2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <trace/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #ifdef CONFIG_SLUB_DEBUG
116 * Issues still to be resolved:
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 * - Variable sizing of the per node arrays
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 #define MIN_PARTIAL 5
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
137 #define MAX_PARTIAL 10
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
143 * Set of flags that will prevent slab merging
145 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
146 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
148 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
151 #ifndef ARCH_KMALLOC_MINALIGN
152 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155 #ifndef ARCH_SLAB_MINALIGN
156 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
160 #define OO_MASK ((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON 0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167 static int kmem_size
= sizeof(struct kmem_cache
);
170 static struct notifier_block slab_notifier
;
174 DOWN
, /* No slab functionality available */
175 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
176 UP
, /* Everything works but does not show up in sysfs */
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock
);
182 static LIST_HEAD(slab_caches
);
185 * Tracking user of a slab.
188 unsigned long addr
; /* Called from address */
189 int cpu
; /* Was running on cpu */
190 int pid
; /* Pid context */
191 unsigned long when
; /* When did the operation occur */
194 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache
*);
198 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
199 static void sysfs_slab_remove(struct kmem_cache
*);
202 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
205 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
212 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
214 #ifdef CONFIG_SLUB_STATS
219 /********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
223 int slab_is_available(void)
225 return slab_state
>= UP
;
228 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
231 return s
->node
[node
];
233 return &s
->local_node
;
237 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
240 return s
->cpu_slab
[cpu
];
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache
*s
,
248 struct page
*page
, const void *object
)
255 base
= page_address(page
);
256 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
257 (object
- base
) % s
->size
) {
265 * Slow version of get and set free pointer.
267 * This version requires touching the cache lines of kmem_cache which
268 * we avoid to do in the fast alloc free paths. There we obtain the offset
269 * from the page struct.
271 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
273 return *(void **)(object
+ s
->offset
);
276 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
278 *(void **)(object
+ s
->offset
) = fp
;
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
287 #define for_each_free_object(__p, __s, __free) \
288 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
293 return (p
- addr
) / s
->size
;
296 static inline struct kmem_cache_order_objects
oo_make(int order
,
299 struct kmem_cache_order_objects x
= {
300 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
306 static inline int oo_order(struct kmem_cache_order_objects x
)
308 return x
.x
>> OO_SHIFT
;
311 static inline int oo_objects(struct kmem_cache_order_objects x
)
313 return x
.x
& OO_MASK
;
316 #ifdef CONFIG_SLUB_DEBUG
320 #ifdef CONFIG_SLUB_DEBUG_ON
321 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
323 static int slub_debug
;
326 static char *slub_debug_slabs
;
331 static void print_section(char *text
, u8
*addr
, unsigned int length
)
339 for (i
= 0; i
< length
; i
++) {
341 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
344 printk(KERN_CONT
" %02x", addr
[i
]);
346 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
348 printk(KERN_CONT
" %s\n", ascii
);
355 printk(KERN_CONT
" ");
359 printk(KERN_CONT
" %s\n", ascii
);
363 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
364 enum track_item alloc
)
369 p
= object
+ s
->offset
+ sizeof(void *);
371 p
= object
+ s
->inuse
;
376 static void set_track(struct kmem_cache
*s
, void *object
,
377 enum track_item alloc
, unsigned long addr
)
379 struct track
*p
= get_track(s
, object
, alloc
);
383 p
->cpu
= smp_processor_id();
384 p
->pid
= current
->pid
;
387 memset(p
, 0, sizeof(struct track
));
390 static void init_tracking(struct kmem_cache
*s
, void *object
)
392 if (!(s
->flags
& SLAB_STORE_USER
))
395 set_track(s
, object
, TRACK_FREE
, 0UL);
396 set_track(s
, object
, TRACK_ALLOC
, 0UL);
399 static void print_track(const char *s
, struct track
*t
)
404 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
405 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
408 static void print_tracking(struct kmem_cache
*s
, void *object
)
410 if (!(s
->flags
& SLAB_STORE_USER
))
413 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
414 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
417 static void print_page_info(struct page
*page
)
419 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
424 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
430 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
432 printk(KERN_ERR
"========================================"
433 "=====================================\n");
434 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
435 printk(KERN_ERR
"----------------------------------------"
436 "-------------------------------------\n\n");
439 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
445 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
447 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
450 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
452 unsigned int off
; /* Offset of last byte */
453 u8
*addr
= page_address(page
);
455 print_tracking(s
, p
);
457 print_page_info(page
);
459 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460 p
, p
- addr
, get_freepointer(s
, p
));
463 print_section("Bytes b4", p
- 16, 16);
465 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
467 if (s
->flags
& SLAB_RED_ZONE
)
468 print_section("Redzone", p
+ s
->objsize
,
469 s
->inuse
- s
->objsize
);
472 off
= s
->offset
+ sizeof(void *);
476 if (s
->flags
& SLAB_STORE_USER
)
477 off
+= 2 * sizeof(struct track
);
480 /* Beginning of the filler is the free pointer */
481 print_section("Padding", p
+ off
, s
->size
- off
);
486 static void object_err(struct kmem_cache
*s
, struct page
*page
,
487 u8
*object
, char *reason
)
489 slab_bug(s
, "%s", reason
);
490 print_trailer(s
, page
, object
);
493 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
499 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
501 slab_bug(s
, "%s", buf
);
502 print_page_info(page
);
506 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
510 if (s
->flags
& __OBJECT_POISON
) {
511 memset(p
, POISON_FREE
, s
->objsize
- 1);
512 p
[s
->objsize
- 1] = POISON_END
;
515 if (s
->flags
& SLAB_RED_ZONE
)
516 memset(p
+ s
->objsize
,
517 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
518 s
->inuse
- s
->objsize
);
521 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
524 if (*start
!= (u8
)value
)
532 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
533 void *from
, void *to
)
535 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
536 memset(from
, data
, to
- from
);
539 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
540 u8
*object
, char *what
,
541 u8
*start
, unsigned int value
, unsigned int bytes
)
546 fault
= check_bytes(start
, value
, bytes
);
551 while (end
> fault
&& end
[-1] == value
)
554 slab_bug(s
, "%s overwritten", what
);
555 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556 fault
, end
- 1, fault
[0], value
);
557 print_trailer(s
, page
, object
);
559 restore_bytes(s
, what
, value
, fault
, end
);
567 * Bytes of the object to be managed.
568 * If the freepointer may overlay the object then the free
569 * pointer is the first word of the object.
571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
574 * object + s->objsize
575 * Padding to reach word boundary. This is also used for Redzoning.
576 * Padding is extended by another word if Redzoning is enabled and
579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 0xcc (RED_ACTIVE) for objects in use.
583 * Meta data starts here.
585 * A. Free pointer (if we cannot overwrite object on free)
586 * B. Tracking data for SLAB_STORE_USER
587 * C. Padding to reach required alignment boundary or at mininum
588 * one word if debugging is on to be able to detect writes
589 * before the word boundary.
591 * Padding is done using 0x5a (POISON_INUSE)
594 * Nothing is used beyond s->size.
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
598 * may be used with merged slabcaches.
601 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
603 unsigned long off
= s
->inuse
; /* The end of info */
606 /* Freepointer is placed after the object. */
607 off
+= sizeof(void *);
609 if (s
->flags
& SLAB_STORE_USER
)
610 /* We also have user information there */
611 off
+= 2 * sizeof(struct track
);
616 return check_bytes_and_report(s
, page
, p
, "Object padding",
617 p
+ off
, POISON_INUSE
, s
->size
- off
);
620 /* Check the pad bytes at the end of a slab page */
621 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
629 if (!(s
->flags
& SLAB_POISON
))
632 start
= page_address(page
);
633 length
= (PAGE_SIZE
<< compound_order(page
));
634 end
= start
+ length
;
635 remainder
= length
% s
->size
;
639 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
642 while (end
> fault
&& end
[-1] == POISON_INUSE
)
645 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
646 print_section("Padding", end
- remainder
, remainder
);
648 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
652 static int check_object(struct kmem_cache
*s
, struct page
*page
,
653 void *object
, int active
)
656 u8
*endobject
= object
+ s
->objsize
;
658 if (s
->flags
& SLAB_RED_ZONE
) {
660 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
662 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
663 endobject
, red
, s
->inuse
- s
->objsize
))
666 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
667 check_bytes_and_report(s
, page
, p
, "Alignment padding",
668 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
672 if (s
->flags
& SLAB_POISON
) {
673 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
674 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
675 POISON_FREE
, s
->objsize
- 1) ||
676 !check_bytes_and_report(s
, page
, p
, "Poison",
677 p
+ s
->objsize
- 1, POISON_END
, 1)))
680 * check_pad_bytes cleans up on its own.
682 check_pad_bytes(s
, page
, p
);
685 if (!s
->offset
&& active
)
687 * Object and freepointer overlap. Cannot check
688 * freepointer while object is allocated.
692 /* Check free pointer validity */
693 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
694 object_err(s
, page
, p
, "Freepointer corrupt");
696 * No choice but to zap it and thus lose the remainder
697 * of the free objects in this slab. May cause
698 * another error because the object count is now wrong.
700 set_freepointer(s
, p
, NULL
);
706 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
710 VM_BUG_ON(!irqs_disabled());
712 if (!PageSlab(page
)) {
713 slab_err(s
, page
, "Not a valid slab page");
717 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
718 if (page
->objects
> maxobj
) {
719 slab_err(s
, page
, "objects %u > max %u",
720 s
->name
, page
->objects
, maxobj
);
723 if (page
->inuse
> page
->objects
) {
724 slab_err(s
, page
, "inuse %u > max %u",
725 s
->name
, page
->inuse
, page
->objects
);
728 /* Slab_pad_check fixes things up after itself */
729 slab_pad_check(s
, page
);
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
737 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
740 void *fp
= page
->freelist
;
742 unsigned long max_objects
;
744 while (fp
&& nr
<= page
->objects
) {
747 if (!check_valid_pointer(s
, page
, fp
)) {
749 object_err(s
, page
, object
,
750 "Freechain corrupt");
751 set_freepointer(s
, object
, NULL
);
754 slab_err(s
, page
, "Freepointer corrupt");
755 page
->freelist
= NULL
;
756 page
->inuse
= page
->objects
;
757 slab_fix(s
, "Freelist cleared");
763 fp
= get_freepointer(s
, object
);
767 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
768 if (max_objects
> MAX_OBJS_PER_PAGE
)
769 max_objects
= MAX_OBJS_PER_PAGE
;
771 if (page
->objects
!= max_objects
) {
772 slab_err(s
, page
, "Wrong number of objects. Found %d but "
773 "should be %d", page
->objects
, max_objects
);
774 page
->objects
= max_objects
;
775 slab_fix(s
, "Number of objects adjusted.");
777 if (page
->inuse
!= page
->objects
- nr
) {
778 slab_err(s
, page
, "Wrong object count. Counter is %d but "
779 "counted were %d", page
->inuse
, page
->objects
- nr
);
780 page
->inuse
= page
->objects
- nr
;
781 slab_fix(s
, "Object count adjusted.");
783 return search
== NULL
;
786 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
789 if (s
->flags
& SLAB_TRACE
) {
790 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 alloc
? "alloc" : "free",
797 print_section("Object", (void *)object
, s
->objsize
);
804 * Tracking of fully allocated slabs for debugging purposes.
