]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
SLUB: fix build when !SLUB_DEBUG
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <trace/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 /*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
107 */
108
109 #ifdef CONFIG_SLUB_DEBUG
110 #define SLABDEBUG 1
111 #else
112 #define SLABDEBUG 0
113 #endif
114
115 /*
116 * Issues still to be resolved:
117 *
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 *
120 * - Variable sizing of the per node arrays
121 */
122
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
125
126 /*
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 */
130 #define MIN_PARTIAL 5
131
132 /*
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
136 */
137 #define MAX_PARTIAL 10
138
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
141
142 /*
143 * Set of flags that will prevent slab merging
144 */
145 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
146 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147
148 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
149 SLAB_CACHE_DMA)
150
151 #ifndef ARCH_KMALLOC_MINALIGN
152 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
157 #endif
158
159 #define OO_SHIFT 16
160 #define OO_MASK ((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON 0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
166
167 static int kmem_size = sizeof(struct kmem_cache);
168
169 #ifdef CONFIG_SMP
170 static struct notifier_block slab_notifier;
171 #endif
172
173 static enum {
174 DOWN, /* No slab functionality available */
175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
176 UP, /* Everything works but does not show up in sysfs */
177 SYSFS /* Sysfs up */
178 } slab_state = DOWN;
179
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock);
182 static LIST_HEAD(slab_caches);
183
184 /*
185 * Tracking user of a slab.
186 */
187 struct track {
188 unsigned long addr; /* Called from address */
189 int cpu; /* Was running on cpu */
190 int pid; /* Pid context */
191 unsigned long when; /* When did the operation occur */
192 };
193
194 enum track_item { TRACK_ALLOC, TRACK_FREE };
195
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache *);
198 static int sysfs_slab_alias(struct kmem_cache *, const char *);
199 static void sysfs_slab_remove(struct kmem_cache *);
200
201 #else
202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
204 { return 0; }
205 static inline void sysfs_slab_remove(struct kmem_cache *s)
206 {
207 kfree(s);
208 }
209
210 #endif
211
212 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 c->stat[si]++;
216 #endif
217 }
218
219 /********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
222
223 int slab_is_available(void)
224 {
225 return slab_state >= UP;
226 }
227
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229 {
230 #ifdef CONFIG_NUMA
231 return s->node[node];
232 #else
233 return &s->local_node;
234 #endif
235 }
236
237 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
238 {
239 #ifdef CONFIG_SMP
240 return s->cpu_slab[cpu];
241 #else
242 return &s->cpu_slab;
243 #endif
244 }
245
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249 {
250 void *base;
251
252 if (!object)
253 return 1;
254
255 base = page_address(page);
256 if (object < base || object >= base + page->objects * s->size ||
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262 }
263
264 /*
265 * Slow version of get and set free pointer.
266 *
267 * This version requires touching the cache lines of kmem_cache which
268 * we avoid to do in the fast alloc free paths. There we obtain the offset
269 * from the page struct.
270 */
271 static inline void *get_freepointer(struct kmem_cache *s, void *object)
272 {
273 return *(void **)(object + s->offset);
274 }
275
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 {
278 *(void **)(object + s->offset) = fp;
279 }
280
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 __p += (__s)->size)
285
286 /* Scan freelist */
287 #define for_each_free_object(__p, __s, __free) \
288 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline struct kmem_cache_order_objects oo_make(int order,
297 unsigned long size)
298 {
299 struct kmem_cache_order_objects x = {
300 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
301 };
302
303 return x;
304 }
305
306 static inline int oo_order(struct kmem_cache_order_objects x)
307 {
308 return x.x >> OO_SHIFT;
309 }
310
311 static inline int oo_objects(struct kmem_cache_order_objects x)
312 {
313 return x.x & OO_MASK;
314 }
315
316 #ifdef CONFIG_SLUB_DEBUG
317 /*
318 * Debug settings:
319 */
320 #ifdef CONFIG_SLUB_DEBUG_ON
321 static int slub_debug = DEBUG_DEFAULT_FLAGS;
322 #else
323 static int slub_debug;
324 #endif
325
326 static char *slub_debug_slabs;
327
328 /*
329 * Object debugging
330 */
331 static void print_section(char *text, u8 *addr, unsigned int length)
332 {
333 int i, offset;
334 int newline = 1;
335 char ascii[17];
336
337 ascii[16] = 0;
338
339 for (i = 0; i < length; i++) {
340 if (newline) {
341 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
342 newline = 0;
343 }
344 printk(KERN_CONT " %02x", addr[i]);
345 offset = i % 16;
346 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
347 if (offset == 15) {
348 printk(KERN_CONT " %s\n", ascii);
349 newline = 1;
350 }
351 }
352 if (!newline) {
353 i %= 16;
354 while (i < 16) {
355 printk(KERN_CONT " ");
356 ascii[i] = ' ';
357 i++;
358 }
359 printk(KERN_CONT " %s\n", ascii);
360 }
361 }
362
363 static struct track *get_track(struct kmem_cache *s, void *object,
364 enum track_item alloc)
365 {
366 struct track *p;
367
368 if (s->offset)
369 p = object + s->offset + sizeof(void *);
370 else
371 p = object + s->inuse;
372
373 return p + alloc;
374 }
375
376 static void set_track(struct kmem_cache *s, void *object,
377 enum track_item alloc, unsigned long addr)
378 {
379 struct track *p = get_track(s, object, alloc);
380
381 if (addr) {
382 p->addr = addr;
383 p->cpu = smp_processor_id();
384 p->pid = current->pid;
385 p->when = jiffies;
386 } else
387 memset(p, 0, sizeof(struct track));
388 }
389
390 static void init_tracking(struct kmem_cache *s, void *object)
391 {
392 if (!(s->flags & SLAB_STORE_USER))
393 return;
394
395 set_track(s, object, TRACK_FREE, 0UL);
396 set_track(s, object, TRACK_ALLOC, 0UL);
397 }
398
399 static void print_track(const char *s, struct track *t)
400 {
401 if (!t->addr)
402 return;
403
404 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
405 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
406 }
407
408 static void print_tracking(struct kmem_cache *s, void *object)
409 {
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
414 print_track("Freed", get_track(s, object, TRACK_FREE));
415 }
416
417 static void print_page_info(struct page *page)
418 {
419 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420 page, page->objects, page->inuse, page->freelist, page->flags);
421
422 }
423
424 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
425 {
426 va_list args;
427 char buf[100];
428
429 va_start(args, fmt);
430 vsnprintf(buf, sizeof(buf), fmt, args);
431 va_end(args);
432 printk(KERN_ERR "========================================"
433 "=====================================\n");
434 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
435 printk(KERN_ERR "----------------------------------------"
436 "-------------------------------------\n\n");
437 }
438
439 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
440 {
441 va_list args;
442 char buf[100];
443
444 va_start(args, fmt);
445 vsnprintf(buf, sizeof(buf), fmt, args);
446 va_end(args);
447 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448 }
449
450 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
451 {
452 unsigned int off; /* Offset of last byte */
453 u8 *addr = page_address(page);
454
455 print_tracking(s, p);
456
457 print_page_info(page);
458
459 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460 p, p - addr, get_freepointer(s, p));
461
462 if (p > addr + 16)
463 print_section("Bytes b4", p - 16, 16);
464
465 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
466
467 if (s->flags & SLAB_RED_ZONE)
468 print_section("Redzone", p + s->objsize,
469 s->inuse - s->objsize);
470
471 if (s->offset)
472 off = s->offset + sizeof(void *);
473 else
474 off = s->inuse;
475
476 if (s->flags & SLAB_STORE_USER)
477 off += 2 * sizeof(struct track);
478
479 if (off != s->size)
480 /* Beginning of the filler is the free pointer */
481 print_section("Padding", p + off, s->size - off);
482
483 dump_stack();
484 }
485
486 static void object_err(struct kmem_cache *s, struct page *page,
487 u8 *object, char *reason)
488 {
489 slab_bug(s, "%s", reason);
490 print_trailer(s, page, object);
491 }
492
493 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
494 {
495 va_list args;
496 char buf[100];
497
498 va_start(args, fmt);
499 vsnprintf(buf, sizeof(buf), fmt, args);
500 va_end(args);
501 slab_bug(s, "%s", buf);
502 print_page_info(page);
503 dump_stack();
504 }
505
506 static void init_object(struct kmem_cache *s, void *object, int active)
507 {
508 u8 *p = object;
509
510 if (s->flags & __OBJECT_POISON) {
511 memset(p, POISON_FREE, s->objsize - 1);
512 p[s->objsize - 1] = POISON_END;
513 }
514
515 if (s->flags & SLAB_RED_ZONE)
516 memset(p + s->objsize,
517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
518 s->inuse - s->objsize);
519 }
520
521 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
522 {
523 while (bytes) {
524 if (*start != (u8)value)
525 return start;
526 start++;
527 bytes--;
528 }
529 return NULL;
530 }
531
532 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
533 void *from, void *to)
534 {
535 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
536 memset(from, data, to - from);
537 }
538
539 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
540 u8 *object, char *what,
541 u8 *start, unsigned int value, unsigned int bytes)
542 {
543 u8 *fault;
544 u8 *end;
545
546 fault = check_bytes(start, value, bytes);
547 if (!fault)
548 return 1;
549
550 end = start + bytes;
551 while (end > fault && end[-1] == value)
552 end--;
553
554 slab_bug(s, "%s overwritten", what);
555 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556 fault, end - 1, fault[0], value);
557 print_trailer(s, page, object);
558
559 restore_bytes(s, what, value, fault, end);
560 return 0;
561 }
562
563 /*
564 * Object layout:
565 *
566 * object address
567 * Bytes of the object to be managed.
568 * If the freepointer may overlay the object then the free
569 * pointer is the first word of the object.
570 *
571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * 0xa5 (POISON_END)
573 *
574 * object + s->objsize
575 * Padding to reach word boundary. This is also used for Redzoning.
576 * Padding is extended by another word if Redzoning is enabled and
577 * objsize == inuse.
578 *
579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 0xcc (RED_ACTIVE) for objects in use.
581 *
582 * object + s->inuse
583 * Meta data starts here.
584 *
585 * A. Free pointer (if we cannot overwrite object on free)
586 * B. Tracking data for SLAB_STORE_USER
587 * C. Padding to reach required alignment boundary or at mininum
588 * one word if debugging is on to be able to detect writes
589 * before the word boundary.
590 *
591 * Padding is done using 0x5a (POISON_INUSE)
592 *
593 * object + s->size
594 * Nothing is used beyond s->size.
595 *
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
598 * may be used with merged slabcaches.
599 */
600
601 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
602 {
603 unsigned long off = s->inuse; /* The end of info */
604
605 if (s->offset)
606 /* Freepointer is placed after the object. */
607 off += sizeof(void *);
608
609 if (s->flags & SLAB_STORE_USER)
610 /* We also have user information there */
611 off += 2 * sizeof(struct track);
612
613 if (s->size == off)
614 return 1;
615
616 return check_bytes_and_report(s, page, p, "Object padding",
617 p + off, POISON_INUSE, s->size - off);
618 }
619
620 /* Check the pad bytes at the end of a slab page */
621 static int slab_pad_check(struct kmem_cache *s, struct page *page)
622 {
623 u8 *start;
624 u8 *fault;
625 u8 *end;
626 int length;
627 int remainder;
628
629 if (!(s->flags & SLAB_POISON))
630 return 1;
631
632 start = page_address(page);
633 length = (PAGE_SIZE << compound_order(page));
634 end = start + length;
635 remainder = length % s->size;
636 if (!remainder)
637 return 1;
638
639 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
640 if (!fault)
641 return 1;
642 while (end > fault && end[-1] == POISON_INUSE)
643 end--;
644
645 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
646 print_section("Padding", end - remainder, remainder);
647
648 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
649 return 0;
650 }
651
652 static int check_object(struct kmem_cache *s, struct page *page,
653 void *object, int active)
654 {
655 u8 *p = object;
656 u8 *endobject = object + s->objsize;
657
658 if (s->flags & SLAB_RED_ZONE) {
659 unsigned int red =
660 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
661
662 if (!check_bytes_and_report(s, page, object, "Redzone",
663 endobject, red, s->inuse - s->objsize))
664 return 0;
665 } else {
666 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
667 check_bytes_and_report(s, page, p, "Alignment padding",
668 endobject, POISON_INUSE, s->inuse - s->objsize);
669 }
670 }
671
672 if (s->flags & SLAB_POISON) {
673 if (!active && (s->flags & __OBJECT_POISON) &&
674 (!check_bytes_and_report(s, page, p, "Poison", p,
675 POISON_FREE, s->objsize - 1) ||
676 !check_bytes_and_report(s, page, p, "Poison",
677 p + s->objsize - 1, POISON_END, 1)))
678 return 0;
679 /*
680 * check_pad_bytes cleans up on its own.
681 */
682 check_pad_bytes(s, page, p);
683 }
684
685 if (!s->offset && active)
686 /*
687 * Object and freepointer overlap. Cannot check
688 * freepointer while object is allocated.
689 */
690 return 1;
691
692 /* Check free pointer validity */
693 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
694 object_err(s, page, p, "Freepointer corrupt");
695 /*
696 * No choice but to zap it and thus lose the remainder
697 * of the free objects in this slab. May cause
698 * another error because the object count is now wrong.
699 */
700 set_freepointer(s, p, NULL);
701 return 0;
702 }
703 return 1;
704 }
705
706 static int check_slab(struct kmem_cache *s, struct page *page)
707 {
708 int maxobj;
709
710 VM_BUG_ON(!irqs_disabled());
711
712 if (!PageSlab(page)) {
713 slab_err(s, page, "Not a valid slab page");
714 return 0;
715 }
716
717 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
718 if (page->objects > maxobj) {
719 slab_err(s, page, "objects %u > max %u",
720 s->name, page->objects, maxobj);
721 return 0;
722 }
723 if (page->inuse > page->objects) {
724 slab_err(s, page, "inuse %u > max %u",
725 s->name, page->inuse, page->objects);
726 return 0;
727 }
728 /* Slab_pad_check fixes things up after itself */
729 slab_pad_check(s, page);
730 return 1;
731 }
732
733 /*
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
736 */
737 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738 {
739 int nr = 0;
740 void *fp = page->freelist;
741 void *object = NULL;
742 unsigned long max_objects;
743
744 while (fp && nr <= page->objects) {
745 if (fp == search)
746 return 1;
747 if (!check_valid_pointer(s, page, fp)) {
748 if (object) {
749 object_err(s, page, object,
750 "Freechain corrupt");
751 set_freepointer(s, object, NULL);
752 break;
753 } else {
754 slab_err(s, page, "Freepointer corrupt");
755 page->freelist = NULL;
756 page->inuse = page->objects;
757 slab_fix(s, "Freelist cleared");
758 return 0;
759 }
760 break;
761 }
762 object = fp;
763 fp = get_freepointer(s, object);
764 nr++;
765 }
766
767 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
768 if (max_objects > MAX_OBJS_PER_PAGE)
769 max_objects = MAX_OBJS_PER_PAGE;
770
771 if (page->objects != max_objects) {
772 slab_err(s, page, "Wrong number of objects. Found %d but "
773 "should be %d", page->objects, max_objects);
774 page->objects = max_objects;
775 slab_fix(s, "Number of objects adjusted.");
776 }
777 if (page->inuse != page->objects - nr) {
778 slab_err(s, page, "Wrong object count. Counter is %d but "
779 "counted were %d", page->inuse, page->objects - nr);
780 page->inuse = page->objects - nr;
781 slab_fix(s, "Object count adjusted.");
782 }
783 return search == NULL;
784 }
785
786 static void trace(struct kmem_cache *s, struct page *page, void *object,
787 int alloc)
788 {
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801 }
802
803 /*
804 * Tracking of fully allocated slabs for debugging purposes.
