]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26
27 /*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
103 */
104
105 #define FROZEN (1 << PG_active)
106
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
109 #else
110 #define SLABDEBUG 0
111 #endif
112
113 static inline int SlabFrozen(struct page *page)
114 {
115 return page->flags & FROZEN;
116 }
117
118 static inline void SetSlabFrozen(struct page *page)
119 {
120 page->flags |= FROZEN;
121 }
122
123 static inline void ClearSlabFrozen(struct page *page)
124 {
125 page->flags &= ~FROZEN;
126 }
127
128 static inline int SlabDebug(struct page *page)
129 {
130 return page->flags & SLABDEBUG;
131 }
132
133 static inline void SetSlabDebug(struct page *page)
134 {
135 page->flags |= SLABDEBUG;
136 }
137
138 static inline void ClearSlabDebug(struct page *page)
139 {
140 page->flags &= ~SLABDEBUG;
141 }
142
143 /*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153
154 /*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
158 #define MIN_PARTIAL 5
159
160 /*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165 #define MAX_PARTIAL 10
166
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
169
170 /*
171 * Set of flags that will prevent slab merging
172 */
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
178
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #endif
182
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 #endif
186
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON 0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
190
191 static int kmem_size = sizeof(struct kmem_cache);
192
193 #ifdef CONFIG_SMP
194 static struct notifier_block slab_notifier;
195 #endif
196
197 static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
200 UP, /* Everything works but does not show up in sysfs */
201 SYSFS /* Sysfs up */
202 } slab_state = DOWN;
203
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock);
206 static LIST_HEAD(slab_caches);
207
208 /*
209 * Tracking user of a slab.
210 */
211 struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216 };
217
218 enum track_item { TRACK_ALLOC, TRACK_FREE };
219
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache *);
222 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static void sysfs_slab_remove(struct kmem_cache *);
224
225 #else
226 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
229 static inline void sysfs_slab_remove(struct kmem_cache *s)
230 {
231 kfree(s);
232 }
233
234 #endif
235
236 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237 {
238 #ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240 #endif
241 }
242
243 /********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
246
247 int slab_is_available(void)
248 {
249 return slab_state >= UP;
250 }
251
252 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253 {
254 #ifdef CONFIG_NUMA
255 return s->node[node];
256 #else
257 return &s->local_node;
258 #endif
259 }
260
261 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262 {
263 #ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265 #else
266 return &s->cpu_slab;
267 #endif
268 }
269
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
273 {
274 void *base;
275
276 if (!object)
277 return 1;
278
279 base = page_address(page);
280 if (object < base || object >= base + page->objects * s->size ||
281 (object - base) % s->size) {
282 return 0;
283 }
284
285 return 1;
286 }
287
288 /*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295 static inline void *get_freepointer(struct kmem_cache *s, void *object)
296 {
297 return *(void **)(object + s->offset);
298 }
299
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 *(void **)(object + s->offset) = fp;
303 }
304
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308 __p += (__s)->size)
309
310 /* Scan freelist */
311 #define for_each_free_object(__p, __s, __free) \
312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316 {
317 return (p - addr) / s->size;
318 }
319
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
322 {
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
325 };
326
327 return x;
328 }
329
330 static inline int oo_order(struct kmem_cache_order_objects x)
331 {
332 return x.x >> 16;
333 }
334
335 static inline int oo_objects(struct kmem_cache_order_objects x)
336 {
337 return x.x & ((1 << 16) - 1);
338 }
339
340 #ifdef CONFIG_SLUB_DEBUG
341 /*
342 * Debug settings:
343 */
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug = DEBUG_DEFAULT_FLAGS;
346 #else
347 static int slub_debug;
348 #endif
349
350 static char *slub_debug_slabs;
351
352 /*
353 * Object debugging
354 */
355 static void print_section(char *text, u8 *addr, unsigned int length)
356 {
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
360
361 ascii[16] = 0;
362
363 for (i = 0; i < length; i++) {
364 if (newline) {
365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366 newline = 0;
367 }
368 printk(KERN_CONT " %02x", addr[i]);
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
372 printk(KERN_CONT " %s\n", ascii);
373 newline = 1;
374 }
375 }
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
379 printk(KERN_CONT " ");
380 ascii[i] = ' ';
381 i++;
382 }
383 printk(KERN_CONT " %s\n", ascii);
384 }
385 }
386
387 static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
389 {
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 return p + alloc;
398 }
399
400 static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
402 {
403 struct track *p;
404
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
409
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current ? current->pid : -1;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
418 }
419
420 static void init_tracking(struct kmem_cache *s, void *object)
421 {
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
424
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
427 }
428
429 static void print_track(const char *s, struct track *t)
430 {
431 if (!t->addr)
432 return;
433
434 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
435 s, t->addr, jiffies - t->when, t->cpu, t->pid);
436 }
437
438 static void print_tracking(struct kmem_cache *s, void *object)
439 {
440 if (!(s->flags & SLAB_STORE_USER))
441 return;
442
443 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
444 print_track("Freed", get_track(s, object, TRACK_FREE));
445 }
446
447 static void print_page_info(struct page *page)
448 {
449 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450 page, page->objects, page->inuse, page->freelist, page->flags);
451
452 }
453
454 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
455 {
456 va_list args;
457 char buf[100];
458
459 va_start(args, fmt);
460 vsnprintf(buf, sizeof(buf), fmt, args);
461 va_end(args);
462 printk(KERN_ERR "========================================"
463 "=====================================\n");
464 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
465 printk(KERN_ERR "----------------------------------------"
466 "-------------------------------------\n\n");
467 }
468
469 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
470 {
471 va_list args;
472 char buf[100];
473
474 va_start(args, fmt);
475 vsnprintf(buf, sizeof(buf), fmt, args);
476 va_end(args);
477 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
478 }
479
480 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
481 {
482 unsigned int off; /* Offset of last byte */
483 u8 *addr = page_address(page);
484
485 print_tracking(s, p);
486
487 print_page_info(page);
488
489 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 p, p - addr, get_freepointer(s, p));
491
492 if (p > addr + 16)
493 print_section("Bytes b4", p - 16, 16);
494
495 print_section("Object", p, min(s->objsize, 128));
496
497 if (s->flags & SLAB_RED_ZONE)
498 print_section("Redzone", p + s->objsize,
499 s->inuse - s->objsize);
500
501 if (s->offset)
502 off = s->offset + sizeof(void *);
503 else
504 off = s->inuse;
505
506 if (s->flags & SLAB_STORE_USER)
507 off += 2 * sizeof(struct track);
508
509 if (off != s->size)
510 /* Beginning of the filler is the free pointer */
511 print_section("Padding", p + off, s->size - off);
512
513 dump_stack();
514 }
515
516 static void object_err(struct kmem_cache *s, struct page *page,
517 u8 *object, char *reason)
518 {
519 slab_bug(s, "%s", reason);
520 print_trailer(s, page, object);
521 }
522
523 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
524 {
525 va_list args;
526 char buf[100];
527
528 va_start(args, fmt);
529 vsnprintf(buf, sizeof(buf), fmt, args);
530 va_end(args);
531 slab_bug(s, "%s", buf);
532 print_page_info(page);
533 dump_stack();
534 }
535
536 static void init_object(struct kmem_cache *s, void *object, int active)
537 {
538 u8 *p = object;
539
540 if (s->flags & __OBJECT_POISON) {
541 memset(p, POISON_FREE, s->objsize - 1);
542 p[s->objsize - 1] = POISON_END;
543 }
544
545 if (s->flags & SLAB_RED_ZONE)
546 memset(p + s->objsize,
547 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
548 s->inuse - s->objsize);
549 }
550
551 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
552 {
553 while (bytes) {
554 if (*start != (u8)value)
555 return start;
556 start++;
557 bytes--;
558 }
559 return NULL;
560 }
561
562 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
563 void *from, void *to)
564 {
565 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
566 memset(from, data, to - from);
567 }
568
569 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
570 u8 *object, char *what,
571 u8 *start, unsigned int value, unsigned int bytes)
572 {
573 u8 *fault;
574 u8 *end;
575
576 fault = check_bytes(start, value, bytes);
577 if (!fault)
578 return 1;
579
580 end = start + bytes;
581 while (end > fault && end[-1] == value)
582 end--;
583
584 slab_bug(s, "%s overwritten", what);
585 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586 fault, end - 1, fault[0], value);
587 print_trailer(s, page, object);
588
589 restore_bytes(s, what, value, fault, end);
590 return 0;
591 }
592
593 /*
594 * Object layout:
595 *
596 * object address
597 * Bytes of the object to be managed.
598 * If the freepointer may overlay the object then the free
599 * pointer is the first word of the object.
600 *
601 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
602 * 0xa5 (POISON_END)
603 *
604 * object + s->objsize
605 * Padding to reach word boundary. This is also used for Redzoning.
606 * Padding is extended by another word if Redzoning is enabled and
607 * objsize == inuse.
608 *
609 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610 * 0xcc (RED_ACTIVE) for objects in use.
611 *
612 * object + s->inuse
613 * Meta data starts here.
614 *
615 * A. Free pointer (if we cannot overwrite object on free)
616 * B. Tracking data for SLAB_STORE_USER
617 * C. Padding to reach required alignment boundary or at mininum
618 * one word if debugging is on to be able to detect writes
619 * before the word boundary.
620 *
621 * Padding is done using 0x5a (POISON_INUSE)
622 *
623 * object + s->size
624 * Nothing is used beyond s->size.
625 *
626 * If slabcaches are merged then the objsize and inuse boundaries are mostly
627 * ignored. And therefore no slab options that rely on these boundaries
628 * may be used with merged slabcaches.
629 */
630
631 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
632 {
633 unsigned long off = s->inuse; /* The end of info */
634
635 if (s->offset)
636 /* Freepointer is placed after the object. */
637 off += sizeof(void *);
638
639 if (s->flags & SLAB_STORE_USER)
640 /* We also have user information there */
641 off += 2 * sizeof(struct track);
642
643 if (s->size == off)
644 return 1;
645
646 return check_bytes_and_report(s, page, p, "Object padding",
647 p + off, POISON_INUSE, s->size - off);
648 }
649
650 /* Check the pad bytes at the end of a slab page */
651 static int slab_pad_check(struct kmem_cache *s, struct page *page)
652 {
653 u8 *start;
654 u8 *fault;
655 u8 *end;
656 int length;
657 int remainder;
658
659 if (!(s->flags & SLAB_POISON))
660 return 1;
661
662 start = page_address(page);
663 length = (PAGE_SIZE << compound_order(page));
664 end = start + length;
665 remainder = length % s->size;
666 if (!remainder)
667 return 1;
668
669 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
670 if (!fault)
671 return 1;
672 while (end > fault && end[-1] == POISON_INUSE)
673 end--;
674
675 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
676 print_section("Padding", end - remainder, remainder);
677
678 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
679 return 0;
680 }
681
682 static int check_object(struct kmem_cache *s, struct page *page,
683 void *object, int active)
684 {
685 u8 *p = object;
686 u8 *endobject = object + s->objsize;
687
688 if (s->flags & SLAB_RED_ZONE) {
689 unsigned int red =
690 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
691
692 if (!check_bytes_and_report(s, page, object, "Redzone",
693 endobject, red, s->inuse - s->objsize))
694 return 0;
695 } else {
696 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
697 check_bytes_and_report(s, page, p, "Alignment padding",
698 endobject, POISON_INUSE, s->inuse - s->objsize);
699 }
700 }
701
702 if (s->flags & SLAB_POISON) {
703 if (!active && (s->flags & __OBJECT_POISON) &&
704 (!check_bytes_and_report(s, page, p, "Poison", p,
705 POISON_FREE, s->objsize - 1) ||
706 !check_bytes_and_report(s, page, p, "Poison",
707 p + s->objsize - 1, POISON_END, 1)))
708 return 0;
709 /*
710 * check_pad_bytes cleans up on its own.
711 */
712 check_pad_bytes(s, page, p);
713 }
714
715 if (!s->offset && active)
716 /*
717 * Object and freepointer overlap. Cannot check
718 * freepointer while object is allocated.
719 */
720 return 1;
721
722 /* Check free pointer validity */
723 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
724 object_err(s, page, p, "Freepointer corrupt");
725 /*
726 * No choice but to zap it and thus loose the remainder
727 * of the free objects in this slab. May cause
728 * another error because the object count is now wrong.
729 */
730 set_freepointer(s, p, NULL);
731 return 0;
732 }
733 return 1;
734 }
735
736 static int check_slab(struct kmem_cache *s, struct page *page)
737 {
738 int maxobj;
739
740 VM_BUG_ON(!irqs_disabled());
741
742 if (!PageSlab(page)) {
743 slab_err(s, page, "Not a valid slab page");
744 return 0;
745 }
746
747 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
748 if (page->objects > maxobj) {
749 slab_err(s, page, "objects %u > max %u",
750 s->name, page->objects, maxobj);
751 return 0;
752 }
753 if (page->inuse > page->objects) {
754 slab_err(s, page, "inuse %u > max %u",
755 s->name, page->inuse, page->objects);
756 return 0;
757 }
758 /* Slab_pad_check fixes things up after itself */
759 slab_pad_check(s, page);
760 return 1;
761 }
762
763 /*
764 * Determine if a certain object on a page is on the freelist. Must hold the
765 * slab lock to guarantee that the chains are in a consistent state.
766 */
767 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
768 {
769 int nr = 0;
770 void *fp = page->freelist;
771 void *object = NULL;
772 unsigned long max_objects;
773
774 while (fp && nr <= page->objects) {
775 if (fp == search)
776 return 1;
777 if (!check_valid_pointer(s, page, fp)) {
778 if (object) {
779 object_err(s, page, object,
780 "Freechain corrupt");
781 set_freepointer(s, object, NULL);
782 break;
783 } else {
784 slab_err(s, page, "Freepointer corrupt");
785 page->freelist = NULL;
786 page->inuse = page->objects;
787 slab_fix(s, "Freelist cleared");
788 return 0;
789 }
790 break;
791 }
792 object = fp;
793 fp = get_freepointer(s, object);
794 nr++;
795 }
796
797 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
798 if (max_objects > 65535)
799 max_objects = 65535;
800
801 if (page->objects != max_objects) {
802 slab_err(s, page, "Wrong number of objects. Found %d but "
803 "should be %d", page->objects, max_objects);
804 page->objects = max_objects;
805 slab_fix(s, "Number of objects adjusted.");
806 }
807 if (page->inuse != page->objects - nr) {
808 slab_err(s, page, "Wrong object count. Counter is %d but "
809 "counted were %d", page->inuse, page->objects - nr);
810 page->inuse = page->objects - nr;
811 slab_fix(s, "Object count adjusted.");
812 }
813 return search == NULL;
814 }
815
816 static void trace(struct kmem_cache *s, struct page *page, void *object,
817 int alloc)
818 {
819 if (s->flags & SLAB_TRACE) {
820 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821 s->name,
822 alloc ? "alloc" : "free",
823 object, page->inuse,
824 page->freelist);
825
826 if (!alloc)
827 print_section("Object", (void *)object, s->objsize);
828
829 dump_stack();
830 }
831 }
832
833 /*
834 * Tracking of fully allocated slabs for debugging purposes.
