]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
Merge tag 'm68knommu-for-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/kfence.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects:
56 * A. page->freelist -> List of object free in a page
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * page->frozen The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125
126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130
131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 p += s->red_left_pad;
135
136 return p;
137 }
138
139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143 #else
144 return false;
145 #endif
146 }
147
148 /*
149 * Issues still to be resolved:
150 *
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
153 * - Variable sizing of the per node arrays
154 */
155
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161
162 /*
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166 #define MIN_PARTIAL 5
167
168 /*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173 #define MAX_PARTIAL 10
174
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178 /*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186 /*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193 #define OO_SHIFT 16
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203 /*
204 * Tracking user of a slab.
205 */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 #endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215 };
216
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238
239 /*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245 static nodemask_t slab_nodes;
246
247 /********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
251 /*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258 {
259 #ifdef CONFIG_SLAB_FREELIST_HARDENED
260 /*
261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
272 #else
273 return ptr;
274 #endif
275 }
276
277 /* Returns the freelist pointer recorded at location ptr_addr. */
278 static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280 {
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283 }
284
285 static inline void *get_freepointer(struct kmem_cache *s, void *object)
286 {
287 object = kasan_reset_tag(object);
288 return freelist_dereference(s, object + s->offset);
289 }
290
291 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292 {
293 prefetch(object + s->offset);
294 }
295
296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297 {
298 unsigned long freepointer_addr;
299 void *p;
300
301 if (!debug_pagealloc_enabled_static())
302 return get_freepointer(s, object);
303
304 freepointer_addr = (unsigned long)object + s->offset;
305 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
306 return freelist_ptr(s, p, freepointer_addr);
307 }
308
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 unsigned long freeptr_addr = (unsigned long)object + s->offset;
312
313 #ifdef CONFIG_SLAB_FREELIST_HARDENED
314 BUG_ON(object == fp); /* naive detection of double free or corruption */
315 #endif
316
317 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
318 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
319 }
320
321 /* Loop over all objects in a slab */
322 #define for_each_object(__p, __s, __addr, __objects) \
323 for (__p = fixup_red_left(__s, __addr); \
324 __p < (__addr) + (__objects) * (__s)->size; \
325 __p += (__s)->size)
326
327 static inline unsigned int order_objects(unsigned int order, unsigned int size)
328 {
329 return ((unsigned int)PAGE_SIZE << order) / size;
330 }
331
332 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
333 unsigned int size)
334 {
335 struct kmem_cache_order_objects x = {
336 (order << OO_SHIFT) + order_objects(order, size)
337 };
338
339 return x;
340 }
341
342 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
343 {
344 return x.x >> OO_SHIFT;
345 }
346
347 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
348 {
349 return x.x & OO_MASK;
350 }
351
352 /*
353 * Per slab locking using the pagelock
354 */
355 static __always_inline void slab_lock(struct page *page)
356 {
357 VM_BUG_ON_PAGE(PageTail(page), page);
358 bit_spin_lock(PG_locked, &page->flags);
359 }
360
361 static __always_inline void slab_unlock(struct page *page)
362 {
363 VM_BUG_ON_PAGE(PageTail(page), page);
364 __bit_spin_unlock(PG_locked, &page->flags);
365 }
366
367 /* Interrupts must be disabled (for the fallback code to work right) */
368 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 void *freelist_old, unsigned long counters_old,
370 void *freelist_new, unsigned long counters_new,
371 const char *n)
372 {
373 VM_BUG_ON(!irqs_disabled());
374 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
376 if (s->flags & __CMPXCHG_DOUBLE) {
377 if (cmpxchg_double(&page->freelist, &page->counters,
378 freelist_old, counters_old,
379 freelist_new, counters_new))
380 return true;
381 } else
382 #endif
383 {
384 slab_lock(page);
385 if (page->freelist == freelist_old &&
386 page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return true;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 pr_info("%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return false;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return true;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old &&
425 page->counters == counters_old) {
426 page->freelist = freelist_new;
427 page->counters = counters_new;
428 slab_unlock(page);
429 local_irq_restore(flags);
430 return true;
431 }
432 slab_unlock(page);
433 local_irq_restore(flags);
434 }
435
436 cpu_relax();
437 stat(s, CMPXCHG_DOUBLE_FAIL);
438
439 #ifdef SLUB_DEBUG_CMPXCHG
440 pr_info("%s %s: cmpxchg double redo ", n, s->name);
441 #endif
442
443 return false;
444 }
445
446 #ifdef CONFIG_SLUB_DEBUG
447 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
448 static DEFINE_SPINLOCK(object_map_lock);
449
450 /*
451 * Determine a map of object in use on a page.
452 *
453 * Node listlock must be held to guarantee that the page does
454 * not vanish from under us.
