
1914 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1915 static int slub_min_objects;
1916
1917 /*
1918 * Merge control. If this is set then no merging of slab caches will occur.
1919 * (Could be removed. This was introduced to pacify the merge skeptics.)
1920 */
1921 static int slub_nomerge;
1922
1923 /*
1924 * Calculate the order of allocation given an slab object size.
1925 *
1926 * The order of allocation has significant impact on performance and other
1927 * system components. Generally order 0 allocations should be preferred since
1928 * order 0 does not cause fragmentation in the page allocator. Larger objects
1929 * be problematic to put into order 0 slabs because there may be too much
1930 * unused space left. We go to a higher order if more than 1/16th of the slab
1931 * would be wasted.
1932 *
1933 * In order to reach satisfactory performance we must ensure that a minimum
1934 * number of objects is in one slab. Otherwise we may generate too much
1935 * activity on the partial lists which requires taking the list_lock. This is
1936 * less a concern for large slabs though which are rarely used.
1937 *
1938 * slub_max_order specifies the order where we begin to stop considering the
1939 * number of objects in a slab as critical. If we reach slub_max_order then
1940 * we try to keep the page order as low as possible. So we accept more waste
1941 * of space in favor of a small page order.
1942 *
1943 * Higher order allocations also allow the placement of more objects in a
1944 * slab and thereby reduce object handling overhead. If the user has
1945 * requested a higher mininum order then we start with that one instead of
1946 * the smallest order which will fit the object.
1947 */
1948 static inline int slab_order(int size, int min_objects,
1949 int max_order, int fract_leftover)
1950 {
1951 int order;
1952 int rem;
1953 int min_order = slub_min_order;
1954
1955 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1956 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1957
1958 for (order = max(min_order,
1959 fls(min_objects * size - 1) - PAGE_SHIFT);
1960 order <= max_order; order++) {
1961
1962 unsigned long slab_size = PAGE_SIZE << order;
1963
1964 if (slab_size < min_objects * size)
1965 continue;
1966
1967 rem = slab_size % size;
1968
1969 if (rem <= slab_size / fract_leftover)
1970 break;
1971
1972 }
1973
1974 return order;
1975 }
1976
1977 static inline int calculate_order(int size)
1978 {
1979 int order;
1980 int min_objects;
1981 int fraction;
1982 int max_objects;
1983
1984 /*
1985 * Attempt to find best configuration for a slab. This
1986 * works by first attempting to generate a layout with
1987 * the best configuration and backing off gradually.
1988 *
1989 * First we reduce the acceptable waste in a slab. Then
1990 * we reduce the minimum objects required in a slab.
1991 */
1992 min_objects = slub_min_objects;
1993 if (!min_objects)
1994 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1995 max_objects = (PAGE_SIZE << slub_max_order)/size;
1996 min_objects = min(min_objects, max_objects);
1997
1998 while (min_objects > 1) {
1999 fraction = 16;
2000 while (fraction >= 4) {
2001 order = slab_order(size, min_objects,
2002 slub_max_order, fraction);
2003 if (order <= slub_max_order)
2004 return order;
2005 fraction /= 2;
2006 }
2007 min_objects--;
2008 }
2009
2010 /*
2011 * We were unable to place multiple objects in a slab. Now
2012 * lets see if we can place a single object there.
2013 */
2014 order = slab_order(size, 1, slub_max_order, 1);
2015 if (order <= slub_max_order)
2016 return order;
2017
2018 /*
2019 * Doh this slab cannot be placed using slub_max_order.
2020 */
2021 order = slab_order(size, 1, MAX_ORDER, 1);
2022 if (order < MAX_ORDER)
2023 return order;
2024 return -ENOSYS;
2025 }
2026
2027 /*
2028 * Figure out what the alignment of the objects will be.
2029 */
2030 static unsigned long calculate_alignment(unsigned long flags,
2031 unsigned long align, unsigned long size)
2032 {
2033 /*
2034 * If the user wants hardware cache aligned objects then follow that
2035 * suggestion if the object is sufficiently large.
2036 *
2037 * The hardware cache alignment cannot override the specified
2038 * alignment though. If that is greater then use it.
2039 */
2040 if (flags & SLAB_HWCACHE_ALIGN) {
2041 unsigned long ralign = cache_line_size();
2042 while (size <= ralign / 2)
2043 ralign /= 2;
2044 align = max(align, ralign);
2045 }
2046
2047 if (align < ARCH_SLAB_MINALIGN)
2048 align = ARCH_SLAB_MINALIGN;
2049
2050 return ALIGN(align, sizeof(void *));
2051 }
2052
2053 static void
2054 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2055 {
2056 n->nr_partial = 0;
2057 spin_lock_init(&n->list_lock);
2058 INIT_LIST_HEAD(&n->partial);
2059 #ifdef CONFIG_SLUB_DEBUG
2060 atomic_long_set(&n->nr_slabs, 0);
2061 atomic_long_set(&n->total_objects, 0);
2062 INIT_LIST_HEAD(&n->full);
2063 #endif
2064 }
2065
2066 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2067
2068 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2069 {
2070 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2071 /*
2072 * Boot time creation of the kmalloc array. Use static per cpu data
2073 * since the per cpu allocator is not available yet.
2074 */
2075 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2076 else
2077 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2078
2079 if (!s->cpu_slab)
2080 return 0;
2081
2082 return 1;
2083 }
2084
2085 #ifdef CONFIG_NUMA
2086 /*
2087 * No kmalloc_node yet so do it by hand. We know that this is the first
2088 * slab on the node for this slabcache. There are no concurrent accesses
2089 * possible.
2090 *
2091 * Note that this function only works on the kmalloc_node_cache
2092 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2093 * memory on a fresh node that has no slab structures yet.
2094 */
2095 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2096 {
2097 struct page *page;
2098 struct kmem_cache_node *n;
2099 unsigned long flags;
2100
2101 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2102
2103 page = new_slab(kmalloc_caches, gfpflags, node);
2104
2105 BUG_ON(!page);
2106 if (page_to_nid(page) != node) {
2107 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2108 "node %d\n", node);
2109 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2110 "in order to be able to continue\n");
2111 }
2112
2113 n = page->freelist;
2114 BUG_ON(!n);
2115 page->freelist = get_freepointer(kmalloc_caches, n);
2116 page->inuse++;
2117 kmalloc_caches->node[node] = n;
2118 #ifdef CONFIG_SLUB_DEBUG
2119 init_object(kmalloc_caches, n, 1);
2120 init_tracking(kmalloc_caches, n);
2121 #endif
2122 init_kmem_cache_node(n, kmalloc_caches);
2123 inc_slabs_node(kmalloc_caches, node, page->objects);
2124
2125 /*
2126 * lockdep requires consistent irq usage for each lock
2127 * so even though there cannot be a race this early in
2128 * the boot sequence, we still disable irqs.
2129 */
2130 local_irq_save(flags);
2131 add_partial(n, page, 0);
2132 local_irq_restore(flags);
2133 }
2134
2135 static void free_kmem_cache_nodes(struct kmem_cache *s)
2136 {
2137 int node;
2138
2139 for_each_node_state(node, N_NORMAL_MEMORY) {
2140 struct kmem_cache_node *n = s->node[node];
2141 if (n)
2142 kmem_cache_free(kmalloc_caches, n);
2143 s->node[node] = NULL;
2144 }
2145 }
2146
2147 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2148 {
2149 int node;
2150
2151 for_each_node_state(node, N_NORMAL_MEMORY) {
2152 struct kmem_cache_node *n;
2153
2154 if (slab_state == DOWN) {
2155 early_kmem_cache_node_alloc(gfpflags, node);
2156 continue;
2157 }
2158 n = kmem_cache_alloc_node(kmalloc_caches,
2159 gfpflags, node);
2160
2161 if (!n) {
2162 free_kmem_cache_nodes(s);
2163 return 0;
2164 }
2165
2166 s->node[node] = n;
2167 init_kmem_cache_node(n, s);
2168 }
2169 return 1;
2170 }
2171 #else
2172 static void free_kmem_cache_nodes(struct kmem_cache *s)
2173 {
2174 }
2175
2176 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2177 {
2178 init_kmem_cache_node(&s->local_node, s);
2179 return 1;
2180 }
2181 #endif
2182
2183 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2184 {
2185 if (min < MIN_PARTIAL)
2186 min = MIN_PARTIAL;
2187 else if (min > MAX_PARTIAL)
2188 min = MAX_PARTIAL;
2189 s->min_partial = min;
2190 }
2191
2192 /*
2193 * calculate_sizes() determines the order and the distribution of data within
2194 * a slab object.
2195 */
2196 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2197 {
2198 unsigned long flags = s->flags;
2199 unsigned long size = s->objsize;
2200 unsigned long align = s->align;
2201 int order;
2202
2203 /*
2204 * Round up object size to the next word boundary. We can only
2205 * place the free pointer at word boundaries and this determines
2206 * the possible location of the free pointer.
2207 */
2208 size = ALIGN(size, sizeof(void *));
2209
2210 #ifdef CONFIG_SLUB_DEBUG
2211 /*
2212 * Determine if we can poison the object itself. If the user of
2213 * the slab may touch the object after free or before allocation
2214 * then we should never poison the object itself.
2215 */
2216 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2217 !s->ctor)
2218 s->flags |= __OBJECT_POISON;
2219 else
2220 s->flags &= ~__OBJECT_POISON;
2221
2222
2223 /*
2224 * If we are Redzoning then check if there is some space between the
2225 * end of the object and the free pointer. If not then add an
2226 * additional word to have some bytes to store Redzone information.
2227 */
2228 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2229 size += sizeof(void *);
2230 #endif
2231
2232 /*
2233 * With that we have determined the number of bytes in actual use
2234 * by the object. This is the potential offset to the free pointer.
2235 */
2236 s->inuse = size;
2237
2238 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2239 s->ctor)) {
2240 /*
2241 * Relocate free pointer after the object if it is not
2242 * permitted to overwrite the first word of the object on
2243 * kmem_cache_free.