805 */
806 static void add_full(struct kmem_cache_node *n, struct page *page)
807 {
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811 }
812
813 static void remove_full(struct kmem_cache *s, struct page *page)
814 {
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825 }
826
827 /* Tracking of the number of slabs for debugging purposes */
828 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
829 {
830 struct kmem_cache_node *n = get_node(s, node);
831
832 return atomic_long_read(&n->nr_slabs);
833 }
834
835 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
836 {
837 return atomic_long_read(&n->nr_slabs);
838 }
839
840 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
841 {
842 struct kmem_cache_node *n = get_node(s, node);
843
844 /*
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
849 */
850 if (!NUMA_BUILD || n) {
851 atomic_long_inc(&n->nr_slabs);
852 atomic_long_add(objects, &n->total_objects);
853 }
854 }
855 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
856 {
857 struct kmem_cache_node *n = get_node(s, node);
858
859 atomic_long_dec(&n->nr_slabs);
860 atomic_long_sub(objects, &n->total_objects);
861 }
862
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 void *object)
866 {
867 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 return;
869
870 init_object(s, object, 0);
871 init_tracking(s, object);
872 }
873
874 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, unsigned long addr)
876 {
877 if (!check_slab(s, page))
878 goto bad;
879
880 if (!on_freelist(s, page, object)) {
881 object_err(s, page, object, "Object already allocated");
882 goto bad;
883 }
884
885 if (!check_valid_pointer(s, page, object)) {
886 object_err(s, page, object, "Freelist Pointer check fails");
887 goto bad;
888 }
889
890 if (!check_object(s, page, object, 0))
891 goto bad;
892
893 /* Success perform special debug activities for allocs */
894 if (s->flags & SLAB_STORE_USER)
895 set_track(s, object, TRACK_ALLOC, addr);
896 trace(s, page, object, 1);
897 init_object(s, object, 1);
898 return 1;
899
900 bad:
901 if (PageSlab(page)) {
902 /*
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
906 */
907 slab_fix(s, "Marking all objects used");
908 page->inuse = page->objects;
909 page->freelist = NULL;
910 }
911 return 0;
912 }
913
914 static int free_debug_processing(struct kmem_cache *s, struct page *page,
915 void *object, unsigned long addr)
916 {
917 if (!check_slab(s, page))
918 goto fail;
919
920 if (!check_valid_pointer(s, page, object)) {
921 slab_err(s, page, "Invalid object pointer 0x%p", object);
922 goto fail;
923 }
924
925 if (on_freelist(s, page, object)) {
926 object_err(s, page, object, "Object already free");
927 goto fail;
928 }
929
930 if (!check_object(s, page, object, 1))
931 return 0;
932
933 if (unlikely(s != page->slab)) {
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Attempt to free object(0x%p) "
936 "outside of slab", object);
937 } else if (!page->slab) {
938 printk(KERN_ERR
939 "SLUB <none>: no slab for object 0x%p.\n",
940 object);
941 dump_stack();
942 } else
943 object_err(s, page, object,
944 "page slab pointer corrupt.");
945 goto fail;
946 }
947
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page) && !page->freelist)
950 remove_full(s, page);
951 if (s->flags & SLAB_STORE_USER)
952 set_track(s, object, TRACK_FREE, addr);
953 trace(s, page, object, 0);
954 init_object(s, object, 0);
955 return 1;
956
957 fail:
958 slab_fix(s, "Object at 0x%p not freed", object);
959 return 0;
960 }
961
962 static int __init setup_slub_debug(char *str)
963 {
964 slub_debug = DEBUG_DEFAULT_FLAGS;
965 if (*str++ != '=' || !*str)
966 /*
967 * No options specified. Switch on full debugging.
968 */
969 goto out;
970
971 if (*str == ',')
972 /*
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
975 */
976 goto check_slabs;
977
978 slub_debug = 0;
979 if (*str == '-')
980 /*
981 * Switch off all debugging measures.
982 */
983 goto out;
984
985 /*
986 * Determine which debug features should be switched on
987 */
988 for (; *str && *str != ','; str++) {
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 default:
1006 printk(KERN_ERR "slub_debug option '%c' "
1007 "unknown. skipped\n", *str);
1008 }
1009 }
1010
1011 check_slabs:
1012 if (*str == ',')
1013 slub_debug_slabs = str + 1;
1014 out:
1015 return 1;
1016 }
1017
1018 __setup("slub_debug", setup_slub_debug);
1019
1020 static unsigned long kmem_cache_flags(unsigned long objsize,
1021 unsigned long flags, const char *name,
1022 void (*ctor)(void *))
1023 {
1024 /*
1025 * Enable debugging if selected on the kernel commandline.
1026 */
1027 if (slub_debug && (!slub_debug_slabs ||
1028 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1029 flags |= slub_debug;
1030
1031 return flags;
1032 }
1033 #else
1034 static inline void setup_object_debug(struct kmem_cache *s,
1035 struct page *page, void *object) {}
1036
1037 static inline int alloc_debug_processing(struct kmem_cache *s,
1038 struct page *page, void *object, unsigned long addr) { return 0; }
1039
1040 static inline int free_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr) { return 0; }
1042
1043 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1044 { return 1; }
1045 static inline int check_object(struct kmem_cache *s, struct page *page,
1046 void *object, int active) { return 1; }
1047 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
1050 void (*ctor)(void *))
1051 {
1052 return flags;
1053 }
1054 #define slub_debug 0
1055
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 { return 0; }
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 #endif
1065
1066 /*
1067 * Slab allocation and freeing
1068 */
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071 {
1072 int order = oo_order(oo);
1073
1074 if (node == -1)
1075 return alloc_pages(flags, order);
1076 else
1077 return alloc_pages_node(node, flags, order);
1078 }
1079
1080 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1081 {
1082 struct page *page;
1083 struct kmem_cache_order_objects oo = s->oo;
1084
1085 flags |= s->allocflags;
1086
1087 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1088 oo);
1089 if (unlikely(!page)) {
1090 oo = s->min;
1091 /*
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1094 */
1095 page = alloc_slab_page(flags, node, oo);
1096 if (!page)
1097 return NULL;
1098
1099 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1100 }
1101 page->objects = oo_objects(oo);
1102 mod_zone_page_state(page_zone(page),
1103 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1104 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1105 1 << oo_order(oo));
1106
1107 return page;
1108 }
1109
1110 static void setup_object(struct kmem_cache *s, struct page *page,
1111 void *object)
1112 {
1113 setup_object_debug(s, page, object);
1114 if (unlikely(s->ctor))
1115 s->ctor(object);
1116 }
1117
1118 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1119 {
1120 struct page *page;
1121 void *start;
1122 void *last;
1123 void *p;
1124
1125 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1126
1127 page = allocate_slab(s,
1128 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1129 if (!page)
1130 goto out;
1131
1132 inc_slabs_node(s, page_to_nid(page), page->objects);
1133 page->slab = s;
1134 page->flags |= 1 << PG_slab;
1135 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1136 SLAB_STORE_USER | SLAB_TRACE))
1137 __SetPageSlubDebug(page);
1138
1139 start = page_address(page);
1140
1141 if (unlikely(s->flags & SLAB_POISON))
1142 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1143
1144 last = start;
1145 for_each_object(p, s, start, page->objects) {
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1149 }
1150 setup_object(s, page, last);
1151 set_freepointer(s, last, NULL);
1152
1153 page->freelist = start;
1154 page->inuse = 0;
1155 out:
1156 return page;
1157 }
1158
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1160 {
1161 int order = compound_order(page);
1162 int pages = 1 << order;
1163
1164 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1165 void *p;
1166
1167 slab_pad_check(s, page);
1168 for_each_object(p, s, page_address(page),
1169 page->objects)
1170 check_object(s, page, p, 0);
1171 __ClearPageSlubDebug(page);
1172 }
1173
1174 mod_zone_page_state(page_zone(page),
1175 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1176 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1177 -pages);
1178
1179 __ClearPageSlab(page);
1180 reset_page_mapcount(page);
1181 if (current->reclaim_state)
1182 current->reclaim_state->reclaimed_slab += pages;
1183 __free_pages(page, order);
1184 }
1185
1186 static void rcu_free_slab(struct rcu_head *h)
1187 {
1188 struct page *page;
1189
1190 page = container_of((struct list_head *)h, struct page, lru);
1191 __free_slab(page->slab, page);
1192 }
1193
1194 static void free_slab(struct kmem_cache *s, struct page *page)
1195 {
1196 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1197 /*
1198 * RCU free overloads the RCU head over the LRU
1199 */
1200 struct rcu_head *head = (void *)&page->lru;
1201
1202 call_rcu(head, rcu_free_slab);
1203 } else
1204 __free_slab(s, page);
1205 }
1206
1207 static void discard_slab(struct kmem_cache *s, struct page *page)
1208 {
1209 dec_slabs_node(s, page_to_nid(page), page->objects);
1210 free_slab(s, page);
1211 }
1212
1213 /*
1214 * Per slab locking using the pagelock
1215 */
1216 static __always_inline void slab_lock(struct page *page)
1217 {
1218 bit_spin_lock(PG_locked, &page->flags);
1219 }
1220
1221 static __always_inline void slab_unlock(struct page *page)
1222 {
1223 __bit_spin_unlock(PG_locked, &page->flags);
1224 }
1225
1226 static __always_inline int slab_trylock(struct page *page)
1227 {
1228 int rc = 1;
1229
1230 rc = bit_spin_trylock(PG_locked, &page->flags);
1231 return rc;
1232 }
1233
1234 /*
1235 * Management of partially allocated slabs
1236 */
1237 static void add_partial(struct kmem_cache_node *n,
1238 struct page *page, int tail)
1239 {
1240 spin_lock(&n->list_lock);
1241 n->nr_partial++;
1242 if (tail)
1243 list_add_tail(&page->lru, &n->partial);
1244 else
1245 list_add(&page->lru, &n->partial);
1246 spin_unlock(&n->list_lock);
1247 }
1248
1249 static void remove_partial(struct kmem_cache *s, struct page *page)
1250 {
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1257 }
1258
1259 /*
1260 * Lock slab and remove from the partial list.
1261 *
1262 * Must hold list_lock.
1263 */
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1265 struct page *page)
1266 {
1267 if (slab_trylock(page)) {
1268 list_del(&page->lru);
1269 n->nr_partial--;
1270 __SetPageSlubFrozen(page);
1271 return 1;
1272 }
1273 return 0;
1274 }
1275
1276 /*
1277 * Try to allocate a partial slab from a specific node.
1278 */
1279 static struct page *get_partial_node(struct kmem_cache_node *n)
1280 {
1281 struct page *page;
1282
1283 /*
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
1286 * partial slab and there is none available then get_partials()
1287 * will return NULL.
1288 */
1289 if (!n || !n->nr_partial)
1290 return NULL;
1291
1292 spin_lock(&n->list_lock);
1293 list_for_each_entry(page, &n->partial, lru)
1294 if (lock_and_freeze_slab(n, page))
1295 goto out;
1296 page = NULL;
1297 out:
1298 spin_unlock(&n->list_lock);
1299 return page;
1300 }
1301
1302 /*
1303 * Get a page from somewhere. Search in increasing NUMA distances.
1304 */
1305 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1306 {
1307 #ifdef CONFIG_NUMA
1308 struct zonelist *zonelist;
1309 struct zoneref *z;
1310 struct zone *zone;
1311 enum zone_type high_zoneidx = gfp_zone(flags);
1312 struct page *page;
1313
1314 /*
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
1319 *
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
1324 *
1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
1331 */
1332 if (!s->remote_node_defrag_ratio ||
1333 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1334 return NULL;
1335
1336 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1337 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1338 struct kmem_cache_node *n;
1339
1340 n = get_node(s, zone_to_nid(zone));
1341
1342 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1343 n->nr_partial > s->min_partial) {
1344 page = get_partial_node(n);
1345 if (page)
1346 return page;
1347 }
1348 }
1349 #endif
1350 return NULL;
1351 }
1352
1353 /*
1354 * Get a partial page, lock it and return it.
1355 */
1356 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 int searchnode = (node == -1) ? numa_node_id() : node;
1360
1361 page = get_partial_node(get_node(s, searchnode));
1362 if (page || (flags & __GFP_THISNODE))
1363 return page;
1364
1365 return get_any_partial(s, flags);
1366 }
1367
1368 /*
1369 * Move a page back to the lists.
1370 *
1371 * Must be called with the slab lock held.
1372 *
1373 * On exit the slab lock will have been dropped.
1374 */
1375 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1376 {
1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1379
1380 __ClearPageSlubFrozen(page);
1381 if (page->inuse) {
1382
1383 if (page->freelist) {
1384 add_partial(n, page, tail);
1385 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1386 } else {
1387 stat(c, DEACTIVATE_FULL);
1388 if (SLABDEBUG && PageSlubDebug(page) &&
1389 (s->flags & SLAB_STORE_USER))
1390 add_full(n, page);
1391 }
1392 slab_unlock(page);
1393 } else {
1394 stat(c, DEACTIVATE_EMPTY);
1395 if (n->nr_partial < s->min_partial) {
1396 /*
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1402 *
1403 * kmem_cache_shrink can reclaim any empty slabs from
1404 * the partial list.
1405 */
1406 add_partial(n, page, 1);
1407 slab_unlock(page);
1408 } else {
1409 slab_unlock(page);
1410 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1411 discard_slab(s, page);
1412 }
1413 }
1414 }
1415
1416 /*
1417 * Remove the cpu slab
1418 */
1419 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1420 {
1421 struct page *page = c->page;
1422 int tail = 1;
1423
1424 if (page->freelist)
1425 stat(c, DEACTIVATE_REMOTE_FREES);
1426 /*
1427 * Merge cpu freelist into slab freelist. Typically we get here
1428 * because both freelists are empty. So this is unlikely
1429 * to occur.
1430 */
1431 while (unlikely(c->freelist)) {
1432 void **object;
1433
1434 tail = 0; /* Hot objects. Put the slab first */
1435
1436 /* Retrieve object from cpu_freelist */
1437 object = c->freelist;
1438 c->freelist = c->freelist[c->offset];
1439
1440 /* And put onto the regular freelist */
1441 object[c->offset] = page->freelist;
1442 page->freelist = object;
1443 page->inuse--;
1444 }
1445 c->page = NULL;
1446 unfreeze_slab(s, page, tail);
1447 }
1448
1449 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 stat(c, CPUSLAB_FLUSH);
1452 slab_lock(c->page);
1453 deactivate_slab(s, c);
1454 }
1455
1456 /*
1457 * Flush cpu slab.
1458 *
1459 * Called from IPI handler with interrupts disabled.
