]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
mm: add SLUB free list pointer obfuscation
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 #define __OBJECT_POISON 0x80000000UL /* Poison object */
196 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
197
198 /*
199 * Tracking user of a slab.
200 */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 unsigned long addr; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 #endif
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210 };
211
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
252 #else
253 return ptr;
254 #endif
255 }
256
257 /* Returns the freelist pointer recorded at location ptr_addr. */
258 static inline void *freelist_dereference(const struct kmem_cache *s,
259 void *ptr_addr)
260 {
261 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
262 (unsigned long)ptr_addr);
263 }
264
265 static inline void *get_freepointer(struct kmem_cache *s, void *object)
266 {
267 return freelist_dereference(s, object + s->offset);
268 }
269
270 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
271 {
272 if (object)
273 prefetch(freelist_dereference(s, object + s->offset));
274 }
275
276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277 {
278 unsigned long freepointer_addr;
279 void *p;
280
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s, object);
283
284 freepointer_addr = (unsigned long)object + s->offset;
285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 return freelist_ptr(s, p, freepointer_addr);
287 }
288
289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290 {
291 unsigned long freeptr_addr = (unsigned long)object + s->offset;
292
293 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
294 }
295
296 /* Loop over all objects in a slab */
297 #define for_each_object(__p, __s, __addr, __objects) \
298 for (__p = fixup_red_left(__s, __addr); \
299 __p < (__addr) + (__objects) * (__s)->size; \
300 __p += (__s)->size)
301
302 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
303 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
304 __idx <= __objects; \
305 __p += (__s)->size, __idx++)
306
307 /* Determine object index from a given position */
308 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
309 {
310 return (p - addr) / s->size;
311 }
312
313 static inline int order_objects(int order, unsigned long size, int reserved)
314 {
315 return ((PAGE_SIZE << order) - reserved) / size;
316 }
317
318 static inline struct kmem_cache_order_objects oo_make(int order,
319 unsigned long size, int reserved)
320 {
321 struct kmem_cache_order_objects x = {
322 (order << OO_SHIFT) + order_objects(order, size, reserved)
323 };
324
325 return x;
326 }
327
328 static inline int oo_order(struct kmem_cache_order_objects x)
329 {
330 return x.x >> OO_SHIFT;
331 }
332
333 static inline int oo_objects(struct kmem_cache_order_objects x)
334 {
335 return x.x & OO_MASK;
336 }
337
338 /*
339 * Per slab locking using the pagelock
340 */
341 static __always_inline void slab_lock(struct page *page)
342 {
343 VM_BUG_ON_PAGE(PageTail(page), page);
344 bit_spin_lock(PG_locked, &page->flags);
345 }
346
347 static __always_inline void slab_unlock(struct page *page)
348 {
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 __bit_spin_unlock(PG_locked, &page->flags);
351 }
352
353 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
354 {
355 struct page tmp;
356 tmp.counters = counters_new;
357 /*
358 * page->counters can cover frozen/inuse/objects as well
359 * as page->_refcount. If we assign to ->counters directly
360 * we run the risk of losing updates to page->_refcount, so
361 * be careful and only assign to the fields we need.
362 */
363 page->frozen = tmp.frozen;
364 page->inuse = tmp.inuse;
365 page->objects = tmp.objects;
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return true;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old &&
387 page->counters == counters_old) {
388 page->freelist = freelist_new;
389 set_page_slub_counters(page, counters_new);
390 slab_unlock(page);
391 return true;
392 }
393 slab_unlock(page);
394 }
395
396 cpu_relax();
397 stat(s, CMPXCHG_DOUBLE_FAIL);
398
399 #ifdef SLUB_DEBUG_CMPXCHG
400 pr_info("%s %s: cmpxchg double redo ", n, s->name);
401 #endif
402
403 return false;
404 }
405
406 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
407 void *freelist_old, unsigned long counters_old,
408 void *freelist_new, unsigned long counters_new,
409 const char *n)
410 {
411 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
412 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
413 if (s->flags & __CMPXCHG_DOUBLE) {
414 if (cmpxchg_double(&page->freelist, &page->counters,
415 freelist_old, counters_old,
416 freelist_new, counters_new))
417 return true;
418 } else
419 #endif
420 {
421 unsigned long flags;
422
423 local_irq_save(flags);
424 slab_lock(page);
425 if (page->freelist == freelist_old &&
426 page->counters == counters_old) {
427 page->freelist = freelist_new;
428 set_page_slub_counters(page, counters_new);
429 slab_unlock(page);
430 local_irq_restore(flags);
431 return true;
432 }
433 slab_unlock(page);
434 local_irq_restore(flags);
435 }
436
437 cpu_relax();
438 stat(s, CMPXCHG_DOUBLE_FAIL);
439
440 #ifdef SLUB_DEBUG_CMPXCHG
441 pr_info("%s %s: cmpxchg double redo ", n, s->name);
442 #endif
443
444 return false;
445 }
446
447 #ifdef CONFIG_SLUB_DEBUG
448 /*
449 * Determine a map of object in use on a page.
450 *
451 * Node listlock must be held to guarantee that the page does
452 * not vanish from under us.
453 */
454 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
455 {
456 void *p;
457 void *addr = page_address(page);
458
459 for (p = page->freelist; p; p = get_freepointer(s, p))
460 set_bit(slab_index(p, s, addr), map);
461 }
462
463 static inline int size_from_object(struct kmem_cache *s)
464 {
465 if (s->flags & SLAB_RED_ZONE)
466 return s->size - s->red_left_pad;
467
468 return s->size;
469 }
470
471 static inline void *restore_red_left(struct kmem_cache *s, void *p)
472 {
473 if (s->flags & SLAB_RED_ZONE)
474 p -= s->red_left_pad;
475
476 return p;
477 }
478
479 /*
480 * Debug settings:
481 */
482 #if defined(CONFIG_SLUB_DEBUG_ON)
483 static int slub_debug = DEBUG_DEFAULT_FLAGS;
484 #else
485 static int slub_debug;
486 #endif
487
488 static char *slub_debug_slabs;
489 static int disable_higher_order_debug;
490
491 /*
492 * slub is about to manipulate internal object metadata. This memory lies
493 * outside the range of the allocated object, so accessing it would normally
494 * be reported by kasan as a bounds error. metadata_access_enable() is used
495 * to tell kasan that these accesses are OK.
496 */
497 static inline void metadata_access_enable(void)
498 {
499 kasan_disable_current();
500 }
501
502 static inline void metadata_access_disable(void)
503 {
504 kasan_enable_current();
505 }
506
507 /*
508 * Object debugging
509 */
510
511 /* Verify that a pointer has an address that is valid within a slab page */
512 static inline int check_valid_pointer(struct kmem_cache *s,
513 struct page *page, void *object)
514 {
515 void *base;
516
517 if (!object)
518 return 1;
519
520 base = page_address(page);
521 object = restore_red_left(s, object);
522 if (object < base || object >= base + page->objects * s->size ||
523 (object - base) % s->size) {
524 return 0;
525 }
526
527 return 1;
528 }
529
530 static void print_section(char *level, char *text, u8 *addr,
531 unsigned int length)
532 {
533 metadata_access_enable();
534 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
535 length, 1);
536 metadata_access_disable();
537 }
538
539 static struct track *get_track(struct kmem_cache *s, void *object,
540 enum track_item alloc)
541 {
542 struct track *p;
543
544 if (s->offset)
545 p = object + s->offset + sizeof(void *);
546 else
547 p = object + s->inuse;
548
549 return p + alloc;
550 }
551
552 static void set_track(struct kmem_cache *s, void *object,
553 enum track_item alloc, unsigned long addr)
554 {
555 struct track *p = get_track(s, object, alloc);
556
557 if (addr) {
558 #ifdef CONFIG_STACKTRACE
559 struct stack_trace trace;
560 int i;
561
562 trace.nr_entries = 0;
563 trace.max_entries = TRACK_ADDRS_COUNT;
564 trace.entries = p->addrs;
565 trace.skip = 3;
566 metadata_access_enable();
567 save_stack_trace(&trace);
568 metadata_access_disable();
569
570 /* See rant in lockdep.c */
571 if (trace.nr_entries != 0 &&
572 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
573 trace.nr_entries--;
574
575 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
576 p->addrs[i] = 0;
577 #endif
578 p->addr = addr;
579 p->cpu = smp_processor_id();
580 p->pid = current->pid;
581 p->when = jiffies;
582 } else
583 memset(p, 0, sizeof(struct track));
584 }
585
586 static void init_tracking(struct kmem_cache *s, void *object)
587 {
588 if (!(s->flags & SLAB_STORE_USER))
589 return;
590
591 set_track(s, object, TRACK_FREE, 0UL);
592 set_track(s, object, TRACK_ALLOC, 0UL);
593 }
594
595 static void print_track(const char *s, struct track *t)
596 {
597 if (!t->addr)
598 return;
599
600 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
601 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
602 #ifdef CONFIG_STACKTRACE
603 {
604 int i;
605 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
606 if (t->addrs[i])
607 pr_err("\t%pS\n", (void *)t->addrs[i]);
608 else
609 break;
610 }
611 #endif
612 }
613
614 static void print_tracking(struct kmem_cache *s, void *object)
615 {
616 if (!(s->flags & SLAB_STORE_USER))
617 return;
618
619 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
620 print_track("Freed", get_track(s, object, TRACK_FREE));
621 }
622
623 static void print_page_info(struct page *page)
624 {
625 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
626 page, page->objects, page->inuse, page->freelist, page->flags);
627
628 }
629
630 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
631 {
632 struct va_format vaf;
633 va_list args;
634
635 va_start(args, fmt);
636 vaf.fmt = fmt;
637 vaf.va = &args;
638 pr_err("=============================================================================\n");
639 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
640 pr_err("-----------------------------------------------------------------------------\n\n");
641
642 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
643 va_end(args);
644 }
645
646 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
647 {
648 struct va_format vaf;
649 va_list args;
650
651 va_start(args, fmt);
652 vaf.fmt = fmt;
653 vaf.va = &args;
654 pr_err("FIX %s: %pV\n", s->name, &vaf);
655 va_end(args);
656 }
657
658 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
659 {
660 unsigned int off; /* Offset of last byte */
661 u8 *addr = page_address(page);
662
663 print_tracking(s, p);
664
665 print_page_info(page);
666
667 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
668 p, p - addr, get_freepointer(s, p));
669
670 if (s->flags & SLAB_RED_ZONE)
671 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
672 s->red_left_pad);
673 else if (p > addr + 16)
674 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
675
676 print_section(KERN_ERR, "Object ", p,
677 min_t(unsigned long, s->object_size, PAGE_SIZE));
678 if (s->flags & SLAB_RED_ZONE)
679 print_section(KERN_ERR, "Redzone ", p + s->object_size,
680 s->inuse - s->object_size);
681
682 if (s->offset)
683 off = s->offset + sizeof(void *);
684 else
685 off = s->inuse;
686
687 if (s->flags & SLAB_STORE_USER)
688 off += 2 * sizeof(struct track);
689
690 off += kasan_metadata_size(s);
691
692 if (off != size_from_object(s))
693 /* Beginning of the filler is the free pointer */
694 print_section(KERN_ERR, "Padding ", p + off,
695 size_from_object(s) - off);
696
697 dump_stack();
698 }
699
700 void object_err(struct kmem_cache *s, struct page *page,
701 u8 *object, char *reason)
702 {
703 slab_bug(s, "%s", reason);
704 print_trailer(s, page, object);
705 }
706
707 static void slab_err(struct kmem_cache *s, struct page *page,
708 const char *fmt, ...)
709 {
710 va_list args;
711 char buf[100];
712
713 va_start(args, fmt);
714 vsnprintf(buf, sizeof(buf), fmt, args);
715 va_end(args);
716 slab_bug(s, "%s", buf);
717 print_page_info(page);
718 dump_stack();
719 }
720
721 static void init_object(struct kmem_cache *s, void *object, u8 val)
722 {
723 u8 *p = object;
724
725 if (s->flags & SLAB_RED_ZONE)
726 memset(p - s->red_left_pad, val, s->red_left_pad);
727
728 if (s->flags & __OBJECT_POISON) {
729 memset(p, POISON_FREE, s->object_size - 1);
730 p[s->object_size - 1] = POISON_END;
731 }
732
733 if (s->flags & SLAB_RED_ZONE)
734 memset(p + s->object_size, val, s->inuse - s->object_size);
735 }
736
737 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
738 void *from, void *to)
739 {
740 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
741 memset(from, data, to - from);
742 }
743
744 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
745 u8 *object, char *what,
746 u8 *start, unsigned int value, unsigned int bytes)
747 {
748 u8 *fault;
749 u8 *end;
750
751 metadata_access_enable();
752 fault = memchr_inv(start, value, bytes);
753 metadata_access_disable();
754 if (!fault)
755 return 1;
756
757 end = start + bytes;
758 while (end > fault && end[-1] == value)
759 end--;
760
761 slab_bug(s, "%s overwritten", what);
762 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
763 fault, end - 1, fault[0], value);
764 print_trailer(s, page, object);
765
766 restore_bytes(s, what, value, fault, end);
767 return 0;
768 }
769
770 /*
771 * Object layout:
772 *
773 * object address
774 * Bytes of the object to be managed.
775 * If the freepointer may overlay the object then the free
776 * pointer is the first word of the object.
777 *
778 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
779 * 0xa5 (POISON_END)
780 *
781 * object + s->object_size
782 * Padding to reach word boundary. This is also used for Redzoning.
783 * Padding is extended by another word if Redzoning is enabled and
784 * object_size == inuse.
785 *
786 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
787 * 0xcc (RED_ACTIVE) for objects in use.
788 *
789 * object + s->inuse
790 * Meta data starts here.
791 *
792 * A. Free pointer (if we cannot overwrite object on free)
793 * B. Tracking data for SLAB_STORE_USER
794 * C. Padding to reach required alignment boundary or at mininum
795 * one word if debugging is on to be able to detect writes
796 * before the word boundary.
797 *
798 * Padding is done using 0x5a (POISON_INUSE)
799 *
800 * object + s->size
801 * Nothing is used beyond s->size.
802 *
803 * If slabcaches are merged then the object_size and inuse boundaries are mostly
804 * ignored. And therefore no slab options that rely on these boundaries
805 * may be used with merged slabcaches.
806 */
807
808 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
809 {
810 unsigned long off = s->inuse; /* The end of info */
811
812 if (s->offset)
813 /* Freepointer is placed after the object. */
814 off += sizeof(void *);
815
816 if (s->flags & SLAB_STORE_USER)
817 /* We also have user information there */
818 off += 2 * sizeof(struct track);
819
820 off += kasan_metadata_size(s);
821
822 if (size_from_object(s) == off)
823 return 1;
824
825 return check_bytes_and_report(s, page, p, "Object padding",
826 p + off, POISON_INUSE, size_from_object(s) - off);
827 }
828
829 /* Check the pad bytes at the end of a slab page */
830 static int slab_pad_check(struct kmem_cache *s, struct page *page)
831 {
832 u8 *start;
833 u8 *fault;
834 u8 *end;
835 int length;
836 int remainder;
837
838 if (!(s->flags & SLAB_POISON))
839 return 1;
840
841 start = page_address(page);
842 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
843 end = start + length;
844 remainder = length % s->size;
845 if (!remainder)
846 return 1;
847
848 metadata_access_enable();
849 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
850 metadata_access_disable();
851 if (!fault)
852 return 1;
853 while (end > fault && end[-1] == POISON_INUSE)
854 end--;
855
856 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
857 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
858
859 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
860 return 0;
861 }
862
863 static int check_object(struct kmem_cache *s, struct page *page,
864 void *object, u8 val)
865 {
866 u8 *p = object;
867 u8 *endobject = object + s->object_size;
868
869 if (s->flags & SLAB_RED_ZONE) {
870 if (!check_bytes_and_report(s, page, object, "Redzone",
871 object - s->red_left_pad, val, s->red_left_pad))
872 return 0;
873
874 if (!check_bytes_and_report(s, page, object, "Redzone",
875 endobject, val, s->inuse - s->object_size))
876 return 0;
877 } else {
878 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
879 check_bytes_and_report(s, page, p, "Alignment padding",
880 endobject, POISON_INUSE,
881 s->inuse - s->object_size);
882 }
883 }
884
885 if (s->flags & SLAB_POISON) {
886 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
887 (!check_bytes_and_report(s, page, p, "Poison", p,
888 POISON_FREE, s->object_size - 1) ||
889 !check_bytes_and_report(s, page, p, "Poison",
890 p + s->object_size - 1, POISON_END, 1)))
891 return 0;
892 /*
893 * check_pad_bytes cleans up on its own.
894 */
895 check_pad_bytes(s, page, p);
896 }
897
898 if (!s->offset && val == SLUB_RED_ACTIVE)
899 /*
900 * Object and freepointer overlap. Cannot check
901 * freepointer while object is allocated.
902 */
903 return 1;
904
905 /* Check free pointer validity */
906 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
907 object_err(s, page, p, "Freepointer corrupt");
908 /*
909 * No choice but to zap it and thus lose the remainder
910 * of the free objects in this slab. May cause
911 * another error because the object count is now wrong.
912 */
913 set_freepointer(s, p, NULL);
914 return 0;
915 }
916 return 1;
917 }
918
919 static int check_slab(struct kmem_cache *s, struct page *page)
920 {
921 int maxobj;
922
923 VM_BUG_ON(!irqs_disabled());
924
925 if (!PageSlab(page)) {
926 slab_err(s, page, "Not a valid slab page");
927 return 0;
928 }
929
930 maxobj = order_objects(compound_order(page), s->size, s->reserved);
931 if (page->objects > maxobj) {
932 slab_err(s, page, "objects %u > max %u",
933 page->objects, maxobj);
934 return 0;
935 }
936 if (page->inuse > page->objects) {
937 slab_err(s, page, "inuse %u > max %u",
938 page->inuse, page->objects);
939 return 0;
940 }
941 /* Slab_pad_check fixes things up after itself */
942 slab_pad_check(s, page);
943 return 1;
944 }
945
946 /*
947 * Determine if a certain object on a page is on the freelist. Must hold the
948 * slab lock to guarantee that the chains are in a consistent state.
949 */
950 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
951 {
952 int nr = 0;
953 void *fp;
954 void *object = NULL;
955 int max_objects;
956
957 fp = page->freelist;
958 while (fp && nr <= page->objects) {
959 if (fp == search)
960 return 1;
961 if (!check_valid_pointer(s, page, fp)) {
962 if (object) {
963 object_err(s, page, object,
964 "Freechain corrupt");
965 set_freepointer(s, object, NULL);
966 } else {
967 slab_err(s, page, "Freepointer corrupt");
968 page->freelist = NULL;
969 page->inuse = page->objects;
970 slab_fix(s, "Freelist cleared");
971 return 0;
972 }
973 break;
974 }
975 object = fp;
976 fp = get_freepointer(s, object);
977 nr++;
978 }
979
980 max_objects = order_objects(compound_order(page), s->size, s->reserved);
981 if (max_objects > MAX_OBJS_PER_PAGE)
982 max_objects = MAX_OBJS_PER_PAGE;
983
984 if (page->objects != max_objects) {
985 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
986 page->objects, max_objects);
987 page->objects = max_objects;
988 slab_fix(s, "Number of objects adjusted.");
989 }
990 if (page->inuse != page->objects - nr) {
991 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
992 page->inuse, page->objects - nr);
993 page->inuse = page->objects - nr;
994 slab_fix(s, "Object count adjusted.");
995 }
996 return search == NULL;
997 }
998
999 static void trace(struct kmem_cache *s, struct page *page, void *object,
1000 int alloc)
1001 {
1002 if (s->flags & SLAB_TRACE) {
1003 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1004 s->name,
1005 alloc ? "alloc" : "free",
1006 object, page->inuse,
1007 page->freelist);
1008
1009 if (!alloc)
1010 print_section(KERN_INFO, "Object ", (void *)object,
1011 s->object_size);
1012
1013 dump_stack();
1014 }
1015 }
1016
1017 /*
1018 * Tracking of fully allocated slabs for debugging purposes.