835 */
836 static void add_full(struct kmem_cache_node *n, struct page *page)
837 {
838 spin_lock(&n->list_lock);
839 list_add(&page->lru, &n->full);
840 spin_unlock(&n->list_lock);
841 }
842
843 static void remove_full(struct kmem_cache *s, struct page *page)
844 {
845 struct kmem_cache_node *n;
846
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
849
850 n = get_node(s, page_to_nid(page));
851
852 spin_lock(&n->list_lock);
853 list_del(&page->lru);
854 spin_unlock(&n->list_lock);
855 }
856
857 /* Tracking of the number of slabs for debugging purposes */
858 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
859 {
860 struct kmem_cache_node *n = get_node(s, node);
861
862 return atomic_long_read(&n->nr_slabs);
863 }
864
865 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
866 {
867 struct kmem_cache_node *n = get_node(s, node);
868
869 /*
870 * May be called early in order to allocate a slab for the
871 * kmem_cache_node structure. Solve the chicken-egg
872 * dilemma by deferring the increment of the count during
873 * bootstrap (see early_kmem_cache_node_alloc).
874 */
875 if (!NUMA_BUILD || n) {
876 atomic_long_inc(&n->nr_slabs);
877 atomic_long_add(objects, &n->total_objects);
878 }
879 }
880 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
881 {
882 struct kmem_cache_node *n = get_node(s, node);
883
884 atomic_long_dec(&n->nr_slabs);
885 atomic_long_sub(objects, &n->total_objects);
886 }
887
888 /* Object debug checks for alloc/free paths */
889 static void setup_object_debug(struct kmem_cache *s, struct page *page,
890 void *object)
891 {
892 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
893 return;
894
895 init_object(s, object, 0);
896 init_tracking(s, object);
897 }
898
899 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
900 void *object, void *addr)
901 {
902 if (!check_slab(s, page))
903 goto bad;
904
905 if (!on_freelist(s, page, object)) {
906 object_err(s, page, object, "Object already allocated");
907 goto bad;
908 }
909
910 if (!check_valid_pointer(s, page, object)) {
911 object_err(s, page, object, "Freelist Pointer check fails");
912 goto bad;
913 }
914
915 if (!check_object(s, page, object, 0))
916 goto bad;
917
918 /* Success perform special debug activities for allocs */
919 if (s->flags & SLAB_STORE_USER)
920 set_track(s, object, TRACK_ALLOC, addr);
921 trace(s, page, object, 1);
922 init_object(s, object, 1);
923 return 1;
924
925 bad:
926 if (PageSlab(page)) {
927 /*
928 * If this is a slab page then lets do the best we can
929 * to avoid issues in the future. Marking all objects
930 * as used avoids touching the remaining objects.
931 */
932 slab_fix(s, "Marking all objects used");
933 page->inuse = page->objects;
934 page->freelist = NULL;
935 }
936 return 0;
937 }
938
939 static int free_debug_processing(struct kmem_cache *s, struct page *page,
940 void *object, void *addr)
941 {
942 if (!check_slab(s, page))
943 goto fail;
944
945 if (!check_valid_pointer(s, page, object)) {
946 slab_err(s, page, "Invalid object pointer 0x%p", object);
947 goto fail;
948 }
949
950 if (on_freelist(s, page, object)) {
951 object_err(s, page, object, "Object already free");
952 goto fail;
953 }
954
955 if (!check_object(s, page, object, 1))
956 return 0;
957
958 if (unlikely(s != page->slab)) {
959 if (!PageSlab(page)) {
960 slab_err(s, page, "Attempt to free object(0x%p) "
961 "outside of slab", object);
962 } else if (!page->slab) {
963 printk(KERN_ERR
964 "SLUB <none>: no slab for object 0x%p.\n",
965 object);
966 dump_stack();
967 } else
968 object_err(s, page, object,
969 "page slab pointer corrupt.");
970 goto fail;
971 }
972
973 /* Special debug activities for freeing objects */
974 if (!SlabFrozen(page) && !page->freelist)
975 remove_full(s, page);
976 if (s->flags & SLAB_STORE_USER)
977 set_track(s, object, TRACK_FREE, addr);
978 trace(s, page, object, 0);
979 init_object(s, object, 0);
980 return 1;
981
982 fail:
983 slab_fix(s, "Object at 0x%p not freed", object);
984 return 0;
985 }
986
987 static int __init setup_slub_debug(char *str)
988 {
989 slub_debug = DEBUG_DEFAULT_FLAGS;
990 if (*str++ != '=' || !*str)
991 /*
992 * No options specified. Switch on full debugging.
993 */
994 goto out;
995
996 if (*str == ',')
997 /*
998 * No options but restriction on slabs. This means full
999 * debugging for slabs matching a pattern.
1000 */
1001 goto check_slabs;
1002
1003 slub_debug = 0;
1004 if (*str == '-')
1005 /*
1006 * Switch off all debugging measures.
1007 */
1008 goto out;
1009
1010 /*
1011 * Determine which debug features should be switched on
1012 */
1013 for (; *str && *str != ','; str++) {
1014 switch (tolower(*str)) {
1015 case 'f':
1016 slub_debug |= SLAB_DEBUG_FREE;
1017 break;
1018 case 'z':
1019 slub_debug |= SLAB_RED_ZONE;
1020 break;
1021 case 'p':
1022 slub_debug |= SLAB_POISON;
1023 break;
1024 case 'u':
1025 slub_debug |= SLAB_STORE_USER;
1026 break;
1027 case 't':
1028 slub_debug |= SLAB_TRACE;
1029 break;
1030 default:
1031 printk(KERN_ERR "slub_debug option '%c' "
1032 "unknown. skipped\n", *str);
1033 }
1034 }
1035
1036 check_slabs:
1037 if (*str == ',')
1038 slub_debug_slabs = str + 1;
1039 out:
1040 return 1;
1041 }
1042
1043 __setup("slub_debug", setup_slub_debug);
1044
1045 static unsigned long kmem_cache_flags(unsigned long objsize,
1046 unsigned long flags, const char *name,
1047 void (*ctor)(struct kmem_cache *, void *))
1048 {
1049 /*
1050 * Enable debugging if selected on the kernel commandline.
1051 */
1052 if (slub_debug && (!slub_debug_slabs ||
1053 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1054 flags |= slub_debug;
1055
1056 return flags;
1057 }
1058 #else
1059 static inline void setup_object_debug(struct kmem_cache *s,
1060 struct page *page, void *object) {}
1061
1062 static inline int alloc_debug_processing(struct kmem_cache *s,
1063 struct page *page, void *object, void *addr) { return 0; }
1064
1065 static inline int free_debug_processing(struct kmem_cache *s,
1066 struct page *page, void *object, void *addr) { return 0; }
1067
1068 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1069 { return 1; }
1070 static inline int check_object(struct kmem_cache *s, struct page *page,
1071 void *object, int active) { return 1; }
1072 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1073 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1074 unsigned long flags, const char *name,
1075 void (*ctor)(struct kmem_cache *, void *))
1076 {
1077 return flags;
1078 }
1079 #define slub_debug 0
1080
1081 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082 { return 0; }
1083 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1084 int objects) {}
1085 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1086 int objects) {}
1087 #endif
1088
1089 /*
1090 * Slab allocation and freeing
1091 */
1092 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1093 struct kmem_cache_order_objects oo)
1094 {
1095 int order = oo_order(oo);
1096
1097 if (node == -1)
1098 return alloc_pages(flags, order);
1099 else
1100 return alloc_pages_node(node, flags, order);
1101 }
1102
1103 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1104 {
1105 struct page *page;
1106 struct kmem_cache_order_objects oo = s->oo;
1107
1108 flags |= s->allocflags;
1109
1110 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1111 oo);
1112 if (unlikely(!page)) {
1113 oo = s->min;
1114 /*
1115 * Allocation may have failed due to fragmentation.
1116 * Try a lower order alloc if possible
1117 */
1118 page = alloc_slab_page(flags, node, oo);
1119 if (!page)
1120 return NULL;
1121
1122 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1123 }
1124 page->objects = oo_objects(oo);
1125 mod_zone_page_state(page_zone(page),
1126 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1127 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1128 1 << oo_order(oo));
1129
1130 return page;
1131 }
1132
1133 static void setup_object(struct kmem_cache *s, struct page *page,
1134 void *object)
1135 {
1136 setup_object_debug(s, page, object);
1137 if (unlikely(s->ctor))
1138 s->ctor(s, object);
1139 }
1140
1141 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1142 {
1143 struct page *page;
1144 void *start;
1145 void *last;
1146 void *p;
1147
1148 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1149
1150 page = allocate_slab(s,
1151 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1152 if (!page)
1153 goto out;
1154
1155 inc_slabs_node(s, page_to_nid(page), page->objects);
1156 page->slab = s;
1157 page->flags |= 1 << PG_slab;
1158 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1159 SLAB_STORE_USER | SLAB_TRACE))
1160 SetSlabDebug(page);
1161
1162 start = page_address(page);
1163
1164 if (unlikely(s->flags & SLAB_POISON))
1165 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1166
1167 last = start;
1168 for_each_object(p, s, start, page->objects) {
1169 setup_object(s, page, last);
1170 set_freepointer(s, last, p);
1171 last = p;
1172 }
1173 setup_object(s, page, last);
1174 set_freepointer(s, last, NULL);
1175
1176 page->freelist = start;
1177 page->inuse = 0;
1178 out:
1179 return page;
1180 }
1181
1182 static void __free_slab(struct kmem_cache *s, struct page *page)
1183 {
1184 int order = compound_order(page);
1185 int pages = 1 << order;
1186
1187 if (unlikely(SlabDebug(page))) {
1188 void *p;
1189
1190 slab_pad_check(s, page);
1191 for_each_object(p, s, page_address(page),
1192 page->objects)
1193 check_object(s, page, p, 0);
1194 ClearSlabDebug(page);
1195 }
1196
1197 mod_zone_page_state(page_zone(page),
1198 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1200 -pages);
1201
1202 __ClearPageSlab(page);
1203 reset_page_mapcount(page);
1204 __free_pages(page, order);
1205 }
1206
1207 static void rcu_free_slab(struct rcu_head *h)
1208 {
1209 struct page *page;
1210
1211 page = container_of((struct list_head *)h, struct page, lru);
1212 __free_slab(page->slab, page);
1213 }
1214
1215 static void free_slab(struct kmem_cache *s, struct page *page)
1216 {
1217 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1218 /*
1219 * RCU free overloads the RCU head over the LRU
1220 */
1221 struct rcu_head *head = (void *)&page->lru;
1222
1223 call_rcu(head, rcu_free_slab);
1224 } else
1225 __free_slab(s, page);
1226 }
1227
1228 static void discard_slab(struct kmem_cache *s, struct page *page)
1229 {
1230 dec_slabs_node(s, page_to_nid(page), page->objects);
1231 free_slab(s, page);
1232 }
1233
1234 /*
1235 * Per slab locking using the pagelock
1236 */
1237 static __always_inline void slab_lock(struct page *page)
1238 {
1239 bit_spin_lock(PG_locked, &page->flags);
1240 }
1241
1242 static __always_inline void slab_unlock(struct page *page)
1243 {
1244 __bit_spin_unlock(PG_locked, &page->flags);
1245 }
1246
1247 static __always_inline int slab_trylock(struct page *page)
1248 {
1249 int rc = 1;
1250
1251 rc = bit_spin_trylock(PG_locked, &page->flags);
1252 return rc;
1253 }
1254
1255 /*
1256 * Management of partially allocated slabs
1257 */
1258 static void add_partial(struct kmem_cache_node *n,
1259 struct page *page, int tail)
1260 {
1261 spin_lock(&n->list_lock);
1262 n->nr_partial++;
1263 if (tail)
1264 list_add_tail(&page->lru, &n->partial);
1265 else
1266 list_add(&page->lru, &n->partial);
1267 spin_unlock(&n->list_lock);
1268 }
1269
1270 static void remove_partial(struct kmem_cache *s, struct page *page)
1271 {
1272 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1273
1274 spin_lock(&n->list_lock);
1275 list_del(&page->lru);
1276 n->nr_partial--;
1277 spin_unlock(&n->list_lock);
1278 }
1279
1280 /*
1281 * Lock slab and remove from the partial list.
1282 *
1283 * Must hold list_lock.
1284 */
1285 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1286 struct page *page)
1287 {
1288 if (slab_trylock(page)) {
1289 list_del(&page->lru);
1290 n->nr_partial--;
1291 SetSlabFrozen(page);
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 /*
1298 * Try to allocate a partial slab from a specific node.
1299 */
1300 static struct page *get_partial_node(struct kmem_cache_node *n)
1301 {
1302 struct page *page;
1303
1304 /*
1305 * Racy check. If we mistakenly see no partial slabs then we
1306 * just allocate an empty slab. If we mistakenly try to get a
1307 * partial slab and there is none available then get_partials()
1308 * will return NULL.
1309 */
1310 if (!n || !n->nr_partial)
1311 return NULL;
1312
1313 spin_lock(&n->list_lock);
1314 list_for_each_entry(page, &n->partial, lru)
1315 if (lock_and_freeze_slab(n, page))
1316 goto out;
1317 page = NULL;
1318 out:
1319 spin_unlock(&n->list_lock);
1320 return page;
1321 }
1322
1323 /*
1324 * Get a page from somewhere. Search in increasing NUMA distances.
1325 */
1326 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1327 {
1328 #ifdef CONFIG_NUMA
1329 struct zonelist *zonelist;
1330 struct zoneref *z;
1331 struct zone *zone;
1332 enum zone_type high_zoneidx = gfp_zone(flags);
1333 struct page *page;
1334
1335 /*
1336 * The defrag ratio allows a configuration of the tradeoffs between
1337 * inter node defragmentation and node local allocations. A lower
1338 * defrag_ratio increases the tendency to do local allocations
1339 * instead of attempting to obtain partial slabs from other nodes.
1340 *
1341 * If the defrag_ratio is set to 0 then kmalloc() always
1342 * returns node local objects. If the ratio is higher then kmalloc()
1343 * may return off node objects because partial slabs are obtained
1344 * from other nodes and filled up.
1345 *
1346 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1347 * defrag_ratio = 1000) then every (well almost) allocation will
1348 * first attempt to defrag slab caches on other nodes. This means
1349 * scanning over all nodes to look for partial slabs which may be
1350 * expensive if we do it every time we are trying to find a slab
1351 * with available objects.
1352 */
1353 if (!s->remote_node_defrag_ratio ||
1354 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1355 return NULL;
1356
1357 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1358 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1359 struct kmem_cache_node *n;
1360
1361 n = get_node(s, zone_to_nid(zone));
1362
1363 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1364 n->nr_partial > MIN_PARTIAL) {
1365 page = get_partial_node(n);
1366 if (page)
1367 return page;
1368 }
1369 }
1370 #endif
1371 return NULL;
1372 }
1373
1374 /*
1375 * Get a partial page, lock it and return it.