455 */
456 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
457 __acquires(&object_map_lock)
458 {
459 void *p;
460 void *addr = page_address(page);
461
462 VM_BUG_ON(!irqs_disabled());
463
464 spin_lock(&object_map_lock);
465
466 bitmap_zero(object_map, page->objects);
467
468 for (p = page->freelist; p; p = get_freepointer(s, p))
469 set_bit(__obj_to_index(s, addr, p), object_map);
470
471 return object_map;
472 }
473
474 static void put_map(unsigned long *map) __releases(&object_map_lock)
475 {
476 VM_BUG_ON(map != object_map);
477 spin_unlock(&object_map_lock);
478 }
479
480 static inline unsigned int size_from_object(struct kmem_cache *s)
481 {
482 if (s->flags & SLAB_RED_ZONE)
483 return s->size - s->red_left_pad;
484
485 return s->size;
486 }
487
488 static inline void *restore_red_left(struct kmem_cache *s, void *p)
489 {
490 if (s->flags & SLAB_RED_ZONE)
491 p -= s->red_left_pad;
492
493 return p;
494 }
495
496 /*
497 * Debug settings:
498 */
499 #if defined(CONFIG_SLUB_DEBUG_ON)
500 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
501 #else
502 static slab_flags_t slub_debug;
503 #endif
504
505 static char *slub_debug_string;
506 static int disable_higher_order_debug;
507
508 /*
509 * slub is about to manipulate internal object metadata. This memory lies
510 * outside the range of the allocated object, so accessing it would normally
511 * be reported by kasan as a bounds error. metadata_access_enable() is used
512 * to tell kasan that these accesses are OK.
513 */
514 static inline void metadata_access_enable(void)
515 {
516 kasan_disable_current();
517 }
518
519 static inline void metadata_access_disable(void)
520 {
521 kasan_enable_current();
522 }
523
524 /*
525 * Object debugging
526 */
527
528 /* Verify that a pointer has an address that is valid within a slab page */
529 static inline int check_valid_pointer(struct kmem_cache *s,
530 struct page *page, void *object)
531 {
532 void *base;
533
534 if (!object)
535 return 1;
536
537 base = page_address(page);
538 object = kasan_reset_tag(object);
539 object = restore_red_left(s, object);
540 if (object < base || object >= base + page->objects * s->size ||
541 (object - base) % s->size) {
542 return 0;
543 }
544
545 return 1;
546 }
547
548 static void print_section(char *level, char *text, u8 *addr,
549 unsigned int length)
550 {
551 metadata_access_enable();
552 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
553 16, 1, addr, length, 1);
554 metadata_access_disable();
555 }
556
557 /*
558 * See comment in calculate_sizes().
559 */
560 static inline bool freeptr_outside_object(struct kmem_cache *s)
561 {
562 return s->offset >= s->inuse;
563 }
564
565 /*
566 * Return offset of the end of info block which is inuse + free pointer if
567 * not overlapping with object.
568 */
569 static inline unsigned int get_info_end(struct kmem_cache *s)
570 {
571 if (freeptr_outside_object(s))
572 return s->inuse + sizeof(void *);
573 else
574 return s->inuse;
575 }
576
577 static struct track *get_track(struct kmem_cache *s, void *object,
578 enum track_item alloc)
579 {
580 struct track *p;
581
582 p = object + get_info_end(s);
583
584 return kasan_reset_tag(p + alloc);
585 }
586
587 static void set_track(struct kmem_cache *s, void *object,
588 enum track_item alloc, unsigned long addr)
589 {
590 struct track *p = get_track(s, object, alloc);
591
592 if (addr) {
593 #ifdef CONFIG_STACKTRACE
594 unsigned int nr_entries;
595
596 metadata_access_enable();
597 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
598 TRACK_ADDRS_COUNT, 3);
599 metadata_access_disable();
600
601 if (nr_entries < TRACK_ADDRS_COUNT)
602 p->addrs[nr_entries] = 0;
603 #endif
604 p->addr = addr;
605 p->cpu = smp_processor_id();
606 p->pid = current->pid;
607 p->when = jiffies;
608 } else {
609 memset(p, 0, sizeof(struct track));
610 }
611 }
612
613 static void init_tracking(struct kmem_cache *s, void *object)
614 {
615 if (!(s->flags & SLAB_STORE_USER))
616 return;
617
618 set_track(s, object, TRACK_FREE, 0UL);
619 set_track(s, object, TRACK_ALLOC, 0UL);
620 }
621
622 static void print_track(const char *s, struct track *t, unsigned long pr_time)
623 {
624 if (!t->addr)
625 return;
626
627 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
628 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
629 #ifdef CONFIG_STACKTRACE
630 {
631 int i;
632 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 if (t->addrs[i])
634 pr_err("\t%pS\n", (void *)t->addrs[i]);
635 else
636 break;
637 }
638 #endif
639 }
640
641 void print_tracking(struct kmem_cache *s, void *object)
642 {
643 unsigned long pr_time = jiffies;
644 if (!(s->flags & SLAB_STORE_USER))
645 return;
646
647 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
648 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
649 }
650
651 static void print_page_info(struct page *page)
652 {
653 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
654 page, page->objects, page->inuse, page->freelist,
655 page->flags, &page->flags);
656
657 }
658
659 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
660 {
661 struct va_format vaf;
662 va_list args;
663
664 va_start(args, fmt);
665 vaf.fmt = fmt;