1019 */
1020 static void add_full(struct kmem_cache *s,
1021 struct kmem_cache_node *n, struct page *page)
1022 {
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
1026 lockdep_assert_held(&n->list_lock);
1027 list_add(&page->lru, &n->full);
1028 }
1029
1030 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1031 {
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
1035 lockdep_assert_held(&n->list_lock);
1036 list_del(&page->lru);
1037 }
1038
1039 /* Tracking of the number of slabs for debugging purposes */
1040 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1041 {
1042 struct kmem_cache_node *n = get_node(s, node);
1043
1044 return atomic_long_read(&n->nr_slabs);
1045 }
1046
1047 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1048 {
1049 return atomic_long_read(&n->nr_slabs);
1050 }
1051
1052 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1053 {
1054 struct kmem_cache_node *n = get_node(s, node);
1055
1056 /*
1057 * May be called early in order to allocate a slab for the
1058 * kmem_cache_node structure. Solve the chicken-egg
1059 * dilemma by deferring the increment of the count during
1060 * bootstrap (see early_kmem_cache_node_alloc).
1061 */
1062 if (likely(n)) {
1063 atomic_long_inc(&n->nr_slabs);
1064 atomic_long_add(objects, &n->total_objects);
1065 }
1066 }
1067 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1068 {
1069 struct kmem_cache_node *n = get_node(s, node);
1070
1071 atomic_long_dec(&n->nr_slabs);
1072 atomic_long_sub(objects, &n->total_objects);
1073 }
1074
1075 /* Object debug checks for alloc/free paths */
1076 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1077 void *object)
1078 {
1079 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1080 return;
1081
1082 init_object(s, object, SLUB_RED_INACTIVE);
1083 init_tracking(s, object);
1084 }
1085
1086 static inline int alloc_consistency_checks(struct kmem_cache *s,
1087 struct page *page,
1088 void *object, unsigned long addr)
1089 {
1090 if (!check_slab(s, page))
1091 return 0;
1092
1093 if (!check_valid_pointer(s, page, object)) {
1094 object_err(s, page, object, "Freelist Pointer check fails");
1095 return 0;
1096 }
1097
1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 return 0;
1100
1101 return 1;
1102 }
1103
1104 static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 struct page *page,
1106 void *object, unsigned long addr)
1107 {
1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109 if (!alloc_consistency_checks(s, page, object, addr))
1110 goto bad;
1111 }
1112
1113 /* Success perform special debug activities for allocs */
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_ALLOC, addr);
1116 trace(s, page, object, 1);
1117 init_object(s, object, SLUB_RED_ACTIVE);
1118 return 1;
1119
1120 bad:
1121 if (PageSlab(page)) {
1122 /*
1123 * If this is a slab page then lets do the best we can
1124 * to avoid issues in the future. Marking all objects
1125 * as used avoids touching the remaining objects.
1126 */
1127 slab_fix(s, "Marking all objects used");
1128 page->inuse = page->objects;
1129 page->freelist = NULL;
1130 }
1131 return 0;
1132 }
1133
1134 static inline int free_consistency_checks(struct kmem_cache *s,
1135 struct page *page, void *object, unsigned long addr)
1136 {
1137 if (!check_valid_pointer(s, page, object)) {
1138 slab_err(s, page, "Invalid object pointer 0x%p", object);
1139 return 0;
1140 }
1141
1142 if (on_freelist(s, page, object)) {
1143 object_err(s, page, object, "Object already free");
1144 return 0;
1145 }
1146
1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148 return 0;
1149
1150 if (unlikely(s != page->slab_cache)) {
1151 if (!PageSlab(page)) {
1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 object);
1154 } else if (!page->slab_cache) {
1155 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 object);
1157 dump_stack();
1158 } else
1159 object_err(s, page, object,
1160 "page slab pointer corrupt.");
1161 return 0;
1162 }
1163 return 1;
1164 }
1165
1166 /* Supports checking bulk free of a constructed freelist */
1167 static noinline int free_debug_processing(
1168 struct kmem_cache *s, struct page *page,
1169 void *head, void *tail, int bulk_cnt,
1170 unsigned long addr)
1171 {
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 void *object = head;
1174 int cnt = 0;
1175 unsigned long uninitialized_var(flags);
1176 int ret = 0;
1177
1178 spin_lock_irqsave(&n->list_lock, flags);
1179 slab_lock(page);
1180
1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 if (!check_slab(s, page))
1183 goto out;
1184 }
1185
1186 next_object:
1187 cnt++;
1188
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!free_consistency_checks(s, page, object, addr))
1191 goto out;
1192 }
1193
1194 if (s->flags & SLAB_STORE_USER)
1195 set_track(s, object, TRACK_FREE, addr);
1196 trace(s, page, object, 0);
1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198 init_object(s, object, SLUB_RED_INACTIVE);
1199
1200 /* Reached end of constructed freelist yet? */
1201 if (object != tail) {
1202 object = get_freepointer(s, object);
1203 goto next_object;
1204 }
1205 ret = 1;
1206
1207 out:
1208 if (cnt != bulk_cnt)
1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 bulk_cnt, cnt);
1211
1212 slab_unlock(page);
1213 spin_unlock_irqrestore(&n->list_lock, flags);
1214 if (!ret)
1215 slab_fix(s, "Object at 0x%p not freed", object);
1216 return ret;
1217 }
1218
1219 static int __init setup_slub_debug(char *str)
1220 {
1221 slub_debug = DEBUG_DEFAULT_FLAGS;
1222 if (*str++ != '=' || !*str)
1223 /*
1224 * No options specified. Switch on full debugging.
1225 */
1226 goto out;
1227
1228 if (*str == ',')
1229 /*
1230 * No options but restriction on slabs. This means full
1231 * debugging for slabs matching a pattern.
1232 */
1233 goto check_slabs;
1234
1235 slub_debug = 0;
1236 if (*str == '-')
1237 /*
1238 * Switch off all debugging measures.
1239 */
1240 goto out;
1241
1242 /*
1243 * Determine which debug features should be switched on
1244 */
1245 for (; *str && *str != ','; str++) {
1246 switch (tolower(*str)) {
1247 case 'f':
1248 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 break;
1250 case 'z':
1251 slub_debug |= SLAB_RED_ZONE;
1252 break;
1253 case 'p':
1254 slub_debug |= SLAB_POISON;
1255 break;
1256 case 'u':
1257 slub_debug |= SLAB_STORE_USER;
1258 break;
1259 case 't':
1260 slub_debug |= SLAB_TRACE;
1261 break;
1262 case 'a':
1263 slub_debug |= SLAB_FAILSLAB;
1264 break;
1265 case 'o':
1266 /*
1267 * Avoid enabling debugging on caches if its minimum
1268 * order would increase as a result.
1269 */
1270 disable_higher_order_debug = 1;
1271 break;
1272 default:
1273 pr_err("slub_debug option '%c' unknown. skipped\n",
1274 *str);
1275 }
1276 }
1277
1278 check_slabs:
1279 if (*str == ',')
1280 slub_debug_slabs = str + 1;
1281 out:
1282 return 1;
1283 }
1284
1285 __setup("slub_debug", setup_slub_debug);
1286
1287 unsigned long kmem_cache_flags(unsigned long object_size,
1288 unsigned long flags, const char *name,
1289 void (*ctor)(void *))
1290 {
1291 /*
1292 * Enable debugging if selected on the kernel commandline.
1293 */
1294 if (slub_debug && (!slub_debug_slabs || (name &&
1295 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1296 flags |= slub_debug;
1297
1298 return flags;
1299 }
1300 #else /* !CONFIG_SLUB_DEBUG */
1301 static inline void setup_object_debug(struct kmem_cache *s,
1302 struct page *page, void *object) {}
1303
1304 static inline int alloc_debug_processing(struct kmem_cache *s,
1305 struct page *page, void *object, unsigned long addr) { return 0; }
1306
1307 static inline int free_debug_processing(
1308 struct kmem_cache *s, struct page *page,
1309 void *head, void *tail, int bulk_cnt,
1310 unsigned long addr) { return 0; }
1311
1312 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1313 { return 1; }
1314 static inline int check_object(struct kmem_cache *s, struct page *page,
1315 void *object, u8 val) { return 1; }
1316 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1317 struct page *page) {}
1318 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1319 struct page *page) {}
1320 unsigned long kmem_cache_flags(unsigned long object_size,
1321 unsigned long flags, const char *name,
1322 void (*ctor)(void *))
1323 {
1324 return flags;
1325 }
1326 #define slub_debug 0
1327
1328 #define disable_higher_order_debug 0
1329
1330 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1331 { return 0; }
1332 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1333 { return 0; }
1334 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1335 int objects) {}
1336 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1337 int objects) {}
1338
1339 #endif /* CONFIG_SLUB_DEBUG */
1340
1341 /*
1342 * Hooks for other subsystems that check memory allocations. In a typical
1343 * production configuration these hooks all should produce no code at all.
1344 */
1345 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1346 {
1347 kmemleak_alloc(ptr, size, 1, flags);
1348 kasan_kmalloc_large(ptr, size, flags);
1349 }
1350
1351 static inline void kfree_hook(const void *x)
1352 {
1353 kmemleak_free(x);
1354 kasan_kfree_large(x);
1355 }
1356
1357 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1358 {
1359 void *freeptr;
1360
1361 kmemleak_free_recursive(x, s->flags);
1362
1363 /*
1364 * Trouble is that we may no longer disable interrupts in the fast path
1365 * So in order to make the debug calls that expect irqs to be
1366 * disabled we need to disable interrupts temporarily.
1367 */
1368 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1369 {
1370 unsigned long flags;
1371
1372 local_irq_save(flags);
1373 kmemcheck_slab_free(s, x, s->object_size);
1374 debug_check_no_locks_freed(x, s->object_size);
1375 local_irq_restore(flags);
1376 }
1377 #endif
1378 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1379 debug_check_no_obj_freed(x, s->object_size);
1380
1381 freeptr = get_freepointer(s, x);
1382 /*
1383 * kasan_slab_free() may put x into memory quarantine, delaying its
1384 * reuse. In this case the object's freelist pointer is changed.
1385 */
1386 kasan_slab_free(s, x);
1387 return freeptr;
1388 }
1389
1390 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1391 void *head, void *tail)
1392 {
1393 /*
1394 * Compiler cannot detect this function can be removed if slab_free_hook()
1395 * evaluates to nothing. Thus, catch all relevant config debug options here.
1396 */
1397 #if defined(CONFIG_KMEMCHECK) || \
1398 defined(CONFIG_LOCKDEP) || \
1399 defined(CONFIG_DEBUG_KMEMLEAK) || \
1400 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1401 defined(CONFIG_KASAN)
1402
1403 void *object = head;
1404 void *tail_obj = tail ? : head;
1405 void *freeptr;
1406
1407 do {
1408 freeptr = slab_free_hook(s, object);
1409 } while ((object != tail_obj) && (object = freeptr));
1410 #endif
1411 }
1412
1413 static void setup_object(struct kmem_cache *s, struct page *page,
1414 void *object)
1415 {
1416 setup_object_debug(s, page, object);
1417 kasan_init_slab_obj(s, object);
1418 if (unlikely(s->ctor)) {
1419 kasan_unpoison_object_data(s, object);
1420 s->ctor(object);
1421 kasan_poison_object_data(s, object);
1422 }
1423 }
1424
1425 /*
1426 * Slab allocation and freeing
1427 */
1428 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1429 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1430 {
1431 struct page *page;
1432 int order = oo_order(oo);
1433
1434 flags |= __GFP_NOTRACK;
1435
1436 if (node == NUMA_NO_NODE)
1437 page = alloc_pages(flags, order);
1438 else
1439 page = __alloc_pages_node(node, flags, order);
1440
1441 if (page && memcg_charge_slab(page, flags, order, s)) {
1442 __free_pages(page, order);
1443 page = NULL;
1444 }
1445
1446 return page;
1447 }
1448
1449 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1450 /* Pre-initialize the random sequence cache */
1451 static int init_cache_random_seq(struct kmem_cache *s)
1452 {
1453 int err;
1454 unsigned long i, count = oo_objects(s->oo);
1455
1456 /* Bailout if already initialised */
1457 if (s->random_seq)
1458 return 0;
1459
1460 err = cache_random_seq_create(s, count, GFP_KERNEL);
1461 if (err) {
1462 pr_err("SLUB: Unable to initialize free list for %s\n",
1463 s->name);
1464 return err;
1465 }
1466
1467 /* Transform to an offset on the set of pages */
1468 if (s->random_seq) {
1469 for (i = 0; i < count; i++)
1470 s->random_seq[i] *= s->size;
1471 }
1472 return 0;
1473 }
1474
1475 /* Initialize each random sequence freelist per cache */
1476 static void __init init_freelist_randomization(void)
1477 {
1478 struct kmem_cache *s;
1479
1480 mutex_lock(&slab_mutex);
1481
1482 list_for_each_entry(s, &slab_caches, list)
1483 init_cache_random_seq(s);
1484
1485 mutex_unlock(&slab_mutex);
1486 }
1487
1488 /* Get the next entry on the pre-computed freelist randomized */
1489 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1490 unsigned long *pos, void *start,
1491 unsigned long page_limit,
1492 unsigned long freelist_count)
1493 {
1494 unsigned int idx;
1495
1496 /*
1497 * If the target page allocation failed, the number of objects on the
1498 * page might be smaller than the usual size defined by the cache.
1499 */
1500 do {
1501 idx = s->random_seq[*pos];
1502 *pos += 1;
1503 if (*pos >= freelist_count)
1504 *pos = 0;
1505 } while (unlikely(idx >= page_limit));
1506
1507 return (char *)start + idx;
1508 }
1509
1510 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1511 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1512 {
1513 void *start;
1514 void *cur;
1515 void *next;
1516 unsigned long idx, pos, page_limit, freelist_count;
1517
1518 if (page->objects < 2 || !s->random_seq)
1519 return false;
1520
1521 freelist_count = oo_objects(s->oo);
1522 pos = get_random_int() % freelist_count;
1523
1524 page_limit = page->objects * s->size;
1525 start = fixup_red_left(s, page_address(page));
1526
1527 /* First entry is used as the base of the freelist */
1528 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1529 freelist_count);
1530 page->freelist = cur;
1531
1532 for (idx = 1; idx < page->objects; idx++) {
1533 setup_object(s, page, cur);
1534 next = next_freelist_entry(s, page, &pos, start, page_limit,
1535 freelist_count);
1536 set_freepointer(s, cur, next);
1537 cur = next;
1538 }
1539 setup_object(s, page, cur);
1540 set_freepointer(s, cur, NULL);
1541
1542 return true;
1543 }
1544 #else
1545 static inline int init_cache_random_seq(struct kmem_cache *s)
1546 {
1547 return 0;
1548 }
1549 static inline void init_freelist_randomization(void) { }
1550 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1551 {
1552 return false;
1553 }
1554 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1555
1556 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1557 {
1558 struct page *page;
1559 struct kmem_cache_order_objects oo = s->oo;
1560 gfp_t alloc_gfp;
1561 void *start, *p;
1562 int idx, order;
1563 bool shuffle;
1564
1565 flags &= gfp_allowed_mask;
1566
1567 if (gfpflags_allow_blocking(flags))
1568 local_irq_enable();
1569
1570 flags |= s->allocflags;
1571
1572 /*
1573 * Let the initial higher-order allocation fail under memory pressure
1574 * so we fall-back to the minimum order allocation.
1575 */
1576 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1577 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1578 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1579
1580 page = alloc_slab_page(s, alloc_gfp, node, oo);
1581 if (unlikely(!page)) {
1582 oo = s->min;
1583 alloc_gfp = flags;
1584 /*
1585 * Allocation may have failed due to fragmentation.
1586 * Try a lower order alloc if possible
1587 */
1588 page = alloc_slab_page(s, alloc_gfp, node, oo);
1589 if (unlikely(!page))
1590 goto out;
1591 stat(s, ORDER_FALLBACK);
1592 }
1593
1594 if (kmemcheck_enabled &&
1595 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1596 int pages = 1 << oo_order(oo);
1597
1598 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1599
1600 /*
1601 * Objects from caches that have a constructor don't get
1602 * cleared when they're allocated, so we need to do it here.
1603 */
1604 if (s->ctor)
1605 kmemcheck_mark_uninitialized_pages(page, pages);
1606 else
1607 kmemcheck_mark_unallocated_pages(page, pages);
1608 }
1609
1610 page->objects = oo_objects(oo);
1611
1612 order = compound_order(page);
1613 page->slab_cache = s;
1614 __SetPageSlab(page);
1615 if (page_is_pfmemalloc(page))
1616 SetPageSlabPfmemalloc(page);
1617
1618 start = page_address(page);
1619
1620 if (unlikely(s->flags & SLAB_POISON))
1621 memset(start, POISON_INUSE, PAGE_SIZE << order);
1622
1623 kasan_poison_slab(page);
1624
1625 shuffle = shuffle_freelist(s, page);
1626
1627 if (!shuffle) {
1628 for_each_object_idx(p, idx, s, start, page->objects) {
1629 setup_object(s, page, p);
1630 if (likely(idx < page->objects))
1631 set_freepointer(s, p, p + s->size);
1632 else
1633 set_freepointer(s, p, NULL);
1634 }
1635 page->freelist = fixup_red_left(s, start);
1636 }
1637
1638 page->inuse = page->objects;
1639 page->frozen = 1;
1640
1641 out:
1642 if (gfpflags_allow_blocking(flags))
1643 local_irq_disable();
1644 if (!page)
1645 return NULL;
1646
1647 mod_lruvec_page_state(page,
1648 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1649 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1650 1 << oo_order(oo));
1651
1652 inc_slabs_node(s, page_to_nid(page), page->objects);
1653
1654 return page;
1655 }
1656
1657 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1658 {
1659 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1660 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1661 flags &= ~GFP_SLAB_BUG_MASK;
1662 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1663 invalid_mask, &invalid_mask, flags, &flags);
1664 dump_stack();
1665 }
1666
1667 return allocate_slab(s,
1668 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1669 }
1670
1671 static void __free_slab(struct kmem_cache *s, struct page *page)
1672 {
1673 int order = compound_order(page);
1674 int pages = 1 << order;
1675
1676 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1677 void *p;
1678
1679 slab_pad_check(s, page);
1680 for_each_object(p, s, page_address(page),
1681 page->objects)
1682 check_object(s, page, p, SLUB_RED_INACTIVE);
1683 }
1684
1685 kmemcheck_free_shadow(page, compound_order(page));
1686
1687 mod_lruvec_page_state(page,
1688 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1689 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1690 -pages);
1691
1692 __ClearPageSlabPfmemalloc(page);
1693 __ClearPageSlab(page);
1694
1695 page_mapcount_reset(page);
1696 if (current->reclaim_state)
1697 current->reclaim_state->reclaimed_slab += pages;
1698 memcg_uncharge_slab(page, order, s);
1699 __free_pages(page, order);
1700 }
1701
1702 #define need_reserve_slab_rcu \
1703 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1704
1705 static void rcu_free_slab(struct rcu_head *h)
1706 {
1707 struct page *page;
1708
1709 if (need_reserve_slab_rcu)
1710 page = virt_to_head_page(h);
1711 else
1712 page = container_of((struct list_head *)h, struct page, lru);
1713
1714 __free_slab(page->slab_cache, page);
1715 }
1716
1717 static void free_slab(struct kmem_cache *s, struct page *page)
1718 {
1719 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1720 struct rcu_head *head;
1721
1722 if (need_reserve_slab_rcu) {
1723 int order = compound_order(page);
1724 int offset = (PAGE_SIZE << order) - s->reserved;
1725
1726 VM_BUG_ON(s->reserved != sizeof(*head));
1727 head = page_address(page) + offset;
1728 } else {
1729 head = &page->rcu_head;
1730 }
1731
1732 call_rcu(head, rcu_free_slab);
1733 } else
1734 __free_slab(s, page);
1735 }
1736
1737 static void discard_slab(struct kmem_cache *s, struct page *page)
1738 {
1739 dec_slabs_node(s, page_to_nid(page), page->objects);
1740 free_slab(s, page);
1741 }
1742
1743 /*
1744 * Management of partially allocated slabs.