806 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
808 spin_lock(&n
->list_lock
);
809 list_add(&page
->lru
, &n
->full
);
810 spin_unlock(&n
->list_lock
);
813 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
815 struct kmem_cache_node
*n
;
817 if (!(s
->flags
& SLAB_STORE_USER
))
820 n
= get_node(s
, page_to_nid(page
));
822 spin_lock(&n
->list_lock
);
823 list_del(&page
->lru
);
824 spin_unlock(&n
->list_lock
);
827 /* Tracking of the number of slabs for debugging purposes */
828 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
830 struct kmem_cache_node
*n
= get_node(s
, node
);
832 return atomic_long_read(&n
->nr_slabs
);
835 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
837 return atomic_long_read(&n
->nr_slabs
);
840 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
842 struct kmem_cache_node
*n
= get_node(s
, node
);
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
850 if (!NUMA_BUILD
|| n
) {
851 atomic_long_inc(&n
->nr_slabs
);
852 atomic_long_add(objects
, &n
->total_objects
);
855 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
857 struct kmem_cache_node
*n
= get_node(s
, node
);
859 atomic_long_dec(&n
->nr_slabs
);
860 atomic_long_sub(objects
, &n
->total_objects
);
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
867 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
870 init_object(s
, object
, 0);
871 init_tracking(s
, object
);
874 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, unsigned long addr
)
877 if (!check_slab(s
, page
))
880 if (!on_freelist(s
, page
, object
)) {
881 object_err(s
, page
, object
, "Object already allocated");
885 if (!check_valid_pointer(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Freelist Pointer check fails");
890 if (!check_object(s
, page
, object
, 0))
893 /* Success perform special debug activities for allocs */
894 if (s
->flags
& SLAB_STORE_USER
)
895 set_track(s
, object
, TRACK_ALLOC
, addr
);
896 trace(s
, page
, object
, 1);
897 init_object(s
, object
, 1);
901 if (PageSlab(page
)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s
, "Marking all objects used");
908 page
->inuse
= page
->objects
;
909 page
->freelist
= NULL
;
914 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
915 void *object
, unsigned long addr
)
917 if (!check_slab(s
, page
))
920 if (!check_valid_pointer(s
, page
, object
)) {
921 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
925 if (on_freelist(s
, page
, object
)) {
926 object_err(s
, page
, object
, "Object already free");
930 if (!check_object(s
, page
, object
, 1))
933 if (unlikely(s
!= page
->slab
)) {
934 if (!PageSlab(page
)) {
935 slab_err(s
, page
, "Attempt to free object(0x%p) "
936 "outside of slab", object
);
937 } else if (!page
->slab
) {
939 "SLUB <none>: no slab for object 0x%p.\n",
943 object_err(s
, page
, object
,
944 "page slab pointer corrupt.");
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page
) && !page
->freelist
)
950 remove_full(s
, page
);
951 if (s
->flags
& SLAB_STORE_USER
)
952 set_track(s
, object
, TRACK_FREE
, addr
);
953 trace(s
, page
, object
, 0);
954 init_object(s
, object
, 0);
958 slab_fix(s
, "Object at 0x%p not freed", object
);
962 static int __init
setup_slub_debug(char *str
)
964 slub_debug
= DEBUG_DEFAULT_FLAGS
;
965 if (*str
++ != '=' || !*str
)
967 * No options specified. Switch on full debugging.
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
981 * Switch off all debugging measures.
986 * Determine which debug features should be switched on
988 for (; *str
&& *str
!= ','; str
++) {
989 switch (tolower(*str
)) {
991 slub_debug
|= SLAB_DEBUG_FREE
;
994 slub_debug
|= SLAB_RED_ZONE
;
997 slub_debug
|= SLAB_POISON
;
1000 slub_debug
|= SLAB_STORE_USER
;
1003 slub_debug
|= SLAB_TRACE
;
1006 printk(KERN_ERR
"slub_debug option '%c' "
1007 "unknown. skipped\n", *str
);
1013 slub_debug_slabs
= str
+ 1;
1018 __setup("slub_debug", setup_slub_debug
);
1020 static unsigned long kmem_cache_flags(unsigned long objsize
,
1021 unsigned long flags
, const char *name
,
1022 void (*ctor
)(void *))
1025 * Enable debugging if selected on the kernel commandline.
1027 if (slub_debug
&& (!slub_debug_slabs
||
1028 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1029 flags
|= slub_debug
;
1034 static inline void setup_object_debug(struct kmem_cache
*s
,
1035 struct page
*page
, void *object
) {}
1037 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1038 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1040 static inline int free_debug_processing(struct kmem_cache
*s
,
1041 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1043 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1045 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1046 void *object
, int active
) { return 1; }
1047 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1049 unsigned long flags
, const char *name
,
1050 void (*ctor
)(void *))
1054 #define slub_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1060 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1062 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1067 * Slab allocation and freeing
1069 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1070 struct kmem_cache_order_objects oo
)
1072 int order
= oo_order(oo
);
1075 return alloc_pages(flags
, order
);
1077 return alloc_pages_node(node
, flags
, order
);
1080 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1083 struct kmem_cache_order_objects oo
= s
->oo
;
1085 flags
|= s
->allocflags
;
1087 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1089 if (unlikely(!page
)) {
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1095 page
= alloc_slab_page(flags
, node
, oo
);
1099 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1101 page
->objects
= oo_objects(oo
);
1102 mod_zone_page_state(page_zone(page
),
1103 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1104 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1110 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1113 setup_object_debug(s
, page
, object
);
1114 if (unlikely(s
->ctor
))
1118 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1125 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1127 page
= allocate_slab(s
,
1128 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1132 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1134 page
->flags
|= 1 << PG_slab
;
1135 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1136 SLAB_STORE_USER
| SLAB_TRACE
))
1137 __SetPageSlubDebug(page
);
1139 start
= page_address(page
);
1141 if (unlikely(s
->flags
& SLAB_POISON
))
1142 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1145 for_each_object(p
, s
, start
, page
->objects
) {
1146 setup_object(s
, page
, last
);
1147 set_freepointer(s
, last
, p
);
1150 setup_object(s
, page
, last
);
1151 set_freepointer(s
, last
, NULL
);
1153 page
->freelist
= start
;
1159 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1161 int order
= compound_order(page
);
1162 int pages
= 1 << order
;
1164 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1167 slab_pad_check(s
, page
);
1168 for_each_object(p
, s
, page_address(page
),
1170 check_object(s
, page
, p
, 0);
1171 __ClearPageSlubDebug(page
);
1174 mod_zone_page_state(page_zone(page
),
1175 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1176 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1179 __ClearPageSlab(page
);
1180 reset_page_mapcount(page
);
1181 if (current
->reclaim_state
)
1182 current
->reclaim_state
->reclaimed_slab
+= pages
;
1183 __free_pages(page
, order
);
1186 static void rcu_free_slab(struct rcu_head
*h
)
1190 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1191 __free_slab(page
->slab
, page
);
1194 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1196 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1198 * RCU free overloads the RCU head over the LRU
1200 struct rcu_head
*head
= (void *)&page
->lru
;
1202 call_rcu(head
, rcu_free_slab
);
1204 __free_slab(s
, page
);
1207 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1209 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1214 * Per slab locking using the pagelock
1216 static __always_inline
void slab_lock(struct page
*page
)
1218 bit_spin_lock(PG_locked
, &page
->flags
);
1221 static __always_inline
void slab_unlock(struct page
*page
)
1223 __bit_spin_unlock(PG_locked
, &page
->flags
);
1226 static __always_inline
int slab_trylock(struct page
*page
)
1230 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1235 * Management of partially allocated slabs
1237 static void add_partial(struct kmem_cache_node
*n
,
1238 struct page
*page
, int tail
)
1240 spin_lock(&n
->list_lock
);
1243 list_add_tail(&page
->lru
, &n
->partial
);
1245 list_add(&page
->lru
, &n
->partial
);
1246 spin_unlock(&n
->list_lock
);
1249 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1251 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1253 spin_lock(&n
->list_lock
);
1254 list_del(&page
->lru
);
1256 spin_unlock(&n
->list_lock
);
1260 * Lock slab and remove from the partial list.
1262 * Must hold list_lock.
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1267 if (slab_trylock(page
)) {
1268 list_del(&page
->lru
);
1270 __SetPageSlubFrozen(page
);
1277 * Try to allocate a partial slab from a specific node.
1279 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
1286 * partial slab and there is none available then get_partials()
1289 if (!n
|| !n
->nr_partial
)
1292 spin_lock(&n
->list_lock
);
1293 list_for_each_entry(page
, &n
->partial
, lru
)
1294 if (lock_and_freeze_slab(n
, page
))
1298 spin_unlock(&n
->list_lock
);
1303 * Get a page from somewhere. Search in increasing NUMA distances.
1305 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1308 struct zonelist
*zonelist
;
1311 enum zone_type high_zoneidx
= gfp_zone(flags
);
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
1332 if (!s
->remote_node_defrag_ratio
||
1333 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1336 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1337 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1338 struct kmem_cache_node
*n
;
1340 n
= get_node(s
, zone_to_nid(zone
));
1342 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1343 n
->nr_partial
> s
->min_partial
) {
1344 page
= get_partial_node(n
);
1354 * Get a partial page, lock it and return it.
1356 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1359 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1361 page
= get_partial_node(get_node(s
, searchnode
));
1362 if (page
|| (flags
& __GFP_THISNODE
))
1365 return get_any_partial(s
, flags
);
1369 * Move a page back to the lists.
1371 * Must be called with the slab lock held.
1373 * On exit the slab lock will have been dropped.
