]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
Merge tag 'nfsd-5.10' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 p += s->red_left_pad;
134
135 return p;
136 }
137
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142 #else
143 return false;
144 #endif
145 }
146
147 /*
148 * Issues still to be resolved:
149 *
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
152 * - Variable sizing of the per node arrays
153 */
154
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160
161 /*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
165 #define MIN_PARTIAL 5
166
167 /*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
170 * sort the partial list by the number of objects in use.
171 */
172 #define MAX_PARTIAL 10
173
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_STORE_USER)
176
177 /*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
185 /*
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
189 */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191
192 #define OO_SHIFT 16
193 #define OO_MASK ((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
195
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201
202 /*
203 * Tracking user of a slab.
204 */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 unsigned long addr; /* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210 #endif
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214 };
215
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 return ptr;
265 #endif
266 }
267
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271 {
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274 }
275
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 return freelist_dereference(s, object + s->offset);
279 }
280
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 prefetch(object + s->offset);
284 }
285
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 unsigned long freepointer_addr;
289 void *p;
290
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s, object);
293
294 freepointer_addr = (unsigned long)object + s->offset;
295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
297 }
298
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306
307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
315
316 static inline unsigned int order_objects(unsigned int order, unsigned int size)
317 {
318 return ((unsigned int)PAGE_SIZE << order) / size;
319 }
320
321 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
322 unsigned int size)
323 {
324 struct kmem_cache_order_objects x = {
325 (order << OO_SHIFT) + order_objects(order, size)
326 };
327
328 return x;
329 }
330
331 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
332 {
333 return x.x >> OO_SHIFT;
334 }
335
336 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
337 {
338 return x.x & OO_MASK;
339 }
340
341 /*
342 * Per slab locking using the pagelock
343 */
344 static __always_inline void slab_lock(struct page *page)
345 {
346 VM_BUG_ON_PAGE(PageTail(page), page);
347 bit_spin_lock(PG_locked, &page->flags);
348 }
349
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 VM_BUG_ON_PAGE(PageTail(page), page);
353 __bit_spin_unlock(PG_locked, &page->flags);
354 }
355
356 /* Interrupts must be disabled (for the fallback code to work right) */
357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361 {
362 VM_BUG_ON(!irqs_disabled());
363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
365 if (s->flags & __CMPXCHG_DOUBLE) {
366 if (cmpxchg_double(&page->freelist, &page->counters,
367 freelist_old, counters_old,
368 freelist_new, counters_new))
369 return true;
370 } else
371 #endif
372 {
373 slab_lock(page);
374 if (page->freelist == freelist_old &&
375 page->counters == counters_old) {
376 page->freelist = freelist_new;
377 page->counters = counters_new;
378 slab_unlock(page);
379 return true;
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387 #ifdef SLUB_DEBUG_CMPXCHG
388 pr_info("%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390
391 return false;
392 }
393
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 if (s->flags & __CMPXCHG_DOUBLE) {
402 if (cmpxchg_double(&page->freelist, &page->counters,
403 freelist_old, counters_old,
404 freelist_new, counters_new))
405 return true;
406 } else
407 #endif
408 {
409 unsigned long flags;
410
411 local_irq_save(flags);
412 slab_lock(page);
413 if (page->freelist == freelist_old &&
414 page->counters == counters_old) {
415 page->freelist = freelist_new;
416 page->counters = counters_new;
417 slab_unlock(page);
418 local_irq_restore(flags);
419 return true;
420 }
421 slab_unlock(page);
422 local_irq_restore(flags);
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428 #ifdef SLUB_DEBUG_CMPXCHG
429 pr_info("%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431
432 return false;
433 }
434
435 #ifdef CONFIG_SLUB_DEBUG
436 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437 static DEFINE_SPINLOCK(object_map_lock);
438
439 /*
440 * Determine a map of object in use on a page.
441 *
442 * Node listlock must be held to guarantee that the page does
443 * not vanish from under us.
444 */
445 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
446 __acquires(&object_map_lock)
447 {
448 void *p;
449 void *addr = page_address(page);
450
451 VM_BUG_ON(!irqs_disabled());
452
453 spin_lock(&object_map_lock);
454
455 bitmap_zero(object_map, page->objects);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(__obj_to_index(s, addr, p), object_map);
459
460 return object_map;
461 }
462
463 static void put_map(unsigned long *map) __releases(&object_map_lock)
464 {
465 VM_BUG_ON(map != object_map);
466 spin_unlock(&object_map_lock);
467 }
468
469 static inline unsigned int size_from_object(struct kmem_cache *s)
470 {
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475 }
476
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483 }
484
485 /*
486 * Debug settings:
487 */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493
494 static char *slub_debug_string;
495 static int disable_higher_order_debug;
496
497 /*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503 static inline void metadata_access_enable(void)
504 {
505 kasan_disable_current();
506 }
507
508 static inline void metadata_access_disable(void)
509 {
510 kasan_enable_current();
511 }
512
513 /*
514 * Object debugging
515 */
516
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520 {
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = kasan_reset_tag(object);
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
531 return 0;
532 }
533
534 return 1;
535 }
536
537 static void print_section(char *level, char *text, u8 *addr,
538 unsigned int length)
539 {
540 metadata_access_enable();
541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
542 length, 1);
543 metadata_access_disable();
544 }
545
546 /*
547 * See comment in calculate_sizes().
548 */
549 static inline bool freeptr_outside_object(struct kmem_cache *s)
550 {
551 return s->offset >= s->inuse;
552 }
553
554 /*
555 * Return offset of the end of info block which is inuse + free pointer if
556 * not overlapping with object.
557 */
558 static inline unsigned int get_info_end(struct kmem_cache *s)
559 {
560 if (freeptr_outside_object(s))
561 return s->inuse + sizeof(void *);
562 else
563 return s->inuse;
564 }
565
566 static struct track *get_track(struct kmem_cache *s, void *object,
567 enum track_item alloc)
568 {
569 struct track *p;
570
571 p = object + get_info_end(s);
572
573 return p + alloc;
574 }
575
576 static void set_track(struct kmem_cache *s, void *object,
577 enum track_item alloc, unsigned long addr)
578 {
579 struct track *p = get_track(s, object, alloc);
580
581 if (addr) {
582 #ifdef CONFIG_STACKTRACE
583 unsigned int nr_entries;
584
585 metadata_access_enable();
586 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
587 metadata_access_disable();
588
589 if (nr_entries < TRACK_ADDRS_COUNT)
590 p->addrs[nr_entries] = 0;
591 #endif
592 p->addr = addr;
593 p->cpu = smp_processor_id();
594 p->pid = current->pid;
595 p->when = jiffies;
596 } else {
597 memset(p, 0, sizeof(struct track));
598 }
599 }
600
601 static void init_tracking(struct kmem_cache *s, void *object)
602 {
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
606 set_track(s, object, TRACK_FREE, 0UL);
607 set_track(s, object, TRACK_ALLOC, 0UL);
608 }
609
610 static void print_track(const char *s, struct track *t, unsigned long pr_time)
611 {
612 if (!t->addr)
613 return;
614
615 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
616 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
617 #ifdef CONFIG_STACKTRACE
618 {
619 int i;
620 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 if (t->addrs[i])
622 pr_err("\t%pS\n", (void *)t->addrs[i]);
623 else
624 break;
625 }
626 #endif
627 }
628
629 void print_tracking(struct kmem_cache *s, void *object)
630 {
631 unsigned long pr_time = jiffies;
632 if (!(s->flags & SLAB_STORE_USER))
633 return;
634
635 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
637 }
638
639 static void print_page_info(struct page *page)
640 {
641 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
642 page, page->objects, page->inuse, page->freelist, page->flags);
643
644 }
645
646 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647 {
648 struct va_format vaf;
649 va_list args;
650
651 va_start(args, fmt);
652 vaf.fmt = fmt;
653 vaf.va = &args;
654 pr_err("=============================================================================\n");
655 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
656 pr_err("-----------------------------------------------------------------------------\n\n");
657
658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 va_end(args);
660 }
661
662 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663 {
664 struct va_format vaf;
665 va_list args;
666
667 va_start(args, fmt);
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 pr_err("FIX %s: %pV\n", s->name, &vaf);
671 va_end(args);
672 }
673
674 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
675 void **freelist, void *nextfree)
676 {
677 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
678 !check_valid_pointer(s, page, nextfree) && freelist) {
679 object_err(s, page, *freelist, "Freechain corrupt");
680 *freelist = NULL;
681 slab_fix(s, "Isolate corrupted freechain");
682 return true;
683 }
684
685 return false;
686 }
687
688 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
689 {
690 unsigned int off; /* Offset of last byte */
691 u8 *addr = page_address(page);
692
693 print_tracking(s, p);
694
695 print_page_info(page);
696
697 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 p, p - addr, get_freepointer(s, p));
699
700 if (s->flags & SLAB_RED_ZONE)
701 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 s->red_left_pad);
703 else if (p > addr + 16)
704 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
705
706 print_section(KERN_ERR, "Object ", p,
707 min_t(unsigned int, s->object_size, PAGE_SIZE));
708 if (s->flags & SLAB_RED_ZONE)
709 print_section(KERN_ERR, "Redzone ", p + s->object_size,
710 s->inuse - s->object_size);
711
712 off = get_info_end(s);
713
714 if (s->flags & SLAB_STORE_USER)
715 off += 2 * sizeof(struct track);
716
717 off += kasan_metadata_size(s);
718
719 if (off != size_from_object(s))
720 /* Beginning of the filler is the free pointer */
721 print_section(KERN_ERR, "Padding ", p + off,
722 size_from_object(s) - off);
723
724 dump_stack();
725 }
726
727 void object_err(struct kmem_cache *s, struct page *page,
728 u8 *object, char *reason)
729 {
730 slab_bug(s, "%s", reason);
731 print_trailer(s, page, object);
732 }
733
734 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
735 const char *fmt, ...)
736 {
737 va_list args;
738 char buf[100];
739
740 va_start(args, fmt);
741 vsnprintf(buf, sizeof(buf), fmt, args);
742 va_end(args);
743 slab_bug(s, "%s", buf);
744 print_page_info(page);
745 dump_stack();
746 }
747
748 static void init_object(struct kmem_cache *s, void *object, u8 val)
749 {
750 u8 *p = object;
751
752 if (s->flags & SLAB_RED_ZONE)
753 memset(p - s->red_left_pad, val, s->red_left_pad);
754
755 if (s->flags & __OBJECT_POISON) {
756 memset(p, POISON_FREE, s->object_size - 1);
757 p[s->object_size - 1] = POISON_END;
758 }
759
760 if (s->flags & SLAB_RED_ZONE)
761 memset(p + s->object_size, val, s->inuse - s->object_size);
762 }
763
764 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 void *from, void *to)
766 {
767 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 memset(from, data, to - from);
769 }
770
771 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 u8 *object, char *what,
773 u8 *start, unsigned int value, unsigned int bytes)
774 {
775 u8 *fault;
776 u8 *end;
777 u8 *addr = page_address(page);
778
779 metadata_access_enable();
780 fault = memchr_inv(start, value, bytes);
781 metadata_access_disable();
782 if (!fault)
783 return 1;
784
785 end = start + bytes;
786 while (end > fault && end[-1] == value)
787 end--;
788
789 slab_bug(s, "%s overwritten", what);
790 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 fault, end - 1, fault - addr,
792 fault[0], value);
793 print_trailer(s, page, object);
794
795 restore_bytes(s, what, value, fault, end);
796 return 0;
797 }
798
799 /*
800 * Object layout:
801 *
802 * object address
803 * Bytes of the object to be managed.
804 * If the freepointer may overlay the object then the free
805 * pointer is at the middle of the object.
806 *
807 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
808 * 0xa5 (POISON_END)
809 *
810 * object + s->object_size
811 * Padding to reach word boundary. This is also used for Redzoning.
812 * Padding is extended by another word if Redzoning is enabled and
813 * object_size == inuse.
814 *
815 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816 * 0xcc (RED_ACTIVE) for objects in use.
817 *
818 * object + s->inuse
819 * Meta data starts here.
820 *
821 * A. Free pointer (if we cannot overwrite object on free)
822 * B. Tracking data for SLAB_STORE_USER
823 * C. Padding to reach required alignment boundary or at mininum
824 * one word if debugging is on to be able to detect writes
825 * before the word boundary.
826 *
827 * Padding is done using 0x5a (POISON_INUSE)
828 *
829 * object + s->size
830 * Nothing is used beyond s->size.
831 *
832 * If slabcaches are merged then the object_size and inuse boundaries are mostly
833 * ignored. And therefore no slab options that rely on these boundaries
834 * may be used with merged slabcaches.
835 */
836
837 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838 {
839 unsigned long off = get_info_end(s); /* The end of info */
840
841 if (s->flags & SLAB_STORE_USER)
842 /* We also have user information there */
843 off += 2 * sizeof(struct track);
844
845 off += kasan_metadata_size(s);
846
847 if (size_from_object(s) == off)
848 return 1;
849
850 return check_bytes_and_report(s, page, p, "Object padding",
851 p + off, POISON_INUSE, size_from_object(s) - off);
852 }
853
854 /* Check the pad bytes at the end of a slab page */
855 static int slab_pad_check(struct kmem_cache *s, struct page *page)
856 {
857 u8 *start;
858 u8 *fault;
859 u8 *end;
860 u8 *pad;
861 int length;
862 int remainder;
863
864 if (!(s->flags & SLAB_POISON))
865 return 1;
866
867 start = page_address(page);
868 length = page_size(page);
869 end = start + length;
870 remainder = length % s->size;
871 if (!remainder)
872 return 1;
873
874 pad = end - remainder;
875 metadata_access_enable();
876 fault = memchr_inv(pad, POISON_INUSE, remainder);
877 metadata_access_disable();
878 if (!fault)
879 return 1;
880 while (end > fault && end[-1] == POISON_INUSE)
881 end--;
882
883 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 fault, end - 1, fault - start);
885 print_section(KERN_ERR, "Padding ", pad, remainder);
886
887 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
888 return 0;
889 }
890
891 static int check_object(struct kmem_cache *s, struct page *page,
892 void *object, u8 val)
893 {
894 u8 *p = object;
895 u8 *endobject = object + s->object_size;
896
897 if (s->flags & SLAB_RED_ZONE) {
898 if (!check_bytes_and_report(s, page, object, "Redzone",
899 object - s->red_left_pad, val, s->red_left_pad))
900 return 0;
901
902 if (!check_bytes_and_report(s, page, object, "Redzone",
903 endobject, val, s->inuse - s->object_size))
904 return 0;
905 } else {
906 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
907 check_bytes_and_report(s, page, p, "Alignment padding",
908 endobject, POISON_INUSE,
909 s->inuse - s->object_size);
910 }
911 }
912
913 if (s->flags & SLAB_POISON) {
914 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
915 (!check_bytes_and_report(s, page, p, "Poison", p,
916 POISON_FREE, s->object_size - 1) ||
917 !check_bytes_and_report(s, page, p, "Poison",
918 p + s->object_size - 1, POISON_END, 1)))
919 return 0;
920 /*
921 * check_pad_bytes cleans up on its own.
922 */
923 check_pad_bytes(s, page, p);
924 }
925
926 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
927 /*
928 * Object and freepointer overlap. Cannot check
929 * freepointer while object is allocated.
930 */
931 return 1;
932
933 /* Check free pointer validity */
934 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 object_err(s, page, p, "Freepointer corrupt");
936 /*
937 * No choice but to zap it and thus lose the remainder
938 * of the free objects in this slab. May cause
939 * another error because the object count is now wrong.
940 */
941 set_freepointer(s, p, NULL);
942 return 0;
943 }
944 return 1;
945 }
946
947 static int check_slab(struct kmem_cache *s, struct page *page)
948 {
949 int maxobj;
950
951 VM_BUG_ON(!irqs_disabled());
952
953 if (!PageSlab(page)) {
954 slab_err(s, page, "Not a valid slab page");
955 return 0;
956 }
957
958 maxobj = order_objects(compound_order(page), s->size);
959 if (page->objects > maxobj) {
960 slab_err(s, page, "objects %u > max %u",
961 page->objects, maxobj);
962 return 0;
963 }
964 if (page->inuse > page->objects) {
965 slab_err(s, page, "inuse %u > max %u",
966 page->inuse, page->objects);
967 return 0;
968 }
969 /* Slab_pad_check fixes things up after itself */
970 slab_pad_check(s, page);
971 return 1;
972 }
973
974 /*
975 * Determine if a certain object on a page is on the freelist. Must hold the
976 * slab lock to guarantee that the chains are in a consistent state.
977 */
978 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979 {
980 int nr = 0;
981 void *fp;
982 void *object = NULL;
983 int max_objects;
984
985 fp = page->freelist;
986 while (fp && nr <= page->objects) {
987 if (fp == search)
988 return 1;
989 if (!check_valid_pointer(s, page, fp)) {
990 if (object) {
991 object_err(s, page, object,
992 "Freechain corrupt");
993 set_freepointer(s, object, NULL);
994 } else {
995 slab_err(s, page, "Freepointer corrupt");
996 page->freelist = NULL;
997 page->inuse = page->objects;
998 slab_fix(s, "Freelist cleared");
999 return 0;
1000 }
1001 break;
1002 }
1003 object = fp;
1004 fp = get_freepointer(s, object);
1005 nr++;
1006 }
1007
1008 max_objects = order_objects(compound_order(page), s->size);
1009 if (max_objects > MAX_OBJS_PER_PAGE)
1010 max_objects = MAX_OBJS_PER_PAGE;
1011
1012 if (page->objects != max_objects) {
1013 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 page->objects, max_objects);
1015 page->objects = max_objects;
1016 slab_fix(s, "Number of objects adjusted.");
1017 }
1018 if (page->inuse != page->objects - nr) {
1019 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 page->inuse, page->objects - nr);
1021 page->inuse = page->objects - nr;
1022 slab_fix(s, "Object count adjusted.");
1023 }
1024 return search == NULL;
1025 }
1026
1027 static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 int alloc)
1029 {
1030 if (s->flags & SLAB_TRACE) {
1031 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1032 s->name,
1033 alloc ? "alloc" : "free",
1034 object, page->inuse,
1035 page->freelist);
1036
1037 if (!alloc)
1038 print_section(KERN_INFO, "Object ", (void *)object,
1039 s->object_size);
1040
1041 dump_stack();
1042 }
1043 }
1044
1045 /*
1046 * Tracking of fully allocated slabs for debugging purposes.