2244 *
2245 * This is the case if we do RCU, have a constructor or
2246 * destructor or are poisoning the objects.
2247 */
2248 s->offset = size;
2249 size += sizeof(void *);
2250 }
2251
2252 #ifdef CONFIG_SLUB_DEBUG
2253 if (flags & SLAB_STORE_USER)
2254 /*
2255 * Need to store information about allocs and frees after
2256 * the object.
2257 */
2258 size += 2 * sizeof(struct track);
2259
2260 if (flags & SLAB_RED_ZONE)
2261 /*
2262 * Add some empty padding so that we can catch
2263 * overwrites from earlier objects rather than let
2264 * tracking information or the free pointer be
2265 * corrupted if a user writes before the start
2266 * of the object.
2267 */
2268 size += sizeof(void *);
2269 #endif
2270
2271 /*
2272 * Determine the alignment based on various parameters that the
2273 * user specified and the dynamic determination of cache line size
2274 * on bootup.
2275 */
2276 align = calculate_alignment(flags, align, s->objsize);
2277 s->align = align;
2278
2279 /*
2280 * SLUB stores one object immediately after another beginning from
2281 * offset 0. In order to align the objects we have to simply size
2282 * each object to conform to the alignment.
2283 */
2284 size = ALIGN(size, align);
2285 s->size = size;
2286 if (forced_order >= 0)
2287 order = forced_order;
2288 else
2289 order = calculate_order(size);
2290
2291 if (order < 0)
2292 return 0;
2293
2294 s->allocflags = 0;
2295 if (order)
2296 s->allocflags |= __GFP_COMP;
2297
2298 if (s->flags & SLAB_CACHE_DMA)
2299 s->allocflags |= SLUB_DMA;
2300
2301 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2302 s->allocflags |= __GFP_RECLAIMABLE;
2303
2304 /*
2305 * Determine the number of objects per slab
2306 */
2307 s->oo = oo_make(order, size);
2308 s->min = oo_make(get_order(size), size);
2309 if (oo_objects(s->oo) > oo_objects(s->max))
2310 s->max = s->oo;
2311
2312 return !!oo_objects(s->oo);
2313
2314 }
2315
2316 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2317 const char *name, size_t size,
2318 size_t align, unsigned long flags,
2319 void (*ctor)(void *))
2320 {
2321 memset(s, 0, kmem_size);
2322 s->name = name;
2323 s->ctor = ctor;
2324 s->objsize = size;
2325 s->align = align;
2326 s->flags = kmem_cache_flags(size, flags, name, ctor);
2327
2328 if (!calculate_sizes(s, -1))
2329 goto error;
2330 if (disable_higher_order_debug) {
2331 /*
2332 * Disable debugging flags that store metadata if the min slab
2333 * order increased.
2334 */
2335 if (get_order(s->size) > get_order(s->objsize)) {
2336 s->flags &= ~DEBUG_METADATA_FLAGS;
2337 s->offset = 0;
2338 if (!calculate_sizes(s, -1))
2339 goto error;
2340 }
2341 }
2342
2343 /*
2344 * The larger the object size is, the more pages we want on the partial
2345 * list to avoid pounding the page allocator excessively.
2346 */
2347 set_min_partial(s, ilog2(s->size));
2348 s->refcount = 1;
2349 #ifdef CONFIG_NUMA
2350 s->remote_node_defrag_ratio = 1000;
2351 #endif
2352 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2353 goto error;
2354
2355 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2356 return 1;
2357
2358 free_kmem_cache_nodes(s);
2359 error:
2360 if (flags & SLAB_PANIC)
2361 panic("Cannot create slab %s size=%lu realsize=%u "
2362 "order=%u offset=%u flags=%lx\n",
2363 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2364 s->offset, flags);
2365 return 0;
2366 }
2367
2368 /*
2369 * Check if a given pointer is valid
2370 */
2371 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2372 {
2373 struct page *page;
2374
2375 if (!kern_ptr_validate(object, s->size))
2376 return 0;
2377
2378 page = get_object_page(object);
2379
2380 if (!page || s != page->slab)
2381 /* No slab or wrong slab */
2382 return 0;
2383
2384 if (!check_valid_pointer(s, page, object))
2385 return 0;
2386
2387 /*
2388 * We could also check if the object is on the slabs freelist.
2389 * But this would be too expensive and it seems that the main
2390 * purpose of kmem_ptr_valid() is to check if the object belongs
2391 * to a certain slab.
2392 */
2393 return 1;
2394 }
2395 EXPORT_SYMBOL(kmem_ptr_validate);
2396
2397 /*
2398 * Determine the size of a slab object
2399 */
2400 unsigned int kmem_cache_size(struct kmem_cache *s)
2401 {
2402 return s->objsize;
2403 }
2404 EXPORT_SYMBOL(kmem_cache_size);
2405
2406 const char *kmem_cache_name(struct kmem_cache *s)
2407 {
2408 return s->name;
2409 }
2410 EXPORT_SYMBOL(kmem_cache_name);
2411
2412 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2413 const char *text)
2414 {
2415 #ifdef CONFIG_SLUB_DEBUG
2416 void *addr = page_address(page);
2417 void *p;
2418 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2419 GFP_ATOMIC);
2420
2421 if (!map)
2422 return;
2423 slab_err(s, page, "%s", text);
2424 slab_lock(page);
2425 for_each_free_object(p, s, page->freelist)
2426 set_bit(slab_index(p, s, addr), map);
2427
2428 for_each_object(p, s, addr, page->objects) {
2429
2430 if (!test_bit(slab_index(p, s, addr), map)) {
2431 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432 p, p - addr);
2433 print_tracking(s, p);
2434 }
2435 }
2436 slab_unlock(page);
2437 kfree(map);
2438 #endif
2439 }
2440
2441 /*
2442 * Attempt to free all partial slabs on a node.
2443 */
2444 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2445 {
2446 unsigned long flags;
2447 struct page *page, *h;
2448
2449 spin_lock_irqsave(&n->list_lock, flags);
2450 list_for_each_entry_safe(page, h, &n->partial, lru) {
2451 if (!page->inuse) {
2452 list_del(&page->lru);
2453 discard_slab(s, page);
2454 n->nr_partial--;
2455 } else {
2456 list_slab_objects(s, page,
2457 "Objects remaining on kmem_cache_close()");
2458 }
2459 }
2460 spin_unlock_irqrestore(&n->list_lock, flags);
2461 }
2462
2463 /*
2464 * Release all resources used by a slab cache.
2465 */
2466 static inline int kmem_cache_close(struct kmem_cache *s)
2467 {
2468 int node;
2469
2470 flush_all(s);
2471 free_percpu(s->cpu_slab);
2472 /* Attempt to free all objects */
2473 for_each_node_state(node, N_NORMAL_MEMORY) {
2474 struct kmem_cache_node *n = get_node(s, node);
2475
2476 free_partial(s, n);
2477 if (n->nr_partial || slabs_node(s, node))
2478 return 1;
2479 }
2480 free_kmem_cache_nodes(s);
2481 return 0;
2482 }
2483
2484 /*
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2487 */
2488 void kmem_cache_destroy(struct kmem_cache *s)
2489 {
2490 down_write(&slub_lock);
2491 s->refcount--;
2492 if (!s->refcount) {
2493 list_del(&s->list);
2494 if (kmem_cache_close(s)) {
2495 printk(KERN_ERR "SLUB %s: %s called for cache that "
2496 "still has objects.\n", s->name, __func__);
2497 dump_stack();
2498 }
2499 if (s->flags & SLAB_DESTROY_BY_RCU)
2500 rcu_barrier();
2501 sysfs_slab_remove(s);
2502 }
2503 up_write(&slub_lock);
2504 }
2505 EXPORT_SYMBOL(kmem_cache_destroy);
2506
2507 /********************************************************************
2508 * Kmalloc subsystem
2509 *******************************************************************/
2510
2511 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2512 EXPORT_SYMBOL(kmalloc_caches);
2513
2514 static int __init setup_slub_min_order(char *str)
2515 {
2516 get_option(&str, &slub_min_order);
2517
2518 return 1;
2519 }
2520
2521 __setup("slub_min_order=", setup_slub_min_order);
2522
2523 static int __init setup_slub_max_order(char *str)
2524 {
2525 get_option(&str, &slub_max_order);
2526 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2527
2528 return 1;
2529 }
2530
2531 __setup("slub_max_order=", setup_slub_max_order);
2532
2533 static int __init setup_slub_min_objects(char *str)
2534 {
2535 get_option(&str, &slub_min_objects);
2536
2537 return 1;
2538 }
2539
2540 __setup("slub_min_objects=", setup_slub_min_objects);
2541
2542 static int __init setup_slub_nomerge(char *str)
2543 {
2544 slub_nomerge = 1;
2545 return 1;
2546 }
2547
2548 __setup("slub_nomerge", setup_slub_nomerge);
2549
2550 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2551 const char *name, int size, gfp_t gfp_flags)
2552 {
2553 unsigned int flags = 0;
2554
2555 if (gfp_flags & SLUB_DMA)
2556 flags = SLAB_CACHE_DMA;
2557
2558 /*
2559 * This function is called with IRQs disabled during early-boot on
2560 * single CPU so there's no need to take slub_lock here.