1745 */
1746 static inline void
1747 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1748 {
1749 n->nr_partial++;
1750 if (tail == DEACTIVATE_TO_TAIL)
1751 list_add_tail(&page->lru, &n->partial);
1752 else
1753 list_add(&page->lru, &n->partial);
1754 }
1755
1756 static inline void add_partial(struct kmem_cache_node *n,
1757 struct page *page, int tail)
1758 {
1759 lockdep_assert_held(&n->list_lock);
1760 __add_partial(n, page, tail);
1761 }
1762
1763 static inline void remove_partial(struct kmem_cache_node *n,
1764 struct page *page)
1765 {
1766 lockdep_assert_held(&n->list_lock);
1767 list_del(&page->lru);
1768 n->nr_partial--;
1769 }
1770
1771 /*
1772 * Remove slab from the partial list, freeze it and
1773 * return the pointer to the freelist.
1774 *
1775 * Returns a list of objects or NULL if it fails.
1776 */
1777 static inline void *acquire_slab(struct kmem_cache *s,
1778 struct kmem_cache_node *n, struct page *page,
1779 int mode, int *objects)
1780 {
1781 void *freelist;
1782 unsigned long counters;
1783 struct page new;
1784
1785 lockdep_assert_held(&n->list_lock);
1786
1787 /*
1788 * Zap the freelist and set the frozen bit.
1789 * The old freelist is the list of objects for the
1790 * per cpu allocation list.
1791 */
1792 freelist = page->freelist;
1793 counters = page->counters;
1794 new.counters = counters;
1795 *objects = new.objects - new.inuse;
1796 if (mode) {
1797 new.inuse = page->objects;
1798 new.freelist = NULL;
1799 } else {
1800 new.freelist = freelist;
1801 }
1802
1803 VM_BUG_ON(new.frozen);
1804 new.frozen = 1;
1805
1806 if (!__cmpxchg_double_slab(s, page,
1807 freelist, counters,
1808 new.freelist, new.counters,
1809 "acquire_slab"))
1810 return NULL;
1811
1812 remove_partial(n, page);
1813 WARN_ON(!freelist);
1814 return freelist;
1815 }
1816
1817 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1818 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1819
1820 /*
1821 * Try to allocate a partial slab from a specific node.
1822 */
1823 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1824 struct kmem_cache_cpu *c, gfp_t flags)
1825 {
1826 struct page *page, *page2;
1827 void *object = NULL;
1828 int available = 0;
1829 int objects;
1830
1831 /*
1832 * Racy check. If we mistakenly see no partial slabs then we
1833 * just allocate an empty slab. If we mistakenly try to get a
1834 * partial slab and there is none available then get_partials()
1835 * will return NULL.
1836 */
1837 if (!n || !n->nr_partial)
1838 return NULL;
1839
1840 spin_lock(&n->list_lock);
1841 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1842 void *t;
1843
1844 if (!pfmemalloc_match(page, flags))
1845 continue;
1846
1847 t = acquire_slab(s, n, page, object == NULL, &objects);
1848 if (!t)
1849 break;
1850
1851 available += objects;
1852 if (!object) {
1853 c->page = page;
1854 stat(s, ALLOC_FROM_PARTIAL);
1855 object = t;
1856 } else {
1857 put_cpu_partial(s, page, 0);
1858 stat(s, CPU_PARTIAL_NODE);
1859 }
1860 if (!kmem_cache_has_cpu_partial(s)
1861 || available > slub_cpu_partial(s) / 2)
1862 break;
1863
1864 }
1865 spin_unlock(&n->list_lock);
1866 return object;
1867 }
1868
1869 /*
1870 * Get a page from somewhere. Search in increasing NUMA distances.
1871 */
1872 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1873 struct kmem_cache_cpu *c)
1874 {
1875 #ifdef CONFIG_NUMA
1876 struct zonelist *zonelist;
1877 struct zoneref *z;
1878 struct zone *zone;
1879 enum zone_type high_zoneidx = gfp_zone(flags);
1880 void *object;
1881 unsigned int cpuset_mems_cookie;
1882
1883 /*
1884 * The defrag ratio allows a configuration of the tradeoffs between
1885 * inter node defragmentation and node local allocations. A lower
1886 * defrag_ratio increases the tendency to do local allocations
1887 * instead of attempting to obtain partial slabs from other nodes.
1888 *
1889 * If the defrag_ratio is set to 0 then kmalloc() always
1890 * returns node local objects. If the ratio is higher then kmalloc()
1891 * may return off node objects because partial slabs are obtained
1892 * from other nodes and filled up.
1893 *
1894 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1895 * (which makes defrag_ratio = 1000) then every (well almost)
1896 * allocation will first attempt to defrag slab caches on other nodes.
1897 * This means scanning over all nodes to look for partial slabs which
1898 * may be expensive if we do it every time we are trying to find a slab
1899 * with available objects.
1900 */
1901 if (!s->remote_node_defrag_ratio ||
1902 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1903 return NULL;
1904
1905 do {
1906 cpuset_mems_cookie = read_mems_allowed_begin();
1907 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1908 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1909 struct kmem_cache_node *n;
1910
1911 n = get_node(s, zone_to_nid(zone));
1912
1913 if (n && cpuset_zone_allowed(zone, flags) &&
1914 n->nr_partial > s->min_partial) {
1915 object = get_partial_node(s, n, c, flags);
1916 if (object) {
1917 /*
1918 * Don't check read_mems_allowed_retry()
1919 * here - if mems_allowed was updated in
1920 * parallel, that was a harmless race
1921 * between allocation and the cpuset
1922 * update
1923 */
1924 return object;
1925 }
1926 }
1927 }
1928 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1929 #endif
1930 return NULL;
1931 }
1932
1933 /*
1934 * Get a partial page, lock it and return it.
1935 */
1936 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1937 struct kmem_cache_cpu *c)
1938 {
1939 void *object;
1940 int searchnode = node;
1941
1942 if (node == NUMA_NO_NODE)
1943 searchnode = numa_mem_id();
1944 else if (!node_present_pages(node))
1945 searchnode = node_to_mem_node(node);
1946
1947 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1948 if (object || node != NUMA_NO_NODE)
1949 return object;
1950
1951 return get_any_partial(s, flags, c);
1952 }
1953
1954 #ifdef CONFIG_PREEMPT
1955 /*
1956 * Calculate the next globally unique transaction for disambiguiation
1957 * during cmpxchg. The transactions start with the cpu number and are then
1958 * incremented by CONFIG_NR_CPUS.
1959 */
1960 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1961 #else
1962 /*
1963 * No preemption supported therefore also no need to check for
1964 * different cpus.
1965 */
1966 #define TID_STEP 1
1967 #endif
1968
1969 static inline unsigned long next_tid(unsigned long tid)
1970 {
1971 return tid + TID_STEP;
1972 }
1973
1974 static inline unsigned int tid_to_cpu(unsigned long tid)
1975 {
1976 return tid % TID_STEP;
1977 }
1978
1979 static inline unsigned long tid_to_event(unsigned long tid)
1980 {
1981 return tid / TID_STEP;
1982 }
1983
1984 static inline unsigned int init_tid(int cpu)
1985 {
1986 return cpu;
1987 }
1988
1989 static inline void note_cmpxchg_failure(const char *n,
1990 const struct kmem_cache *s, unsigned long tid)
1991 {
1992 #ifdef SLUB_DEBUG_CMPXCHG
1993 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1994
1995 pr_info("%s %s: cmpxchg redo ", n, s->name);
1996
1997 #ifdef CONFIG_PREEMPT
1998 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1999 pr_warn("due to cpu change %d -> %d\n",
2000 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2001 else
2002 #endif
2003 if (tid_to_event(tid) != tid_to_event(actual_tid))
2004 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2005 tid_to_event(tid), tid_to_event(actual_tid));
2006 else
2007 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2008 actual_tid, tid, next_tid(tid));
2009 #endif
2010 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2011 }
2012
2013 static void init_kmem_cache_cpus(struct kmem_cache *s)
2014 {
2015 int cpu;
2016
2017 for_each_possible_cpu(cpu)
2018 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2019 }
2020
2021 /*
2022 * Remove the cpu slab
2023 */
2024 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2025 void *freelist, struct kmem_cache_cpu *c)
2026 {
2027 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2028 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2029 int lock = 0;
2030 enum slab_modes l = M_NONE, m = M_NONE;
2031 void *nextfree;
2032 int tail = DEACTIVATE_TO_HEAD;
2033 struct page new;
2034 struct page old;
2035
2036 if (page->freelist) {
2037 stat(s, DEACTIVATE_REMOTE_FREES);
2038 tail = DEACTIVATE_TO_TAIL;
2039 }
2040
2041 /*
2042 * Stage one: Free all available per cpu objects back
2043 * to the page freelist while it is still frozen. Leave the
2044 * last one.
2045 *
2046 * There is no need to take the list->lock because the page
2047 * is still frozen.
2048 */
2049 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2050 void *prior;
2051 unsigned long counters;
2052
2053 do {
2054 prior = page->freelist;
2055 counters = page->counters;
2056 set_freepointer(s, freelist, prior);
2057 new.counters = counters;
2058 new.inuse--;
2059 VM_BUG_ON(!new.frozen);
2060
2061 } while (!__cmpxchg_double_slab(s, page,
2062 prior, counters,
2063 freelist, new.counters,
2064 "drain percpu freelist"));
2065
2066 freelist = nextfree;
2067 }
2068
2069 /*
2070 * Stage two: Ensure that the page is unfrozen while the
2071 * list presence reflects the actual number of objects
2072 * during unfreeze.
2073 *
2074 * We setup the list membership and then perform a cmpxchg
2075 * with the count. If there is a mismatch then the page
2076 * is not unfrozen but the page is on the wrong list.
2077 *
2078 * Then we restart the process which may have to remove
2079 * the page from the list that we just put it on again
2080 * because the number of objects in the slab may have
2081 * changed.
2082 */
2083 redo:
2084
2085 old.freelist = page->freelist;
2086 old.counters = page->counters;
2087 VM_BUG_ON(!old.frozen);
2088
2089 /* Determine target state of the slab */
2090 new.counters = old.counters;
2091 if (freelist) {
2092 new.inuse--;
2093 set_freepointer(s, freelist, old.freelist);
2094 new.freelist = freelist;
2095 } else
2096 new.freelist = old.freelist;
2097
2098 new.frozen = 0;
2099
2100 if (!new.inuse && n->nr_partial >= s->min_partial)
2101 m = M_FREE;
2102 else if (new.freelist) {
2103 m = M_PARTIAL;
2104 if (!lock) {
2105 lock = 1;
2106 /*
2107 * Taking the spinlock removes the possiblity
2108 * that acquire_slab() will see a slab page that
2109 * is frozen
2110 */
2111 spin_lock(&n->list_lock);
2112 }
2113 } else {
2114 m = M_FULL;
2115 if (kmem_cache_debug(s) && !lock) {
2116 lock = 1;
2117 /*
2118 * This also ensures that the scanning of full
2119 * slabs from diagnostic functions will not see
2120 * any frozen slabs.
2121 */
2122 spin_lock(&n->list_lock);
2123 }
2124 }
2125
2126 if (l != m) {
2127
2128 if (l == M_PARTIAL)
2129
2130 remove_partial(n, page);
2131
2132 else if (l == M_FULL)
2133
2134 remove_full(s, n, page);
2135
2136 if (m == M_PARTIAL) {
2137
2138 add_partial(n, page, tail);
2139 stat(s, tail);
2140
2141 } else if (m == M_FULL) {
2142
2143 stat(s, DEACTIVATE_FULL);
2144 add_full(s, n, page);
2145
2146 }
2147 }
2148
2149 l = m;
2150 if (!__cmpxchg_double_slab(s, page,
2151 old.freelist, old.counters,
2152 new.freelist, new.counters,
2153 "unfreezing slab"))
2154 goto redo;
2155
2156 if (lock)
2157 spin_unlock(&n->list_lock);
2158
2159 if (m == M_FREE) {
2160 stat(s, DEACTIVATE_EMPTY);
2161 discard_slab(s, page);
2162 stat(s, FREE_SLAB);
2163 }
2164
2165 c->page = NULL;
2166 c->freelist = NULL;
2167 }
2168
2169 /*
2170 * Unfreeze all the cpu partial slabs.
2171 *
2172 * This function must be called with interrupts disabled
2173 * for the cpu using c (or some other guarantee must be there
2174 * to guarantee no concurrent accesses).
2175 */
2176 static void unfreeze_partials(struct kmem_cache *s,
2177 struct kmem_cache_cpu *c)
2178 {
2179 #ifdef CONFIG_SLUB_CPU_PARTIAL
2180 struct kmem_cache_node *n = NULL, *n2 = NULL;
2181 struct page *page, *discard_page = NULL;
2182
2183 while ((page = c->partial)) {
2184 struct page new;
2185 struct page old;
2186
2187 c->partial = page->next;
2188
2189 n2 = get_node(s, page_to_nid(page));
2190 if (n != n2) {
2191 if (n)
2192 spin_unlock(&n->list_lock);
2193
2194 n = n2;
2195 spin_lock(&n->list_lock);
2196 }
2197
2198 do {
2199
2200 old.freelist = page->freelist;
2201 old.counters = page->counters;
2202 VM_BUG_ON(!old.frozen);
2203
2204 new.counters = old.counters;
2205 new.freelist = old.freelist;
2206
2207 new.frozen = 0;
2208
2209 } while (!__cmpxchg_double_slab(s, page,
2210 old.freelist, old.counters,
2211 new.freelist, new.counters,
2212 "unfreezing slab"));
2213
2214 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2215 page->next = discard_page;
2216 discard_page = page;
2217 } else {
2218 add_partial(n, page, DEACTIVATE_TO_TAIL);
2219 stat(s, FREE_ADD_PARTIAL);
2220 }
2221 }
2222
2223 if (n)
2224 spin_unlock(&n->list_lock);
2225
2226 while (discard_page) {
2227 page = discard_page;
2228 discard_page = discard_page->next;
2229
2230 stat(s, DEACTIVATE_EMPTY);
2231 discard_slab(s, page);
2232 stat(s, FREE_SLAB);
2233 }
2234 #endif
2235 }
2236
2237 /*
2238 * Put a page that was just frozen (in __slab_free) into a partial page
2239 * slot if available. This is done without interrupts disabled and without
2240 * preemption disabled. The cmpxchg is racy and may put the partial page
2241 * onto a random cpus partial slot.
2242 *
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2245 */
2246 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2247 {
2248 #ifdef CONFIG_SLUB_CPU_PARTIAL
2249 struct page *oldpage;
2250 int pages;
2251 int pobjects;
2252
2253 preempt_disable();
2254 do {
2255 pages = 0;
2256 pobjects = 0;
2257 oldpage = this_cpu_read(s->cpu_slab->partial);
2258
2259 if (oldpage) {
2260 pobjects = oldpage->pobjects;
2261 pages = oldpage->pages;
2262 if (drain && pobjects > s->cpu_partial) {
2263 unsigned long flags;
2264 /*
2265 * partial array is full. Move the existing
2266 * set to the per node partial list.
2267 */
2268 local_irq_save(flags);
2269 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270 local_irq_restore(flags);
2271 oldpage = NULL;
2272 pobjects = 0;
2273 pages = 0;
2274 stat(s, CPU_PARTIAL_DRAIN);
2275 }
2276 }
2277
2278 pages++;
2279 pobjects += page->objects - page->inuse;
2280
2281 page->pages = pages;
2282 page->pobjects = pobjects;
2283 page->next = oldpage;
2284
2285 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286 != oldpage);
2287 if (unlikely(!s->cpu_partial)) {
2288 unsigned long flags;
2289
2290 local_irq_save(flags);
2291 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292 local_irq_restore(flags);
2293 }
2294 preempt_enable();
2295 #endif
2296 }
2297
2298 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2299 {
2300 stat(s, CPUSLAB_FLUSH);
2301 deactivate_slab(s, c->page, c->freelist, c);
2302
2303 c->tid = next_tid(c->tid);
2304 }
2305
2306 /*
2307 * Flush cpu slab.
2308 *
2309 * Called from IPI handler with interrupts disabled.
2310 */
2311 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2312 {
2313 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2314
2315 if (likely(c)) {
2316 if (c->page)
2317 flush_slab(s, c);
2318
2319 unfreeze_partials(s, c);
2320 }
2321 }
2322
2323 static void flush_cpu_slab(void *d)
2324 {
2325 struct kmem_cache *s = d;
2326
2327 __flush_cpu_slab(s, smp_processor_id());
2328 }
2329
2330 static bool has_cpu_slab(int cpu, void *info)
2331 {
2332 struct kmem_cache *s = info;
2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2334
2335 return c->page || slub_percpu_partial(c);
2336 }
2337
2338 static void flush_all(struct kmem_cache *s)
2339 {
2340 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2341 }
2342
2343 /*
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2345 * necessary.
2346 */
2347 static int slub_cpu_dead(unsigned int cpu)
2348 {
2349 struct kmem_cache *s;
2350 unsigned long flags;
2351
2352 mutex_lock(&slab_mutex);
2353 list_for_each_entry(s, &slab_caches, list) {
2354 local_irq_save(flags);
2355 __flush_cpu_slab(s, cpu);
2356 local_irq_restore(flags);
2357 }
2358 mutex_unlock(&slab_mutex);
2359 return 0;
2360 }
2361
2362 /*
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2365 */
2366 static inline int node_match(struct page *page, int node)
2367 {
2368 #ifdef CONFIG_NUMA
2369 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370 return 0;
2371 #endif
2372 return 1;
2373 }
2374
2375 #ifdef CONFIG_SLUB_DEBUG
2376 static int count_free(struct page *page)
2377 {
2378 return page->objects - page->inuse;
2379 }
2380
2381 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2382 {
2383 return atomic_long_read(&n->total_objects);
2384 }
2385 #endif /* CONFIG_SLUB_DEBUG */
2386
2387 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388 static unsigned long count_partial(struct kmem_cache_node *n,
2389 int (*get_count)(struct page *))
2390 {
2391 unsigned long flags;
2392 unsigned long x = 0;
2393 struct page *page;
2394
2395 spin_lock_irqsave(&n->list_lock, flags);
2396 list_for_each_entry(page, &n->partial, lru)
2397 x += get_count(page);
2398 spin_unlock_irqrestore(&n->list_lock, flags);
2399 return x;
2400 }
2401 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2402
2403 static noinline void
2404 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2405 {
2406 #ifdef CONFIG_SLUB_DEBUG
2407 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408 DEFAULT_RATELIMIT_BURST);
2409 int node;
2410 struct kmem_cache_node *n;
2411
2412 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413 return;
2414
2415 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416 nid, gfpflags, &gfpflags);
2417 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2418 s->name, s->object_size, s->size, oo_order(s->oo),
2419 oo_order(s->min));
2420
2421 if (oo_order(s->min) > get_order(s->object_size))
2422 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2423 s->name);
2424
2425 for_each_kmem_cache_node(s, node, n) {
2426 unsigned long nr_slabs;
2427 unsigned long nr_objs;
2428 unsigned long nr_free;
2429
2430 nr_free = count_partial(n, count_free);
2431 nr_slabs = node_nr_slabs(n);
2432 nr_objs = node_nr_objs(n);
2433
2434 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435 node, nr_slabs, nr_objs, nr_free);
2436 }
2437 #endif
2438 }
2439
2440 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441 int node, struct kmem_cache_cpu **pc)
2442 {
2443 void *freelist;
2444 struct kmem_cache_cpu *c = *pc;
2445 struct page *page;
2446
2447 freelist = get_partial(s, flags, node, c);
2448
2449 if (freelist)
2450 return freelist;
2451
2452 page = new_slab(s, flags, node);
2453 if (page) {
2454 c = raw_cpu_ptr(s->cpu_slab);
2455 if (c->page)
2456 flush_slab(s, c);
2457
2458 /*
2459 * No other reference to the page yet so we can
2460 * muck around with it freely without cmpxchg
2461 */
2462 freelist = page->freelist;
2463 page->freelist = NULL;
2464
2465 stat(s, ALLOC_SLAB);
2466 c->page = page;
2467 *pc = c;
2468 } else
2469 freelist = NULL;
2470
2471 return freelist;
2472 }
2473
2474 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2475 {
2476 if (unlikely(PageSlabPfmemalloc(page)))
2477 return gfp_pfmemalloc_allowed(gfpflags);
2478
2479 return true;
2480 }
2481
2482 /*
2483 * Check the page->freelist of a page and either transfer the freelist to the
2484 * per cpu freelist or deactivate the page.