1047 */
1048 static void add_full(struct kmem_cache *s,
1049 struct kmem_cache_node *n, struct page *page)
1050 {
1051 if (!(s->flags & SLAB_STORE_USER))
1052 return;
1053
1054 lockdep_assert_held(&n->list_lock);
1055 list_add(&page->slab_list, &n->full);
1056 }
1057
1058 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1059 {
1060 if (!(s->flags & SLAB_STORE_USER))
1061 return;
1062
1063 lockdep_assert_held(&n->list_lock);
1064 list_del(&page->slab_list);
1065 }
1066
1067 /* Tracking of the number of slabs for debugging purposes */
1068 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069 {
1070 struct kmem_cache_node *n = get_node(s, node);
1071
1072 return atomic_long_read(&n->nr_slabs);
1073 }
1074
1075 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076 {
1077 return atomic_long_read(&n->nr_slabs);
1078 }
1079
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1081 {
1082 struct kmem_cache_node *n = get_node(s, node);
1083
1084 /*
1085 * May be called early in order to allocate a slab for the
1086 * kmem_cache_node structure. Solve the chicken-egg
1087 * dilemma by deferring the increment of the count during
1088 * bootstrap (see early_kmem_cache_node_alloc).
1089 */
1090 if (likely(n)) {
1091 atomic_long_inc(&n->nr_slabs);
1092 atomic_long_add(objects, &n->total_objects);
1093 }
1094 }
1095 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1096 {
1097 struct kmem_cache_node *n = get_node(s, node);
1098
1099 atomic_long_dec(&n->nr_slabs);
1100 atomic_long_sub(objects, &n->total_objects);
1101 }
1102
1103 /* Object debug checks for alloc/free paths */
1104 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 void *object)
1106 {
1107 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1108 return;
1109
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 init_tracking(s, object);
1112 }
1113
1114 static
1115 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1116 {
1117 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1118 return;
1119
1120 metadata_access_enable();
1121 memset(addr, POISON_INUSE, page_size(page));
1122 metadata_access_disable();
1123 }
1124
1125 static inline int alloc_consistency_checks(struct kmem_cache *s,
1126 struct page *page, void *object)
1127 {
1128 if (!check_slab(s, page))
1129 return 0;
1130
1131 if (!check_valid_pointer(s, page, object)) {
1132 object_err(s, page, object, "Freelist Pointer check fails");
1133 return 0;
1134 }
1135
1136 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1137 return 0;
1138
1139 return 1;
1140 }
1141
1142 static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 struct page *page,
1144 void *object, unsigned long addr)
1145 {
1146 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1147 if (!alloc_consistency_checks(s, page, object))
1148 goto bad;
1149 }
1150
1151 /* Success perform special debug activities for allocs */
1152 if (s->flags & SLAB_STORE_USER)
1153 set_track(s, object, TRACK_ALLOC, addr);
1154 trace(s, page, object, 1);
1155 init_object(s, object, SLUB_RED_ACTIVE);
1156 return 1;
1157
1158 bad:
1159 if (PageSlab(page)) {
1160 /*
1161 * If this is a slab page then lets do the best we can
1162 * to avoid issues in the future. Marking all objects
1163 * as used avoids touching the remaining objects.
1164 */
1165 slab_fix(s, "Marking all objects used");
1166 page->inuse = page->objects;
1167 page->freelist = NULL;
1168 }
1169 return 0;
1170 }
1171
1172 static inline int free_consistency_checks(struct kmem_cache *s,
1173 struct page *page, void *object, unsigned long addr)
1174 {
1175 if (!check_valid_pointer(s, page, object)) {
1176 slab_err(s, page, "Invalid object pointer 0x%p", object);
1177 return 0;
1178 }
1179
1180 if (on_freelist(s, page, object)) {
1181 object_err(s, page, object, "Object already free");
1182 return 0;
1183 }
1184
1185 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1186 return 0;
1187
1188 if (unlikely(s != page->slab_cache)) {
1189 if (!PageSlab(page)) {
1190 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 object);
1192 } else if (!page->slab_cache) {
1193 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 object);
1195 dump_stack();
1196 } else
1197 object_err(s, page, object,
1198 "page slab pointer corrupt.");
1199 return 0;
1200 }
1201 return 1;
1202 }
1203
1204 /* Supports checking bulk free of a constructed freelist */
1205 static noinline int free_debug_processing(
1206 struct kmem_cache *s, struct page *page,
1207 void *head, void *tail, int bulk_cnt,
1208 unsigned long addr)
1209 {
1210 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 void *object = head;
1212 int cnt = 0;
1213 unsigned long flags;
1214 int ret = 0;
1215
1216 spin_lock_irqsave(&n->list_lock, flags);
1217 slab_lock(page);
1218
1219 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 if (!check_slab(s, page))
1221 goto out;
1222 }
1223
1224 next_object:
1225 cnt++;
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!free_consistency_checks(s, page, object, addr))
1229 goto out;
1230 }
1231
1232 if (s->flags & SLAB_STORE_USER)
1233 set_track(s, object, TRACK_FREE, addr);
1234 trace(s, page, object, 0);
1235 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1236 init_object(s, object, SLUB_RED_INACTIVE);
1237
1238 /* Reached end of constructed freelist yet? */
1239 if (object != tail) {
1240 object = get_freepointer(s, object);
1241 goto next_object;
1242 }
1243 ret = 1;
1244
1245 out:
1246 if (cnt != bulk_cnt)
1247 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 bulk_cnt, cnt);
1249
1250 slab_unlock(page);
1251 spin_unlock_irqrestore(&n->list_lock, flags);
1252 if (!ret)
1253 slab_fix(s, "Object at 0x%p not freed", object);
1254 return ret;
1255 }
1256
1257 /*
1258 * Parse a block of slub_debug options. Blocks are delimited by ';'
1259 *
1260 * @str: start of block
1261 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262 * @slabs: return start of list of slabs, or NULL when there's no list
1263 * @init: assume this is initial parsing and not per-kmem-create parsing
1264 *
1265 * returns the start of next block if there's any, or NULL
1266 */
1267 static char *
1268 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1269 {
1270 bool higher_order_disable = false;
1271
1272 /* Skip any completely empty blocks */
1273 while (*str && *str == ';')
1274 str++;
1275
1276 if (*str == ',') {
1277 /*
1278 * No options but restriction on slabs. This means full
1279 * debugging for slabs matching a pattern.
1280 */
1281 *flags = DEBUG_DEFAULT_FLAGS;
1282 goto check_slabs;
1283 }
1284 *flags = 0;
1285
1286 /* Determine which debug features should be switched on */
1287 for (; *str && *str != ',' && *str != ';'; str++) {
1288 switch (tolower(*str)) {
1289 case '-':
1290 *flags = 0;
1291 break;
1292 case 'f':
1293 *flags |= SLAB_CONSISTENCY_CHECKS;
1294 break;
1295 case 'z':
1296 *flags |= SLAB_RED_ZONE;
1297 break;
1298 case 'p':
1299 *flags |= SLAB_POISON;
1300 break;
1301 case 'u':
1302 *flags |= SLAB_STORE_USER;
1303 break;
1304 case 't':
1305 *flags |= SLAB_TRACE;
1306 break;
1307 case 'a':
1308 *flags |= SLAB_FAILSLAB;
1309 break;
1310 case 'o':
1311 /*
1312 * Avoid enabling debugging on caches if its minimum
1313 * order would increase as a result.
1314 */
1315 higher_order_disable = true;
1316 break;
1317 default:
1318 if (init)
1319 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1320 }
1321 }
1322 check_slabs:
1323 if (*str == ',')
1324 *slabs = ++str;
1325 else
1326 *slabs = NULL;
1327
1328 /* Skip over the slab list */
1329 while (*str && *str != ';')
1330 str++;
1331
1332 /* Skip any completely empty blocks */
1333 while (*str && *str == ';')
1334 str++;
1335
1336 if (init && higher_order_disable)
1337 disable_higher_order_debug = 1;
1338
1339 if (*str)
1340 return str;
1341 else
1342 return NULL;
1343 }
1344
1345 static int __init setup_slub_debug(char *str)
1346 {
1347 slab_flags_t flags;
1348 char *saved_str;
1349 char *slab_list;
1350 bool global_slub_debug_changed = false;
1351 bool slab_list_specified = false;
1352
1353 slub_debug = DEBUG_DEFAULT_FLAGS;
1354 if (*str++ != '=' || !*str)
1355 /*
1356 * No options specified. Switch on full debugging.
1357 */
1358 goto out;
1359
1360 saved_str = str;
1361 while (str) {
1362 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363
1364 if (!slab_list) {
1365 slub_debug = flags;
1366 global_slub_debug_changed = true;
1367 } else {
1368 slab_list_specified = true;
1369 }
1370 }
1371
1372 /*
1373 * For backwards compatibility, a single list of flags with list of
1374 * slabs means debugging is only enabled for those slabs, so the global
1375 * slub_debug should be 0. We can extended that to multiple lists as
1376 * long as there is no option specifying flags without a slab list.
1377 */
1378 if (slab_list_specified) {
1379 if (!global_slub_debug_changed)
1380 slub_debug = 0;
1381 slub_debug_string = saved_str;
1382 }
1383 out:
1384 if (slub_debug != 0 || slub_debug_string)
1385 static_branch_enable(&slub_debug_enabled);
1386 if ((static_branch_unlikely(&init_on_alloc) ||
1387 static_branch_unlikely(&init_on_free)) &&
1388 (slub_debug & SLAB_POISON))
1389 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1390 return 1;
1391 }
1392
1393 __setup("slub_debug", setup_slub_debug);
1394
1395 /*
1396 * kmem_cache_flags - apply debugging options to the cache
1397 * @object_size: the size of an object without meta data
1398 * @flags: flags to set
1399 * @name: name of the cache
1400 * @ctor: constructor function
1401 *
1402 * Debug option(s) are applied to @flags. In addition to the debug
1403 * option(s), if a slab name (or multiple) is specified i.e.
1404 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405 * then only the select slabs will receive the debug option(s).
1406 */
1407 slab_flags_t kmem_cache_flags(unsigned int object_size,
1408 slab_flags_t flags, const char *name,
1409 void (*ctor)(void *))
1410 {
1411 char *iter;
1412 size_t len;
1413 char *next_block;
1414 slab_flags_t block_flags;
1415
1416 len = strlen(name);
1417 next_block = slub_debug_string;
1418 /* Go through all blocks of debug options, see if any matches our slab's name */
1419 while (next_block) {
1420 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1421 if (!iter)
1422 continue;
1423 /* Found a block that has a slab list, search it */
1424 while (*iter) {
1425 char *end, *glob;
1426 size_t cmplen;
1427
1428 end = strchrnul(iter, ',');
1429 if (next_block && next_block < end)
1430 end = next_block - 1;
1431
1432 glob = strnchr(iter, end - iter, '*');
1433 if (glob)
1434 cmplen = glob - iter;
1435 else
1436 cmplen = max_t(size_t, len, (end - iter));
1437
1438 if (!strncmp(name, iter, cmplen)) {
1439 flags |= block_flags;
1440 return flags;
1441 }
1442
1443 if (!*end || *end == ';')
1444 break;
1445 iter = end + 1;
1446 }
1447 }
1448
1449 return flags | slub_debug;
1450 }
1451 #else /* !CONFIG_SLUB_DEBUG */
1452 static inline void setup_object_debug(struct kmem_cache *s,
1453 struct page *page, void *object) {}
1454 static inline
1455 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1456
1457 static inline int alloc_debug_processing(struct kmem_cache *s,
1458 struct page *page, void *object, unsigned long addr) { return 0; }
1459
1460 static inline int free_debug_processing(
1461 struct kmem_cache *s, struct page *page,
1462 void *head, void *tail, int bulk_cnt,
1463 unsigned long addr) { return 0; }
1464
1465 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1466 { return 1; }
1467 static inline int check_object(struct kmem_cache *s, struct page *page,
1468 void *object, u8 val) { return 1; }
1469 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1470 struct page *page) {}
1471 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 struct page *page) {}
1473 slab_flags_t kmem_cache_flags(unsigned int object_size,
1474 slab_flags_t flags, const char *name,
1475 void (*ctor)(void *))
1476 {
1477 return flags;
1478 }
1479 #define slub_debug 0
1480
1481 #define disable_higher_order_debug 0
1482
1483 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1484 { return 0; }
1485 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1486 { return 0; }
1487 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1488 int objects) {}
1489 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1490 int objects) {}
1491
1492 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1493 void **freelist, void *nextfree)
1494 {
1495 return false;
1496 }
1497 #endif /* CONFIG_SLUB_DEBUG */
1498
1499 /*
1500 * Hooks for other subsystems that check memory allocations. In a typical
1501 * production configuration these hooks all should produce no code at all.
1502 */
1503 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1504 {
1505 ptr = kasan_kmalloc_large(ptr, size, flags);
1506 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1507 kmemleak_alloc(ptr, size, 1, flags);
1508 return ptr;
1509 }
1510
1511 static __always_inline void kfree_hook(void *x)
1512 {
1513 kmemleak_free(x);
1514 kasan_kfree_large(x, _RET_IP_);
1515 }
1516
1517 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1518 {
1519 kmemleak_free_recursive(x, s->flags);
1520
1521 /*
1522 * Trouble is that we may no longer disable interrupts in the fast path
1523 * So in order to make the debug calls that expect irqs to be
1524 * disabled we need to disable interrupts temporarily.
1525 */
1526 #ifdef CONFIG_LOCKDEP
1527 {
1528 unsigned long flags;
1529
1530 local_irq_save(flags);
1531 debug_check_no_locks_freed(x, s->object_size);
1532 local_irq_restore(flags);
1533 }
1534 #endif
1535 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1536 debug_check_no_obj_freed(x, s->object_size);
1537
1538 /* Use KCSAN to help debug racy use-after-free. */
1539 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1540 __kcsan_check_access(x, s->object_size,
1541 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1542
1543 /* KASAN might put x into memory quarantine, delaying its reuse */
1544 return kasan_slab_free(s, x, _RET_IP_);
1545 }
1546
1547 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1548 void **head, void **tail)
1549 {
1550
1551 void *object;
1552 void *next = *head;
1553 void *old_tail = *tail ? *tail : *head;
1554 int rsize;
1555
1556 /* Head and tail of the reconstructed freelist */
1557 *head = NULL;
1558 *tail = NULL;
1559
1560 do {
1561 object = next;
1562 next = get_freepointer(s, object);
1563
1564 if (slab_want_init_on_free(s)) {
1565 /*
1566 * Clear the object and the metadata, but don't touch
1567 * the redzone.
1568 */
1569 memset(object, 0, s->object_size);
1570 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1571 : 0;
1572 memset((char *)object + s->inuse, 0,
1573 s->size - s->inuse - rsize);
1574
1575 }
1576 /* If object's reuse doesn't have to be delayed */
1577 if (!slab_free_hook(s, object)) {
1578 /* Move object to the new freelist */
1579 set_freepointer(s, object, *head);
1580 *head = object;
1581 if (!*tail)
1582 *tail = object;
1583 }
1584 } while (object != old_tail);
1585
1586 if (*head == *tail)
1587 *tail = NULL;
1588
1589 return *head != NULL;
1590 }
1591
1592 static void *setup_object(struct kmem_cache *s, struct page *page,
1593 void *object)
1594 {
1595 setup_object_debug(s, page, object);
1596 object = kasan_init_slab_obj(s, object);
1597 if (unlikely(s->ctor)) {
1598 kasan_unpoison_object_data(s, object);
1599 s->ctor(object);
1600 kasan_poison_object_data(s, object);
1601 }
1602 return object;
1603 }
1604
1605 /*
1606 * Slab allocation and freeing
1607 */
1608 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1609 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1610 {
1611 struct page *page;
1612 unsigned int order = oo_order(oo);
1613
1614 if (node == NUMA_NO_NODE)
1615 page = alloc_pages(flags, order);
1616 else
1617 page = __alloc_pages_node(node, flags, order);
1618
1619 if (page)
1620 account_slab_page(page, order, s);
1621
1622 return page;
1623 }
1624
1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1626 /* Pre-initialize the random sequence cache */
1627 static int init_cache_random_seq(struct kmem_cache *s)
1628 {
1629 unsigned int count = oo_objects(s->oo);
1630 int err;
1631
1632 /* Bailout if already initialised */
1633 if (s->random_seq)
1634 return 0;
1635
1636 err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 if (err) {
1638 pr_err("SLUB: Unable to initialize free list for %s\n",
1639 s->name);
1640 return err;
1641 }
1642
1643 /* Transform to an offset on the set of pages */
1644 if (s->random_seq) {
1645 unsigned int i;
1646
1647 for (i = 0; i < count; i++)
1648 s->random_seq[i] *= s->size;
1649 }
1650 return 0;
1651 }
1652
1653 /* Initialize each random sequence freelist per cache */
1654 static void __init init_freelist_randomization(void)
1655 {
1656 struct kmem_cache *s;
1657
1658 mutex_lock(&slab_mutex);
1659
1660 list_for_each_entry(s, &slab_caches, list)
1661 init_cache_random_seq(s);
1662
1663 mutex_unlock(&slab_mutex);
1664 }
1665
1666 /* Get the next entry on the pre-computed freelist randomized */
1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 unsigned long *pos, void *start,
1669 unsigned long page_limit,
1670 unsigned long freelist_count)
1671 {
1672 unsigned int idx;
1673
1674 /*
1675 * If the target page allocation failed, the number of objects on the
1676 * page might be smaller than the usual size defined by the cache.
1677 */
1678 do {
1679 idx = s->random_seq[*pos];
1680 *pos += 1;
1681 if (*pos >= freelist_count)
1682 *pos = 0;
1683 } while (unlikely(idx >= page_limit));
1684
1685 return (char *)start + idx;
1686 }
1687
1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690 {
1691 void *start;
1692 void *cur;
1693 void *next;
1694 unsigned long idx, pos, page_limit, freelist_count;
1695
1696 if (page->objects < 2 || !s->random_seq)
1697 return false;
1698
1699 freelist_count = oo_objects(s->oo);
1700 pos = get_random_int() % freelist_count;
1701
1702 page_limit = page->objects * s->size;
1703 start = fixup_red_left(s, page_address(page));
1704
1705 /* First entry is used as the base of the freelist */
1706 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 freelist_count);
1708 cur = setup_object(s, page, cur);
1709 page->freelist = cur;
1710
1711 for (idx = 1; idx < page->objects; idx++) {
1712 next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 freelist_count);
1714 next = setup_object(s, page, next);
1715 set_freepointer(s, cur, next);
1716 cur = next;
1717 }
1718 set_freepointer(s, cur, NULL);
1719
1720 return true;
1721 }
1722 #else
1723 static inline int init_cache_random_seq(struct kmem_cache *s)
1724 {
1725 return 0;
1726 }
1727 static inline void init_freelist_randomization(void) { }
1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729 {
1730 return false;
1731 }
1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733
1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735 {
1736 struct page *page;
1737 struct kmem_cache_order_objects oo = s->oo;
1738 gfp_t alloc_gfp;
1739 void *start, *p, *next;
1740 int idx;
1741 bool shuffle;
1742
1743 flags &= gfp_allowed_mask;
1744
1745 if (gfpflags_allow_blocking(flags))
1746 local_irq_enable();
1747
1748 flags |= s->allocflags;
1749
1750 /*
1751 * Let the initial higher-order allocation fail under memory pressure
1752 * so we fall-back to the minimum order allocation.