1375 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1377 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1378 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1380 __ClearPageSlubFrozen(page
);
1383 if (page
->freelist
) {
1384 add_partial(n
, page
, tail
);
1385 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1387 stat(c
, DEACTIVATE_FULL
);
1388 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1389 (s
->flags
& SLAB_STORE_USER
))
1394 stat(c
, DEACTIVATE_EMPTY
);
1395 if (n
->nr_partial
< s
->min_partial
) {
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1403 * kmem_cache_shrink can reclaim any empty slabs from
1406 add_partial(n
, page
, 1);
1410 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1411 discard_slab(s
, page
);
1417 * Remove the cpu slab
1419 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1421 struct page
*page
= c
->page
;
1425 stat(c
, DEACTIVATE_REMOTE_FREES
);
1427 * Merge cpu freelist into slab freelist. Typically we get here
1428 * because both freelists are empty. So this is unlikely
1431 while (unlikely(c
->freelist
)) {
1434 tail
= 0; /* Hot objects. Put the slab first */
1436 /* Retrieve object from cpu_freelist */
1437 object
= c
->freelist
;
1438 c
->freelist
= c
->freelist
[c
->offset
];
1440 /* And put onto the regular freelist */
1441 object
[c
->offset
] = page
->freelist
;
1442 page
->freelist
= object
;
1446 unfreeze_slab(s
, page
, tail
);
1449 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1451 stat(c
, CPUSLAB_FLUSH
);
1453 deactivate_slab(s
, c
);
1459 * Called from IPI handler with interrupts disabled.
1461 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1463 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1465 if (likely(c
&& c
->page
))
1469 static void flush_cpu_slab(void *d
)
1471 struct kmem_cache
*s
= d
;
1473 __flush_cpu_slab(s
, smp_processor_id());
1476 static void flush_all(struct kmem_cache
*s
)
1478 on_each_cpu(flush_cpu_slab
, s
, 1);
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1485 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1488 if (node
!= -1 && c
->node
!= node
)
1494 static int count_free(struct page
*page
)
1496 return page
->objects
- page
->inuse
;
1499 static unsigned long count_partial(struct kmem_cache_node
*n
,
1500 int (*get_count
)(struct page
*))
1502 unsigned long flags
;
1503 unsigned long x
= 0;
1506 spin_lock_irqsave(&n
->list_lock
, flags
);
1507 list_for_each_entry(page
, &n
->partial
, lru
)
1508 x
+= get_count(page
);
1509 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1513 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1515 #ifdef CONFIG_SLUB_DEBUG
1516 return atomic_long_read(&n
->total_objects
);
1522 static noinline
void
1523 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1528 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1530 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1531 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1532 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1534 for_each_online_node(node
) {
1535 struct kmem_cache_node
*n
= get_node(s
, node
);
1536 unsigned long nr_slabs
;
1537 unsigned long nr_objs
;
1538 unsigned long nr_free
;
1543 nr_free
= count_partial(n
, count_free
);
1544 nr_slabs
= node_nr_slabs(n
);
1545 nr_objs
= node_nr_objs(n
);
1548 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1549 node
, nr_slabs
, nr_objs
, nr_free
);
1554 * Slow path. The lockless freelist is empty or we need to perform
1557 * Interrupts are disabled.
1559 * Processing is still very fast if new objects have been freed to the
1560 * regular freelist. In that case we simply take over the regular freelist
1561 * as the lockless freelist and zap the regular freelist.
1563 * If that is not working then we fall back to the partial lists. We take the
1564 * first element of the freelist as the object to allocate now and move the
1565 * rest of the freelist to the lockless freelist.
1567 * And if we were unable to get a new slab from the partial slab lists then
1568 * we need to allocate a new slab. This is the slowest path since it involves
1569 * a call to the page allocator and the setup of a new slab.
1571 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1572 unsigned long addr
, struct kmem_cache_cpu
*c
)
1577 /* We handle __GFP_ZERO in the caller */
1578 gfpflags
&= ~__GFP_ZERO
;
1584 if (unlikely(!node_match(c
, node
)))
1587 stat(c
, ALLOC_REFILL
);
1590 object
= c
->page
->freelist
;
1591 if (unlikely(!object
))
1593 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1596 c
->freelist
= object
[c
->offset
];
1597 c
->page
->inuse
= c
->page
->objects
;
1598 c
->page
->freelist
= NULL
;
1599 c
->node
= page_to_nid(c
->page
);
1601 slab_unlock(c
->page
);
1602 stat(c
, ALLOC_SLOWPATH
);
1606 deactivate_slab(s
, c
);
1609 new = get_partial(s
, gfpflags
, node
);
1612 stat(c
, ALLOC_FROM_PARTIAL
);
1616 if (gfpflags
& __GFP_WAIT
)
1619 new = new_slab(s
, gfpflags
, node
);
1621 if (gfpflags
& __GFP_WAIT
)
1622 local_irq_disable();
1625 c
= get_cpu_slab(s
, smp_processor_id());
1626 stat(c
, ALLOC_SLAB
);
1630 __SetPageSlubFrozen(new);
1634 slab_out_of_memory(s
, gfpflags
, node
);
1637 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1641 c
->page
->freelist
= object
[c
->offset
];
1647 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1648 * have the fastpath folded into their functions. So no function call
1649 * overhead for requests that can be satisfied on the fastpath.
1651 * The fastpath works by first checking if the lockless freelist can be used.
1652 * If not then __slab_alloc is called for slow processing.
1654 * Otherwise we can simply pick the next object from the lockless free list.
1656 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1657 gfp_t gfpflags
, int node
, unsigned long addr
)
1660 struct kmem_cache_cpu
*c
;
1661 unsigned long flags
;
1662 unsigned int objsize
;
1664 lockdep_trace_alloc(gfpflags
);
1665 might_sleep_if(gfpflags
& __GFP_WAIT
);
1667 if (should_failslab(s
->objsize
, gfpflags
))
1670 local_irq_save(flags
);
1671 c
= get_cpu_slab(s
, smp_processor_id());
1672 objsize
= c
->objsize
;
1673 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1675 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1678 object
= c
->freelist
;
1679 c
->freelist
= object
[c
->offset
];
1680 stat(c
, ALLOC_FASTPATH
);
1682 local_irq_restore(flags
);
1684 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1685 memset(object
, 0, objsize
);
1690 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1692 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1694 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1698 EXPORT_SYMBOL(kmem_cache_alloc
);
1700 #ifdef CONFIG_KMEMTRACE
1701 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1703 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1705 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1709 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1711 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1713 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1714 s
->objsize
, s
->size
, gfpflags
, node
);
1718 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1721 #ifdef CONFIG_KMEMTRACE
1722 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1726 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1728 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1732 * Slow patch handling. This may still be called frequently since objects
1733 * have a longer lifetime than the cpu slabs in most processing loads.
1735 * So we still attempt to reduce cache line usage. Just take the slab
1736 * lock and free the item. If there is no additional partial page
1737 * handling required then we can return immediately.
1739 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1740 void *x
, unsigned long addr
, unsigned int offset
)
1743 void **object
= (void *)x
;
1744 struct kmem_cache_cpu
*c
;
1746 c
= get_cpu_slab(s
, raw_smp_processor_id());
1747 stat(c
, FREE_SLOWPATH
);
1750 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1754 prior
= object
[offset
] = page
->freelist
;
1755 page
->freelist
= object
;
1758 if (unlikely(PageSlubFrozen(page
))) {
1759 stat(c
, FREE_FROZEN
);
1763 if (unlikely(!page
->inuse
))
1767 * Objects left in the slab. If it was not on the partial list before
1770 if (unlikely(!prior
)) {
1771 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1772 stat(c
, FREE_ADD_PARTIAL
);
1782 * Slab still on the partial list.
1784 remove_partial(s
, page
);
1785 stat(c
, FREE_REMOVE_PARTIAL
);
1789 discard_slab(s
, page
);
1793 if (!free_debug_processing(s
, page
, x
, addr
))
1799 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1800 * can perform fastpath freeing without additional function calls.
1802 * The fastpath is only possible if we are freeing to the current cpu slab
1803 * of this processor. This typically the case if we have just allocated
1806 * If fastpath is not possible then fall back to __slab_free where we deal
1807 * with all sorts of special processing.
1809 static __always_inline
void slab_free(struct kmem_cache
*s
,
1810 struct page
*page
, void *x
, unsigned long addr
)
1812 void **object
= (void *)x
;
1813 struct kmem_cache_cpu
*c
;
1814 unsigned long flags
;
1816 local_irq_save(flags
);
1817 c
= get_cpu_slab(s
, smp_processor_id());
1818 debug_check_no_locks_freed(object
, c
->objsize
);
1819 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1820 debug_check_no_obj_freed(object
, c
->objsize
);
1821 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1822 object
[c
->offset
] = c
->freelist
;
1823 c
->freelist
= object
;
1824 stat(c
, FREE_FASTPATH
);
1826 __slab_free(s
, page
, x
, addr
, c
->offset
);
1828 local_irq_restore(flags
);
1831 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1835 page
= virt_to_head_page(x
);
1837 slab_free(s
, page
, x
, _RET_IP_
);
1839 trace_kmem_cache_free(_RET_IP_
, x
);
1841 EXPORT_SYMBOL(kmem_cache_free
);
1843 /* Figure out on which slab page the object resides */
1844 static struct page
*get_object_page(const void *x
)
1846 struct page
*page
= virt_to_head_page(x
);
1848 if (!PageSlab(page
))
1855 * Object placement in a slab is made very easy because we always start at
1856 * offset 0. If we tune the size of the object to the alignment then we can
1857 * get the required alignment by putting one properly sized object after
1860 * Notice that the allocation order determines the sizes of the per cpu
1861 * caches. Each processor has always one slab available for allocations.
1862 * Increasing the allocation order reduces the number of times that slabs
1863 * must be moved on and off the partial lists and is therefore a factor in
1868 * Mininum / Maximum order of slab pages. This influences locking overhead
1869 * and slab fragmentation. A higher order reduces the number of partial slabs
1870 * and increases the number of allocations possible without having to
1871 * take the list_lock.
1873 static int slub_min_order
;
1874 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1875 static int slub_min_objects
;
1878 * Merge control. If this is set then no merging of slab caches will occur.
1879 * (Could be removed. This was introduced to pacify the merge skeptics.)
1881 static int slub_nomerge
;
1884 * Calculate the order of allocation given an slab object size.
1886 * The order of allocation has significant impact on performance and other
1887 * system components. Generally order 0 allocations should be preferred since
1888 * order 0 does not cause fragmentation in the page allocator. Larger objects
1889 * be problematic to put into order 0 slabs because there may be too much
1890 * unused space left. We go to a higher order if more than 1/16th of the slab
1893 * In order to reach satisfactory performance we must ensure that a minimum
1894 * number of objects is in one slab. Otherwise we may generate too much
1895 * activity on the partial lists which requires taking the list_lock. This is
1896 * less a concern for large slabs though which are rarely used.
1898 * slub_max_order specifies the order where we begin to stop considering the
1899 * number of objects in a slab as critical. If we reach slub_max_order then
1900 * we try to keep the page order as low as possible. So we accept more waste
1901 * of space in favor of a small page order.