666 vaf.va = &args;
667 pr_err("=============================================================================\n");
668 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
669 pr_err("-----------------------------------------------------------------------------\n\n");
670
671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
672 va_end(args);
673 }
674
675 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
676 {
677 struct va_format vaf;
678 va_list args;
679
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 pr_err("FIX %s: %pV\n", s->name, &vaf);
684 va_end(args);
685 }
686
687 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
688 void **freelist, void *nextfree)
689 {
690 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
691 !check_valid_pointer(s, page, nextfree) && freelist) {
692 object_err(s, page, *freelist, "Freechain corrupt");
693 *freelist = NULL;
694 slab_fix(s, "Isolate corrupted freechain");
695 return true;
696 }
697
698 return false;
699 }
700
701 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
702 {
703 unsigned int off; /* Offset of last byte */
704 u8 *addr = page_address(page);
705
706 print_tracking(s, p);
707
708 print_page_info(page);
709
710 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
711 p, p - addr, get_freepointer(s, p));
712
713 if (s->flags & SLAB_RED_ZONE)
714 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
715 s->red_left_pad);
716 else if (p > addr + 16)
717 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
718
719 print_section(KERN_ERR, "Object ", p,
720 min_t(unsigned int, s->object_size, PAGE_SIZE));
721 if (s->flags & SLAB_RED_ZONE)
722 print_section(KERN_ERR, "Redzone ", p + s->object_size,
723 s->inuse - s->object_size);
724
725 off = get_info_end(s);
726
727 if (s->flags & SLAB_STORE_USER)
728 off += 2 * sizeof(struct track);
729
730 off += kasan_metadata_size(s);
731
732 if (off != size_from_object(s))
733 /* Beginning of the filler is the free pointer */
734 print_section(KERN_ERR, "Padding ", p + off,
735 size_from_object(s) - off);
736
737 dump_stack();
738 }
739
740 void object_err(struct kmem_cache *s, struct page *page,
741 u8 *object, char *reason)
742 {
743 slab_bug(s, "%s", reason);
744 print_trailer(s, page, object);
745 }
746
747 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
748 const char *fmt, ...)
749 {
750 va_list args;
751 char buf[100];
752
753 va_start(args, fmt);
754 vsnprintf(buf, sizeof(buf), fmt, args);
755 va_end(args);
756 slab_bug(s, "%s", buf);
757 print_page_info(page);
758 dump_stack();
759 }
760
761 static void init_object(struct kmem_cache *s, void *object, u8 val)
762 {
763 u8 *p = kasan_reset_tag(object);
764
765 if (s->flags & SLAB_RED_ZONE)
766 memset(p - s->red_left_pad, val, s->red_left_pad);
767
768 if (s->flags & __OBJECT_POISON) {
769 memset(p, POISON_FREE, s->object_size - 1);
770 p[s->object_size - 1] = POISON_END;
771 }
772
773 if (s->flags & SLAB_RED_ZONE)
774 memset(p + s->object_size, val, s->inuse - s->object_size);
775 }
776
777 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
778 void *from, void *to)
779 {
780 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
781 memset(from, data, to - from);
782 }
783
784 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
785 u8 *object, char *what,
786 u8 *start, unsigned int value, unsigned int bytes)
787 {
788 u8 *fault;
789 u8 *end;
790 u8 *addr = page_address(page);
791
792 metadata_access_enable();
793 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
794 metadata_access_disable();
795 if (!fault)
796 return 1;
797
798 end = start + bytes;
799 while (end > fault && end[-1] == value)
800 end--;
801
802 slab_bug(s, "%s overwritten", what);
803 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
804 fault, end - 1, fault - addr,
805 fault[0], value);
806 print_trailer(s, page, object);
807
808 restore_bytes(s, what, value, fault, end);
809 return 0;
810 }
811
812 /*
813 * Object layout:
814 *
815 * object address
816 * Bytes of the object to be managed.
817 * If the freepointer may overlay the object then the free
818 * pointer is at the middle of the object.
819 *
820 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
821 * 0xa5 (POISON_END)
822 *
823 * object + s->object_size
824 * Padding to reach word boundary. This is also used for Redzoning.
825 * Padding is extended by another word if Redzoning is enabled and
826 * object_size == inuse.
827 *
828 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
829 * 0xcc (RED_ACTIVE) for objects in use.
830 *
831 * object + s->inuse
832 * Meta data starts here.
833 *
834 * A. Free pointer (if we cannot overwrite object on free)
835 * B. Tracking data for SLAB_STORE_USER
836 * C. Padding to reach required alignment boundary or at minimum
837 * one word if debugging is on to be able to detect writes
838 * before the word boundary.
839 *
840 * Padding is done using 0x5a (POISON_INUSE)
841 *
842 * object + s->size
843 * Nothing is used beyond s->size.
844 *
845 * If slabcaches are merged then the object_size and inuse boundaries are mostly
846 * ignored. And therefore no slab options that rely on these boundaries
847 * may be used with merged slabcaches.