1753 */
1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1757
1758 page = alloc_slab_page(s, alloc_gfp, node, oo);
1759 if (unlikely(!page)) {
1760 oo = s->min;
1761 alloc_gfp = flags;
1762 /*
1763 * Allocation may have failed due to fragmentation.
1764 * Try a lower order alloc if possible
1765 */
1766 page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 if (unlikely(!page))
1768 goto out;
1769 stat(s, ORDER_FALLBACK);
1770 }
1771
1772 page->objects = oo_objects(oo);
1773
1774 page->slab_cache = s;
1775 __SetPageSlab(page);
1776 if (page_is_pfmemalloc(page))
1777 SetPageSlabPfmemalloc(page);
1778
1779 kasan_poison_slab(page);
1780
1781 start = page_address(page);
1782
1783 setup_page_debug(s, page, start);
1784
1785 shuffle = shuffle_freelist(s, page);
1786
1787 if (!shuffle) {
1788 start = fixup_red_left(s, start);
1789 start = setup_object(s, page, start);
1790 page->freelist = start;
1791 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1792 next = p + s->size;
1793 next = setup_object(s, page, next);
1794 set_freepointer(s, p, next);
1795 p = next;
1796 }
1797 set_freepointer(s, p, NULL);
1798 }
1799
1800 page->inuse = page->objects;
1801 page->frozen = 1;
1802
1803 out:
1804 if (gfpflags_allow_blocking(flags))
1805 local_irq_disable();
1806 if (!page)
1807 return NULL;
1808
1809 inc_slabs_node(s, page_to_nid(page), page->objects);
1810
1811 return page;
1812 }
1813
1814 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1815 {
1816 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1817 flags = kmalloc_fix_flags(flags);
1818
1819 return allocate_slab(s,
1820 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1821 }
1822
1823 static void __free_slab(struct kmem_cache *s, struct page *page)
1824 {
1825 int order = compound_order(page);
1826 int pages = 1 << order;
1827
1828 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1829 void *p;
1830
1831 slab_pad_check(s, page);
1832 for_each_object(p, s, page_address(page),
1833 page->objects)
1834 check_object(s, page, p, SLUB_RED_INACTIVE);
1835 }
1836
1837 __ClearPageSlabPfmemalloc(page);
1838 __ClearPageSlab(page);
1839
1840 page->mapping = NULL;
1841 if (current->reclaim_state)
1842 current->reclaim_state->reclaimed_slab += pages;
1843 unaccount_slab_page(page, order, s);
1844 __free_pages(page, order);
1845 }
1846
1847 static void rcu_free_slab(struct rcu_head *h)
1848 {
1849 struct page *page = container_of(h, struct page, rcu_head);
1850
1851 __free_slab(page->slab_cache, page);
1852 }
1853
1854 static void free_slab(struct kmem_cache *s, struct page *page)
1855 {
1856 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1857 call_rcu(&page->rcu_head, rcu_free_slab);
1858 } else
1859 __free_slab(s, page);
1860 }
1861
1862 static void discard_slab(struct kmem_cache *s, struct page *page)
1863 {
1864 dec_slabs_node(s, page_to_nid(page), page->objects);
1865 free_slab(s, page);
1866 }
1867
1868 /*
1869 * Management of partially allocated slabs.
1870 */
1871 static inline void
1872 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1873 {
1874 n->nr_partial++;
1875 if (tail == DEACTIVATE_TO_TAIL)
1876 list_add_tail(&page->slab_list, &n->partial);
1877 else
1878 list_add(&page->slab_list, &n->partial);
1879 }
1880
1881 static inline void add_partial(struct kmem_cache_node *n,
1882 struct page *page, int tail)
1883 {
1884 lockdep_assert_held(&n->list_lock);
1885 __add_partial(n, page, tail);
1886 }
1887
1888 static inline void remove_partial(struct kmem_cache_node *n,
1889 struct page *page)
1890 {
1891 lockdep_assert_held(&n->list_lock);
1892 list_del(&page->slab_list);
1893 n->nr_partial--;
1894 }
1895
1896 /*
1897 * Remove slab from the partial list, freeze it and
1898 * return the pointer to the freelist.
1899 *
1900 * Returns a list of objects or NULL if it fails.
1901 */
1902 static inline void *acquire_slab(struct kmem_cache *s,
1903 struct kmem_cache_node *n, struct page *page,
1904 int mode, int *objects)
1905 {
1906 void *freelist;
1907 unsigned long counters;
1908 struct page new;
1909
1910 lockdep_assert_held(&n->list_lock);
1911
1912 /*
1913 * Zap the freelist and set the frozen bit.
1914 * The old freelist is the list of objects for the
1915 * per cpu allocation list.
1916 */
1917 freelist = page->freelist;
1918 counters = page->counters;
1919 new.counters = counters;
1920 *objects = new.objects - new.inuse;
1921 if (mode) {
1922 new.inuse = page->objects;
1923 new.freelist = NULL;
1924 } else {
1925 new.freelist = freelist;
1926 }
1927
1928 VM_BUG_ON(new.frozen);
1929 new.frozen = 1;
1930
1931 if (!__cmpxchg_double_slab(s, page,
1932 freelist, counters,
1933 new.freelist, new.counters,
1934 "acquire_slab"))
1935 return NULL;
1936
1937 remove_partial(n, page);
1938 WARN_ON(!freelist);
1939 return freelist;
1940 }
1941
1942 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1943 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1944
1945 /*
1946 * Try to allocate a partial slab from a specific node.
1947 */
1948 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1949 struct kmem_cache_cpu *c, gfp_t flags)
1950 {
1951 struct page *page, *page2;
1952 void *object = NULL;
1953 unsigned int available = 0;
1954 int objects;
1955
1956 /*
1957 * Racy check. If we mistakenly see no partial slabs then we
1958 * just allocate an empty slab. If we mistakenly try to get a
1959 * partial slab and there is none available then get_partial()
1960 * will return NULL.
1961 */
1962 if (!n || !n->nr_partial)
1963 return NULL;
1964
1965 spin_lock(&n->list_lock);
1966 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1967 void *t;
1968
1969 if (!pfmemalloc_match(page, flags))
1970 continue;
1971
1972 t = acquire_slab(s, n, page, object == NULL, &objects);
1973 if (!t)
1974 break;
1975
1976 available += objects;
1977 if (!object) {
1978 c->page = page;
1979 stat(s, ALLOC_FROM_PARTIAL);
1980 object = t;
1981 } else {
1982 put_cpu_partial(s, page, 0);
1983 stat(s, CPU_PARTIAL_NODE);
1984 }
1985 if (!kmem_cache_has_cpu_partial(s)
1986 || available > slub_cpu_partial(s) / 2)
1987 break;
1988
1989 }
1990 spin_unlock(&n->list_lock);
1991 return object;
1992 }
1993
1994 /*
1995 * Get a page from somewhere. Search in increasing NUMA distances.
1996 */
1997 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1998 struct kmem_cache_cpu *c)
1999 {
2000 #ifdef CONFIG_NUMA
2001 struct zonelist *zonelist;
2002 struct zoneref *z;
2003 struct zone *zone;
2004 enum zone_type highest_zoneidx = gfp_zone(flags);
2005 void *object;
2006 unsigned int cpuset_mems_cookie;
2007
2008 /*
2009 * The defrag ratio allows a configuration of the tradeoffs between
2010 * inter node defragmentation and node local allocations. A lower
2011 * defrag_ratio increases the tendency to do local allocations
2012 * instead of attempting to obtain partial slabs from other nodes.
2013 *
2014 * If the defrag_ratio is set to 0 then kmalloc() always
2015 * returns node local objects. If the ratio is higher then kmalloc()
2016 * may return off node objects because partial slabs are obtained
2017 * from other nodes and filled up.
2018 *
2019 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2020 * (which makes defrag_ratio = 1000) then every (well almost)
2021 * allocation will first attempt to defrag slab caches on other nodes.
2022 * This means scanning over all nodes to look for partial slabs which
2023 * may be expensive if we do it every time we are trying to find a slab
2024 * with available objects.
2025 */
2026 if (!s->remote_node_defrag_ratio ||
2027 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2028 return NULL;
2029
2030 do {
2031 cpuset_mems_cookie = read_mems_allowed_begin();
2032 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2033 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2034 struct kmem_cache_node *n;
2035
2036 n = get_node(s, zone_to_nid(zone));
2037
2038 if (n && cpuset_zone_allowed(zone, flags) &&
2039 n->nr_partial > s->min_partial) {
2040 object = get_partial_node(s, n, c, flags);
2041 if (object) {
2042 /*
2043 * Don't check read_mems_allowed_retry()
2044 * here - if mems_allowed was updated in
2045 * parallel, that was a harmless race
2046 * between allocation and the cpuset
2047 * update
2048 */
2049 return object;
2050 }
2051 }
2052 }
2053 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2054 #endif /* CONFIG_NUMA */
2055 return NULL;
2056 }
2057
2058 /*
2059 * Get a partial page, lock it and return it.
2060 */
2061 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2062 struct kmem_cache_cpu *c)
2063 {
2064 void *object;
2065 int searchnode = node;
2066
2067 if (node == NUMA_NO_NODE)
2068 searchnode = numa_mem_id();
2069
2070 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2071 if (object || node != NUMA_NO_NODE)
2072 return object;
2073
2074 return get_any_partial(s, flags, c);
2075 }
2076
2077 #ifdef CONFIG_PREEMPTION
2078 /*
2079 * Calculate the next globally unique transaction for disambiguation
2080 * during cmpxchg. The transactions start with the cpu number and are then
2081 * incremented by CONFIG_NR_CPUS.
2082 */
2083 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2084 #else
2085 /*
2086 * No preemption supported therefore also no need to check for
2087 * different cpus.
2088 */
2089 #define TID_STEP 1
2090 #endif
2091
2092 static inline unsigned long next_tid(unsigned long tid)
2093 {
2094 return tid + TID_STEP;
2095 }
2096
2097 #ifdef SLUB_DEBUG_CMPXCHG
2098 static inline unsigned int tid_to_cpu(unsigned long tid)
2099 {
2100 return tid % TID_STEP;
2101 }
2102
2103 static inline unsigned long tid_to_event(unsigned long tid)
2104 {
2105 return tid / TID_STEP;
2106 }
2107 #endif
2108
2109 static inline unsigned int init_tid(int cpu)
2110 {
2111 return cpu;
2112 }
2113
2114 static inline void note_cmpxchg_failure(const char *n,
2115 const struct kmem_cache *s, unsigned long tid)
2116 {
2117 #ifdef SLUB_DEBUG_CMPXCHG
2118 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2119
2120 pr_info("%s %s: cmpxchg redo ", n, s->name);
2121
2122 #ifdef CONFIG_PREEMPTION
2123 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2124 pr_warn("due to cpu change %d -> %d\n",
2125 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2126 else
2127 #endif
2128 if (tid_to_event(tid) != tid_to_event(actual_tid))
2129 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2130 tid_to_event(tid), tid_to_event(actual_tid));
2131 else
2132 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2133 actual_tid, tid, next_tid(tid));
2134 #endif
2135 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2136 }
2137
2138 static void init_kmem_cache_cpus(struct kmem_cache *s)
2139 {
2140 int cpu;
2141
2142 for_each_possible_cpu(cpu)
2143 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2144 }
2145
2146 /*
2147 * Remove the cpu slab
2148 */
2149 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2150 void *freelist, struct kmem_cache_cpu *c)
2151 {
2152 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2153 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2154 int lock = 0;
2155 enum slab_modes l = M_NONE, m = M_NONE;
2156 void *nextfree;
2157 int tail = DEACTIVATE_TO_HEAD;
2158 struct page new;
2159 struct page old;
2160
2161 if (page->freelist) {
2162 stat(s, DEACTIVATE_REMOTE_FREES);
2163 tail = DEACTIVATE_TO_TAIL;
2164 }
2165
2166 /*
2167 * Stage one: Free all available per cpu objects back
2168 * to the page freelist while it is still frozen. Leave the
2169 * last one.
2170 *
2171 * There is no need to take the list->lock because the page
2172 * is still frozen.
2173 */
2174 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2175 void *prior;
2176 unsigned long counters;
2177
2178 /*
2179 * If 'nextfree' is invalid, it is possible that the object at
2180 * 'freelist' is already corrupted. So isolate all objects
2181 * starting at 'freelist'.
2182 */
2183 if (freelist_corrupted(s, page, &freelist, nextfree))
2184 break;
2185
2186 do {
2187 prior = page->freelist;
2188 counters = page->counters;
2189 set_freepointer(s, freelist, prior);
2190 new.counters = counters;
2191 new.inuse--;
2192 VM_BUG_ON(!new.frozen);
2193
2194 } while (!__cmpxchg_double_slab(s, page,
2195 prior, counters,
2196 freelist, new.counters,
2197 "drain percpu freelist"));
2198
2199 freelist = nextfree;
2200 }
2201
2202 /*
2203 * Stage two: Ensure that the page is unfrozen while the
2204 * list presence reflects the actual number of objects
2205 * during unfreeze.
2206 *
2207 * We setup the list membership and then perform a cmpxchg
2208 * with the count. If there is a mismatch then the page
2209 * is not unfrozen but the page is on the wrong list.
2210 *
2211 * Then we restart the process which may have to remove
2212 * the page from the list that we just put it on again
2213 * because the number of objects in the slab may have
2214 * changed.
2215 */
2216 redo:
2217
2218 old.freelist = page->freelist;
2219 old.counters = page->counters;
2220 VM_BUG_ON(!old.frozen);
2221
2222 /* Determine target state of the slab */
2223 new.counters = old.counters;
2224 if (freelist) {
2225 new.inuse--;
2226 set_freepointer(s, freelist, old.freelist);
2227 new.freelist = freelist;
2228 } else
2229 new.freelist = old.freelist;
2230
2231 new.frozen = 0;
2232
2233 if (!new.inuse && n->nr_partial >= s->min_partial)
2234 m = M_FREE;
2235 else if (new.freelist) {
2236 m = M_PARTIAL;
2237 if (!lock) {
2238 lock = 1;
2239 /*
2240 * Taking the spinlock removes the possibility
2241 * that acquire_slab() will see a slab page that
2242 * is frozen
2243 */
2244 spin_lock(&n->list_lock);
2245 }
2246 } else {
2247 m = M_FULL;
2248 #ifdef CONFIG_SLUB_DEBUG
2249 if ((s->flags & SLAB_STORE_USER) && !lock) {
2250 lock = 1;
2251 /*
2252 * This also ensures that the scanning of full
2253 * slabs from diagnostic functions will not see
2254 * any frozen slabs.
2255 */
2256 spin_lock(&n->list_lock);
2257 }
2258 #endif
2259 }
2260
2261 if (l != m) {
2262 if (l == M_PARTIAL)
2263 remove_partial(n, page);
2264 else if (l == M_FULL)
2265 remove_full(s, n, page);
2266
2267 if (m == M_PARTIAL)
2268 add_partial(n, page, tail);
2269 else if (m == M_FULL)
2270 add_full(s, n, page);
2271 }
2272
2273 l = m;
2274 if (!__cmpxchg_double_slab(s, page,
2275 old.freelist, old.counters,
2276 new.freelist, new.counters,
2277 "unfreezing slab"))
2278 goto redo;
2279
2280 if (lock)
2281 spin_unlock(&n->list_lock);
2282
2283 if (m == M_PARTIAL)
2284 stat(s, tail);
2285 else if (m == M_FULL)
2286 stat(s, DEACTIVATE_FULL);
2287 else if (m == M_FREE) {
2288 stat(s, DEACTIVATE_EMPTY);
2289 discard_slab(s, page);
2290 stat(s, FREE_SLAB);
2291 }
2292
2293 c->page = NULL;
2294 c->freelist = NULL;
2295 }
2296
2297 /*
2298 * Unfreeze all the cpu partial slabs.
2299 *
2300 * This function must be called with interrupts disabled
2301 * for the cpu using c (or some other guarantee must be there
2302 * to guarantee no concurrent accesses).
2303 */
2304 static void unfreeze_partials(struct kmem_cache *s,
2305 struct kmem_cache_cpu *c)
2306 {
2307 #ifdef CONFIG_SLUB_CPU_PARTIAL
2308 struct kmem_cache_node *n = NULL, *n2 = NULL;
2309 struct page *page, *discard_page = NULL;
2310
2311 while ((page = slub_percpu_partial(c))) {
2312 struct page new;
2313 struct page old;
2314
2315 slub_set_percpu_partial(c, page);
2316
2317 n2 = get_node(s, page_to_nid(page));
2318 if (n != n2) {
2319 if (n)
2320 spin_unlock(&n->list_lock);
2321
2322 n = n2;
2323 spin_lock(&n->list_lock);
2324 }
2325
2326 do {
2327
2328 old.freelist = page->freelist;
2329 old.counters = page->counters;
2330 VM_BUG_ON(!old.frozen);
2331
2332 new.counters = old.counters;
2333 new.freelist = old.freelist;
2334
2335 new.frozen = 0;
2336
2337 } while (!__cmpxchg_double_slab(s, page,
2338 old.freelist, old.counters,
2339 new.freelist, new.counters,
2340 "unfreezing slab"));
2341
2342 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2343 page->next = discard_page;
2344 discard_page = page;
2345 } else {
2346 add_partial(n, page, DEACTIVATE_TO_TAIL);
2347 stat(s, FREE_ADD_PARTIAL);
2348 }
2349 }
2350
2351 if (n)
2352 spin_unlock(&n->list_lock);
2353
2354 while (discard_page) {
2355 page = discard_page;
2356 discard_page = discard_page->next;
2357
2358 stat(s, DEACTIVATE_EMPTY);
2359 discard_slab(s, page);
2360 stat(s, FREE_SLAB);
2361 }
2362 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2363 }
2364
2365 /*
2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2367 * partial page slot if available.
2368 *
2369 * If we did not find a slot then simply move all the partials to the
2370 * per node partial list.
2371 */
2372 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2373 {
2374 #ifdef CONFIG_SLUB_CPU_PARTIAL
2375 struct page *oldpage;
2376 int pages;
2377 int pobjects;
2378
2379 preempt_disable();
2380 do {
2381 pages = 0;
2382 pobjects = 0;
2383 oldpage = this_cpu_read(s->cpu_slab->partial);
2384
2385 if (oldpage) {
2386 pobjects = oldpage->pobjects;
2387 pages = oldpage->pages;
2388 if (drain && pobjects > slub_cpu_partial(s)) {
2389 unsigned long flags;
2390 /*
2391 * partial array is full. Move the existing
2392 * set to the per node partial list.
2393 */
2394 local_irq_save(flags);
2395 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2396 local_irq_restore(flags);
2397 oldpage = NULL;
2398 pobjects = 0;
2399 pages = 0;
2400 stat(s, CPU_PARTIAL_DRAIN);
2401 }
2402 }
2403
2404 pages++;
2405 pobjects += page->objects - page->inuse;
2406
2407 page->pages = pages;
2408 page->pobjects = pobjects;
2409 page->next = oldpage;
2410
2411 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2412 != oldpage);
2413 if (unlikely(!slub_cpu_partial(s))) {
2414 unsigned long flags;
2415
2416 local_irq_save(flags);
2417 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2418 local_irq_restore(flags);
2419 }
2420 preempt_enable();
2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2422 }
2423
2424 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2425 {
2426 stat(s, CPUSLAB_FLUSH);
2427 deactivate_slab(s, c->page, c->freelist, c);
2428
2429 c->tid = next_tid(c->tid);
2430 }
2431
2432 /*
2433 * Flush cpu slab.