2561 */
2562 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2563 flags, NULL))
2564 goto panic;
2565
2566 list_add(&s->list, &slab_caches);
2567
2568 if (sysfs_slab_add(s))
2569 goto panic;
2570 return s;
2571
2572 panic:
2573 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2574 }
2575
2576 #ifdef CONFIG_ZONE_DMA
2577 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2578
2579 static void sysfs_add_func(struct work_struct *w)
2580 {
2581 struct kmem_cache *s;
2582
2583 down_write(&slub_lock);
2584 list_for_each_entry(s, &slab_caches, list) {
2585 if (s->flags & __SYSFS_ADD_DEFERRED) {
2586 s->flags &= ~__SYSFS_ADD_DEFERRED;
2587 sysfs_slab_add(s);
2588 }
2589 }
2590 up_write(&slub_lock);
2591 }
2592
2593 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2594
2595 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2596 {
2597 struct kmem_cache *s;
2598 char *text;
2599 size_t realsize;
2600 unsigned long slabflags;
2601 int i;
2602
2603 s = kmalloc_caches_dma[index];
2604 if (s)
2605 return s;
2606
2607 /* Dynamically create dma cache */
2608 if (flags & __GFP_WAIT)
2609 down_write(&slub_lock);
2610 else {
2611 if (!down_write_trylock(&slub_lock))
2612 goto out;
2613 }
2614
2615 if (kmalloc_caches_dma[index])
2616 goto unlock_out;
2617
2618 realsize = kmalloc_caches[index].objsize;
2619 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2620 (unsigned int)realsize);
2621
2622 s = NULL;
2623 for (i = 0; i < KMALLOC_CACHES; i++)
2624 if (!kmalloc_caches[i].size)
2625 break;
2626
2627 BUG_ON(i >= KMALLOC_CACHES);
2628 s = kmalloc_caches + i;
2629
2630 /*
2631 * Must defer sysfs creation to a workqueue because we don't know
2632 * what context we are called from. Before sysfs comes up, we don't
2633 * need to do anything because our sysfs initcall will start by
2634 * adding all existing slabs to sysfs.
2635 */
2636 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2637 if (slab_state >= SYSFS)
2638 slabflags |= __SYSFS_ADD_DEFERRED;
2639
2640 if (!text || !kmem_cache_open(s, flags, text,
2641 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2642 s->size = 0;
2643 kfree(text);
2644 goto unlock_out;
2645 }
2646
2647 list_add(&s->list, &slab_caches);
2648 kmalloc_caches_dma[index] = s;
2649
2650 if (slab_state >= SYSFS)
2651 schedule_work(&sysfs_add_work);
2652
2653 unlock_out:
2654 up_write(&slub_lock);
2655 out:
2656 return kmalloc_caches_dma[index];
2657 }
2658 #endif
2659
2660 /*
2661 * Conversion table for small slabs sizes / 8 to the index in the
2662 * kmalloc array. This is necessary for slabs < 192 since we have non power
2663 * of two cache sizes there. The size of larger slabs can be determined using
2664 * fls.
2665 */
2666 static s8 size_index[24] = {
2667 3, /* 8 */
2668 4, /* 16 */
2669 5, /* 24 */
2670 5, /* 32 */
2671 6, /* 40 */
2672 6, /* 48 */
2673 6, /* 56 */
2674 6, /* 64 */
2675 1, /* 72 */
2676 1, /* 80 */
2677 1, /* 88 */
2678 1, /* 96 */
2679 7, /* 104 */
2680 7, /* 112 */
2681 7, /* 120 */
2682 7, /* 128 */
2683 2, /* 136 */
2684 2, /* 144 */
2685 2, /* 152 */
2686 2, /* 160 */
2687 2, /* 168 */
2688 2, /* 176 */
2689 2, /* 184 */
2690 2 /* 192 */
2691 };
2692
2693 static inline int size_index_elem(size_t bytes)
2694 {
2695 return (bytes - 1) / 8;
2696 }
2697
2698 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2699 {
2700 int index;
2701
2702 if (size <= 192) {
2703 if (!size)
2704 return ZERO_SIZE_PTR;
2705
2706 index = size_index[size_index_elem(size)];
2707 } else
2708 index = fls(size - 1);
2709
2710 #ifdef CONFIG_ZONE_DMA
2711 if (unlikely((flags & SLUB_DMA)))
2712 return dma_kmalloc_cache(index, flags);
2713
2714 #endif
2715 return &kmalloc_caches[index];
2716 }
2717
2718 void *__kmalloc(size_t size, gfp_t flags)
2719 {
2720 struct kmem_cache *s;
2721 void *ret;
2722
2723 if (unlikely(size > SLUB_MAX_SIZE))
2724 return kmalloc_large(size, flags);
2725
2726 s = get_slab(size, flags);
2727
2728 if (unlikely(ZERO_OR_NULL_PTR(s)))
2729 return s;
2730
2731 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2732
2733 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2734
2735 return ret;
2736 }
2737 EXPORT_SYMBOL(__kmalloc);
2738
2739 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2740 {
2741 struct page *page;
2742 void *ptr = NULL;
2743
2744 flags |= __GFP_COMP | __GFP_NOTRACK;
2745 page = alloc_pages_node(node, flags, get_order(size));
2746 if (page)
2747 ptr = page_address(page);
2748
2749 kmemleak_alloc(ptr, size, 1, flags);
2750 return ptr;
2751 }
2752
2753 #ifdef CONFIG_NUMA
2754 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2755 {
2756 struct kmem_cache *s;
2757 void *ret;
2758
2759 if (unlikely(size > SLUB_MAX_SIZE)) {
2760 ret = kmalloc_large_node(size, flags, node);
2761
2762 trace_kmalloc_node(_RET_IP_, ret,
2763 size, PAGE_SIZE << get_order(size),
2764 flags, node);
2765
2766 return ret;
2767 }
2768
2769 s = get_slab(size, flags);
2770
2771 if (unlikely(ZERO_OR_NULL_PTR(s)))
2772 return s;
2773
2774 ret = slab_alloc(s, flags, node, _RET_IP_);
2775
2776 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2777
2778 return ret;
2779 }
2780 EXPORT_SYMBOL(__kmalloc_node);
2781 #endif
2782
2783 size_t ksize(const void *object)
2784 {
2785 struct page *page;
2786 struct kmem_cache *s;
2787
2788 if (unlikely(object == ZERO_SIZE_PTR))
2789 return 0;
2790
2791 page = virt_to_head_page(object);
2792
2793 if (unlikely(!PageSlab(page))) {
2794 WARN_ON(!PageCompound(page));
2795 return PAGE_SIZE << compound_order(page);
2796 }
2797 s = page->slab;
2798
2799 #ifdef CONFIG_SLUB_DEBUG
2800 /*
2801 * Debugging requires use of the padding between object
2802 * and whatever may come after it.
2803 */
2804 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2805 return s->objsize;
2806
2807 #endif
2808 /*
2809 * If we have the need to store the freelist pointer
2810 * back there or track user information then we can
2811 * only use the space before that information.
2812 */
2813 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2814 return s->inuse;
2815 /*
2816 * Else we can use all the padding etc for the allocation
2817 */
2818 return s->size;
2819 }
2820 EXPORT_SYMBOL(ksize);
2821
2822 void kfree(const void *x)
2823 {
2824 struct page *page;
2825 void *object = (void *)x;
2826
2827 trace_kfree(_RET_IP_, x);
2828
2829 if (unlikely(ZERO_OR_NULL_PTR(x)))
2830 return;
2831
2832 page = virt_to_head_page(x);
2833 if (unlikely(!PageSlab(page))) {
2834 BUG_ON(!PageCompound(page));
2835 kmemleak_free(x);
2836 put_page(page);
2837 return;
2838 }
2839 slab_free(page->slab, page, object, _RET_IP_);
2840 }
2841 EXPORT_SYMBOL(kfree);
2842
2843 /*
2844 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2845 * the remaining slabs by the number of items in use. The slabs with the
2846 * most items in use come first. New allocations will then fill those up
2847 * and thus they can be removed from the partial lists.
2848 *
2849 * The slabs with the least items are placed last. This results in them
2850 * being allocated from last increasing the chance that the last objects
2851 * are freed in them.
2852 */
2853 int kmem_cache_shrink(struct kmem_cache *s)
2854 {
2855 int node;
2856 int i;
2857 struct kmem_cache_node *n;
2858 struct page *page;
2859 struct page *t;
2860 int objects = oo_objects(s->max);
2861 struct list_head *slabs_by_inuse =
2862 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2863 unsigned long flags;
2864
2865 if (!slabs_by_inuse)
2866 return -ENOMEM;
2867
2868 flush_all(s);
2869 for_each_node_state(node, N_NORMAL_MEMORY) {
2870 n = get_node(s, node);
2871
2872 if (!n->nr_partial)
2873 continue;
2874
2875 for (i = 0; i < objects; i++)
2876 INIT_LIST_HEAD(slabs_by_inuse + i);
2877
2878 spin_lock_irqsave(&n->list_lock, flags);
2879
2880 /*
2881 * Build lists indexed by the items in use in each slab.
2882 *
2883 * Note that concurrent frees may occur while we hold the
2884 * list_lock. page->inuse here is the upper limit.
2885 */
2886 list_for_each_entry_safe(page, t, &n->partial, lru) {
2887 if (!page->inuse && slab_trylock(page)) {
2888 /*
2889 * Must hold slab lock here because slab_free
2890 * may have freed the last object and be
2891 * waiting to release the slab.
2892 */
2893 list_del(&page->lru);
2894 n->nr_partial--;
2895 slab_unlock(page);
2896 discard_slab(s, page);
2897 } else {
2898 list_move(&page->lru,
2899 slabs_by_inuse + page->inuse);
2900 }
2901 }
2902
2903 /*
2904 * Rebuild the partial list with the slabs filled up most
2905 * first and the least used slabs at the end.
2906 */
2907 for (i = objects - 1; i >= 0; i--)
2908 list_splice(slabs_by_inuse + i, n->partial.prev);
2909
2910 spin_unlock_irqrestore(&n->list_lock, flags);
2911 }
2912
2913 kfree(slabs_by_inuse);
2914 return 0;
2915 }
2916 EXPORT_SYMBOL(kmem_cache_shrink);
2917
2918 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2919 static int slab_mem_going_offline_callback(void *arg)
2920 {
2921 struct kmem_cache *s;
2922
2923 down_read(&slub_lock);
2924 list_for_each_entry(s, &slab_caches, list)
2925 kmem_cache_shrink(s);
2926 up_read(&slub_lock);
2927
2928 return 0;
2929 }
2930
2931 static void slab_mem_offline_callback(void *arg)
2932 {
2933 struct kmem_cache_node *n;
2934 struct kmem_cache *s;
2935 struct memory_notify *marg = arg;
2936 int offline_node;
2937
2938 offline_node = marg->status_change_nid;
2939
2940 /*
2941 * If the node still has available memory. we need kmem_cache_node
2942 * for it yet.