848 */
849
850 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
851 {
852 unsigned long off = get_info_end(s); /* The end of info */
853
854 if (s->flags & SLAB_STORE_USER)
855 /* We also have user information there */
856 off += 2 * sizeof(struct track);
857
858 off += kasan_metadata_size(s);
859
860 if (size_from_object(s) == off)
861 return 1;
862
863 return check_bytes_and_report(s, page, p, "Object padding",
864 p + off, POISON_INUSE, size_from_object(s) - off);
865 }
866
867 /* Check the pad bytes at the end of a slab page */
868 static int slab_pad_check(struct kmem_cache *s, struct page *page)
869 {
870 u8 *start;
871 u8 *fault;
872 u8 *end;
873 u8 *pad;
874 int length;
875 int remainder;
876
877 if (!(s->flags & SLAB_POISON))
878 return 1;
879
880 start = page_address(page);
881 length = page_size(page);
882 end = start + length;
883 remainder = length % s->size;
884 if (!remainder)
885 return 1;
886
887 pad = end - remainder;
888 metadata_access_enable();
889 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
890 metadata_access_disable();
891 if (!fault)
892 return 1;
893 while (end > fault && end[-1] == POISON_INUSE)
894 end--;
895
896 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
897 fault, end - 1, fault - start);
898 print_section(KERN_ERR, "Padding ", pad, remainder);
899
900 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
901 return 0;
902 }
903
904 static int check_object(struct kmem_cache *s, struct page *page,
905 void *object, u8 val)
906 {
907 u8 *p = object;
908 u8 *endobject = object + s->object_size;
909
910 if (s->flags & SLAB_RED_ZONE) {
911 if (!check_bytes_and_report(s, page, object, "Redzone",
912 object - s->red_left_pad, val, s->red_left_pad))
913 return 0;
914
915 if (!check_bytes_and_report(s, page, object, "Redzone",
916 endobject, val, s->inuse - s->object_size))
917 return 0;
918 } else {
919 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
920 check_bytes_and_report(s, page, p, "Alignment padding",
921 endobject, POISON_INUSE,
922 s->inuse - s->object_size);
923 }
924 }
925
926 if (s->flags & SLAB_POISON) {
927 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
928 (!check_bytes_and_report(s, page, p, "Poison", p,
929 POISON_FREE, s->object_size - 1) ||
930 !check_bytes_and_report(s, page, p, "Poison",
931 p + s->object_size - 1, POISON_END, 1)))
932 return 0;
933 /*
934 * check_pad_bytes cleans up on its own.
935 */
936 check_pad_bytes(s, page, p);
937 }
938
939 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
940 /*
941 * Object and freepointer overlap. Cannot check
942 * freepointer while object is allocated.
943 */
944 return 1;
945
946 /* Check free pointer validity */
947 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
948 object_err(s, page, p, "Freepointer corrupt");
949 /*
950 * No choice but to zap it and thus lose the remainder
951 * of the free objects in this slab. May cause
952 * another error because the object count is now wrong.
953 */
954 set_freepointer(s, p, NULL);
955 return 0;
956 }
957 return 1;
958 }
959
960 static int check_slab(struct kmem_cache *s, struct page *page)
961 {
962 int maxobj;
963
964 VM_BUG_ON(!irqs_disabled());
965
966 if (!PageSlab(page)) {
967 slab_err(s, page, "Not a valid slab page");
968 return 0;
969 }
970
971 maxobj = order_objects(compound_order(page), s->size);
972 if (page->objects > maxobj) {
973 slab_err(s, page, "objects %u > max %u",
974 page->objects, maxobj);
975 return 0;
976 }
977 if (page->inuse > page->objects) {
978 slab_err(s, page, "inuse %u > max %u",
979 page->inuse, page->objects);
980 return 0;
981 }
982 /* Slab_pad_check fixes things up after itself */
983 slab_pad_check(s, page);
984 return 1;
985 }
986
987 /*
988 * Determine if a certain object on a page is on the freelist. Must hold the
989 * slab lock to guarantee that the chains are in a consistent state.
990 */
991 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
992 {
993 int nr = 0;
994 void *fp;
995 void *object = NULL;
996 int max_objects;
997
998 fp = page->freelist;
999 while (fp && nr <= page->objects) {
1000 if (fp == search)
1001 return 1;
1002 if (!check_valid_pointer(s, page, fp)) {
1003 if (object) {
1004 object_err(s, page, object,
1005 "Freechain corrupt");
1006 set_freepointer(s, object, NULL);
1007 } else {
1008 slab_err(s, page, "Freepointer corrupt");
1009 page->freelist = NULL;
1010 page->inuse = page->objects;
1011 slab_fix(s, "Freelist cleared");
1012 return 0;
1013 }
1014 break;
1015 }
1016 object = fp;
1017 fp = get_freepointer(s, object);
1018 nr++;
1019 }
1020
1021 max_objects = order_objects(compound_order(page), s->size);
1022 if (max_objects > MAX_OBJS_PER_PAGE)
1023 max_objects = MAX_OBJS_PER_PAGE;
1024
1025 if (page->objects != max_objects) {
1026 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1027 page->objects, max_objects);
1028 page->objects = max_objects;
1029 slab_fix(s, "Number of objects adjusted.");
1030 }
1031 if (page->inuse != page->objects - nr) {
1032 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1033 page->inuse, page->objects - nr);
1034 page->inuse = page->objects - nr;
1035 slab_fix(s, "Object count adjusted.");
1036 }
1037 return search == NULL;
1038 }
1039
1040 static void trace(struct kmem_cache *s, struct page *page, void *object,
1041 int alloc)
1042 {
1043 if (s->flags & SLAB_TRACE) {
1044 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1045 s->name,
1046 alloc ? "alloc" : "free",
1047 object, page->inuse,
1048 page->freelist);
1049
1050 if (!alloc)
1051 print_section(KERN_INFO, "Object ", (void *)object,
1052 s->object_size);
1053
1054 dump_stack();
1055 }
1056 }
1057
1058 /*
1059 * Tracking of fully allocated slabs for debugging purposes.