2485 *
2486 * The page is still frozen if the return value is not NULL.
2487 *
2488 * If this function returns NULL then the page has been unfrozen.
2489 *
2490 * This function must be called with interrupt disabled.
2491 */
2492 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2493 {
2494 struct page new;
2495 unsigned long counters;
2496 void *freelist;
2497
2498 do {
2499 freelist = page->freelist;
2500 counters = page->counters;
2501
2502 new.counters = counters;
2503 VM_BUG_ON(!new.frozen);
2504
2505 new.inuse = page->objects;
2506 new.frozen = freelist != NULL;
2507
2508 } while (!__cmpxchg_double_slab(s, page,
2509 freelist, counters,
2510 NULL, new.counters,
2511 "get_freelist"));
2512
2513 return freelist;
2514 }
2515
2516 /*
2517 * Slow path. The lockless freelist is empty or we need to perform
2518 * debugging duties.
2519 *
2520 * Processing is still very fast if new objects have been freed to the
2521 * regular freelist. In that case we simply take over the regular freelist
2522 * as the lockless freelist and zap the regular freelist.
2523 *
2524 * If that is not working then we fall back to the partial lists. We take the
2525 * first element of the freelist as the object to allocate now and move the
2526 * rest of the freelist to the lockless freelist.
2527 *
2528 * And if we were unable to get a new slab from the partial slab lists then
2529 * we need to allocate a new slab. This is the slowest path since it involves
2530 * a call to the page allocator and the setup of a new slab.
2531 *
2532 * Version of __slab_alloc to use when we know that interrupts are
2533 * already disabled (which is the case for bulk allocation).
2534 */
2535 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536 unsigned long addr, struct kmem_cache_cpu *c)
2537 {
2538 void *freelist;
2539 struct page *page;
2540
2541 page = c->page;
2542 if (!page)
2543 goto new_slab;
2544 redo:
2545
2546 if (unlikely(!node_match(page, node))) {
2547 int searchnode = node;
2548
2549 if (node != NUMA_NO_NODE && !node_present_pages(node))
2550 searchnode = node_to_mem_node(node);
2551
2552 if (unlikely(!node_match(page, searchnode))) {
2553 stat(s, ALLOC_NODE_MISMATCH);
2554 deactivate_slab(s, page, c->freelist, c);
2555 goto new_slab;
2556 }
2557 }
2558
2559 /*
2560 * By rights, we should be searching for a slab page that was
2561 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562 * information when the page leaves the per-cpu allocator
2563 */
2564 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565 deactivate_slab(s, page, c->freelist, c);
2566 goto new_slab;
2567 }
2568
2569 /* must check again c->freelist in case of cpu migration or IRQ */
2570 freelist = c->freelist;
2571 if (freelist)
2572 goto load_freelist;
2573
2574 freelist = get_freelist(s, page);
2575
2576 if (!freelist) {
2577 c->page = NULL;
2578 stat(s, DEACTIVATE_BYPASS);
2579 goto new_slab;
2580 }
2581
2582 stat(s, ALLOC_REFILL);
2583
2584 load_freelist:
2585 /*
2586 * freelist is pointing to the list of objects to be used.
2587 * page is pointing to the page from which the objects are obtained.
2588 * That page must be frozen for per cpu allocations to work.
2589 */
2590 VM_BUG_ON(!c->page->frozen);
2591 c->freelist = get_freepointer(s, freelist);
2592 c->tid = next_tid(c->tid);
2593 return freelist;
2594
2595 new_slab:
2596
2597 if (slub_percpu_partial(c)) {
2598 page = c->page = slub_percpu_partial(c);
2599 slub_set_percpu_partial(c, page);
2600 stat(s, CPU_PARTIAL_ALLOC);
2601 goto redo;
2602 }
2603
2604 freelist = new_slab_objects(s, gfpflags, node, &c);
2605
2606 if (unlikely(!freelist)) {
2607 slab_out_of_memory(s, gfpflags, node);
2608 return NULL;
2609 }
2610
2611 page = c->page;
2612 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613 goto load_freelist;
2614
2615 /* Only entered in the debug case */
2616 if (kmem_cache_debug(s) &&
2617 !alloc_debug_processing(s, page, freelist, addr))
2618 goto new_slab; /* Slab failed checks. Next slab needed */
2619
2620 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2621 return freelist;
2622 }
2623
2624 /*
2625 * Another one that disabled interrupt and compensates for possible
2626 * cpu changes by refetching the per cpu area pointer.
2627 */
2628 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2629 unsigned long addr, struct kmem_cache_cpu *c)
2630 {
2631 void *p;
2632 unsigned long flags;
2633
2634 local_irq_save(flags);
2635 #ifdef CONFIG_PREEMPT
2636 /*
2637 * We may have been preempted and rescheduled on a different
2638 * cpu before disabling interrupts. Need to reload cpu area
2639 * pointer.
2640 */
2641 c = this_cpu_ptr(s->cpu_slab);
2642 #endif
2643
2644 p = ___slab_alloc(s, gfpflags, node, addr, c);
2645 local_irq_restore(flags);
2646 return p;
2647 }
2648
2649 /*
2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651 * have the fastpath folded into their functions. So no function call
2652 * overhead for requests that can be satisfied on the fastpath.
2653 *
2654 * The fastpath works by first checking if the lockless freelist can be used.
2655 * If not then __slab_alloc is called for slow processing.
2656 *
2657 * Otherwise we can simply pick the next object from the lockless free list.
2658 */
2659 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660 gfp_t gfpflags, int node, unsigned long addr)
2661 {
2662 void *object;
2663 struct kmem_cache_cpu *c;
2664 struct page *page;
2665 unsigned long tid;
2666
2667 s = slab_pre_alloc_hook(s, gfpflags);
2668 if (!s)
2669 return NULL;
2670 redo:
2671 /*
2672 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673 * enabled. We may switch back and forth between cpus while
2674 * reading from one cpu area. That does not matter as long
2675 * as we end up on the original cpu again when doing the cmpxchg.
2676 *
2677 * We should guarantee that tid and kmem_cache are retrieved on
2678 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679 * to check if it is matched or not.
2680 */
2681 do {
2682 tid = this_cpu_read(s->cpu_slab->tid);
2683 c = raw_cpu_ptr(s->cpu_slab);
2684 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2685 unlikely(tid != READ_ONCE(c->tid)));
2686
2687 /*
2688 * Irqless object alloc/free algorithm used here depends on sequence
2689 * of fetching cpu_slab's data. tid should be fetched before anything
2690 * on c to guarantee that object and page associated with previous tid
2691 * won't be used with current tid. If we fetch tid first, object and
2692 * page could be one associated with next tid and our alloc/free
2693 * request will be failed. In this case, we will retry. So, no problem.
2694 */
2695 barrier();
2696
2697 /*
2698 * The transaction ids are globally unique per cpu and per operation on
2699 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700 * occurs on the right processor and that there was no operation on the
2701 * linked list in between.
2702 */
2703
2704 object = c->freelist;
2705 page = c->page;
2706 if (unlikely(!object || !node_match(page, node))) {
2707 object = __slab_alloc(s, gfpflags, node, addr, c);
2708 stat(s, ALLOC_SLOWPATH);
2709 } else {
2710 void *next_object = get_freepointer_safe(s, object);
2711
2712 /*
2713 * The cmpxchg will only match if there was no additional
2714 * operation and if we are on the right processor.
2715 *
2716 * The cmpxchg does the following atomically (without lock
2717 * semantics!)
2718 * 1. Relocate first pointer to the current per cpu area.
2719 * 2. Verify that tid and freelist have not been changed
2720 * 3. If they were not changed replace tid and freelist
2721 *
2722 * Since this is without lock semantics the protection is only
2723 * against code executing on this cpu *not* from access by
2724 * other cpus.
2725 */
2726 if (unlikely(!this_cpu_cmpxchg_double(
2727 s->cpu_slab->freelist, s->cpu_slab->tid,
2728 object, tid,
2729 next_object, next_tid(tid)))) {
2730
2731 note_cmpxchg_failure("slab_alloc", s, tid);
2732 goto redo;
2733 }
2734 prefetch_freepointer(s, next_object);
2735 stat(s, ALLOC_FASTPATH);
2736 }
2737
2738 if (unlikely(gfpflags & __GFP_ZERO) && object)
2739 memset(object, 0, s->object_size);
2740
2741 slab_post_alloc_hook(s, gfpflags, 1, &object);
2742
2743 return object;
2744 }
2745
2746 static __always_inline void *slab_alloc(struct kmem_cache *s,
2747 gfp_t gfpflags, unsigned long addr)
2748 {
2749 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2750 }
2751
2752 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2753 {
2754 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2755
2756 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2757 s->size, gfpflags);
2758
2759 return ret;
2760 }
2761 EXPORT_SYMBOL(kmem_cache_alloc);
2762
2763 #ifdef CONFIG_TRACING
2764 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2765 {
2766 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768 kasan_kmalloc(s, ret, size, gfpflags);
2769 return ret;
2770 }
2771 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2772 #endif
2773
2774 #ifdef CONFIG_NUMA
2775 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2776 {
2777 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2778
2779 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780 s->object_size, s->size, gfpflags, node);
2781
2782 return ret;
2783 }
2784 EXPORT_SYMBOL(kmem_cache_alloc_node);
2785
2786 #ifdef CONFIG_TRACING
2787 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2788 gfp_t gfpflags,
2789 int node, size_t size)
2790 {
2791 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2792
2793 trace_kmalloc_node(_RET_IP_, ret,
2794 size, s->size, gfpflags, node);
2795
2796 kasan_kmalloc(s, ret, size, gfpflags);
2797 return ret;
2798 }
2799 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2800 #endif
2801 #endif
2802
2803 /*
2804 * Slow path handling. This may still be called frequently since objects
2805 * have a longer lifetime than the cpu slabs in most processing loads.
2806 *
2807 * So we still attempt to reduce cache line usage. Just take the slab
2808 * lock and free the item. If there is no additional partial page
2809 * handling required then we can return immediately.
2810 */
2811 static void __slab_free(struct kmem_cache *s, struct page *page,
2812 void *head, void *tail, int cnt,
2813 unsigned long addr)
2814
2815 {
2816 void *prior;
2817 int was_frozen;
2818 struct page new;
2819 unsigned long counters;
2820 struct kmem_cache_node *n = NULL;
2821 unsigned long uninitialized_var(flags);
2822
2823 stat(s, FREE_SLOWPATH);
2824
2825 if (kmem_cache_debug(s) &&
2826 !free_debug_processing(s, page, head, tail, cnt, addr))
2827 return;
2828
2829 do {
2830 if (unlikely(n)) {
2831 spin_unlock_irqrestore(&n->list_lock, flags);
2832 n = NULL;
2833 }
2834 prior = page->freelist;
2835 counters = page->counters;
2836 set_freepointer(s, tail, prior);
2837 new.counters = counters;
2838 was_frozen = new.frozen;
2839 new.inuse -= cnt;
2840 if ((!new.inuse || !prior) && !was_frozen) {
2841
2842 if (kmem_cache_has_cpu_partial(s) && !prior) {
2843
2844 /*
2845 * Slab was on no list before and will be
2846 * partially empty
2847 * We can defer the list move and instead
2848 * freeze it.
2849 */
2850 new.frozen = 1;
2851
2852 } else { /* Needs to be taken off a list */
2853
2854 n = get_node(s, page_to_nid(page));
2855 /*
2856 * Speculatively acquire the list_lock.
2857 * If the cmpxchg does not succeed then we may
2858 * drop the list_lock without any processing.
2859 *
2860 * Otherwise the list_lock will synchronize with
2861 * other processors updating the list of slabs.
2862 */
2863 spin_lock_irqsave(&n->list_lock, flags);
2864
2865 }
2866 }
2867
2868 } while (!cmpxchg_double_slab(s, page,
2869 prior, counters,
2870 head, new.counters,
2871 "__slab_free"));
2872
2873 if (likely(!n)) {
2874
2875 /*
2876 * If we just froze the page then put it onto the
2877 * per cpu partial list.
2878 */
2879 if (new.frozen && !was_frozen) {
2880 put_cpu_partial(s, page, 1);
2881 stat(s, CPU_PARTIAL_FREE);
2882 }
2883 /*
2884 * The list lock was not taken therefore no list
2885 * activity can be necessary.
2886 */
2887 if (was_frozen)
2888 stat(s, FREE_FROZEN);
2889 return;
2890 }
2891
2892 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893 goto slab_empty;
2894
2895 /*
2896 * Objects left in the slab. If it was not on the partial list before
2897 * then add it.
2898 */
2899 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2900 if (kmem_cache_debug(s))
2901 remove_full(s, n, page);
2902 add_partial(n, page, DEACTIVATE_TO_TAIL);
2903 stat(s, FREE_ADD_PARTIAL);
2904 }
2905 spin_unlock_irqrestore(&n->list_lock, flags);
2906 return;
2907
2908 slab_empty:
2909 if (prior) {
2910 /*
2911 * Slab on the partial list.
2912 */
2913 remove_partial(n, page);
2914 stat(s, FREE_REMOVE_PARTIAL);
2915 } else {
2916 /* Slab must be on the full list */
2917 remove_full(s, n, page);
2918 }
2919
2920 spin_unlock_irqrestore(&n->list_lock, flags);
2921 stat(s, FREE_SLAB);
2922 discard_slab(s, page);
2923 }
2924
2925 /*
2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927 * can perform fastpath freeing without additional function calls.
2928 *
2929 * The fastpath is only possible if we are freeing to the current cpu slab
2930 * of this processor. This typically the case if we have just allocated
2931 * the item before.
2932 *
2933 * If fastpath is not possible then fall back to __slab_free where we deal
2934 * with all sorts of special processing.
2935 *
2936 * Bulk free of a freelist with several objects (all pointing to the
2937 * same page) possible by specifying head and tail ptr, plus objects
2938 * count (cnt). Bulk free indicated by tail pointer being set.
2939 */
2940 static __always_inline void do_slab_free(struct kmem_cache *s,
2941 struct page *page, void *head, void *tail,
2942 int cnt, unsigned long addr)
2943 {
2944 void *tail_obj = tail ? : head;
2945 struct kmem_cache_cpu *c;
2946 unsigned long tid;
2947 redo:
2948 /*
2949 * Determine the currently cpus per cpu slab.
2950 * The cpu may change afterward. However that does not matter since
2951 * data is retrieved via this pointer. If we are on the same cpu
2952 * during the cmpxchg then the free will succeed.
2953 */
2954 do {
2955 tid = this_cpu_read(s->cpu_slab->tid);
2956 c = raw_cpu_ptr(s->cpu_slab);
2957 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2958 unlikely(tid != READ_ONCE(c->tid)));
2959
2960 /* Same with comment on barrier() in slab_alloc_node() */
2961 barrier();
2962
2963 if (likely(page == c->page)) {
2964 set_freepointer(s, tail_obj, c->freelist);
2965
2966 if (unlikely(!this_cpu_cmpxchg_double(
2967 s->cpu_slab->freelist, s->cpu_slab->tid,
2968 c->freelist, tid,
2969 head, next_tid(tid)))) {
2970
2971 note_cmpxchg_failure("slab_free", s, tid);
2972 goto redo;
2973 }
2974 stat(s, FREE_FASTPATH);
2975 } else
2976 __slab_free(s, page, head, tail_obj, cnt, addr);
2977
2978 }
2979
2980 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2981 void *head, void *tail, int cnt,
2982 unsigned long addr)
2983 {
2984 slab_free_freelist_hook(s, head, tail);
2985 /*
2986 * slab_free_freelist_hook() could have put the items into quarantine.
2987 * If so, no need to free them.
2988 */
2989 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2990 return;
2991 do_slab_free(s, page, head, tail, cnt, addr);
2992 }
2993
2994 #ifdef CONFIG_KASAN
2995 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2996 {
2997 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2998 }
2999 #endif
3000
3001 void kmem_cache_free(struct kmem_cache *s, void *x)
3002 {
3003 s = cache_from_obj(s, x);
3004 if (!s)
3005 return;
3006 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3007 trace_kmem_cache_free(_RET_IP_, x);
3008 }
3009 EXPORT_SYMBOL(kmem_cache_free);
3010
3011 struct detached_freelist {
3012 struct page *page;
3013 void *tail;
3014 void *freelist;
3015 int cnt;
3016 struct kmem_cache *s;
3017 };
3018
3019 /*
3020 * This function progressively scans the array with free objects (with
3021 * a limited look ahead) and extract objects belonging to the same
3022 * page. It builds a detached freelist directly within the given
3023 * page/objects. This can happen without any need for
3024 * synchronization, because the objects are owned by running process.
3025 * The freelist is build up as a single linked list in the objects.
3026 * The idea is, that this detached freelist can then be bulk
3027 * transferred to the real freelist(s), but only requiring a single
3028 * synchronization primitive. Look ahead in the array is limited due
3029 * to performance reasons.
3030 */
3031 static inline
3032 int build_detached_freelist(struct kmem_cache *s, size_t size,
3033 void **p, struct detached_freelist *df)
3034 {
3035 size_t first_skipped_index = 0;
3036 int lookahead = 3;
3037 void *object;
3038 struct page *page;
3039
3040 /* Always re-init detached_freelist */
3041 df->page = NULL;
3042
3043 do {
3044 object = p[--size];
3045 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3046 } while (!object && size);
3047
3048 if (!object)
3049 return 0;
3050
3051 page = virt_to_head_page(object);
3052 if (!s) {
3053 /* Handle kalloc'ed objects */
3054 if (unlikely(!PageSlab(page))) {
3055 BUG_ON(!PageCompound(page));
3056 kfree_hook(object);
3057 __free_pages(page, compound_order(page));
3058 p[size] = NULL; /* mark object processed */
3059 return size;
3060 }
3061 /* Derive kmem_cache from object */
3062 df->s = page->slab_cache;
3063 } else {
3064 df->s = cache_from_obj(s, object); /* Support for memcg */
3065 }
3066
3067 /* Start new detached freelist */
3068 df->page = page;
3069 set_freepointer(df->s, object, NULL);
3070 df->tail = object;
3071 df->freelist = object;
3072 p[size] = NULL; /* mark object processed */
3073 df->cnt = 1;
3074
3075 while (size) {
3076 object = p[--size];
3077 if (!object)
3078 continue; /* Skip processed objects */
3079
3080 /* df->page is always set at this point */
3081 if (df->page == virt_to_head_page(object)) {
3082 /* Opportunity build freelist */
3083 set_freepointer(df->s, object, df->freelist);
3084 df->freelist = object;
3085 df->cnt++;
3086 p[size] = NULL; /* mark object processed */
3087
3088 continue;
3089 }
3090
3091 /* Limit look ahead search */
3092 if (!--lookahead)
3093 break;
3094
3095 if (!first_skipped_index)
3096 first_skipped_index = size + 1;
3097 }
3098
3099 return first_skipped_index;
3100 }
3101
3102 /* Note that interrupts must be enabled when calling this function. */
3103 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3104 {
3105 if (WARN_ON(!size))
3106 return;
3107
3108 do {
3109 struct detached_freelist df;
3110
3111 size = build_detached_freelist(s, size, p, &df);
3112 if (!df.page)
3113 continue;
3114
3115 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3116 } while (likely(size));
3117 }
3118 EXPORT_SYMBOL(kmem_cache_free_bulk);
3119
3120 /* Note that interrupts must be enabled when calling this function. */
3121 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3122 void **p)
3123 {
3124 struct kmem_cache_cpu *c;
3125 int i;
3126
3127 /* memcg and kmem_cache debug support */
3128 s = slab_pre_alloc_hook(s, flags);
3129 if (unlikely(!s))
3130 return false;
3131 /*
3132 * Drain objects in the per cpu slab, while disabling local
3133 * IRQs, which protects against PREEMPT and interrupts
3134 * handlers invoking normal fastpath.