1460 */
1461 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1462 {
1463 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1464
1465 if (likely(c && c->page))
1466 flush_slab(s, c);
1467 }
1468
1469 static void flush_cpu_slab(void *d)
1470 {
1471 struct kmem_cache *s = d;
1472
1473 __flush_cpu_slab(s, smp_processor_id());
1474 }
1475
1476 static void flush_all(struct kmem_cache *s)
1477 {
1478 on_each_cpu(flush_cpu_slab, s, 1);
1479 }
1480
1481 /*
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1484 */
1485 static inline int node_match(struct kmem_cache_cpu *c, int node)
1486 {
1487 #ifdef CONFIG_NUMA
1488 if (node != -1 && c->node != node)
1489 return 0;
1490 #endif
1491 return 1;
1492 }
1493
1494 static int count_free(struct page *page)
1495 {
1496 return page->objects - page->inuse;
1497 }
1498
1499 static unsigned long count_partial(struct kmem_cache_node *n,
1500 int (*get_count)(struct page *))
1501 {
1502 unsigned long flags;
1503 unsigned long x = 0;
1504 struct page *page;
1505
1506 spin_lock_irqsave(&n->list_lock, flags);
1507 list_for_each_entry(page, &n->partial, lru)
1508 x += get_count(page);
1509 spin_unlock_irqrestore(&n->list_lock, flags);
1510 return x;
1511 }
1512
1513 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1514 {
1515 #ifdef CONFIG_SLUB_DEBUG
1516 return atomic_long_read(&n->total_objects);
1517 #else
1518 return 0;
1519 #endif
1520 }
1521
1522 static noinline void
1523 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1524 {
1525 int node;
1526
1527 printk(KERN_WARNING
1528 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 nid, gfpflags);
1530 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1531 "default order: %d, min order: %d\n", s->name, s->objsize,
1532 s->size, oo_order(s->oo), oo_order(s->min));
1533
1534 for_each_online_node(node) {
1535 struct kmem_cache_node *n = get_node(s, node);
1536 unsigned long nr_slabs;
1537 unsigned long nr_objs;
1538 unsigned long nr_free;
1539
1540 if (!n)
1541 continue;
1542
1543 nr_free = count_partial(n, count_free);
1544 nr_slabs = node_nr_slabs(n);
1545 nr_objs = node_nr_objs(n);
1546
1547 printk(KERN_WARNING
1548 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1549 node, nr_slabs, nr_objs, nr_free);
1550 }
1551 }
1552
1553 /*
1554 * Slow path. The lockless freelist is empty or we need to perform
1555 * debugging duties.
1556 *
1557 * Interrupts are disabled.
1558 *
1559 * Processing is still very fast if new objects have been freed to the
1560 * regular freelist. In that case we simply take over the regular freelist
1561 * as the lockless freelist and zap the regular freelist.
1562 *
1563 * If that is not working then we fall back to the partial lists. We take the
1564 * first element of the freelist as the object to allocate now and move the
1565 * rest of the freelist to the lockless freelist.
1566 *
1567 * And if we were unable to get a new slab from the partial slab lists then
1568 * we need to allocate a new slab. This is the slowest path since it involves
1569 * a call to the page allocator and the setup of a new slab.
1570 */
1571 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1572 unsigned long addr, struct kmem_cache_cpu *c)
1573 {
1574 void **object;
1575 struct page *new;
1576
1577 /* We handle __GFP_ZERO in the caller */
1578 gfpflags &= ~__GFP_ZERO;
1579
1580 if (!c->page)
1581 goto new_slab;
1582
1583 slab_lock(c->page);
1584 if (unlikely(!node_match(c, node)))
1585 goto another_slab;
1586
1587 stat(c, ALLOC_REFILL);
1588
1589 load_freelist:
1590 object = c->page->freelist;
1591 if (unlikely(!object))
1592 goto another_slab;
1593 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1594 goto debug;
1595
1596 c->freelist = object[c->offset];
1597 c->page->inuse = c->page->objects;
1598 c->page->freelist = NULL;
1599 c->node = page_to_nid(c->page);
1600 unlock_out:
1601 slab_unlock(c->page);
1602 stat(c, ALLOC_SLOWPATH);
1603 return object;
1604
1605 another_slab:
1606 deactivate_slab(s, c);
1607
1608 new_slab:
1609 new = get_partial(s, gfpflags, node);
1610 if (new) {
1611 c->page = new;
1612 stat(c, ALLOC_FROM_PARTIAL);
1613 goto load_freelist;
1614 }
1615
1616 if (gfpflags & __GFP_WAIT)
1617 local_irq_enable();
1618
1619 new = new_slab(s, gfpflags, node);
1620
1621 if (gfpflags & __GFP_WAIT)
1622 local_irq_disable();
1623
1624 if (new) {
1625 c = get_cpu_slab(s, smp_processor_id());
1626 stat(c, ALLOC_SLAB);
1627 if (c->page)
1628 flush_slab(s, c);
1629 slab_lock(new);
1630 __SetPageSlubFrozen(new);
1631 c->page = new;
1632 goto load_freelist;
1633 }
1634 slab_out_of_memory(s, gfpflags, node);
1635 return NULL;
1636 debug:
1637 if (!alloc_debug_processing(s, c->page, object, addr))
1638 goto another_slab;
1639
1640 c->page->inuse++;
1641 c->page->freelist = object[c->offset];
1642 c->node = -1;
1643 goto unlock_out;
1644 }
1645
1646 /*
1647 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1648 * have the fastpath folded into their functions. So no function call
1649 * overhead for requests that can be satisfied on the fastpath.
1650 *
1651 * The fastpath works by first checking if the lockless freelist can be used.
1652 * If not then __slab_alloc is called for slow processing.
1653 *
1654 * Otherwise we can simply pick the next object from the lockless free list.
1655 */
1656 static __always_inline void *slab_alloc(struct kmem_cache *s,
1657 gfp_t gfpflags, int node, unsigned long addr)
1658 {
1659 void **object;
1660 struct kmem_cache_cpu *c;
1661 unsigned long flags;
1662 unsigned int objsize;
1663
1664 lockdep_trace_alloc(gfpflags);
1665 might_sleep_if(gfpflags & __GFP_WAIT);
1666
1667 if (should_failslab(s->objsize, gfpflags))
1668 return NULL;
1669
1670 local_irq_save(flags);
1671 c = get_cpu_slab(s, smp_processor_id());
1672 objsize = c->objsize;
1673 if (unlikely(!c->freelist || !node_match(c, node)))
1674
1675 object = __slab_alloc(s, gfpflags, node, addr, c);
1676
1677 else {
1678 object = c->freelist;
1679 c->freelist = object[c->offset];
1680 stat(c, ALLOC_FASTPATH);
1681 }
1682 local_irq_restore(flags);
1683
1684 if (unlikely((gfpflags & __GFP_ZERO) && object))
1685 memset(object, 0, objsize);
1686
1687 return object;
1688 }
1689
1690 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1691 {
1692 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1693
1694 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1695
1696 return ret;
1697 }
1698 EXPORT_SYMBOL(kmem_cache_alloc);
1699
1700 #ifdef CONFIG_KMEMTRACE
1701 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1702 {
1703 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1704 }
1705 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1706 #endif
1707
1708 #ifdef CONFIG_NUMA
1709 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1710 {
1711 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1712
1713 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1714 s->objsize, s->size, gfpflags, node);
1715
1716 return ret;
1717 }
1718 EXPORT_SYMBOL(kmem_cache_alloc_node);
1719 #endif
1720
1721 #ifdef CONFIG_KMEMTRACE
1722 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1723 gfp_t gfpflags,
1724 int node)
1725 {
1726 return slab_alloc(s, gfpflags, node, _RET_IP_);
1727 }
1728 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1729 #endif
1730
1731 /*
1732 * Slow patch handling. This may still be called frequently since objects
1733 * have a longer lifetime than the cpu slabs in most processing loads.
1734 *
1735 * So we still attempt to reduce cache line usage. Just take the slab
1736 * lock and free the item. If there is no additional partial page
1737 * handling required then we can return immediately.
1738 */
1739 static void __slab_free(struct kmem_cache *s, struct page *page,
1740 void *x, unsigned long addr, unsigned int offset)
1741 {
1742 void *prior;
1743 void **object = (void *)x;
1744 struct kmem_cache_cpu *c;
1745
1746 c = get_cpu_slab(s, raw_smp_processor_id());
1747 stat(c, FREE_SLOWPATH);
1748 slab_lock(page);
1749
1750 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1751 goto debug;
1752
1753 checks_ok:
1754 prior = object[offset] = page->freelist;
1755 page->freelist = object;
1756 page->inuse--;
1757
1758 if (unlikely(PageSlubFrozen(page))) {
1759 stat(c, FREE_FROZEN);
1760 goto out_unlock;
1761 }
1762
1763 if (unlikely(!page->inuse))
1764 goto slab_empty;
1765
1766 /*
1767 * Objects left in the slab. If it was not on the partial list before
1768 * then add it.
1769 */
1770 if (unlikely(!prior)) {
1771 add_partial(get_node(s, page_to_nid(page)), page, 1);
1772 stat(c, FREE_ADD_PARTIAL);
1773 }
1774
1775 out_unlock:
1776 slab_unlock(page);
1777 return;
1778
1779 slab_empty:
1780 if (prior) {
1781 /*
1782 * Slab still on the partial list.
1783 */
1784 remove_partial(s, page);
1785 stat(c, FREE_REMOVE_PARTIAL);
1786 }
1787 slab_unlock(page);
1788 stat(c, FREE_SLAB);
1789 discard_slab(s, page);
1790 return;
1791
1792 debug:
1793 if (!free_debug_processing(s, page, x, addr))
1794 goto out_unlock;
1795 goto checks_ok;
1796 }
1797
1798 /*
1799 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1800 * can perform fastpath freeing without additional function calls.
1801 *
1802 * The fastpath is only possible if we are freeing to the current cpu slab
1803 * of this processor. This typically the case if we have just allocated
1804 * the item before.
1805 *
1806 * If fastpath is not possible then fall back to __slab_free where we deal
1807 * with all sorts of special processing.
1808 */
1809 static __always_inline void slab_free(struct kmem_cache *s,
1810 struct page *page, void *x, unsigned long addr)
1811 {
1812 void **object = (void *)x;
1813 struct kmem_cache_cpu *c;
1814 unsigned long flags;
1815
1816 local_irq_save(flags);
1817 c = get_cpu_slab(s, smp_processor_id());
1818 debug_check_no_locks_freed(object, c->objsize);
1819 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1820 debug_check_no_obj_freed(object, c->objsize);
1821 if (likely(page == c->page && c->node >= 0)) {
1822 object[c->offset] = c->freelist;
1823 c->freelist = object;
1824 stat(c, FREE_FASTPATH);
1825 } else
1826 __slab_free(s, page, x, addr, c->offset);
1827
1828 local_irq_restore(flags);
1829 }
1830
1831 void kmem_cache_free(struct kmem_cache *s, void *x)
1832 {
1833 struct page *page;
1834
1835 page = virt_to_head_page(x);
1836
1837 slab_free(s, page, x, _RET_IP_);
1838
1839 trace_kmem_cache_free(_RET_IP_, x);
1840 }
1841 EXPORT_SYMBOL(kmem_cache_free);
1842
1843 /* Figure out on which slab page the object resides */
1844 static struct page *get_object_page(const void *x)
1845 {
1846 struct page *page = virt_to_head_page(x);
1847
1848 if (!PageSlab(page))
1849 return NULL;
1850
1851 return page;
1852 }
1853
1854 /*
1855 * Object placement in a slab is made very easy because we always start at
1856 * offset 0. If we tune the size of the object to the alignment then we can
1857 * get the required alignment by putting one properly sized object after
1858 * another.
1859 *
1860 * Notice that the allocation order determines the sizes of the per cpu
1861 * caches. Each processor has always one slab available for allocations.
1862 * Increasing the allocation order reduces the number of times that slabs
1863 * must be moved on and off the partial lists and is therefore a factor in
1864 * locking overhead.
1865 */
1866
1867 /*
1868 * Mininum / Maximum order of slab pages. This influences locking overhead
1869 * and slab fragmentation. A higher order reduces the number of partial slabs
1870 * and increases the number of allocations possible without having to
1871 * take the list_lock.
1872 */
1873 static int slub_min_order;
1874 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1875 static int slub_min_objects;
1876
1877 /*
1878 * Merge control. If this is set then no merging of slab caches will occur.
1879 * (Could be removed. This was introduced to pacify the merge skeptics.)
1880 */
1881 static int slub_nomerge;
1882
1883 /*
1884 * Calculate the order of allocation given an slab object size.
1885 *
1886 * The order of allocation has significant impact on performance and other
1887 * system components. Generally order 0 allocations should be preferred since
1888 * order 0 does not cause fragmentation in the page allocator. Larger objects
1889 * be problematic to put into order 0 slabs because there may be too much
1890 * unused space left. We go to a higher order if more than 1/16th of the slab
1891 * would be wasted.
1892 *
1893 * In order to reach satisfactory performance we must ensure that a minimum
1894 * number of objects is in one slab. Otherwise we may generate too much
1895 * activity on the partial lists which requires taking the list_lock. This is
1896 * less a concern for large slabs though which are rarely used.
1897 *
1898 * slub_max_order specifies the order where we begin to stop considering the
1899 * number of objects in a slab as critical. If we reach slub_max_order then
1900 * we try to keep the page order as low as possible. So we accept more waste
1901 * of space in favor of a small page order.
1902 *
1903 * Higher order allocations also allow the placement of more objects in a
1904 * slab and thereby reduce object handling overhead. If the user has
1905 * requested a higher mininum order then we start with that one instead of
1906 * the smallest order which will fit the object.
1907 */
1908 static inline int slab_order(int size, int min_objects,
1909 int max_order, int fract_leftover)
1910 {
1911 int order;
1912 int rem;
1913 int min_order = slub_min_order;
1914
1915 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1916 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1917
1918 for (order = max(min_order,
1919 fls(min_objects * size - 1) - PAGE_SHIFT);
1920 order <= max_order; order++) {
1921
1922 unsigned long slab_size = PAGE_SIZE << order;
1923
1924 if (slab_size < min_objects * size)
1925 continue;
1926
1927 rem = slab_size % size;
1928
1929 if (rem <= slab_size / fract_leftover)
1930 break;
1931
1932 }
1933
1934 return order;
1935 }
1936
1937 static inline int calculate_order(int size)
1938 {
1939 int order;
1940 int min_objects;
1941 int fraction;
1942 int max_objects;
1943
1944 /*
1945 * Attempt to find best configuration for a slab. This
1946 * works by first attempting to generate a layout with
1947 * the best configuration and backing off gradually.
1948 *
1949 * First we reduce the acceptable waste in a slab. Then
1950 * we reduce the minimum objects required in a slab.
1951 */
1952 min_objects = slub_min_objects;
1953 if (!min_objects)
1954 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1955 max_objects = (PAGE_SIZE << slub_max_order)/size;
1956 min_objects = min(min_objects, max_objects);
1957
1958 while (min_objects > 1) {
1959 fraction = 16;
1960 while (fraction >= 4) {
1961 order = slab_order(size, min_objects,
1962 slub_max_order, fraction);
1963 if (order <= slub_max_order)
1964 return order;
1965 fraction /= 2;
1966 }
1967 min_objects --;
1968 }
1969
1970 /*
1971 * We were unable to place multiple objects in a slab. Now
1972 * lets see if we can place a single object there.