2434 *
2435 * Called from IPI handler with interrupts disabled.
2436 */
2437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2438 {
2439 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2440
2441 if (c->page)
2442 flush_slab(s, c);
2443
2444 unfreeze_partials(s, c);
2445 }
2446
2447 static void flush_cpu_slab(void *d)
2448 {
2449 struct kmem_cache *s = d;
2450
2451 __flush_cpu_slab(s, smp_processor_id());
2452 }
2453
2454 static bool has_cpu_slab(int cpu, void *info)
2455 {
2456 struct kmem_cache *s = info;
2457 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2458
2459 return c->page || slub_percpu_partial(c);
2460 }
2461
2462 static void flush_all(struct kmem_cache *s)
2463 {
2464 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2465 }
2466
2467 /*
2468 * Use the cpu notifier to insure that the cpu slabs are flushed when
2469 * necessary.
2470 */
2471 static int slub_cpu_dead(unsigned int cpu)
2472 {
2473 struct kmem_cache *s;
2474 unsigned long flags;
2475
2476 mutex_lock(&slab_mutex);
2477 list_for_each_entry(s, &slab_caches, list) {
2478 local_irq_save(flags);
2479 __flush_cpu_slab(s, cpu);
2480 local_irq_restore(flags);
2481 }
2482 mutex_unlock(&slab_mutex);
2483 return 0;
2484 }
2485
2486 /*
2487 * Check if the objects in a per cpu structure fit numa
2488 * locality expectations.
2489 */
2490 static inline int node_match(struct page *page, int node)
2491 {
2492 #ifdef CONFIG_NUMA
2493 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2494 return 0;
2495 #endif
2496 return 1;
2497 }
2498
2499 #ifdef CONFIG_SLUB_DEBUG
2500 static int count_free(struct page *page)
2501 {
2502 return page->objects - page->inuse;
2503 }
2504
2505 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2506 {
2507 return atomic_long_read(&n->total_objects);
2508 }
2509 #endif /* CONFIG_SLUB_DEBUG */
2510
2511 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2512 static unsigned long count_partial(struct kmem_cache_node *n,
2513 int (*get_count)(struct page *))
2514 {
2515 unsigned long flags;
2516 unsigned long x = 0;
2517 struct page *page;
2518
2519 spin_lock_irqsave(&n->list_lock, flags);
2520 list_for_each_entry(page, &n->partial, slab_list)
2521 x += get_count(page);
2522 spin_unlock_irqrestore(&n->list_lock, flags);
2523 return x;
2524 }
2525 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2526
2527 static noinline void
2528 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2529 {
2530 #ifdef CONFIG_SLUB_DEBUG
2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 DEFAULT_RATELIMIT_BURST);
2533 int node;
2534 struct kmem_cache_node *n;
2535
2536 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2537 return;
2538
2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2540 nid, gfpflags, &gfpflags);
2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2542 s->name, s->object_size, s->size, oo_order(s->oo),
2543 oo_order(s->min));
2544
2545 if (oo_order(s->min) > get_order(s->object_size))
2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2547 s->name);
2548
2549 for_each_kmem_cache_node(s, node, n) {
2550 unsigned long nr_slabs;
2551 unsigned long nr_objs;
2552 unsigned long nr_free;
2553
2554 nr_free = count_partial(n, count_free);
2555 nr_slabs = node_nr_slabs(n);
2556 nr_objs = node_nr_objs(n);
2557
2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2559 node, nr_slabs, nr_objs, nr_free);
2560 }
2561 #endif
2562 }
2563
2564 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2565 int node, struct kmem_cache_cpu **pc)
2566 {
2567 void *freelist;
2568 struct kmem_cache_cpu *c = *pc;
2569 struct page *page;
2570
2571 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2572
2573 freelist = get_partial(s, flags, node, c);
2574
2575 if (freelist)
2576 return freelist;
2577
2578 page = new_slab(s, flags, node);
2579 if (page) {
2580 c = raw_cpu_ptr(s->cpu_slab);
2581 if (c->page)
2582 flush_slab(s, c);
2583
2584 /*
2585 * No other reference to the page yet so we can
2586 * muck around with it freely without cmpxchg
2587 */
2588 freelist = page->freelist;
2589 page->freelist = NULL;
2590
2591 stat(s, ALLOC_SLAB);
2592 c->page = page;
2593 *pc = c;
2594 }
2595
2596 return freelist;
2597 }
2598
2599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2600 {
2601 if (unlikely(PageSlabPfmemalloc(page)))
2602 return gfp_pfmemalloc_allowed(gfpflags);
2603
2604 return true;
2605 }
2606
2607 /*
2608 * Check the page->freelist of a page and either transfer the freelist to the
2609 * per cpu freelist or deactivate the page.
2610 *
2611 * The page is still frozen if the return value is not NULL.
2612 *
2613 * If this function returns NULL then the page has been unfrozen.
2614 *
2615 * This function must be called with interrupt disabled.
2616 */
2617 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2618 {
2619 struct page new;
2620 unsigned long counters;
2621 void *freelist;
2622
2623 do {
2624 freelist = page->freelist;
2625 counters = page->counters;
2626
2627 new.counters = counters;
2628 VM_BUG_ON(!new.frozen);
2629
2630 new.inuse = page->objects;
2631 new.frozen = freelist != NULL;
2632
2633 } while (!__cmpxchg_double_slab(s, page,
2634 freelist, counters,
2635 NULL, new.counters,
2636 "get_freelist"));
2637
2638 return freelist;
2639 }
2640
2641 /*
2642 * Slow path. The lockless freelist is empty or we need to perform
2643 * debugging duties.
2644 *
2645 * Processing is still very fast if new objects have been freed to the
2646 * regular freelist. In that case we simply take over the regular freelist
2647 * as the lockless freelist and zap the regular freelist.
2648 *
2649 * If that is not working then we fall back to the partial lists. We take the
2650 * first element of the freelist as the object to allocate now and move the
2651 * rest of the freelist to the lockless freelist.
2652 *
2653 * And if we were unable to get a new slab from the partial slab lists then
2654 * we need to allocate a new slab. This is the slowest path since it involves
2655 * a call to the page allocator and the setup of a new slab.
2656 *
2657 * Version of __slab_alloc to use when we know that interrupts are
2658 * already disabled (which is the case for bulk allocation).
2659 */
2660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2661 unsigned long addr, struct kmem_cache_cpu *c)
2662 {
2663 void *freelist;
2664 struct page *page;
2665
2666 stat(s, ALLOC_SLOWPATH);
2667
2668 page = c->page;
2669 if (!page) {
2670 /*
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2673 */
2674 if (unlikely(node != NUMA_NO_NODE &&
2675 !node_state(node, N_NORMAL_MEMORY)))
2676 node = NUMA_NO_NODE;
2677 goto new_slab;
2678 }
2679 redo:
2680
2681 if (unlikely(!node_match(page, node))) {
2682 /*
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2685 */
2686 if (!node_state(node, N_NORMAL_MEMORY)) {
2687 node = NUMA_NO_NODE;
2688 goto redo;
2689 } else {
2690 stat(s, ALLOC_NODE_MISMATCH);
2691 deactivate_slab(s, page, c->freelist, c);
2692 goto new_slab;
2693 }
2694 }
2695
2696 /*
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2700 */
2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2702 deactivate_slab(s, page, c->freelist, c);
2703 goto new_slab;
2704 }
2705
2706 /* must check again c->freelist in case of cpu migration or IRQ */
2707 freelist = c->freelist;
2708 if (freelist)
2709 goto load_freelist;
2710
2711 freelist = get_freelist(s, page);
2712
2713 if (!freelist) {
2714 c->page = NULL;
2715 stat(s, DEACTIVATE_BYPASS);
2716 goto new_slab;
2717 }
2718
2719 stat(s, ALLOC_REFILL);
2720
2721 load_freelist:
2722 /*
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2726 */
2727 VM_BUG_ON(!c->page->frozen);
2728 c->freelist = get_freepointer(s, freelist);
2729 c->tid = next_tid(c->tid);
2730 return freelist;
2731
2732 new_slab:
2733
2734 if (slub_percpu_partial(c)) {
2735 page = c->page = slub_percpu_partial(c);
2736 slub_set_percpu_partial(c, page);
2737 stat(s, CPU_PARTIAL_ALLOC);
2738 goto redo;
2739 }
2740
2741 freelist = new_slab_objects(s, gfpflags, node, &c);
2742
2743 if (unlikely(!freelist)) {
2744 slab_out_of_memory(s, gfpflags, node);
2745 return NULL;
2746 }
2747
2748 page = c->page;
2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2750 goto load_freelist;
2751
2752 /* Only entered in the debug case */
2753 if (kmem_cache_debug(s) &&
2754 !alloc_debug_processing(s, page, freelist, addr))
2755 goto new_slab; /* Slab failed checks. Next slab needed */
2756
2757 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2758 return freelist;
2759 }
2760
2761 /*
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2764 */
2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 unsigned long addr, struct kmem_cache_cpu *c)
2767 {
2768 void *p;
2769 unsigned long flags;
2770
2771 local_irq_save(flags);
2772 #ifdef CONFIG_PREEMPTION
2773 /*
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2776 * pointer.
2777 */
2778 c = this_cpu_ptr(s->cpu_slab);
2779 #endif
2780
2781 p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 local_irq_restore(flags);
2783 return p;
2784 }
2785
2786 /*
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2789 */
2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 void *obj)
2792 {
2793 if (unlikely(slab_want_init_on_free(s)) && obj)
2794 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2795 }
2796
2797 /*
2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799 * have the fastpath folded into their functions. So no function call
2800 * overhead for requests that can be satisfied on the fastpath.
2801 *
2802 * The fastpath works by first checking if the lockless freelist can be used.
2803 * If not then __slab_alloc is called for slow processing.
2804 *
2805 * Otherwise we can simply pick the next object from the lockless free list.
2806 */
2807 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2808 gfp_t gfpflags, int node, unsigned long addr)
2809 {
2810 void *object;
2811 struct kmem_cache_cpu *c;
2812 struct page *page;
2813 unsigned long tid;
2814 struct obj_cgroup *objcg = NULL;
2815
2816 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2817 if (!s)
2818 return NULL;
2819 redo:
2820 /*
2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 * enabled. We may switch back and forth between cpus while
2823 * reading from one cpu area. That does not matter as long
2824 * as we end up on the original cpu again when doing the cmpxchg.
2825 *
2826 * We should guarantee that tid and kmem_cache are retrieved on
2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2828 * to check if it is matched or not.
2829 */
2830 do {
2831 tid = this_cpu_read(s->cpu_slab->tid);
2832 c = raw_cpu_ptr(s->cpu_slab);
2833 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2834 unlikely(tid != READ_ONCE(c->tid)));
2835
2836 /*
2837 * Irqless object alloc/free algorithm used here depends on sequence
2838 * of fetching cpu_slab's data. tid should be fetched before anything
2839 * on c to guarantee that object and page associated with previous tid
2840 * won't be used with current tid. If we fetch tid first, object and
2841 * page could be one associated with next tid and our alloc/free
2842 * request will be failed. In this case, we will retry. So, no problem.
2843 */
2844 barrier();
2845
2846 /*
2847 * The transaction ids are globally unique per cpu and per operation on
2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 * occurs on the right processor and that there was no operation on the
2850 * linked list in between.
2851 */
2852
2853 object = c->freelist;
2854 page = c->page;
2855 if (unlikely(!object || !node_match(page, node))) {
2856 object = __slab_alloc(s, gfpflags, node, addr, c);
2857 } else {
2858 void *next_object = get_freepointer_safe(s, object);
2859
2860 /*
2861 * The cmpxchg will only match if there was no additional
2862 * operation and if we are on the right processor.
2863 *
2864 * The cmpxchg does the following atomically (without lock
2865 * semantics!)
2866 * 1. Relocate first pointer to the current per cpu area.
2867 * 2. Verify that tid and freelist have not been changed
2868 * 3. If they were not changed replace tid and freelist
2869 *
2870 * Since this is without lock semantics the protection is only
2871 * against code executing on this cpu *not* from access by
2872 * other cpus.
2873 */
2874 if (unlikely(!this_cpu_cmpxchg_double(
2875 s->cpu_slab->freelist, s->cpu_slab->tid,
2876 object, tid,
2877 next_object, next_tid(tid)))) {
2878
2879 note_cmpxchg_failure("slab_alloc", s, tid);
2880 goto redo;
2881 }
2882 prefetch_freepointer(s, next_object);
2883 stat(s, ALLOC_FASTPATH);
2884 }
2885
2886 maybe_wipe_obj_freeptr(s, object);
2887
2888 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2889 memset(object, 0, s->object_size);
2890
2891 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2892
2893 return object;
2894 }
2895
2896 static __always_inline void *slab_alloc(struct kmem_cache *s,
2897 gfp_t gfpflags, unsigned long addr)
2898 {
2899 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2900 }
2901
2902 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2903 {
2904 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2905
2906 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2907 s->size, gfpflags);
2908
2909 return ret;
2910 }
2911 EXPORT_SYMBOL(kmem_cache_alloc);
2912
2913 #ifdef CONFIG_TRACING
2914 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2915 {
2916 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2917 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2918 ret = kasan_kmalloc(s, ret, size, gfpflags);
2919 return ret;
2920 }
2921 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2922 #endif
2923
2924 #ifdef CONFIG_NUMA
2925 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2926 {
2927 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2928
2929 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2930 s->object_size, s->size, gfpflags, node);
2931
2932 return ret;
2933 }
2934 EXPORT_SYMBOL(kmem_cache_alloc_node);
2935
2936 #ifdef CONFIG_TRACING
2937 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2938 gfp_t gfpflags,
2939 int node, size_t size)
2940 {
2941 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2942
2943 trace_kmalloc_node(_RET_IP_, ret,
2944 size, s->size, gfpflags, node);
2945
2946 ret = kasan_kmalloc(s, ret, size, gfpflags);
2947 return ret;
2948 }
2949 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2950 #endif
2951 #endif /* CONFIG_NUMA */
2952
2953 /*
2954 * Slow path handling. This may still be called frequently since objects
2955 * have a longer lifetime than the cpu slabs in most processing loads.
2956 *
2957 * So we still attempt to reduce cache line usage. Just take the slab
2958 * lock and free the item. If there is no additional partial page
2959 * handling required then we can return immediately.
2960 */
2961 static void __slab_free(struct kmem_cache *s, struct page *page,
2962 void *head, void *tail, int cnt,
2963 unsigned long addr)
2964
2965 {
2966 void *prior;
2967 int was_frozen;
2968 struct page new;
2969 unsigned long counters;
2970 struct kmem_cache_node *n = NULL;
2971 unsigned long flags;
2972
2973 stat(s, FREE_SLOWPATH);
2974
2975 if (kmem_cache_debug(s) &&
2976 !free_debug_processing(s, page, head, tail, cnt, addr))
2977 return;
2978
2979 do {
2980 if (unlikely(n)) {
2981 spin_unlock_irqrestore(&n->list_lock, flags);
2982 n = NULL;
2983 }
2984 prior = page->freelist;
2985 counters = page->counters;
2986 set_freepointer(s, tail, prior);
2987 new.counters = counters;
2988 was_frozen = new.frozen;
2989 new.inuse -= cnt;
2990 if ((!new.inuse || !prior) && !was_frozen) {
2991
2992 if (kmem_cache_has_cpu_partial(s) && !prior) {
2993
2994 /*
2995 * Slab was on no list before and will be
2996 * partially empty
2997 * We can defer the list move and instead
2998 * freeze it.
2999 */
3000 new.frozen = 1;
3001
3002 } else { /* Needs to be taken off a list */
3003
3004 n = get_node(s, page_to_nid(page));
3005 /*
3006 * Speculatively acquire the list_lock.
3007 * If the cmpxchg does not succeed then we may
3008 * drop the list_lock without any processing.
3009 *
3010 * Otherwise the list_lock will synchronize with
3011 * other processors updating the list of slabs.
3012 */
3013 spin_lock_irqsave(&n->list_lock, flags);
3014
3015 }
3016 }
3017
3018 } while (!cmpxchg_double_slab(s, page,
3019 prior, counters,
3020 head, new.counters,
3021 "__slab_free"));
3022
3023 if (likely(!n)) {
3024
3025 if (likely(was_frozen)) {
3026 /*
3027 * The list lock was not taken therefore no list
3028 * activity can be necessary.
3029 */
3030 stat(s, FREE_FROZEN);
3031 } else if (new.frozen) {
3032 /*
3033 * If we just froze the page then put it onto the
3034 * per cpu partial list.
3035 */
3036 put_cpu_partial(s, page, 1);
3037 stat(s, CPU_PARTIAL_FREE);
3038 }
3039
3040 return;
3041 }
3042
3043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3044 goto slab_empty;
3045
3046 /*
3047 * Objects left in the slab. If it was not on the partial list before
3048 * then add it.
3049 */
3050 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3051 remove_full(s, n, page);
3052 add_partial(n, page, DEACTIVATE_TO_TAIL);
3053 stat(s, FREE_ADD_PARTIAL);
3054 }
3055 spin_unlock_irqrestore(&n->list_lock, flags);
3056 return;
3057
3058 slab_empty:
3059 if (prior) {
3060 /*
3061 * Slab on the partial list.
3062 */
3063 remove_partial(n, page);
3064 stat(s, FREE_REMOVE_PARTIAL);
3065 } else {
3066 /* Slab must be on the full list */
3067 remove_full(s, n, page);
3068 }
3069
3070 spin_unlock_irqrestore(&n->list_lock, flags);
3071 stat(s, FREE_SLAB);
3072 discard_slab(s, page);
3073 }
3074
3075 /*
3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077 * can perform fastpath freeing without additional function calls.
3078 *
3079 * The fastpath is only possible if we are freeing to the current cpu slab
3080 * of this processor. This typically the case if we have just allocated
3081 * the item before.
3082 *
3083 * If fastpath is not possible then fall back to __slab_free where we deal
3084 * with all sorts of special processing.
3085 *
3086 * Bulk free of a freelist with several objects (all pointing to the
3087 * same page) possible by specifying head and tail ptr, plus objects
3088 * count (cnt). Bulk free indicated by tail pointer being set.
3089 */
3090 static __always_inline void do_slab_free(struct kmem_cache *s,
3091 struct page *page, void *head, void *tail,
3092 int cnt, unsigned long addr)
3093 {
3094 void *tail_obj = tail ? : head;
3095 struct kmem_cache_cpu *c;
3096 unsigned long tid;
3097
3098 memcg_slab_free_hook(s, &head, 1);
3099 redo:
3100 /*
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
3104 * during the cmpxchg then the free will succeed.