1376 */
1377 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1378 {
1379 struct page *page;
1380 int searchnode = (node == -1) ? numa_node_id() : node;
1381
1382 page = get_partial_node(get_node(s, searchnode));
1383 if (page || (flags & __GFP_THISNODE))
1384 return page;
1385
1386 return get_any_partial(s, flags);
1387 }
1388
1389 /*
1390 * Move a page back to the lists.
1391 *
1392 * Must be called with the slab lock held.
1393 *
1394 * On exit the slab lock will have been dropped.
1395 */
1396 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1397 {
1398 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1399 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1400
1401 ClearSlabFrozen(page);
1402 if (page->inuse) {
1403
1404 if (page->freelist) {
1405 add_partial(n, page, tail);
1406 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1407 } else {
1408 stat(c, DEACTIVATE_FULL);
1409 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1410 add_full(n, page);
1411 }
1412 slab_unlock(page);
1413 } else {
1414 stat(c, DEACTIVATE_EMPTY);
1415 if (n->nr_partial < MIN_PARTIAL) {
1416 /*
1417 * Adding an empty slab to the partial slabs in order
1418 * to avoid page allocator overhead. This slab needs
1419 * to come after the other slabs with objects in
1420 * so that the others get filled first. That way the
1421 * size of the partial list stays small.
1422 *
1423 * kmem_cache_shrink can reclaim any empty slabs from
1424 * the partial list.
1425 */
1426 add_partial(n, page, 1);
1427 slab_unlock(page);
1428 } else {
1429 slab_unlock(page);
1430 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1431 discard_slab(s, page);
1432 }
1433 }
1434 }
1435
1436 /*
1437 * Remove the cpu slab
1438 */
1439 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 {
1441 struct page *page = c->page;
1442 int tail = 1;
1443
1444 if (page->freelist)
1445 stat(c, DEACTIVATE_REMOTE_FREES);
1446 /*
1447 * Merge cpu freelist into slab freelist. Typically we get here
1448 * because both freelists are empty. So this is unlikely
1449 * to occur.
1450 */
1451 while (unlikely(c->freelist)) {
1452 void **object;
1453
1454 tail = 0; /* Hot objects. Put the slab first */
1455
1456 /* Retrieve object from cpu_freelist */
1457 object = c->freelist;
1458 c->freelist = c->freelist[c->offset];
1459
1460 /* And put onto the regular freelist */
1461 object[c->offset] = page->freelist;
1462 page->freelist = object;
1463 page->inuse--;
1464 }
1465 c->page = NULL;
1466 unfreeze_slab(s, page, tail);
1467 }
1468
1469 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1470 {
1471 stat(c, CPUSLAB_FLUSH);
1472 slab_lock(c->page);
1473 deactivate_slab(s, c);
1474 }
1475
1476 /*
1477 * Flush cpu slab.
1478 *
1479 * Called from IPI handler with interrupts disabled.
1480 */
1481 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1482 {
1483 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1484
1485 if (likely(c && c->page))
1486 flush_slab(s, c);
1487 }
1488
1489 static void flush_cpu_slab(void *d)
1490 {
1491 struct kmem_cache *s = d;
1492
1493 __flush_cpu_slab(s, smp_processor_id());
1494 }
1495
1496 static void flush_all(struct kmem_cache *s)
1497 {
1498 #ifdef CONFIG_SMP
1499 on_each_cpu(flush_cpu_slab, s, 1, 1);
1500 #else
1501 unsigned long flags;
1502
1503 local_irq_save(flags);
1504 flush_cpu_slab(s);
1505 local_irq_restore(flags);
1506 #endif
1507 }
1508
1509 /*
1510 * Check if the objects in a per cpu structure fit numa
1511 * locality expectations.
1512 */
1513 static inline int node_match(struct kmem_cache_cpu *c, int node)
1514 {
1515 #ifdef CONFIG_NUMA
1516 if (node != -1 && c->node != node)
1517 return 0;
1518 #endif
1519 return 1;
1520 }
1521
1522 /*
1523 * Slow path. The lockless freelist is empty or we need to perform
1524 * debugging duties.
1525 *
1526 * Interrupts are disabled.
1527 *
1528 * Processing is still very fast if new objects have been freed to the
1529 * regular freelist. In that case we simply take over the regular freelist
1530 * as the lockless freelist and zap the regular freelist.
1531 *
1532 * If that is not working then we fall back to the partial lists. We take the
1533 * first element of the freelist as the object to allocate now and move the
1534 * rest of the freelist to the lockless freelist.
1535 *
1536 * And if we were unable to get a new slab from the partial slab lists then
1537 * we need to allocate a new slab. This is the slowest path since it involves
1538 * a call to the page allocator and the setup of a new slab.
1539 */
1540 static void *__slab_alloc(struct kmem_cache *s,
1541 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1542 {
1543 void **object;
1544 struct page *new;
1545
1546 /* We handle __GFP_ZERO in the caller */
1547 gfpflags &= ~__GFP_ZERO;
1548
1549 if (!c->page)
1550 goto new_slab;
1551
1552 slab_lock(c->page);
1553 if (unlikely(!node_match(c, node)))
1554 goto another_slab;
1555
1556 stat(c, ALLOC_REFILL);
1557
1558 load_freelist:
1559 object = c->page->freelist;
1560 if (unlikely(!object))
1561 goto another_slab;
1562 if (unlikely(SlabDebug(c->page)))
1563 goto debug;
1564
1565 c->freelist = object[c->offset];
1566 c->page->inuse = c->page->objects;
1567 c->page->freelist = NULL;
1568 c->node = page_to_nid(c->page);
1569 unlock_out:
1570 slab_unlock(c->page);
1571 stat(c, ALLOC_SLOWPATH);
1572 return object;
1573
1574 another_slab:
1575 deactivate_slab(s, c);
1576
1577 new_slab:
1578 new = get_partial(s, gfpflags, node);
1579 if (new) {
1580 c->page = new;
1581 stat(c, ALLOC_FROM_PARTIAL);
1582 goto load_freelist;
1583 }
1584
1585 if (gfpflags & __GFP_WAIT)
1586 local_irq_enable();
1587
1588 new = new_slab(s, gfpflags, node);
1589
1590 if (gfpflags & __GFP_WAIT)
1591 local_irq_disable();
1592
1593 if (new) {
1594 c = get_cpu_slab(s, smp_processor_id());
1595 stat(c, ALLOC_SLAB);
1596 if (c->page)
1597 flush_slab(s, c);
1598 slab_lock(new);
1599 SetSlabFrozen(new);
1600 c->page = new;
1601 goto load_freelist;
1602 }
1603 return NULL;
1604 debug:
1605 if (!alloc_debug_processing(s, c->page, object, addr))
1606 goto another_slab;
1607
1608 c->page->inuse++;
1609 c->page->freelist = object[c->offset];
1610 c->node = -1;
1611 goto unlock_out;
1612 }
1613
1614 /*
1615 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1616 * have the fastpath folded into their functions. So no function call
1617 * overhead for requests that can be satisfied on the fastpath.
1618 *
1619 * The fastpath works by first checking if the lockless freelist can be used.
1620 * If not then __slab_alloc is called for slow processing.
1621 *
1622 * Otherwise we can simply pick the next object from the lockless free list.
1623 */
1624 static __always_inline void *slab_alloc(struct kmem_cache *s,
1625 gfp_t gfpflags, int node, void *addr)
1626 {
1627 void **object;
1628 struct kmem_cache_cpu *c;
1629 unsigned long flags;
1630 unsigned int objsize;
1631
1632 local_irq_save(flags);
1633 c = get_cpu_slab(s, smp_processor_id());
1634 objsize = c->objsize;
1635 if (unlikely(!c->freelist || !node_match(c, node)))
1636
1637 object = __slab_alloc(s, gfpflags, node, addr, c);
1638
1639 else {
1640 object = c->freelist;
1641 c->freelist = object[c->offset];
1642 stat(c, ALLOC_FASTPATH);
1643 }
1644 local_irq_restore(flags);
1645
1646 if (unlikely((gfpflags & __GFP_ZERO) && object))
1647 memset(object, 0, objsize);
1648
1649 return object;
1650 }
1651
1652 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1653 {
1654 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1655 }
1656 EXPORT_SYMBOL(kmem_cache_alloc);
1657
1658 #ifdef CONFIG_NUMA
1659 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1660 {
1661 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1662 }
1663 EXPORT_SYMBOL(kmem_cache_alloc_node);
1664 #endif
1665
1666 /*
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
1669 *
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
1673 */
1674 static void __slab_free(struct kmem_cache *s, struct page *page,
1675 void *x, void *addr, unsigned int offset)
1676 {
1677 void *prior;
1678 void **object = (void *)x;
1679 struct kmem_cache_cpu *c;
1680
1681 c = get_cpu_slab(s, raw_smp_processor_id());
1682 stat(c, FREE_SLOWPATH);
1683 slab_lock(page);
1684
1685 if (unlikely(SlabDebug(page)))
1686 goto debug;
1687
1688 checks_ok:
1689 prior = object[offset] = page->freelist;
1690 page->freelist = object;
1691 page->inuse--;
1692
1693 if (unlikely(SlabFrozen(page))) {
1694 stat(c, FREE_FROZEN);
1695 goto out_unlock;
1696 }
1697
1698 if (unlikely(!page->inuse))
1699 goto slab_empty;
1700
1701 /*
1702 * Objects left in the slab. If it was not on the partial list before
1703 * then add it.
1704 */
1705 if (unlikely(!prior)) {
1706 add_partial(get_node(s, page_to_nid(page)), page, 1);
1707 stat(c, FREE_ADD_PARTIAL);
1708 }
1709
1710 out_unlock:
1711 slab_unlock(page);
1712 return;
1713
1714 slab_empty:
1715 if (prior) {
1716 /*
1717 * Slab still on the partial list.
1718 */
1719 remove_partial(s, page);
1720 stat(c, FREE_REMOVE_PARTIAL);
1721 }
1722 slab_unlock(page);
1723 stat(c, FREE_SLAB);
1724 discard_slab(s, page);
1725 return;
1726
1727 debug:
1728 if (!free_debug_processing(s, page, x, addr))
1729 goto out_unlock;
1730 goto checks_ok;
1731 }
1732
1733 /*
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1736 *
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1739 * the item before.
1740 *
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1743 */
1744 static __always_inline void slab_free(struct kmem_cache *s,
1745 struct page *page, void *x, void *addr)
1746 {
1747 void **object = (void *)x;
1748 struct kmem_cache_cpu *c;
1749 unsigned long flags;
1750
1751 local_irq_save(flags);
1752 c = get_cpu_slab(s, smp_processor_id());
1753 debug_check_no_locks_freed(object, c->objsize);
1754 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1755 debug_check_no_obj_freed(object, s->objsize);
1756 if (likely(page == c->page && c->node >= 0)) {
1757 object[c->offset] = c->freelist;
1758 c->freelist = object;
1759 stat(c, FREE_FASTPATH);
1760 } else
1761 __slab_free(s, page, x, addr, c->offset);
1762
1763 local_irq_restore(flags);
1764 }
1765
1766 void kmem_cache_free(struct kmem_cache *s, void *x)
1767 {
1768 struct page *page;
1769
1770 page = virt_to_head_page(x);
1771
1772 slab_free(s, page, x, __builtin_return_address(0));
1773 }
1774 EXPORT_SYMBOL(kmem_cache_free);
1775
1776 /* Figure out on which slab object the object resides */
1777 static struct page *get_object_page(const void *x)
1778 {
1779 struct page *page = virt_to_head_page(x);
1780
1781 if (!PageSlab(page))
1782 return NULL;
1783
1784 return page;
1785 }
1786
1787 /*
1788 * Object placement in a slab is made very easy because we always start at
1789 * offset 0. If we tune the size of the object to the alignment then we can
1790 * get the required alignment by putting one properly sized object after
1791 * another.
1792 *
1793 * Notice that the allocation order determines the sizes of the per cpu
1794 * caches. Each processor has always one slab available for allocations.
1795 * Increasing the allocation order reduces the number of times that slabs
1796 * must be moved on and off the partial lists and is therefore a factor in
1797 * locking overhead.
1798 */
1799
1800 /*
1801 * Mininum / Maximum order of slab pages. This influences locking overhead
1802 * and slab fragmentation. A higher order reduces the number of partial slabs
1803 * and increases the number of allocations possible without having to
1804 * take the list_lock.
1805 */
1806 static int slub_min_order;
1807 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1808 static int slub_min_objects;
1809
1810 /*
1811 * Merge control. If this is set then no merging of slab caches will occur.
1812 * (Could be removed. This was introduced to pacify the merge skeptics.)
1813 */
1814 static int slub_nomerge;
1815
1816 /*
1817 * Calculate the order of allocation given an slab object size.
1818 *
1819 * The order of allocation has significant impact on performance and other
1820 * system components. Generally order 0 allocations should be preferred since
1821 * order 0 does not cause fragmentation in the page allocator. Larger objects
1822 * be problematic to put into order 0 slabs because there may be too much
1823 * unused space left. We go to a higher order if more than 1/16th of the slab
1824 * would be wasted.
1825 *
1826 * In order to reach satisfactory performance we must ensure that a minimum
1827 * number of objects is in one slab. Otherwise we may generate too much
1828 * activity on the partial lists which requires taking the list_lock. This is
1829 * less a concern for large slabs though which are rarely used.
1830 *
1831 * slub_max_order specifies the order where we begin to stop considering the
1832 * number of objects in a slab as critical. If we reach slub_max_order then
1833 * we try to keep the page order as low as possible. So we accept more waste
1834 * of space in favor of a small page order.
1835 *
1836 * Higher order allocations also allow the placement of more objects in a
1837 * slab and thereby reduce object handling overhead. If the user has
1838 * requested a higher mininum order then we start with that one instead of
1839 * the smallest order which will fit the object.
1840 */
1841 static inline int slab_order(int size, int min_objects,
1842 int max_order, int fract_leftover)
1843 {
1844 int order;
1845 int rem;
1846 int min_order = slub_min_order;
1847
1848 if ((PAGE_SIZE << min_order) / size > 65535)
1849 return get_order(size * 65535) - 1;
1850
1851 for (order = max(min_order,
1852 fls(min_objects * size - 1) - PAGE_SHIFT);
1853 order <= max_order; order++) {
1854
1855 unsigned long slab_size = PAGE_SIZE << order;
1856
1857 if (slab_size < min_objects * size)
1858 continue;
1859
1860 rem = slab_size % size;
1861
1862 if (rem <= slab_size / fract_leftover)
1863 break;
1864
1865 }
1866
1867 return order;
1868 }
1869
1870 static inline int calculate_order(int size)
1871 {
1872 int order;
1873 int min_objects;
1874 int fraction;
1875
1876 /*
1877 * Attempt to find best configuration for a slab. This
1878 * works by first attempting to generate a layout with
1879 * the best configuration and backing off gradually.