3135 */
3136 local_irq_disable();
3137 c = this_cpu_ptr(s->cpu_slab);
3138
3139 for (i = 0; i < size; i++) {
3140 void *object = c->freelist;
3141
3142 if (unlikely(!object)) {
3143 /*
3144 * Invoking slow path likely have side-effect
3145 * of re-populating per CPU c->freelist
3146 */
3147 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3148 _RET_IP_, c);
3149 if (unlikely(!p[i]))
3150 goto error;
3151
3152 c = this_cpu_ptr(s->cpu_slab);
3153 continue; /* goto for-loop */
3154 }
3155 c->freelist = get_freepointer(s, object);
3156 p[i] = object;
3157 }
3158 c->tid = next_tid(c->tid);
3159 local_irq_enable();
3160
3161 /* Clear memory outside IRQ disabled fastpath loop */
3162 if (unlikely(flags & __GFP_ZERO)) {
3163 int j;
3164
3165 for (j = 0; j < i; j++)
3166 memset(p[j], 0, s->object_size);
3167 }
3168
3169 /* memcg and kmem_cache debug support */
3170 slab_post_alloc_hook(s, flags, size, p);
3171 return i;
3172 error:
3173 local_irq_enable();
3174 slab_post_alloc_hook(s, flags, i, p);
3175 __kmem_cache_free_bulk(s, i, p);
3176 return 0;
3177 }
3178 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3179
3180
3181 /*
3182 * Object placement in a slab is made very easy because we always start at
3183 * offset 0. If we tune the size of the object to the alignment then we can
3184 * get the required alignment by putting one properly sized object after
3185 * another.
3186 *
3187 * Notice that the allocation order determines the sizes of the per cpu
3188 * caches. Each processor has always one slab available for allocations.
3189 * Increasing the allocation order reduces the number of times that slabs
3190 * must be moved on and off the partial lists and is therefore a factor in
3191 * locking overhead.
3192 */
3193
3194 /*
3195 * Mininum / Maximum order of slab pages. This influences locking overhead
3196 * and slab fragmentation. A higher order reduces the number of partial slabs
3197 * and increases the number of allocations possible without having to
3198 * take the list_lock.
3199 */
3200 static int slub_min_order;
3201 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3202 static int slub_min_objects;
3203
3204 /*
3205 * Calculate the order of allocation given an slab object size.
3206 *
3207 * The order of allocation has significant impact on performance and other
3208 * system components. Generally order 0 allocations should be preferred since
3209 * order 0 does not cause fragmentation in the page allocator. Larger objects
3210 * be problematic to put into order 0 slabs because there may be too much
3211 * unused space left. We go to a higher order if more than 1/16th of the slab
3212 * would be wasted.
3213 *
3214 * In order to reach satisfactory performance we must ensure that a minimum
3215 * number of objects is in one slab. Otherwise we may generate too much
3216 * activity on the partial lists which requires taking the list_lock. This is
3217 * less a concern for large slabs though which are rarely used.
3218 *
3219 * slub_max_order specifies the order where we begin to stop considering the
3220 * number of objects in a slab as critical. If we reach slub_max_order then
3221 * we try to keep the page order as low as possible. So we accept more waste
3222 * of space in favor of a small page order.
3223 *
3224 * Higher order allocations also allow the placement of more objects in a
3225 * slab and thereby reduce object handling overhead. If the user has
3226 * requested a higher mininum order then we start with that one instead of
3227 * the smallest order which will fit the object.
3228 */
3229 static inline int slab_order(int size, int min_objects,
3230 int max_order, int fract_leftover, int reserved)
3231 {
3232 int order;
3233 int rem;
3234 int min_order = slub_min_order;
3235
3236 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3237 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3238
3239 for (order = max(min_order, get_order(min_objects * size + reserved));
3240 order <= max_order; order++) {
3241
3242 unsigned long slab_size = PAGE_SIZE << order;
3243
3244 rem = (slab_size - reserved) % size;
3245
3246 if (rem <= slab_size / fract_leftover)
3247 break;
3248 }
3249
3250 return order;
3251 }
3252
3253 static inline int calculate_order(int size, int reserved)
3254 {
3255 int order;
3256 int min_objects;
3257 int fraction;
3258 int max_objects;
3259
3260 /*
3261 * Attempt to find best configuration for a slab. This
3262 * works by first attempting to generate a layout with
3263 * the best configuration and backing off gradually.
3264 *
3265 * First we increase the acceptable waste in a slab. Then
3266 * we reduce the minimum objects required in a slab.
3267 */
3268 min_objects = slub_min_objects;
3269 if (!min_objects)
3270 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3271 max_objects = order_objects(slub_max_order, size, reserved);
3272 min_objects = min(min_objects, max_objects);
3273
3274 while (min_objects > 1) {
3275 fraction = 16;
3276 while (fraction >= 4) {
3277 order = slab_order(size, min_objects,
3278 slub_max_order, fraction, reserved);
3279 if (order <= slub_max_order)
3280 return order;
3281 fraction /= 2;
3282 }
3283 min_objects--;
3284 }
3285
3286 /*
3287 * We were unable to place multiple objects in a slab. Now
3288 * lets see if we can place a single object there.
3289 */
3290 order = slab_order(size, 1, slub_max_order, 1, reserved);
3291 if (order <= slub_max_order)
3292 return order;
3293
3294 /*
3295 * Doh this slab cannot be placed using slub_max_order.
3296 */
3297 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3298 if (order < MAX_ORDER)
3299 return order;
3300 return -ENOSYS;
3301 }
3302
3303 static void
3304 init_kmem_cache_node(struct kmem_cache_node *n)
3305 {
3306 n->nr_partial = 0;
3307 spin_lock_init(&n->list_lock);
3308 INIT_LIST_HEAD(&n->partial);
3309 #ifdef CONFIG_SLUB_DEBUG
3310 atomic_long_set(&n->nr_slabs, 0);
3311 atomic_long_set(&n->total_objects, 0);
3312 INIT_LIST_HEAD(&n->full);
3313 #endif
3314 }
3315
3316 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3317 {
3318 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3320
3321 /*
3322 * Must align to double word boundary for the double cmpxchg
3323 * instructions to work; see __pcpu_double_call_return_bool().
3324 */
3325 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3326 2 * sizeof(void *));
3327
3328 if (!s->cpu_slab)
3329 return 0;
3330
3331 init_kmem_cache_cpus(s);
3332
3333 return 1;
3334 }
3335
3336 static struct kmem_cache *kmem_cache_node;
3337
3338 /*
3339 * No kmalloc_node yet so do it by hand. We know that this is the first
3340 * slab on the node for this slabcache. There are no concurrent accesses
3341 * possible.
3342 *
3343 * Note that this function only works on the kmem_cache_node
3344 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345 * memory on a fresh node that has no slab structures yet.
3346 */
3347 static void early_kmem_cache_node_alloc(int node)
3348 {
3349 struct page *page;
3350 struct kmem_cache_node *n;
3351
3352 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3353
3354 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3355
3356 BUG_ON(!page);
3357 if (page_to_nid(page) != node) {
3358 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3359 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3360 }
3361
3362 n = page->freelist;
3363 BUG_ON(!n);
3364 page->freelist = get_freepointer(kmem_cache_node, n);
3365 page->inuse = 1;
3366 page->frozen = 0;
3367 kmem_cache_node->node[node] = n;
3368 #ifdef CONFIG_SLUB_DEBUG
3369 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370 init_tracking(kmem_cache_node, n);
3371 #endif
3372 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3373 GFP_KERNEL);
3374 init_kmem_cache_node(n);
3375 inc_slabs_node(kmem_cache_node, node, page->objects);
3376
3377 /*
3378 * No locks need to be taken here as it has just been
3379 * initialized and there is no concurrent access.
3380 */
3381 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3382 }
3383
3384 static void free_kmem_cache_nodes(struct kmem_cache *s)
3385 {
3386 int node;
3387 struct kmem_cache_node *n;
3388
3389 for_each_kmem_cache_node(s, node, n) {
3390 s->node[node] = NULL;
3391 kmem_cache_free(kmem_cache_node, n);
3392 }
3393 }
3394
3395 void __kmem_cache_release(struct kmem_cache *s)
3396 {
3397 cache_random_seq_destroy(s);
3398 free_percpu(s->cpu_slab);
3399 free_kmem_cache_nodes(s);
3400 }
3401
3402 static int init_kmem_cache_nodes(struct kmem_cache *s)
3403 {
3404 int node;
3405
3406 for_each_node_state(node, N_NORMAL_MEMORY) {
3407 struct kmem_cache_node *n;
3408
3409 if (slab_state == DOWN) {
3410 early_kmem_cache_node_alloc(node);
3411 continue;
3412 }
3413 n = kmem_cache_alloc_node(kmem_cache_node,
3414 GFP_KERNEL, node);
3415
3416 if (!n) {
3417 free_kmem_cache_nodes(s);
3418 return 0;
3419 }
3420
3421 init_kmem_cache_node(n);
3422 s->node[node] = n;
3423 }
3424 return 1;
3425 }
3426
3427 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3428 {
3429 if (min < MIN_PARTIAL)
3430 min = MIN_PARTIAL;
3431 else if (min > MAX_PARTIAL)
3432 min = MAX_PARTIAL;
3433 s->min_partial = min;
3434 }
3435
3436 static void set_cpu_partial(struct kmem_cache *s)
3437 {
3438 #ifdef CONFIG_SLUB_CPU_PARTIAL
3439 /*
3440 * cpu_partial determined the maximum number of objects kept in the
3441 * per cpu partial lists of a processor.
3442 *
3443 * Per cpu partial lists mainly contain slabs that just have one
3444 * object freed. If they are used for allocation then they can be
3445 * filled up again with minimal effort. The slab will never hit the
3446 * per node partial lists and therefore no locking will be required.
3447 *
3448 * This setting also determines
3449 *
3450 * A) The number of objects from per cpu partial slabs dumped to the
3451 * per node list when we reach the limit.
3452 * B) The number of objects in cpu partial slabs to extract from the
3453 * per node list when we run out of per cpu objects. We only fetch
3454 * 50% to keep some capacity around for frees.
3455 */
3456 if (!kmem_cache_has_cpu_partial(s))
3457 s->cpu_partial = 0;
3458 else if (s->size >= PAGE_SIZE)
3459 s->cpu_partial = 2;
3460 else if (s->size >= 1024)
3461 s->cpu_partial = 6;
3462 else if (s->size >= 256)
3463 s->cpu_partial = 13;
3464 else
3465 s->cpu_partial = 30;
3466 #endif
3467 }
3468
3469 /*
3470 * calculate_sizes() determines the order and the distribution of data within
3471 * a slab object.
3472 */
3473 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3474 {
3475 unsigned long flags = s->flags;
3476 size_t size = s->object_size;
3477 int order;
3478
3479 /*
3480 * Round up object size to the next word boundary. We can only
3481 * place the free pointer at word boundaries and this determines
3482 * the possible location of the free pointer.
3483 */
3484 size = ALIGN(size, sizeof(void *));
3485
3486 #ifdef CONFIG_SLUB_DEBUG
3487 /*
3488 * Determine if we can poison the object itself. If the user of
3489 * the slab may touch the object after free or before allocation
3490 * then we should never poison the object itself.
3491 */
3492 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493 !s->ctor)
3494 s->flags |= __OBJECT_POISON;
3495 else
3496 s->flags &= ~__OBJECT_POISON;
3497
3498
3499 /*
3500 * If we are Redzoning then check if there is some space between the
3501 * end of the object and the free pointer. If not then add an
3502 * additional word to have some bytes to store Redzone information.
3503 */
3504 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3505 size += sizeof(void *);
3506 #endif
3507
3508 /*
3509 * With that we have determined the number of bytes in actual use
3510 * by the object. This is the potential offset to the free pointer.
3511 */
3512 s->inuse = size;
3513
3514 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515 s->ctor)) {
3516 /*
3517 * Relocate free pointer after the object if it is not
3518 * permitted to overwrite the first word of the object on
3519 * kmem_cache_free.
3520 *
3521 * This is the case if we do RCU, have a constructor or
3522 * destructor or are poisoning the objects.
3523 */
3524 s->offset = size;
3525 size += sizeof(void *);
3526 }
3527
3528 #ifdef CONFIG_SLUB_DEBUG
3529 if (flags & SLAB_STORE_USER)
3530 /*
3531 * Need to store information about allocs and frees after
3532 * the object.
3533 */
3534 size += 2 * sizeof(struct track);
3535 #endif
3536
3537 kasan_cache_create(s, &size, &s->flags);
3538 #ifdef CONFIG_SLUB_DEBUG
3539 if (flags & SLAB_RED_ZONE) {
3540 /*
3541 * Add some empty padding so that we can catch
3542 * overwrites from earlier objects rather than let
3543 * tracking information or the free pointer be
3544 * corrupted if a user writes before the start
3545 * of the object.
3546 */
3547 size += sizeof(void *);
3548
3549 s->red_left_pad = sizeof(void *);
3550 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3551 size += s->red_left_pad;
3552 }
3553 #endif
3554
3555 /*
3556 * SLUB stores one object immediately after another beginning from
3557 * offset 0. In order to align the objects we have to simply size
3558 * each object to conform to the alignment.
3559 */
3560 size = ALIGN(size, s->align);
3561 s->size = size;
3562 if (forced_order >= 0)
3563 order = forced_order;
3564 else
3565 order = calculate_order(size, s->reserved);
3566
3567 if (order < 0)
3568 return 0;
3569
3570 s->allocflags = 0;
3571 if (order)
3572 s->allocflags |= __GFP_COMP;
3573
3574 if (s->flags & SLAB_CACHE_DMA)
3575 s->allocflags |= GFP_DMA;
3576
3577 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3578 s->allocflags |= __GFP_RECLAIMABLE;
3579
3580 /*
3581 * Determine the number of objects per slab
3582 */
3583 s->oo = oo_make(order, size, s->reserved);
3584 s->min = oo_make(get_order(size), size, s->reserved);
3585 if (oo_objects(s->oo) > oo_objects(s->max))
3586 s->max = s->oo;
3587
3588 return !!oo_objects(s->oo);
3589 }
3590
3591 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3592 {
3593 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594 s->reserved = 0;
3595 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3596 s->random = get_random_long();
3597 #endif
3598
3599 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600 s->reserved = sizeof(struct rcu_head);
3601
3602 if (!calculate_sizes(s, -1))
3603 goto error;
3604 if (disable_higher_order_debug) {
3605 /*
3606 * Disable debugging flags that store metadata if the min slab
3607 * order increased.
3608 */
3609 if (get_order(s->size) > get_order(s->object_size)) {
3610 s->flags &= ~DEBUG_METADATA_FLAGS;
3611 s->offset = 0;
3612 if (!calculate_sizes(s, -1))
3613 goto error;
3614 }
3615 }
3616
3617 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620 /* Enable fast mode */
3621 s->flags |= __CMPXCHG_DOUBLE;
3622 #endif
3623
3624 /*
3625 * The larger the object size is, the more pages we want on the partial
3626 * list to avoid pounding the page allocator excessively.
3627 */
3628 set_min_partial(s, ilog2(s->size) / 2);
3629
3630 set_cpu_partial(s);
3631
3632 #ifdef CONFIG_NUMA
3633 s->remote_node_defrag_ratio = 1000;
3634 #endif
3635
3636 /* Initialize the pre-computed randomized freelist if slab is up */
3637 if (slab_state >= UP) {
3638 if (init_cache_random_seq(s))
3639 goto error;
3640 }
3641
3642 if (!init_kmem_cache_nodes(s))
3643 goto error;
3644
3645 if (alloc_kmem_cache_cpus(s))
3646 return 0;
3647
3648 free_kmem_cache_nodes(s);
3649 error:
3650 if (flags & SLAB_PANIC)
3651 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3652 s->name, (unsigned long)s->size, s->size,
3653 oo_order(s->oo), s->offset, flags);
3654 return -EINVAL;
3655 }
3656
3657 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3658 const char *text)
3659 {
3660 #ifdef CONFIG_SLUB_DEBUG
3661 void *addr = page_address(page);
3662 void *p;
3663 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3664 sizeof(long), GFP_ATOMIC);
3665 if (!map)
3666 return;
3667 slab_err(s, page, text, s->name);
3668 slab_lock(page);
3669
3670 get_map(s, page, map);
3671 for_each_object(p, s, addr, page->objects) {
3672
3673 if (!test_bit(slab_index(p, s, addr), map)) {
3674 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3675 print_tracking(s, p);
3676 }
3677 }
3678 slab_unlock(page);
3679 kfree(map);
3680 #endif
3681 }
3682
3683 /*
3684 * Attempt to free all partial slabs on a node.
3685 * This is called from __kmem_cache_shutdown(). We must take list_lock
3686 * because sysfs file might still access partial list after the shutdowning.
3687 */
3688 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3689 {
3690 LIST_HEAD(discard);
3691 struct page *page, *h;
3692
3693 BUG_ON(irqs_disabled());
3694 spin_lock_irq(&n->list_lock);
3695 list_for_each_entry_safe(page, h, &n->partial, lru) {
3696 if (!page->inuse) {
3697 remove_partial(n, page);
3698 list_add(&page->lru, &discard);
3699 } else {
3700 list_slab_objects(s, page,
3701 "Objects remaining in %s on __kmem_cache_shutdown()");
3702 }
3703 }
3704 spin_unlock_irq(&n->list_lock);
3705
3706 list_for_each_entry_safe(page, h, &discard, lru)
3707 discard_slab(s, page);
3708 }
3709
3710 /*
3711 * Release all resources used by a slab cache.