1903 * Higher order allocations also allow the placement of more objects in a
1904 * slab and thereby reduce object handling overhead. If the user has
1905 * requested a higher mininum order then we start with that one instead of
1906 * the smallest order which will fit the object.
1908 static inline int slab_order(int size
, int min_objects
,
1909 int max_order
, int fract_leftover
)
1913 int min_order
= slub_min_order
;
1915 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1916 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1918 for (order
= max(min_order
,
1919 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1920 order
<= max_order
; order
++) {
1922 unsigned long slab_size
= PAGE_SIZE
<< order
;
1924 if (slab_size
< min_objects
* size
)
1927 rem
= slab_size
% size
;
1929 if (rem
<= slab_size
/ fract_leftover
)
1937 static inline int calculate_order(int size
)
1945 * Attempt to find best configuration for a slab. This
1946 * works by first attempting to generate a layout with
1947 * the best configuration and backing off gradually.
1949 * First we reduce the acceptable waste in a slab. Then
1950 * we reduce the minimum objects required in a slab.
1952 min_objects
= slub_min_objects
;
1954 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1955 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
1956 min_objects
= min(min_objects
, max_objects
);
1958 while (min_objects
> 1) {
1960 while (fraction
>= 4) {
1961 order
= slab_order(size
, min_objects
,
1962 slub_max_order
, fraction
);
1963 if (order
<= slub_max_order
)
1971 * We were unable to place multiple objects in a slab. Now
1972 * lets see if we can place a single object there.
1974 order
= slab_order(size
, 1, slub_max_order
, 1);
1975 if (order
<= slub_max_order
)
1979 * Doh this slab cannot be placed using slub_max_order.
1981 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1982 if (order
< MAX_ORDER
)
1988 * Figure out what the alignment of the objects will be.
1990 static unsigned long calculate_alignment(unsigned long flags
,
1991 unsigned long align
, unsigned long size
)
1994 * If the user wants hardware cache aligned objects then follow that
1995 * suggestion if the object is sufficiently large.
1997 * The hardware cache alignment cannot override the specified
1998 * alignment though. If that is greater then use it.
2000 if (flags
& SLAB_HWCACHE_ALIGN
) {
2001 unsigned long ralign
= cache_line_size();
2002 while (size
<= ralign
/ 2)
2004 align
= max(align
, ralign
);
2007 if (align
< ARCH_SLAB_MINALIGN
)
2008 align
= ARCH_SLAB_MINALIGN
;
2010 return ALIGN(align
, sizeof(void *));
2013 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
2014 struct kmem_cache_cpu
*c
)
2019 c
->offset
= s
->offset
/ sizeof(void *);
2020 c
->objsize
= s
->objsize
;
2021 #ifdef CONFIG_SLUB_STATS
2022 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
2027 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2030 spin_lock_init(&n
->list_lock
);
2031 INIT_LIST_HEAD(&n
->partial
);
2032 #ifdef CONFIG_SLUB_DEBUG
2033 atomic_long_set(&n
->nr_slabs
, 0);
2034 atomic_long_set(&n
->total_objects
, 0);
2035 INIT_LIST_HEAD(&n
->full
);
2041 * Per cpu array for per cpu structures.
2043 * The per cpu array places all kmem_cache_cpu structures from one processor
2044 * close together meaning that it becomes possible that multiple per cpu
2045 * structures are contained in one cacheline. This may be particularly
2046 * beneficial for the kmalloc caches.
2048 * A desktop system typically has around 60-80 slabs. With 100 here we are
2049 * likely able to get per cpu structures for all caches from the array defined
2050 * here. We must be able to cover all kmalloc caches during bootstrap.
2052 * If the per cpu array is exhausted then fall back to kmalloc
2053 * of individual cachelines. No sharing is possible then.
2055 #define NR_KMEM_CACHE_CPU 100
2057 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2058 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2060 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2061 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2063 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2064 int cpu
, gfp_t flags
)
2066 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2069 per_cpu(kmem_cache_cpu_free
, cpu
) =
2070 (void *)c
->freelist
;
2072 /* Table overflow: So allocate ourselves */
2074 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2075 flags
, cpu_to_node(cpu
));
2080 init_kmem_cache_cpu(s
, c
);
2084 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2086 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2087 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2091 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2092 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2095 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2099 for_each_online_cpu(cpu
) {
2100 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2103 s
->cpu_slab
[cpu
] = NULL
;
2104 free_kmem_cache_cpu(c
, cpu
);
2109 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2113 for_each_online_cpu(cpu
) {
2114 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2119 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2121 free_kmem_cache_cpus(s
);
2124 s
->cpu_slab
[cpu
] = c
;
2130 * Initialize the per cpu array.
2132 static void init_alloc_cpu_cpu(int cpu
)
2136 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2139 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2140 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2142 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2145 static void __init
init_alloc_cpu(void)
2149 for_each_online_cpu(cpu
)
2150 init_alloc_cpu_cpu(cpu
);
2154 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2155 static inline void init_alloc_cpu(void) {}
2157 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2159 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2166 * No kmalloc_node yet so do it by hand. We know that this is the first
2167 * slab on the node for this slabcache. There are no concurrent accesses
2170 * Note that this function only works on the kmalloc_node_cache
2171 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2172 * memory on a fresh node that has no slab structures yet.
2174 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2177 struct kmem_cache_node
*n
;
2178 unsigned long flags
;
2180 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2182 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2185 if (page_to_nid(page
) != node
) {
2186 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2188 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2189 "in order to be able to continue\n");
2194 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2196 kmalloc_caches
->node
[node
] = n
;
2197 #ifdef CONFIG_SLUB_DEBUG
2198 init_object(kmalloc_caches
, n
, 1);
2199 init_tracking(kmalloc_caches
, n
);
2201 init_kmem_cache_node(n
, kmalloc_caches
);
2202 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2205 * lockdep requires consistent irq usage for each lock
2206 * so even though there cannot be a race this early in
2207 * the boot sequence, we still disable irqs.
2209 local_irq_save(flags
);
2210 add_partial(n
, page
, 0);
2211 local_irq_restore(flags
);
2214 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2218 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2219 struct kmem_cache_node
*n
= s
->node
[node
];
2220 if (n
&& n
!= &s
->local_node
)
2221 kmem_cache_free(kmalloc_caches
, n
);
2222 s
->node
[node
] = NULL
;
2226 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2231 if (slab_state
>= UP
)
2232 local_node
= page_to_nid(virt_to_page(s
));
2236 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2237 struct kmem_cache_node
*n
;
2239 if (local_node
== node
)
2242 if (slab_state
== DOWN
) {
2243 early_kmem_cache_node_alloc(gfpflags
, node
);
2246 n
= kmem_cache_alloc_node(kmalloc_caches
,
2250 free_kmem_cache_nodes(s
);
2256 init_kmem_cache_node(n
, s
);
2261 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2265 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2267 init_kmem_cache_node(&s
->local_node
, s
);
2272 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2274 if (min
< MIN_PARTIAL
)
2276 else if (min
> MAX_PARTIAL
)
2278 s
->min_partial
= min
;
2282 * calculate_sizes() determines the order and the distribution of data within
2285 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2287 unsigned long flags
= s
->flags
;
2288 unsigned long size
= s
->objsize
;
2289 unsigned long align
= s
->align
;
2293 * Round up object size to the next word boundary. We can only
2294 * place the free pointer at word boundaries and this determines
2295 * the possible location of the free pointer.
2297 size
= ALIGN(size
, sizeof(void *));
2299 #ifdef CONFIG_SLUB_DEBUG
2301 * Determine if we can poison the object itself. If the user of
2302 * the slab may touch the object after free or before allocation
2303 * then we should never poison the object itself.
2305 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2307 s
->flags
|= __OBJECT_POISON
;
2309 s
->flags
&= ~__OBJECT_POISON
;
2313 * If we are Redzoning then check if there is some space between the
2314 * end of the object and the free pointer. If not then add an
2315 * additional word to have some bytes to store Redzone information.
2317 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2318 size
+= sizeof(void *);
2322 * With that we have determined the number of bytes in actual use
2323 * by the object. This is the potential offset to the free pointer.
2327 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2330 * Relocate free pointer after the object if it is not
2331 * permitted to overwrite the first word of the object on
2334 * This is the case if we do RCU, have a constructor or
2335 * destructor or are poisoning the objects.
2338 size
+= sizeof(void *);
2341 #ifdef CONFIG_SLUB_DEBUG
2342 if (flags
& SLAB_STORE_USER
)
2344 * Need to store information about allocs and frees after
2347 size
+= 2 * sizeof(struct track
);
2349 if (flags
& SLAB_RED_ZONE
)
2351 * Add some empty padding so that we can catch
2352 * overwrites from earlier objects rather than let
2353 * tracking information or the free pointer be
2354 * corrupted if a user writes before the start
2357 size
+= sizeof(void *);
2361 * Determine the alignment based on various parameters that the
2362 * user specified and the dynamic determination of cache line size
2365 align
= calculate_alignment(flags
, align
, s
->objsize
);
2368 * SLUB stores one object immediately after another beginning from
2369 * offset 0. In order to align the objects we have to simply size
2370 * each object to conform to the alignment.
2372 size
= ALIGN(size
, align
);
2374 if (forced_order
>= 0)
2375 order
= forced_order
;
2377 order
= calculate_order(size
);
2384 s
->allocflags
|= __GFP_COMP
;
2386 if (s
->flags
& SLAB_CACHE_DMA
)
2387 s
->allocflags
|= SLUB_DMA
;
2389 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2390 s
->allocflags
|= __GFP_RECLAIMABLE
;
2393 * Determine the number of objects per slab
2395 s
->oo
= oo_make(order
, size
);
2396 s
->min
= oo_make(get_order(size
), size
);
2397 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2400 return !!oo_objects(s
->oo
);
2404 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2405 const char *name
, size_t size
,
2406 size_t align
, unsigned long flags
,
2407 void (*ctor
)(void *))
2409 memset(s
, 0, kmem_size
);
2414 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2416 if (!calculate_sizes(s
, -1))
2420 * The larger the object size is, the more pages we want on the partial
2421 * list to avoid pounding the page allocator excessively.
2423 set_min_partial(s
, ilog2(s
->size
));
2426 s
->remote_node_defrag_ratio
= 1000;
2428 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2431 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2433 free_kmem_cache_nodes(s
);
2435 if (flags
& SLAB_PANIC
)
2436 panic("Cannot create slab %s size=%lu realsize=%u "
2437 "order=%u offset=%u flags=%lx\n",
2438 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2444 * Check if a given pointer is valid
2446 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2450 page
= get_object_page(object
);
2452 if (!page
|| s
!= page
->slab
)
2453 /* No slab or wrong slab */
2456 if (!check_valid_pointer(s
, page
, object
))
2460 * We could also check if the object is on the slabs freelist.