2943 */
2944 if (offline_node < 0)
2945 return;
2946
2947 down_read(&slub_lock);
2948 list_for_each_entry(s, &slab_caches, list) {
2949 n = get_node(s, offline_node);
2950 if (n) {
2951 /*
2952 * if n->nr_slabs > 0, slabs still exist on the node
2953 * that is going down. We were unable to free them,
2954 * and offline_pages() function shouldn't call this
2955 * callback. So, we must fail.
2956 */
2957 BUG_ON(slabs_node(s, offline_node));
2958
2959 s->node[offline_node] = NULL;
2960 kmem_cache_free(kmalloc_caches, n);
2961 }
2962 }
2963 up_read(&slub_lock);
2964 }
2965
2966 static int slab_mem_going_online_callback(void *arg)
2967 {
2968 struct kmem_cache_node *n;
2969 struct kmem_cache *s;
2970 struct memory_notify *marg = arg;
2971 int nid = marg->status_change_nid;
2972 int ret = 0;
2973
2974 /*
2975 * If the node's memory is already available, then kmem_cache_node is
2976 * already created. Nothing to do.
2977 */
2978 if (nid < 0)
2979 return 0;
2980
2981 /*
2982 * We are bringing a node online. No memory is available yet. We must
2983 * allocate a kmem_cache_node structure in order to bring the node
2984 * online.
2985 */
2986 down_read(&slub_lock);
2987 list_for_each_entry(s, &slab_caches, list) {
2988 /*
2989 * XXX: kmem_cache_alloc_node will fallback to other nodes
2990 * since memory is not yet available from the node that
2991 * is brought up.
2992 */
2993 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2994 if (!n) {
2995 ret = -ENOMEM;
2996 goto out;
2997 }
2998 init_kmem_cache_node(n, s);
2999 s->node[nid] = n;
3000 }
3001 out:
3002 up_read(&slub_lock);
3003 return ret;
3004 }
3005
3006 static int slab_memory_callback(struct notifier_block *self,
3007 unsigned long action, void *arg)
3008 {
3009 int ret = 0;
3010
3011 switch (action) {
3012 case MEM_GOING_ONLINE:
3013 ret = slab_mem_going_online_callback(arg);
3014 break;
3015 case MEM_GOING_OFFLINE:
3016 ret = slab_mem_going_offline_callback(arg);
3017 break;
3018 case MEM_OFFLINE:
3019 case MEM_CANCEL_ONLINE:
3020 slab_mem_offline_callback(arg);
3021 break;
3022 case MEM_ONLINE:
3023 case MEM_CANCEL_OFFLINE:
3024 break;
3025 }
3026 if (ret)
3027 ret = notifier_from_errno(ret);
3028 else
3029 ret = NOTIFY_OK;
3030 return ret;
3031 }
3032
3033 #endif /* CONFIG_MEMORY_HOTPLUG */
3034
3035 /********************************************************************
3036 * Basic setup of slabs
3037 *******************************************************************/
3038
3039 void __init kmem_cache_init(void)
3040 {
3041 int i;
3042 int caches = 0;
3043
3044 #ifdef CONFIG_NUMA
3045 /*
3046 * Must first have the slab cache available for the allocations of the
3047 * struct kmem_cache_node's. There is special bootstrap code in
3048 * kmem_cache_open for slab_state == DOWN.
3049 */
3050 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3051 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3052 kmalloc_caches[0].refcount = -1;
3053 caches++;
3054
3055 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3056 #endif
3057
3058 /* Able to allocate the per node structures */
3059 slab_state = PARTIAL;
3060
3061 /* Caches that are not of the two-to-the-power-of size */
3062 if (KMALLOC_MIN_SIZE <= 32) {
3063 create_kmalloc_cache(&kmalloc_caches[1],
3064 "kmalloc-96", 96, GFP_NOWAIT);
3065 caches++;
3066 }
3067 if (KMALLOC_MIN_SIZE <= 64) {
3068 create_kmalloc_cache(&kmalloc_caches[2],
3069 "kmalloc-192", 192, GFP_NOWAIT);
3070 caches++;
3071 }
3072
3073 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3074 create_kmalloc_cache(&kmalloc_caches[i],
3075 "kmalloc", 1 << i, GFP_NOWAIT);
3076 caches++;
3077 }
3078
3079
3080 /*
3081 * Patch up the size_index table if we have strange large alignment
3082 * requirements for the kmalloc array. This is only the case for
3083 * MIPS it seems. The standard arches will not generate any code here.
3084 *
3085 * Largest permitted alignment is 256 bytes due to the way we
3086 * handle the index determination for the smaller caches.
3087 *
3088 * Make sure that nothing crazy happens if someone starts tinkering
3089 * around with ARCH_KMALLOC_MINALIGN
3090 */
3091 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3092 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3093
3094 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3095 int elem = size_index_elem(i);
3096 if (elem >= ARRAY_SIZE(size_index))
3097 break;
3098 size_index[elem] = KMALLOC_SHIFT_LOW;
3099 }
3100
3101 if (KMALLOC_MIN_SIZE == 64) {
3102 /*
3103 * The 96 byte size cache is not used if the alignment
3104 * is 64 byte.
3105 */
3106 for (i = 64 + 8; i <= 96; i += 8)
3107 size_index[size_index_elem(i)] = 7;
3108 } else if (KMALLOC_MIN_SIZE == 128) {
3109 /*
3110 * The 192 byte sized cache is not used if the alignment
3111 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3112 * instead.
3113 */
3114 for (i = 128 + 8; i <= 192; i += 8)
3115 size_index[size_index_elem(i)] = 8;
3116 }
3117
3118 slab_state = UP;
3119
3120 /* Provide the correct kmalloc names now that the caches are up */
3121 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3122 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3123
3124 BUG_ON(!s);
3125 kmalloc_caches[i].name = s;
3126 }
3127
3128 #ifdef CONFIG_SMP
3129 register_cpu_notifier(&slab_notifier);
3130 #endif
3131 #ifdef CONFIG_NUMA
3132 kmem_size = offsetof(struct kmem_cache, node) +
3133 nr_node_ids * sizeof(struct kmem_cache_node *);
3134 #else
3135 kmem_size = sizeof(struct kmem_cache);
3136 #endif
3137
3138 printk(KERN_INFO
3139 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3140 " CPUs=%d, Nodes=%d\n",
3141 caches, cache_line_size(),
3142 slub_min_order, slub_max_order, slub_min_objects,
3143 nr_cpu_ids, nr_node_ids);
3144 }
3145
3146 void __init kmem_cache_init_late(void)
3147 {
3148 }
3149
3150 /*
3151 * Find a mergeable slab cache
3152 */
3153 static int slab_unmergeable(struct kmem_cache *s)
3154 {
3155 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3156 return 1;
3157
3158 if (s->ctor)
3159 return 1;
3160
3161 /*
3162 * We may have set a slab to be unmergeable during bootstrap.
3163 */
3164 if (s->refcount < 0)
3165 return 1;
3166
3167 return 0;
3168 }
3169
3170 static struct kmem_cache *find_mergeable(size_t size,
3171 size_t align, unsigned long flags, const char *name,
3172 void (*ctor)(void *))
3173 {
3174 struct kmem_cache *s;
3175
3176 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3177 return NULL;
3178
3179 if (ctor)
3180 return NULL;
3181
3182 size = ALIGN(size, sizeof(void *));
3183 align = calculate_alignment(flags, align, size);
3184 size = ALIGN(size, align);
3185 flags = kmem_cache_flags(size, flags, name, NULL);
3186
3187 list_for_each_entry(s, &slab_caches, list) {
3188 if (slab_unmergeable(s))
3189 continue;
3190
3191 if (size > s->size)
3192 continue;
3193
3194 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3195 continue;
3196 /*
3197 * Check if alignment is compatible.
3198 * Courtesy of Adrian Drzewiecki
3199 */
3200 if ((s->size & ~(align - 1)) != s->size)
3201 continue;
3202
3203 if (s->size - size >= sizeof(void *))
3204 continue;
3205
3206 return s;
3207 }
3208 return NULL;
3209 }
3210
3211 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3212 size_t align, unsigned long flags, void (*ctor)(void *))
3213 {
3214 struct kmem_cache *s;
3215
3216 if (WARN_ON(!name))
3217 return NULL;
3218
3219 down_write(&slub_lock);
3220 s = find_mergeable(size, align, flags, name, ctor);
3221 if (s) {
3222 s->refcount++;
3223 /*
3224 * Adjust the object sizes so that we clear
3225 * the complete object on kzalloc.
3226 */
3227 s->objsize = max(s->objsize, (int)size);
3228 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3229
3230 if (sysfs_slab_alias(s, name)) {
3231 s->refcount--;
3232 goto err;
3233 }
3234 up_write(&slub_lock);
3235 return s;
3236 }
3237
3238 s = kmalloc(kmem_size, GFP_KERNEL);
3239 if (s) {
3240 if (kmem_cache_open(s, GFP_KERNEL, name,
3241 size, align, flags, ctor)) {
3242 list_add(&s->list, &slab_caches);
3243 if (sysfs_slab_add(s)) {
3244 list_del(&s->list);
3245 kfree(s);
3246 goto err;
3247 }
3248 up_write(&slub_lock);
3249 return s;
3250 }
3251 kfree(s);
3252 }
3253 up_write(&slub_lock);
3254
3255 err:
3256 if (flags & SLAB_PANIC)
3257 panic("Cannot create slabcache %s\n", name);
3258 else
3259 s = NULL;
3260 return s;
3261 }
3262 EXPORT_SYMBOL(kmem_cache_create);
3263
3264 #ifdef CONFIG_SMP
3265 /*
3266 * Use the cpu notifier to insure that the cpu slabs are flushed when
3267 * necessary.