3105 */
3106 do {
3107 tid = this_cpu_read(s->cpu_slab->tid);
3108 c = raw_cpu_ptr(s->cpu_slab);
3109 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3110 unlikely(tid != READ_ONCE(c->tid)));
3111
3112 /* Same with comment on barrier() in slab_alloc_node() */
3113 barrier();
3114
3115 if (likely(page == c->page)) {
3116 void **freelist = READ_ONCE(c->freelist);
3117
3118 set_freepointer(s, tail_obj, freelist);
3119
3120 if (unlikely(!this_cpu_cmpxchg_double(
3121 s->cpu_slab->freelist, s->cpu_slab->tid,
3122 freelist, tid,
3123 head, next_tid(tid)))) {
3124
3125 note_cmpxchg_failure("slab_free", s, tid);
3126 goto redo;
3127 }
3128 stat(s, FREE_FASTPATH);
3129 } else
3130 __slab_free(s, page, head, tail_obj, cnt, addr);
3131
3132 }
3133
3134 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 void *head, void *tail, int cnt,
3136 unsigned long addr)
3137 {
3138 /*
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
3141 */
3142 if (slab_free_freelist_hook(s, &head, &tail))
3143 do_slab_free(s, page, head, tail, cnt, addr);
3144 }
3145
3146 #ifdef CONFIG_KASAN_GENERIC
3147 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148 {
3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150 }
3151 #endif
3152
3153 void kmem_cache_free(struct kmem_cache *s, void *x)
3154 {
3155 s = cache_from_obj(s, x);
3156 if (!s)
3157 return;
3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3159 trace_kmem_cache_free(_RET_IP_, x);
3160 }
3161 EXPORT_SYMBOL(kmem_cache_free);
3162
3163 struct detached_freelist {
3164 struct page *page;
3165 void *tail;
3166 void *freelist;
3167 int cnt;
3168 struct kmem_cache *s;
3169 };
3170
3171 /*
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3182 */
3183 static inline
3184 int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 void **p, struct detached_freelist *df)
3186 {
3187 size_t first_skipped_index = 0;
3188 int lookahead = 3;
3189 void *object;
3190 struct page *page;
3191
3192 /* Always re-init detached_freelist */
3193 df->page = NULL;
3194
3195 do {
3196 object = p[--size];
3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3198 } while (!object && size);
3199
3200 if (!object)
3201 return 0;
3202
3203 page = virt_to_head_page(object);
3204 if (!s) {
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page))) {
3207 BUG_ON(!PageCompound(page));
3208 kfree_hook(object);
3209 __free_pages(page, compound_order(page));
3210 p[size] = NULL; /* mark object processed */
3211 return size;
3212 }
3213 /* Derive kmem_cache from object */
3214 df->s = page->slab_cache;
3215 } else {
3216 df->s = cache_from_obj(s, object); /* Support for memcg */
3217 }
3218
3219 /* Start new detached freelist */
3220 df->page = page;
3221 set_freepointer(df->s, object, NULL);
3222 df->tail = object;
3223 df->freelist = object;
3224 p[size] = NULL; /* mark object processed */
3225 df->cnt = 1;
3226
3227 while (size) {
3228 object = p[--size];
3229 if (!object)
3230 continue; /* Skip processed objects */
3231
3232 /* df->page is always set at this point */
3233 if (df->page == virt_to_head_page(object)) {
3234 /* Opportunity build freelist */
3235 set_freepointer(df->s, object, df->freelist);
3236 df->freelist = object;
3237 df->cnt++;
3238 p[size] = NULL; /* mark object processed */
3239
3240 continue;
3241 }
3242
3243 /* Limit look ahead search */
3244 if (!--lookahead)
3245 break;
3246
3247 if (!first_skipped_index)
3248 first_skipped_index = size + 1;
3249 }
3250
3251 return first_skipped_index;
3252 }
3253
3254 /* Note that interrupts must be enabled when calling this function. */
3255 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3256 {
3257 if (WARN_ON(!size))
3258 return;
3259
3260 memcg_slab_free_hook(s, p, size);
3261 do {
3262 struct detached_freelist df;
3263
3264 size = build_detached_freelist(s, size, p, &df);
3265 if (!df.page)
3266 continue;
3267
3268 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3269 } while (likely(size));
3270 }
3271 EXPORT_SYMBOL(kmem_cache_free_bulk);
3272
3273 /* Note that interrupts must be enabled when calling this function. */
3274 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3275 void **p)
3276 {
3277 struct kmem_cache_cpu *c;
3278 int i;
3279 struct obj_cgroup *objcg = NULL;
3280
3281 /* memcg and kmem_cache debug support */
3282 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3283 if (unlikely(!s))
3284 return false;
3285 /*
3286 * Drain objects in the per cpu slab, while disabling local
3287 * IRQs, which protects against PREEMPT and interrupts
3288 * handlers invoking normal fastpath.
3289 */
3290 local_irq_disable();
3291 c = this_cpu_ptr(s->cpu_slab);
3292
3293 for (i = 0; i < size; i++) {
3294 void *object = c->freelist;
3295
3296 if (unlikely(!object)) {
3297 /*
3298 * We may have removed an object from c->freelist using
3299 * the fastpath in the previous iteration; in that case,
3300 * c->tid has not been bumped yet.
3301 * Since ___slab_alloc() may reenable interrupts while
3302 * allocating memory, we should bump c->tid now.
3303 */
3304 c->tid = next_tid(c->tid);
3305
3306 /*
3307 * Invoking slow path likely have side-effect
3308 * of re-populating per CPU c->freelist
3309 */
3310 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3311 _RET_IP_, c);
3312 if (unlikely(!p[i]))
3313 goto error;
3314
3315 c = this_cpu_ptr(s->cpu_slab);
3316 maybe_wipe_obj_freeptr(s, p[i]);
3317
3318 continue; /* goto for-loop */
3319 }
3320 c->freelist = get_freepointer(s, object);
3321 p[i] = object;
3322 maybe_wipe_obj_freeptr(s, p[i]);
3323 }
3324 c->tid = next_tid(c->tid);
3325 local_irq_enable();
3326
3327 /* Clear memory outside IRQ disabled fastpath loop */
3328 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3329 int j;
3330
3331 for (j = 0; j < i; j++)
3332 memset(p[j], 0, s->object_size);
3333 }
3334
3335 /* memcg and kmem_cache debug support */
3336 slab_post_alloc_hook(s, objcg, flags, size, p);
3337 return i;
3338 error:
3339 local_irq_enable();
3340 slab_post_alloc_hook(s, objcg, flags, i, p);
3341 __kmem_cache_free_bulk(s, i, p);
3342 return 0;
3343 }
3344 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3345
3346
3347 /*
3348 * Object placement in a slab is made very easy because we always start at
3349 * offset 0. If we tune the size of the object to the alignment then we can
3350 * get the required alignment by putting one properly sized object after
3351 * another.
3352 *
3353 * Notice that the allocation order determines the sizes of the per cpu
3354 * caches. Each processor has always one slab available for allocations.
3355 * Increasing the allocation order reduces the number of times that slabs
3356 * must be moved on and off the partial lists and is therefore a factor in
3357 * locking overhead.
3358 */
3359
3360 /*
3361 * Mininum / Maximum order of slab pages. This influences locking overhead
3362 * and slab fragmentation. A higher order reduces the number of partial slabs
3363 * and increases the number of allocations possible without having to
3364 * take the list_lock.
3365 */
3366 static unsigned int slub_min_order;
3367 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3368 static unsigned int slub_min_objects;
3369
3370 /*
3371 * Calculate the order of allocation given an slab object size.
3372 *
3373 * The order of allocation has significant impact on performance and other
3374 * system components. Generally order 0 allocations should be preferred since
3375 * order 0 does not cause fragmentation in the page allocator. Larger objects
3376 * be problematic to put into order 0 slabs because there may be too much
3377 * unused space left. We go to a higher order if more than 1/16th of the slab
3378 * would be wasted.
3379 *
3380 * In order to reach satisfactory performance we must ensure that a minimum
3381 * number of objects is in one slab. Otherwise we may generate too much
3382 * activity on the partial lists which requires taking the list_lock. This is
3383 * less a concern for large slabs though which are rarely used.
3384 *
3385 * slub_max_order specifies the order where we begin to stop considering the
3386 * number of objects in a slab as critical. If we reach slub_max_order then
3387 * we try to keep the page order as low as possible. So we accept more waste
3388 * of space in favor of a small page order.
3389 *
3390 * Higher order allocations also allow the placement of more objects in a
3391 * slab and thereby reduce object handling overhead. If the user has
3392 * requested a higher mininum order then we start with that one instead of
3393 * the smallest order which will fit the object.
3394 */
3395 static inline unsigned int slab_order(unsigned int size,
3396 unsigned int min_objects, unsigned int max_order,
3397 unsigned int fract_leftover)
3398 {
3399 unsigned int min_order = slub_min_order;
3400 unsigned int order;
3401
3402 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3403 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3404
3405 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3406 order <= max_order; order++) {
3407
3408 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3409 unsigned int rem;
3410
3411 rem = slab_size % size;
3412
3413 if (rem <= slab_size / fract_leftover)
3414 break;
3415 }
3416
3417 return order;
3418 }
3419
3420 static inline int calculate_order(unsigned int size)
3421 {
3422 unsigned int order;
3423 unsigned int min_objects;
3424 unsigned int max_objects;
3425
3426 /*
3427 * Attempt to find best configuration for a slab. This
3428 * works by first attempting to generate a layout with
3429 * the best configuration and backing off gradually.
3430 *
3431 * First we increase the acceptable waste in a slab. Then
3432 * we reduce the minimum objects required in a slab.
3433 */
3434 min_objects = slub_min_objects;
3435 if (!min_objects)
3436 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3437 max_objects = order_objects(slub_max_order, size);
3438 min_objects = min(min_objects, max_objects);
3439
3440 while (min_objects > 1) {
3441 unsigned int fraction;
3442
3443 fraction = 16;
3444 while (fraction >= 4) {
3445 order = slab_order(size, min_objects,
3446 slub_max_order, fraction);
3447 if (order <= slub_max_order)
3448 return order;
3449 fraction /= 2;
3450 }
3451 min_objects--;
3452 }
3453
3454 /*
3455 * We were unable to place multiple objects in a slab. Now
3456 * lets see if we can place a single object there.
3457 */
3458 order = slab_order(size, 1, slub_max_order, 1);
3459 if (order <= slub_max_order)
3460 return order;
3461
3462 /*
3463 * Doh this slab cannot be placed using slub_max_order.
3464 */
3465 order = slab_order(size, 1, MAX_ORDER, 1);
3466 if (order < MAX_ORDER)
3467 return order;
3468 return -ENOSYS;
3469 }
3470
3471 static void
3472 init_kmem_cache_node(struct kmem_cache_node *n)
3473 {
3474 n->nr_partial = 0;
3475 spin_lock_init(&n->list_lock);
3476 INIT_LIST_HEAD(&n->partial);
3477 #ifdef CONFIG_SLUB_DEBUG
3478 atomic_long_set(&n->nr_slabs, 0);
3479 atomic_long_set(&n->total_objects, 0);
3480 INIT_LIST_HEAD(&n->full);
3481 #endif
3482 }
3483
3484 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3485 {
3486 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3487 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3488
3489 /*
3490 * Must align to double word boundary for the double cmpxchg
3491 * instructions to work; see __pcpu_double_call_return_bool().
3492 */
3493 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3494 2 * sizeof(void *));
3495
3496 if (!s->cpu_slab)
3497 return 0;
3498
3499 init_kmem_cache_cpus(s);
3500
3501 return 1;
3502 }
3503
3504 static struct kmem_cache *kmem_cache_node;
3505
3506 /*
3507 * No kmalloc_node yet so do it by hand. We know that this is the first
3508 * slab on the node for this slabcache. There are no concurrent accesses
3509 * possible.
3510 *
3511 * Note that this function only works on the kmem_cache_node
3512 * when allocating for the kmem_cache_node. This is used for bootstrapping
3513 * memory on a fresh node that has no slab structures yet.
3514 */
3515 static void early_kmem_cache_node_alloc(int node)
3516 {
3517 struct page *page;
3518 struct kmem_cache_node *n;
3519
3520 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3521
3522 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3523
3524 BUG_ON(!page);
3525 if (page_to_nid(page) != node) {
3526 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3527 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3528 }
3529
3530 n = page->freelist;
3531 BUG_ON(!n);
3532 #ifdef CONFIG_SLUB_DEBUG
3533 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3534 init_tracking(kmem_cache_node, n);
3535 #endif
3536 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3537 GFP_KERNEL);
3538 page->freelist = get_freepointer(kmem_cache_node, n);
3539 page->inuse = 1;
3540 page->frozen = 0;
3541 kmem_cache_node->node[node] = n;
3542 init_kmem_cache_node(n);
3543 inc_slabs_node(kmem_cache_node, node, page->objects);
3544
3545 /*
3546 * No locks need to be taken here as it has just been
3547 * initialized and there is no concurrent access.
3548 */
3549 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3550 }
3551
3552 static void free_kmem_cache_nodes(struct kmem_cache *s)
3553 {
3554 int node;
3555 struct kmem_cache_node *n;
3556
3557 for_each_kmem_cache_node(s, node, n) {
3558 s->node[node] = NULL;
3559 kmem_cache_free(kmem_cache_node, n);
3560 }
3561 }
3562
3563 void __kmem_cache_release(struct kmem_cache *s)
3564 {
3565 cache_random_seq_destroy(s);
3566 free_percpu(s->cpu_slab);
3567 free_kmem_cache_nodes(s);
3568 }
3569
3570 static int init_kmem_cache_nodes(struct kmem_cache *s)
3571 {
3572 int node;
3573
3574 for_each_node_state(node, N_NORMAL_MEMORY) {
3575 struct kmem_cache_node *n;
3576
3577 if (slab_state == DOWN) {
3578 early_kmem_cache_node_alloc(node);
3579 continue;
3580 }
3581 n = kmem_cache_alloc_node(kmem_cache_node,
3582 GFP_KERNEL, node);
3583
3584 if (!n) {
3585 free_kmem_cache_nodes(s);
3586 return 0;
3587 }
3588
3589 init_kmem_cache_node(n);
3590 s->node[node] = n;
3591 }
3592 return 1;
3593 }
3594
3595 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3596 {
3597 if (min < MIN_PARTIAL)
3598 min = MIN_PARTIAL;
3599 else if (min > MAX_PARTIAL)
3600 min = MAX_PARTIAL;
3601 s->min_partial = min;
3602 }
3603
3604 static void set_cpu_partial(struct kmem_cache *s)
3605 {
3606 #ifdef CONFIG_SLUB_CPU_PARTIAL
3607 /*
3608 * cpu_partial determined the maximum number of objects kept in the
3609 * per cpu partial lists of a processor.
3610 *
3611 * Per cpu partial lists mainly contain slabs that just have one
3612 * object freed. If they are used for allocation then they can be
3613 * filled up again with minimal effort. The slab will never hit the
3614 * per node partial lists and therefore no locking will be required.
3615 *
3616 * This setting also determines
3617 *
3618 * A) The number of objects from per cpu partial slabs dumped to the
3619 * per node list when we reach the limit.
3620 * B) The number of objects in cpu partial slabs to extract from the
3621 * per node list when we run out of per cpu objects. We only fetch
3622 * 50% to keep some capacity around for frees.
3623 */
3624 if (!kmem_cache_has_cpu_partial(s))
3625 slub_set_cpu_partial(s, 0);
3626 else if (s->size >= PAGE_SIZE)
3627 slub_set_cpu_partial(s, 2);
3628 else if (s->size >= 1024)
3629 slub_set_cpu_partial(s, 6);
3630 else if (s->size >= 256)
3631 slub_set_cpu_partial(s, 13);
3632 else
3633 slub_set_cpu_partial(s, 30);
3634 #endif
3635 }
3636
3637 /*
3638 * calculate_sizes() determines the order and the distribution of data within
3639 * a slab object.
3640 */
3641 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3642 {
3643 slab_flags_t flags = s->flags;
3644 unsigned int size = s->object_size;
3645 unsigned int freepointer_area;
3646 unsigned int order;
3647
3648 /*
3649 * Round up object size to the next word boundary. We can only
3650 * place the free pointer at word boundaries and this determines
3651 * the possible location of the free pointer.
3652 */
3653 size = ALIGN(size, sizeof(void *));
3654 /*
3655 * This is the area of the object where a freepointer can be
3656 * safely written. If redzoning adds more to the inuse size, we
3657 * can't use that portion for writing the freepointer, so
3658 * s->offset must be limited within this for the general case.
3659 */
3660 freepointer_area = size;
3661
3662 #ifdef CONFIG_SLUB_DEBUG
3663 /*
3664 * Determine if we can poison the object itself. If the user of
3665 * the slab may touch the object after free or before allocation
3666 * then we should never poison the object itself.
3667 */
3668 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3669 !s->ctor)
3670 s->flags |= __OBJECT_POISON;
3671 else
3672 s->flags &= ~__OBJECT_POISON;
3673
3674
3675 /*
3676 * If we are Redzoning then check if there is some space between the
3677 * end of the object and the free pointer. If not then add an
3678 * additional word to have some bytes to store Redzone information.
3679 */
3680 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3681 size += sizeof(void *);
3682 #endif
3683
3684 /*
3685 * With that we have determined the number of bytes in actual use
3686 * by the object. This is the potential offset to the free pointer.
3687 */
3688 s->inuse = size;
3689
3690 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3691 s->ctor)) {
3692 /*
3693 * Relocate free pointer after the object if it is not
3694 * permitted to overwrite the first word of the object on
3695 * kmem_cache_free.
3696 *
3697 * This is the case if we do RCU, have a constructor or
3698 * destructor or are poisoning the objects.
3699 *
3700 * The assumption that s->offset >= s->inuse means free
3701 * pointer is outside of the object is used in the
3702 * freeptr_outside_object() function. If that is no
3703 * longer true, the function needs to be modified.
3704 */
3705 s->offset = size;
3706 size += sizeof(void *);
3707 } else if (freepointer_area > sizeof(void *)) {
3708 /*
3709 * Store freelist pointer near middle of object to keep
3710 * it away from the edges of the object to avoid small
3711 * sized over/underflows from neighboring allocations.
3712 */
3713 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3714 }
3715
3716 #ifdef CONFIG_SLUB_DEBUG
3717 if (flags & SLAB_STORE_USER)
3718 /*
3719 * Need to store information about allocs and frees after
3720 * the object.
3721 */
3722 size += 2 * sizeof(struct track);
3723 #endif
3724
3725 kasan_cache_create(s, &size, &s->flags);
3726 #ifdef CONFIG_SLUB_DEBUG
3727 if (flags & SLAB_RED_ZONE) {
3728 /*
3729 * Add some empty padding so that we can catch
3730 * overwrites from earlier objects rather than let
3731 * tracking information or the free pointer be
3732 * corrupted if a user writes before the start
3733 * of the object.