3712 */
3713 int __kmem_cache_shutdown(struct kmem_cache *s)
3714 {
3715 int node;
3716 struct kmem_cache_node *n;
3717
3718 flush_all(s);
3719 /* Attempt to free all objects */
3720 for_each_kmem_cache_node(s, node, n) {
3721 free_partial(s, n);
3722 if (n->nr_partial || slabs_node(s, node))
3723 return 1;
3724 }
3725 sysfs_slab_remove(s);
3726 return 0;
3727 }
3728
3729 /********************************************************************
3730 * Kmalloc subsystem
3731 *******************************************************************/
3732
3733 static int __init setup_slub_min_order(char *str)
3734 {
3735 get_option(&str, &slub_min_order);
3736
3737 return 1;
3738 }
3739
3740 __setup("slub_min_order=", setup_slub_min_order);
3741
3742 static int __init setup_slub_max_order(char *str)
3743 {
3744 get_option(&str, &slub_max_order);
3745 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3746
3747 return 1;
3748 }
3749
3750 __setup("slub_max_order=", setup_slub_max_order);
3751
3752 static int __init setup_slub_min_objects(char *str)
3753 {
3754 get_option(&str, &slub_min_objects);
3755
3756 return 1;
3757 }
3758
3759 __setup("slub_min_objects=", setup_slub_min_objects);
3760
3761 void *__kmalloc(size_t size, gfp_t flags)
3762 {
3763 struct kmem_cache *s;
3764 void *ret;
3765
3766 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3767 return kmalloc_large(size, flags);
3768
3769 s = kmalloc_slab(size, flags);
3770
3771 if (unlikely(ZERO_OR_NULL_PTR(s)))
3772 return s;
3773
3774 ret = slab_alloc(s, flags, _RET_IP_);
3775
3776 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3777
3778 kasan_kmalloc(s, ret, size, flags);
3779
3780 return ret;
3781 }
3782 EXPORT_SYMBOL(__kmalloc);
3783
3784 #ifdef CONFIG_NUMA
3785 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3786 {
3787 struct page *page;
3788 void *ptr = NULL;
3789
3790 flags |= __GFP_COMP | __GFP_NOTRACK;
3791 page = alloc_pages_node(node, flags, get_order(size));
3792 if (page)
3793 ptr = page_address(page);
3794
3795 kmalloc_large_node_hook(ptr, size, flags);
3796 return ptr;
3797 }
3798
3799 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3800 {
3801 struct kmem_cache *s;
3802 void *ret;
3803
3804 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3805 ret = kmalloc_large_node(size, flags, node);
3806
3807 trace_kmalloc_node(_RET_IP_, ret,
3808 size, PAGE_SIZE << get_order(size),
3809 flags, node);
3810
3811 return ret;
3812 }
3813
3814 s = kmalloc_slab(size, flags);
3815
3816 if (unlikely(ZERO_OR_NULL_PTR(s)))
3817 return s;
3818
3819 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3820
3821 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3822
3823 kasan_kmalloc(s, ret, size, flags);
3824
3825 return ret;
3826 }
3827 EXPORT_SYMBOL(__kmalloc_node);
3828 #endif
3829
3830 #ifdef CONFIG_HARDENED_USERCOPY
3831 /*
3832 * Rejects objects that are incorrectly sized.
3833 *
3834 * Returns NULL if check passes, otherwise const char * to name of cache
3835 * to indicate an error.
3836 */
3837 const char *__check_heap_object(const void *ptr, unsigned long n,
3838 struct page *page)
3839 {
3840 struct kmem_cache *s;
3841 unsigned long offset;
3842 size_t object_size;
3843
3844 /* Find object and usable object size. */
3845 s = page->slab_cache;
3846 object_size = slab_ksize(s);
3847
3848 /* Reject impossible pointers. */
3849 if (ptr < page_address(page))
3850 return s->name;
3851
3852 /* Find offset within object. */
3853 offset = (ptr - page_address(page)) % s->size;
3854
3855 /* Adjust for redzone and reject if within the redzone. */
3856 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3857 if (offset < s->red_left_pad)
3858 return s->name;
3859 offset -= s->red_left_pad;
3860 }
3861
3862 /* Allow address range falling entirely within object size. */
3863 if (offset <= object_size && n <= object_size - offset)
3864 return NULL;
3865
3866 return s->name;
3867 }
3868 #endif /* CONFIG_HARDENED_USERCOPY */
3869
3870 static size_t __ksize(const void *object)
3871 {
3872 struct page *page;
3873
3874 if (unlikely(object == ZERO_SIZE_PTR))
3875 return 0;
3876
3877 page = virt_to_head_page(object);
3878
3879 if (unlikely(!PageSlab(page))) {
3880 WARN_ON(!PageCompound(page));
3881 return PAGE_SIZE << compound_order(page);
3882 }
3883
3884 return slab_ksize(page->slab_cache);
3885 }
3886
3887 size_t ksize(const void *object)
3888 {
3889 size_t size = __ksize(object);
3890 /* We assume that ksize callers could use whole allocated area,
3891 * so we need to unpoison this area.
3892 */
3893 kasan_unpoison_shadow(object, size);
3894 return size;
3895 }
3896 EXPORT_SYMBOL(ksize);
3897
3898 void kfree(const void *x)
3899 {
3900 struct page *page;
3901 void *object = (void *)x;
3902
3903 trace_kfree(_RET_IP_, x);
3904
3905 if (unlikely(ZERO_OR_NULL_PTR(x)))
3906 return;
3907
3908 page = virt_to_head_page(x);
3909 if (unlikely(!PageSlab(page))) {
3910 BUG_ON(!PageCompound(page));
3911 kfree_hook(x);
3912 __free_pages(page, compound_order(page));
3913 return;
3914 }
3915 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3916 }
3917 EXPORT_SYMBOL(kfree);
3918
3919 #define SHRINK_PROMOTE_MAX 32
3920
3921 /*
3922 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3923 * up most to the head of the partial lists. New allocations will then
3924 * fill those up and thus they can be removed from the partial lists.
3925 *
3926 * The slabs with the least items are placed last. This results in them
3927 * being allocated from last increasing the chance that the last objects
3928 * are freed in them.
3929 */
3930 int __kmem_cache_shrink(struct kmem_cache *s)
3931 {
3932 int node;
3933 int i;
3934 struct kmem_cache_node *n;
3935 struct page *page;
3936 struct page *t;
3937 struct list_head discard;
3938 struct list_head promote[SHRINK_PROMOTE_MAX];
3939 unsigned long flags;
3940 int ret = 0;
3941
3942 flush_all(s);
3943 for_each_kmem_cache_node(s, node, n) {
3944 INIT_LIST_HEAD(&discard);
3945 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3946 INIT_LIST_HEAD(promote + i);
3947
3948 spin_lock_irqsave(&n->list_lock, flags);
3949
3950 /*
3951 * Build lists of slabs to discard or promote.
3952 *
3953 * Note that concurrent frees may occur while we hold the
3954 * list_lock. page->inuse here is the upper limit.
3955 */
3956 list_for_each_entry_safe(page, t, &n->partial, lru) {
3957 int free = page->objects - page->inuse;
3958
3959 /* Do not reread page->inuse */
3960 barrier();
3961
3962 /* We do not keep full slabs on the list */
3963 BUG_ON(free <= 0);
3964
3965 if (free == page->objects) {
3966 list_move(&page->lru, &discard);
3967 n->nr_partial--;
3968 } else if (free <= SHRINK_PROMOTE_MAX)
3969 list_move(&page->lru, promote + free - 1);
3970 }
3971
3972 /*
3973 * Promote the slabs filled up most to the head of the
3974 * partial list.
3975 */
3976 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3977 list_splice(promote + i, &n->partial);
3978
3979 spin_unlock_irqrestore(&n->list_lock, flags);
3980
3981 /* Release empty slabs */
3982 list_for_each_entry_safe(page, t, &discard, lru)
3983 discard_slab(s, page);
3984
3985 if (slabs_node(s, node))
3986 ret = 1;
3987 }
3988
3989 return ret;
3990 }
3991
3992 #ifdef CONFIG_MEMCG
3993 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3994 {
3995 /*
3996 * Called with all the locks held after a sched RCU grace period.
3997 * Even if @s becomes empty after shrinking, we can't know that @s
3998 * doesn't have allocations already in-flight and thus can't
3999 * destroy @s until the associated memcg is released.
4000 *
4001 * However, let's remove the sysfs files for empty caches here.
4002 * Each cache has a lot of interface files which aren't
4003 * particularly useful for empty draining caches; otherwise, we can
4004 * easily end up with millions of unnecessary sysfs files on
4005 * systems which have a lot of memory and transient cgroups.
4006 */
4007 if (!__kmem_cache_shrink(s))
4008 sysfs_slab_remove(s);
4009 }
4010
4011 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4012 {
4013 /*
4014 * Disable empty slabs caching. Used to avoid pinning offline
4015 * memory cgroups by kmem pages that can be freed.
4016 */
4017 slub_set_cpu_partial(s, 0);
4018 s->min_partial = 0;
4019
4020 /*
4021 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4022 * we have to make sure the change is visible before shrinking.
4023 */
4024 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4025 }
4026 #endif
4027
4028 static int slab_mem_going_offline_callback(void *arg)
4029 {
4030 struct kmem_cache *s;
4031
4032 mutex_lock(&slab_mutex);
4033 list_for_each_entry(s, &slab_caches, list)
4034 __kmem_cache_shrink(s);
4035 mutex_unlock(&slab_mutex);
4036
4037 return 0;
4038 }
4039
4040 static void slab_mem_offline_callback(void *arg)
4041 {
4042 struct kmem_cache_node *n;
4043 struct kmem_cache *s;
4044 struct memory_notify *marg = arg;
4045 int offline_node;
4046
4047 offline_node = marg->status_change_nid_normal;
4048
4049 /*
4050 * If the node still has available memory. we need kmem_cache_node
4051 * for it yet.
4052 */
4053 if (offline_node < 0)
4054 return;
4055
4056 mutex_lock(&slab_mutex);
4057 list_for_each_entry(s, &slab_caches, list) {
4058 n = get_node(s, offline_node);
4059 if (n) {
4060 /*
4061 * if n->nr_slabs > 0, slabs still exist on the node
4062 * that is going down. We were unable to free them,
4063 * and offline_pages() function shouldn't call this
4064 * callback. So, we must fail.
4065 */
4066 BUG_ON(slabs_node(s, offline_node));
4067
4068 s->node[offline_node] = NULL;
4069 kmem_cache_free(kmem_cache_node, n);
4070 }
4071 }
4072 mutex_unlock(&slab_mutex);
4073 }
4074
4075 static int slab_mem_going_online_callback(void *arg)
4076 {
4077 struct kmem_cache_node *n;
4078 struct kmem_cache *s;
4079 struct memory_notify *marg = arg;
4080 int nid = marg->status_change_nid_normal;
4081 int ret = 0;
4082
4083 /*
4084 * If the node's memory is already available, then kmem_cache_node is
4085 * already created. Nothing to do.
4086 */
4087 if (nid < 0)
4088 return 0;
4089
4090 /*
4091 * We are bringing a node online. No memory is available yet. We must
4092 * allocate a kmem_cache_node structure in order to bring the node
4093 * online.
4094 */
4095 mutex_lock(&slab_mutex);
4096 list_for_each_entry(s, &slab_caches, list) {
4097 /*
4098 * XXX: kmem_cache_alloc_node will fallback to other nodes
4099 * since memory is not yet available from the node that
4100 * is brought up.
4101 */
4102 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4103 if (!n) {
4104 ret = -ENOMEM;
4105 goto out;
4106 }
4107 init_kmem_cache_node(n);
4108 s->node[nid] = n;
4109 }
4110 out:
4111 mutex_unlock(&slab_mutex);
4112 return ret;
4113 }
4114
4115 static int slab_memory_callback(struct notifier_block *self,
4116 unsigned long action, void *arg)
4117 {
4118 int ret = 0;
4119
4120 switch (action) {
4121 case MEM_GOING_ONLINE:
4122 ret = slab_mem_going_online_callback(arg);
4123 break;
4124 case MEM_GOING_OFFLINE:
4125 ret = slab_mem_going_offline_callback(arg);
4126 break;
4127 case MEM_OFFLINE:
4128 case MEM_CANCEL_ONLINE:
4129 slab_mem_offline_callback(arg);
4130 break;
4131 case MEM_ONLINE:
4132 case MEM_CANCEL_OFFLINE:
4133 break;
4134 }
4135 if (ret)
4136 ret = notifier_from_errno(ret);
4137 else
4138 ret = NOTIFY_OK;
4139 return ret;
4140 }
4141
4142 static struct notifier_block slab_memory_callback_nb = {
4143 .notifier_call = slab_memory_callback,
4144 .priority = SLAB_CALLBACK_PRI,
4145 };
4146
4147 /********************************************************************
4148 * Basic setup of slabs
4149 *******************************************************************/
4150
4151 /*
4152 * Used for early kmem_cache structures that were allocated using
4153 * the page allocator. Allocate them properly then fix up the pointers
4154 * that may be pointing to the wrong kmem_cache structure.
4155 */
4156
4157 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4158 {
4159 int node;
4160 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4161 struct kmem_cache_node *n;
4162
4163 memcpy(s, static_cache, kmem_cache->object_size);
4164
4165 /*
4166 * This runs very early, and only the boot processor is supposed to be
4167 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4168 * IPIs around.
4169 */
4170 __flush_cpu_slab(s, smp_processor_id());
4171 for_each_kmem_cache_node(s, node, n) {
4172 struct page *p;
4173
4174 list_for_each_entry(p, &n->partial, lru)
4175 p->slab_cache = s;
4176
4177 #ifdef CONFIG_SLUB_DEBUG
4178 list_for_each_entry(p, &n->full, lru)
4179 p->slab_cache = s;
4180 #endif
4181 }
4182 slab_init_memcg_params(s);
4183 list_add(&s->list, &slab_caches);
4184 memcg_link_cache(s);
4185 return s;
4186 }
4187
4188 void __init kmem_cache_init(void)
4189 {
4190 static __initdata struct kmem_cache boot_kmem_cache,
4191 boot_kmem_cache_node;
4192
4193 if (debug_guardpage_minorder())
4194 slub_max_order = 0;
4195
4196 kmem_cache_node = &boot_kmem_cache_node;
4197 kmem_cache = &boot_kmem_cache;
4198
4199 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4200 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4201
4202 register_hotmemory_notifier(&slab_memory_callback_nb);
4203
4204 /* Able to allocate the per node structures */
4205 slab_state = PARTIAL;
4206
4207 create_boot_cache(kmem_cache, "kmem_cache",
4208 offsetof(struct kmem_cache, node) +
4209 nr_node_ids * sizeof(struct kmem_cache_node *),
4210 SLAB_HWCACHE_ALIGN);
4211
4212 kmem_cache = bootstrap(&boot_kmem_cache);
4213
4214 /*
4215 * Allocate kmem_cache_node properly from the kmem_cache slab.
4216 * kmem_cache_node is separately allocated so no need to
4217 * update any list pointers.
4218 */
4219 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4220
4221 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4222 setup_kmalloc_cache_index_table();
4223 create_kmalloc_caches(0);
4224
4225 /* Setup random freelists for each cache */
4226 init_freelist_randomization();
4227
4228 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4229 slub_cpu_dead);
4230
4231 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4232 cache_line_size(),
4233 slub_min_order, slub_max_order, slub_min_objects,
4234 nr_cpu_ids, nr_node_ids);
4235 }
4236
4237 void __init kmem_cache_init_late(void)
4238 {
4239 }
4240
4241 struct kmem_cache *
4242 __kmem_cache_alias(const char *name, size_t size, size_t align,
4243 unsigned long flags, void (*ctor)(void *))
4244 {
4245 struct kmem_cache *s, *c;
4246
4247 s = find_mergeable(size, align, flags, name, ctor);
4248 if (s) {
4249 s->refcount++;
4250
4251 /*
4252 * Adjust the object sizes so that we clear
4253 * the complete object on kzalloc.
4254 */
4255 s->object_size = max(s->object_size, (int)size);
4256 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4257
4258 for_each_memcg_cache(c, s) {
4259 c->object_size = s->object_size;
4260 c->inuse = max_t(int, c->inuse,
4261 ALIGN(size, sizeof(void *)));
4262 }
4263
4264 if (sysfs_slab_alias(s, name)) {
4265 s->refcount--;
4266 s = NULL;
4267 }
4268 }
4269
4270 return s;
4271 }
4272
4273 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4274 {
4275 int err;
4276
4277 err = kmem_cache_open(s, flags);
4278 if (err)
4279 return err;
4280
4281 /* Mutex is not taken during early boot */
4282 if (slab_state <= UP)
4283 return 0;
4284
4285 memcg_propagate_slab_attrs(s);
4286 err = sysfs_slab_add(s);
4287 if (err)
4288 __kmem_cache_release(s);
4289
4290 return err;
4291 }
4292
4293 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4294 {
4295 struct kmem_cache *s;
4296 void *ret;
4297
4298 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4299 return kmalloc_large(size, gfpflags);
4300
4301 s = kmalloc_slab(size, gfpflags);
4302
4303 if (unlikely(ZERO_OR_NULL_PTR(s)))
4304 return s;
4305
4306 ret = slab_alloc(s, gfpflags, caller);
4307
4308 /* Honor the call site pointer we received. */
4309 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4310
4311 return ret;
4312 }
4313
4314 #ifdef CONFIG_NUMA
4315 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4316 int node, unsigned long caller)
4317 {
4318 struct kmem_cache *s;
4319 void *ret;
4320
4321 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4322 ret = kmalloc_large_node(size, gfpflags, node);
4323
4324 trace_kmalloc_node(caller, ret,
4325 size, PAGE_SIZE << get_order(size),
4326 gfpflags, node);
4327
4328 return ret;
4329 }
4330
4331 s = kmalloc_slab(size, gfpflags);
4332
4333 if (unlikely(ZERO_OR_NULL_PTR(s)))
4334 return s;
4335
4336 ret = slab_alloc_node(s, gfpflags, node, caller);
4337
4338 /* Honor the call site pointer we received. */
4339 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4340
4341 return ret;
4342 }
4343 #endif
4344
4345 #ifdef CONFIG_SYSFS
4346 static int count_inuse(struct page *page)
4347 {
4348 return page->inuse;
4349 }
4350
4351 static int count_total(struct page *page)
4352 {
4353 return page->objects;
4354 }
4355 #endif
4356
4357 #ifdef CONFIG_SLUB_DEBUG
4358 static int validate_slab(struct kmem_cache *s, struct page *page,
4359 unsigned long *map)
4360 {
4361 void *p;
4362 void *addr = page_address(page);
4363
4364 if (!check_slab(s, page) ||
4365 !on_freelist(s, page, NULL))
4366 return 0;
4367
4368 /* Now we know that a valid freelist exists */
4369 bitmap_zero(map, page->objects);
4370
4371 get_map(s, page, map);
4372 for_each_object(p, s, addr, page->objects) {
4373 if (test_bit(slab_index(p, s, addr), map))
4374 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4375 return 0;
4376 }
4377
4378 for_each_object(p, s, addr, page->objects)
4379 if (!test_bit(slab_index(p, s, addr), map))
4380 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4381 return 0;
4382 return 1;
4383 }
4384
4385 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4386 unsigned long *map)
4387 {
4388 slab_lock(page);
4389 validate_slab(s, page, map);
4390 slab_unlock(page);
4391 }
4392
4393 static int validate_slab_node(struct kmem_cache *s,
4394 struct kmem_cache_node *n, unsigned long *map)
4395 {
4396 unsigned long count = 0;
4397 struct page *page;
4398 unsigned long flags;
4399
4400 spin_lock_irqsave(&n->list_lock, flags);
4401
4402 list_for_each_entry(page, &n->partial, lru) {
4403 validate_slab_slab(s, page, map);
4404 count++;
4405 }
4406 if (count != n->nr_partial)
4407 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4408 s->name, count, n->nr_partial);
4409
4410 if (!(s->flags & SLAB_STORE_USER))
4411 goto out;
4412
4413 list_for_each_entry(page, &n->full, lru) {
4414 validate_slab_slab(s, page, map);
4415 count++;
4416 }
4417 if (count != atomic_long_read(&n->nr_slabs))
4418 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4419 s->name, count, atomic_long_read(&n->nr_slabs));
4420
4421 out:
4422 spin_unlock_irqrestore(&n->list_lock, flags);
4423 return count;
4424 }
4425
4426 static long validate_slab_cache(struct kmem_cache *s)
4427 {
4428 int node;
4429 unsigned long count = 0;
4430 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4431 sizeof(unsigned long), GFP_KERNEL);
4432 struct kmem_cache_node *n;
4433
4434 if (!map)
4435 return -ENOMEM;
4436
4437 flush_all(s);
4438 for_each_kmem_cache_node(s, node, n)
4439 count += validate_slab_node(s, n, map);
4440 kfree(map);
4441 return count;
4442 }
4443 /*
4444 * Generate lists of code addresses where slabcache objects are allocated
4445 * and freed.