3268 */
3269 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3270 unsigned long action, void *hcpu)
3271 {
3272 long cpu = (long)hcpu;
3273 struct kmem_cache *s;
3274 unsigned long flags;
3275
3276 switch (action) {
3277 case CPU_UP_CANCELED:
3278 case CPU_UP_CANCELED_FROZEN:
3279 case CPU_DEAD:
3280 case CPU_DEAD_FROZEN:
3281 down_read(&slub_lock);
3282 list_for_each_entry(s, &slab_caches, list) {
3283 local_irq_save(flags);
3284 __flush_cpu_slab(s, cpu);
3285 local_irq_restore(flags);
3286 }
3287 up_read(&slub_lock);
3288 break;
3289 default:
3290 break;
3291 }
3292 return NOTIFY_OK;
3293 }
3294
3295 static struct notifier_block __cpuinitdata slab_notifier = {
3296 .notifier_call = slab_cpuup_callback
3297 };
3298
3299 #endif
3300
3301 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3302 {
3303 struct kmem_cache *s;
3304 void *ret;
3305
3306 if (unlikely(size > SLUB_MAX_SIZE))
3307 return kmalloc_large(size, gfpflags);
3308
3309 s = get_slab(size, gfpflags);
3310
3311 if (unlikely(ZERO_OR_NULL_PTR(s)))
3312 return s;
3313
3314 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3315
3316 /* Honor the call site pointer we recieved. */
3317 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3318
3319 return ret;
3320 }
3321
3322 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3323 int node, unsigned long caller)
3324 {
3325 struct kmem_cache *s;
3326 void *ret;
3327
3328 if (unlikely(size > SLUB_MAX_SIZE)) {
3329 ret = kmalloc_large_node(size, gfpflags, node);
3330
3331 trace_kmalloc_node(caller, ret,
3332 size, PAGE_SIZE << get_order(size),
3333 gfpflags, node);
3334
3335 return ret;
3336 }
3337
3338 s = get_slab(size, gfpflags);
3339
3340 if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 return s;
3342
3343 ret = slab_alloc(s, gfpflags, node, caller);
3344
3345 /* Honor the call site pointer we recieved. */
3346 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3347
3348 return ret;
3349 }
3350
3351 #ifdef CONFIG_SLUB_DEBUG
3352 static int count_inuse(struct page *page)
3353 {
3354 return page->inuse;
3355 }
3356
3357 static int count_total(struct page *page)
3358 {
3359 return page->objects;
3360 }
3361
3362 static int validate_slab(struct kmem_cache *s, struct page *page,
3363 unsigned long *map)
3364 {
3365 void *p;
3366 void *addr = page_address(page);
3367
3368 if (!check_slab(s, page) ||
3369 !on_freelist(s, page, NULL))
3370 return 0;
3371
3372 /* Now we know that a valid freelist exists */
3373 bitmap_zero(map, page->objects);
3374
3375 for_each_free_object(p, s, page->freelist) {
3376 set_bit(slab_index(p, s, addr), map);
3377 if (!check_object(s, page, p, 0))
3378 return 0;
3379 }
3380
3381 for_each_object(p, s, addr, page->objects)
3382 if (!test_bit(slab_index(p, s, addr), map))
3383 if (!check_object(s, page, p, 1))
3384 return 0;
3385 return 1;
3386 }
3387
3388 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3389 unsigned long *map)
3390 {
3391 if (slab_trylock(page)) {
3392 validate_slab(s, page, map);
3393 slab_unlock(page);
3394 } else
3395 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3396 s->name, page);
3397 }
3398
3399 static int validate_slab_node(struct kmem_cache *s,
3400 struct kmem_cache_node *n, unsigned long *map)
3401 {
3402 unsigned long count = 0;
3403 struct page *page;
3404 unsigned long flags;
3405
3406 spin_lock_irqsave(&n->list_lock, flags);
3407
3408 list_for_each_entry(page, &n->partial, lru) {
3409 validate_slab_slab(s, page, map);
3410 count++;
3411 }
3412 if (count != n->nr_partial)
3413 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3414 "counter=%ld\n", s->name, count, n->nr_partial);
3415
3416 if (!(s->flags & SLAB_STORE_USER))
3417 goto out;
3418
3419 list_for_each_entry(page, &n->full, lru) {
3420 validate_slab_slab(s, page, map);
3421 count++;
3422 }
3423 if (count != atomic_long_read(&n->nr_slabs))
3424 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3425 "counter=%ld\n", s->name, count,
3426 atomic_long_read(&n->nr_slabs));
3427
3428 out:
3429 spin_unlock_irqrestore(&n->list_lock, flags);
3430 return count;
3431 }
3432
3433 static long validate_slab_cache(struct kmem_cache *s)
3434 {
3435 int node;
3436 unsigned long count = 0;
3437 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3438 sizeof(unsigned long), GFP_KERNEL);
3439
3440 if (!map)
3441 return -ENOMEM;
3442
3443 flush_all(s);
3444 for_each_node_state(node, N_NORMAL_MEMORY) {
3445 struct kmem_cache_node *n = get_node(s, node);
3446
3447 count += validate_slab_node(s, n, map);
3448 }
3449 kfree(map);
3450 return count;
3451 }
3452
3453 #ifdef SLUB_RESILIENCY_TEST
3454 static void resiliency_test(void)
3455 {
3456 u8 *p;
3457
3458 printk(KERN_ERR "SLUB resiliency testing\n");
3459 printk(KERN_ERR "-----------------------\n");
3460 printk(KERN_ERR "A. Corruption after allocation\n");
3461
3462 p = kzalloc(16, GFP_KERNEL);
3463 p[16] = 0x12;
3464 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3465 " 0x12->0x%p\n\n", p + 16);
3466
3467 validate_slab_cache(kmalloc_caches + 4);
3468
3469 /* Hmmm... The next two are dangerous */
3470 p = kzalloc(32, GFP_KERNEL);
3471 p[32 + sizeof(void *)] = 0x34;
3472 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3473 " 0x34 -> -0x%p\n", p);
3474 printk(KERN_ERR
3475 "If allocated object is overwritten then not detectable\n\n");
3476
3477 validate_slab_cache(kmalloc_caches + 5);
3478 p = kzalloc(64, GFP_KERNEL);
3479 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3480 *p = 0x56;
3481 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3482 p);
3483 printk(KERN_ERR
3484 "If allocated object is overwritten then not detectable\n\n");
3485 validate_slab_cache(kmalloc_caches + 6);
3486
3487 printk(KERN_ERR "\nB. Corruption after free\n");
3488 p = kzalloc(128, GFP_KERNEL);
3489 kfree(p);
3490 *p = 0x78;
3491 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3492 validate_slab_cache(kmalloc_caches + 7);
3493
3494 p = kzalloc(256, GFP_KERNEL);
3495 kfree(p);
3496 p[50] = 0x9a;
3497 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3498 p);
3499 validate_slab_cache(kmalloc_caches + 8);
3500
3501 p = kzalloc(512, GFP_KERNEL);
3502 kfree(p);
3503 p[512] = 0xab;
3504 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3505 validate_slab_cache(kmalloc_caches + 9);
3506 }
3507 #else
3508 static void resiliency_test(void) {};
3509 #endif
3510
3511 /*
3512 * Generate lists of code addresses where slabcache objects are allocated
3513 * and freed.
3514 */
3515
3516 struct location {
3517 unsigned long count;
3518 unsigned long addr;
3519 long long sum_time;
3520 long min_time;
3521 long max_time;
3522 long min_pid;
3523 long max_pid;
3524 DECLARE_BITMAP(cpus, NR_CPUS);
3525 nodemask_t nodes;
3526 };
3527
3528 struct loc_track {
3529 unsigned long max;
3530 unsigned long count;
3531 struct location *loc;
3532 };
3533
3534 static void free_loc_track(struct loc_track *t)
3535 {
3536 if (t->max)
3537 free_pages((unsigned long)t->loc,
3538 get_order(sizeof(struct location) * t->max));
3539 }
3540
3541 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3542 {
3543 struct location *l;
3544 int order;
3545
3546 order = get_order(sizeof(struct location) * max);
3547
3548 l = (void *)__get_free_pages(flags, order);
3549 if (!l)
3550 return 0;
3551
3552 if (t->count) {
3553 memcpy(l, t->loc, sizeof(struct location) * t->count);
3554 free_loc_track(t);
3555 }
3556 t->max = max;
3557 t->loc = l;
3558 return 1;
3559 }
3560
3561 static int add_location(struct loc_track *t, struct kmem_cache *s,
3562 const struct track *track)
3563 {
3564 long start, end, pos;
3565 struct location *l;
3566 unsigned long caddr;
3567 unsigned long age = jiffies - track->when;
3568
3569 start = -1;
3570 end = t->count;
3571
3572 for ( ; ; ) {
3573 pos = start + (end - start + 1) / 2;
3574
3575 /*
3576 * There is nothing at "end". If we end up there
3577 * we need to add something to before end.
3578 */
3579 if (pos == end)
3580 break;
3581
3582 caddr = t->loc[pos].addr;
3583 if (track->addr == caddr) {
3584
3585 l = &t->loc[pos];
3586 l->count++;
3587 if (track->when) {
3588 l->sum_time += age;
3589 if (age < l->min_time)
3590 l->min_time = age;
3591 if (age > l->max_time)
3592 l->max_time = age;
3593
3594 if (track->pid < l->min_pid)
3595 l->min_pid = track->pid;
3596 if (track->pid > l->max_pid)
3597 l->max_pid = track->pid;
3598
3599 cpumask_set_cpu(track->cpu,
3600 to_cpumask(l->cpus));
3601 }
3602 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3603 return 1;
3604 }
3605
3606 if (track->addr < caddr)
3607 end = pos;
3608 else
3609 start = pos;
3610 }
3611
3612 /*
3613 * Not found. Insert new tracking element.