2461 * But this would be too expensive and it seems that the main
2462 * purpose of kmem_ptr_valid() is to check if the object belongs
2463 * to a certain slab.
2467 EXPORT_SYMBOL(kmem_ptr_validate
);
2470 * Determine the size of a slab object
2472 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2476 EXPORT_SYMBOL(kmem_cache_size
);
2478 const char *kmem_cache_name(struct kmem_cache
*s
)
2482 EXPORT_SYMBOL(kmem_cache_name
);
2484 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2487 #ifdef CONFIG_SLUB_DEBUG
2488 void *addr
= page_address(page
);
2490 DECLARE_BITMAP(map
, page
->objects
);
2492 bitmap_zero(map
, page
->objects
);
2493 slab_err(s
, page
, "%s", text
);
2495 for_each_free_object(p
, s
, page
->freelist
)
2496 set_bit(slab_index(p
, s
, addr
), map
);
2498 for_each_object(p
, s
, addr
, page
->objects
) {
2500 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2501 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2503 print_tracking(s
, p
);
2511 * Attempt to free all partial slabs on a node.
2513 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2515 unsigned long flags
;
2516 struct page
*page
, *h
;
2518 spin_lock_irqsave(&n
->list_lock
, flags
);
2519 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2521 list_del(&page
->lru
);
2522 discard_slab(s
, page
);
2525 list_slab_objects(s
, page
,
2526 "Objects remaining on kmem_cache_close()");
2529 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2533 * Release all resources used by a slab cache.
2535 static inline int kmem_cache_close(struct kmem_cache
*s
)
2541 /* Attempt to free all objects */
2542 free_kmem_cache_cpus(s
);
2543 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2544 struct kmem_cache_node
*n
= get_node(s
, node
);
2547 if (n
->nr_partial
|| slabs_node(s
, node
))
2550 free_kmem_cache_nodes(s
);
2555 * Close a cache and release the kmem_cache structure
2556 * (must be used for caches created using kmem_cache_create)
2558 void kmem_cache_destroy(struct kmem_cache
*s
)
2560 down_write(&slub_lock
);
2564 up_write(&slub_lock
);
2565 if (kmem_cache_close(s
)) {
2566 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2567 "still has objects.\n", s
->name
, __func__
);
2570 sysfs_slab_remove(s
);
2572 up_write(&slub_lock
);
2574 EXPORT_SYMBOL(kmem_cache_destroy
);
2576 /********************************************************************
2578 *******************************************************************/
2580 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2581 EXPORT_SYMBOL(kmalloc_caches
);
2583 static int __init
setup_slub_min_order(char *str
)
2585 get_option(&str
, &slub_min_order
);
2590 __setup("slub_min_order=", setup_slub_min_order
);
2592 static int __init
setup_slub_max_order(char *str
)
2594 get_option(&str
, &slub_max_order
);
2595 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2600 __setup("slub_max_order=", setup_slub_max_order
);
2602 static int __init
setup_slub_min_objects(char *str
)
2604 get_option(&str
, &slub_min_objects
);
2609 __setup("slub_min_objects=", setup_slub_min_objects
);
2611 static int __init
setup_slub_nomerge(char *str
)
2617 __setup("slub_nomerge", setup_slub_nomerge
);
2619 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2620 const char *name
, int size
, gfp_t gfp_flags
)
2622 unsigned int flags
= 0;
2624 if (gfp_flags
& SLUB_DMA
)
2625 flags
= SLAB_CACHE_DMA
;
2627 down_write(&slub_lock
);
2628 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2632 list_add(&s
->list
, &slab_caches
);
2633 up_write(&slub_lock
);
2634 if (sysfs_slab_add(s
))
2639 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2642 #ifdef CONFIG_ZONE_DMA
2643 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2645 static void sysfs_add_func(struct work_struct
*w
)
2647 struct kmem_cache
*s
;
2649 down_write(&slub_lock
);
2650 list_for_each_entry(s
, &slab_caches
, list
) {
2651 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2652 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2656 up_write(&slub_lock
);
2659 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2661 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2663 struct kmem_cache
*s
;
2667 s
= kmalloc_caches_dma
[index
];
2671 /* Dynamically create dma cache */
2672 if (flags
& __GFP_WAIT
)
2673 down_write(&slub_lock
);
2675 if (!down_write_trylock(&slub_lock
))
2679 if (kmalloc_caches_dma
[index
])
2682 realsize
= kmalloc_caches
[index
].objsize
;
2683 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2684 (unsigned int)realsize
);
2685 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2687 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2688 realsize
, ARCH_KMALLOC_MINALIGN
,
2689 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2695 list_add(&s
->list
, &slab_caches
);
2696 kmalloc_caches_dma
[index
] = s
;
2698 schedule_work(&sysfs_add_work
);
2701 up_write(&slub_lock
);
2703 return kmalloc_caches_dma
[index
];
2708 * Conversion table for small slabs sizes / 8 to the index in the
2709 * kmalloc array. This is necessary for slabs < 192 since we have non power
2710 * of two cache sizes there. The size of larger slabs can be determined using
2713 static s8 size_index
[24] = {
2740 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2746 return ZERO_SIZE_PTR
;
2748 index
= size_index
[(size
- 1) / 8];
2750 index
= fls(size
- 1);
2752 #ifdef CONFIG_ZONE_DMA
2753 if (unlikely((flags
& SLUB_DMA
)))
2754 return dma_kmalloc_cache(index
, flags
);
2757 return &kmalloc_caches
[index
];
2760 void *__kmalloc(size_t size
, gfp_t flags
)
2762 struct kmem_cache
*s
;
2765 if (unlikely(size
> SLUB_MAX_SIZE
))
2766 return kmalloc_large(size
, flags
);
2768 s
= get_slab(size
, flags
);
2770 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2773 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2775 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2779 EXPORT_SYMBOL(__kmalloc
);
2781 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2783 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2787 return page_address(page
);
2793 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2795 struct kmem_cache
*s
;
2798 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2799 ret
= kmalloc_large_node(size
, flags
, node
);
2801 trace_kmalloc_node(_RET_IP_
, ret
,
2802 size
, PAGE_SIZE
<< get_order(size
),
2808 s
= get_slab(size
, flags
);
2810 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2813 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2815 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2819 EXPORT_SYMBOL(__kmalloc_node
);
2822 size_t ksize(const void *object
)
2825 struct kmem_cache
*s
;
2827 if (unlikely(object
== ZERO_SIZE_PTR
))
2830 page
= virt_to_head_page(object
);
2832 if (unlikely(!PageSlab(page
))) {
2833 WARN_ON(!PageCompound(page
));
2834 return PAGE_SIZE
<< compound_order(page
);
2838 #ifdef CONFIG_SLUB_DEBUG
2840 * Debugging requires use of the padding between object
2841 * and whatever may come after it.
2843 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2848 * If we have the need to store the freelist pointer
2849 * back there or track user information then we can
2850 * only use the space before that information.
2852 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2855 * Else we can use all the padding etc for the allocation
2859 EXPORT_SYMBOL(ksize
);
2861 void kfree(const void *x
)
2864 void *object
= (void *)x
;
2866 trace_kfree(_RET_IP_
, x
);
2868 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2871 page
= virt_to_head_page(x
);
2872 if (unlikely(!PageSlab(page
))) {
2873 BUG_ON(!PageCompound(page
));
2877 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2879 EXPORT_SYMBOL(kfree
);
2882 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2883 * the remaining slabs by the number of items in use. The slabs with the
2884 * most items in use come first. New allocations will then fill those up
2885 * and thus they can be removed from the partial lists.
2887 * The slabs with the least items are placed last. This results in them
2888 * being allocated from last increasing the chance that the last objects
2889 * are freed in them.
2891 int kmem_cache_shrink(struct kmem_cache
*s
)
2895 struct kmem_cache_node
*n
;
2898 int objects
= oo_objects(s
->max
);
2899 struct list_head
*slabs_by_inuse
=
2900 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2901 unsigned long flags
;
2903 if (!slabs_by_inuse
)
2907 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2908 n
= get_node(s
, node
);
2913 for (i
= 0; i
< objects
; i
++)
2914 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2916 spin_lock_irqsave(&n
->list_lock
, flags
);
2919 * Build lists indexed by the items in use in each slab.
2921 * Note that concurrent frees may occur while we hold the
2922 * list_lock. page->inuse here is the upper limit.
2924 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2925 if (!page
->inuse
&& slab_trylock(page
)) {
2927 * Must hold slab lock here because slab_free
2928 * may have freed the last object and be
2929 * waiting to release the slab.
2931 list_del(&page
->lru
);
2934 discard_slab(s
, page
);
2936 list_move(&page
->lru
,
2937 slabs_by_inuse
+ page
->inuse
);
2942 * Rebuild the partial list with the slabs filled up most
2943 * first and the least used slabs at the end.
2945 for (i
= objects
- 1; i
>= 0; i
--)
2946 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2948 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2951 kfree(slabs_by_inuse
);
2954 EXPORT_SYMBOL(kmem_cache_shrink
);
2956 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2957 static int slab_mem_going_offline_callback(void *arg
)
2959 struct kmem_cache
*s
;
2961 down_read(&slub_lock
);
2962 list_for_each_entry(s
, &slab_caches
, list
)
2963 kmem_cache_shrink(s
);
2964 up_read(&slub_lock
);
2969 static void slab_mem_offline_callback(void *arg
)
2971 struct kmem_cache_node
*n
;
2972 struct kmem_cache
*s
;
2973 struct memory_notify
*marg
= arg
;
2976 offline_node
= marg
->status_change_nid
;
2979 * If the node still has available memory. we need kmem_cache_node
2982 if (offline_node
< 0)
2985 down_read(&slub_lock
);
2986 list_for_each_entry(s
, &slab_caches
, list
) {
2987 n
= get_node(s
, offline_node
);
2990 * if n->nr_slabs > 0, slabs still exist on the node
2991 * that is going down. We were unable to free them,
2992 * and offline_pages() function shoudn't call this
2993 * callback. So, we must fail.
2995 BUG_ON(slabs_node(s
, offline_node
));
2997 s
->node
[offline_node
] = NULL
;
2998 kmem_cache_free(kmalloc_caches
, n
);
3001 up_read(&slub_lock
);
3004 static int slab_mem_going_online_callback(void *arg
)
3006 struct kmem_cache_node
*n
;
3007 struct kmem_cache
*s
;
3008 struct memory_notify
*marg
= arg
;
3009 int nid
= marg
->status_change_nid
;
3013 * If the node's memory is already available, then kmem_cache_node is
3014 * already created. Nothing to do.