1973 */
1974 order = slab_order(size, 1, slub_max_order, 1);
1975 if (order <= slub_max_order)
1976 return order;
1977
1978 /*
1979 * Doh this slab cannot be placed using slub_max_order.
1980 */
1981 order = slab_order(size, 1, MAX_ORDER, 1);
1982 if (order < MAX_ORDER)
1983 return order;
1984 return -ENOSYS;
1985 }
1986
1987 /*
1988 * Figure out what the alignment of the objects will be.
1989 */
1990 static unsigned long calculate_alignment(unsigned long flags,
1991 unsigned long align, unsigned long size)
1992 {
1993 /*
1994 * If the user wants hardware cache aligned objects then follow that
1995 * suggestion if the object is sufficiently large.
1996 *
1997 * The hardware cache alignment cannot override the specified
1998 * alignment though. If that is greater then use it.
1999 */
2000 if (flags & SLAB_HWCACHE_ALIGN) {
2001 unsigned long ralign = cache_line_size();
2002 while (size <= ralign / 2)
2003 ralign /= 2;
2004 align = max(align, ralign);
2005 }
2006
2007 if (align < ARCH_SLAB_MINALIGN)
2008 align = ARCH_SLAB_MINALIGN;
2009
2010 return ALIGN(align, sizeof(void *));
2011 }
2012
2013 static void init_kmem_cache_cpu(struct kmem_cache *s,
2014 struct kmem_cache_cpu *c)
2015 {
2016 c->page = NULL;
2017 c->freelist = NULL;
2018 c->node = 0;
2019 c->offset = s->offset / sizeof(void *);
2020 c->objsize = s->objsize;
2021 #ifdef CONFIG_SLUB_STATS
2022 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2023 #endif
2024 }
2025
2026 static void
2027 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2028 {
2029 n->nr_partial = 0;
2030 spin_lock_init(&n->list_lock);
2031 INIT_LIST_HEAD(&n->partial);
2032 #ifdef CONFIG_SLUB_DEBUG
2033 atomic_long_set(&n->nr_slabs, 0);
2034 atomic_long_set(&n->total_objects, 0);
2035 INIT_LIST_HEAD(&n->full);
2036 #endif
2037 }
2038
2039 #ifdef CONFIG_SMP
2040 /*
2041 * Per cpu array for per cpu structures.
2042 *
2043 * The per cpu array places all kmem_cache_cpu structures from one processor
2044 * close together meaning that it becomes possible that multiple per cpu
2045 * structures are contained in one cacheline. This may be particularly
2046 * beneficial for the kmalloc caches.
2047 *
2048 * A desktop system typically has around 60-80 slabs. With 100 here we are
2049 * likely able to get per cpu structures for all caches from the array defined
2050 * here. We must be able to cover all kmalloc caches during bootstrap.
2051 *
2052 * If the per cpu array is exhausted then fall back to kmalloc
2053 * of individual cachelines. No sharing is possible then.
2054 */
2055 #define NR_KMEM_CACHE_CPU 100
2056
2057 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2058 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2059
2060 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2061 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2062
2063 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2064 int cpu, gfp_t flags)
2065 {
2066 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2067
2068 if (c)
2069 per_cpu(kmem_cache_cpu_free, cpu) =
2070 (void *)c->freelist;
2071 else {
2072 /* Table overflow: So allocate ourselves */
2073 c = kmalloc_node(
2074 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2075 flags, cpu_to_node(cpu));
2076 if (!c)
2077 return NULL;
2078 }
2079
2080 init_kmem_cache_cpu(s, c);
2081 return c;
2082 }
2083
2084 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2085 {
2086 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2087 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2088 kfree(c);
2089 return;
2090 }
2091 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2092 per_cpu(kmem_cache_cpu_free, cpu) = c;
2093 }
2094
2095 static void free_kmem_cache_cpus(struct kmem_cache *s)
2096 {
2097 int cpu;
2098
2099 for_each_online_cpu(cpu) {
2100 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2101
2102 if (c) {
2103 s->cpu_slab[cpu] = NULL;
2104 free_kmem_cache_cpu(c, cpu);
2105 }
2106 }
2107 }
2108
2109 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2110 {
2111 int cpu;
2112
2113 for_each_online_cpu(cpu) {
2114 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2115
2116 if (c)
2117 continue;
2118
2119 c = alloc_kmem_cache_cpu(s, cpu, flags);
2120 if (!c) {
2121 free_kmem_cache_cpus(s);
2122 return 0;
2123 }
2124 s->cpu_slab[cpu] = c;
2125 }
2126 return 1;
2127 }
2128
2129 /*
2130 * Initialize the per cpu array.
2131 */
2132 static void init_alloc_cpu_cpu(int cpu)
2133 {
2134 int i;
2135
2136 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2137 return;
2138
2139 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2140 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2141
2142 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2143 }
2144
2145 static void __init init_alloc_cpu(void)
2146 {
2147 int cpu;
2148
2149 for_each_online_cpu(cpu)
2150 init_alloc_cpu_cpu(cpu);
2151 }
2152
2153 #else
2154 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2155 static inline void init_alloc_cpu(void) {}
2156
2157 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2158 {
2159 init_kmem_cache_cpu(s, &s->cpu_slab);
2160 return 1;
2161 }
2162 #endif
2163
2164 #ifdef CONFIG_NUMA
2165 /*
2166 * No kmalloc_node yet so do it by hand. We know that this is the first
2167 * slab on the node for this slabcache. There are no concurrent accesses
2168 * possible.
2169 *
2170 * Note that this function only works on the kmalloc_node_cache
2171 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2172 * memory on a fresh node that has no slab structures yet.
2173 */
2174 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2175 {
2176 struct page *page;
2177 struct kmem_cache_node *n;
2178 unsigned long flags;
2179
2180 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2181
2182 page = new_slab(kmalloc_caches, gfpflags, node);
2183
2184 BUG_ON(!page);
2185 if (page_to_nid(page) != node) {
2186 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2187 "node %d\n", node);
2188 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2189 "in order to be able to continue\n");
2190 }
2191
2192 n = page->freelist;
2193 BUG_ON(!n);
2194 page->freelist = get_freepointer(kmalloc_caches, n);
2195 page->inuse++;
2196 kmalloc_caches->node[node] = n;
2197 #ifdef CONFIG_SLUB_DEBUG
2198 init_object(kmalloc_caches, n, 1);
2199 init_tracking(kmalloc_caches, n);
2200 #endif
2201 init_kmem_cache_node(n, kmalloc_caches);
2202 inc_slabs_node(kmalloc_caches, node, page->objects);
2203
2204 /*
2205 * lockdep requires consistent irq usage for each lock
2206 * so even though there cannot be a race this early in
2207 * the boot sequence, we still disable irqs.
2208 */
2209 local_irq_save(flags);
2210 add_partial(n, page, 0);
2211 local_irq_restore(flags);
2212 }
2213
2214 static void free_kmem_cache_nodes(struct kmem_cache *s)
2215 {
2216 int node;
2217
2218 for_each_node_state(node, N_NORMAL_MEMORY) {
2219 struct kmem_cache_node *n = s->node[node];
2220 if (n && n != &s->local_node)
2221 kmem_cache_free(kmalloc_caches, n);
2222 s->node[node] = NULL;
2223 }
2224 }
2225
2226 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2227 {
2228 int node;
2229 int local_node;
2230
2231 if (slab_state >= UP)
2232 local_node = page_to_nid(virt_to_page(s));
2233 else
2234 local_node = 0;
2235
2236 for_each_node_state(node, N_NORMAL_MEMORY) {
2237 struct kmem_cache_node *n;
2238
2239 if (local_node == node)
2240 n = &s->local_node;
2241 else {
2242 if (slab_state == DOWN) {
2243 early_kmem_cache_node_alloc(gfpflags, node);
2244 continue;
2245 }
2246 n = kmem_cache_alloc_node(kmalloc_caches,
2247 gfpflags, node);
2248
2249 if (!n) {
2250 free_kmem_cache_nodes(s);
2251 return 0;
2252 }
2253
2254 }
2255 s->node[node] = n;
2256 init_kmem_cache_node(n, s);
2257 }
2258 return 1;
2259 }
2260 #else
2261 static void free_kmem_cache_nodes(struct kmem_cache *s)
2262 {
2263 }
2264
2265 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2266 {
2267 init_kmem_cache_node(&s->local_node, s);
2268 return 1;
2269 }
2270 #endif
2271
2272 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2273 {
2274 if (min < MIN_PARTIAL)
2275 min = MIN_PARTIAL;
2276 else if (min > MAX_PARTIAL)
2277 min = MAX_PARTIAL;
2278 s->min_partial = min;
2279 }
2280
2281 /*
2282 * calculate_sizes() determines the order and the distribution of data within
2283 * a slab object.
2284 */
2285 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2286 {
2287 unsigned long flags = s->flags;
2288 unsigned long size = s->objsize;
2289 unsigned long align = s->align;
2290 int order;
2291
2292 /*
2293 * Round up object size to the next word boundary. We can only
2294 * place the free pointer at word boundaries and this determines
2295 * the possible location of the free pointer.
2296 */
2297 size = ALIGN(size, sizeof(void *));
2298
2299 #ifdef CONFIG_SLUB_DEBUG
2300 /*
2301 * Determine if we can poison the object itself. If the user of
2302 * the slab may touch the object after free or before allocation
2303 * then we should never poison the object itself.
2304 */
2305 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2306 !s->ctor)
2307 s->flags |= __OBJECT_POISON;
2308 else
2309 s->flags &= ~__OBJECT_POISON;
2310
2311
2312 /*
2313 * If we are Redzoning then check if there is some space between the
2314 * end of the object and the free pointer. If not then add an
2315 * additional word to have some bytes to store Redzone information.
2316 */
2317 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2318 size += sizeof(void *);
2319 #endif
2320
2321 /*
2322 * With that we have determined the number of bytes in actual use
2323 * by the object. This is the potential offset to the free pointer.
2324 */
2325 s->inuse = size;
2326
2327 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2328 s->ctor)) {
2329 /*
2330 * Relocate free pointer after the object if it is not
2331 * permitted to overwrite the first word of the object on
2332 * kmem_cache_free.
2333 *
2334 * This is the case if we do RCU, have a constructor or
2335 * destructor or are poisoning the objects.
2336 */
2337 s->offset = size;
2338 size += sizeof(void *);
2339 }
2340
2341 #ifdef CONFIG_SLUB_DEBUG
2342 if (flags & SLAB_STORE_USER)
2343 /*
2344 * Need to store information about allocs and frees after
2345 * the object.
2346 */
2347 size += 2 * sizeof(struct track);
2348
2349 if (flags & SLAB_RED_ZONE)
2350 /*
2351 * Add some empty padding so that we can catch
2352 * overwrites from earlier objects rather than let
2353 * tracking information or the free pointer be
2354 * corrupted if a user writes before the start
2355 * of the object.
2356 */
2357 size += sizeof(void *);
2358 #endif
2359
2360 /*
2361 * Determine the alignment based on various parameters that the
2362 * user specified and the dynamic determination of cache line size
2363 * on bootup.
2364 */
2365 align = calculate_alignment(flags, align, s->objsize);
2366
2367 /*
2368 * SLUB stores one object immediately after another beginning from
2369 * offset 0. In order to align the objects we have to simply size
2370 * each object to conform to the alignment.
2371 */
2372 size = ALIGN(size, align);
2373 s->size = size;
2374 if (forced_order >= 0)
2375 order = forced_order;
2376 else
2377 order = calculate_order(size);
2378
2379 if (order < 0)
2380 return 0;
2381
2382 s->allocflags = 0;
2383 if (order)
2384 s->allocflags |= __GFP_COMP;
2385
2386 if (s->flags & SLAB_CACHE_DMA)
2387 s->allocflags |= SLUB_DMA;
2388
2389 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2390 s->allocflags |= __GFP_RECLAIMABLE;
2391
2392 /*
2393 * Determine the number of objects per slab
2394 */
2395 s->oo = oo_make(order, size);
2396 s->min = oo_make(get_order(size), size);
2397 if (oo_objects(s->oo) > oo_objects(s->max))
2398 s->max = s->oo;
2399
2400 return !!oo_objects(s->oo);
2401
2402 }
2403
2404 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2405 const char *name, size_t size,
2406 size_t align, unsigned long flags,
2407 void (*ctor)(void *))
2408 {
2409 memset(s, 0, kmem_size);
2410 s->name = name;
2411 s->ctor = ctor;
2412 s->objsize = size;
2413 s->align = align;
2414 s->flags = kmem_cache_flags(size, flags, name, ctor);
2415
2416 if (!calculate_sizes(s, -1))
2417 goto error;
2418
2419 /*
2420 * The larger the object size is, the more pages we want on the partial
2421 * list to avoid pounding the page allocator excessively.
2422 */
2423 set_min_partial(s, ilog2(s->size));
2424 s->refcount = 1;
2425 #ifdef CONFIG_NUMA
2426 s->remote_node_defrag_ratio = 1000;
2427 #endif
2428 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2429 goto error;
2430
2431 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2432 return 1;
2433 free_kmem_cache_nodes(s);
2434 error:
2435 if (flags & SLAB_PANIC)
2436 panic("Cannot create slab %s size=%lu realsize=%u "
2437 "order=%u offset=%u flags=%lx\n",
2438 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2439 s->offset, flags);
2440 return 0;
2441 }
2442
2443 /*
2444 * Check if a given pointer is valid
2445 */
2446 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2447 {
2448 struct page *page;
2449
2450 page = get_object_page(object);
2451
2452 if (!page || s != page->slab)
2453 /* No slab or wrong slab */
2454 return 0;
2455
2456 if (!check_valid_pointer(s, page, object))
2457 return 0;
2458
2459 /*
2460 * We could also check if the object is on the slabs freelist.
2461 * But this would be too expensive and it seems that the main
2462 * purpose of kmem_ptr_valid() is to check if the object belongs
2463 * to a certain slab.
2464 */
2465 return 1;
2466 }
2467 EXPORT_SYMBOL(kmem_ptr_validate);
2468
2469 /*
2470 * Determine the size of a slab object
2471 */
2472 unsigned int kmem_cache_size(struct kmem_cache *s)
2473 {
2474 return s->objsize;
2475 }
2476 EXPORT_SYMBOL(kmem_cache_size);
2477
2478 const char *kmem_cache_name(struct kmem_cache *s)
2479 {
2480 return s->name;
2481 }
2482 EXPORT_SYMBOL(kmem_cache_name);
2483
2484 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2485 const char *text)
2486 {
2487 #ifdef CONFIG_SLUB_DEBUG
2488 void *addr = page_address(page);
2489 void *p;
2490 DECLARE_BITMAP(map, page->objects);
2491
2492 bitmap_zero(map, page->objects);
2493 slab_err(s, page, "%s", text);
2494 slab_lock(page);
2495 for_each_free_object(p, s, page->freelist)
2496 set_bit(slab_index(p, s, addr), map);
2497
2498 for_each_object(p, s, addr, page->objects) {
2499
2500 if (!test_bit(slab_index(p, s, addr), map)) {
2501 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2502 p, p - addr);
2503 print_tracking(s, p);
2504 }
2505 }
2506 slab_unlock(page);
2507 #endif
2508 }
2509
2510 /*
2511 * Attempt to free all partial slabs on a node.