1060 */
1061 static void add_full(struct kmem_cache *s,
1062 struct kmem_cache_node *n, struct page *page)
1063 {
1064 if (!(s->flags & SLAB_STORE_USER))
1065 return;
1066
1067 lockdep_assert_held(&n->list_lock);
1068 list_add(&page->slab_list, &n->full);
1069 }
1070
1071 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1072 {
1073 if (!(s->flags & SLAB_STORE_USER))
1074 return;
1075
1076 lockdep_assert_held(&n->list_lock);
1077 list_del(&page->slab_list);
1078 }
1079
1080 /* Tracking of the number of slabs for debugging purposes */
1081 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082 {
1083 struct kmem_cache_node *n = get_node(s, node);
1084
1085 return atomic_long_read(&n->nr_slabs);
1086 }
1087
1088 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1089 {
1090 return atomic_long_read(&n->nr_slabs);
1091 }
1092
1093 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1094 {
1095 struct kmem_cache_node *n = get_node(s, node);
1096
1097 /*
1098 * May be called early in order to allocate a slab for the
1099 * kmem_cache_node structure. Solve the chicken-egg
1100 * dilemma by deferring the increment of the count during
1101 * bootstrap (see early_kmem_cache_node_alloc).
1102 */
1103 if (likely(n)) {
1104 atomic_long_inc(&n->nr_slabs);
1105 atomic_long_add(objects, &n->total_objects);
1106 }
1107 }
1108 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1109 {
1110 struct kmem_cache_node *n = get_node(s, node);
1111
1112 atomic_long_dec(&n->nr_slabs);
1113 atomic_long_sub(objects, &n->total_objects);
1114 }
1115
1116 /* Object debug checks for alloc/free paths */
1117 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1118 void *object)
1119 {
1120 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1121 return;
1122
1123 init_object(s, object, SLUB_RED_INACTIVE);
1124 init_tracking(s, object);
1125 }
1126
1127 static
1128 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1129 {
1130 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1131 return;
1132
1133 metadata_access_enable();
1134 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1135 metadata_access_disable();
1136 }
1137
1138 static inline int alloc_consistency_checks(struct kmem_cache *s,
1139 struct page *page, void *object)
1140 {
1141 if (!check_slab(s, page))
1142 return 0;
1143
1144 if (!check_valid_pointer(s, page, object)) {
1145 object_err(s, page, object, "Freelist Pointer check fails");
1146 return 0;
1147 }
1148
1149 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1150 return 0;
1151
1152 return 1;
1153 }
1154
1155 static noinline int alloc_debug_processing(struct kmem_cache *s,
1156 struct page *page,
1157 void *object, unsigned long addr)
1158 {
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 if (!alloc_consistency_checks(s, page, object))
1161 goto bad;
1162 }
1163
1164 /* Success perform special debug activities for allocs */
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_ALLOC, addr);
1167 trace(s, page, object, 1);
1168 init_object(s, object, SLUB_RED_ACTIVE);
1169 return 1;
1170
1171 bad:
1172 if (PageSlab(page)) {
1173 /*
1174 * If this is a slab page then lets do the best we can
1175 * to avoid issues in the future. Marking all objects
1176 * as used avoids touching the remaining objects.