1880 *
1881 * First we reduce the acceptable waste in a slab. Then
1882 * we reduce the minimum objects required in a slab.
1883 */
1884 min_objects = slub_min_objects;
1885 if (!min_objects)
1886 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1887 while (min_objects > 1) {
1888 fraction = 16;
1889 while (fraction >= 4) {
1890 order = slab_order(size, min_objects,
1891 slub_max_order, fraction);
1892 if (order <= slub_max_order)
1893 return order;
1894 fraction /= 2;
1895 }
1896 min_objects /= 2;
1897 }
1898
1899 /*
1900 * We were unable to place multiple objects in a slab. Now
1901 * lets see if we can place a single object there.
1902 */
1903 order = slab_order(size, 1, slub_max_order, 1);
1904 if (order <= slub_max_order)
1905 return order;
1906
1907 /*
1908 * Doh this slab cannot be placed using slub_max_order.
1909 */
1910 order = slab_order(size, 1, MAX_ORDER, 1);
1911 if (order <= MAX_ORDER)
1912 return order;
1913 return -ENOSYS;
1914 }
1915
1916 /*
1917 * Figure out what the alignment of the objects will be.
1918 */
1919 static unsigned long calculate_alignment(unsigned long flags,
1920 unsigned long align, unsigned long size)
1921 {
1922 /*
1923 * If the user wants hardware cache aligned objects then follow that
1924 * suggestion if the object is sufficiently large.
1925 *
1926 * The hardware cache alignment cannot override the specified
1927 * alignment though. If that is greater then use it.
1928 */
1929 if (flags & SLAB_HWCACHE_ALIGN) {
1930 unsigned long ralign = cache_line_size();
1931 while (size <= ralign / 2)
1932 ralign /= 2;
1933 align = max(align, ralign);
1934 }
1935
1936 if (align < ARCH_SLAB_MINALIGN)
1937 align = ARCH_SLAB_MINALIGN;
1938
1939 return ALIGN(align, sizeof(void *));
1940 }
1941
1942 static void init_kmem_cache_cpu(struct kmem_cache *s,
1943 struct kmem_cache_cpu *c)
1944 {
1945 c->page = NULL;
1946 c->freelist = NULL;
1947 c->node = 0;
1948 c->offset = s->offset / sizeof(void *);
1949 c->objsize = s->objsize;
1950 #ifdef CONFIG_SLUB_STATS
1951 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1952 #endif
1953 }
1954
1955 static void init_kmem_cache_node(struct kmem_cache_node *n)
1956 {
1957 n->nr_partial = 0;
1958 spin_lock_init(&n->list_lock);
1959 INIT_LIST_HEAD(&n->partial);
1960 #ifdef CONFIG_SLUB_DEBUG
1961 atomic_long_set(&n->nr_slabs, 0);
1962 INIT_LIST_HEAD(&n->full);
1963 #endif
1964 }
1965
1966 #ifdef CONFIG_SMP
1967 /*
1968 * Per cpu array for per cpu structures.
1969 *
1970 * The per cpu array places all kmem_cache_cpu structures from one processor
1971 * close together meaning that it becomes possible that multiple per cpu
1972 * structures are contained in one cacheline. This may be particularly
1973 * beneficial for the kmalloc caches.
1974 *
1975 * A desktop system typically has around 60-80 slabs. With 100 here we are
1976 * likely able to get per cpu structures for all caches from the array defined
1977 * here. We must be able to cover all kmalloc caches during bootstrap.
1978 *
1979 * If the per cpu array is exhausted then fall back to kmalloc
1980 * of individual cachelines. No sharing is possible then.
1981 */
1982 #define NR_KMEM_CACHE_CPU 100
1983
1984 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1985 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1986
1987 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1988 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1989
1990 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1991 int cpu, gfp_t flags)
1992 {
1993 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1994
1995 if (c)
1996 per_cpu(kmem_cache_cpu_free, cpu) =
1997 (void *)c->freelist;
1998 else {
1999 /* Table overflow: So allocate ourselves */
2000 c = kmalloc_node(
2001 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2002 flags, cpu_to_node(cpu));
2003 if (!c)
2004 return NULL;
2005 }
2006
2007 init_kmem_cache_cpu(s, c);
2008 return c;
2009 }
2010
2011 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2012 {
2013 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2014 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2015 kfree(c);
2016 return;
2017 }
2018 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2019 per_cpu(kmem_cache_cpu_free, cpu) = c;
2020 }
2021
2022 static void free_kmem_cache_cpus(struct kmem_cache *s)
2023 {
2024 int cpu;
2025
2026 for_each_online_cpu(cpu) {
2027 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2028
2029 if (c) {
2030 s->cpu_slab[cpu] = NULL;
2031 free_kmem_cache_cpu(c, cpu);
2032 }
2033 }
2034 }
2035
2036 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2037 {
2038 int cpu;
2039
2040 for_each_online_cpu(cpu) {
2041 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2042
2043 if (c)
2044 continue;
2045
2046 c = alloc_kmem_cache_cpu(s, cpu, flags);
2047 if (!c) {
2048 free_kmem_cache_cpus(s);
2049 return 0;
2050 }
2051 s->cpu_slab[cpu] = c;
2052 }
2053 return 1;
2054 }
2055
2056 /*
2057 * Initialize the per cpu array.
2058 */
2059 static void init_alloc_cpu_cpu(int cpu)
2060 {
2061 int i;
2062
2063 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2064 return;
2065
2066 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2067 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2068
2069 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2070 }
2071
2072 static void __init init_alloc_cpu(void)
2073 {
2074 int cpu;
2075
2076 for_each_online_cpu(cpu)
2077 init_alloc_cpu_cpu(cpu);
2078 }
2079
2080 #else
2081 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2082 static inline void init_alloc_cpu(void) {}
2083
2084 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2085 {
2086 init_kmem_cache_cpu(s, &s->cpu_slab);
2087 return 1;
2088 }
2089 #endif
2090
2091 #ifdef CONFIG_NUMA
2092 /*
2093 * No kmalloc_node yet so do it by hand. We know that this is the first
2094 * slab on the node for this slabcache. There are no concurrent accesses
2095 * possible.
2096 *
2097 * Note that this function only works on the kmalloc_node_cache
2098 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2099 * memory on a fresh node that has no slab structures yet.
2100 */
2101 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2102 int node)
2103 {
2104 struct page *page;
2105 struct kmem_cache_node *n;
2106 unsigned long flags;
2107
2108 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2109
2110 page = new_slab(kmalloc_caches, gfpflags, node);
2111
2112 BUG_ON(!page);
2113 if (page_to_nid(page) != node) {
2114 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2115 "node %d\n", node);
2116 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2117 "in order to be able to continue\n");
2118 }
2119
2120 n = page->freelist;
2121 BUG_ON(!n);
2122 page->freelist = get_freepointer(kmalloc_caches, n);
2123 page->inuse++;
2124 kmalloc_caches->node[node] = n;
2125 #ifdef CONFIG_SLUB_DEBUG
2126 init_object(kmalloc_caches, n, 1);
2127 init_tracking(kmalloc_caches, n);
2128 #endif
2129 init_kmem_cache_node(n);
2130 inc_slabs_node(kmalloc_caches, node, page->objects);
2131
2132 /*
2133 * lockdep requires consistent irq usage for each lock
2134 * so even though there cannot be a race this early in
2135 * the boot sequence, we still disable irqs.
2136 */
2137 local_irq_save(flags);
2138 add_partial(n, page, 0);
2139 local_irq_restore(flags);
2140 return n;
2141 }
2142
2143 static void free_kmem_cache_nodes(struct kmem_cache *s)
2144 {
2145 int node;
2146
2147 for_each_node_state(node, N_NORMAL_MEMORY) {
2148 struct kmem_cache_node *n = s->node[node];
2149 if (n && n != &s->local_node)
2150 kmem_cache_free(kmalloc_caches, n);
2151 s->node[node] = NULL;
2152 }
2153 }
2154
2155 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2156 {
2157 int node;
2158 int local_node;
2159
2160 if (slab_state >= UP)
2161 local_node = page_to_nid(virt_to_page(s));
2162 else
2163 local_node = 0;
2164
2165 for_each_node_state(node, N_NORMAL_MEMORY) {
2166 struct kmem_cache_node *n;
2167
2168 if (local_node == node)
2169 n = &s->local_node;
2170 else {
2171 if (slab_state == DOWN) {
2172 n = early_kmem_cache_node_alloc(gfpflags,
2173 node);
2174 continue;
2175 }
2176 n = kmem_cache_alloc_node(kmalloc_caches,
2177 gfpflags, node);
2178
2179 if (!n) {
2180 free_kmem_cache_nodes(s);
2181 return 0;
2182 }
2183
2184 }
2185 s->node[node] = n;
2186 init_kmem_cache_node(n);
2187 }
2188 return 1;
2189 }
2190 #else
2191 static void free_kmem_cache_nodes(struct kmem_cache *s)
2192 {
2193 }
2194
2195 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2196 {
2197 init_kmem_cache_node(&s->local_node);
2198 return 1;
2199 }
2200 #endif
2201
2202 /*
2203 * calculate_sizes() determines the order and the distribution of data within
2204 * a slab object.
2205 */
2206 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2207 {
2208 unsigned long flags = s->flags;
2209 unsigned long size = s->objsize;
2210 unsigned long align = s->align;
2211 int order;
2212
2213 /*
2214 * Round up object size to the next word boundary. We can only
2215 * place the free pointer at word boundaries and this determines
2216 * the possible location of the free pointer.
2217 */
2218 size = ALIGN(size, sizeof(void *));
2219
2220 #ifdef CONFIG_SLUB_DEBUG
2221 /*
2222 * Determine if we can poison the object itself. If the user of
2223 * the slab may touch the object after free or before allocation
2224 * then we should never poison the object itself.
2225 */
2226 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2227 !s->ctor)
2228 s->flags |= __OBJECT_POISON;
2229 else
2230 s->flags &= ~__OBJECT_POISON;
2231
2232
2233 /*
2234 * If we are Redzoning then check if there is some space between the
2235 * end of the object and the free pointer. If not then add an
2236 * additional word to have some bytes to store Redzone information.
2237 */
2238 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2239 size += sizeof(void *);
2240 #endif
2241
2242 /*
2243 * With that we have determined the number of bytes in actual use
2244 * by the object. This is the potential offset to the free pointer.
2245 */
2246 s->inuse = size;
2247
2248 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2249 s->ctor)) {
2250 /*
2251 * Relocate free pointer after the object if it is not
2252 * permitted to overwrite the first word of the object on
2253 * kmem_cache_free.
2254 *
2255 * This is the case if we do RCU, have a constructor or
2256 * destructor or are poisoning the objects.
2257 */
2258 s->offset = size;
2259 size += sizeof(void *);
2260 }
2261
2262 #ifdef CONFIG_SLUB_DEBUG
2263 if (flags & SLAB_STORE_USER)
2264 /*
2265 * Need to store information about allocs and frees after
2266 * the object.
2267 */
2268 size += 2 * sizeof(struct track);
2269
2270 if (flags & SLAB_RED_ZONE)
2271 /*
2272 * Add some empty padding so that we can catch
2273 * overwrites from earlier objects rather than let
2274 * tracking information or the free pointer be
2275 * corrupted if an user writes before the start
2276 * of the object.
2277 */
2278 size += sizeof(void *);
2279 #endif
2280
2281 /*
2282 * Determine the alignment based on various parameters that the
2283 * user specified and the dynamic determination of cache line size
2284 * on bootup.
2285 */
2286 align = calculate_alignment(flags, align, s->objsize);
2287
2288 /*
2289 * SLUB stores one object immediately after another beginning from
2290 * offset 0. In order to align the objects we have to simply size
2291 * each object to conform to the alignment.
2292 */
2293 size = ALIGN(size, align);
2294 s->size = size;
2295 if (forced_order >= 0)
2296 order = forced_order;
2297 else
2298 order = calculate_order(size);
2299
2300 if (order < 0)
2301 return 0;
2302
2303 s->allocflags = 0;
2304 if (order)
2305 s->allocflags |= __GFP_COMP;
2306
2307 if (s->flags & SLAB_CACHE_DMA)
2308 s->allocflags |= SLUB_DMA;
2309
2310 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2311 s->allocflags |= __GFP_RECLAIMABLE;
2312
2313 /*
2314 * Determine the number of objects per slab
2315 */
2316 s->oo = oo_make(order, size);
2317 s->min = oo_make(get_order(size), size);
2318 if (oo_objects(s->oo) > oo_objects(s->max))
2319 s->max = s->oo;
2320
2321 return !!oo_objects(s->oo);
2322
2323 }
2324
2325 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2326 const char *name, size_t size,
2327 size_t align, unsigned long flags,
2328 void (*ctor)(struct kmem_cache *, void *))
2329 {
2330 memset(s, 0, kmem_size);
2331 s->name = name;
2332 s->ctor = ctor;
2333 s->objsize = size;
2334 s->align = align;
2335 s->flags = kmem_cache_flags(size, flags, name, ctor);
2336
2337 if (!calculate_sizes(s, -1))
2338 goto error;
2339
2340 s->refcount = 1;
2341 #ifdef CONFIG_NUMA
2342 s->remote_node_defrag_ratio = 100;
2343 #endif
2344 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2345 goto error;
2346
2347 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2348 return 1;
2349 free_kmem_cache_nodes(s);
2350 error:
2351 if (flags & SLAB_PANIC)
2352 panic("Cannot create slab %s size=%lu realsize=%u "
2353 "order=%u offset=%u flags=%lx\n",
2354 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2355 s->offset, flags);
2356 return 0;
2357 }
2358
2359 /*
2360 * Check if a given pointer is valid
2361 */
2362 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2363 {
2364 struct page *page;
2365
2366 page = get_object_page(object);
2367
2368 if (!page || s != page->slab)
2369 /* No slab or wrong slab */
2370 return 0;
2371
2372 if (!check_valid_pointer(s, page, object))
2373 return 0;
2374
2375 /*
2376 * We could also check if the object is on the slabs freelist.
2377 * But this would be too expensive and it seems that the main
2378 * purpose of kmem_ptr_valid() is to check if the object belongs
2379 * to a certain slab.
2380 */
2381 return 1;
2382 }
2383 EXPORT_SYMBOL(kmem_ptr_validate);
2384
2385 /*
2386 * Determine the size of a slab object
2387 */
2388 unsigned int kmem_cache_size(struct kmem_cache *s)
2389 {
2390 return s->objsize;
2391 }
2392 EXPORT_SYMBOL(kmem_cache_size);
2393
2394 const char *kmem_cache_name(struct kmem_cache *s)
2395 {
2396 return s->name;
2397 }
2398 EXPORT_SYMBOL(kmem_cache_name);
2399
2400 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2401 const char *text)
2402 {
2403 #ifdef CONFIG_SLUB_DEBUG
2404 void *addr = page_address(page);
2405 void *p;
2406 DECLARE_BITMAP(map, page->objects);
2407
2408 bitmap_zero(map, page->objects);
2409 slab_err(s, page, "%s", text);
2410 slab_lock(page);
2411 for_each_free_object(p, s, page->freelist)
2412 set_bit(slab_index(p, s, addr), map);
2413
2414 for_each_object(p, s, addr, page->objects) {
2415
2416 if (!test_bit(slab_index(p, s, addr), map)) {
2417 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2418 p, p - addr);
2419 print_tracking(s, p);
2420 }
2421 }
2422 slab_unlock(page);
2423 #endif
2424 }
2425
2426 /*
2427 * Attempt to free all partial slabs on a node.