3614 */
3615 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3616 return 0;
3617
3618 l = t->loc + pos;
3619 if (pos < t->count)
3620 memmove(l + 1, l,
3621 (t->count - pos) * sizeof(struct location));
3622 t->count++;
3623 l->count = 1;
3624 l->addr = track->addr;
3625 l->sum_time = age;
3626 l->min_time = age;
3627 l->max_time = age;
3628 l->min_pid = track->pid;
3629 l->max_pid = track->pid;
3630 cpumask_clear(to_cpumask(l->cpus));
3631 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3632 nodes_clear(l->nodes);
3633 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3634 return 1;
3635 }
3636
3637 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3638 struct page *page, enum track_item alloc,
3639 long *map)
3640 {
3641 void *addr = page_address(page);
3642 void *p;
3643
3644 bitmap_zero(map, page->objects);
3645 for_each_free_object(p, s, page->freelist)
3646 set_bit(slab_index(p, s, addr), map);
3647
3648 for_each_object(p, s, addr, page->objects)
3649 if (!test_bit(slab_index(p, s, addr), map))
3650 add_location(t, s, get_track(s, p, alloc));
3651 }
3652
3653 static int list_locations(struct kmem_cache *s, char *buf,
3654 enum track_item alloc)
3655 {
3656 int len = 0;
3657 unsigned long i;
3658 struct loc_track t = { 0, 0, NULL };
3659 int node;
3660 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3661 sizeof(unsigned long), GFP_KERNEL);
3662
3663 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3664 GFP_TEMPORARY)) {
3665 kfree(map);
3666 return sprintf(buf, "Out of memory\n");
3667 }
3668 /* Push back cpu slabs */
3669 flush_all(s);
3670
3671 for_each_node_state(node, N_NORMAL_MEMORY) {
3672 struct kmem_cache_node *n = get_node(s, node);
3673 unsigned long flags;
3674 struct page *page;
3675
3676 if (!atomic_long_read(&n->nr_slabs))
3677 continue;
3678
3679 spin_lock_irqsave(&n->list_lock, flags);
3680 list_for_each_entry(page, &n->partial, lru)
3681 process_slab(&t, s, page, alloc, map);
3682 list_for_each_entry(page, &n->full, lru)
3683 process_slab(&t, s, page, alloc, map);
3684 spin_unlock_irqrestore(&n->list_lock, flags);
3685 }
3686
3687 for (i = 0; i < t.count; i++) {
3688 struct location *l = &t.loc[i];
3689
3690 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3691 break;
3692 len += sprintf(buf + len, "%7ld ", l->count);
3693
3694 if (l->addr)
3695 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3696 else
3697 len += sprintf(buf + len, "<not-available>");
3698
3699 if (l->sum_time != l->min_time) {
3700 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3701 l->min_time,
3702 (long)div_u64(l->sum_time, l->count),
3703 l->max_time);
3704 } else
3705 len += sprintf(buf + len, " age=%ld",
3706 l->min_time);
3707
3708 if (l->min_pid != l->max_pid)
3709 len += sprintf(buf + len, " pid=%ld-%ld",
3710 l->min_pid, l->max_pid);
3711 else
3712 len += sprintf(buf + len, " pid=%ld",
3713 l->min_pid);
3714
3715 if (num_online_cpus() > 1 &&
3716 !cpumask_empty(to_cpumask(l->cpus)) &&
3717 len < PAGE_SIZE - 60) {
3718 len += sprintf(buf + len, " cpus=");
3719 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3720 to_cpumask(l->cpus));
3721 }
3722
3723 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3724 len < PAGE_SIZE - 60) {
3725 len += sprintf(buf + len, " nodes=");
3726 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3727 l->nodes);
3728 }
3729
3730 len += sprintf(buf + len, "\n");
3731 }
3732
3733 free_loc_track(&t);
3734 kfree(map);
3735 if (!t.count)
3736 len += sprintf(buf, "No data\n");
3737 return len;
3738 }
3739
3740 enum slab_stat_type {
3741 SL_ALL, /* All slabs */
3742 SL_PARTIAL, /* Only partially allocated slabs */
3743 SL_CPU, /* Only slabs used for cpu caches */
3744 SL_OBJECTS, /* Determine allocated objects not slabs */
3745 SL_TOTAL /* Determine object capacity not slabs */
3746 };
3747
3748 #define SO_ALL (1 << SL_ALL)
3749 #define SO_PARTIAL (1 << SL_PARTIAL)
3750 #define SO_CPU (1 << SL_CPU)
3751 #define SO_OBJECTS (1 << SL_OBJECTS)
3752 #define SO_TOTAL (1 << SL_TOTAL)
3753
3754 static ssize_t show_slab_objects(struct kmem_cache *s,
3755 char *buf, unsigned long flags)
3756 {
3757 unsigned long total = 0;
3758 int node;
3759 int x;
3760 unsigned long *nodes;
3761 unsigned long *per_cpu;
3762
3763 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3764 if (!nodes)
3765 return -ENOMEM;
3766 per_cpu = nodes + nr_node_ids;
3767
3768 if (flags & SO_CPU) {
3769 int cpu;
3770
3771 for_each_possible_cpu(cpu) {
3772 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3773
3774 if (!c || c->node < 0)
3775 continue;
3776
3777 if (c->page) {
3778 if (flags & SO_TOTAL)
3779 x = c->page->objects;
3780 else if (flags & SO_OBJECTS)
3781 x = c->page->inuse;
3782 else
3783 x = 1;
3784
3785 total += x;
3786 nodes[c->node] += x;
3787 }
3788 per_cpu[c->node]++;
3789 }
3790 }
3791
3792 if (flags & SO_ALL) {
3793 for_each_node_state(node, N_NORMAL_MEMORY) {
3794 struct kmem_cache_node *n = get_node(s, node);
3795
3796 if (flags & SO_TOTAL)
3797 x = atomic_long_read(&n->total_objects);
3798 else if (flags & SO_OBJECTS)
3799 x = atomic_long_read(&n->total_objects) -
3800 count_partial(n, count_free);
3801
3802 else
3803 x = atomic_long_read(&n->nr_slabs);
3804 total += x;
3805 nodes[node] += x;
3806 }
3807
3808 } else if (flags & SO_PARTIAL) {
3809 for_each_node_state(node, N_NORMAL_MEMORY) {
3810 struct kmem_cache_node *n = get_node(s, node);
3811
3812 if (flags & SO_TOTAL)
3813 x = count_partial(n, count_total);
3814 else if (flags & SO_OBJECTS)
3815 x = count_partial(n, count_inuse);
3816 else
3817 x = n->nr_partial;
3818 total += x;
3819 nodes[node] += x;
3820 }
3821 }
3822 x = sprintf(buf, "%lu", total);
3823 #ifdef CONFIG_NUMA
3824 for_each_node_state(node, N_NORMAL_MEMORY)
3825 if (nodes[node])
3826 x += sprintf(buf + x, " N%d=%lu",
3827 node, nodes[node]);
3828 #endif
3829 kfree(nodes);
3830 return x + sprintf(buf + x, "\n");
3831 }
3832
3833 static int any_slab_objects(struct kmem_cache *s)
3834 {
3835 int node;
3836
3837 for_each_online_node(node) {
3838 struct kmem_cache_node *n = get_node(s, node);
3839
3840 if (!n)
3841 continue;
3842
3843 if (atomic_long_read(&n->total_objects))
3844 return 1;
3845 }
3846 return 0;
3847 }
3848
3849 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3850 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3851
3852 struct slab_attribute {
3853 struct attribute attr;
3854 ssize_t (*show)(struct kmem_cache *s, char *buf);
3855 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3856 };
3857
3858 #define SLAB_ATTR_RO(_name) \
3859 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3860
3861 #define SLAB_ATTR(_name) \
3862 static struct slab_attribute _name##_attr = \
3863 __ATTR(_name, 0644, _name##_show, _name##_store)
3864
3865 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3866 {
3867 return sprintf(buf, "%d\n", s->size);
3868 }
3869 SLAB_ATTR_RO(slab_size);
3870
3871 static ssize_t align_show(struct kmem_cache *s, char *buf)
3872 {
3873 return sprintf(buf, "%d\n", s->align);
3874 }
3875 SLAB_ATTR_RO(align);
3876
3877 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3878 {
3879 return sprintf(buf, "%d\n", s->objsize);
3880 }
3881 SLAB_ATTR_RO(object_size);
3882
3883 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3884 {
3885 return sprintf(buf, "%d\n", oo_objects(s->oo));
3886 }
3887 SLAB_ATTR_RO(objs_per_slab);
3888
3889 static ssize_t order_store(struct kmem_cache *s,
3890 const char *buf, size_t length)
3891 {
3892 unsigned long order;
3893 int err;
3894
3895 err = strict_strtoul(buf, 10, &order);
3896 if (err)
3897 return err;
3898
3899 if (order > slub_max_order || order < slub_min_order)
3900 return -EINVAL;
3901
3902 calculate_sizes(s, order);
3903 return length;
3904 }
3905
3906 static ssize_t order_show(struct kmem_cache *s, char *buf)
3907 {
3908 return sprintf(buf, "%d\n", oo_order(s->oo));
3909 }
3910 SLAB_ATTR(order);
3911
3912 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3913 {
3914 return sprintf(buf, "%lu\n", s->min_partial);
3915 }
3916
3917 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3918 size_t length)
3919 {
3920 unsigned long min;
3921 int err;
3922
3923 err = strict_strtoul(buf, 10, &min);
3924 if (err)
3925 return err;
3926
3927 set_min_partial(s, min);
3928 return length;
3929 }
3930 SLAB_ATTR(min_partial);
3931
3932 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3933 {
3934 if (s->ctor) {
3935 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3936
3937 return n + sprintf(buf + n, "\n");
3938 }
3939 return 0;
3940 }
3941 SLAB_ATTR_RO(ctor);
3942
3943 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3944 {
3945 return sprintf(buf, "%d\n", s->refcount - 1);
3946 }
3947 SLAB_ATTR_RO(aliases);
3948
3949 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3950 {
3951 return show_slab_objects(s, buf, SO_ALL);
3952 }
3953 SLAB_ATTR_RO(slabs);
3954
3955 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3956 {
3957 return show_slab_objects(s, buf, SO_PARTIAL);
3958 }
3959 SLAB_ATTR_RO(partial);
3960
3961 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3962 {
3963 return show_slab_objects(s, buf, SO_CPU);
3964 }
3965 SLAB_ATTR_RO(cpu_slabs);
3966
3967 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3968 {
3969 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3970 }
3971 SLAB_ATTR_RO(objects);
3972
3973 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3974 {
3975 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3976 }
3977 SLAB_ATTR_RO(objects_partial);
3978
3979 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3980 {
3981 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3982 }
3983 SLAB_ATTR_RO(total_objects);
3984
3985 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3986 {
3987 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3988 }
3989
3990 static ssize_t sanity_checks_store(struct kmem_cache *s,
3991 const char *buf, size_t length)
3992 {
3993 s->flags &= ~SLAB_DEBUG_FREE;
3994 if (buf[0] == '1')
3995 s->flags |= SLAB_DEBUG_FREE;
3996 return length;
3997 }
3998 SLAB_ATTR(sanity_checks);
3999
4000 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4001 {
4002 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4003 }
4004
4005 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4006 size_t length)
4007 {
4008 s->flags &= ~SLAB_TRACE;
4009 if (buf[0] == '1')
4010 s->flags |= SLAB_TRACE;
4011 return length;
4012 }
4013 SLAB_ATTR(trace);
4014
4015 #ifdef CONFIG_FAILSLAB
4016 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4017 {