2512 */
2513 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2514 {
2515 unsigned long flags;
2516 struct page *page, *h;
2517
2518 spin_lock_irqsave(&n->list_lock, flags);
2519 list_for_each_entry_safe(page, h, &n->partial, lru) {
2520 if (!page->inuse) {
2521 list_del(&page->lru);
2522 discard_slab(s, page);
2523 n->nr_partial--;
2524 } else {
2525 list_slab_objects(s, page,
2526 "Objects remaining on kmem_cache_close()");
2527 }
2528 }
2529 spin_unlock_irqrestore(&n->list_lock, flags);
2530 }
2531
2532 /*
2533 * Release all resources used by a slab cache.
2534 */
2535 static inline int kmem_cache_close(struct kmem_cache *s)
2536 {
2537 int node;
2538
2539 flush_all(s);
2540
2541 /* Attempt to free all objects */
2542 free_kmem_cache_cpus(s);
2543 for_each_node_state(node, N_NORMAL_MEMORY) {
2544 struct kmem_cache_node *n = get_node(s, node);
2545
2546 free_partial(s, n);
2547 if (n->nr_partial || slabs_node(s, node))
2548 return 1;
2549 }
2550 free_kmem_cache_nodes(s);
2551 return 0;
2552 }
2553
2554 /*
2555 * Close a cache and release the kmem_cache structure
2556 * (must be used for caches created using kmem_cache_create)
2557 */
2558 void kmem_cache_destroy(struct kmem_cache *s)
2559 {
2560 down_write(&slub_lock);
2561 s->refcount--;
2562 if (!s->refcount) {
2563 list_del(&s->list);
2564 up_write(&slub_lock);
2565 if (kmem_cache_close(s)) {
2566 printk(KERN_ERR "SLUB %s: %s called for cache that "
2567 "still has objects.\n", s->name, __func__);
2568 dump_stack();
2569 }
2570 sysfs_slab_remove(s);
2571 } else
2572 up_write(&slub_lock);
2573 }
2574 EXPORT_SYMBOL(kmem_cache_destroy);
2575
2576 /********************************************************************
2577 * Kmalloc subsystem
2578 *******************************************************************/
2579
2580 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2581 EXPORT_SYMBOL(kmalloc_caches);
2582
2583 static int __init setup_slub_min_order(char *str)
2584 {
2585 get_option(&str, &slub_min_order);
2586
2587 return 1;
2588 }
2589
2590 __setup("slub_min_order=", setup_slub_min_order);
2591
2592 static int __init setup_slub_max_order(char *str)
2593 {
2594 get_option(&str, &slub_max_order);
2595 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2596
2597 return 1;
2598 }
2599
2600 __setup("slub_max_order=", setup_slub_max_order);
2601
2602 static int __init setup_slub_min_objects(char *str)
2603 {
2604 get_option(&str, &slub_min_objects);
2605
2606 return 1;
2607 }
2608
2609 __setup("slub_min_objects=", setup_slub_min_objects);
2610
2611 static int __init setup_slub_nomerge(char *str)
2612 {
2613 slub_nomerge = 1;
2614 return 1;
2615 }
2616
2617 __setup("slub_nomerge", setup_slub_nomerge);
2618
2619 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2620 const char *name, int size, gfp_t gfp_flags)
2621 {
2622 unsigned int flags = 0;
2623
2624 if (gfp_flags & SLUB_DMA)
2625 flags = SLAB_CACHE_DMA;
2626
2627 down_write(&slub_lock);
2628 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2629 flags, NULL))
2630 goto panic;
2631
2632 list_add(&s->list, &slab_caches);
2633 up_write(&slub_lock);
2634 if (sysfs_slab_add(s))
2635 goto panic;
2636 return s;
2637
2638 panic:
2639 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2640 }
2641
2642 #ifdef CONFIG_ZONE_DMA
2643 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2644
2645 static void sysfs_add_func(struct work_struct *w)
2646 {
2647 struct kmem_cache *s;
2648
2649 down_write(&slub_lock);
2650 list_for_each_entry(s, &slab_caches, list) {
2651 if (s->flags & __SYSFS_ADD_DEFERRED) {
2652 s->flags &= ~__SYSFS_ADD_DEFERRED;
2653 sysfs_slab_add(s);
2654 }
2655 }
2656 up_write(&slub_lock);
2657 }
2658
2659 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2660
2661 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2662 {
2663 struct kmem_cache *s;
2664 char *text;
2665 size_t realsize;
2666
2667 s = kmalloc_caches_dma[index];
2668 if (s)
2669 return s;
2670
2671 /* Dynamically create dma cache */
2672 if (flags & __GFP_WAIT)
2673 down_write(&slub_lock);
2674 else {
2675 if (!down_write_trylock(&slub_lock))
2676 goto out;
2677 }
2678
2679 if (kmalloc_caches_dma[index])
2680 goto unlock_out;
2681
2682 realsize = kmalloc_caches[index].objsize;
2683 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2684 (unsigned int)realsize);
2685 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2686
2687 if (!s || !text || !kmem_cache_open(s, flags, text,
2688 realsize, ARCH_KMALLOC_MINALIGN,
2689 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2690 kfree(s);
2691 kfree(text);
2692 goto unlock_out;
2693 }
2694
2695 list_add(&s->list, &slab_caches);
2696 kmalloc_caches_dma[index] = s;
2697
2698 schedule_work(&sysfs_add_work);
2699
2700 unlock_out:
2701 up_write(&slub_lock);
2702 out:
2703 return kmalloc_caches_dma[index];
2704 }
2705 #endif
2706
2707 /*
2708 * Conversion table for small slabs sizes / 8 to the index in the
2709 * kmalloc array. This is necessary for slabs < 192 since we have non power
2710 * of two cache sizes there. The size of larger slabs can be determined using
2711 * fls.
2712 */
2713 static s8 size_index[24] = {
2714 3, /* 8 */
2715 4, /* 16 */
2716 5, /* 24 */
2717 5, /* 32 */
2718 6, /* 40 */
2719 6, /* 48 */
2720 6, /* 56 */
2721 6, /* 64 */
2722 1, /* 72 */
2723 1, /* 80 */
2724 1, /* 88 */
2725 1, /* 96 */
2726 7, /* 104 */
2727 7, /* 112 */
2728 7, /* 120 */
2729 7, /* 128 */
2730 2, /* 136 */
2731 2, /* 144 */
2732 2, /* 152 */
2733 2, /* 160 */
2734 2, /* 168 */
2735 2, /* 176 */
2736 2, /* 184 */
2737 2 /* 192 */
2738 };
2739
2740 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2741 {
2742 int index;
2743
2744 if (size <= 192) {
2745 if (!size)
2746 return ZERO_SIZE_PTR;
2747
2748 index = size_index[(size - 1) / 8];
2749 } else
2750 index = fls(size - 1);
2751
2752 #ifdef CONFIG_ZONE_DMA
2753 if (unlikely((flags & SLUB_DMA)))
2754 return dma_kmalloc_cache(index, flags);
2755
2756 #endif
2757 return &kmalloc_caches[index];
2758 }
2759
2760 void *__kmalloc(size_t size, gfp_t flags)
2761 {
2762 struct kmem_cache *s;
2763 void *ret;
2764
2765 if (unlikely(size > SLUB_MAX_SIZE))
2766 return kmalloc_large(size, flags);
2767
2768 s = get_slab(size, flags);
2769
2770 if (unlikely(ZERO_OR_NULL_PTR(s)))
2771 return s;
2772
2773 ret = slab_alloc(s, flags, -1, _RET_IP_);
2774
2775 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2776
2777 return ret;
2778 }
2779 EXPORT_SYMBOL(__kmalloc);
2780
2781 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2782 {
2783 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2784 get_order(size));
2785
2786 if (page)
2787 return page_address(page);
2788 else
2789 return NULL;
2790 }
2791
2792 #ifdef CONFIG_NUMA
2793 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2794 {
2795 struct kmem_cache *s;
2796 void *ret;
2797
2798 if (unlikely(size > SLUB_MAX_SIZE)) {
2799 ret = kmalloc_large_node(size, flags, node);
2800
2801 trace_kmalloc_node(_RET_IP_, ret,
2802 size, PAGE_SIZE << get_order(size),
2803 flags, node);
2804
2805 return ret;
2806 }
2807
2808 s = get_slab(size, flags);
2809
2810 if (unlikely(ZERO_OR_NULL_PTR(s)))
2811 return s;
2812
2813 ret = slab_alloc(s, flags, node, _RET_IP_);
2814
2815 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2816
2817 return ret;
2818 }
2819 EXPORT_SYMBOL(__kmalloc_node);
2820 #endif
2821
2822 size_t ksize(const void *object)
2823 {
2824 struct page *page;
2825 struct kmem_cache *s;
2826
2827 if (unlikely(object == ZERO_SIZE_PTR))
2828 return 0;
2829
2830 page = virt_to_head_page(object);
2831
2832 if (unlikely(!PageSlab(page))) {
2833 WARN_ON(!PageCompound(page));
2834 return PAGE_SIZE << compound_order(page);
2835 }
2836 s = page->slab;
2837
2838 #ifdef CONFIG_SLUB_DEBUG
2839 /*
2840 * Debugging requires use of the padding between object
2841 * and whatever may come after it.
2842 */
2843 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2844 return s->objsize;
2845
2846 #endif
2847 /*
2848 * If we have the need to store the freelist pointer
2849 * back there or track user information then we can
2850 * only use the space before that information.
2851 */
2852 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2853 return s->inuse;
2854 /*
2855 * Else we can use all the padding etc for the allocation
2856 */
2857 return s->size;
2858 }
2859 EXPORT_SYMBOL(ksize);
2860
2861 void kfree(const void *x)
2862 {
2863 struct page *page;
2864 void *object = (void *)x;
2865
2866 trace_kfree(_RET_IP_, x);
2867
2868 if (unlikely(ZERO_OR_NULL_PTR(x)))
2869 return;
2870
2871 page = virt_to_head_page(x);
2872 if (unlikely(!PageSlab(page))) {
2873 BUG_ON(!PageCompound(page));
2874 put_page(page);
2875 return;
2876 }
2877 slab_free(page->slab, page, object, _RET_IP_);
2878 }
2879 EXPORT_SYMBOL(kfree);
2880
2881 /*
2882 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2883 * the remaining slabs by the number of items in use. The slabs with the
2884 * most items in use come first. New allocations will then fill those up
2885 * and thus they can be removed from the partial lists.
2886 *
2887 * The slabs with the least items are placed last. This results in them
2888 * being allocated from last increasing the chance that the last objects
2889 * are freed in them.
2890 */
2891 int kmem_cache_shrink(struct kmem_cache *s)
2892 {
2893 int node;
2894 int i;
2895 struct kmem_cache_node *n;
2896 struct page *page;
2897 struct page *t;
2898 int objects = oo_objects(s->max);
2899 struct list_head *slabs_by_inuse =
2900 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2901 unsigned long flags;
2902
2903 if (!slabs_by_inuse)
2904 return -ENOMEM;
2905
2906 flush_all(s);
2907 for_each_node_state(node, N_NORMAL_MEMORY) {
2908 n = get_node(s, node);
2909
2910 if (!n->nr_partial)
2911 continue;
2912
2913 for (i = 0; i < objects; i++)
2914 INIT_LIST_HEAD(slabs_by_inuse + i);
2915
2916 spin_lock_irqsave(&n->list_lock, flags);
2917
2918 /*
2919 * Build lists indexed by the items in use in each slab.
2920 *
2921 * Note that concurrent frees may occur while we hold the
2922 * list_lock. page->inuse here is the upper limit.
2923 */
2924 list_for_each_entry_safe(page, t, &n->partial, lru) {
2925 if (!page->inuse && slab_trylock(page)) {
2926 /*
2927 * Must hold slab lock here because slab_free
2928 * may have freed the last object and be
2929 * waiting to release the slab.
2930 */
2931 list_del(&page->lru);
2932 n->nr_partial--;
2933 slab_unlock(page);
2934 discard_slab(s, page);
2935 } else {
2936 list_move(&page->lru,
2937 slabs_by_inuse + page->inuse);
2938 }
2939 }
2940
2941 /*
2942 * Rebuild the partial list with the slabs filled up most
2943 * first and the least used slabs at the end.
2944 */
2945 for (i = objects - 1; i >= 0; i--)
2946 list_splice(slabs_by_inuse + i, n->partial.prev);
2947
2948 spin_unlock_irqrestore(&n->list_lock, flags);
2949 }
2950
2951 kfree(slabs_by_inuse);
2952 return 0;
2953 }
2954 EXPORT_SYMBOL(kmem_cache_shrink);
2955
2956 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2957 static int slab_mem_going_offline_callback(void *arg)
2958 {
2959 struct kmem_cache *s;
2960
2961 down_read(&slub_lock);
2962 list_for_each_entry(s, &slab_caches, list)
2963 kmem_cache_shrink(s);
2964 up_read(&slub_lock);
2965
2966 return 0;
2967 }
2968
2969 static void slab_mem_offline_callback(void *arg)
2970 {
2971 struct kmem_cache_node *n;
2972 struct kmem_cache *s;
2973 struct memory_notify *marg = arg;
2974 int offline_node;
2975
2976 offline_node = marg->status_change_nid;
2977
2978 /*
2979 * If the node still has available memory. we need kmem_cache_node
2980 * for it yet.
2981 */
2982 if (offline_node < 0)
2983 return;
2984
2985 down_read(&slub_lock);
2986 list_for_each_entry(s, &slab_caches, list) {
2987 n = get_node(s, offline_node);
2988 if (n) {
2989 /*
2990 * if n->nr_slabs > 0, slabs still exist on the node
2991 * that is going down. We were unable to free them,
2992 * and offline_pages() function shoudn't call this
2993 * callback. So, we must fail.
2994 */
2995 BUG_ON(slabs_node(s, offline_node));
2996
2997 s->node[offline_node] = NULL;
2998 kmem_cache_free(kmalloc_caches, n);
2999 }
3000 }
3001 up_read(&slub_lock);
3002 }
3003
3004 static int slab_mem_going_online_callback(void *arg)
3005 {
3006 struct kmem_cache_node *n;
3007 struct kmem_cache *s;
3008 struct memory_notify *marg = arg;
3009 int nid = marg->status_change_nid;
3010 int ret = 0;
3011
3012 /*
3013 * If the node's memory is already available, then kmem_cache_node is
3014 * already created. Nothing to do.
3015 */
3016 if (nid < 0)
3017 return 0;
3018
3019 /*
3020 * We are bringing a node online. No memory is available yet. We must
3021 * allocate a kmem_cache_node structure in order to bring the node
3022 * online.
3023 */
3024 down_read(&slub_lock);
3025 list_for_each_entry(s, &slab_caches, list) {
3026 /*
3027 * XXX: kmem_cache_alloc_node will fallback to other nodes
3028 * since memory is not yet available from the node that
3029 * is brought up.