1177 */
1178 slab_fix(s, "Marking all objects used");
1179 page->inuse = page->objects;
1180 page->freelist = NULL;
1181 }
1182 return 0;
1183 }
1184
1185 static inline int free_consistency_checks(struct kmem_cache *s,
1186 struct page *page, void *object, unsigned long addr)
1187 {
1188 if (!check_valid_pointer(s, page, object)) {
1189 slab_err(s, page, "Invalid object pointer 0x%p", object);
1190 return 0;
1191 }
1192
1193 if (on_freelist(s, page, object)) {
1194 object_err(s, page, object, "Object already free");
1195 return 0;
1196 }
1197
1198 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1199 return 0;
1200
1201 if (unlikely(s != page->slab_cache)) {
1202 if (!PageSlab(page)) {
1203 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1204 object);
1205 } else if (!page->slab_cache) {
1206 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1207 object);
1208 dump_stack();
1209 } else
1210 object_err(s, page, object,
1211 "page slab pointer corrupt.");
1212 return 0;
1213 }
1214 return 1;
1215 }
1216
1217 /* Supports checking bulk free of a constructed freelist */
1218 static noinline int free_debug_processing(
1219 struct kmem_cache *s, struct page *page,
1220 void *head, void *tail, int bulk_cnt,
1221 unsigned long addr)
1222 {
1223 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224 void *object = head;
1225 int cnt = 0;
1226 unsigned long flags;
1227 int ret = 0;
1228
1229 spin_lock_irqsave(&n->list_lock, flags);
1230 slab_lock(page);
1231
1232 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1233 if (!check_slab(s, page))
1234 goto out;
1235 }
1236
1237 next_object:
1238 cnt++;
1239
1240 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1241 if (!free_consistency_checks(s, page, object, addr))
1242 goto out;
1243 }
1244
1245 if (s->flags & SLAB_STORE_USER)
1246 set_track(s, object, TRACK_FREE, addr);
1247 trace(s, page, object, 0);
1248 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1249 init_object(s, object, SLUB_RED_INACTIVE);
1250
1251 /* Reached end of constructed freelist yet? */
1252 if (object != tail) {
1253 object = get_freepointer(s, object);
1254 goto next_object;
1255 }
1256 ret = 1;
1257
1258 out:
1259 if (cnt != bulk_cnt)
1260 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1261 bulk_cnt, cnt);
1262
1263 slab_unlock(page);
1264 spin_unlock_irqrestore(&n->list_lock, flags);
1265 if (!ret)
1266 slab_fix(s, "Object at 0x%p not freed", object);
1267 return ret;
1268 }
1269
1270 /*
1271 * Parse a block of slub_debug options. Blocks are delimited by ';'
1272 *
1273 * @str: start of block
1274 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1275 * @slabs: return start of list of slabs, or NULL when there's no list
1276 * @init: assume this is initial parsing and not per-kmem-create parsing
1277 *
1278 * returns the start of next block if there's any, or NULL
1279 */
1280 static char *
1281 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1282 {
1283 bool higher_order_disable = false;
1284
1285 /* Skip any completely empty blocks */
1286 while (*str && *str == ';')
1287 str++;
1288
1289 if (*str == ',') {
1290 /*
1291 * No options but restriction on slabs. This means full
1292 * debugging for slabs matching a pattern.
1293 */
1294 *flags = DEBUG_DEFAULT_FLAGS;
1295 goto check_slabs;
1296 }
1297 *flags = 0;
1298
1299 /* Determine which debug features should be switched on */
1300 for (; *str && *str != ',' && *str != ';'; str++) {
1301 switch (tolower(*str)) {
1302 case '-':
1303 *flags = 0;
1304 break;
1305 case 'f':
1306 *flags |= SLAB_CONSISTENCY_CHECKS;
1307 break;
1308 case 'z':
1309 *flags |= SLAB_RED_ZONE;
1310 break;
1311 case 'p':
1312 *flags |= SLAB_POISON;
1313 break;
1314 case 'u':
1315 *flags |= SLAB_STORE_USER;
1316 break;
1317 case 't':
1318 *flags |= SLAB_TRACE;
1319 break;
1320 case 'a':
1321 *flags |= SLAB_FAILSLAB;
1322 break;
1323 case 'o':
1324 /*
1325 * Avoid enabling debugging on caches if its minimum
1326 * order would increase as a result.
1327 */
1328 higher_order_disable = true;
1329 break;
1330 default:
1331 if (init)
1332 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1333 }
1334 }
1335 check_slabs:
1336 if (*str == ',')
1337 *slabs = ++str;
1338 else
1339 *slabs = NULL;
1340
1341 /* Skip over the slab list */
1342 while (*str && *str != ';')
1343 str++;
1344
1345 /* Skip any completely empty blocks */
1346 while (*str && *str == ';')
1347 str++;
1348
1349 if (init && higher_order_disable)
1350 disable_higher_order_debug = 1;
1351
1352 if (*str)
1353 return str;
1354 else
1355 return NULL;
1356 }
1357
1358 static int __init setup_slub_debug(char *str)
1359 {
1360 slab_flags_t flags;
1361 char *saved_str;
1362 char *slab_list;
1363 bool global_slub_debug_changed = false;
1364 bool slab_list_specified = false;
1365
1366 slub_debug = DEBUG_DEFAULT_FLAGS;
1367 if (*str++ != '=' || !*str)
1368 /*
1369 * No options specified. Switch on full debugging.
1370 */
1371 goto out;
1372
1373 saved_str = str;
1374 while (str) {
1375 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1376
1377 if (!slab_list) {
1378 slub_debug = flags;
1379 global_slub_debug_changed = true;
1380 } else {
1381 slab_list_specified = true;
1382 }
1383 }
1384
1385 /*
1386 * For backwards compatibility, a single list of flags with list of
1387 * slabs means debugging is only enabled for those slabs, so the global
1388 * slub_debug should be 0. We can extended that to multiple lists as
1389 * long as there is no option specifying flags without a slab list.