4018 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4019 }
4020
4021 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4022 size_t length)
4023 {
4024 s->flags &= ~SLAB_FAILSLAB;
4025 if (buf[0] == '1')
4026 s->flags |= SLAB_FAILSLAB;
4027 return length;
4028 }
4029 SLAB_ATTR(failslab);
4030 #endif
4031
4032 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4033 {
4034 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4035 }
4036
4037 static ssize_t reclaim_account_store(struct kmem_cache *s,
4038 const char *buf, size_t length)
4039 {
4040 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4041 if (buf[0] == '1')
4042 s->flags |= SLAB_RECLAIM_ACCOUNT;
4043 return length;
4044 }
4045 SLAB_ATTR(reclaim_account);
4046
4047 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4048 {
4049 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4050 }
4051 SLAB_ATTR_RO(hwcache_align);
4052
4053 #ifdef CONFIG_ZONE_DMA
4054 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4055 {
4056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4057 }
4058 SLAB_ATTR_RO(cache_dma);
4059 #endif
4060
4061 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4062 {
4063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4064 }
4065 SLAB_ATTR_RO(destroy_by_rcu);
4066
4067 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4068 {
4069 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4070 }
4071
4072 static ssize_t red_zone_store(struct kmem_cache *s,
4073 const char *buf, size_t length)
4074 {
4075 if (any_slab_objects(s))
4076 return -EBUSY;
4077
4078 s->flags &= ~SLAB_RED_ZONE;
4079 if (buf[0] == '1')
4080 s->flags |= SLAB_RED_ZONE;
4081 calculate_sizes(s, -1);
4082 return length;
4083 }
4084 SLAB_ATTR(red_zone);
4085
4086 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4087 {
4088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4089 }
4090
4091 static ssize_t poison_store(struct kmem_cache *s,
4092 const char *buf, size_t length)
4093 {
4094 if (any_slab_objects(s))
4095 return -EBUSY;
4096
4097 s->flags &= ~SLAB_POISON;
4098 if (buf[0] == '1')
4099 s->flags |= SLAB_POISON;
4100 calculate_sizes(s, -1);
4101 return length;
4102 }
4103 SLAB_ATTR(poison);
4104
4105 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4106 {
4107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4108 }
4109
4110 static ssize_t store_user_store(struct kmem_cache *s,
4111 const char *buf, size_t length)
4112 {
4113 if (any_slab_objects(s))
4114 return -EBUSY;
4115
4116 s->flags &= ~SLAB_STORE_USER;
4117 if (buf[0] == '1')
4118 s->flags |= SLAB_STORE_USER;
4119 calculate_sizes(s, -1);
4120 return length;
4121 }
4122 SLAB_ATTR(store_user);
4123
4124 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4125 {
4126 return 0;
4127 }
4128
4129 static ssize_t validate_store(struct kmem_cache *s,
4130 const char *buf, size_t length)
4131 {
4132 int ret = -EINVAL;
4133
4134 if (buf[0] == '1') {
4135 ret = validate_slab_cache(s);
4136 if (ret >= 0)
4137 ret = length;
4138 }
4139 return ret;
4140 }
4141 SLAB_ATTR(validate);
4142
4143 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4144 {
4145 return 0;
4146 }
4147
4148 static ssize_t shrink_store(struct kmem_cache *s,
4149 const char *buf, size_t length)
4150 {
4151 if (buf[0] == '1') {
4152 int rc = kmem_cache_shrink(s);
4153
4154 if (rc)
4155 return rc;
4156 } else
4157 return -EINVAL;
4158 return length;
4159 }
4160 SLAB_ATTR(shrink);
4161
4162 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4163 {
4164 if (!(s->flags & SLAB_STORE_USER))
4165 return -ENOSYS;
4166 return list_locations(s, buf, TRACK_ALLOC);
4167 }
4168 SLAB_ATTR_RO(alloc_calls);
4169
4170 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4171 {
4172 if (!(s->flags & SLAB_STORE_USER))
4173 return -ENOSYS;
4174 return list_locations(s, buf, TRACK_FREE);
4175 }
4176 SLAB_ATTR_RO(free_calls);
4177
4178 #ifdef CONFIG_NUMA
4179 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4180 {
4181 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4182 }
4183
4184 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4185 const char *buf, size_t length)
4186 {
4187 unsigned long ratio;
4188 int err;
4189
4190 err = strict_strtoul(buf, 10, &ratio);
4191 if (err)
4192 return err;
4193
4194 if (ratio <= 100)
4195 s->remote_node_defrag_ratio = ratio * 10;
4196
4197 return length;
4198 }
4199 SLAB_ATTR(remote_node_defrag_ratio);
4200 #endif
4201
4202 #ifdef CONFIG_SLUB_STATS
4203 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4204 {
4205 unsigned long sum = 0;
4206 int cpu;
4207 int len;
4208 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4209
4210 if (!data)
4211 return -ENOMEM;
4212
4213 for_each_online_cpu(cpu) {
4214 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4215
4216 data[cpu] = x;
4217 sum += x;
4218 }
4219
4220 len = sprintf(buf, "%lu", sum);
4221
4222 #ifdef CONFIG_SMP
4223 for_each_online_cpu(cpu) {
4224 if (data[cpu] && len < PAGE_SIZE - 20)
4225 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4226 }
4227 #endif
4228 kfree(data);
4229 return len + sprintf(buf + len, "\n");
4230 }
4231
4232 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4233 {
4234 int cpu;
4235
4236 for_each_online_cpu(cpu)
4237 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4238 }
4239
4240 #define STAT_ATTR(si, text) \
4241 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4242 { \
4243 return show_stat(s, buf, si); \
4244 } \
4245 static ssize_t text##_store(struct kmem_cache *s, \
4246 const char *buf, size_t length) \
4247 { \
4248 if (buf[0] != '0') \
4249 return -EINVAL; \
4250 clear_stat(s, si); \
4251 return length; \
4252 } \
4253 SLAB_ATTR(text); \
4254
4255 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4256 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4257 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4258 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4259 STAT_ATTR(FREE_FROZEN, free_frozen);
4260 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4261 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4262 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4263 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4264 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4265 STAT_ATTR(FREE_SLAB, free_slab);
4266 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4267 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4268 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4269 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4270 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4271 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4272 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4273 #endif
4274
4275 static struct attribute *slab_attrs[] = {
4276 &slab_size_attr.attr,
4277 &object_size_attr.attr,
4278 &objs_per_slab_attr.attr,
4279 &order_attr.attr,
4280 &min_partial_attr.attr,
4281 &objects_attr.attr,
4282 &objects_partial_attr.attr,
4283 &total_objects_attr.attr,
4284 &slabs_attr.attr,
4285 &partial_attr.attr,
4286 &cpu_slabs_attr.attr,
4287 &ctor_attr.attr,
4288 &aliases_attr.attr,
4289 &align_attr.attr,
4290 &sanity_checks_attr.attr,
4291 &trace_attr.attr,
4292 &hwcache_align_attr.attr,
4293 &reclaim_account_attr.attr,
4294 &destroy_by_rcu_attr.attr,
4295 &red_zone_attr.attr,
4296 &poison_attr.attr,
4297 &store_user_attr.attr,
4298 &validate_attr.attr,
4299 &shrink_attr.attr,
4300 &alloc_calls_attr.attr,
4301 &free_calls_attr.attr,
4302 #ifdef CONFIG_ZONE_DMA
4303 &cache_dma_attr.attr,
4304 #endif
4305 #ifdef CONFIG_NUMA
4306 &remote_node_defrag_ratio_attr.attr,
4307 #endif
4308 #ifdef CONFIG_SLUB_STATS
4309 &alloc_fastpath_attr.attr,
4310 &alloc_slowpath_attr.attr,
4311 &free_fastpath_attr.attr,
4312 &free_slowpath_attr.attr,
4313 &free_frozen_attr.attr,
4314 &free_add_partial_attr.attr,
4315 &free_remove_partial_attr.attr,
4316 &alloc_from_partial_attr.attr,
4317 &alloc_slab_attr.attr,
4318 &alloc_refill_attr.attr,
4319 &free_slab_attr.attr,
4320 &cpuslab_flush_attr.attr,
4321 &deactivate_full_attr.attr,
4322 &deactivate_empty_attr.attr,
4323 &deactivate_to_head_attr.attr,
4324 &deactivate_to_tail_attr.attr,
4325 &deactivate_remote_frees_attr.attr,
4326 &order_fallback_attr.attr,
4327 #endif
4328 #ifdef CONFIG_FAILSLAB
4329 &failslab_attr.attr,
4330 #endif
4331
4332 NULL
4333 };
4334
4335 static struct attribute_group slab_attr_group = {
4336 .attrs = slab_attrs,
4337 };
4338
4339 static ssize_t slab_attr_show(struct kobject *kobj,
4340 struct attribute *attr,
4341 char *buf)
4342 {
4343 struct slab_attribute *attribute;
4344 struct kmem_cache *s;
4345 int err;
4346
4347 attribute = to_slab_attr(attr);
4348 s = to_slab(kobj);
4349
4350 if (!attribute->show)
4351 return -EIO;
4352
4353 err = attribute->show(s, buf);
4354
4355 return err;
4356 }
4357
4358 static ssize_t slab_attr_store(struct kobject *kobj,
4359 struct attribute *attr,
4360 const char *buf, size_t len)
4361 {
4362 struct slab_attribute *attribute;
4363 struct kmem_cache *s;
4364 int err;
4365
4366 attribute = to_slab_attr(attr);
4367 s = to_slab(kobj);
4368
4369 if (!attribute->store)
4370 return -EIO;
4371
4372 err = attribute->store(s, buf, len);
4373
4374 return err;
4375 }
4376
4377 static void kmem_cache_release(struct kobject *kobj)
4378 {
4379 struct kmem_cache *s = to_slab(kobj);
4380
4381 kfree(s);
4382 }
4383
4384 static const struct sysfs_ops slab_sysfs_ops = {
4385 .show = slab_attr_show,
4386 .store = slab_attr_store,
4387 };
4388
4389 static struct kobj_type slab_ktype = {
4390 .sysfs_ops = &slab_sysfs_ops,
4391 .release = kmem_cache_release
4392 };
4393
4394 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4395 {
4396 struct kobj_type *ktype = get_ktype(kobj);
4397
4398 if (ktype == &slab_ktype)
4399 return 1;
4400 return 0;
4401 }
4402
4403 static const struct kset_uevent_ops slab_uevent_ops = {
4404 .filter = uevent_filter,
4405 };
4406
4407 static struct kset *slab_kset;
4408
4409 #define ID_STR_LENGTH 64
4410
4411 /* Create a unique string id for a slab cache:
4412 *
4413 * Format :[flags-]size
4414 */
4415 static char *create_unique_id(struct kmem_cache *s)
4416 {
4417 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4418 char *p = name;
4419
4420 BUG_ON(!name);
4421
4422 *p++ = ':';
4423 /*
4424 * First flags affecting slabcache operations. We will only
4425 * get here for aliasable slabs so we do not need to support
4426 * too many flags. The flags here must cover all flags that
4427 * are matched during merging to guarantee that the id is
4428 * unique.