4446 */
4447
4448 struct location {
4449 unsigned long count;
4450 unsigned long addr;
4451 long long sum_time;
4452 long min_time;
4453 long max_time;
4454 long min_pid;
4455 long max_pid;
4456 DECLARE_BITMAP(cpus, NR_CPUS);
4457 nodemask_t nodes;
4458 };
4459
4460 struct loc_track {
4461 unsigned long max;
4462 unsigned long count;
4463 struct location *loc;
4464 };
4465
4466 static void free_loc_track(struct loc_track *t)
4467 {
4468 if (t->max)
4469 free_pages((unsigned long)t->loc,
4470 get_order(sizeof(struct location) * t->max));
4471 }
4472
4473 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4474 {
4475 struct location *l;
4476 int order;
4477
4478 order = get_order(sizeof(struct location) * max);
4479
4480 l = (void *)__get_free_pages(flags, order);
4481 if (!l)
4482 return 0;
4483
4484 if (t->count) {
4485 memcpy(l, t->loc, sizeof(struct location) * t->count);
4486 free_loc_track(t);
4487 }
4488 t->max = max;
4489 t->loc = l;
4490 return 1;
4491 }
4492
4493 static int add_location(struct loc_track *t, struct kmem_cache *s,
4494 const struct track *track)
4495 {
4496 long start, end, pos;
4497 struct location *l;
4498 unsigned long caddr;
4499 unsigned long age = jiffies - track->when;
4500
4501 start = -1;
4502 end = t->count;
4503
4504 for ( ; ; ) {
4505 pos = start + (end - start + 1) / 2;
4506
4507 /*
4508 * There is nothing at "end". If we end up there
4509 * we need to add something to before end.
4510 */
4511 if (pos == end)
4512 break;
4513
4514 caddr = t->loc[pos].addr;
4515 if (track->addr == caddr) {
4516
4517 l = &t->loc[pos];
4518 l->count++;
4519 if (track->when) {
4520 l->sum_time += age;
4521 if (age < l->min_time)
4522 l->min_time = age;
4523 if (age > l->max_time)
4524 l->max_time = age;
4525
4526 if (track->pid < l->min_pid)
4527 l->min_pid = track->pid;
4528 if (track->pid > l->max_pid)
4529 l->max_pid = track->pid;
4530
4531 cpumask_set_cpu(track->cpu,
4532 to_cpumask(l->cpus));
4533 }
4534 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4535 return 1;
4536 }
4537
4538 if (track->addr < caddr)
4539 end = pos;
4540 else
4541 start = pos;
4542 }
4543
4544 /*
4545 * Not found. Insert new tracking element.
4546 */
4547 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4548 return 0;
4549
4550 l = t->loc + pos;
4551 if (pos < t->count)
4552 memmove(l + 1, l,
4553 (t->count - pos) * sizeof(struct location));
4554 t->count++;
4555 l->count = 1;
4556 l->addr = track->addr;
4557 l->sum_time = age;
4558 l->min_time = age;
4559 l->max_time = age;
4560 l->min_pid = track->pid;
4561 l->max_pid = track->pid;
4562 cpumask_clear(to_cpumask(l->cpus));
4563 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4564 nodes_clear(l->nodes);
4565 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4566 return 1;
4567 }
4568
4569 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4570 struct page *page, enum track_item alloc,
4571 unsigned long *map)
4572 {
4573 void *addr = page_address(page);
4574 void *p;
4575
4576 bitmap_zero(map, page->objects);
4577 get_map(s, page, map);
4578
4579 for_each_object(p, s, addr, page->objects)
4580 if (!test_bit(slab_index(p, s, addr), map))
4581 add_location(t, s, get_track(s, p, alloc));
4582 }
4583
4584 static int list_locations(struct kmem_cache *s, char *buf,
4585 enum track_item alloc)
4586 {
4587 int len = 0;
4588 unsigned long i;
4589 struct loc_track t = { 0, 0, NULL };
4590 int node;
4591 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4592 sizeof(unsigned long), GFP_KERNEL);
4593 struct kmem_cache_node *n;
4594
4595 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4596 GFP_TEMPORARY)) {
4597 kfree(map);
4598 return sprintf(buf, "Out of memory\n");
4599 }
4600 /* Push back cpu slabs */
4601 flush_all(s);
4602
4603 for_each_kmem_cache_node(s, node, n) {
4604 unsigned long flags;
4605 struct page *page;
4606
4607 if (!atomic_long_read(&n->nr_slabs))
4608 continue;
4609
4610 spin_lock_irqsave(&n->list_lock, flags);
4611 list_for_each_entry(page, &n->partial, lru)
4612 process_slab(&t, s, page, alloc, map);
4613 list_for_each_entry(page, &n->full, lru)
4614 process_slab(&t, s, page, alloc, map);
4615 spin_unlock_irqrestore(&n->list_lock, flags);
4616 }
4617
4618 for (i = 0; i < t.count; i++) {
4619 struct location *l = &t.loc[i];
4620
4621 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4622 break;
4623 len += sprintf(buf + len, "%7ld ", l->count);
4624
4625 if (l->addr)
4626 len += sprintf(buf + len, "%pS", (void *)l->addr);
4627 else
4628 len += sprintf(buf + len, "<not-available>");
4629
4630 if (l->sum_time != l->min_time) {
4631 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4632 l->min_time,
4633 (long)div_u64(l->sum_time, l->count),
4634 l->max_time);
4635 } else
4636 len += sprintf(buf + len, " age=%ld",
4637 l->min_time);
4638
4639 if (l->min_pid != l->max_pid)
4640 len += sprintf(buf + len, " pid=%ld-%ld",
4641 l->min_pid, l->max_pid);
4642 else
4643 len += sprintf(buf + len, " pid=%ld",
4644 l->min_pid);
4645
4646 if (num_online_cpus() > 1 &&
4647 !cpumask_empty(to_cpumask(l->cpus)) &&
4648 len < PAGE_SIZE - 60)
4649 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4650 " cpus=%*pbl",
4651 cpumask_pr_args(to_cpumask(l->cpus)));
4652
4653 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4654 len < PAGE_SIZE - 60)
4655 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4656 " nodes=%*pbl",
4657 nodemask_pr_args(&l->nodes));
4658
4659 len += sprintf(buf + len, "\n");
4660 }
4661
4662 free_loc_track(&t);
4663 kfree(map);
4664 if (!t.count)
4665 len += sprintf(buf, "No data\n");
4666 return len;
4667 }
4668 #endif
4669
4670 #ifdef SLUB_RESILIENCY_TEST
4671 static void __init resiliency_test(void)
4672 {
4673 u8 *p;
4674
4675 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4676
4677 pr_err("SLUB resiliency testing\n");
4678 pr_err("-----------------------\n");
4679 pr_err("A. Corruption after allocation\n");
4680
4681 p = kzalloc(16, GFP_KERNEL);
4682 p[16] = 0x12;
4683 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4684 p + 16);
4685
4686 validate_slab_cache(kmalloc_caches[4]);
4687
4688 /* Hmmm... The next two are dangerous */
4689 p = kzalloc(32, GFP_KERNEL);
4690 p[32 + sizeof(void *)] = 0x34;
4691 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4692 p);
4693 pr_err("If allocated object is overwritten then not detectable\n\n");
4694
4695 validate_slab_cache(kmalloc_caches[5]);
4696 p = kzalloc(64, GFP_KERNEL);
4697 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4698 *p = 0x56;
4699 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4700 p);
4701 pr_err("If allocated object is overwritten then not detectable\n\n");
4702 validate_slab_cache(kmalloc_caches[6]);
4703
4704 pr_err("\nB. Corruption after free\n");
4705 p = kzalloc(128, GFP_KERNEL);
4706 kfree(p);
4707 *p = 0x78;
4708 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4709 validate_slab_cache(kmalloc_caches[7]);
4710
4711 p = kzalloc(256, GFP_KERNEL);
4712 kfree(p);
4713 p[50] = 0x9a;
4714 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4715 validate_slab_cache(kmalloc_caches[8]);
4716
4717 p = kzalloc(512, GFP_KERNEL);
4718 kfree(p);
4719 p[512] = 0xab;
4720 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4721 validate_slab_cache(kmalloc_caches[9]);
4722 }
4723 #else
4724 #ifdef CONFIG_SYSFS
4725 static void resiliency_test(void) {};
4726 #endif
4727 #endif
4728
4729 #ifdef CONFIG_SYSFS
4730 enum slab_stat_type {
4731 SL_ALL, /* All slabs */
4732 SL_PARTIAL, /* Only partially allocated slabs */
4733 SL_CPU, /* Only slabs used for cpu caches */
4734 SL_OBJECTS, /* Determine allocated objects not slabs */
4735 SL_TOTAL /* Determine object capacity not slabs */
4736 };
4737
4738 #define SO_ALL (1 << SL_ALL)
4739 #define SO_PARTIAL (1 << SL_PARTIAL)
4740 #define SO_CPU (1 << SL_CPU)
4741 #define SO_OBJECTS (1 << SL_OBJECTS)
4742 #define SO_TOTAL (1 << SL_TOTAL)
4743
4744 #ifdef CONFIG_MEMCG
4745 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4746
4747 static int __init setup_slub_memcg_sysfs(char *str)
4748 {
4749 int v;
4750
4751 if (get_option(&str, &v) > 0)
4752 memcg_sysfs_enabled = v;
4753
4754 return 1;
4755 }
4756
4757 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4758 #endif
4759
4760 static ssize_t show_slab_objects(struct kmem_cache *s,
4761 char *buf, unsigned long flags)
4762 {
4763 unsigned long total = 0;
4764 int node;
4765 int x;
4766 unsigned long *nodes;
4767
4768 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4769 if (!nodes)
4770 return -ENOMEM;
4771
4772 if (flags & SO_CPU) {
4773 int cpu;
4774
4775 for_each_possible_cpu(cpu) {
4776 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4777 cpu);
4778 int node;
4779 struct page *page;
4780
4781 page = READ_ONCE(c->page);
4782 if (!page)
4783 continue;
4784
4785 node = page_to_nid(page);
4786 if (flags & SO_TOTAL)
4787 x = page->objects;
4788 else if (flags & SO_OBJECTS)
4789 x = page->inuse;
4790 else
4791 x = 1;
4792
4793 total += x;
4794 nodes[node] += x;
4795
4796 page = slub_percpu_partial_read_once(c);
4797 if (page) {
4798 node = page_to_nid(page);
4799 if (flags & SO_TOTAL)
4800 WARN_ON_ONCE(1);
4801 else if (flags & SO_OBJECTS)
4802 WARN_ON_ONCE(1);
4803 else
4804 x = page->pages;
4805 total += x;
4806 nodes[node] += x;
4807 }
4808 }
4809 }
4810
4811 get_online_mems();
4812 #ifdef CONFIG_SLUB_DEBUG
4813 if (flags & SO_ALL) {
4814 struct kmem_cache_node *n;
4815
4816 for_each_kmem_cache_node(s, node, n) {
4817
4818 if (flags & SO_TOTAL)
4819 x = atomic_long_read(&n->total_objects);
4820 else if (flags & SO_OBJECTS)
4821 x = atomic_long_read(&n->total_objects) -
4822 count_partial(n, count_free);
4823 else
4824 x = atomic_long_read(&n->nr_slabs);
4825 total += x;
4826 nodes[node] += x;
4827 }
4828
4829 } else
4830 #endif
4831 if (flags & SO_PARTIAL) {
4832 struct kmem_cache_node *n;
4833
4834 for_each_kmem_cache_node(s, node, n) {
4835 if (flags & SO_TOTAL)
4836 x = count_partial(n, count_total);
4837 else if (flags & SO_OBJECTS)
4838 x = count_partial(n, count_inuse);
4839 else
4840 x = n->nr_partial;
4841 total += x;
4842 nodes[node] += x;
4843 }
4844 }
4845 x = sprintf(buf, "%lu", total);
4846 #ifdef CONFIG_NUMA
4847 for (node = 0; node < nr_node_ids; node++)
4848 if (nodes[node])
4849 x += sprintf(buf + x, " N%d=%lu",
4850 node, nodes[node]);
4851 #endif
4852 put_online_mems();
4853 kfree(nodes);
4854 return x + sprintf(buf + x, "\n");
4855 }
4856
4857 #ifdef CONFIG_SLUB_DEBUG
4858 static int any_slab_objects(struct kmem_cache *s)
4859 {
4860 int node;
4861 struct kmem_cache_node *n;
4862
4863 for_each_kmem_cache_node(s, node, n)
4864 if (atomic_long_read(&n->total_objects))
4865 return 1;
4866
4867 return 0;
4868 }
4869 #endif
4870
4871 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4872 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4873
4874 struct slab_attribute {
4875 struct attribute attr;
4876 ssize_t (*show)(struct kmem_cache *s, char *buf);
4877 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4878 };
4879
4880 #define SLAB_ATTR_RO(_name) \
4881 static struct slab_attribute _name##_attr = \
4882 __ATTR(_name, 0400, _name##_show, NULL)
4883
4884 #define SLAB_ATTR(_name) \
4885 static struct slab_attribute _name##_attr = \
4886 __ATTR(_name, 0600, _name##_show, _name##_store)
4887
4888 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4889 {
4890 return sprintf(buf, "%d\n", s->size);
4891 }
4892 SLAB_ATTR_RO(slab_size);
4893
4894 static ssize_t align_show(struct kmem_cache *s, char *buf)
4895 {
4896 return sprintf(buf, "%d\n", s->align);
4897 }
4898 SLAB_ATTR_RO(align);
4899
4900 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4901 {
4902 return sprintf(buf, "%d\n", s->object_size);
4903 }
4904 SLAB_ATTR_RO(object_size);
4905
4906 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4907 {
4908 return sprintf(buf, "%d\n", oo_objects(s->oo));
4909 }
4910 SLAB_ATTR_RO(objs_per_slab);
4911
4912 static ssize_t order_store(struct kmem_cache *s,
4913 const char *buf, size_t length)
4914 {
4915 unsigned long order;
4916 int err;
4917
4918 err = kstrtoul(buf, 10, &order);
4919 if (err)
4920 return err;
4921
4922 if (order > slub_max_order || order < slub_min_order)
4923 return -EINVAL;
4924
4925 calculate_sizes(s, order);
4926 return length;
4927 }
4928
4929 static ssize_t order_show(struct kmem_cache *s, char *buf)
4930 {
4931 return sprintf(buf, "%d\n", oo_order(s->oo));
4932 }
4933 SLAB_ATTR(order);
4934
4935 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4936 {
4937 return sprintf(buf, "%lu\n", s->min_partial);
4938 }
4939
4940 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4941 size_t length)
4942 {
4943 unsigned long min;
4944 int err;
4945
4946 err = kstrtoul(buf, 10, &min);
4947 if (err)
4948 return err;
4949
4950 set_min_partial(s, min);
4951 return length;
4952 }
4953 SLAB_ATTR(min_partial);
4954
4955 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4956 {
4957 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4958 }
4959
4960 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4961 size_t length)
4962 {
4963 unsigned long objects;
4964 int err;
4965
4966 err = kstrtoul(buf, 10, &objects);
4967 if (err)
4968 return err;
4969 if (objects && !kmem_cache_has_cpu_partial(s))
4970 return -EINVAL;
4971
4972 slub_set_cpu_partial(s, objects);
4973 flush_all(s);
4974 return length;
4975 }
4976 SLAB_ATTR(cpu_partial);
4977
4978 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4979 {
4980 if (!s->ctor)
4981 return 0;
4982 return sprintf(buf, "%pS\n", s->ctor);
4983 }
4984 SLAB_ATTR_RO(ctor);
4985
4986 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4987 {
4988 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4989 }
4990 SLAB_ATTR_RO(aliases);
4991
4992 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4993 {
4994 return show_slab_objects(s, buf, SO_PARTIAL);
4995 }
4996 SLAB_ATTR_RO(partial);
4997
4998 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4999 {
5000 return show_slab_objects(s, buf, SO_CPU);
5001 }
5002 SLAB_ATTR_RO(cpu_slabs);
5003
5004 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5005 {
5006 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5007 }
5008 SLAB_ATTR_RO(objects);
5009
5010 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5011 {
5012 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5013 }
5014 SLAB_ATTR_RO(objects_partial);
5015
5016 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5017 {
5018 int objects = 0;
5019 int pages = 0;
5020 int cpu;
5021 int len;
5022
5023 for_each_online_cpu(cpu) {
5024 struct page *page;
5025
5026 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5027
5028 if (page) {
5029 pages += page->pages;
5030 objects += page->pobjects;
5031 }
5032 }
5033
5034 len = sprintf(buf, "%d(%d)", objects, pages);
5035
5036 #ifdef CONFIG_SMP
5037 for_each_online_cpu(cpu) {
5038 struct page *page;
5039
5040 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5041
5042 if (page && len < PAGE_SIZE - 20)
5043 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5044 page->pobjects, page->pages);
5045 }
5046 #endif
5047 return len + sprintf(buf + len, "\n");
5048 }
5049 SLAB_ATTR_RO(slabs_cpu_partial);
5050
5051 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5052 {
5053 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5054 }
5055
5056 static ssize_t reclaim_account_store(struct kmem_cache *s,
5057 const char *buf, size_t length)
5058 {
5059 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5060 if (buf[0] == '1')
5061 s->flags |= SLAB_RECLAIM_ACCOUNT;
5062 return length;
5063 }
5064 SLAB_ATTR(reclaim_account);
5065
5066 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5067 {
5068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5069 }
5070 SLAB_ATTR_RO(hwcache_align);
5071
5072 #ifdef CONFIG_ZONE_DMA
5073 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5074 {
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5076 }
5077 SLAB_ATTR_RO(cache_dma);
5078 #endif
5079
5080 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5081 {
5082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5083 }
5084 SLAB_ATTR_RO(destroy_by_rcu);
5085
5086 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5087 {
5088 return sprintf(buf, "%d\n", s->reserved);
5089 }
5090 SLAB_ATTR_RO(reserved);
5091
5092 #ifdef CONFIG_SLUB_DEBUG
5093 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5094 {
5095 return show_slab_objects(s, buf, SO_ALL);
5096 }
5097 SLAB_ATTR_RO(slabs);
5098
5099 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5100 {
5101 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5102 }
5103 SLAB_ATTR_RO(total_objects);
5104
5105 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5106 {
5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5108 }
5109
5110 static ssize_t sanity_checks_store(struct kmem_cache *s,
5111 const char *buf, size_t length)
5112 {
5113 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5114 if (buf[0] == '1') {
5115 s->flags &= ~__CMPXCHG_DOUBLE;
5116 s->flags |= SLAB_CONSISTENCY_CHECKS;
5117 }
5118 return length;
5119 }
5120 SLAB_ATTR(sanity_checks);
5121
5122 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5123 {
5124 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5125 }
5126
5127 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5128 size_t length)
5129 {
5130 /*
5131 * Tracing a merged cache is going to give confusing results
5132 * as well as cause other issues like converting a mergeable
5133 * cache into an umergeable one.