2428 */
2429 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2430 {
2431 unsigned long flags;
2432 struct page *page, *h;
2433
2434 spin_lock_irqsave(&n->list_lock, flags);
2435 list_for_each_entry_safe(page, h, &n->partial, lru) {
2436 if (!page->inuse) {
2437 list_del(&page->lru);
2438 discard_slab(s, page);
2439 n->nr_partial--;
2440 } else {
2441 list_slab_objects(s, page,
2442 "Objects remaining on kmem_cache_close()");
2443 }
2444 }
2445 spin_unlock_irqrestore(&n->list_lock, flags);
2446 }
2447
2448 /*
2449 * Release all resources used by a slab cache.
2450 */
2451 static inline int kmem_cache_close(struct kmem_cache *s)
2452 {
2453 int node;
2454
2455 flush_all(s);
2456
2457 /* Attempt to free all objects */
2458 free_kmem_cache_cpus(s);
2459 for_each_node_state(node, N_NORMAL_MEMORY) {
2460 struct kmem_cache_node *n = get_node(s, node);
2461
2462 free_partial(s, n);
2463 if (n->nr_partial || slabs_node(s, node))
2464 return 1;
2465 }
2466 free_kmem_cache_nodes(s);
2467 return 0;
2468 }
2469
2470 /*
2471 * Close a cache and release the kmem_cache structure
2472 * (must be used for caches created using kmem_cache_create)
2473 */
2474 void kmem_cache_destroy(struct kmem_cache *s)
2475 {
2476 down_write(&slub_lock);
2477 s->refcount--;
2478 if (!s->refcount) {
2479 list_del(&s->list);
2480 up_write(&slub_lock);
2481 if (kmem_cache_close(s)) {
2482 printk(KERN_ERR "SLUB %s: %s called for cache that "
2483 "still has objects.\n", s->name, __func__);
2484 dump_stack();
2485 }
2486 sysfs_slab_remove(s);
2487 } else
2488 up_write(&slub_lock);
2489 }
2490 EXPORT_SYMBOL(kmem_cache_destroy);
2491
2492 /********************************************************************
2493 * Kmalloc subsystem
2494 *******************************************************************/
2495
2496 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2497 EXPORT_SYMBOL(kmalloc_caches);
2498
2499 static int __init setup_slub_min_order(char *str)
2500 {
2501 get_option(&str, &slub_min_order);
2502
2503 return 1;
2504 }
2505
2506 __setup("slub_min_order=", setup_slub_min_order);
2507
2508 static int __init setup_slub_max_order(char *str)
2509 {
2510 get_option(&str, &slub_max_order);
2511
2512 return 1;
2513 }
2514
2515 __setup("slub_max_order=", setup_slub_max_order);
2516
2517 static int __init setup_slub_min_objects(char *str)
2518 {
2519 get_option(&str, &slub_min_objects);
2520
2521 return 1;
2522 }
2523
2524 __setup("slub_min_objects=", setup_slub_min_objects);
2525
2526 static int __init setup_slub_nomerge(char *str)
2527 {
2528 slub_nomerge = 1;
2529 return 1;
2530 }
2531
2532 __setup("slub_nomerge", setup_slub_nomerge);
2533
2534 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2535 const char *name, int size, gfp_t gfp_flags)
2536 {
2537 unsigned int flags = 0;
2538
2539 if (gfp_flags & SLUB_DMA)
2540 flags = SLAB_CACHE_DMA;
2541
2542 down_write(&slub_lock);
2543 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2544 flags, NULL))
2545 goto panic;
2546
2547 list_add(&s->list, &slab_caches);
2548 up_write(&slub_lock);
2549 if (sysfs_slab_add(s))
2550 goto panic;
2551 return s;
2552
2553 panic:
2554 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2555 }
2556
2557 #ifdef CONFIG_ZONE_DMA
2558 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2559
2560 static void sysfs_add_func(struct work_struct *w)
2561 {
2562 struct kmem_cache *s;
2563
2564 down_write(&slub_lock);
2565 list_for_each_entry(s, &slab_caches, list) {
2566 if (s->flags & __SYSFS_ADD_DEFERRED) {
2567 s->flags &= ~__SYSFS_ADD_DEFERRED;
2568 sysfs_slab_add(s);
2569 }
2570 }
2571 up_write(&slub_lock);
2572 }
2573
2574 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2575
2576 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2577 {
2578 struct kmem_cache *s;
2579 char *text;
2580 size_t realsize;
2581
2582 s = kmalloc_caches_dma[index];
2583 if (s)
2584 return s;
2585
2586 /* Dynamically create dma cache */
2587 if (flags & __GFP_WAIT)
2588 down_write(&slub_lock);
2589 else {
2590 if (!down_write_trylock(&slub_lock))
2591 goto out;
2592 }
2593
2594 if (kmalloc_caches_dma[index])
2595 goto unlock_out;
2596
2597 realsize = kmalloc_caches[index].objsize;
2598 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2599 (unsigned int)realsize);
2600 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2601
2602 if (!s || !text || !kmem_cache_open(s, flags, text,
2603 realsize, ARCH_KMALLOC_MINALIGN,
2604 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2605 kfree(s);
2606 kfree(text);
2607 goto unlock_out;
2608 }
2609
2610 list_add(&s->list, &slab_caches);
2611 kmalloc_caches_dma[index] = s;
2612
2613 schedule_work(&sysfs_add_work);
2614
2615 unlock_out:
2616 up_write(&slub_lock);
2617 out:
2618 return kmalloc_caches_dma[index];
2619 }
2620 #endif
2621
2622 /*
2623 * Conversion table for small slabs sizes / 8 to the index in the
2624 * kmalloc array. This is necessary for slabs < 192 since we have non power
2625 * of two cache sizes there. The size of larger slabs can be determined using
2626 * fls.
2627 */
2628 static s8 size_index[24] = {
2629 3, /* 8 */
2630 4, /* 16 */
2631 5, /* 24 */
2632 5, /* 32 */
2633 6, /* 40 */
2634 6, /* 48 */
2635 6, /* 56 */
2636 6, /* 64 */
2637 1, /* 72 */
2638 1, /* 80 */
2639 1, /* 88 */
2640 1, /* 96 */
2641 7, /* 104 */
2642 7, /* 112 */
2643 7, /* 120 */
2644 7, /* 128 */
2645 2, /* 136 */
2646 2, /* 144 */
2647 2, /* 152 */
2648 2, /* 160 */
2649 2, /* 168 */
2650 2, /* 176 */
2651 2, /* 184 */
2652 2 /* 192 */
2653 };
2654
2655 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2656 {
2657 int index;
2658
2659 if (size <= 192) {
2660 if (!size)
2661 return ZERO_SIZE_PTR;
2662
2663 index = size_index[(size - 1) / 8];
2664 } else
2665 index = fls(size - 1);
2666
2667 #ifdef CONFIG_ZONE_DMA
2668 if (unlikely((flags & SLUB_DMA)))
2669 return dma_kmalloc_cache(index, flags);
2670
2671 #endif
2672 return &kmalloc_caches[index];
2673 }
2674
2675 void *__kmalloc(size_t size, gfp_t flags)
2676 {
2677 struct kmem_cache *s;
2678
2679 if (unlikely(size > PAGE_SIZE))
2680 return kmalloc_large(size, flags);
2681
2682 s = get_slab(size, flags);
2683
2684 if (unlikely(ZERO_OR_NULL_PTR(s)))
2685 return s;
2686
2687 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2688 }
2689 EXPORT_SYMBOL(__kmalloc);
2690
2691 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2692 {
2693 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2694 get_order(size));
2695
2696 if (page)
2697 return page_address(page);
2698 else
2699 return NULL;
2700 }
2701
2702 #ifdef CONFIG_NUMA
2703 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2704 {
2705 struct kmem_cache *s;
2706
2707 if (unlikely(size > PAGE_SIZE))
2708 return kmalloc_large_node(size, flags, node);
2709
2710 s = get_slab(size, flags);
2711
2712 if (unlikely(ZERO_OR_NULL_PTR(s)))
2713 return s;
2714
2715 return slab_alloc(s, flags, node, __builtin_return_address(0));
2716 }
2717 EXPORT_SYMBOL(__kmalloc_node);
2718 #endif
2719
2720 size_t ksize(const void *object)
2721 {
2722 struct page *page;
2723 struct kmem_cache *s;
2724
2725 if (unlikely(object == ZERO_SIZE_PTR))
2726 return 0;
2727
2728 page = virt_to_head_page(object);
2729
2730 if (unlikely(!PageSlab(page))) {
2731 WARN_ON(!PageCompound(page));
2732 return PAGE_SIZE << compound_order(page);
2733 }
2734 s = page->slab;
2735
2736 #ifdef CONFIG_SLUB_DEBUG
2737 /*
2738 * Debugging requires use of the padding between object
2739 * and whatever may come after it.
2740 */
2741 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742 return s->objsize;
2743
2744 #endif
2745 /*
2746 * If we have the need to store the freelist pointer
2747 * back there or track user information then we can
2748 * only use the space before that information.
2749 */
2750 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751 return s->inuse;
2752 /*
2753 * Else we can use all the padding etc for the allocation
2754 */
2755 return s->size;
2756 }
2757 EXPORT_SYMBOL(ksize);
2758
2759 void kfree(const void *x)
2760 {
2761 struct page *page;
2762 void *object = (void *)x;
2763
2764 if (unlikely(ZERO_OR_NULL_PTR(x)))
2765 return;
2766
2767 page = virt_to_head_page(x);
2768 if (unlikely(!PageSlab(page))) {
2769 put_page(page);
2770 return;
2771 }
2772 slab_free(page->slab, page, object, __builtin_return_address(0));
2773 }
2774 EXPORT_SYMBOL(kfree);
2775
2776 /*
2777 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2778 * the remaining slabs by the number of items in use. The slabs with the
2779 * most items in use come first. New allocations will then fill those up
2780 * and thus they can be removed from the partial lists.
2781 *
2782 * The slabs with the least items are placed last. This results in them
2783 * being allocated from last increasing the chance that the last objects
2784 * are freed in them.
2785 */
2786 int kmem_cache_shrink(struct kmem_cache *s)
2787 {
2788 int node;
2789 int i;
2790 struct kmem_cache_node *n;
2791 struct page *page;
2792 struct page *t;
2793 int objects = oo_objects(s->max);
2794 struct list_head *slabs_by_inuse =
2795 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2796 unsigned long flags;
2797
2798 if (!slabs_by_inuse)
2799 return -ENOMEM;
2800
2801 flush_all(s);
2802 for_each_node_state(node, N_NORMAL_MEMORY) {
2803 n = get_node(s, node);
2804
2805 if (!n->nr_partial)
2806 continue;
2807
2808 for (i = 0; i < objects; i++)
2809 INIT_LIST_HEAD(slabs_by_inuse + i);
2810
2811 spin_lock_irqsave(&n->list_lock, flags);
2812
2813 /*
2814 * Build lists indexed by the items in use in each slab.
2815 *
2816 * Note that concurrent frees may occur while we hold the
2817 * list_lock. page->inuse here is the upper limit.
2818 */
2819 list_for_each_entry_safe(page, t, &n->partial, lru) {
2820 if (!page->inuse && slab_trylock(page)) {
2821 /*
2822 * Must hold slab lock here because slab_free
2823 * may have freed the last object and be
2824 * waiting to release the slab.
2825 */
2826 list_del(&page->lru);
2827 n->nr_partial--;
2828 slab_unlock(page);
2829 discard_slab(s, page);
2830 } else {
2831 list_move(&page->lru,
2832 slabs_by_inuse + page->inuse);
2833 }
2834 }
2835
2836 /*
2837 * Rebuild the partial list with the slabs filled up most
2838 * first and the least used slabs at the end.
2839 */
2840 for (i = objects - 1; i >= 0; i--)
2841 list_splice(slabs_by_inuse + i, n->partial.prev);
2842
2843 spin_unlock_irqrestore(&n->list_lock, flags);
2844 }
2845
2846 kfree(slabs_by_inuse);
2847 return 0;
2848 }
2849 EXPORT_SYMBOL(kmem_cache_shrink);
2850
2851 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2852 static int slab_mem_going_offline_callback(void *arg)
2853 {
2854 struct kmem_cache *s;
2855
2856 down_read(&slub_lock);
2857 list_for_each_entry(s, &slab_caches, list)
2858 kmem_cache_shrink(s);
2859 up_read(&slub_lock);
2860
2861 return 0;
2862 }
2863
2864 static void slab_mem_offline_callback(void *arg)
2865 {
2866 struct kmem_cache_node *n;
2867 struct kmem_cache *s;
2868 struct memory_notify *marg = arg;
2869 int offline_node;
2870
2871 offline_node = marg->status_change_nid;
2872
2873 /*
2874 * If the node still has available memory. we need kmem_cache_node
2875 * for it yet.
2876 */
2877 if (offline_node < 0)
2878 return;
2879
2880 down_read(&slub_lock);
2881 list_for_each_entry(s, &slab_caches, list) {
2882 n = get_node(s, offline_node);
2883 if (n) {
2884 /*
2885 * if n->nr_slabs > 0, slabs still exist on the node
2886 * that is going down. We were unable to free them,
2887 * and offline_pages() function shoudn't call this
2888 * callback. So, we must fail.
2889 */
2890 BUG_ON(slabs_node(s, offline_node));
2891
2892 s->node[offline_node] = NULL;
2893 kmem_cache_free(kmalloc_caches, n);
2894 }
2895 }
2896 up_read(&slub_lock);
2897 }
2898
2899 static int slab_mem_going_online_callback(void *arg)
2900 {
2901 struct kmem_cache_node *n;
2902 struct kmem_cache *s;
2903 struct memory_notify *marg = arg;
2904 int nid = marg->status_change_nid;
2905 int ret = 0;
2906
2907 /*
2908 * If the node's memory is already available, then kmem_cache_node is
2909 * already created. Nothing to do.
2910 */
2911 if (nid < 0)
2912 return 0;
2913
2914 /*
2915 * We are bringing a node online. No memory is available yet. We must
2916 * allocate a kmem_cache_node structure in order to bring the node
2917 * online.
2918 */
2919 down_read(&slub_lock);
2920 list_for_each_entry(s, &slab_caches, list) {
2921 /*
2922 * XXX: kmem_cache_alloc_node will fallback to other nodes
2923 * since memory is not yet available from the node that
2924 * is brought up.