3734 */
3735 size += sizeof(void *);
3736
3737 s->red_left_pad = sizeof(void *);
3738 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3739 size += s->red_left_pad;
3740 }
3741 #endif
3742
3743 /*
3744 * SLUB stores one object immediately after another beginning from
3745 * offset 0. In order to align the objects we have to simply size
3746 * each object to conform to the alignment.
3747 */
3748 size = ALIGN(size, s->align);
3749 s->size = size;
3750 s->reciprocal_size = reciprocal_value(size);
3751 if (forced_order >= 0)
3752 order = forced_order;
3753 else
3754 order = calculate_order(size);
3755
3756 if ((int)order < 0)
3757 return 0;
3758
3759 s->allocflags = 0;
3760 if (order)
3761 s->allocflags |= __GFP_COMP;
3762
3763 if (s->flags & SLAB_CACHE_DMA)
3764 s->allocflags |= GFP_DMA;
3765
3766 if (s->flags & SLAB_CACHE_DMA32)
3767 s->allocflags |= GFP_DMA32;
3768
3769 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3770 s->allocflags |= __GFP_RECLAIMABLE;
3771
3772 /*
3773 * Determine the number of objects per slab
3774 */
3775 s->oo = oo_make(order, size);
3776 s->min = oo_make(get_order(size), size);
3777 if (oo_objects(s->oo) > oo_objects(s->max))
3778 s->max = s->oo;
3779
3780 return !!oo_objects(s->oo);
3781 }
3782
3783 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3784 {
3785 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3786 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3787 s->random = get_random_long();
3788 #endif
3789
3790 if (!calculate_sizes(s, -1))
3791 goto error;
3792 if (disable_higher_order_debug) {
3793 /*
3794 * Disable debugging flags that store metadata if the min slab
3795 * order increased.
3796 */
3797 if (get_order(s->size) > get_order(s->object_size)) {
3798 s->flags &= ~DEBUG_METADATA_FLAGS;
3799 s->offset = 0;
3800 if (!calculate_sizes(s, -1))
3801 goto error;
3802 }
3803 }
3804
3805 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3806 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3807 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3808 /* Enable fast mode */
3809 s->flags |= __CMPXCHG_DOUBLE;
3810 #endif
3811
3812 /*
3813 * The larger the object size is, the more pages we want on the partial
3814 * list to avoid pounding the page allocator excessively.
3815 */
3816 set_min_partial(s, ilog2(s->size) / 2);
3817
3818 set_cpu_partial(s);
3819
3820 #ifdef CONFIG_NUMA
3821 s->remote_node_defrag_ratio = 1000;
3822 #endif
3823
3824 /* Initialize the pre-computed randomized freelist if slab is up */
3825 if (slab_state >= UP) {
3826 if (init_cache_random_seq(s))
3827 goto error;
3828 }
3829
3830 if (!init_kmem_cache_nodes(s))
3831 goto error;
3832
3833 if (alloc_kmem_cache_cpus(s))
3834 return 0;
3835
3836 free_kmem_cache_nodes(s);
3837 error:
3838 return -EINVAL;
3839 }
3840
3841 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3842 const char *text)
3843 {
3844 #ifdef CONFIG_SLUB_DEBUG
3845 void *addr = page_address(page);
3846 unsigned long *map;
3847 void *p;
3848
3849 slab_err(s, page, text, s->name);
3850 slab_lock(page);
3851
3852 map = get_map(s, page);
3853 for_each_object(p, s, addr, page->objects) {
3854
3855 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3856 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3857 print_tracking(s, p);
3858 }
3859 }
3860 put_map(map);
3861 slab_unlock(page);
3862 #endif
3863 }
3864
3865 /*
3866 * Attempt to free all partial slabs on a node.
3867 * This is called from __kmem_cache_shutdown(). We must take list_lock
3868 * because sysfs file might still access partial list after the shutdowning.
3869 */
3870 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3871 {
3872 LIST_HEAD(discard);
3873 struct page *page, *h;
3874
3875 BUG_ON(irqs_disabled());
3876 spin_lock_irq(&n->list_lock);
3877 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3878 if (!page->inuse) {
3879 remove_partial(n, page);
3880 list_add(&page->slab_list, &discard);
3881 } else {
3882 list_slab_objects(s, page,
3883 "Objects remaining in %s on __kmem_cache_shutdown()");
3884 }
3885 }
3886 spin_unlock_irq(&n->list_lock);
3887
3888 list_for_each_entry_safe(page, h, &discard, slab_list)
3889 discard_slab(s, page);
3890 }
3891
3892 bool __kmem_cache_empty(struct kmem_cache *s)
3893 {
3894 int node;
3895 struct kmem_cache_node *n;
3896
3897 for_each_kmem_cache_node(s, node, n)
3898 if (n->nr_partial || slabs_node(s, node))
3899 return false;
3900 return true;
3901 }
3902
3903 /*
3904 * Release all resources used by a slab cache.
3905 */
3906 int __kmem_cache_shutdown(struct kmem_cache *s)
3907 {
3908 int node;
3909 struct kmem_cache_node *n;
3910
3911 flush_all(s);
3912 /* Attempt to free all objects */
3913 for_each_kmem_cache_node(s, node, n) {
3914 free_partial(s, n);
3915 if (n->nr_partial || slabs_node(s, node))
3916 return 1;
3917 }
3918 return 0;
3919 }
3920
3921 /********************************************************************
3922 * Kmalloc subsystem
3923 *******************************************************************/
3924
3925 static int __init setup_slub_min_order(char *str)
3926 {
3927 get_option(&str, (int *)&slub_min_order);
3928
3929 return 1;
3930 }
3931
3932 __setup("slub_min_order=", setup_slub_min_order);
3933
3934 static int __init setup_slub_max_order(char *str)
3935 {
3936 get_option(&str, (int *)&slub_max_order);
3937 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3938
3939 return 1;
3940 }
3941
3942 __setup("slub_max_order=", setup_slub_max_order);
3943
3944 static int __init setup_slub_min_objects(char *str)
3945 {
3946 get_option(&str, (int *)&slub_min_objects);
3947
3948 return 1;
3949 }
3950
3951 __setup("slub_min_objects=", setup_slub_min_objects);
3952
3953 void *__kmalloc(size_t size, gfp_t flags)
3954 {
3955 struct kmem_cache *s;
3956 void *ret;
3957
3958 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3959 return kmalloc_large(size, flags);
3960
3961 s = kmalloc_slab(size, flags);
3962
3963 if (unlikely(ZERO_OR_NULL_PTR(s)))
3964 return s;
3965
3966 ret = slab_alloc(s, flags, _RET_IP_);
3967
3968 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3969
3970 ret = kasan_kmalloc(s, ret, size, flags);
3971
3972 return ret;
3973 }
3974 EXPORT_SYMBOL(__kmalloc);
3975
3976 #ifdef CONFIG_NUMA
3977 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3978 {
3979 struct page *page;
3980 void *ptr = NULL;
3981 unsigned int order = get_order(size);
3982
3983 flags |= __GFP_COMP;
3984 page = alloc_pages_node(node, flags, order);
3985 if (page) {
3986 ptr = page_address(page);
3987 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3988 PAGE_SIZE << order);
3989 }
3990
3991 return kmalloc_large_node_hook(ptr, size, flags);
3992 }
3993
3994 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3995 {
3996 struct kmem_cache *s;
3997 void *ret;
3998
3999 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4000 ret = kmalloc_large_node(size, flags, node);
4001
4002 trace_kmalloc_node(_RET_IP_, ret,
4003 size, PAGE_SIZE << get_order(size),
4004 flags, node);
4005
4006 return ret;
4007 }
4008
4009 s = kmalloc_slab(size, flags);
4010
4011 if (unlikely(ZERO_OR_NULL_PTR(s)))
4012 return s;
4013
4014 ret = slab_alloc_node(s, flags, node, _RET_IP_);
4015
4016 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4017
4018 ret = kasan_kmalloc(s, ret, size, flags);
4019
4020 return ret;
4021 }
4022 EXPORT_SYMBOL(__kmalloc_node);
4023 #endif /* CONFIG_NUMA */
4024
4025 #ifdef CONFIG_HARDENED_USERCOPY
4026 /*
4027 * Rejects incorrectly sized objects and objects that are to be copied
4028 * to/from userspace but do not fall entirely within the containing slab
4029 * cache's usercopy region.
4030 *
4031 * Returns NULL if check passes, otherwise const char * to name of cache
4032 * to indicate an error.
4033 */
4034 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4035 bool to_user)
4036 {
4037 struct kmem_cache *s;
4038 unsigned int offset;
4039 size_t object_size;
4040
4041 ptr = kasan_reset_tag(ptr);
4042
4043 /* Find object and usable object size. */
4044 s = page->slab_cache;
4045
4046 /* Reject impossible pointers. */
4047 if (ptr < page_address(page))
4048 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4049 to_user, 0, n);
4050
4051 /* Find offset within object. */
4052 offset = (ptr - page_address(page)) % s->size;
4053
4054 /* Adjust for redzone and reject if within the redzone. */
4055 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4056 if (offset < s->red_left_pad)
4057 usercopy_abort("SLUB object in left red zone",
4058 s->name, to_user, offset, n);
4059 offset -= s->red_left_pad;
4060 }
4061
4062 /* Allow address range falling entirely within usercopy region. */
4063 if (offset >= s->useroffset &&
4064 offset - s->useroffset <= s->usersize &&
4065 n <= s->useroffset - offset + s->usersize)
4066 return;
4067
4068 /*
4069 * If the copy is still within the allocated object, produce
4070 * a warning instead of rejecting the copy. This is intended
4071 * to be a temporary method to find any missing usercopy
4072 * whitelists.
4073 */
4074 object_size = slab_ksize(s);
4075 if (usercopy_fallback &&
4076 offset <= object_size && n <= object_size - offset) {
4077 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4078 return;
4079 }
4080
4081 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4082 }
4083 #endif /* CONFIG_HARDENED_USERCOPY */
4084
4085 size_t __ksize(const void *object)
4086 {
4087 struct page *page;
4088
4089 if (unlikely(object == ZERO_SIZE_PTR))
4090 return 0;
4091
4092 page = virt_to_head_page(object);
4093
4094 if (unlikely(!PageSlab(page))) {
4095 WARN_ON(!PageCompound(page));
4096 return page_size(page);
4097 }
4098
4099 return slab_ksize(page->slab_cache);
4100 }
4101 EXPORT_SYMBOL(__ksize);
4102
4103 void kfree(const void *x)
4104 {
4105 struct page *page;
4106 void *object = (void *)x;
4107
4108 trace_kfree(_RET_IP_, x);
4109
4110 if (unlikely(ZERO_OR_NULL_PTR(x)))
4111 return;
4112
4113 page = virt_to_head_page(x);
4114 if (unlikely(!PageSlab(page))) {
4115 unsigned int order = compound_order(page);
4116
4117 BUG_ON(!PageCompound(page));
4118 kfree_hook(object);
4119 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4120 -(PAGE_SIZE << order));
4121 __free_pages(page, order);
4122 return;
4123 }
4124 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4125 }
4126 EXPORT_SYMBOL(kfree);
4127
4128 #define SHRINK_PROMOTE_MAX 32
4129
4130 /*
4131 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4132 * up most to the head of the partial lists. New allocations will then
4133 * fill those up and thus they can be removed from the partial lists.
4134 *
4135 * The slabs with the least items are placed last. This results in them
4136 * being allocated from last increasing the chance that the last objects
4137 * are freed in them.
4138 */
4139 int __kmem_cache_shrink(struct kmem_cache *s)
4140 {
4141 int node;
4142 int i;
4143 struct kmem_cache_node *n;
4144 struct page *page;
4145 struct page *t;
4146 struct list_head discard;
4147 struct list_head promote[SHRINK_PROMOTE_MAX];
4148 unsigned long flags;
4149 int ret = 0;
4150
4151 flush_all(s);
4152 for_each_kmem_cache_node(s, node, n) {
4153 INIT_LIST_HEAD(&discard);
4154 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4155 INIT_LIST_HEAD(promote + i);
4156
4157 spin_lock_irqsave(&n->list_lock, flags);
4158
4159 /*
4160 * Build lists of slabs to discard or promote.
4161 *
4162 * Note that concurrent frees may occur while we hold the
4163 * list_lock. page->inuse here is the upper limit.
4164 */
4165 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4166 int free = page->objects - page->inuse;
4167
4168 /* Do not reread page->inuse */
4169 barrier();
4170
4171 /* We do not keep full slabs on the list */
4172 BUG_ON(free <= 0);
4173
4174 if (free == page->objects) {
4175 list_move(&page->slab_list, &discard);
4176 n->nr_partial--;
4177 } else if (free <= SHRINK_PROMOTE_MAX)
4178 list_move(&page->slab_list, promote + free - 1);
4179 }
4180
4181 /*
4182 * Promote the slabs filled up most to the head of the
4183 * partial list.
4184 */
4185 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4186 list_splice(promote + i, &n->partial);
4187
4188 spin_unlock_irqrestore(&n->list_lock, flags);
4189
4190 /* Release empty slabs */
4191 list_for_each_entry_safe(page, t, &discard, slab_list)
4192 discard_slab(s, page);
4193
4194 if (slabs_node(s, node))
4195 ret = 1;
4196 }
4197
4198 return ret;
4199 }
4200
4201 static int slab_mem_going_offline_callback(void *arg)
4202 {
4203 struct kmem_cache *s;
4204
4205 mutex_lock(&slab_mutex);
4206 list_for_each_entry(s, &slab_caches, list)
4207 __kmem_cache_shrink(s);
4208 mutex_unlock(&slab_mutex);
4209
4210 return 0;
4211 }
4212
4213 static void slab_mem_offline_callback(void *arg)
4214 {
4215 struct kmem_cache_node *n;
4216 struct kmem_cache *s;
4217 struct memory_notify *marg = arg;
4218 int offline_node;
4219
4220 offline_node = marg->status_change_nid_normal;
4221
4222 /*
4223 * If the node still has available memory. we need kmem_cache_node
4224 * for it yet.
4225 */
4226 if (offline_node < 0)
4227 return;
4228
4229 mutex_lock(&slab_mutex);
4230 list_for_each_entry(s, &slab_caches, list) {
4231 n = get_node(s, offline_node);
4232 if (n) {
4233 /*
4234 * if n->nr_slabs > 0, slabs still exist on the node
4235 * that is going down. We were unable to free them,
4236 * and offline_pages() function shouldn't call this
4237 * callback. So, we must fail.
4238 */
4239 BUG_ON(slabs_node(s, offline_node));
4240
4241 s->node[offline_node] = NULL;
4242 kmem_cache_free(kmem_cache_node, n);
4243 }
4244 }
4245 mutex_unlock(&slab_mutex);
4246 }
4247
4248 static int slab_mem_going_online_callback(void *arg)
4249 {
4250 struct kmem_cache_node *n;
4251 struct kmem_cache *s;
4252 struct memory_notify *marg = arg;
4253 int nid = marg->status_change_nid_normal;
4254 int ret = 0;
4255
4256 /*
4257 * If the node's memory is already available, then kmem_cache_node is
4258 * already created. Nothing to do.
4259 */
4260 if (nid < 0)
4261 return 0;
4262
4263 /*
4264 * We are bringing a node online. No memory is available yet. We must
4265 * allocate a kmem_cache_node structure in order to bring the node
4266 * online.
4267 */
4268 mutex_lock(&slab_mutex);
4269 list_for_each_entry(s, &slab_caches, list) {
4270 /*
4271 * XXX: kmem_cache_alloc_node will fallback to other nodes
4272 * since memory is not yet available from the node that
4273 * is brought up.
4274 */
4275 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4276 if (!n) {
4277 ret = -ENOMEM;
4278 goto out;
4279 }
4280 init_kmem_cache_node(n);
4281 s->node[nid] = n;
4282 }
4283 out:
4284 mutex_unlock(&slab_mutex);
4285 return ret;
4286 }
4287
4288 static int slab_memory_callback(struct notifier_block *self,
4289 unsigned long action, void *arg)
4290 {
4291 int ret = 0;
4292
4293 switch (action) {
4294 case MEM_GOING_ONLINE:
4295 ret = slab_mem_going_online_callback(arg);
4296 break;
4297 case MEM_GOING_OFFLINE:
4298 ret = slab_mem_going_offline_callback(arg);
4299 break;
4300 case MEM_OFFLINE:
4301 case MEM_CANCEL_ONLINE:
4302 slab_mem_offline_callback(arg);
4303 break;
4304 case MEM_ONLINE:
4305 case MEM_CANCEL_OFFLINE:
4306 break;
4307 }
4308 if (ret)
4309 ret = notifier_from_errno(ret);
4310 else
4311 ret = NOTIFY_OK;
4312 return ret;
4313 }
4314
4315 static struct notifier_block slab_memory_callback_nb = {
4316 .notifier_call = slab_memory_callback,
4317 .priority = SLAB_CALLBACK_PRI,
4318 };
4319
4320 /********************************************************************
4321 * Basic setup of slabs
4322 *******************************************************************/
4323
4324 /*
4325 * Used for early kmem_cache structures that were allocated using
4326 * the page allocator. Allocate them properly then fix up the pointers
4327 * that may be pointing to the wrong kmem_cache structure.
4328 */
4329
4330 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4331 {
4332 int node;
4333 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4334 struct kmem_cache_node *n;
4335
4336 memcpy(s, static_cache, kmem_cache->object_size);
4337
4338 /*
4339 * This runs very early, and only the boot processor is supposed to be
4340 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4341 * IPIs around.
4342 */
4343 __flush_cpu_slab(s, smp_processor_id());
4344 for_each_kmem_cache_node(s, node, n) {
4345 struct page *p;
4346
4347 list_for_each_entry(p, &n->partial, slab_list)
4348 p->slab_cache = s;
4349
4350 #ifdef CONFIG_SLUB_DEBUG
4351 list_for_each_entry(p, &n->full, slab_list)
4352 p->slab_cache = s;
4353 #endif
4354 }
4355 list_add(&s->list, &slab_caches);
4356 return s;
4357 }
4358
4359 void __init kmem_cache_init(void)
4360 {
4361 static __initdata struct kmem_cache boot_kmem_cache,
4362 boot_kmem_cache_node;
4363
4364 if (debug_guardpage_minorder())
4365 slub_max_order = 0;
4366
4367 kmem_cache_node = &boot_kmem_cache_node;
4368 kmem_cache = &boot_kmem_cache;
4369
4370 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4371 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4372
4373 register_hotmemory_notifier(&slab_memory_callback_nb);
4374
4375 /* Able to allocate the per node structures */
4376 slab_state = PARTIAL;
4377
4378 create_boot_cache(kmem_cache, "kmem_cache",
4379 offsetof(struct kmem_cache, node) +
4380 nr_node_ids * sizeof(struct kmem_cache_node *),
4381 SLAB_HWCACHE_ALIGN, 0, 0);
4382
4383 kmem_cache = bootstrap(&boot_kmem_cache);
4384 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4385
4386 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4387 setup_kmalloc_cache_index_table();
4388 create_kmalloc_caches(0);
4389
4390 /* Setup random freelists for each cache */
4391 init_freelist_randomization();
4392
4393 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4394 slub_cpu_dead);
4395
4396 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4397 cache_line_size(),
4398 slub_min_order, slub_max_order, slub_min_objects,
4399 nr_cpu_ids, nr_node_ids);
4400 }
4401
4402 void __init kmem_cache_init_late(void)
4403 {
4404 }
4405
4406 struct kmem_cache *
4407 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4408 slab_flags_t flags, void (*ctor)(void *))
4409 {
4410 struct kmem_cache *s;
4411
4412 s = find_mergeable(size, align, flags, name, ctor);
4413 if (s) {
4414 s->refcount++;
4415
4416 /*
4417 * Adjust the object sizes so that we clear
4418 * the complete object on kzalloc.