3020 * We are bringing a node online. No memory is available yet. We must
3021 * allocate a kmem_cache_node structure in order to bring the node
3024 down_read(&slub_lock
);
3025 list_for_each_entry(s
, &slab_caches
, list
) {
3027 * XXX: kmem_cache_alloc_node will fallback to other nodes
3028 * since memory is not yet available from the node that
3031 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
3036 init_kmem_cache_node(n
, s
);
3040 up_read(&slub_lock
);
3044 static int slab_memory_callback(struct notifier_block
*self
,
3045 unsigned long action
, void *arg
)
3050 case MEM_GOING_ONLINE
:
3051 ret
= slab_mem_going_online_callback(arg
);
3053 case MEM_GOING_OFFLINE
:
3054 ret
= slab_mem_going_offline_callback(arg
);
3057 case MEM_CANCEL_ONLINE
:
3058 slab_mem_offline_callback(arg
);
3061 case MEM_CANCEL_OFFLINE
:
3065 ret
= notifier_from_errno(ret
);
3071 #endif /* CONFIG_MEMORY_HOTPLUG */
3073 /********************************************************************
3074 * Basic setup of slabs
3075 *******************************************************************/
3077 void __init
kmem_cache_init(void)
3086 * Must first have the slab cache available for the allocations of the
3087 * struct kmem_cache_node's. There is special bootstrap code in
3088 * kmem_cache_open for slab_state == DOWN.
3090 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3091 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
3092 kmalloc_caches
[0].refcount
= -1;
3095 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3098 /* Able to allocate the per node structures */
3099 slab_state
= PARTIAL
;
3101 /* Caches that are not of the two-to-the-power-of size */
3102 if (KMALLOC_MIN_SIZE
<= 64) {
3103 create_kmalloc_cache(&kmalloc_caches
[1],
3104 "kmalloc-96", 96, GFP_KERNEL
);
3106 create_kmalloc_cache(&kmalloc_caches
[2],
3107 "kmalloc-192", 192, GFP_KERNEL
);
3111 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3112 create_kmalloc_cache(&kmalloc_caches
[i
],
3113 "kmalloc", 1 << i
, GFP_KERNEL
);
3119 * Patch up the size_index table if we have strange large alignment
3120 * requirements for the kmalloc array. This is only the case for
3121 * MIPS it seems. The standard arches will not generate any code here.
3123 * Largest permitted alignment is 256 bytes due to the way we
3124 * handle the index determination for the smaller caches.
3126 * Make sure that nothing crazy happens if someone starts tinkering
3127 * around with ARCH_KMALLOC_MINALIGN
3129 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3130 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3132 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3133 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3135 if (KMALLOC_MIN_SIZE
== 128) {
3137 * The 192 byte sized cache is not used if the alignment
3138 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3141 for (i
= 128 + 8; i
<= 192; i
+= 8)
3142 size_index
[(i
- 1) / 8] = 8;
3147 /* Provide the correct kmalloc names now that the caches are up */
3148 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3149 kmalloc_caches
[i
]. name
=
3150 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3153 register_cpu_notifier(&slab_notifier
);
3154 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3155 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3157 kmem_size
= sizeof(struct kmem_cache
);
3161 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3162 " CPUs=%d, Nodes=%d\n",
3163 caches
, cache_line_size(),
3164 slub_min_order
, slub_max_order
, slub_min_objects
,
3165 nr_cpu_ids
, nr_node_ids
);
3169 * Find a mergeable slab cache
3171 static int slab_unmergeable(struct kmem_cache
*s
)
3173 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3180 * We may have set a slab to be unmergeable during bootstrap.
3182 if (s
->refcount
< 0)
3188 static struct kmem_cache
*find_mergeable(size_t size
,
3189 size_t align
, unsigned long flags
, const char *name
,
3190 void (*ctor
)(void *))
3192 struct kmem_cache
*s
;
3194 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3200 size
= ALIGN(size
, sizeof(void *));
3201 align
= calculate_alignment(flags
, align
, size
);
3202 size
= ALIGN(size
, align
);
3203 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3205 list_for_each_entry(s
, &slab_caches
, list
) {
3206 if (slab_unmergeable(s
))
3212 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3215 * Check if alignment is compatible.
3216 * Courtesy of Adrian Drzewiecki
3218 if ((s
->size
& ~(align
- 1)) != s
->size
)
3221 if (s
->size
- size
>= sizeof(void *))
3229 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3230 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3232 struct kmem_cache
*s
;
3234 down_write(&slub_lock
);
3235 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3241 * Adjust the object sizes so that we clear
3242 * the complete object on kzalloc.
3244 s
->objsize
= max(s
->objsize
, (int)size
);
3247 * And then we need to update the object size in the
3248 * per cpu structures
3250 for_each_online_cpu(cpu
)
3251 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3253 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3254 up_write(&slub_lock
);
3256 if (sysfs_slab_alias(s
, name
)) {
3257 down_write(&slub_lock
);
3259 up_write(&slub_lock
);
3265 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3267 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3268 size
, align
, flags
, ctor
)) {
3269 list_add(&s
->list
, &slab_caches
);
3270 up_write(&slub_lock
);
3271 if (sysfs_slab_add(s
)) {
3272 down_write(&slub_lock
);
3274 up_write(&slub_lock
);
3282 up_write(&slub_lock
);
3285 if (flags
& SLAB_PANIC
)
3286 panic("Cannot create slabcache %s\n", name
);
3291 EXPORT_SYMBOL(kmem_cache_create
);
3295 * Use the cpu notifier to insure that the cpu slabs are flushed when
3298 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3299 unsigned long action
, void *hcpu
)
3301 long cpu
= (long)hcpu
;
3302 struct kmem_cache
*s
;
3303 unsigned long flags
;
3306 case CPU_UP_PREPARE
:
3307 case CPU_UP_PREPARE_FROZEN
:
3308 init_alloc_cpu_cpu(cpu
);
3309 down_read(&slub_lock
);
3310 list_for_each_entry(s
, &slab_caches
, list
)
3311 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3313 up_read(&slub_lock
);
3316 case CPU_UP_CANCELED
:
3317 case CPU_UP_CANCELED_FROZEN
:
3319 case CPU_DEAD_FROZEN
:
3320 down_read(&slub_lock
);
3321 list_for_each_entry(s
, &slab_caches
, list
) {
3322 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3324 local_irq_save(flags
);
3325 __flush_cpu_slab(s
, cpu
);
3326 local_irq_restore(flags
);
3327 free_kmem_cache_cpu(c
, cpu
);
3328 s
->cpu_slab
[cpu
] = NULL
;
3330 up_read(&slub_lock
);
3338 static struct notifier_block __cpuinitdata slab_notifier
= {
3339 .notifier_call
= slab_cpuup_callback
3344 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3346 struct kmem_cache
*s
;
3349 if (unlikely(size
> SLUB_MAX_SIZE
))
3350 return kmalloc_large(size
, gfpflags
);
3352 s
= get_slab(size
, gfpflags
);
3354 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3357 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3359 /* Honor the call site pointer we recieved. */
3360 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3365 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3366 int node
, unsigned long caller
)
3368 struct kmem_cache
*s
;
3371 if (unlikely(size
> SLUB_MAX_SIZE
))
3372 return kmalloc_large_node(size
, gfpflags
, node
);
3374 s
= get_slab(size
, gfpflags
);
3376 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3379 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3381 /* Honor the call site pointer we recieved. */
3382 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3387 #ifdef CONFIG_SLUB_DEBUG
3388 static int count_inuse(struct page
*page
)
3393 static int count_total(struct page
*page
)
3395 return page
->objects
;
3398 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3402 void *addr
= page_address(page
);
3404 if (!check_slab(s
, page
) ||
3405 !on_freelist(s
, page
, NULL
))
3408 /* Now we know that a valid freelist exists */
3409 bitmap_zero(map
, page
->objects
);
3411 for_each_free_object(p
, s
, page
->freelist
) {
3412 set_bit(slab_index(p
, s
, addr
), map
);
3413 if (!check_object(s
, page
, p
, 0))
3417 for_each_object(p
, s
, addr
, page
->objects
)
3418 if (!test_bit(slab_index(p
, s
, addr
), map
))
3419 if (!check_object(s
, page
, p
, 1))
3424 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3427 if (slab_trylock(page
)) {
3428 validate_slab(s
, page
, map
);
3431 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3434 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3435 if (!PageSlubDebug(page
))
3436 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3437 "on slab 0x%p\n", s
->name
, page
);
3439 if (PageSlubDebug(page
))
3440 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3441 "slab 0x%p\n", s
->name
, page
);
3445 static int validate_slab_node(struct kmem_cache
*s
,
3446 struct kmem_cache_node
*n
, unsigned long *map
)
3448 unsigned long count
= 0;
3450 unsigned long flags
;
3452 spin_lock_irqsave(&n
->list_lock
, flags
);
3454 list_for_each_entry(page
, &n
->partial
, lru
) {
3455 validate_slab_slab(s
, page
, map
);
3458 if (count
!= n
->nr_partial
)
3459 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3460 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3462 if (!(s
->flags
& SLAB_STORE_USER
))
3465 list_for_each_entry(page
, &n
->full
, lru
) {
3466 validate_slab_slab(s
, page
, map
);
3469 if (count
!= atomic_long_read(&n
->nr_slabs
))
3470 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3471 "counter=%ld\n", s
->name
, count
,
3472 atomic_long_read(&n
->nr_slabs
));
3475 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3479 static long validate_slab_cache(struct kmem_cache
*s
)
3482 unsigned long count
= 0;
3483 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3484 sizeof(unsigned long), GFP_KERNEL
);
3490 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3491 struct kmem_cache_node
*n
= get_node(s
, node
);
3493 count
+= validate_slab_node(s
, n
, map
);
3499 #ifdef SLUB_RESILIENCY_TEST
3500 static void resiliency_test(void)
3504 printk(KERN_ERR
"SLUB resiliency testing\n");
3505 printk(KERN_ERR
"-----------------------\n");
3506 printk(KERN_ERR
"A. Corruption after allocation\n");
3508 p
= kzalloc(16, GFP_KERNEL
);
3510 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3511 " 0x12->0x%p\n\n", p
+ 16);
3513 validate_slab_cache(kmalloc_caches
+ 4);
3515 /* Hmmm... The next two are dangerous */
3516 p
= kzalloc(32, GFP_KERNEL
);
3517 p
[32 + sizeof(void *)] = 0x34;
3518 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3519 " 0x34 -> -0x%p\n", p
);
3521 "If allocated object is overwritten then not detectable\n\n");
3523 validate_slab_cache(kmalloc_caches
+ 5);
3524 p
= kzalloc(64, GFP_KERNEL
);
3525 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3527 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3530 "If allocated object is overwritten then not detectable\n\n");
3531 validate_slab_cache(kmalloc_caches
+ 6);
3533 printk(KERN_ERR
"\nB. Corruption after free\n");
3534 p
= kzalloc(128, GFP_KERNEL
);
3537 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3538 validate_slab_cache(kmalloc_caches
+ 7);
3540 p
= kzalloc(256, GFP_KERNEL
);
3543 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3545 validate_slab_cache(kmalloc_caches
+ 8);
3547 p
= kzalloc(512, GFP_KERNEL
);
3550 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3551 validate_slab_cache(kmalloc_caches
+ 9);
3554 static void resiliency_test(void) {};
3558 * Generate lists of code addresses where slabcache objects are allocated
3563 unsigned long count
;
3570 DECLARE_BITMAP(cpus
, NR_CPUS
);
3576 unsigned long count
;
3577 struct location
*loc
;
3580 static void free_loc_track(struct loc_track
*t
)
3583 free_pages((unsigned long)t
->loc
,
3584 get_order(sizeof(struct location
) * t
->max
));
3587 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3592 order
= get_order(sizeof(struct location
) * max
);
3594 l
= (void *)__get_free_pages(flags
, order
);
3599 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3607 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3608 const struct track
*track
)
3610 long start
, end
, pos
;
3612 unsigned long caddr
;
3613 unsigned long age
= jiffies
- track
->when
;
3619 pos
= start
+ (end
- start
+ 1) / 2;
3622 * There is nothing at "end". If we end up there
3623 * we need to add something to before end.