1390 */
1391 if (slab_list_specified) {
1392 if (!global_slub_debug_changed)
1393 slub_debug = 0;
1394 slub_debug_string = saved_str;
1395 }
1396 out:
1397 if (slub_debug != 0 || slub_debug_string)
1398 static_branch_enable(&slub_debug_enabled);
1399 if ((static_branch_unlikely(&init_on_alloc) ||
1400 static_branch_unlikely(&init_on_free)) &&
1401 (slub_debug & SLAB_POISON))
1402 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1403 return 1;
1404 }
1405
1406 __setup("slub_debug", setup_slub_debug);
1407
1408 /*
1409 * kmem_cache_flags - apply debugging options to the cache
1410 * @object_size: the size of an object without meta data
1411 * @flags: flags to set
1412 * @name: name of the cache
1413 *
1414 * Debug option(s) are applied to @flags. In addition to the debug
1415 * option(s), if a slab name (or multiple) is specified i.e.
1416 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1417 * then only the select slabs will receive the debug option(s).
1418 */
1419 slab_flags_t kmem_cache_flags(unsigned int object_size,
1420 slab_flags_t flags, const char *name)
1421 {
1422 char *iter;
1423 size_t len;
1424 char *next_block;
1425 slab_flags_t block_flags;
1426 slab_flags_t slub_debug_local = slub_debug;
1427
1428 /*
1429 * If the slab cache is for debugging (e.g. kmemleak) then
1430 * don't store user (stack trace) information by default,
1431 * but let the user enable it via the command line below.
1432 */
1433 if (flags & SLAB_NOLEAKTRACE)
1434 slub_debug_local &= ~SLAB_STORE_USER;
1435
1436 len = strlen(name);
1437 next_block = slub_debug_string;
1438 /* Go through all blocks of debug options, see if any matches our slab's name */
1439 while (next_block) {
1440 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1441 if (!iter)
1442 continue;
1443 /* Found a block that has a slab list, search it */
1444 while (*iter) {
1445 char *end, *glob;
1446 size_t cmplen;
1447
1448 end = strchrnul(iter, ',');
1449 if (next_block && next_block < end)
1450 end = next_block - 1;
1451
1452 glob = strnchr(iter, end - iter, '*');
1453 if (glob)
1454 cmplen = glob - iter;
1455 else
1456 cmplen = max_t(size_t, len, (end - iter));
1457
1458 if (!strncmp(name, iter, cmplen)) {
1459 flags |= block_flags;
1460 return flags;
1461 }
1462
1463 if (!*end || *end == ';')
1464 break;
1465 iter = end + 1;
1466 }
1467 }
1468
1469 return flags | slub_debug_local;
1470 }
1471 #else /* !CONFIG_SLUB_DEBUG */
1472 static inline void setup_object_debug(struct kmem_cache *s,
1473 struct page *page, void *object) {}
1474 static inline
1475 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1476
1477 static inline int alloc_debug_processing(struct kmem_cache *s,
1478 struct page *page, void *object, unsigned long addr) { return 0; }
1479
1480 static inline int free_debug_processing(
1481 struct kmem_cache *s, struct page *page,
1482 void *head, void *tail, int bulk_cnt,
1483 unsigned long addr) { return 0; }
1484
1485 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1486 { return 1; }
1487 static inline int check_object(struct kmem_cache *s, struct page *page,
1488 void *object, u8 val) { return 1; }
1489 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
1491 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1492 struct page *page) {}
1493 slab_flags_t kmem_cache_flags(unsigned int object_size,
1494 slab_flags_t flags, const char *name)
1495 {
1496 return flags;
1497 }
1498 #define slub_debug 0
1499
1500 #define disable_higher_order_debug 0
1501
1502 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1503 { return 0; }
1504 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1505 { return 0; }
1506 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1507 int objects) {}
1508 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1509 int objects) {}
1510
1511 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1512 void **freelist, void *nextfree)
1513 {
1514 return false;
1515 }
1516 #endif /* CONFIG_SLUB_DEBUG */
1517
1518 /*
1519 * Hooks for other subsystems that check memory allocations. In a typical
1520 * production configuration these hooks all should produce no code at all.
1521 */
1522 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1523 {
1524 ptr = kasan_kmalloc_large(ptr, size, flags);
1525 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1526 kmemleak_alloc(ptr, size, 1, flags);
1527 return ptr;
1528 }
1529
1530 static __always_inline void kfree_hook(void *x)
1531 {
1532 kmemleak_free(x);
1533 kasan_kfree_large(x);
1534 }
1535
1536 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1537 void *x, bool init)
1538 {
1539 kmemleak_free_recursive(x, s->flags);
1540
1541 /*
1542 * Trouble is that we may no longer disable interrupts in the fast path
1543 * So in order to make the debug calls that expect irqs to be
1544 * disabled we need to disable interrupts temporarily.