2925 */
2926 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2927 if (!n) {
2928 ret = -ENOMEM;
2929 goto out;
2930 }
2931 init_kmem_cache_node(n);
2932 s->node[nid] = n;
2933 }
2934 out:
2935 up_read(&slub_lock);
2936 return ret;
2937 }
2938
2939 static int slab_memory_callback(struct notifier_block *self,
2940 unsigned long action, void *arg)
2941 {
2942 int ret = 0;
2943
2944 switch (action) {
2945 case MEM_GOING_ONLINE:
2946 ret = slab_mem_going_online_callback(arg);
2947 break;
2948 case MEM_GOING_OFFLINE:
2949 ret = slab_mem_going_offline_callback(arg);
2950 break;
2951 case MEM_OFFLINE:
2952 case MEM_CANCEL_ONLINE:
2953 slab_mem_offline_callback(arg);
2954 break;
2955 case MEM_ONLINE:
2956 case MEM_CANCEL_OFFLINE:
2957 break;
2958 }
2959
2960 ret = notifier_from_errno(ret);
2961 return ret;
2962 }
2963
2964 #endif /* CONFIG_MEMORY_HOTPLUG */
2965
2966 /********************************************************************
2967 * Basic setup of slabs
2968 *******************************************************************/
2969
2970 void __init kmem_cache_init(void)
2971 {
2972 int i;
2973 int caches = 0;
2974
2975 init_alloc_cpu();
2976
2977 #ifdef CONFIG_NUMA
2978 /*
2979 * Must first have the slab cache available for the allocations of the
2980 * struct kmem_cache_node's. There is special bootstrap code in
2981 * kmem_cache_open for slab_state == DOWN.
2982 */
2983 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2984 sizeof(struct kmem_cache_node), GFP_KERNEL);
2985 kmalloc_caches[0].refcount = -1;
2986 caches++;
2987
2988 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2989 #endif
2990
2991 /* Able to allocate the per node structures */
2992 slab_state = PARTIAL;
2993
2994 /* Caches that are not of the two-to-the-power-of size */
2995 if (KMALLOC_MIN_SIZE <= 64) {
2996 create_kmalloc_cache(&kmalloc_caches[1],
2997 "kmalloc-96", 96, GFP_KERNEL);
2998 caches++;
2999 create_kmalloc_cache(&kmalloc_caches[2],
3000 "kmalloc-192", 192, GFP_KERNEL);
3001 caches++;
3002 }
3003
3004 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3005 create_kmalloc_cache(&kmalloc_caches[i],
3006 "kmalloc", 1 << i, GFP_KERNEL);
3007 caches++;
3008 }
3009
3010
3011 /*
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
3014 * MIPS it seems. The standard arches will not generate any code here.
3015 *
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3018 *
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3021 */
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3023 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3024
3025 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3026 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3027
3028 if (KMALLOC_MIN_SIZE == 128) {
3029 /*
3030 * The 192 byte sized cache is not used if the alignment
3031 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3032 * instead.
3033 */
3034 for (i = 128 + 8; i <= 192; i += 8)
3035 size_index[(i - 1) / 8] = 8;
3036 }
3037
3038 slab_state = UP;
3039
3040 /* Provide the correct kmalloc names now that the caches are up */
3041 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3042 kmalloc_caches[i]. name =
3043 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3044
3045 #ifdef CONFIG_SMP
3046 register_cpu_notifier(&slab_notifier);
3047 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3048 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3049 #else
3050 kmem_size = sizeof(struct kmem_cache);
3051 #endif
3052
3053 printk(KERN_INFO
3054 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3055 " CPUs=%d, Nodes=%d\n",
3056 caches, cache_line_size(),
3057 slub_min_order, slub_max_order, slub_min_objects,
3058 nr_cpu_ids, nr_node_ids);
3059 }
3060
3061 /*
3062 * Find a mergeable slab cache
3063 */
3064 static int slab_unmergeable(struct kmem_cache *s)
3065 {
3066 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3067 return 1;
3068
3069 if (s->ctor)
3070 return 1;
3071
3072 /*
3073 * We may have set a slab to be unmergeable during bootstrap.
3074 */
3075 if (s->refcount < 0)
3076 return 1;
3077
3078 return 0;
3079 }
3080
3081 static struct kmem_cache *find_mergeable(size_t size,
3082 size_t align, unsigned long flags, const char *name,
3083 void (*ctor)(struct kmem_cache *, void *))
3084 {
3085 struct kmem_cache *s;
3086
3087 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3088 return NULL;
3089
3090 if (ctor)
3091 return NULL;
3092
3093 size = ALIGN(size, sizeof(void *));
3094 align = calculate_alignment(flags, align, size);
3095 size = ALIGN(size, align);
3096 flags = kmem_cache_flags(size, flags, name, NULL);
3097
3098 list_for_each_entry(s, &slab_caches, list) {
3099 if (slab_unmergeable(s))
3100 continue;
3101
3102 if (size > s->size)
3103 continue;
3104
3105 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3106 continue;
3107 /*
3108 * Check if alignment is compatible.
3109 * Courtesy of Adrian Drzewiecki
3110 */
3111 if ((s->size & ~(align - 1)) != s->size)
3112 continue;
3113
3114 if (s->size - size >= sizeof(void *))
3115 continue;
3116
3117 return s;
3118 }
3119 return NULL;
3120 }
3121
3122 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3123 size_t align, unsigned long flags,
3124 void (*ctor)(struct kmem_cache *, void *))
3125 {
3126 struct kmem_cache *s;
3127
3128 down_write(&slub_lock);
3129 s = find_mergeable(size, align, flags, name, ctor);
3130 if (s) {
3131 int cpu;
3132
3133 s->refcount++;
3134 /*
3135 * Adjust the object sizes so that we clear
3136 * the complete object on kzalloc.
3137 */
3138 s->objsize = max(s->objsize, (int)size);
3139
3140 /*
3141 * And then we need to update the object size in the
3142 * per cpu structures
3143 */
3144 for_each_online_cpu(cpu)
3145 get_cpu_slab(s, cpu)->objsize = s->objsize;
3146
3147 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3148 up_write(&slub_lock);
3149
3150 if (sysfs_slab_alias(s, name))
3151 goto err;
3152 return s;
3153 }
3154
3155 s = kmalloc(kmem_size, GFP_KERNEL);
3156 if (s) {
3157 if (kmem_cache_open(s, GFP_KERNEL, name,
3158 size, align, flags, ctor)) {
3159 list_add(&s->list, &slab_caches);
3160 up_write(&slub_lock);
3161 if (sysfs_slab_add(s))
3162 goto err;
3163 return s;
3164 }
3165 kfree(s);
3166 }
3167 up_write(&slub_lock);
3168
3169 err:
3170 if (flags & SLAB_PANIC)
3171 panic("Cannot create slabcache %s\n", name);
3172 else
3173 s = NULL;
3174 return s;
3175 }
3176 EXPORT_SYMBOL(kmem_cache_create);
3177
3178 #ifdef CONFIG_SMP
3179 /*
3180 * Use the cpu notifier to insure that the cpu slabs are flushed when
3181 * necessary.
3182 */
3183 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3184 unsigned long action, void *hcpu)
3185 {
3186 long cpu = (long)hcpu;
3187 struct kmem_cache *s;
3188 unsigned long flags;
3189
3190 switch (action) {
3191 case CPU_UP_PREPARE:
3192 case CPU_UP_PREPARE_FROZEN:
3193 init_alloc_cpu_cpu(cpu);
3194 down_read(&slub_lock);
3195 list_for_each_entry(s, &slab_caches, list)
3196 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3197 GFP_KERNEL);
3198 up_read(&slub_lock);
3199 break;
3200
3201 case CPU_UP_CANCELED:
3202 case CPU_UP_CANCELED_FROZEN:
3203 case CPU_DEAD:
3204 case CPU_DEAD_FROZEN:
3205 down_read(&slub_lock);
3206 list_for_each_entry(s, &slab_caches, list) {
3207 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3208
3209 local_irq_save(flags);
3210 __flush_cpu_slab(s, cpu);
3211 local_irq_restore(flags);
3212 free_kmem_cache_cpu(c, cpu);
3213 s->cpu_slab[cpu] = NULL;
3214 }
3215 up_read(&slub_lock);
3216 break;
3217 default:
3218 break;
3219 }
3220 return NOTIFY_OK;
3221 }
3222
3223 static struct notifier_block __cpuinitdata slab_notifier = {
3224 .notifier_call = slab_cpuup_callback
3225 };
3226
3227 #endif
3228
3229 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3230 {
3231 struct kmem_cache *s;
3232
3233 if (unlikely(size > PAGE_SIZE))
3234 return kmalloc_large(size, gfpflags);
3235
3236 s = get_slab(size, gfpflags);
3237
3238 if (unlikely(ZERO_OR_NULL_PTR(s)))
3239 return s;
3240
3241 return slab_alloc(s, gfpflags, -1, caller);
3242 }
3243
3244 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3245 int node, void *caller)
3246 {
3247 struct kmem_cache *s;
3248
3249 if (unlikely(size > PAGE_SIZE))
3250 return kmalloc_large_node(size, gfpflags, node);
3251
3252 s = get_slab(size, gfpflags);
3253
3254 if (unlikely(ZERO_OR_NULL_PTR(s)))
3255 return s;
3256
3257 return slab_alloc(s, gfpflags, node, caller);
3258 }
3259
3260 #ifdef CONFIG_SLUB_DEBUG
3261 static unsigned long count_partial(struct kmem_cache_node *n,
3262 int (*get_count)(struct page *))
3263 {
3264 unsigned long flags;
3265 unsigned long x = 0;
3266 struct page *page;
3267
3268 spin_lock_irqsave(&n->list_lock, flags);
3269 list_for_each_entry(page, &n->partial, lru)
3270 x += get_count(page);
3271 spin_unlock_irqrestore(&n->list_lock, flags);
3272 return x;
3273 }
3274
3275 static int count_inuse(struct page *page)
3276 {
3277 return page->inuse;
3278 }
3279
3280 static int count_total(struct page *page)
3281 {
3282 return page->objects;
3283 }
3284
3285 static int count_free(struct page *page)
3286 {
3287 return page->objects - page->inuse;
3288 }
3289
3290 static int validate_slab(struct kmem_cache *s, struct page *page,
3291 unsigned long *map)
3292 {
3293 void *p;
3294 void *addr = page_address(page);
3295
3296 if (!check_slab(s, page) ||
3297 !on_freelist(s, page, NULL))
3298 return 0;
3299
3300 /* Now we know that a valid freelist exists */
3301 bitmap_zero(map, page->objects);
3302
3303 for_each_free_object(p, s, page->freelist) {
3304 set_bit(slab_index(p, s, addr), map);
3305 if (!check_object(s, page, p, 0))
3306 return 0;
3307 }
3308
3309 for_each_object(p, s, addr, page->objects)
3310 if (!test_bit(slab_index(p, s, addr), map))
3311 if (!check_object(s, page, p, 1))
3312 return 0;
3313 return 1;
3314 }
3315
3316 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3317 unsigned long *map)
3318 {
3319 if (slab_trylock(page)) {
3320 validate_slab(s, page, map);
3321 slab_unlock(page);
3322 } else
3323 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3324 s->name, page);
3325
3326 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3327 if (!SlabDebug(page))
3328 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3329 "on slab 0x%p\n", s->name, page);
3330 } else {
3331 if (SlabDebug(page))
3332 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3333 "slab 0x%p\n", s->name, page);
3334 }
3335 }
3336
3337 static int validate_slab_node(struct kmem_cache *s,
3338 struct kmem_cache_node *n, unsigned long *map)
3339 {
3340 unsigned long count = 0;
3341 struct page *page;
3342 unsigned long flags;
3343
3344 spin_lock_irqsave(&n->list_lock, flags);
3345
3346 list_for_each_entry(page, &n->partial, lru) {
3347 validate_slab_slab(s, page, map);
3348 count++;
3349 }
3350 if (count != n->nr_partial)
3351 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3352 "counter=%ld\n", s->name, count, n->nr_partial);
3353
3354 if (!(s->flags & SLAB_STORE_USER))
3355 goto out;
3356
3357 list_for_each_entry(page, &n->full, lru) {
3358 validate_slab_slab(s, page, map);
3359 count++;
3360 }
3361 if (count != atomic_long_read(&n->nr_slabs))
3362 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3363 "counter=%ld\n", s->name, count,
3364 atomic_long_read(&n->nr_slabs));
3365
3366 out:
3367 spin_unlock_irqrestore(&n->list_lock, flags);
3368 return count;
3369 }
3370
3371 static long validate_slab_cache(struct kmem_cache *s)
3372 {
3373 int node;
3374 unsigned long count = 0;
3375 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3376 sizeof(unsigned long), GFP_KERNEL);
3377
3378 if (!map)
3379 return -ENOMEM;
3380
3381 flush_all(s);
3382 for_each_node_state(node, N_NORMAL_MEMORY) {
3383 struct kmem_cache_node *n = get_node(s, node);
3384
3385 count += validate_slab_node(s, n, map);
3386 }
3387 kfree(map);
3388 return count;
3389 }
3390
3391 #ifdef SLUB_RESILIENCY_TEST
3392 static void resiliency_test(void)
3393 {
3394 u8 *p;
3395
3396 printk(KERN_ERR "SLUB resiliency testing\n");
3397 printk(KERN_ERR "-----------------------\n");
3398 printk(KERN_ERR "A. Corruption after allocation\n");
3399
3400 p = kzalloc(16, GFP_KERNEL);
3401 p[16] = 0x12;
3402 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3403 " 0x12->0x%p\n\n", p + 16);
3404
3405 validate_slab_cache(kmalloc_caches + 4);
3406
3407 /* Hmmm... The next two are dangerous */
3408 p = kzalloc(32, GFP_KERNEL);
3409 p[32 + sizeof(void *)] = 0x34;
3410 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3411 " 0x34 -> -0x%p\n", p);
3412 printk(KERN_ERR
3413 "If allocated object is overwritten then not detectable\n\n");
3414
3415 validate_slab_cache(kmalloc_caches + 5);
3416 p = kzalloc(64, GFP_KERNEL);
3417 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3418 *p = 0x56;
3419 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3420 p);
3421 printk(KERN_ERR
3422 "If allocated object is overwritten then not detectable\n\n");
3423 validate_slab_cache(kmalloc_caches + 6);
3424
3425 printk(KERN_ERR "\nB. Corruption after free\n");
3426 p = kzalloc(128, GFP_KERNEL);
3427 kfree(p);
3428 *p = 0x78;
3429 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3430 validate_slab_cache(kmalloc_caches + 7);
3431
3432 p = kzalloc(256, GFP_KERNEL);
3433 kfree(p);
3434 p[50] = 0x9a;
3435 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3436 p);
3437 validate_slab_cache(kmalloc_caches + 8);
3438
3439 p = kzalloc(512, GFP_KERNEL);
3440 kfree(p);
3441 p[512] = 0xab;
3442 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3443 validate_slab_cache(kmalloc_caches + 9);
3444 }
3445 #else
3446 static void resiliency_test(void) {};
3447 #endif
3448
3449 /*
3450 * Generate lists of code addresses where slabcache objects are allocated
3451 * and freed.