5134 */
5135 if (s->refcount > 1)
5136 return -EINVAL;
5137
5138 s->flags &= ~SLAB_TRACE;
5139 if (buf[0] == '1') {
5140 s->flags &= ~__CMPXCHG_DOUBLE;
5141 s->flags |= SLAB_TRACE;
5142 }
5143 return length;
5144 }
5145 SLAB_ATTR(trace);
5146
5147 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5148 {
5149 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5150 }
5151
5152 static ssize_t red_zone_store(struct kmem_cache *s,
5153 const char *buf, size_t length)
5154 {
5155 if (any_slab_objects(s))
5156 return -EBUSY;
5157
5158 s->flags &= ~SLAB_RED_ZONE;
5159 if (buf[0] == '1') {
5160 s->flags |= SLAB_RED_ZONE;
5161 }
5162 calculate_sizes(s, -1);
5163 return length;
5164 }
5165 SLAB_ATTR(red_zone);
5166
5167 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5168 {
5169 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5170 }
5171
5172 static ssize_t poison_store(struct kmem_cache *s,
5173 const char *buf, size_t length)
5174 {
5175 if (any_slab_objects(s))
5176 return -EBUSY;
5177
5178 s->flags &= ~SLAB_POISON;
5179 if (buf[0] == '1') {
5180 s->flags |= SLAB_POISON;
5181 }
5182 calculate_sizes(s, -1);
5183 return length;
5184 }
5185 SLAB_ATTR(poison);
5186
5187 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5188 {
5189 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5190 }
5191
5192 static ssize_t store_user_store(struct kmem_cache *s,
5193 const char *buf, size_t length)
5194 {
5195 if (any_slab_objects(s))
5196 return -EBUSY;
5197
5198 s->flags &= ~SLAB_STORE_USER;
5199 if (buf[0] == '1') {
5200 s->flags &= ~__CMPXCHG_DOUBLE;
5201 s->flags |= SLAB_STORE_USER;
5202 }
5203 calculate_sizes(s, -1);
5204 return length;
5205 }
5206 SLAB_ATTR(store_user);
5207
5208 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5209 {
5210 return 0;
5211 }
5212
5213 static ssize_t validate_store(struct kmem_cache *s,
5214 const char *buf, size_t length)
5215 {
5216 int ret = -EINVAL;
5217
5218 if (buf[0] == '1') {
5219 ret = validate_slab_cache(s);
5220 if (ret >= 0)
5221 ret = length;
5222 }
5223 return ret;
5224 }
5225 SLAB_ATTR(validate);
5226
5227 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5228 {
5229 if (!(s->flags & SLAB_STORE_USER))
5230 return -ENOSYS;
5231 return list_locations(s, buf, TRACK_ALLOC);
5232 }
5233 SLAB_ATTR_RO(alloc_calls);
5234
5235 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5236 {
5237 if (!(s->flags & SLAB_STORE_USER))
5238 return -ENOSYS;
5239 return list_locations(s, buf, TRACK_FREE);
5240 }
5241 SLAB_ATTR_RO(free_calls);
5242 #endif /* CONFIG_SLUB_DEBUG */
5243
5244 #ifdef CONFIG_FAILSLAB
5245 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5246 {
5247 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5248 }
5249
5250 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5251 size_t length)
5252 {
5253 if (s->refcount > 1)
5254 return -EINVAL;
5255
5256 s->flags &= ~SLAB_FAILSLAB;
5257 if (buf[0] == '1')
5258 s->flags |= SLAB_FAILSLAB;
5259 return length;
5260 }
5261 SLAB_ATTR(failslab);
5262 #endif
5263
5264 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5265 {
5266 return 0;
5267 }
5268
5269 static ssize_t shrink_store(struct kmem_cache *s,
5270 const char *buf, size_t length)
5271 {
5272 if (buf[0] == '1')
5273 kmem_cache_shrink(s);
5274 else
5275 return -EINVAL;
5276 return length;
5277 }
5278 SLAB_ATTR(shrink);
5279
5280 #ifdef CONFIG_NUMA
5281 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5282 {
5283 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5284 }
5285
5286 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5287 const char *buf, size_t length)
5288 {
5289 unsigned long ratio;
5290 int err;
5291
5292 err = kstrtoul(buf, 10, &ratio);
5293 if (err)
5294 return err;
5295
5296 if (ratio <= 100)
5297 s->remote_node_defrag_ratio = ratio * 10;
5298
5299 return length;
5300 }
5301 SLAB_ATTR(remote_node_defrag_ratio);
5302 #endif
5303
5304 #ifdef CONFIG_SLUB_STATS
5305 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5306 {
5307 unsigned long sum = 0;
5308 int cpu;
5309 int len;
5310 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5311
5312 if (!data)
5313 return -ENOMEM;
5314
5315 for_each_online_cpu(cpu) {
5316 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5317
5318 data[cpu] = x;
5319 sum += x;
5320 }
5321
5322 len = sprintf(buf, "%lu", sum);
5323
5324 #ifdef CONFIG_SMP
5325 for_each_online_cpu(cpu) {
5326 if (data[cpu] && len < PAGE_SIZE - 20)
5327 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5328 }
5329 #endif
5330 kfree(data);
5331 return len + sprintf(buf + len, "\n");
5332 }
5333
5334 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5335 {
5336 int cpu;
5337
5338 for_each_online_cpu(cpu)
5339 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5340 }
5341
5342 #define STAT_ATTR(si, text) \
5343 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5344 { \
5345 return show_stat(s, buf, si); \
5346 } \
5347 static ssize_t text##_store(struct kmem_cache *s, \
5348 const char *buf, size_t length) \
5349 { \
5350 if (buf[0] != '0') \
5351 return -EINVAL; \
5352 clear_stat(s, si); \
5353 return length; \
5354 } \
5355 SLAB_ATTR(text); \
5356
5357 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5358 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5359 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5360 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5361 STAT_ATTR(FREE_FROZEN, free_frozen);
5362 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5363 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5364 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5365 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5366 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5367 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5368 STAT_ATTR(FREE_SLAB, free_slab);
5369 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5370 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5371 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5372 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5373 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5374 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5375 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5376 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5377 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5378 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5379 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5380 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5381 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5382 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5383 #endif
5384
5385 static struct attribute *slab_attrs[] = {
5386 &slab_size_attr.attr,
5387 &object_size_attr.attr,
5388 &objs_per_slab_attr.attr,
5389 &order_attr.attr,
5390 &min_partial_attr.attr,
5391 &cpu_partial_attr.attr,
5392 &objects_attr.attr,
5393 &objects_partial_attr.attr,
5394 &partial_attr.attr,
5395 &cpu_slabs_attr.attr,
5396 &ctor_attr.attr,
5397 &aliases_attr.attr,
5398 &align_attr.attr,
5399 &hwcache_align_attr.attr,
5400 &reclaim_account_attr.attr,
5401 &destroy_by_rcu_attr.attr,
5402 &shrink_attr.attr,
5403 &reserved_attr.attr,
5404 &slabs_cpu_partial_attr.attr,
5405 #ifdef CONFIG_SLUB_DEBUG
5406 &total_objects_attr.attr,
5407 &slabs_attr.attr,
5408 &sanity_checks_attr.attr,
5409 &trace_attr.attr,
5410 &red_zone_attr.attr,
5411 &poison_attr.attr,
5412 &store_user_attr.attr,
5413 &validate_attr.attr,
5414 &alloc_calls_attr.attr,
5415 &free_calls_attr.attr,
5416 #endif
5417 #ifdef CONFIG_ZONE_DMA
5418 &cache_dma_attr.attr,
5419 #endif
5420 #ifdef CONFIG_NUMA
5421 &remote_node_defrag_ratio_attr.attr,
5422 #endif
5423 #ifdef CONFIG_SLUB_STATS
5424 &alloc_fastpath_attr.attr,
5425 &alloc_slowpath_attr.attr,
5426 &free_fastpath_attr.attr,
5427 &free_slowpath_attr.attr,
5428 &free_frozen_attr.attr,
5429 &free_add_partial_attr.attr,
5430 &free_remove_partial_attr.attr,
5431 &alloc_from_partial_attr.attr,
5432 &alloc_slab_attr.attr,
5433 &alloc_refill_attr.attr,
5434 &alloc_node_mismatch_attr.attr,
5435 &free_slab_attr.attr,
5436 &cpuslab_flush_attr.attr,
5437 &deactivate_full_attr.attr,
5438 &deactivate_empty_attr.attr,
5439 &deactivate_to_head_attr.attr,
5440 &deactivate_to_tail_attr.attr,
5441 &deactivate_remote_frees_attr.attr,
5442 &deactivate_bypass_attr.attr,
5443 &order_fallback_attr.attr,
5444 &cmpxchg_double_fail_attr.attr,
5445 &cmpxchg_double_cpu_fail_attr.attr,
5446 &cpu_partial_alloc_attr.attr,
5447 &cpu_partial_free_attr.attr,
5448 &cpu_partial_node_attr.attr,
5449 &cpu_partial_drain_attr.attr,
5450 #endif
5451 #ifdef CONFIG_FAILSLAB
5452 &failslab_attr.attr,
5453 #endif
5454
5455 NULL
5456 };
5457
5458 static struct attribute_group slab_attr_group = {
5459 .attrs = slab_attrs,
5460 };
5461
5462 static ssize_t slab_attr_show(struct kobject *kobj,
5463 struct attribute *attr,
5464 char *buf)
5465 {
5466 struct slab_attribute *attribute;
5467 struct kmem_cache *s;
5468 int err;
5469
5470 attribute = to_slab_attr(attr);
5471 s = to_slab(kobj);
5472
5473 if (!attribute->show)
5474 return -EIO;
5475
5476 err = attribute->show(s, buf);
5477
5478 return err;
5479 }
5480
5481 static ssize_t slab_attr_store(struct kobject *kobj,
5482 struct attribute *attr,
5483 const char *buf, size_t len)
5484 {
5485 struct slab_attribute *attribute;
5486 struct kmem_cache *s;
5487 int err;
5488
5489 attribute = to_slab_attr(attr);
5490 s = to_slab(kobj);
5491
5492 if (!attribute->store)
5493 return -EIO;
5494
5495 err = attribute->store(s, buf, len);
5496 #ifdef CONFIG_MEMCG
5497 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5498 struct kmem_cache *c;
5499
5500 mutex_lock(&slab_mutex);
5501 if (s->max_attr_size < len)
5502 s->max_attr_size = len;
5503
5504 /*
5505 * This is a best effort propagation, so this function's return
5506 * value will be determined by the parent cache only. This is
5507 * basically because not all attributes will have a well
5508 * defined semantics for rollbacks - most of the actions will
5509 * have permanent effects.
5510 *
5511 * Returning the error value of any of the children that fail
5512 * is not 100 % defined, in the sense that users seeing the
5513 * error code won't be able to know anything about the state of
5514 * the cache.
5515 *
5516 * Only returning the error code for the parent cache at least
5517 * has well defined semantics. The cache being written to
5518 * directly either failed or succeeded, in which case we loop
5519 * through the descendants with best-effort propagation.
5520 */
5521 for_each_memcg_cache(c, s)
5522 attribute->store(c, buf, len);
5523 mutex_unlock(&slab_mutex);
5524 }
5525 #endif
5526 return err;
5527 }
5528
5529 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5530 {
5531 #ifdef CONFIG_MEMCG
5532 int i;
5533 char *buffer = NULL;
5534 struct kmem_cache *root_cache;
5535
5536 if (is_root_cache(s))
5537 return;
5538
5539 root_cache = s->memcg_params.root_cache;
5540
5541 /*
5542 * This mean this cache had no attribute written. Therefore, no point
5543 * in copying default values around
5544 */
5545 if (!root_cache->max_attr_size)
5546 return;
5547
5548 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5549 char mbuf[64];
5550 char *buf;
5551 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5552 ssize_t len;
5553
5554 if (!attr || !attr->store || !attr->show)
5555 continue;
5556
5557 /*
5558 * It is really bad that we have to allocate here, so we will
5559 * do it only as a fallback. If we actually allocate, though,
5560 * we can just use the allocated buffer until the end.
5561 *
5562 * Most of the slub attributes will tend to be very small in
5563 * size, but sysfs allows buffers up to a page, so they can
5564 * theoretically happen.
5565 */
5566 if (buffer)
5567 buf = buffer;
5568 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5569 buf = mbuf;
5570 else {
5571 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5572 if (WARN_ON(!buffer))
5573 continue;
5574 buf = buffer;
5575 }
5576
5577 len = attr->show(root_cache, buf);
5578 if (len > 0)
5579 attr->store(s, buf, len);
5580 }
5581
5582 if (buffer)
5583 free_page((unsigned long)buffer);
5584 #endif
5585 }
5586
5587 static void kmem_cache_release(struct kobject *k)
5588 {
5589 slab_kmem_cache_release(to_slab(k));
5590 }
5591
5592 static const struct sysfs_ops slab_sysfs_ops = {
5593 .show = slab_attr_show,
5594 .store = slab_attr_store,
5595 };
5596
5597 static struct kobj_type slab_ktype = {
5598 .sysfs_ops = &slab_sysfs_ops,
5599 .release = kmem_cache_release,
5600 };
5601
5602 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5603 {
5604 struct kobj_type *ktype = get_ktype(kobj);
5605
5606 if (ktype == &slab_ktype)
5607 return 1;
5608 return 0;
5609 }
5610
5611 static const struct kset_uevent_ops slab_uevent_ops = {
5612 .filter = uevent_filter,
5613 };
5614
5615 static struct kset *slab_kset;
5616
5617 static inline struct kset *cache_kset(struct kmem_cache *s)
5618 {
5619 #ifdef CONFIG_MEMCG
5620 if (!is_root_cache(s))
5621 return s->memcg_params.root_cache->memcg_kset;
5622 #endif
5623 return slab_kset;
5624 }
5625
5626 #define ID_STR_LENGTH 64
5627
5628 /* Create a unique string id for a slab cache:
5629 *
5630 * Format :[flags-]size
5631 */
5632 static char *create_unique_id(struct kmem_cache *s)
5633 {
5634 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5635 char *p = name;
5636
5637 BUG_ON(!name);
5638
5639 *p++ = ':';
5640 /*
5641 * First flags affecting slabcache operations. We will only
5642 * get here for aliasable slabs so we do not need to support
5643 * too many flags. The flags here must cover all flags that
5644 * are matched during merging to guarantee that the id is
5645 * unique.
5646 */
5647 if (s->flags & SLAB_CACHE_DMA)
5648 *p++ = 'd';
5649 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5650 *p++ = 'a';
5651 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5652 *p++ = 'F';
5653 if (!(s->flags & SLAB_NOTRACK))
5654 *p++ = 't';
5655 if (s->flags & SLAB_ACCOUNT)
5656 *p++ = 'A';
5657 if (p != name + 1)
5658 *p++ = '-';
5659 p += sprintf(p, "%07d", s->size);
5660
5661 BUG_ON(p > name + ID_STR_LENGTH - 1);
5662 return name;
5663 }
5664
5665 static void sysfs_slab_remove_workfn(struct work_struct *work)
5666 {
5667 struct kmem_cache *s =
5668 container_of(work, struct kmem_cache, kobj_remove_work);
5669
5670 if (!s->kobj.state_in_sysfs)
5671 /*
5672 * For a memcg cache, this may be called during
5673 * deactivation and again on shutdown. Remove only once.
5674 * A cache is never shut down before deactivation is
5675 * complete, so no need to worry about synchronization.
5676 */
5677 goto out;
5678
5679 #ifdef CONFIG_MEMCG
5680 kset_unregister(s->memcg_kset);
5681 #endif
5682 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5683 kobject_del(&s->kobj);
5684 out:
5685 kobject_put(&s->kobj);
5686 }
5687
5688 static int sysfs_slab_add(struct kmem_cache *s)
5689 {
5690 int err;
5691 const char *name;
5692 struct kset *kset = cache_kset(s);
5693 int unmergeable = slab_unmergeable(s);
5694
5695 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5696
5697 if (!kset) {
5698 kobject_init(&s->kobj, &slab_ktype);
5699 return 0;
5700 }
5701
5702 if (unmergeable) {
5703 /*
5704 * Slabcache can never be merged so we can use the name proper.
5705 * This is typically the case for debug situations. In that
5706 * case we can catch duplicate names easily.
5707 */
5708 sysfs_remove_link(&slab_kset->kobj, s->name);
5709 name = s->name;
5710 } else {
5711 /*
5712 * Create a unique name for the slab as a target
5713 * for the symlinks.
5714 */
5715 name = create_unique_id(s);
5716 }
5717
5718 s->kobj.kset = kset;
5719 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5720 if (err)
5721 goto out;
5722
5723 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5724 if (err)
5725 goto out_del_kobj;
5726
5727 #ifdef CONFIG_MEMCG
5728 if (is_root_cache(s) && memcg_sysfs_enabled) {
5729 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5730 if (!s->memcg_kset) {
5731 err = -ENOMEM;
5732 goto out_del_kobj;
5733 }
5734 }
5735 #endif
5736
5737 kobject_uevent(&s->kobj, KOBJ_ADD);
5738 if (!unmergeable) {
5739 /* Setup first alias */
5740 sysfs_slab_alias(s, s->name);
5741 }
5742 out:
5743 if (!unmergeable)
5744 kfree(name);
5745 return err;
5746 out_del_kobj:
5747 kobject_del(&s->kobj);
5748 goto out;
5749 }
5750
5751 static void sysfs_slab_remove(struct kmem_cache *s)
5752 {
5753 if (slab_state < FULL)
5754 /*
5755 * Sysfs has not been setup yet so no need to remove the
5756 * cache from sysfs.
5757 */
5758 return;
5759
5760 kobject_get(&s->kobj);
5761 schedule_work(&s->kobj_remove_work);
5762 }
5763
5764 void sysfs_slab_release(struct kmem_cache *s)
5765 {
5766 if (slab_state >= FULL)
5767 kobject_put(&s->kobj);
5768 }
5769
5770 /*
5771 * Need to buffer aliases during bootup until sysfs becomes
5772 * available lest we lose that information.
5773 */
5774 struct saved_alias {
5775 struct kmem_cache *s;
5776 const char *name;
5777 struct saved_alias *next;
5778 };
5779
5780 static struct saved_alias *alias_list;
5781
5782 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5783 {
5784 struct saved_alias *al;
5785
5786 if (slab_state == FULL) {
5787 /*
5788 * If we have a leftover link then remove it.
5789 */
5790 sysfs_remove_link(&slab_kset->kobj, name);
5791 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5792 }
5793
5794 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5795 if (!al)
5796 return -ENOMEM;
5797
5798 al->s = s;
5799 al->name = name;
5800 al->next = alias_list;
5801 alias_list = al;
5802 return 0;
5803 }
5804
5805 static int __init slab_sysfs_init(void)
5806 {
5807 struct kmem_cache *s;
5808 int err;
5809
5810 mutex_lock(&slab_mutex);
5811
5812 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5813 if (!slab_kset) {
5814 mutex_unlock(&slab_mutex);
5815 pr_err("Cannot register slab subsystem.\n");
5816 return -ENOSYS;
5817 }
5818
5819 slab_state = FULL;
5820
5821 list_for_each_entry(s, &slab_caches, list) {
5822 err = sysfs_slab_add(s);
5823 if (err)
5824 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5825 s->name);
5826 }
5827
5828 while (alias_list) {
5829 struct saved_alias *al = alias_list;
5830
5831 alias_list = alias_list->next;
5832 err = sysfs_slab_alias(al->s, al->name);
5833 if (err)
5834 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5835 al->name);
5836 kfree(al);
5837 }
5838
5839 mutex_unlock(&slab_mutex);
5840 resiliency_test();
5841 return 0;
5842 }
5843
5844 __initcall(slab_sysfs_init);
5845 #endif /* CONFIG_SYSFS */
5846
5847 /*
5848 * The /proc/slabinfo ABI
5849 */
5850 #ifdef CONFIG_SLABINFO
5851 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5852 {
5853 unsigned long nr_slabs = 0;
5854 unsigned long nr_objs = 0;
5855 unsigned long nr_free = 0;
5856 int node;
5857 struct kmem_cache_node *n;
5858
5859 for_each_kmem_cache_node(s, node, n) {
5860 nr_slabs += node_nr_slabs(n);
5861 nr_objs += node_nr_objs(n);
5862 nr_free += count_partial(n, count_free);
5863 }
5864
5865 sinfo->active_objs = nr_objs - nr_free;
5866 sinfo->num_objs = nr_objs;
5867 sinfo->active_slabs = nr_slabs;
5868 sinfo->num_slabs = nr_slabs;
5869 sinfo->objects_per_slab = oo_objects(s->oo);
5870 sinfo->cache_order = oo_order(s->oo);
5871 }
5872
5873 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5874 {
5875 }
5876
5877 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5878 size_t count, loff_t *ppos)
5879 {
5880 return -EIO;
5881 }
5882 #endif /* CONFIG_SLABINFO */