3030 */
3031 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3032 if (!n) {
3033 ret = -ENOMEM;
3034 goto out;
3035 }
3036 init_kmem_cache_node(n, s);
3037 s->node[nid] = n;
3038 }
3039 out:
3040 up_read(&slub_lock);
3041 return ret;
3042 }
3043
3044 static int slab_memory_callback(struct notifier_block *self,
3045 unsigned long action, void *arg)
3046 {
3047 int ret = 0;
3048
3049 switch (action) {
3050 case MEM_GOING_ONLINE:
3051 ret = slab_mem_going_online_callback(arg);
3052 break;
3053 case MEM_GOING_OFFLINE:
3054 ret = slab_mem_going_offline_callback(arg);
3055 break;
3056 case MEM_OFFLINE:
3057 case MEM_CANCEL_ONLINE:
3058 slab_mem_offline_callback(arg);
3059 break;
3060 case MEM_ONLINE:
3061 case MEM_CANCEL_OFFLINE:
3062 break;
3063 }
3064 if (ret)
3065 ret = notifier_from_errno(ret);
3066 else
3067 ret = NOTIFY_OK;
3068 return ret;
3069 }
3070
3071 #endif /* CONFIG_MEMORY_HOTPLUG */
3072
3073 /********************************************************************
3074 * Basic setup of slabs
3075 *******************************************************************/
3076
3077 void __init kmem_cache_init(void)
3078 {
3079 int i;
3080 int caches = 0;
3081
3082 init_alloc_cpu();
3083
3084 #ifdef CONFIG_NUMA
3085 /*
3086 * Must first have the slab cache available for the allocations of the
3087 * struct kmem_cache_node's. There is special bootstrap code in
3088 * kmem_cache_open for slab_state == DOWN.
3089 */
3090 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3091 sizeof(struct kmem_cache_node), GFP_KERNEL);
3092 kmalloc_caches[0].refcount = -1;
3093 caches++;
3094
3095 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3096 #endif
3097
3098 /* Able to allocate the per node structures */
3099 slab_state = PARTIAL;
3100
3101 /* Caches that are not of the two-to-the-power-of size */
3102 if (KMALLOC_MIN_SIZE <= 64) {
3103 create_kmalloc_cache(&kmalloc_caches[1],
3104 "kmalloc-96", 96, GFP_KERNEL);
3105 caches++;
3106 create_kmalloc_cache(&kmalloc_caches[2],
3107 "kmalloc-192", 192, GFP_KERNEL);
3108 caches++;
3109 }
3110
3111 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3112 create_kmalloc_cache(&kmalloc_caches[i],
3113 "kmalloc", 1 << i, GFP_KERNEL);
3114 caches++;
3115 }
3116
3117
3118 /*
3119 * Patch up the size_index table if we have strange large alignment
3120 * requirements for the kmalloc array. This is only the case for
3121 * MIPS it seems. The standard arches will not generate any code here.
3122 *
3123 * Largest permitted alignment is 256 bytes due to the way we
3124 * handle the index determination for the smaller caches.
3125 *
3126 * Make sure that nothing crazy happens if someone starts tinkering
3127 * around with ARCH_KMALLOC_MINALIGN
3128 */
3129 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3130 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3131
3132 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3133 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3134
3135 if (KMALLOC_MIN_SIZE == 128) {
3136 /*
3137 * The 192 byte sized cache is not used if the alignment
3138 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3139 * instead.
3140 */
3141 for (i = 128 + 8; i <= 192; i += 8)
3142 size_index[(i - 1) / 8] = 8;
3143 }
3144
3145 slab_state = UP;
3146
3147 /* Provide the correct kmalloc names now that the caches are up */
3148 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3149 kmalloc_caches[i]. name =
3150 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3151
3152 #ifdef CONFIG_SMP
3153 register_cpu_notifier(&slab_notifier);
3154 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3155 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3156 #else
3157 kmem_size = sizeof(struct kmem_cache);
3158 #endif
3159
3160 printk(KERN_INFO
3161 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3162 " CPUs=%d, Nodes=%d\n",
3163 caches, cache_line_size(),
3164 slub_min_order, slub_max_order, slub_min_objects,
3165 nr_cpu_ids, nr_node_ids);
3166 }
3167
3168 /*
3169 * Find a mergeable slab cache
3170 */
3171 static int slab_unmergeable(struct kmem_cache *s)
3172 {
3173 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3174 return 1;
3175
3176 if (s->ctor)
3177 return 1;
3178
3179 /*
3180 * We may have set a slab to be unmergeable during bootstrap.
3181 */
3182 if (s->refcount < 0)
3183 return 1;
3184
3185 return 0;
3186 }
3187
3188 static struct kmem_cache *find_mergeable(size_t size,
3189 size_t align, unsigned long flags, const char *name,
3190 void (*ctor)(void *))
3191 {
3192 struct kmem_cache *s;
3193
3194 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3195 return NULL;
3196
3197 if (ctor)
3198 return NULL;
3199
3200 size = ALIGN(size, sizeof(void *));
3201 align = calculate_alignment(flags, align, size);
3202 size = ALIGN(size, align);
3203 flags = kmem_cache_flags(size, flags, name, NULL);
3204
3205 list_for_each_entry(s, &slab_caches, list) {
3206 if (slab_unmergeable(s))
3207 continue;
3208
3209 if (size > s->size)
3210 continue;
3211
3212 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3213 continue;
3214 /*
3215 * Check if alignment is compatible.
3216 * Courtesy of Adrian Drzewiecki
3217 */
3218 if ((s->size & ~(align - 1)) != s->size)
3219 continue;
3220
3221 if (s->size - size >= sizeof(void *))
3222 continue;
3223
3224 return s;
3225 }
3226 return NULL;
3227 }
3228
3229 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3230 size_t align, unsigned long flags, void (*ctor)(void *))
3231 {
3232 struct kmem_cache *s;
3233
3234 down_write(&slub_lock);
3235 s = find_mergeable(size, align, flags, name, ctor);
3236 if (s) {
3237 int cpu;
3238
3239 s->refcount++;
3240 /*
3241 * Adjust the object sizes so that we clear
3242 * the complete object on kzalloc.
3243 */
3244 s->objsize = max(s->objsize, (int)size);
3245
3246 /*
3247 * And then we need to update the object size in the
3248 * per cpu structures
3249 */
3250 for_each_online_cpu(cpu)
3251 get_cpu_slab(s, cpu)->objsize = s->objsize;
3252
3253 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3254 up_write(&slub_lock);
3255
3256 if (sysfs_slab_alias(s, name)) {
3257 down_write(&slub_lock);
3258 s->refcount--;
3259 up_write(&slub_lock);
3260 goto err;
3261 }
3262 return s;
3263 }
3264
3265 s = kmalloc(kmem_size, GFP_KERNEL);
3266 if (s) {
3267 if (kmem_cache_open(s, GFP_KERNEL, name,
3268 size, align, flags, ctor)) {
3269 list_add(&s->list, &slab_caches);
3270 up_write(&slub_lock);
3271 if (sysfs_slab_add(s)) {
3272 down_write(&slub_lock);
3273 list_del(&s->list);
3274 up_write(&slub_lock);
3275 kfree(s);
3276 goto err;
3277 }
3278 return s;
3279 }
3280 kfree(s);
3281 }
3282 up_write(&slub_lock);
3283
3284 err:
3285 if (flags & SLAB_PANIC)
3286 panic("Cannot create slabcache %s\n", name);
3287 else
3288 s = NULL;
3289 return s;
3290 }
3291 EXPORT_SYMBOL(kmem_cache_create);
3292
3293 #ifdef CONFIG_SMP
3294 /*
3295 * Use the cpu notifier to insure that the cpu slabs are flushed when
3296 * necessary.
3297 */
3298 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3299 unsigned long action, void *hcpu)
3300 {
3301 long cpu = (long)hcpu;
3302 struct kmem_cache *s;
3303 unsigned long flags;
3304
3305 switch (action) {
3306 case CPU_UP_PREPARE:
3307 case CPU_UP_PREPARE_FROZEN:
3308 init_alloc_cpu_cpu(cpu);
3309 down_read(&slub_lock);
3310 list_for_each_entry(s, &slab_caches, list)
3311 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3312 GFP_KERNEL);
3313 up_read(&slub_lock);
3314 break;
3315
3316 case CPU_UP_CANCELED:
3317 case CPU_UP_CANCELED_FROZEN:
3318 case CPU_DEAD:
3319 case CPU_DEAD_FROZEN:
3320 down_read(&slub_lock);
3321 list_for_each_entry(s, &slab_caches, list) {
3322 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3323
3324 local_irq_save(flags);
3325 __flush_cpu_slab(s, cpu);
3326 local_irq_restore(flags);
3327 free_kmem_cache_cpu(c, cpu);
3328 s->cpu_slab[cpu] = NULL;
3329 }
3330 up_read(&slub_lock);
3331 break;
3332 default:
3333 break;
3334 }
3335 return NOTIFY_OK;
3336 }
3337
3338 static struct notifier_block __cpuinitdata slab_notifier = {
3339 .notifier_call = slab_cpuup_callback
3340 };
3341
3342 #endif
3343
3344 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3345 {
3346 struct kmem_cache *s;
3347 void *ret;
3348
3349 if (unlikely(size > SLUB_MAX_SIZE))
3350 return kmalloc_large(size, gfpflags);
3351
3352 s = get_slab(size, gfpflags);
3353
3354 if (unlikely(ZERO_OR_NULL_PTR(s)))
3355 return s;
3356
3357 ret = slab_alloc(s, gfpflags, -1, caller);
3358
3359 /* Honor the call site pointer we recieved. */
3360 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3361
3362 return ret;
3363 }
3364
3365 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3366 int node, unsigned long caller)
3367 {
3368 struct kmem_cache *s;
3369 void *ret;
3370
3371 if (unlikely(size > SLUB_MAX_SIZE))
3372 return kmalloc_large_node(size, gfpflags, node);
3373
3374 s = get_slab(size, gfpflags);
3375
3376 if (unlikely(ZERO_OR_NULL_PTR(s)))
3377 return s;
3378
3379 ret = slab_alloc(s, gfpflags, node, caller);
3380
3381 /* Honor the call site pointer we recieved. */
3382 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3383
3384 return ret;
3385 }
3386
3387 #ifdef CONFIG_SLUB_DEBUG
3388 static int count_inuse(struct page *page)
3389 {
3390 return page->inuse;
3391 }
3392
3393 static int count_total(struct page *page)
3394 {
3395 return page->objects;
3396 }
3397
3398 static int validate_slab(struct kmem_cache *s, struct page *page,
3399 unsigned long *map)
3400 {
3401 void *p;
3402 void *addr = page_address(page);
3403
3404 if (!check_slab(s, page) ||
3405 !on_freelist(s, page, NULL))
3406 return 0;
3407
3408 /* Now we know that a valid freelist exists */
3409 bitmap_zero(map, page->objects);
3410
3411 for_each_free_object(p, s, page->freelist) {
3412 set_bit(slab_index(p, s, addr), map);
3413 if (!check_object(s, page, p, 0))
3414 return 0;
3415 }
3416
3417 for_each_object(p, s, addr, page->objects)
3418 if (!test_bit(slab_index(p, s, addr), map))
3419 if (!check_object(s, page, p, 1))
3420 return 0;
3421 return 1;
3422 }
3423
3424 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3425 unsigned long *map)
3426 {
3427 if (slab_trylock(page)) {
3428 validate_slab(s, page, map);
3429 slab_unlock(page);
3430 } else
3431 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3432 s->name, page);
3433
3434 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3435 if (!PageSlubDebug(page))
3436 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3437 "on slab 0x%p\n", s->name, page);
3438 } else {
3439 if (PageSlubDebug(page))
3440 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3441 "slab 0x%p\n", s->name, page);
3442 }
3443 }
3444
3445 static int validate_slab_node(struct kmem_cache *s,
3446 struct kmem_cache_node *n, unsigned long *map)
3447 {
3448 unsigned long count = 0;
3449 struct page *page;
3450 unsigned long flags;
3451
3452 spin_lock_irqsave(&n->list_lock, flags);
3453
3454 list_for_each_entry(page, &n->partial, lru) {
3455 validate_slab_slab(s, page, map);
3456 count++;
3457 }
3458 if (count != n->nr_partial)
3459 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3460 "counter=%ld\n", s->name, count, n->nr_partial);
3461
3462 if (!(s->flags & SLAB_STORE_USER))
3463 goto out;
3464
3465 list_for_each_entry(page, &n->full, lru) {
3466 validate_slab_slab(s, page, map);
3467 count++;
3468 }
3469 if (count != atomic_long_read(&n->nr_slabs))
3470 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3471 "counter=%ld\n", s->name, count,
3472 atomic_long_read(&n->nr_slabs));
3473
3474 out:
3475 spin_unlock_irqrestore(&n->list_lock, flags);
3476 return count;
3477 }
3478
3479 static long validate_slab_cache(struct kmem_cache *s)
3480 {
3481 int node;
3482 unsigned long count = 0;
3483 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3484 sizeof(unsigned long), GFP_KERNEL);
3485
3486 if (!map)
3487 return -ENOMEM;
3488
3489 flush_all(s);
3490 for_each_node_state(node, N_NORMAL_MEMORY) {
3491 struct kmem_cache_node *n = get_node(s, node);
3492
3493 count += validate_slab_node(s, n, map);
3494 }
3495 kfree(map);
3496 return count;
3497 }
3498
3499 #ifdef SLUB_RESILIENCY_TEST
3500 static void resiliency_test(void)
3501 {
3502 u8 *p;
3503
3504 printk(KERN_ERR "SLUB resiliency testing\n");
3505 printk(KERN_ERR "-----------------------\n");
3506 printk(KERN_ERR "A. Corruption after allocation\n");
3507
3508 p = kzalloc(16, GFP_KERNEL);
3509 p[16] = 0x12;
3510 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3511 " 0x12->0x%p\n\n", p + 16);
3512
3513 validate_slab_cache(kmalloc_caches + 4);
3514
3515 /* Hmmm... The next two are dangerous */
3516 p = kzalloc(32, GFP_KERNEL);
3517 p[32 + sizeof(void *)] = 0x34;
3518 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3519 " 0x34 -> -0x%p\n", p);
3520 printk(KERN_ERR
3521 "If allocated object is overwritten then not detectable\n\n");
3522
3523 validate_slab_cache(kmalloc_caches + 5);
3524 p = kzalloc(64, GFP_KERNEL);
3525 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3526 *p = 0x56;
3527 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3528 p);
3529 printk(KERN_ERR
3530 "If allocated object is overwritten then not detectable\n\n");
3531 validate_slab_cache(kmalloc_caches + 6);
3532
3533 printk(KERN_ERR "\nB. Corruption after free\n");
3534 p = kzalloc(128, GFP_KERNEL);
3535 kfree(p);
3536 *p = 0x78;
3537 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3538 validate_slab_cache(kmalloc_caches + 7);
3539
3540 p = kzalloc(256, GFP_KERNEL);
3541 kfree(p);
3542 p[50] = 0x9a;
3543 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3544 p);
3545 validate_slab_cache(kmalloc_caches + 8);
3546
3547 p = kzalloc(512, GFP_KERNEL);
3548 kfree(p);
3549 p[512] = 0xab;
3550 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3551 validate_slab_cache(kmalloc_caches + 9);
3552 }
3553 #else
3554 static void resiliency_test(void) {};
3555 #endif
3556
3557 /*
3558 * Generate lists of code addresses where slabcache objects are allocated
3559 * and freed.