3452 */
3453
3454 struct location {
3455 unsigned long count;
3456 void *addr;
3457 long long sum_time;
3458 long min_time;
3459 long max_time;
3460 long min_pid;
3461 long max_pid;
3462 cpumask_t cpus;
3463 nodemask_t nodes;
3464 };
3465
3466 struct loc_track {
3467 unsigned long max;
3468 unsigned long count;
3469 struct location *loc;
3470 };
3471
3472 static void free_loc_track(struct loc_track *t)
3473 {
3474 if (t->max)
3475 free_pages((unsigned long)t->loc,
3476 get_order(sizeof(struct location) * t->max));
3477 }
3478
3479 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3480 {
3481 struct location *l;
3482 int order;
3483
3484 order = get_order(sizeof(struct location) * max);
3485
3486 l = (void *)__get_free_pages(flags, order);
3487 if (!l)
3488 return 0;
3489
3490 if (t->count) {
3491 memcpy(l, t->loc, sizeof(struct location) * t->count);
3492 free_loc_track(t);
3493 }
3494 t->max = max;
3495 t->loc = l;
3496 return 1;
3497 }
3498
3499 static int add_location(struct loc_track *t, struct kmem_cache *s,
3500 const struct track *track)
3501 {
3502 long start, end, pos;
3503 struct location *l;
3504 void *caddr;
3505 unsigned long age = jiffies - track->when;
3506
3507 start = -1;
3508 end = t->count;
3509
3510 for ( ; ; ) {
3511 pos = start + (end - start + 1) / 2;
3512
3513 /*
3514 * There is nothing at "end". If we end up there
3515 * we need to add something to before end.
3516 */
3517 if (pos == end)
3518 break;
3519
3520 caddr = t->loc[pos].addr;
3521 if (track->addr == caddr) {
3522
3523 l = &t->loc[pos];
3524 l->count++;
3525 if (track->when) {
3526 l->sum_time += age;
3527 if (age < l->min_time)
3528 l->min_time = age;
3529 if (age > l->max_time)
3530 l->max_time = age;
3531
3532 if (track->pid < l->min_pid)
3533 l->min_pid = track->pid;
3534 if (track->pid > l->max_pid)
3535 l->max_pid = track->pid;
3536
3537 cpu_set(track->cpu, l->cpus);
3538 }
3539 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3540 return 1;
3541 }
3542
3543 if (track->addr < caddr)
3544 end = pos;
3545 else
3546 start = pos;
3547 }
3548
3549 /*
3550 * Not found. Insert new tracking element.
3551 */
3552 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3553 return 0;
3554
3555 l = t->loc + pos;
3556 if (pos < t->count)
3557 memmove(l + 1, l,
3558 (t->count - pos) * sizeof(struct location));
3559 t->count++;
3560 l->count = 1;
3561 l->addr = track->addr;
3562 l->sum_time = age;
3563 l->min_time = age;
3564 l->max_time = age;
3565 l->min_pid = track->pid;
3566 l->max_pid = track->pid;
3567 cpus_clear(l->cpus);
3568 cpu_set(track->cpu, l->cpus);
3569 nodes_clear(l->nodes);
3570 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3571 return 1;
3572 }
3573
3574 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3575 struct page *page, enum track_item alloc)
3576 {
3577 void *addr = page_address(page);
3578 DECLARE_BITMAP(map, page->objects);
3579 void *p;
3580
3581 bitmap_zero(map, page->objects);
3582 for_each_free_object(p, s, page->freelist)
3583 set_bit(slab_index(p, s, addr), map);
3584
3585 for_each_object(p, s, addr, page->objects)
3586 if (!test_bit(slab_index(p, s, addr), map))
3587 add_location(t, s, get_track(s, p, alloc));
3588 }
3589
3590 static int list_locations(struct kmem_cache *s, char *buf,
3591 enum track_item alloc)
3592 {
3593 int len = 0;
3594 unsigned long i;
3595 struct loc_track t = { 0, 0, NULL };
3596 int node;
3597
3598 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3599 GFP_TEMPORARY))
3600 return sprintf(buf, "Out of memory\n");
3601
3602 /* Push back cpu slabs */
3603 flush_all(s);
3604
3605 for_each_node_state(node, N_NORMAL_MEMORY) {
3606 struct kmem_cache_node *n = get_node(s, node);
3607 unsigned long flags;
3608 struct page *page;
3609
3610 if (!atomic_long_read(&n->nr_slabs))
3611 continue;
3612
3613 spin_lock_irqsave(&n->list_lock, flags);
3614 list_for_each_entry(page, &n->partial, lru)
3615 process_slab(&t, s, page, alloc);
3616 list_for_each_entry(page, &n->full, lru)
3617 process_slab(&t, s, page, alloc);
3618 spin_unlock_irqrestore(&n->list_lock, flags);
3619 }
3620
3621 for (i = 0; i < t.count; i++) {
3622 struct location *l = &t.loc[i];
3623
3624 if (len > PAGE_SIZE - 100)
3625 break;
3626 len += sprintf(buf + len, "%7ld ", l->count);
3627
3628 if (l->addr)
3629 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3630 else
3631 len += sprintf(buf + len, "<not-available>");
3632
3633 if (l->sum_time != l->min_time) {
3634 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3635 l->min_time,
3636 (long)div_u64(l->sum_time, l->count),
3637 l->max_time);
3638 } else
3639 len += sprintf(buf + len, " age=%ld",
3640 l->min_time);
3641
3642 if (l->min_pid != l->max_pid)
3643 len += sprintf(buf + len, " pid=%ld-%ld",
3644 l->min_pid, l->max_pid);
3645 else
3646 len += sprintf(buf + len, " pid=%ld",
3647 l->min_pid);
3648
3649 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3650 len < PAGE_SIZE - 60) {
3651 len += sprintf(buf + len, " cpus=");
3652 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3653 l->cpus);
3654 }
3655
3656 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3657 len < PAGE_SIZE - 60) {
3658 len += sprintf(buf + len, " nodes=");
3659 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3660 l->nodes);
3661 }
3662
3663 len += sprintf(buf + len, "\n");
3664 }
3665
3666 free_loc_track(&t);
3667 if (!t.count)
3668 len += sprintf(buf, "No data\n");
3669 return len;
3670 }
3671
3672 enum slab_stat_type {
3673 SL_ALL, /* All slabs */
3674 SL_PARTIAL, /* Only partially allocated slabs */
3675 SL_CPU, /* Only slabs used for cpu caches */
3676 SL_OBJECTS, /* Determine allocated objects not slabs */
3677 SL_TOTAL /* Determine object capacity not slabs */
3678 };
3679
3680 #define SO_ALL (1 << SL_ALL)
3681 #define SO_PARTIAL (1 << SL_PARTIAL)
3682 #define SO_CPU (1 << SL_CPU)
3683 #define SO_OBJECTS (1 << SL_OBJECTS)
3684 #define SO_TOTAL (1 << SL_TOTAL)
3685
3686 static ssize_t show_slab_objects(struct kmem_cache *s,
3687 char *buf, unsigned long flags)
3688 {
3689 unsigned long total = 0;
3690 int node;
3691 int x;
3692 unsigned long *nodes;
3693 unsigned long *per_cpu;
3694
3695 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3696 if (!nodes)
3697 return -ENOMEM;
3698 per_cpu = nodes + nr_node_ids;
3699
3700 if (flags & SO_CPU) {
3701 int cpu;
3702
3703 for_each_possible_cpu(cpu) {
3704 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3705
3706 if (!c || c->node < 0)
3707 continue;
3708
3709 if (c->page) {
3710 if (flags & SO_TOTAL)
3711 x = c->page->objects;
3712 else if (flags & SO_OBJECTS)
3713 x = c->page->inuse;
3714 else
3715 x = 1;
3716
3717 total += x;
3718 nodes[c->node] += x;
3719 }
3720 per_cpu[c->node]++;
3721 }
3722 }
3723
3724 if (flags & SO_ALL) {
3725 for_each_node_state(node, N_NORMAL_MEMORY) {
3726 struct kmem_cache_node *n = get_node(s, node);
3727
3728 if (flags & SO_TOTAL)
3729 x = atomic_long_read(&n->total_objects);
3730 else if (flags & SO_OBJECTS)
3731 x = atomic_long_read(&n->total_objects) -
3732 count_partial(n, count_free);
3733
3734 else
3735 x = atomic_long_read(&n->nr_slabs);
3736 total += x;
3737 nodes[node] += x;
3738 }
3739
3740 } else if (flags & SO_PARTIAL) {
3741 for_each_node_state(node, N_NORMAL_MEMORY) {
3742 struct kmem_cache_node *n = get_node(s, node);
3743
3744 if (flags & SO_TOTAL)
3745 x = count_partial(n, count_total);
3746 else if (flags & SO_OBJECTS)
3747 x = count_partial(n, count_inuse);
3748 else
3749 x = n->nr_partial;
3750 total += x;
3751 nodes[node] += x;
3752 }
3753 }
3754 x = sprintf(buf, "%lu", total);
3755 #ifdef CONFIG_NUMA
3756 for_each_node_state(node, N_NORMAL_MEMORY)
3757 if (nodes[node])
3758 x += sprintf(buf + x, " N%d=%lu",
3759 node, nodes[node]);
3760 #endif
3761 kfree(nodes);
3762 return x + sprintf(buf + x, "\n");
3763 }
3764
3765 static int any_slab_objects(struct kmem_cache *s)
3766 {
3767 int node;
3768
3769 for_each_online_node(node) {
3770 struct kmem_cache_node *n = get_node(s, node);
3771
3772 if (!n)
3773 continue;
3774
3775 if (atomic_long_read(&n->total_objects))
3776 return 1;
3777 }
3778 return 0;
3779 }
3780
3781 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3782 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3783
3784 struct slab_attribute {
3785 struct attribute attr;
3786 ssize_t (*show)(struct kmem_cache *s, char *buf);
3787 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3788 };
3789
3790 #define SLAB_ATTR_RO(_name) \
3791 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3792
3793 #define SLAB_ATTR(_name) \
3794 static struct slab_attribute _name##_attr = \
3795 __ATTR(_name, 0644, _name##_show, _name##_store)
3796
3797 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3798 {
3799 return sprintf(buf, "%d\n", s->size);
3800 }
3801 SLAB_ATTR_RO(slab_size);
3802
3803 static ssize_t align_show(struct kmem_cache *s, char *buf)
3804 {
3805 return sprintf(buf, "%d\n", s->align);
3806 }
3807 SLAB_ATTR_RO(align);
3808
3809 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3810 {
3811 return sprintf(buf, "%d\n", s->objsize);
3812 }
3813 SLAB_ATTR_RO(object_size);
3814
3815 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3816 {
3817 return sprintf(buf, "%d\n", oo_objects(s->oo));
3818 }
3819 SLAB_ATTR_RO(objs_per_slab);
3820
3821 static ssize_t order_store(struct kmem_cache *s,
3822 const char *buf, size_t length)
3823 {
3824 unsigned long order;
3825 int err;
3826
3827 err = strict_strtoul(buf, 10, &order);
3828 if (err)
3829 return err;
3830
3831 if (order > slub_max_order || order < slub_min_order)
3832 return -EINVAL;
3833
3834 calculate_sizes(s, order);
3835 return length;
3836 }
3837
3838 static ssize_t order_show(struct kmem_cache *s, char *buf)
3839 {
3840 return sprintf(buf, "%d\n", oo_order(s->oo));
3841 }
3842 SLAB_ATTR(order);
3843
3844 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3845 {
3846 if (s->ctor) {
3847 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3848
3849 return n + sprintf(buf + n, "\n");
3850 }
3851 return 0;
3852 }
3853 SLAB_ATTR_RO(ctor);
3854
3855 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3856 {
3857 return sprintf(buf, "%d\n", s->refcount - 1);
3858 }
3859 SLAB_ATTR_RO(aliases);
3860
3861 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3862 {
3863 return show_slab_objects(s, buf, SO_ALL);
3864 }
3865 SLAB_ATTR_RO(slabs);
3866
3867 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3868 {
3869 return show_slab_objects(s, buf, SO_PARTIAL);
3870 }
3871 SLAB_ATTR_RO(partial);
3872
3873 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3874 {
3875 return show_slab_objects(s, buf, SO_CPU);
3876 }
3877 SLAB_ATTR_RO(cpu_slabs);
3878
3879 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3880 {
3881 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3882 }
3883 SLAB_ATTR_RO(objects);
3884
3885 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3886 {
3887 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3888 }
3889 SLAB_ATTR_RO(objects_partial);
3890
3891 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3892 {
3893 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3894 }
3895 SLAB_ATTR_RO(total_objects);
3896
3897 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3898 {
3899 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3900 }
3901
3902 static ssize_t sanity_checks_store(struct kmem_cache *s,
3903 const char *buf, size_t length)
3904 {
3905 s->flags &= ~SLAB_DEBUG_FREE;
3906 if (buf[0] == '1')
3907 s->flags |= SLAB_DEBUG_FREE;
3908 return length;
3909 }
3910 SLAB_ATTR(sanity_checks);
3911
3912 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3913 {
3914 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3915 }
3916
3917 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3918 size_t length)
3919 {
3920 s->flags &= ~SLAB_TRACE;
3921 if (buf[0] == '1')
3922 s->flags |= SLAB_TRACE;
3923 return length;
3924 }
3925 SLAB_ATTR(trace);
3926
3927 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3928 {
3929 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3930 }
3931
3932 static ssize_t reclaim_account_store(struct kmem_cache *s,
3933 const char *buf, size_t length)
3934 {
3935 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3936 if (buf[0] == '1')
3937 s->flags |= SLAB_RECLAIM_ACCOUNT;
3938 return length;
3939 }
3940 SLAB_ATTR(reclaim_account);
3941
3942 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3943 {
3944 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3945 }
3946 SLAB_ATTR_RO(hwcache_align);
3947
3948 #ifdef CONFIG_ZONE_DMA
3949 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3950 {
3951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3952 }
3953 SLAB_ATTR_RO(cache_dma);
3954 #endif
3955
3956 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3957 {
3958 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3959 }
3960 SLAB_ATTR_RO(destroy_by_rcu);
3961
3962 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3963 {
3964 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3965 }
3966
3967 static ssize_t red_zone_store(struct kmem_cache *s,
3968 const char *buf, size_t length)
3969 {
3970 if (any_slab_objects(s))
3971 return -EBUSY;
3972
3973 s->flags &= ~SLAB_RED_ZONE;
3974 if (buf[0] == '1')
3975 s->flags |= SLAB_RED_ZONE;
3976 calculate_sizes(s, -1);
3977 return length;
3978 }
3979 SLAB_ATTR(red_zone);
3980
3981 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3982 {
3983 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3984 }
3985
3986 static ssize_t poison_store(struct kmem_cache *s,
3987 const char *buf, size_t length)
3988 {