4419 */
4420 s->object_size = max(s->object_size, size);
4421 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4422
4423 if (sysfs_slab_alias(s, name)) {
4424 s->refcount--;
4425 s = NULL;
4426 }
4427 }
4428
4429 return s;
4430 }
4431
4432 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4433 {
4434 int err;
4435
4436 err = kmem_cache_open(s, flags);
4437 if (err)
4438 return err;
4439
4440 /* Mutex is not taken during early boot */
4441 if (slab_state <= UP)
4442 return 0;
4443
4444 err = sysfs_slab_add(s);
4445 if (err)
4446 __kmem_cache_release(s);
4447
4448 return err;
4449 }
4450
4451 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4452 {
4453 struct kmem_cache *s;
4454 void *ret;
4455
4456 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4457 return kmalloc_large(size, gfpflags);
4458
4459 s = kmalloc_slab(size, gfpflags);
4460
4461 if (unlikely(ZERO_OR_NULL_PTR(s)))
4462 return s;
4463
4464 ret = slab_alloc(s, gfpflags, caller);
4465
4466 /* Honor the call site pointer we received. */
4467 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4468
4469 return ret;
4470 }
4471 EXPORT_SYMBOL(__kmalloc_track_caller);
4472
4473 #ifdef CONFIG_NUMA
4474 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4475 int node, unsigned long caller)
4476 {
4477 struct kmem_cache *s;
4478 void *ret;
4479
4480 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4481 ret = kmalloc_large_node(size, gfpflags, node);
4482
4483 trace_kmalloc_node(caller, ret,
4484 size, PAGE_SIZE << get_order(size),
4485 gfpflags, node);
4486
4487 return ret;
4488 }
4489
4490 s = kmalloc_slab(size, gfpflags);
4491
4492 if (unlikely(ZERO_OR_NULL_PTR(s)))
4493 return s;
4494
4495 ret = slab_alloc_node(s, gfpflags, node, caller);
4496
4497 /* Honor the call site pointer we received. */
4498 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4499
4500 return ret;
4501 }
4502 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4503 #endif
4504
4505 #ifdef CONFIG_SYSFS
4506 static int count_inuse(struct page *page)
4507 {
4508 return page->inuse;
4509 }
4510
4511 static int count_total(struct page *page)
4512 {
4513 return page->objects;
4514 }
4515 #endif
4516
4517 #ifdef CONFIG_SLUB_DEBUG
4518 static void validate_slab(struct kmem_cache *s, struct page *page)
4519 {
4520 void *p;
4521 void *addr = page_address(page);
4522 unsigned long *map;
4523
4524 slab_lock(page);
4525
4526 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4527 goto unlock;
4528
4529 /* Now we know that a valid freelist exists */
4530 map = get_map(s, page);
4531 for_each_object(p, s, addr, page->objects) {
4532 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4533 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4534
4535 if (!check_object(s, page, p, val))
4536 break;
4537 }
4538 put_map(map);
4539 unlock:
4540 slab_unlock(page);
4541 }
4542
4543 static int validate_slab_node(struct kmem_cache *s,
4544 struct kmem_cache_node *n)
4545 {
4546 unsigned long count = 0;
4547 struct page *page;
4548 unsigned long flags;
4549
4550 spin_lock_irqsave(&n->list_lock, flags);
4551
4552 list_for_each_entry(page, &n->partial, slab_list) {
4553 validate_slab(s, page);
4554 count++;
4555 }
4556 if (count != n->nr_partial)
4557 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4558 s->name, count, n->nr_partial);
4559
4560 if (!(s->flags & SLAB_STORE_USER))
4561 goto out;
4562
4563 list_for_each_entry(page, &n->full, slab_list) {
4564 validate_slab(s, page);
4565 count++;
4566 }
4567 if (count != atomic_long_read(&n->nr_slabs))
4568 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4569 s->name, count, atomic_long_read(&n->nr_slabs));
4570
4571 out:
4572 spin_unlock_irqrestore(&n->list_lock, flags);
4573 return count;
4574 }
4575
4576 static long validate_slab_cache(struct kmem_cache *s)
4577 {
4578 int node;
4579 unsigned long count = 0;
4580 struct kmem_cache_node *n;
4581
4582 flush_all(s);
4583 for_each_kmem_cache_node(s, node, n)
4584 count += validate_slab_node(s, n);
4585
4586 return count;
4587 }
4588 /*
4589 * Generate lists of code addresses where slabcache objects are allocated
4590 * and freed.
4591 */
4592
4593 struct location {
4594 unsigned long count;
4595 unsigned long addr;
4596 long long sum_time;
4597 long min_time;
4598 long max_time;
4599 long min_pid;
4600 long max_pid;
4601 DECLARE_BITMAP(cpus, NR_CPUS);
4602 nodemask_t nodes;
4603 };
4604
4605 struct loc_track {
4606 unsigned long max;
4607 unsigned long count;
4608 struct location *loc;
4609 };
4610
4611 static void free_loc_track(struct loc_track *t)
4612 {
4613 if (t->max)
4614 free_pages((unsigned long)t->loc,
4615 get_order(sizeof(struct location) * t->max));
4616 }
4617
4618 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4619 {
4620 struct location *l;
4621 int order;
4622
4623 order = get_order(sizeof(struct location) * max);
4624
4625 l = (void *)__get_free_pages(flags, order);
4626 if (!l)
4627 return 0;
4628
4629 if (t->count) {
4630 memcpy(l, t->loc, sizeof(struct location) * t->count);
4631 free_loc_track(t);
4632 }
4633 t->max = max;
4634 t->loc = l;
4635 return 1;
4636 }
4637
4638 static int add_location(struct loc_track *t, struct kmem_cache *s,
4639 const struct track *track)
4640 {
4641 long start, end, pos;
4642 struct location *l;
4643 unsigned long caddr;
4644 unsigned long age = jiffies - track->when;
4645
4646 start = -1;
4647 end = t->count;
4648
4649 for ( ; ; ) {
4650 pos = start + (end - start + 1) / 2;
4651
4652 /*
4653 * There is nothing at "end". If we end up there
4654 * we need to add something to before end.
4655 */
4656 if (pos == end)
4657 break;
4658
4659 caddr = t->loc[pos].addr;
4660 if (track->addr == caddr) {
4661
4662 l = &t->loc[pos];
4663 l->count++;
4664 if (track->when) {
4665 l->sum_time += age;
4666 if (age < l->min_time)
4667 l->min_time = age;
4668 if (age > l->max_time)
4669 l->max_time = age;
4670
4671 if (track->pid < l->min_pid)
4672 l->min_pid = track->pid;
4673 if (track->pid > l->max_pid)
4674 l->max_pid = track->pid;
4675
4676 cpumask_set_cpu(track->cpu,
4677 to_cpumask(l->cpus));
4678 }
4679 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4680 return 1;
4681 }
4682
4683 if (track->addr < caddr)
4684 end = pos;
4685 else
4686 start = pos;
4687 }
4688
4689 /*
4690 * Not found. Insert new tracking element.
4691 */
4692 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4693 return 0;
4694
4695 l = t->loc + pos;
4696 if (pos < t->count)
4697 memmove(l + 1, l,
4698 (t->count - pos) * sizeof(struct location));
4699 t->count++;
4700 l->count = 1;
4701 l->addr = track->addr;
4702 l->sum_time = age;
4703 l->min_time = age;
4704 l->max_time = age;
4705 l->min_pid = track->pid;
4706 l->max_pid = track->pid;
4707 cpumask_clear(to_cpumask(l->cpus));
4708 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4709 nodes_clear(l->nodes);
4710 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4711 return 1;
4712 }
4713
4714 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4715 struct page *page, enum track_item alloc)
4716 {
4717 void *addr = page_address(page);
4718 void *p;
4719 unsigned long *map;
4720
4721 map = get_map(s, page);
4722 for_each_object(p, s, addr, page->objects)
4723 if (!test_bit(__obj_to_index(s, addr, p), map))
4724 add_location(t, s, get_track(s, p, alloc));
4725 put_map(map);
4726 }
4727
4728 static int list_locations(struct kmem_cache *s, char *buf,
4729 enum track_item alloc)
4730 {
4731 int len = 0;
4732 unsigned long i;
4733 struct loc_track t = { 0, 0, NULL };
4734 int node;
4735 struct kmem_cache_node *n;
4736
4737 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4738 GFP_KERNEL)) {
4739 return sprintf(buf, "Out of memory\n");
4740 }
4741 /* Push back cpu slabs */
4742 flush_all(s);
4743
4744 for_each_kmem_cache_node(s, node, n) {
4745 unsigned long flags;
4746 struct page *page;
4747
4748 if (!atomic_long_read(&n->nr_slabs))
4749 continue;
4750
4751 spin_lock_irqsave(&n->list_lock, flags);
4752 list_for_each_entry(page, &n->partial, slab_list)
4753 process_slab(&t, s, page, alloc);
4754 list_for_each_entry(page, &n->full, slab_list)
4755 process_slab(&t, s, page, alloc);
4756 spin_unlock_irqrestore(&n->list_lock, flags);
4757 }
4758
4759 for (i = 0; i < t.count; i++) {
4760 struct location *l = &t.loc[i];
4761
4762 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4763 break;
4764 len += sprintf(buf + len, "%7ld ", l->count);
4765
4766 if (l->addr)
4767 len += sprintf(buf + len, "%pS", (void *)l->addr);
4768 else
4769 len += sprintf(buf + len, "<not-available>");
4770
4771 if (l->sum_time != l->min_time) {
4772 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4773 l->min_time,
4774 (long)div_u64(l->sum_time, l->count),
4775 l->max_time);
4776 } else
4777 len += sprintf(buf + len, " age=%ld",
4778 l->min_time);
4779
4780 if (l->min_pid != l->max_pid)
4781 len += sprintf(buf + len, " pid=%ld-%ld",
4782 l->min_pid, l->max_pid);
4783 else
4784 len += sprintf(buf + len, " pid=%ld",
4785 l->min_pid);
4786
4787 if (num_online_cpus() > 1 &&
4788 !cpumask_empty(to_cpumask(l->cpus)) &&
4789 len < PAGE_SIZE - 60)
4790 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4791 " cpus=%*pbl",
4792 cpumask_pr_args(to_cpumask(l->cpus)));
4793
4794 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4795 len < PAGE_SIZE - 60)
4796 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4797 " nodes=%*pbl",
4798 nodemask_pr_args(&l->nodes));
4799
4800 len += sprintf(buf + len, "\n");
4801 }
4802
4803 free_loc_track(&t);
4804 if (!t.count)
4805 len += sprintf(buf, "No data\n");
4806 return len;
4807 }
4808 #endif /* CONFIG_SLUB_DEBUG */
4809
4810 #ifdef SLUB_RESILIENCY_TEST
4811 static void __init resiliency_test(void)
4812 {
4813 u8 *p;
4814 int type = KMALLOC_NORMAL;
4815
4816 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4817
4818 pr_err("SLUB resiliency testing\n");
4819 pr_err("-----------------------\n");
4820 pr_err("A. Corruption after allocation\n");
4821
4822 p = kzalloc(16, GFP_KERNEL);
4823 p[16] = 0x12;
4824 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4825 p + 16);
4826
4827 validate_slab_cache(kmalloc_caches[type][4]);
4828
4829 /* Hmmm... The next two are dangerous */
4830 p = kzalloc(32, GFP_KERNEL);
4831 p[32 + sizeof(void *)] = 0x34;
4832 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4833 p);
4834 pr_err("If allocated object is overwritten then not detectable\n\n");
4835
4836 validate_slab_cache(kmalloc_caches[type][5]);
4837 p = kzalloc(64, GFP_KERNEL);
4838 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4839 *p = 0x56;
4840 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4841 p);
4842 pr_err("If allocated object is overwritten then not detectable\n\n");
4843 validate_slab_cache(kmalloc_caches[type][6]);
4844
4845 pr_err("\nB. Corruption after free\n");
4846 p = kzalloc(128, GFP_KERNEL);
4847 kfree(p);
4848 *p = 0x78;
4849 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4850 validate_slab_cache(kmalloc_caches[type][7]);
4851
4852 p = kzalloc(256, GFP_KERNEL);
4853 kfree(p);
4854 p[50] = 0x9a;
4855 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4856 validate_slab_cache(kmalloc_caches[type][8]);
4857
4858 p = kzalloc(512, GFP_KERNEL);
4859 kfree(p);
4860 p[512] = 0xab;
4861 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4862 validate_slab_cache(kmalloc_caches[type][9]);
4863 }
4864 #else
4865 #ifdef CONFIG_SYSFS
4866 static void resiliency_test(void) {};
4867 #endif
4868 #endif /* SLUB_RESILIENCY_TEST */
4869
4870 #ifdef CONFIG_SYSFS
4871 enum slab_stat_type {
4872 SL_ALL, /* All slabs */
4873 SL_PARTIAL, /* Only partially allocated slabs */
4874 SL_CPU, /* Only slabs used for cpu caches */
4875 SL_OBJECTS, /* Determine allocated objects not slabs */
4876 SL_TOTAL /* Determine object capacity not slabs */
4877 };
4878
4879 #define SO_ALL (1 << SL_ALL)
4880 #define SO_PARTIAL (1 << SL_PARTIAL)
4881 #define SO_CPU (1 << SL_CPU)
4882 #define SO_OBJECTS (1 << SL_OBJECTS)
4883 #define SO_TOTAL (1 << SL_TOTAL)
4884
4885 #ifdef CONFIG_MEMCG
4886 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4887
4888 static int __init setup_slub_memcg_sysfs(char *str)
4889 {
4890 int v;
4891
4892 if (get_option(&str, &v) > 0)
4893 memcg_sysfs_enabled = v;
4894
4895 return 1;
4896 }
4897
4898 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4899 #endif
4900
4901 static ssize_t show_slab_objects(struct kmem_cache *s,
4902 char *buf, unsigned long flags)
4903 {
4904 unsigned long total = 0;
4905 int node;
4906 int x;
4907 unsigned long *nodes;
4908
4909 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4910 if (!nodes)
4911 return -ENOMEM;
4912
4913 if (flags & SO_CPU) {
4914 int cpu;
4915
4916 for_each_possible_cpu(cpu) {
4917 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4918 cpu);
4919 int node;
4920 struct page *page;
4921
4922 page = READ_ONCE(c->page);
4923 if (!page)
4924 continue;
4925
4926 node = page_to_nid(page);
4927 if (flags & SO_TOTAL)
4928 x = page->objects;
4929 else if (flags & SO_OBJECTS)
4930 x = page->inuse;
4931 else
4932 x = 1;
4933
4934 total += x;
4935 nodes[node] += x;
4936
4937 page = slub_percpu_partial_read_once(c);
4938 if (page) {
4939 node = page_to_nid(page);
4940 if (flags & SO_TOTAL)
4941 WARN_ON_ONCE(1);
4942 else if (flags & SO_OBJECTS)
4943 WARN_ON_ONCE(1);
4944 else
4945 x = page->pages;
4946 total += x;
4947 nodes[node] += x;
4948 }
4949 }
4950 }
4951
4952 /*
4953 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4954 * already held which will conflict with an existing lock order:
4955 *
4956 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4957 *
4958 * We don't really need mem_hotplug_lock (to hold off
4959 * slab_mem_going_offline_callback) here because slab's memory hot
4960 * unplug code doesn't destroy the kmem_cache->node[] data.