3560 */
3561
3562 struct location {
3563 unsigned long count;
3564 unsigned long addr;
3565 long long sum_time;
3566 long min_time;
3567 long max_time;
3568 long min_pid;
3569 long max_pid;
3570 DECLARE_BITMAP(cpus, NR_CPUS);
3571 nodemask_t nodes;
3572 };
3573
3574 struct loc_track {
3575 unsigned long max;
3576 unsigned long count;
3577 struct location *loc;
3578 };
3579
3580 static void free_loc_track(struct loc_track *t)
3581 {
3582 if (t->max)
3583 free_pages((unsigned long)t->loc,
3584 get_order(sizeof(struct location) * t->max));
3585 }
3586
3587 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3588 {
3589 struct location *l;
3590 int order;
3591
3592 order = get_order(sizeof(struct location) * max);
3593
3594 l = (void *)__get_free_pages(flags, order);
3595 if (!l)
3596 return 0;
3597
3598 if (t->count) {
3599 memcpy(l, t->loc, sizeof(struct location) * t->count);
3600 free_loc_track(t);
3601 }
3602 t->max = max;
3603 t->loc = l;
3604 return 1;
3605 }
3606
3607 static int add_location(struct loc_track *t, struct kmem_cache *s,
3608 const struct track *track)
3609 {
3610 long start, end, pos;
3611 struct location *l;
3612 unsigned long caddr;
3613 unsigned long age = jiffies - track->when;
3614
3615 start = -1;
3616 end = t->count;
3617
3618 for ( ; ; ) {
3619 pos = start + (end - start + 1) / 2;
3620
3621 /*
3622 * There is nothing at "end". If we end up there
3623 * we need to add something to before end.
3624 */
3625 if (pos == end)
3626 break;
3627
3628 caddr = t->loc[pos].addr;
3629 if (track->addr == caddr) {
3630
3631 l = &t->loc[pos];
3632 l->count++;
3633 if (track->when) {
3634 l->sum_time += age;
3635 if (age < l->min_time)
3636 l->min_time = age;
3637 if (age > l->max_time)
3638 l->max_time = age;
3639
3640 if (track->pid < l->min_pid)
3641 l->min_pid = track->pid;
3642 if (track->pid > l->max_pid)
3643 l->max_pid = track->pid;
3644
3645 cpumask_set_cpu(track->cpu,
3646 to_cpumask(l->cpus));
3647 }
3648 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3649 return 1;
3650 }
3651
3652 if (track->addr < caddr)
3653 end = pos;
3654 else
3655 start = pos;
3656 }
3657
3658 /*
3659 * Not found. Insert new tracking element.
3660 */
3661 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3662 return 0;
3663
3664 l = t->loc + pos;
3665 if (pos < t->count)
3666 memmove(l + 1, l,
3667 (t->count - pos) * sizeof(struct location));
3668 t->count++;
3669 l->count = 1;
3670 l->addr = track->addr;
3671 l->sum_time = age;
3672 l->min_time = age;
3673 l->max_time = age;
3674 l->min_pid = track->pid;
3675 l->max_pid = track->pid;
3676 cpumask_clear(to_cpumask(l->cpus));
3677 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3678 nodes_clear(l->nodes);
3679 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3680 return 1;
3681 }
3682
3683 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3684 struct page *page, enum track_item alloc)
3685 {
3686 void *addr = page_address(page);
3687 DECLARE_BITMAP(map, page->objects);
3688 void *p;
3689
3690 bitmap_zero(map, page->objects);
3691 for_each_free_object(p, s, page->freelist)
3692 set_bit(slab_index(p, s, addr), map);
3693
3694 for_each_object(p, s, addr, page->objects)
3695 if (!test_bit(slab_index(p, s, addr), map))
3696 add_location(t, s, get_track(s, p, alloc));
3697 }
3698
3699 static int list_locations(struct kmem_cache *s, char *buf,
3700 enum track_item alloc)
3701 {
3702 int len = 0;
3703 unsigned long i;
3704 struct loc_track t = { 0, 0, NULL };
3705 int node;
3706
3707 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3708 GFP_TEMPORARY))
3709 return sprintf(buf, "Out of memory\n");
3710
3711 /* Push back cpu slabs */
3712 flush_all(s);
3713
3714 for_each_node_state(node, N_NORMAL_MEMORY) {
3715 struct kmem_cache_node *n = get_node(s, node);
3716 unsigned long flags;
3717 struct page *page;
3718
3719 if (!atomic_long_read(&n->nr_slabs))
3720 continue;
3721
3722 spin_lock_irqsave(&n->list_lock, flags);
3723 list_for_each_entry(page, &n->partial, lru)
3724 process_slab(&t, s, page, alloc);
3725 list_for_each_entry(page, &n->full, lru)
3726 process_slab(&t, s, page, alloc);
3727 spin_unlock_irqrestore(&n->list_lock, flags);
3728 }
3729
3730 for (i = 0; i < t.count; i++) {
3731 struct location *l = &t.loc[i];
3732
3733 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3734 break;
3735 len += sprintf(buf + len, "%7ld ", l->count);
3736
3737 if (l->addr)
3738 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3739 else
3740 len += sprintf(buf + len, "<not-available>");
3741
3742 if (l->sum_time != l->min_time) {
3743 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3744 l->min_time,
3745 (long)div_u64(l->sum_time, l->count),
3746 l->max_time);
3747 } else
3748 len += sprintf(buf + len, " age=%ld",
3749 l->min_time);
3750
3751 if (l->min_pid != l->max_pid)
3752 len += sprintf(buf + len, " pid=%ld-%ld",
3753 l->min_pid, l->max_pid);
3754 else
3755 len += sprintf(buf + len, " pid=%ld",
3756 l->min_pid);
3757
3758 if (num_online_cpus() > 1 &&
3759 !cpumask_empty(to_cpumask(l->cpus)) &&
3760 len < PAGE_SIZE - 60) {
3761 len += sprintf(buf + len, " cpus=");
3762 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3763 to_cpumask(l->cpus));
3764 }
3765
3766 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3767 len < PAGE_SIZE - 60) {
3768 len += sprintf(buf + len, " nodes=");
3769 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3770 l->nodes);
3771 }
3772
3773 len += sprintf(buf + len, "\n");
3774 }
3775
3776 free_loc_track(&t);
3777 if (!t.count)
3778 len += sprintf(buf, "No data\n");
3779 return len;
3780 }
3781
3782 enum slab_stat_type {
3783 SL_ALL, /* All slabs */
3784 SL_PARTIAL, /* Only partially allocated slabs */
3785 SL_CPU, /* Only slabs used for cpu caches */
3786 SL_OBJECTS, /* Determine allocated objects not slabs */
3787 SL_TOTAL /* Determine object capacity not slabs */
3788 };
3789
3790 #define SO_ALL (1 << SL_ALL)
3791 #define SO_PARTIAL (1 << SL_PARTIAL)
3792 #define SO_CPU (1 << SL_CPU)
3793 #define SO_OBJECTS (1 << SL_OBJECTS)
3794 #define SO_TOTAL (1 << SL_TOTAL)
3795
3796 static ssize_t show_slab_objects(struct kmem_cache *s,
3797 char *buf, unsigned long flags)
3798 {
3799 unsigned long total = 0;
3800 int node;
3801 int x;
3802 unsigned long *nodes;
3803 unsigned long *per_cpu;
3804
3805 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3806 if (!nodes)
3807 return -ENOMEM;
3808 per_cpu = nodes + nr_node_ids;
3809
3810 if (flags & SO_CPU) {
3811 int cpu;
3812
3813 for_each_possible_cpu(cpu) {
3814 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3815
3816 if (!c || c->node < 0)
3817 continue;
3818
3819 if (c->page) {
3820 if (flags & SO_TOTAL)
3821 x = c->page->objects;
3822 else if (flags & SO_OBJECTS)
3823 x = c->page->inuse;
3824 else
3825 x = 1;
3826
3827 total += x;
3828 nodes[c->node] += x;
3829 }
3830 per_cpu[c->node]++;
3831 }
3832 }
3833
3834 if (flags & SO_ALL) {
3835 for_each_node_state(node, N_NORMAL_MEMORY) {
3836 struct kmem_cache_node *n = get_node(s, node);
3837
3838 if (flags & SO_TOTAL)
3839 x = atomic_long_read(&n->total_objects);
3840 else if (flags & SO_OBJECTS)
3841 x = atomic_long_read(&n->total_objects) -
3842 count_partial(n, count_free);
3843
3844 else
3845 x = atomic_long_read(&n->nr_slabs);
3846 total += x;
3847 nodes[node] += x;
3848 }
3849
3850 } else if (flags & SO_PARTIAL) {
3851 for_each_node_state(node, N_NORMAL_MEMORY) {
3852 struct kmem_cache_node *n = get_node(s, node);
3853
3854 if (flags & SO_TOTAL)
3855 x = count_partial(n, count_total);
3856 else if (flags & SO_OBJECTS)
3857 x = count_partial(n, count_inuse);
3858 else
3859 x = n->nr_partial;
3860 total += x;
3861 nodes[node] += x;
3862 }
3863 }
3864 x = sprintf(buf, "%lu", total);
3865 #ifdef CONFIG_NUMA
3866 for_each_node_state(node, N_NORMAL_MEMORY)
3867 if (nodes[node])
3868 x += sprintf(buf + x, " N%d=%lu",
3869 node, nodes[node]);
3870 #endif
3871 kfree(nodes);
3872 return x + sprintf(buf + x, "\n");
3873 }
3874
3875 static int any_slab_objects(struct kmem_cache *s)
3876 {
3877 int node;
3878
3879 for_each_online_node(node) {
3880 struct kmem_cache_node *n = get_node(s, node);
3881
3882 if (!n)
3883 continue;
3884
3885 if (atomic_long_read(&n->total_objects))
3886 return 1;
3887 }
3888 return 0;
3889 }
3890
3891 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3892 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3893
3894 struct slab_attribute {
3895 struct attribute attr;
3896 ssize_t (*show)(struct kmem_cache *s, char *buf);
3897 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3898 };
3899
3900 #define SLAB_ATTR_RO(_name) \
3901 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3902
3903 #define SLAB_ATTR(_name) \
3904 static struct slab_attribute _name##_attr = \
3905 __ATTR(_name, 0644, _name##_show, _name##_store)
3906
3907 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3908 {
3909 return sprintf(buf, "%d\n", s->size);
3910 }
3911 SLAB_ATTR_RO(slab_size);
3912
3913 static ssize_t align_show(struct kmem_cache *s, char *buf)
3914 {
3915 return sprintf(buf, "%d\n", s->align);
3916 }
3917 SLAB_ATTR_RO(align);
3918
3919 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3920 {
3921 return sprintf(buf, "%d\n", s->objsize);
3922 }
3923 SLAB_ATTR_RO(object_size);
3924
3925 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3926 {
3927 return sprintf(buf, "%d\n", oo_objects(s->oo));
3928 }
3929 SLAB_ATTR_RO(objs_per_slab);
3930
3931 static ssize_t order_store(struct kmem_cache *s,
3932 const char *buf, size_t length)
3933 {
3934 unsigned long order;
3935 int err;
3936
3937 err = strict_strtoul(buf, 10, &order);
3938 if (err)
3939 return err;
3940
3941 if (order > slub_max_order || order < slub_min_order)
3942 return -EINVAL;
3943
3944 calculate_sizes(s, order);
3945 return length;
3946 }
3947
3948 static ssize_t order_show(struct kmem_cache *s, char *buf)
3949 {
3950 return sprintf(buf, "%d\n", oo_order(s->oo));
3951 }
3952 SLAB_ATTR(order);
3953
3954 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3955 {
3956 return sprintf(buf, "%lu\n", s->min_partial);
3957 }
3958
3959 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3960 size_t length)
3961 {
3962 unsigned long min;
3963 int err;
3964
3965 err = strict_strtoul(buf, 10, &min);
3966 if (err)
3967 return err;
3968
3969 set_min_partial(s, min);
3970 return length;
3971 }
3972 SLAB_ATTR(min_partial);
3973
3974 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3975 {
3976 if (s->ctor) {
3977 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3978
3979 return n + sprintf(buf + n, "\n");
3980 }
3981 return 0;
3982 }
3983 SLAB_ATTR_RO(ctor);
3984
3985 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3986 {
3987 return sprintf(buf, "%d\n", s->refcount - 1);
3988 }
3989 SLAB_ATTR_RO(aliases);
3990
3991 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3992 {
3993 return show_slab_objects(s, buf, SO_ALL);
3994 }
3995 SLAB_ATTR_RO(slabs);
3996
3997 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3998 {
3999 return show_slab_objects(s, buf, SO_PARTIAL);
4000 }
4001 SLAB_ATTR_RO(partial);
4002
4003 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4004 {
4005 return show_slab_objects(s, buf, SO_CPU);
4006 }
4007 SLAB_ATTR_RO(cpu_slabs);
4008
4009 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4010 {
4011 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4012 }
4013 SLAB_ATTR_RO(objects);
4014
4015 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4016 {
4017 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4018 }
4019 SLAB_ATTR_RO(objects_partial);
4020
4021 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4022 {
4023 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4024 }
4025 SLAB_ATTR_RO(total_objects);
4026
4027 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4028 {
4029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4030 }
4031
4032 static ssize_t sanity_checks_store(struct kmem_cache *s,
4033 const char *buf, size_t length)
4034 {
4035 s->flags &= ~SLAB_DEBUG_FREE;
4036 if (buf[0] == '1')
4037 s->flags |= SLAB_DEBUG_FREE;
4038 return length;
4039 }
4040 SLAB_ATTR(sanity_checks);
4041
4042 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4043 {
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4045 }
4046
4047 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4048 size_t length)
4049 {
4050 s->flags &= ~SLAB_TRACE;
4051 if (buf[0] == '1')
4052 s->flags |= SLAB_TRACE;
4053 return length;
4054 }
4055 SLAB_ATTR(trace);
4056
4057 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4058 {
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4060 }
4061
4062 static ssize_t reclaim_account_store(struct kmem_cache *s,
4063 const char *buf, size_t length)
4064 {
4065 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4066 if (buf[0] == '1')
4067 s->flags |= SLAB_RECLAIM_ACCOUNT;
4068 return length;
4069 }
4070 SLAB_ATTR(reclaim_account);
4071
4072 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4073 {
4074 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4075 }
4076 SLAB_ATTR_RO(hwcache_align);
4077
4078 #ifdef CONFIG_ZONE_DMA
4079 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4080 {
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4082 }
4083 SLAB_ATTR_RO(cache_dma);
4084 #endif
4085
4086 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4087 {
4088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4089 }
4090 SLAB_ATTR_RO(destroy_by_rcu);
4091
4092 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4093 {
4094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4095 }
4096
4097 static ssize_t red_zone_store(struct kmem_cache *s,
4098 const char *buf, size_t length)
4099 {
4100 if (any_slab_objects(s))
4101 return -EBUSY;
4102
4103 s->flags &= ~SLAB_RED_ZONE;
4104 if (buf[0] == '1')
4105 s->flags |= SLAB_RED_ZONE;
4106 calculate_sizes(s, -1);
4107 return length;
4108 }
4109 SLAB_ATTR(red_zone);
4110