3989 if (any_slab_objects(s))
3990 return -EBUSY;
3991
3992 s->flags &= ~SLAB_POISON;
3993 if (buf[0] == '1')
3994 s->flags |= SLAB_POISON;
3995 calculate_sizes(s, -1);
3996 return length;
3997 }
3998 SLAB_ATTR(poison);
3999
4000 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4001 {
4002 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4003 }
4004
4005 static ssize_t store_user_store(struct kmem_cache *s,
4006 const char *buf, size_t length)
4007 {
4008 if (any_slab_objects(s))
4009 return -EBUSY;
4010
4011 s->flags &= ~SLAB_STORE_USER;
4012 if (buf[0] == '1')
4013 s->flags |= SLAB_STORE_USER;
4014 calculate_sizes(s, -1);
4015 return length;
4016 }
4017 SLAB_ATTR(store_user);
4018
4019 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4020 {
4021 return 0;
4022 }
4023
4024 static ssize_t validate_store(struct kmem_cache *s,
4025 const char *buf, size_t length)
4026 {
4027 int ret = -EINVAL;
4028
4029 if (buf[0] == '1') {
4030 ret = validate_slab_cache(s);
4031 if (ret >= 0)
4032 ret = length;
4033 }
4034 return ret;
4035 }
4036 SLAB_ATTR(validate);
4037
4038 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4039 {
4040 return 0;
4041 }
4042
4043 static ssize_t shrink_store(struct kmem_cache *s,
4044 const char *buf, size_t length)
4045 {
4046 if (buf[0] == '1') {
4047 int rc = kmem_cache_shrink(s);
4048
4049 if (rc)
4050 return rc;
4051 } else
4052 return -EINVAL;
4053 return length;
4054 }
4055 SLAB_ATTR(shrink);
4056
4057 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4058 {
4059 if (!(s->flags & SLAB_STORE_USER))
4060 return -ENOSYS;
4061 return list_locations(s, buf, TRACK_ALLOC);
4062 }
4063 SLAB_ATTR_RO(alloc_calls);
4064
4065 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4066 {
4067 if (!(s->flags & SLAB_STORE_USER))
4068 return -ENOSYS;
4069 return list_locations(s, buf, TRACK_FREE);
4070 }
4071 SLAB_ATTR_RO(free_calls);
4072
4073 #ifdef CONFIG_NUMA
4074 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4075 {
4076 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4077 }
4078
4079 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4080 const char *buf, size_t length)
4081 {
4082 unsigned long ratio;
4083 int err;
4084
4085 err = strict_strtoul(buf, 10, &ratio);
4086 if (err)
4087 return err;
4088
4089 if (ratio < 100)
4090 s->remote_node_defrag_ratio = ratio * 10;
4091
4092 return length;
4093 }
4094 SLAB_ATTR(remote_node_defrag_ratio);
4095 #endif
4096
4097 #ifdef CONFIG_SLUB_STATS
4098 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4099 {
4100 unsigned long sum = 0;
4101 int cpu;
4102 int len;
4103 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4104
4105 if (!data)
4106 return -ENOMEM;
4107
4108 for_each_online_cpu(cpu) {
4109 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4110
4111 data[cpu] = x;
4112 sum += x;
4113 }
4114
4115 len = sprintf(buf, "%lu", sum);
4116
4117 #ifdef CONFIG_SMP
4118 for_each_online_cpu(cpu) {
4119 if (data[cpu] && len < PAGE_SIZE - 20)
4120 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4121 }
4122 #endif
4123 kfree(data);
4124 return len + sprintf(buf + len, "\n");
4125 }
4126
4127 #define STAT_ATTR(si, text) \
4128 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4129 { \
4130 return show_stat(s, buf, si); \
4131 } \
4132 SLAB_ATTR_RO(text); \
4133
4134 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4135 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4136 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4137 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4138 STAT_ATTR(FREE_FROZEN, free_frozen);
4139 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4140 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4141 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4142 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4143 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4144 STAT_ATTR(FREE_SLAB, free_slab);
4145 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4146 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4147 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4148 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4149 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4150 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4151 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4152 #endif
4153
4154 static struct attribute *slab_attrs[] = {
4155 &slab_size_attr.attr,
4156 &object_size_attr.attr,
4157 &objs_per_slab_attr.attr,
4158 &order_attr.attr,
4159 &objects_attr.attr,
4160 &objects_partial_attr.attr,
4161 &total_objects_attr.attr,
4162 &slabs_attr.attr,
4163 &partial_attr.attr,
4164 &cpu_slabs_attr.attr,
4165 &ctor_attr.attr,
4166 &aliases_attr.attr,
4167 &align_attr.attr,
4168 &sanity_checks_attr.attr,
4169 &trace_attr.attr,
4170 &hwcache_align_attr.attr,
4171 &reclaim_account_attr.attr,
4172 &destroy_by_rcu_attr.attr,
4173 &red_zone_attr.attr,
4174 &poison_attr.attr,
4175 &store_user_attr.attr,
4176 &validate_attr.attr,
4177 &shrink_attr.attr,
4178 &alloc_calls_attr.attr,
4179 &free_calls_attr.attr,
4180 #ifdef CONFIG_ZONE_DMA
4181 &cache_dma_attr.attr,
4182 #endif
4183 #ifdef CONFIG_NUMA
4184 &remote_node_defrag_ratio_attr.attr,
4185 #endif
4186 #ifdef CONFIG_SLUB_STATS
4187 &alloc_fastpath_attr.attr,
4188 &alloc_slowpath_attr.attr,
4189 &free_fastpath_attr.attr,
4190 &free_slowpath_attr.attr,
4191 &free_frozen_attr.attr,
4192 &free_add_partial_attr.attr,
4193 &free_remove_partial_attr.attr,
4194 &alloc_from_partial_attr.attr,
4195 &alloc_slab_attr.attr,
4196 &alloc_refill_attr.attr,
4197 &free_slab_attr.attr,
4198 &cpuslab_flush_attr.attr,
4199 &deactivate_full_attr.attr,
4200 &deactivate_empty_attr.attr,
4201 &deactivate_to_head_attr.attr,
4202 &deactivate_to_tail_attr.attr,
4203 &deactivate_remote_frees_attr.attr,
4204 &order_fallback_attr.attr,
4205 #endif
4206 NULL
4207 };
4208
4209 static struct attribute_group slab_attr_group = {
4210 .attrs = slab_attrs,
4211 };
4212
4213 static ssize_t slab_attr_show(struct kobject *kobj,
4214 struct attribute *attr,
4215 char *buf)
4216 {
4217 struct slab_attribute *attribute;
4218 struct kmem_cache *s;
4219 int err;
4220
4221 attribute = to_slab_attr(attr);
4222 s = to_slab(kobj);
4223
4224 if (!attribute->show)
4225 return -EIO;
4226
4227 err = attribute->show(s, buf);
4228
4229 return err;
4230 }
4231
4232 static ssize_t slab_attr_store(struct kobject *kobj,
4233 struct attribute *attr,
4234 const char *buf, size_t len)
4235 {
4236 struct slab_attribute *attribute;
4237 struct kmem_cache *s;
4238 int err;
4239
4240 attribute = to_slab_attr(attr);
4241 s = to_slab(kobj);
4242
4243 if (!attribute->store)
4244 return -EIO;
4245
4246 err = attribute->store(s, buf, len);
4247
4248 return err;
4249 }
4250
4251 static void kmem_cache_release(struct kobject *kobj)
4252 {
4253 struct kmem_cache *s = to_slab(kobj);
4254
4255 kfree(s);
4256 }
4257
4258 static struct sysfs_ops slab_sysfs_ops = {
4259 .show = slab_attr_show,
4260 .store = slab_attr_store,
4261 };
4262
4263 static struct kobj_type slab_ktype = {
4264 .sysfs_ops = &slab_sysfs_ops,
4265 .release = kmem_cache_release
4266 };
4267
4268 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4269 {
4270 struct kobj_type *ktype = get_ktype(kobj);
4271
4272 if (ktype == &slab_ktype)
4273 return 1;
4274 return 0;
4275 }
4276
4277 static struct kset_uevent_ops slab_uevent_ops = {
4278 .filter = uevent_filter,
4279 };
4280
4281 static struct kset *slab_kset;
4282
4283 #define ID_STR_LENGTH 64
4284
4285 /* Create a unique string id for a slab cache:
4286 *
4287 * Format :[flags-]size
4288 */
4289 static char *create_unique_id(struct kmem_cache *s)
4290 {
4291 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4292 char *p = name;
4293
4294 BUG_ON(!name);
4295
4296 *p++ = ':';
4297 /*
4298 * First flags affecting slabcache operations. We will only
4299 * get here for aliasable slabs so we do not need to support
4300 * too many flags. The flags here must cover all flags that
4301 * are matched during merging to guarantee that the id is
4302 * unique.
4303 */
4304 if (s->flags & SLAB_CACHE_DMA)
4305 *p++ = 'd';
4306 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4307 *p++ = 'a';
4308 if (s->flags & SLAB_DEBUG_FREE)
4309 *p++ = 'F';
4310 if (p != name + 1)
4311 *p++ = '-';
4312 p += sprintf(p, "%07d", s->size);
4313 BUG_ON(p > name + ID_STR_LENGTH - 1);
4314 return name;
4315 }
4316
4317 static int sysfs_slab_add(struct kmem_cache *s)
4318 {
4319 int err;
4320 const char *name;
4321 int unmergeable;
4322
4323 if (slab_state < SYSFS)
4324 /* Defer until later */
4325 return 0;
4326
4327 unmergeable = slab_unmergeable(s);
4328 if (unmergeable) {
4329 /*
4330 * Slabcache can never be merged so we can use the name proper.
4331 * This is typically the case for debug situations. In that
4332 * case we can catch duplicate names easily.
4333 */
4334 sysfs_remove_link(&slab_kset->kobj, s->name);
4335 name = s->name;
4336 } else {
4337 /*
4338 * Create a unique name for the slab as a target
4339 * for the symlinks.
4340 */
4341 name = create_unique_id(s);
4342 }
4343
4344 s->kobj.kset = slab_kset;
4345 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4346 if (err) {
4347 kobject_put(&s->kobj);
4348 return err;
4349 }
4350
4351 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4352 if (err)
4353 return err;
4354 kobject_uevent(&s->kobj, KOBJ_ADD);
4355 if (!unmergeable) {
4356 /* Setup first alias */
4357 sysfs_slab_alias(s, s->name);
4358 kfree(name);
4359 }
4360 return 0;
4361 }
4362
4363 static void sysfs_slab_remove(struct kmem_cache *s)
4364 {
4365 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4366 kobject_del(&s->kobj);
4367 kobject_put(&s->kobj);
4368 }
4369
4370 /*
4371 * Need to buffer aliases during bootup until sysfs becomes
4372 * available lest we loose that information.
4373 */
4374 struct saved_alias {
4375 struct kmem_cache *s;
4376 const char *name;
4377 struct saved_alias *next;
4378 };
4379
4380 static struct saved_alias *alias_list;
4381
4382 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4383 {
4384 struct saved_alias *al;
4385
4386 if (slab_state == SYSFS) {
4387 /*
4388 * If we have a leftover link then remove it.
4389 */
4390 sysfs_remove_link(&slab_kset->kobj, name);
4391 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4392 }
4393
4394 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4395 if (!al)
4396 return -ENOMEM;
4397
4398 al->s = s;
4399 al->name = name;
4400 al->next = alias_list;
4401 alias_list = al;
4402 return 0;
4403 }
4404
4405 static int __init slab_sysfs_init(void)
4406 {
4407 struct kmem_cache *s;
4408 int err;
4409
4410 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4411 if (!slab_kset) {
4412 printk(KERN_ERR "Cannot register slab subsystem.\n");
4413 return -ENOSYS;
4414 }
4415
4416 slab_state = SYSFS;
4417
4418 list_for_each_entry(s, &slab_caches, list) {
4419 err = sysfs_slab_add(s);
4420 if (err)
4421 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4422 " to sysfs\n", s->name);
4423 }
4424
4425 while (alias_list) {
4426 struct saved_alias *al = alias_list;
4427
4428 alias_list = alias_list->next;
4429 err = sysfs_slab_alias(al->s, al->name);
4430 if (err)
4431 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4432 " %s to sysfs\n", s->name);
4433 kfree(al);
4434 }
4435
4436 resiliency_test();
4437 return 0;
4438 }
4439
4440 __initcall(slab_sysfs_init);
4441 #endif
4442
4443 /*
4444 * The /proc/slabinfo ABI
4445 */
4446 #ifdef CONFIG_SLABINFO
4447
4448 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4449 size_t count, loff_t *ppos)
4450 {
4451 return -EINVAL;
4452 }
4453
4454
4455 static void print_slabinfo_header(struct seq_file *m)
4456 {
4457 seq_puts(m, "slabinfo - version: 2.1\n");
4458 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4459 "<objperslab> <pagesperslab>");
4460 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4461 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4462 seq_putc(m, '\n');
4463 }
4464
4465 static void *s_start(struct seq_file *m, loff_t *pos)
4466 {
4467 loff_t n = *pos;
4468
4469 down_read(&slub_lock);
4470 if (!n)
4471 print_slabinfo_header(m);
4472
4473 return seq_list_start(&slab_caches, *pos);
4474 }
4475
4476 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4477 {
4478 return seq_list_next(p, &slab_caches, pos);
4479 }
4480
4481 static void s_stop(struct seq_file *m, void *p)
4482 {
4483 up_read(&slub_lock);
4484 }
4485
4486 static int s_show(struct seq_file *m, void *p)
4487 {
4488 unsigned long nr_partials = 0;
4489 unsigned long nr_slabs = 0;
4490 unsigned long nr_inuse = 0;
4491 unsigned long nr_objs = 0;
4492 unsigned long nr_free = 0;
4493 struct kmem_cache *s;
4494 int node;
4495
4496 s = list_entry(p, struct kmem_cache, list);
4497
4498 for_each_online_node(node) {
4499 struct kmem_cache_node *n = get_node(s, node);
4500
4501 if (!n)
4502 continue;
4503
4504 nr_partials += n->nr_partial;
4505 nr_slabs += atomic_long_read(&n->nr_slabs);
4506 nr_objs += atomic_long_read(&n->total_objects);
4507 nr_free += count_partial(n, count_free);
4508 }
4509
4510 nr_inuse = nr_objs - nr_free;
4511
4512 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4513 nr_objs, s->size, oo_objects(s->oo),
4514 (1 << oo_order(s->oo)));
4515 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4516 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4517 0UL);
4518 seq_putc(m, '\n');
4519 return 0;
4520 }
4521
4522 const struct seq_operations slabinfo_op = {
4523 .start = s_start,
4524 .next = s_next,
4525 .stop = s_stop,
4526 .show = s_show,
4527 };
4528
4529 #endif /* CONFIG_SLABINFO */