4961 */
4962
4963 #ifdef CONFIG_SLUB_DEBUG
4964 if (flags & SO_ALL) {
4965 struct kmem_cache_node *n;
4966
4967 for_each_kmem_cache_node(s, node, n) {
4968
4969 if (flags & SO_TOTAL)
4970 x = atomic_long_read(&n->total_objects);
4971 else if (flags & SO_OBJECTS)
4972 x = atomic_long_read(&n->total_objects) -
4973 count_partial(n, count_free);
4974 else
4975 x = atomic_long_read(&n->nr_slabs);
4976 total += x;
4977 nodes[node] += x;
4978 }
4979
4980 } else
4981 #endif
4982 if (flags & SO_PARTIAL) {
4983 struct kmem_cache_node *n;
4984
4985 for_each_kmem_cache_node(s, node, n) {
4986 if (flags & SO_TOTAL)
4987 x = count_partial(n, count_total);
4988 else if (flags & SO_OBJECTS)
4989 x = count_partial(n, count_inuse);
4990 else
4991 x = n->nr_partial;
4992 total += x;
4993 nodes[node] += x;
4994 }
4995 }
4996 x = sprintf(buf, "%lu", total);
4997 #ifdef CONFIG_NUMA
4998 for (node = 0; node < nr_node_ids; node++)
4999 if (nodes[node])
5000 x += sprintf(buf + x, " N%d=%lu",
5001 node, nodes[node]);
5002 #endif
5003 kfree(nodes);
5004 return x + sprintf(buf + x, "\n");
5005 }
5006
5007 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5008 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5009
5010 struct slab_attribute {
5011 struct attribute attr;
5012 ssize_t (*show)(struct kmem_cache *s, char *buf);
5013 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5014 };
5015
5016 #define SLAB_ATTR_RO(_name) \
5017 static struct slab_attribute _name##_attr = \
5018 __ATTR(_name, 0400, _name##_show, NULL)
5019
5020 #define SLAB_ATTR(_name) \
5021 static struct slab_attribute _name##_attr = \
5022 __ATTR(_name, 0600, _name##_show, _name##_store)
5023
5024 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5025 {
5026 return sprintf(buf, "%u\n", s->size);
5027 }
5028 SLAB_ATTR_RO(slab_size);
5029
5030 static ssize_t align_show(struct kmem_cache *s, char *buf)
5031 {
5032 return sprintf(buf, "%u\n", s->align);
5033 }
5034 SLAB_ATTR_RO(align);
5035
5036 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5037 {
5038 return sprintf(buf, "%u\n", s->object_size);
5039 }
5040 SLAB_ATTR_RO(object_size);
5041
5042 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5043 {
5044 return sprintf(buf, "%u\n", oo_objects(s->oo));
5045 }
5046 SLAB_ATTR_RO(objs_per_slab);
5047
5048 static ssize_t order_show(struct kmem_cache *s, char *buf)
5049 {
5050 return sprintf(buf, "%u\n", oo_order(s->oo));
5051 }
5052 SLAB_ATTR_RO(order);
5053
5054 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5055 {
5056 return sprintf(buf, "%lu\n", s->min_partial);
5057 }
5058
5059 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5060 size_t length)
5061 {
5062 unsigned long min;
5063 int err;
5064
5065 err = kstrtoul(buf, 10, &min);
5066 if (err)
5067 return err;
5068
5069 set_min_partial(s, min);
5070 return length;
5071 }
5072 SLAB_ATTR(min_partial);
5073
5074 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5075 {
5076 return sprintf(buf, "%u\n", slub_cpu_partial(s));
5077 }
5078
5079 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5080 size_t length)
5081 {
5082 unsigned int objects;
5083 int err;
5084
5085 err = kstrtouint(buf, 10, &objects);
5086 if (err)
5087 return err;
5088 if (objects && !kmem_cache_has_cpu_partial(s))
5089 return -EINVAL;
5090
5091 slub_set_cpu_partial(s, objects);
5092 flush_all(s);
5093 return length;
5094 }
5095 SLAB_ATTR(cpu_partial);
5096
5097 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5098 {
5099 if (!s->ctor)
5100 return 0;
5101 return sprintf(buf, "%pS\n", s->ctor);
5102 }
5103 SLAB_ATTR_RO(ctor);
5104
5105 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5106 {
5107 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5108 }
5109 SLAB_ATTR_RO(aliases);
5110
5111 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5112 {
5113 return show_slab_objects(s, buf, SO_PARTIAL);
5114 }
5115 SLAB_ATTR_RO(partial);
5116
5117 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5118 {
5119 return show_slab_objects(s, buf, SO_CPU);
5120 }
5121 SLAB_ATTR_RO(cpu_slabs);
5122
5123 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5124 {
5125 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5126 }
5127 SLAB_ATTR_RO(objects);
5128
5129 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5130 {
5131 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5132 }
5133 SLAB_ATTR_RO(objects_partial);
5134
5135 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5136 {
5137 int objects = 0;
5138 int pages = 0;
5139 int cpu;
5140 int len;
5141
5142 for_each_online_cpu(cpu) {
5143 struct page *page;
5144
5145 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5146
5147 if (page) {
5148 pages += page->pages;
5149 objects += page->pobjects;
5150 }
5151 }
5152
5153 len = sprintf(buf, "%d(%d)", objects, pages);
5154
5155 #ifdef CONFIG_SMP
5156 for_each_online_cpu(cpu) {
5157 struct page *page;
5158
5159 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5160
5161 if (page && len < PAGE_SIZE - 20)
5162 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5163 page->pobjects, page->pages);
5164 }
5165 #endif
5166 return len + sprintf(buf + len, "\n");
5167 }
5168 SLAB_ATTR_RO(slabs_cpu_partial);
5169
5170 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5171 {
5172 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5173 }
5174 SLAB_ATTR_RO(reclaim_account);
5175
5176 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5177 {
5178 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5179 }
5180 SLAB_ATTR_RO(hwcache_align);
5181
5182 #ifdef CONFIG_ZONE_DMA
5183 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5184 {
5185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5186 }
5187 SLAB_ATTR_RO(cache_dma);
5188 #endif
5189
5190 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5191 {
5192 return sprintf(buf, "%u\n", s->usersize);
5193 }
5194 SLAB_ATTR_RO(usersize);
5195
5196 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5197 {
5198 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5199 }
5200 SLAB_ATTR_RO(destroy_by_rcu);
5201
5202 #ifdef CONFIG_SLUB_DEBUG
5203 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5204 {
5205 return show_slab_objects(s, buf, SO_ALL);
5206 }
5207 SLAB_ATTR_RO(slabs);
5208
5209 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5210 {
5211 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5212 }
5213 SLAB_ATTR_RO(total_objects);
5214
5215 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5216 {
5217 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5218 }
5219 SLAB_ATTR_RO(sanity_checks);
5220
5221 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5222 {
5223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5224 }
5225 SLAB_ATTR_RO(trace);
5226
5227 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5228 {
5229 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5230 }
5231
5232 SLAB_ATTR_RO(red_zone);
5233
5234 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5235 {
5236 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5237 }
5238
5239 SLAB_ATTR_RO(poison);
5240
5241 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5242 {
5243 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5244 }
5245
5246 SLAB_ATTR_RO(store_user);
5247
5248 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5249 {
5250 return 0;
5251 }
5252
5253 static ssize_t validate_store(struct kmem_cache *s,
5254 const char *buf, size_t length)
5255 {
5256 int ret = -EINVAL;
5257
5258 if (buf[0] == '1') {
5259 ret = validate_slab_cache(s);
5260 if (ret >= 0)
5261 ret = length;
5262 }
5263 return ret;
5264 }
5265 SLAB_ATTR(validate);
5266
5267 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5268 {
5269 if (!(s->flags & SLAB_STORE_USER))
5270 return -ENOSYS;
5271 return list_locations(s, buf, TRACK_ALLOC);
5272 }
5273 SLAB_ATTR_RO(alloc_calls);
5274
5275 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5276 {
5277 if (!(s->flags & SLAB_STORE_USER))
5278 return -ENOSYS;
5279 return list_locations(s, buf, TRACK_FREE);
5280 }
5281 SLAB_ATTR_RO(free_calls);
5282 #endif /* CONFIG_SLUB_DEBUG */
5283
5284 #ifdef CONFIG_FAILSLAB
5285 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5286 {
5287 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5288 }
5289 SLAB_ATTR_RO(failslab);
5290 #endif
5291
5292 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5293 {
5294 return 0;
5295 }
5296
5297 static ssize_t shrink_store(struct kmem_cache *s,
5298 const char *buf, size_t length)
5299 {
5300 if (buf[0] == '1')
5301 kmem_cache_shrink(s);
5302 else
5303 return -EINVAL;
5304 return length;
5305 }
5306 SLAB_ATTR(shrink);
5307
5308 #ifdef CONFIG_NUMA
5309 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5310 {
5311 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5312 }
5313
5314 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5315 const char *buf, size_t length)
5316 {
5317 unsigned int ratio;
5318 int err;
5319
5320 err = kstrtouint(buf, 10, &ratio);
5321 if (err)
5322 return err;
5323 if (ratio > 100)
5324 return -ERANGE;
5325
5326 s->remote_node_defrag_ratio = ratio * 10;
5327
5328 return length;
5329 }
5330 SLAB_ATTR(remote_node_defrag_ratio);
5331 #endif
5332
5333 #ifdef CONFIG_SLUB_STATS
5334 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5335 {
5336 unsigned long sum = 0;
5337 int cpu;
5338 int len;
5339 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5340
5341 if (!data)
5342 return -ENOMEM;
5343
5344 for_each_online_cpu(cpu) {
5345 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5346
5347 data[cpu] = x;
5348 sum += x;
5349 }
5350
5351 len = sprintf(buf, "%lu", sum);
5352
5353 #ifdef CONFIG_SMP
5354 for_each_online_cpu(cpu) {
5355 if (data[cpu] && len < PAGE_SIZE - 20)
5356 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5357 }
5358 #endif
5359 kfree(data);
5360 return len + sprintf(buf + len, "\n");
5361 }
5362
5363 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5364 {
5365 int cpu;
5366
5367 for_each_online_cpu(cpu)
5368 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5369 }
5370
5371 #define STAT_ATTR(si, text) \
5372 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5373 { \
5374 return show_stat(s, buf, si); \
5375 } \
5376 static ssize_t text##_store(struct kmem_cache *s, \
5377 const char *buf, size_t length) \
5378 { \
5379 if (buf[0] != '0') \
5380 return -EINVAL; \
5381 clear_stat(s, si); \
5382 return length; \
5383 } \
5384 SLAB_ATTR(text); \
5385
5386 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5387 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5388 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5389 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5390 STAT_ATTR(FREE_FROZEN, free_frozen);
5391 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5392 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5393 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5394 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5395 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5396 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5397 STAT_ATTR(FREE_SLAB, free_slab);
5398 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5399 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5400 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5401 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5402 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5403 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5404 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5405 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5406 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5407 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5408 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5409 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5410 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5411 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5412 #endif /* CONFIG_SLUB_STATS */
5413
5414 static struct attribute *slab_attrs[] = {
5415 &slab_size_attr.attr,
5416 &object_size_attr.attr,
5417 &objs_per_slab_attr.attr,
5418 &order_attr.attr,
5419 &min_partial_attr.attr,
5420 &cpu_partial_attr.attr,
5421 &objects_attr.attr,
5422 &objects_partial_attr.attr,
5423 &partial_attr.attr,
5424 &cpu_slabs_attr.attr,
5425 &ctor_attr.attr,
5426 &aliases_attr.attr,
5427 &align_attr.attr,
5428 &hwcache_align_attr.attr,
5429 &reclaim_account_attr.attr,
5430 &destroy_by_rcu_attr.attr,
5431 &shrink_attr.attr,
5432 &slabs_cpu_partial_attr.attr,
5433 #ifdef CONFIG_SLUB_DEBUG
5434 &total_objects_attr.attr,
5435 &slabs_attr.attr,
5436 &sanity_checks_attr.attr,
5437 &trace_attr.attr,
5438 &red_zone_attr.attr,
5439 &poison_attr.attr,
5440 &store_user_attr.attr,
5441 &validate_attr.attr,
5442 &alloc_calls_attr.attr,
5443 &free_calls_attr.attr,
5444 #endif
5445 #ifdef CONFIG_ZONE_DMA
5446 &cache_dma_attr.attr,
5447 #endif
5448 #ifdef CONFIG_NUMA
5449 &remote_node_defrag_ratio_attr.attr,
5450 #endif
5451 #ifdef CONFIG_SLUB_STATS
5452 &alloc_fastpath_attr.attr,
5453 &alloc_slowpath_attr.attr,
5454 &free_fastpath_attr.attr,
5455 &free_slowpath_attr.attr,
5456 &free_frozen_attr.attr,
5457 &free_add_partial_attr.attr,
5458 &free_remove_partial_attr.attr,
5459 &alloc_from_partial_attr.attr,
5460 &alloc_slab_attr.attr,
5461 &alloc_refill_attr.attr,
5462 &alloc_node_mismatch_attr.attr,
5463 &free_slab_attr.attr,
5464 &cpuslab_flush_attr.attr,
5465 &deactivate_full_attr.attr,
5466 &deactivate_empty_attr.attr,
5467 &deactivate_to_head_attr.attr,
5468 &deactivate_to_tail_attr.attr,
5469 &deactivate_remote_frees_attr.attr,
5470 &deactivate_bypass_attr.attr,
5471 &order_fallback_attr.attr,
5472 &cmpxchg_double_fail_attr.attr,
5473 &cmpxchg_double_cpu_fail_attr.attr,
5474 &cpu_partial_alloc_attr.attr,
5475 &cpu_partial_free_attr.attr,
5476 &cpu_partial_node_attr.attr,
5477 &cpu_partial_drain_attr.attr,
5478 #endif
5479 #ifdef CONFIG_FAILSLAB
5480 &failslab_attr.attr,
5481 #endif
5482 &usersize_attr.attr,
5483
5484 NULL
5485 };
5486
5487 static const struct attribute_group slab_attr_group = {
5488 .attrs = slab_attrs,
5489 };
5490
5491 static ssize_t slab_attr_show(struct kobject *kobj,
5492 struct attribute *attr,
5493 char *buf)
5494 {
5495 struct slab_attribute *attribute;
5496 struct kmem_cache *s;
5497 int err;
5498
5499 attribute = to_slab_attr(attr);
5500 s = to_slab(kobj);
5501
5502 if (!attribute->show)
5503 return -EIO;
5504
5505 err = attribute->show(s, buf);
5506
5507 return err;
5508 }
5509
5510 static ssize_t slab_attr_store(struct kobject *kobj,
5511 struct attribute *attr,
5512 const char *buf, size_t len)
5513 {
5514 struct slab_attribute *attribute;
5515 struct kmem_cache *s;
5516 int err;
5517
5518 attribute = to_slab_attr(attr);
5519 s = to_slab(kobj);
5520
5521 if (!attribute->store)
5522 return -EIO;
5523
5524 err = attribute->store(s, buf, len);
5525 return err;
5526 }
5527
5528 static void kmem_cache_release(struct kobject *k)
5529 {
5530 slab_kmem_cache_release(to_slab(k));
5531 }
5532
5533 static const struct sysfs_ops slab_sysfs_ops = {
5534 .show = slab_attr_show,
5535 .store = slab_attr_store,
5536 };
5537
5538 static struct kobj_type slab_ktype = {
5539 .sysfs_ops = &slab_sysfs_ops,
5540 .release = kmem_cache_release,
5541 };
5542
5543 static struct kset *slab_kset;
5544
5545 static inline struct kset *cache_kset(struct kmem_cache *s)
5546 {
5547 return slab_kset;
5548 }
5549
5550 #define ID_STR_LENGTH 64
5551
5552 /* Create a unique string id for a slab cache:
5553 *
5554 * Format :[flags-]size
5555 */
5556 static char *create_unique_id(struct kmem_cache *s)
5557 {
5558 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5559 char *p = name;
5560
5561 BUG_ON(!name);
5562
5563 *p++ = ':';
5564 /*
5565 * First flags affecting slabcache operations. We will only
5566 * get here for aliasable slabs so we do not need to support
5567 * too many flags. The flags here must cover all flags that
5568 * are matched during merging to guarantee that the id is
5569 * unique.
5570 */
5571 if (s->flags & SLAB_CACHE_DMA)
5572 *p++ = 'd';
5573 if (s->flags & SLAB_CACHE_DMA32)
5574 *p++ = 'D';
5575 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5576 *p++ = 'a';
5577 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5578 *p++ = 'F';
5579 if (s->flags & SLAB_ACCOUNT)
5580 *p++ = 'A';
5581 if (p != name + 1)
5582 *p++ = '-';
5583 p += sprintf(p, "%07u", s->size);
5584
5585 BUG_ON(p > name + ID_STR_LENGTH - 1);
5586 return name;
5587 }
5588
5589 static int sysfs_slab_add(struct kmem_cache *s)
5590 {
5591 int err;
5592 const char *name;
5593 struct kset *kset = cache_kset(s);
5594 int unmergeable = slab_unmergeable(s);
5595
5596 if (!kset) {
5597 kobject_init(&s->kobj, &slab_ktype);
5598 return 0;
5599 }
5600
5601 if (!unmergeable && disable_higher_order_debug &&
5602 (slub_debug & DEBUG_METADATA_FLAGS))
5603 unmergeable = 1;
5604
5605 if (unmergeable) {
5606 /*
5607 * Slabcache can never be merged so we can use the name proper.
5608 * This is typically the case for debug situations. In that
5609 * case we can catch duplicate names easily.
5610 */
5611 sysfs_remove_link(&slab_kset->kobj, s->name);
5612 name = s->name;
5613 } else {
5614 /*
5615 * Create a unique name for the slab as a target
5616 * for the symlinks.
5617 */
5618 name = create_unique_id(s);
5619 }
5620
5621 s->kobj.kset = kset;
5622 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5623 if (err) {
5624 kobject_put(&s->kobj);
5625 goto out;
5626 }
5627
5628 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5629 if (err)
5630 goto out_del_kobj;
5631
5632 if (!unmergeable) {
5633 /* Setup first alias */
5634 sysfs_slab_alias(s, s->name);
5635 }
5636 out:
5637 if (!unmergeable)
5638 kfree(name);
5639 return err;
5640 out_del_kobj:
5641 kobject_del(&s->kobj);
5642 goto out;
5643 }
5644
5645 void sysfs_slab_unlink(struct kmem_cache *s)
5646 {
5647 if (slab_state >= FULL)
5648 kobject_del(&s->kobj);
5649 }
5650
5651 void sysfs_slab_release(struct kmem_cache *s)
5652 {
5653 if (slab_state >= FULL)
5654 kobject_put(&s->kobj);
5655 }
5656
5657 /*
5658 * Need to buffer aliases during bootup until sysfs becomes
5659 * available lest we lose that information.
5660 */
5661 struct saved_alias {
5662 struct kmem_cache *s;
5663 const char *name;
5664 struct saved_alias *next;
5665 };
5666
5667 static struct saved_alias *alias_list;
5668
5669 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5670 {
5671 struct saved_alias *al;
5672
5673 if (slab_state == FULL) {
5674 /*
5675 * If we have a leftover link then remove it.
5676 */
5677 sysfs_remove_link(&slab_kset->kobj, name);
5678 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5679 }
5680
5681 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5682 if (!al)
5683 return -ENOMEM;
5684
5685 al->s = s;
5686 al->name = name;
5687 al->next = alias_list;
5688 alias_list = al;
5689 return 0;
5690 }
5691
5692 static int __init slab_sysfs_init(void)
5693 {
5694 struct kmem_cache *s;
5695 int err;
5696
5697 mutex_lock(&slab_mutex);
5698
5699 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5700 if (!slab_kset) {
5701 mutex_unlock(&slab_mutex);
5702 pr_err("Cannot register slab subsystem.\n");
5703 return -ENOSYS;
5704 }
5705
5706 slab_state = FULL;
5707
5708 list_for_each_entry(s, &slab_caches, list) {
5709 err = sysfs_slab_add(s);
5710 if (err)
5711 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5712 s->name);
5713 }
5714
5715 while (alias_list) {
5716 struct saved_alias *al = alias_list;
5717
5718 alias_list = alias_list->next;
5719 err = sysfs_slab_alias(al->s, al->name);
5720 if (err)
5721 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5722 al->name);
5723 kfree(al);
5724 }
5725
5726 mutex_unlock(&slab_mutex);
5727 resiliency_test();
5728 return 0;
5729 }
5730
5731 __initcall(slab_sysfs_init);
5732 #endif /* CONFIG_SYSFS */
5733
5734 /*
5735 * The /proc/slabinfo ABI
5736 */
5737 #ifdef CONFIG_SLUB_DEBUG
5738 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5739 {
5740 unsigned long nr_slabs = 0;
5741 unsigned long nr_objs = 0;
5742 unsigned long nr_free = 0;
5743 int node;
5744 struct kmem_cache_node *n;
5745
5746 for_each_kmem_cache_node(s, node, n) {
5747 nr_slabs += node_nr_slabs(n);
5748 nr_objs += node_nr_objs(n);
5749 nr_free += count_partial(n, count_free);
5750 }
5751
5752 sinfo->active_objs = nr_objs - nr_free;
5753 sinfo->num_objs = nr_objs;
5754 sinfo->active_slabs = nr_slabs;
5755 sinfo->num_slabs = nr_slabs;
5756 sinfo->objects_per_slab = oo_objects(s->oo);
5757 sinfo->cache_order = oo_order(s->oo);
5758 }
5759
5760 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5761 {
5762 }
5763
5764 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5765 size_t count, loff_t *ppos)
5766 {
5767 return -EIO;
5768 }
5769 #endif /* CONFIG_SLUB_DEBUG */