4111 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4112 {
4113 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4114 }
4115
4116 static ssize_t poison_store(struct kmem_cache *s,
4117 const char *buf, size_t length)
4118 {
4119 if (any_slab_objects(s))
4120 return -EBUSY;
4121
4122 s->flags &= ~SLAB_POISON;
4123 if (buf[0] == '1')
4124 s->flags |= SLAB_POISON;
4125 calculate_sizes(s, -1);
4126 return length;
4127 }
4128 SLAB_ATTR(poison);
4129
4130 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4131 {
4132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4133 }
4134
4135 static ssize_t store_user_store(struct kmem_cache *s,
4136 const char *buf, size_t length)
4137 {
4138 if (any_slab_objects(s))
4139 return -EBUSY;
4140
4141 s->flags &= ~SLAB_STORE_USER;
4142 if (buf[0] == '1')
4143 s->flags |= SLAB_STORE_USER;
4144 calculate_sizes(s, -1);
4145 return length;
4146 }
4147 SLAB_ATTR(store_user);
4148
4149 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4150 {
4151 return 0;
4152 }
4153
4154 static ssize_t validate_store(struct kmem_cache *s,
4155 const char *buf, size_t length)
4156 {
4157 int ret = -EINVAL;
4158
4159 if (buf[0] == '1') {
4160 ret = validate_slab_cache(s);
4161 if (ret >= 0)
4162 ret = length;
4163 }
4164 return ret;
4165 }
4166 SLAB_ATTR(validate);
4167
4168 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4169 {
4170 return 0;
4171 }
4172
4173 static ssize_t shrink_store(struct kmem_cache *s,
4174 const char *buf, size_t length)
4175 {
4176 if (buf[0] == '1') {
4177 int rc = kmem_cache_shrink(s);
4178
4179 if (rc)
4180 return rc;
4181 } else
4182 return -EINVAL;
4183 return length;
4184 }
4185 SLAB_ATTR(shrink);
4186
4187 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4188 {
4189 if (!(s->flags & SLAB_STORE_USER))
4190 return -ENOSYS;
4191 return list_locations(s, buf, TRACK_ALLOC);
4192 }
4193 SLAB_ATTR_RO(alloc_calls);
4194
4195 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4196 {
4197 if (!(s->flags & SLAB_STORE_USER))
4198 return -ENOSYS;
4199 return list_locations(s, buf, TRACK_FREE);
4200 }
4201 SLAB_ATTR_RO(free_calls);
4202
4203 #ifdef CONFIG_NUMA
4204 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4205 {
4206 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4207 }
4208
4209 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4210 const char *buf, size_t length)
4211 {
4212 unsigned long ratio;
4213 int err;
4214
4215 err = strict_strtoul(buf, 10, &ratio);
4216 if (err)
4217 return err;
4218
4219 if (ratio <= 100)
4220 s->remote_node_defrag_ratio = ratio * 10;
4221
4222 return length;
4223 }
4224 SLAB_ATTR(remote_node_defrag_ratio);
4225 #endif
4226
4227 #ifdef CONFIG_SLUB_STATS
4228 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4229 {
4230 unsigned long sum = 0;
4231 int cpu;
4232 int len;
4233 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4234
4235 if (!data)
4236 return -ENOMEM;
4237
4238 for_each_online_cpu(cpu) {
4239 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4240
4241 data[cpu] = x;
4242 sum += x;
4243 }
4244
4245 len = sprintf(buf, "%lu", sum);
4246
4247 #ifdef CONFIG_SMP
4248 for_each_online_cpu(cpu) {
4249 if (data[cpu] && len < PAGE_SIZE - 20)
4250 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4251 }
4252 #endif
4253 kfree(data);
4254 return len + sprintf(buf + len, "\n");
4255 }
4256
4257 #define STAT_ATTR(si, text) \
4258 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4259 { \
4260 return show_stat(s, buf, si); \
4261 } \
4262 SLAB_ATTR_RO(text); \
4263
4264 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4265 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4266 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4267 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4268 STAT_ATTR(FREE_FROZEN, free_frozen);
4269 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4270 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4271 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4272 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4273 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4274 STAT_ATTR(FREE_SLAB, free_slab);
4275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4281 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4282 #endif
4283
4284 static struct attribute *slab_attrs[] = {
4285 &slab_size_attr.attr,
4286 &object_size_attr.attr,
4287 &objs_per_slab_attr.attr,
4288 &order_attr.attr,
4289 &min_partial_attr.attr,
4290 &objects_attr.attr,
4291 &objects_partial_attr.attr,
4292 &total_objects_attr.attr,
4293 &slabs_attr.attr,
4294 &partial_attr.attr,
4295 &cpu_slabs_attr.attr,
4296 &ctor_attr.attr,
4297 &aliases_attr.attr,
4298 &align_attr.attr,
4299 &sanity_checks_attr.attr,
4300 &trace_attr.attr,
4301 &hwcache_align_attr.attr,
4302 &reclaim_account_attr.attr,
4303 &destroy_by_rcu_attr.attr,
4304 &red_zone_attr.attr,
4305 &poison_attr.attr,
4306 &store_user_attr.attr,
4307 &validate_attr.attr,
4308 &shrink_attr.attr,
4309 &alloc_calls_attr.attr,
4310 &free_calls_attr.attr,
4311 #ifdef CONFIG_ZONE_DMA
4312 &cache_dma_attr.attr,
4313 #endif
4314 #ifdef CONFIG_NUMA
4315 &remote_node_defrag_ratio_attr.attr,
4316 #endif
4317 #ifdef CONFIG_SLUB_STATS
4318 &alloc_fastpath_attr.attr,
4319 &alloc_slowpath_attr.attr,
4320 &free_fastpath_attr.attr,
4321 &free_slowpath_attr.attr,
4322 &free_frozen_attr.attr,
4323 &free_add_partial_attr.attr,
4324 &free_remove_partial_attr.attr,
4325 &alloc_from_partial_attr.attr,
4326 &alloc_slab_attr.attr,
4327 &alloc_refill_attr.attr,
4328 &free_slab_attr.attr,
4329 &cpuslab_flush_attr.attr,
4330 &deactivate_full_attr.attr,
4331 &deactivate_empty_attr.attr,
4332 &deactivate_to_head_attr.attr,
4333 &deactivate_to_tail_attr.attr,
4334 &deactivate_remote_frees_attr.attr,
4335 &order_fallback_attr.attr,
4336 #endif
4337 NULL
4338 };
4339
4340 static struct attribute_group slab_attr_group = {
4341 .attrs = slab_attrs,
4342 };
4343
4344 static ssize_t slab_attr_show(struct kobject *kobj,
4345 struct attribute *attr,
4346 char *buf)
4347 {
4348 struct slab_attribute *attribute;
4349 struct kmem_cache *s;
4350 int err;
4351
4352 attribute = to_slab_attr(attr);
4353 s = to_slab(kobj);
4354
4355 if (!attribute->show)
4356 return -EIO;
4357
4358 err = attribute->show(s, buf);
4359
4360 return err;
4361 }
4362
4363 static ssize_t slab_attr_store(struct kobject *kobj,
4364 struct attribute *attr,
4365 const char *buf, size_t len)
4366 {
4367 struct slab_attribute *attribute;
4368 struct kmem_cache *s;
4369 int err;
4370
4371 attribute = to_slab_attr(attr);
4372 s = to_slab(kobj);
4373
4374 if (!attribute->store)
4375 return -EIO;
4376
4377 err = attribute->store(s, buf, len);
4378
4379 return err;
4380 }
4381
4382 static void kmem_cache_release(struct kobject *kobj)
4383 {
4384 struct kmem_cache *s = to_slab(kobj);
4385
4386 kfree(s);
4387 }
4388
4389 static struct sysfs_ops slab_sysfs_ops = {
4390 .show = slab_attr_show,
4391 .store = slab_attr_store,
4392 };
4393
4394 static struct kobj_type slab_ktype = {
4395 .sysfs_ops = &slab_sysfs_ops,
4396 .release = kmem_cache_release
4397 };
4398
4399 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4400 {
4401 struct kobj_type *ktype = get_ktype(kobj);
4402
4403 if (ktype == &slab_ktype)
4404 return 1;
4405 return 0;
4406 }
4407
4408 static struct kset_uevent_ops slab_uevent_ops = {
4409 .filter = uevent_filter,
4410 };
4411
4412 static struct kset *slab_kset;
4413
4414 #define ID_STR_LENGTH 64
4415
4416 /* Create a unique string id for a slab cache:
4417 *
4418 * Format :[flags-]size
4419 */
4420 static char *create_unique_id(struct kmem_cache *s)
4421 {
4422 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4423 char *p = name;
4424
4425 BUG_ON(!name);
4426
4427 *p++ = ':';
4428 /*
4429 * First flags affecting slabcache operations. We will only
4430 * get here for aliasable slabs so we do not need to support
4431 * too many flags. The flags here must cover all flags that
4432 * are matched during merging to guarantee that the id is
4433 * unique.
4434 */
4435 if (s->flags & SLAB_CACHE_DMA)
4436 *p++ = 'd';
4437 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4438 *p++ = 'a';
4439 if (s->flags & SLAB_DEBUG_FREE)
4440 *p++ = 'F';
4441 if (p != name + 1)
4442 *p++ = '-';
4443 p += sprintf(p, "%07d", s->size);
4444 BUG_ON(p > name + ID_STR_LENGTH - 1);
4445 return name;
4446 }
4447
4448 static int sysfs_slab_add(struct kmem_cache *s)
4449 {
4450 int err;
4451 const char *name;
4452 int unmergeable;
4453
4454 if (slab_state < SYSFS)
4455 /* Defer until later */
4456 return 0;
4457
4458 unmergeable = slab_unmergeable(s);
4459 if (unmergeable) {
4460 /*
4461 * Slabcache can never be merged so we can use the name proper.
4462 * This is typically the case for debug situations. In that
4463 * case we can catch duplicate names easily.
4464 */
4465 sysfs_remove_link(&slab_kset->kobj, s->name);
4466 name = s->name;
4467 } else {
4468 /*
4469 * Create a unique name for the slab as a target
4470 * for the symlinks.
4471 */
4472 name = create_unique_id(s);
4473 }
4474
4475 s->kobj.kset = slab_kset;
4476 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4477 if (err) {
4478 kobject_put(&s->kobj);
4479 return err;
4480 }
4481
4482 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4483 if (err)
4484 return err;
4485 kobject_uevent(&s->kobj, KOBJ_ADD);
4486 if (!unmergeable) {
4487 /* Setup first alias */
4488 sysfs_slab_alias(s, s->name);
4489 kfree(name);
4490 }
4491 return 0;
4492 }
4493
4494 static void sysfs_slab_remove(struct kmem_cache *s)
4495 {
4496 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4497 kobject_del(&s->kobj);
4498 kobject_put(&s->kobj);
4499 }
4500
4501 /*
4502 * Need to buffer aliases during bootup until sysfs becomes
4503 * available lest we lose that information.
4504 */
4505 struct saved_alias {
4506 struct kmem_cache *s;
4507 const char *name;
4508 struct saved_alias *next;
4509 };
4510
4511 static struct saved_alias *alias_list;
4512
4513 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4514 {
4515 struct saved_alias *al;
4516
4517 if (slab_state == SYSFS) {
4518 /*
4519 * If we have a leftover link then remove it.
4520 */
4521 sysfs_remove_link(&slab_kset->kobj, name);
4522 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4523 }
4524
4525 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4526 if (!al)
4527 return -ENOMEM;
4528
4529 al->s = s;
4530 al->name = name;
4531 al->next = alias_list;
4532 alias_list = al;
4533 return 0;
4534 }
4535
4536 static int __init slab_sysfs_init(void)
4537 {
4538 struct kmem_cache *s;
4539 int err;
4540
4541 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4542 if (!slab_kset) {
4543 printk(KERN_ERR "Cannot register slab subsystem.\n");
4544 return -ENOSYS;
4545 }
4546
4547 slab_state = SYSFS;
4548
4549 list_for_each_entry(s, &slab_caches, list) {
4550 err = sysfs_slab_add(s);
4551 if (err)
4552 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4553 " to sysfs\n", s->name);
4554 }
4555
4556 while (alias_list) {
4557 struct saved_alias *al = alias_list;
4558
4559 alias_list = alias_list->next;
4560 err = sysfs_slab_alias(al->s, al->name);
4561 if (err)
4562 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4563 " %s to sysfs\n", s->name);
4564 kfree(al);
4565 }
4566
4567 resiliency_test();
4568 return 0;
4569 }
4570
4571 __initcall(slab_sysfs_init);
4572 #endif
4573
4574 /*
4575 * The /proc/slabinfo ABI
4576 */
4577 #ifdef CONFIG_SLABINFO
4578 static void print_slabinfo_header(struct seq_file *m)
4579 {
4580 seq_puts(m, "slabinfo - version: 2.1\n");
4581 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4582 "<objperslab> <pagesperslab>");
4583 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4584 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4585 seq_putc(m, '\n');
4586 }
4587
4588 static void *s_start(struct seq_file *m, loff_t *pos)
4589 {
4590 loff_t n = *pos;
4591
4592 down_read(&slub_lock);
4593 if (!n)
4594 print_slabinfo_header(m);
4595
4596 return seq_list_start(&slab_caches, *pos);
4597 }
4598
4599 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4600 {
4601 return seq_list_next(p, &slab_caches, pos);
4602 }
4603
4604 static void s_stop(struct seq_file *m, void *p)
4605 {
4606 up_read(&slub_lock);
4607 }
4608
4609 static int s_show(struct seq_file *m, void *p)
4610 {
4611 unsigned long nr_partials = 0;
4612 unsigned long nr_slabs = 0;
4613 unsigned long nr_inuse = 0;
4614 unsigned long nr_objs = 0;
4615 unsigned long nr_free = 0;
4616 struct kmem_cache *s;
4617 int node;
4618
4619 s = list_entry(p, struct kmem_cache, list);
4620
4621 for_each_online_node(node) {
4622 struct kmem_cache_node *n = get_node(s, node);
4623
4624 if (!n)
4625 continue;
4626
4627 nr_partials += n->nr_partial;
4628 nr_slabs += atomic_long_read(&n->nr_slabs);
4629 nr_objs += atomic_long_read(&n->total_objects);
4630 nr_free += count_partial(n, count_free);
4631 }
4632
4633 nr_inuse = nr_objs - nr_free;
4634
4635 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4636 nr_objs, s->size, oo_objects(s->oo),
4637 (1 << oo_order(s->oo)));
4638 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4639 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4640 0UL);
4641 seq_putc(m, '\n');
4642 return 0;
4643 }
4644
4645 static const struct seq_operations slabinfo_op = {
4646 .start = s_start,
4647 .next = s_next,
4648 .stop = s_stop,
4649 .show = s_show,
4650 };
4651
4652 static int slabinfo_open(struct inode *inode, struct file *file)
4653 {
4654 return seq_open(file, &slabinfo_op);
4655 }
4656
4657 static const struct file_operations proc_slabinfo_operations = {
4658 .open = slabinfo_open,
4659 .read = seq_read,
4660 .llseek = seq_lseek,
4661 .release = seq_release,
4662 };
4663
4664 static int __init slab_proc_init(void)
4665 {
4666 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4667 return 0;
4668 }
4669 module_init(slab_proc_init);
4670 #endif /* CONFIG_SLABINFO */