3628 caddr
= t
->loc
[pos
].addr
;
3629 if (track
->addr
== caddr
) {
3635 if (age
< l
->min_time
)
3637 if (age
> l
->max_time
)
3640 if (track
->pid
< l
->min_pid
)
3641 l
->min_pid
= track
->pid
;
3642 if (track
->pid
> l
->max_pid
)
3643 l
->max_pid
= track
->pid
;
3645 cpumask_set_cpu(track
->cpu
,
3646 to_cpumask(l
->cpus
));
3648 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3652 if (track
->addr
< caddr
)
3659 * Not found. Insert new tracking element.
3661 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3667 (t
->count
- pos
) * sizeof(struct location
));
3670 l
->addr
= track
->addr
;
3674 l
->min_pid
= track
->pid
;
3675 l
->max_pid
= track
->pid
;
3676 cpumask_clear(to_cpumask(l
->cpus
));
3677 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3678 nodes_clear(l
->nodes
);
3679 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3683 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3684 struct page
*page
, enum track_item alloc
)
3686 void *addr
= page_address(page
);
3687 DECLARE_BITMAP(map
, page
->objects
);
3690 bitmap_zero(map
, page
->objects
);
3691 for_each_free_object(p
, s
, page
->freelist
)
3692 set_bit(slab_index(p
, s
, addr
), map
);
3694 for_each_object(p
, s
, addr
, page
->objects
)
3695 if (!test_bit(slab_index(p
, s
, addr
), map
))
3696 add_location(t
, s
, get_track(s
, p
, alloc
));
3699 static int list_locations(struct kmem_cache
*s
, char *buf
,
3700 enum track_item alloc
)
3704 struct loc_track t
= { 0, 0, NULL
};
3707 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3709 return sprintf(buf
, "Out of memory\n");
3711 /* Push back cpu slabs */
3714 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3715 struct kmem_cache_node
*n
= get_node(s
, node
);
3716 unsigned long flags
;
3719 if (!atomic_long_read(&n
->nr_slabs
))
3722 spin_lock_irqsave(&n
->list_lock
, flags
);
3723 list_for_each_entry(page
, &n
->partial
, lru
)
3724 process_slab(&t
, s
, page
, alloc
);
3725 list_for_each_entry(page
, &n
->full
, lru
)
3726 process_slab(&t
, s
, page
, alloc
);
3727 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3730 for (i
= 0; i
< t
.count
; i
++) {
3731 struct location
*l
= &t
.loc
[i
];
3733 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3735 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3738 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3740 len
+= sprintf(buf
+ len
, "<not-available>");
3742 if (l
->sum_time
!= l
->min_time
) {
3743 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3745 (long)div_u64(l
->sum_time
, l
->count
),
3748 len
+= sprintf(buf
+ len
, " age=%ld",
3751 if (l
->min_pid
!= l
->max_pid
)
3752 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3753 l
->min_pid
, l
->max_pid
);
3755 len
+= sprintf(buf
+ len
, " pid=%ld",
3758 if (num_online_cpus() > 1 &&
3759 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3760 len
< PAGE_SIZE
- 60) {
3761 len
+= sprintf(buf
+ len
, " cpus=");
3762 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3763 to_cpumask(l
->cpus
));
3766 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3767 len
< PAGE_SIZE
- 60) {
3768 len
+= sprintf(buf
+ len
, " nodes=");
3769 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3773 len
+= sprintf(buf
+ len
, "\n");
3778 len
+= sprintf(buf
, "No data\n");
3782 enum slab_stat_type
{
3783 SL_ALL
, /* All slabs */
3784 SL_PARTIAL
, /* Only partially allocated slabs */
3785 SL_CPU
, /* Only slabs used for cpu caches */
3786 SL_OBJECTS
, /* Determine allocated objects not slabs */
3787 SL_TOTAL
/* Determine object capacity not slabs */
3790 #define SO_ALL (1 << SL_ALL)
3791 #define SO_PARTIAL (1 << SL_PARTIAL)
3792 #define SO_CPU (1 << SL_CPU)
3793 #define SO_OBJECTS (1 << SL_OBJECTS)
3794 #define SO_TOTAL (1 << SL_TOTAL)
3796 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3797 char *buf
, unsigned long flags
)
3799 unsigned long total
= 0;
3802 unsigned long *nodes
;
3803 unsigned long *per_cpu
;
3805 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3808 per_cpu
= nodes
+ nr_node_ids
;
3810 if (flags
& SO_CPU
) {
3813 for_each_possible_cpu(cpu
) {
3814 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3816 if (!c
|| c
->node
< 0)
3820 if (flags
& SO_TOTAL
)
3821 x
= c
->page
->objects
;
3822 else if (flags
& SO_OBJECTS
)
3828 nodes
[c
->node
] += x
;
3834 if (flags
& SO_ALL
) {
3835 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3836 struct kmem_cache_node
*n
= get_node(s
, node
);
3838 if (flags
& SO_TOTAL
)
3839 x
= atomic_long_read(&n
->total_objects
);
3840 else if (flags
& SO_OBJECTS
)
3841 x
= atomic_long_read(&n
->total_objects
) -
3842 count_partial(n
, count_free
);
3845 x
= atomic_long_read(&n
->nr_slabs
);
3850 } else if (flags
& SO_PARTIAL
) {
3851 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3852 struct kmem_cache_node
*n
= get_node(s
, node
);
3854 if (flags
& SO_TOTAL
)
3855 x
= count_partial(n
, count_total
);
3856 else if (flags
& SO_OBJECTS
)
3857 x
= count_partial(n
, count_inuse
);
3864 x
= sprintf(buf
, "%lu", total
);
3866 for_each_node_state(node
, N_NORMAL_MEMORY
)
3868 x
+= sprintf(buf
+ x
, " N%d=%lu",
3872 return x
+ sprintf(buf
+ x
, "\n");
3875 static int any_slab_objects(struct kmem_cache
*s
)
3879 for_each_online_node(node
) {
3880 struct kmem_cache_node
*n
= get_node(s
, node
);
3885 if (atomic_long_read(&n
->total_objects
))
3891 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3892 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3894 struct slab_attribute
{
3895 struct attribute attr
;
3896 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3897 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3900 #define SLAB_ATTR_RO(_name) \
3901 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3903 #define SLAB_ATTR(_name) \
3904 static struct slab_attribute _name##_attr = \
3905 __ATTR(_name, 0644, _name##_show, _name##_store)
3907 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3909 return sprintf(buf
, "%d\n", s
->size
);
3911 SLAB_ATTR_RO(slab_size
);
3913 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3915 return sprintf(buf
, "%d\n", s
->align
);
3917 SLAB_ATTR_RO(align
);
3919 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3921 return sprintf(buf
, "%d\n", s
->objsize
);
3923 SLAB_ATTR_RO(object_size
);
3925 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3927 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3929 SLAB_ATTR_RO(objs_per_slab
);
3931 static ssize_t
order_store(struct kmem_cache
*s
,
3932 const char *buf
, size_t length
)
3934 unsigned long order
;
3937 err
= strict_strtoul(buf
, 10, &order
);
3941 if (order
> slub_max_order
|| order
< slub_min_order
)
3944 calculate_sizes(s
, order
);
3948 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3950 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3954 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
3956 return sprintf(buf
, "%lu\n", s
->min_partial
);
3959 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
3965 err
= strict_strtoul(buf
, 10, &min
);
3969 set_min_partial(s
, min
);
3972 SLAB_ATTR(min_partial
);
3974 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3977 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3979 return n
+ sprintf(buf
+ n
, "\n");
3985 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3987 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3989 SLAB_ATTR_RO(aliases
);
3991 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3993 return show_slab_objects(s
, buf
, SO_ALL
);
3995 SLAB_ATTR_RO(slabs
);
3997 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3999 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4001 SLAB_ATTR_RO(partial
);
4003 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4005 return show_slab_objects(s
, buf
, SO_CPU
);
4007 SLAB_ATTR_RO(cpu_slabs
);
4009 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4011 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4013 SLAB_ATTR_RO(objects
);
4015 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4017 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4019 SLAB_ATTR_RO(objects_partial
);
4021 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4023 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4025 SLAB_ATTR_RO(total_objects
);
4027 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4029 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4032 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4033 const char *buf
, size_t length
)
4035 s
->flags
&= ~SLAB_DEBUG_FREE
;
4037 s
->flags
|= SLAB_DEBUG_FREE
;
4040 SLAB_ATTR(sanity_checks
);
4042 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4044 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4047 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4050 s
->flags
&= ~SLAB_TRACE
;
4052 s
->flags
|= SLAB_TRACE
;
4057 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4059 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4062 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4063 const char *buf
, size_t length
)
4065 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4067 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4070 SLAB_ATTR(reclaim_account
);
4072 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4074 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4076 SLAB_ATTR_RO(hwcache_align
);
4078 #ifdef CONFIG_ZONE_DMA
4079 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4081 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4083 SLAB_ATTR_RO(cache_dma
);
4086 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4088 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4090 SLAB_ATTR_RO(destroy_by_rcu
);
4092 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4094 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4097 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4098 const char *buf
, size_t length
)
4100 if (any_slab_objects(s
))
4103 s
->flags
&= ~SLAB_RED_ZONE
;
4105 s
->flags
|= SLAB_RED_ZONE
;
4106 calculate_sizes(s
, -1);
4109 SLAB_ATTR(red_zone
);
4111 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4113 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4116 static ssize_t
poison_store(struct kmem_cache
*s
,
4117 const char *buf
, size_t length
)
4119 if (any_slab_objects(s
))
4122 s
->flags
&= ~SLAB_POISON
;
4124 s
->flags
|= SLAB_POISON
;
4125 calculate_sizes(s
, -1);
4130 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4132 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4135 static ssize_t
store_user_store(struct kmem_cache
*s
,
4136 const char *buf
, size_t length
)
4138 if (any_slab_objects(s