4429 */
4430 if (s->flags & SLAB_CACHE_DMA)
4431 *p++ = 'd';
4432 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4433 *p++ = 'a';
4434 if (s->flags & SLAB_DEBUG_FREE)
4435 *p++ = 'F';
4436 if (!(s->flags & SLAB_NOTRACK))
4437 *p++ = 't';
4438 if (p != name + 1)
4439 *p++ = '-';
4440 p += sprintf(p, "%07d", s->size);
4441 BUG_ON(p > name + ID_STR_LENGTH - 1);
4442 return name;
4443 }
4444
4445 static int sysfs_slab_add(struct kmem_cache *s)
4446 {
4447 int err;
4448 const char *name;
4449 int unmergeable;
4450
4451 if (slab_state < SYSFS)
4452 /* Defer until later */
4453 return 0;
4454
4455 unmergeable = slab_unmergeable(s);
4456 if (unmergeable) {
4457 /*
4458 * Slabcache can never be merged so we can use the name proper.
4459 * This is typically the case for debug situations. In that
4460 * case we can catch duplicate names easily.
4461 */
4462 sysfs_remove_link(&slab_kset->kobj, s->name);
4463 name = s->name;
4464 } else {
4465 /*
4466 * Create a unique name for the slab as a target
4467 * for the symlinks.
4468 */
4469 name = create_unique_id(s);
4470 }
4471
4472 s->kobj.kset = slab_kset;
4473 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4474 if (err) {
4475 kobject_put(&s->kobj);
4476 return err;
4477 }
4478
4479 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4480 if (err) {
4481 kobject_del(&s->kobj);
4482 kobject_put(&s->kobj);
4483 return err;
4484 }
4485 kobject_uevent(&s->kobj, KOBJ_ADD);
4486 if (!unmergeable) {
4487 /* Setup first alias */
4488 sysfs_slab_alias(s, s->name);
4489 kfree(name);
4490 }
4491 return 0;
4492 }
4493
4494 static void sysfs_slab_remove(struct kmem_cache *s)
4495 {
4496 if (slab_state < SYSFS)
4497 /*
4498 * Sysfs has not been setup yet so no need to remove the
4499 * cache from sysfs.
4500 */
4501 return;
4502
4503 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4504 kobject_del(&s->kobj);
4505 kobject_put(&s->kobj);
4506 }
4507
4508 /*
4509 * Need to buffer aliases during bootup until sysfs becomes
4510 * available lest we lose that information.
4511 */
4512 struct saved_alias {
4513 struct kmem_cache *s;
4514 const char *name;
4515 struct saved_alias *next;
4516 };
4517
4518 static struct saved_alias *alias_list;
4519
4520 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4521 {
4522 struct saved_alias *al;
4523
4524 if (slab_state == SYSFS) {
4525 /*
4526 * If we have a leftover link then remove it.
4527 */
4528 sysfs_remove_link(&slab_kset->kobj, name);
4529 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4530 }
4531
4532 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4533 if (!al)
4534 return -ENOMEM;
4535
4536 al->s = s;
4537 al->name = name;
4538 al->next = alias_list;
4539 alias_list = al;
4540 return 0;
4541 }
4542
4543 static int __init slab_sysfs_init(void)
4544 {
4545 struct kmem_cache *s;
4546 int err;
4547
4548 down_write(&slub_lock);
4549
4550 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4551 if (!slab_kset) {
4552 up_write(&slub_lock);
4553 printk(KERN_ERR "Cannot register slab subsystem.\n");
4554 return -ENOSYS;
4555 }
4556
4557 slab_state = SYSFS;
4558
4559 list_for_each_entry(s, &slab_caches, list) {
4560 err = sysfs_slab_add(s);
4561 if (err)
4562 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4563 " to sysfs\n", s->name);
4564 }
4565
4566 while (alias_list) {
4567 struct saved_alias *al = alias_list;
4568
4569 alias_list = alias_list->next;
4570 err = sysfs_slab_alias(al->s, al->name);
4571 if (err)
4572 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4573 " %s to sysfs\n", s->name);
4574 kfree(al);
4575 }
4576
4577 up_write(&slub_lock);
4578 resiliency_test();
4579 return 0;
4580 }
4581
4582 __initcall(slab_sysfs_init);
4583 #endif
4584
4585 /*
4586 * The /proc/slabinfo ABI
4587 */
4588 #ifdef CONFIG_SLABINFO
4589 static void print_slabinfo_header(struct seq_file *m)
4590 {
4591 seq_puts(m, "slabinfo - version: 2.1\n");
4592 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4593 "<objperslab> <pagesperslab>");
4594 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4595 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4596 seq_putc(m, '\n');
4597 }
4598
4599 static void *s_start(struct seq_file *m, loff_t *pos)
4600 {
4601 loff_t n = *pos;
4602
4603 down_read(&slub_lock);
4604 if (!n)
4605 print_slabinfo_header(m);
4606
4607 return seq_list_start(&slab_caches, *pos);
4608 }
4609
4610 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4611 {
4612 return seq_list_next(p, &slab_caches, pos);
4613 }
4614
4615 static void s_stop(struct seq_file *m, void *p)
4616 {
4617 up_read(&slub_lock);
4618 }
4619
4620 static int s_show(struct seq_file *m, void *p)
4621 {
4622 unsigned long nr_partials = 0;
4623 unsigned long nr_slabs = 0;
4624 unsigned long nr_inuse = 0;
4625 unsigned long nr_objs = 0;
4626 unsigned long nr_free = 0;
4627 struct kmem_cache *s;
4628 int node;
4629
4630 s = list_entry(p, struct kmem_cache, list);
4631
4632 for_each_online_node(node) {
4633 struct kmem_cache_node *n = get_node(s, node);
4634
4635 if (!n)
4636 continue;
4637
4638 nr_partials += n->nr_partial;
4639 nr_slabs += atomic_long_read(&n->nr_slabs);
4640 nr_objs += atomic_long_read(&n->total_objects);
4641 nr_free += count_partial(n, count_free);
4642 }
4643
4644 nr_inuse = nr_objs - nr_free;
4645
4646 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4647 nr_objs, s->size, oo_objects(s->oo),
4648 (1 << oo_order(s->oo)));
4649 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4650 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4651 0UL);
4652 seq_putc(m, '\n');
4653 return 0;
4654 }
4655
4656 static const struct seq_operations slabinfo_op = {
4657 .start = s_start,
4658 .next = s_next,
4659 .stop = s_stop,
4660 .show = s_show,
4661 };
4662
4663 static int slabinfo_open(struct inode *inode, struct file *file)
4664 {
4665 return seq_open(file, &slabinfo_op);
4666 }
4667
4668 static const struct file_operations proc_slabinfo_operations = {
4669 .open = slabinfo_open,
4670 .read = seq_read,
4671 .llseek = seq_lseek,
4672 .release = seq_release,
4673 };
4674
4675 static int __init slab_proc_init(void)
4676 {
4677 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4678 return 0;
4679 }
4680 module_init(slab_proc_init);
4681 #endif /* CONFIG_SLABINFO */