))
4141 s
->flags
&= ~SLAB_STORE_USER
;
4143 s
->flags
|= SLAB_STORE_USER
;
4144 calculate_sizes(s
, -1);
4147 SLAB_ATTR(store_user
);
4149 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4154 static ssize_t
validate_store(struct kmem_cache
*s
,
4155 const char *buf
, size_t length
)
4159 if (buf
[0] == '1') {
4160 ret
= validate_slab_cache(s
);
4166 SLAB_ATTR(validate
);
4168 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4173 static ssize_t
shrink_store(struct kmem_cache
*s
,
4174 const char *buf
, size_t length
)
4176 if (buf
[0] == '1') {
4177 int rc
= kmem_cache_shrink(s
);
4187 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4189 if (!(s
->flags
& SLAB_STORE_USER
))
4191 return list_locations(s
, buf
, TRACK_ALLOC
);
4193 SLAB_ATTR_RO(alloc_calls
);
4195 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4197 if (!(s
->flags
& SLAB_STORE_USER
))
4199 return list_locations(s
, buf
, TRACK_FREE
);
4201 SLAB_ATTR_RO(free_calls
);
4204 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4206 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4209 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4210 const char *buf
, size_t length
)
4212 unsigned long ratio
;
4215 err
= strict_strtoul(buf
, 10, &ratio
);
4220 s
->remote_node_defrag_ratio
= ratio
* 10;
4224 SLAB_ATTR(remote_node_defrag_ratio
);
4227 #ifdef CONFIG_SLUB_STATS
4228 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4230 unsigned long sum
= 0;
4233 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4238 for_each_online_cpu(cpu
) {
4239 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4245 len
= sprintf(buf
, "%lu", sum
);
4248 for_each_online_cpu(cpu
) {
4249 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4250 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4254 return len
+ sprintf(buf
+ len
, "\n");
4257 #define STAT_ATTR(si, text) \
4258 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4260 return show_stat(s, buf, si); \
4262 SLAB_ATTR_RO(text); \
4264 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4265 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4266 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4267 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4268 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4269 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4270 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4271 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4272 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4273 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4274 STAT_ATTR(FREE_SLAB
, free_slab
);
4275 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4276 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4277 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4278 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4279 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4280 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4281 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4284 static struct attribute
*slab_attrs
[] = {
4285 &slab_size_attr
.attr
,
4286 &object_size_attr
.attr
,
4287 &objs_per_slab_attr
.attr
,
4289 &min_partial_attr
.attr
,
4291 &objects_partial_attr
.attr
,
4292 &total_objects_attr
.attr
,
4295 &cpu_slabs_attr
.attr
,
4299 &sanity_checks_attr
.attr
,
4301 &hwcache_align_attr
.attr
,
4302 &reclaim_account_attr
.attr
,
4303 &destroy_by_rcu_attr
.attr
,
4304 &red_zone_attr
.attr
,
4306 &store_user_attr
.attr
,
4307 &validate_attr
.attr
,
4309 &alloc_calls_attr
.attr
,
4310 &free_calls_attr
.attr
,
4311 #ifdef CONFIG_ZONE_DMA
4312 &cache_dma_attr
.attr
,
4315 &remote_node_defrag_ratio_attr
.attr
,
4317 #ifdef CONFIG_SLUB_STATS
4318 &alloc_fastpath_attr
.attr
,
4319 &alloc_slowpath_attr
.attr
,
4320 &free_fastpath_attr
.attr
,
4321 &free_slowpath_attr
.attr
,
4322 &free_frozen_attr
.attr
,
4323 &free_add_partial_attr
.attr
,
4324 &free_remove_partial_attr
.attr
,
4325 &alloc_from_partial_attr
.attr
,
4326 &alloc_slab_attr
.attr
,
4327 &alloc_refill_attr
.attr
,
4328 &free_slab_attr
.attr
,
4329 &cpuslab_flush_attr
.attr
,
4330 &deactivate_full_attr
.attr
,
4331 &deactivate_empty_attr
.attr
,
4332 &deactivate_to_head_attr
.attr
,
4333 &deactivate_to_tail_attr
.attr
,
4334 &deactivate_remote_frees_attr
.attr
,
4335 &order_fallback_attr
.attr
,
4340 static struct attribute_group slab_attr_group
= {
4341 .attrs
= slab_attrs
,
4344 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4345 struct attribute
*attr
,
4348 struct slab_attribute
*attribute
;
4349 struct kmem_cache
*s
;
4352 attribute
= to_slab_attr(attr
);
4355 if (!attribute
->show
)
4358 err
= attribute
->show(s
, buf
);
4363 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4364 struct attribute
*attr
,
4365 const char *buf
, size_t len
)
4367 struct slab_attribute
*attribute
;
4368 struct kmem_cache
*s
;
4371 attribute
= to_slab_attr(attr
);
4374 if (!attribute
->store
)
4377 err
= attribute
->store(s
, buf
, len
);
4382 static void kmem_cache_release(struct kobject
*kobj
)
4384 struct kmem_cache
*s
= to_slab(kobj
);
4389 static struct sysfs_ops slab_sysfs_ops
= {
4390 .show
= slab_attr_show
,
4391 .store
= slab_attr_store
,
4394 static struct kobj_type slab_ktype
= {
4395 .sysfs_ops
= &slab_sysfs_ops
,
4396 .release
= kmem_cache_release
4399 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4401 struct kobj_type
*ktype
= get_ktype(kobj
);
4403 if (ktype
== &slab_ktype
)
4408 static struct kset_uevent_ops slab_uevent_ops
= {
4409 .filter
= uevent_filter
,
4412 static struct kset
*slab_kset
;
4414 #define ID_STR_LENGTH 64
4416 /* Create a unique string id for a slab cache:
4418 * Format :[flags-]size
4420 static char *create_unique_id(struct kmem_cache
*s
)
4422 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4429 * First flags affecting slabcache operations. We will only
4430 * get here for aliasable slabs so we do not need to support
4431 * too many flags. The flags here must cover all flags that
4432 * are matched during merging to guarantee that the id is
4435 if (s
->flags
& SLAB_CACHE_DMA
)
4437 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4439 if (s
->flags
& SLAB_DEBUG_FREE
)
4443 p
+= sprintf(p
, "%07d", s
->size
);
4444 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4448 static int sysfs_slab_add(struct kmem_cache
*s
)
4454 if (slab_state
< SYSFS
)
4455 /* Defer until later */
4458 unmergeable
= slab_unmergeable(s
);
4461 * Slabcache can never be merged so we can use the name proper.
4462 * This is typically the case for debug situations. In that
4463 * case we can catch duplicate names easily.
4465 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4469 * Create a unique name for the slab as a target
4472 name
= create_unique_id(s
);
4475 s
->kobj
.kset
= slab_kset
;
4476 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4478 kobject_put(&s
->kobj
);
4482 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4485 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4487 /* Setup first alias */
4488 sysfs_slab_alias(s
, s
->name
);
4494 static void sysfs_slab_remove(struct kmem_cache
*s
)
4496 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4497 kobject_del(&s
->kobj
);
4498 kobject_put(&s
->kobj
);
4502 * Need to buffer aliases during bootup until sysfs becomes
4503 * available lest we lose that information.
4505 struct saved_alias
{
4506 struct kmem_cache
*s
;
4508 struct saved_alias
*next
;
4511 static struct saved_alias
*alias_list
;
4513 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4515 struct saved_alias
*al
;
4517 if (slab_state
== SYSFS
) {
4519 * If we have a leftover link then remove it.
4521 sysfs_remove_link(&slab_kset
->kobj
, name
);
4522 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4525 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4531 al
->next
= alias_list
;
4536 static int __init
slab_sysfs_init(void)
4538 struct kmem_cache
*s
;
4541 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4543 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4549 list_for_each_entry(s
, &slab_caches
, list
) {
4550 err
= sysfs_slab_add(s
);
4552 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4553 " to sysfs\n", s
->name
);
4556 while (alias_list
) {
4557 struct saved_alias
*al
= alias_list
;
4559 alias_list
= alias_list
->next
;
4560 err
= sysfs_slab_alias(al
->s
, al
->name
);
4562 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4563 " %s to sysfs\n", s
->name
);
4571 __initcall(slab_sysfs_init
);
4575 * The /proc/slabinfo ABI
4577 #ifdef CONFIG_SLABINFO
4578 static void print_slabinfo_header(struct seq_file
*m
)
4580 seq_puts(m
, "slabinfo - version: 2.1\n");
4581 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4582 "<objperslab> <pagesperslab>");
4583 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4584 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4588 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4592 down_read(&slub_lock
);
4594 print_slabinfo_header(m
);
4596 return seq_list_start(&slab_caches
, *pos
);
4599 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4601 return seq_list_next(p
, &slab_caches
, pos
);
4604 static void s_stop(struct seq_file
*m
, void *p
)
4606 up_read(&slub_lock
);
4609 static int s_show(struct seq_file
*m
, void *p
)
4611 unsigned long nr_partials
= 0;
4612 unsigned long nr_slabs
= 0;
4613 unsigned long nr_inuse
= 0;
4614 unsigned long nr_objs
= 0;
4615 unsigned long nr_free
= 0;
4616 struct kmem_cache
*s
;
4619 s
= list_entry(p
, struct kmem_cache
, list
);
4621 for_each_online_node(node
) {
4622 struct kmem_cache_node
*n
= get_node(s
, node
);
4627 nr_partials
+= n
->nr_partial
;
4628 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4629 nr_objs
+= atomic_long_read(&n
->total_objects
);
4630 nr_free
+= count_partial(n
, count_free
);
4633 nr_inuse
= nr_objs
- nr_free
;
4635 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4636 nr_objs
, s
->size
, oo_objects(s
->oo
),
4637 (1 << oo_order(s
->oo
)));
4638 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4639 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4645 static const struct seq_operations slabinfo_op
= {
4652 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4654 return seq_open(file
, &slabinfo_op
);
4657 static const struct file_operations proc_slabinfo_operations
= {
4658 .open
= slabinfo_open
,
4660 .llseek
= seq_lseek
,
4661 .release
= seq_release
,
4664 static int __init
slab_proc_init(void)
4666 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4669 module_init(slab_proc_init
);
4670 #endif /* CONFIG_SLABINFO */