1545 */
1546 #ifdef CONFIG_LOCKDEP
1547 {
1548 unsigned long flags;
1549
1550 local_irq_save(flags);
1551 debug_check_no_locks_freed(x, s->object_size);
1552 local_irq_restore(flags);
1553 }
1554 #endif
1555 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1556 debug_check_no_obj_freed(x, s->object_size);
1557
1558 /* Use KCSAN to help debug racy use-after-free. */
1559 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1560 __kcsan_check_access(x, s->object_size,
1561 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1562
1563 /*
1564 * As memory initialization might be integrated into KASAN,
1565 * kasan_slab_free and initialization memset's must be
1566 * kept together to avoid discrepancies in behavior.
1567 *
1568 * The initialization memset's clear the object and the metadata,
1569 * but don't touch the SLAB redzone.
1570 */
1571 if (init) {
1572 int rsize;
1573
1574 if (!kasan_has_integrated_init())
1575 memset(kasan_reset_tag(x), 0, s->object_size);
1576 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1577 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1578 s->size - s->inuse - rsize);
1579 }
1580 /* KASAN might put x into memory quarantine, delaying its reuse. */
1581 return kasan_slab_free(s, x, init);
1582 }
1583
1584 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1585 void **head, void **tail)
1586 {
1587
1588 void *object;
1589 void *next = *head;
1590 void *old_tail = *tail ? *tail : *head;
1591
1592 if (is_kfence_address(next)) {
1593 slab_free_hook(s, next, false);
1594 return true;
1595 }
1596
1597 /* Head and tail of the reconstructed freelist */
1598 *head = NULL;
1599 *tail = NULL;
1600
1601 do {
1602 object = next;
1603 next = get_freepointer(s, object);
1604
1605 /* If object's reuse doesn't have to be delayed */
1606 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1607 /* Move object to the new freelist */
1608 set_freepointer(s, object, *head);
1609 *head = object;
1610 if (!*tail)
1611 *tail = object;
1612 }
1613 } while (object != old_tail);
1614
1615 if (*head == *tail)
1616 *tail = NULL;
1617
1618 return *head != NULL;
1619 }
1620
1621 static void *setup_object(struct kmem_cache *s, struct page *page,
1622 void *object)
1623 {
1624 setup_object_debug(s, page, object);
1625 object = kasan_init_slab_obj(s, object);
1626 if (unlikely(s->ctor)) {
1627 kasan_unpoison_object_data(s, object);
1628 s->ctor(object);
1629 kasan_poison_object_data(s, object);
1630 }
1631 return object;
1632 }
1633
1634 /*
1635 * Slab allocation and freeing
1636 */
1637 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1638 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1639 {
1640 struct page *page;
1641 unsigned int order = oo_order(oo);
1642
1643 if (node == NUMA_NO_NODE)
1644 page = alloc_pages(flags, order);
1645 else
1646 page = __alloc_pages_node(node, flags, order);
1647
1648 return page;
1649 }
1650
1651 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1652 /* Pre-initialize the random sequence cache */
1653 static int init_cache_random_seq(struct kmem_cache *s)
1654 {
1655 unsigned int count = oo_objects(s->oo);
1656 int err;
1657
1658 /* Bailout if already initialised */
1659 if (s->random_seq)
1660 return 0;
1661
1662 err = cache_random_seq_create(s, count, GFP_KERNEL);
1663 if (err) {
1664 pr_err("SLUB: Unable to initialize free list for %s\n",
1665 s->name);
1666 return err;
1667 }
1668
1669 /* Transform to an offset on the set of pages */
1670 if (s->random_seq) {
1671 unsigned int i;
1672
1673 for (i = 0; i < count; i++)
1674 s->random_seq[i] *= s->size;
1675 }
1676 return 0;
1677 }
1678
1679 /* Initialize each random sequence freelist per cache */
1680 static void __init init_freelist_randomization(void)
1681 {
1682 struct kmem_cache *s;
1683
1684 mutex_lock(&slab_mutex);
1685
1686 list_for_each_entry(s, &slab_caches, list)
1687 init_cache_random_seq(s);
1688
1689 mutex_unlock(&slab_mutex);
1690 }
1691
1692 /* Get the next entry on the pre-computed freelist randomized */
1693 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1694 unsigned long *pos, void *start,
1695 unsigned long page_limit,
1696 unsigned long freelist_count)
1697 {
1698 unsigned int idx;
1699
1700 /*
1701 * If the target page allocation failed, the number of objects on the
1702 * page might be smaller than the usual size defined by the cache.
1703 */
1704 do {
1705 idx = s->random_seq[*pos];
1706 *pos += 1;
1707 if (*pos >= freelist_count)
1708 *pos = 0;
1709 } while (unlikely(idx >= page_limit));
1710
1711 return (char *)start + idx;
1712 }
1713
1714 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1715 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1716 {
1717 void *start;
1718 void *cur;
1719 void *next;
1720 unsigned long idx, pos, page_limit, freelist_count;
1721
1722 if (page->objects < 2 || !s->random_seq)
1723 return false;
1724
1725 freelist_count = oo_objects(s->oo);
1726 pos = get_random_int() % freelist_count;
1727
1728 page_limit = page->objects * s->size;
1729 start = fixup_red_left(s, page_address(page));
1730
1731 /* First entry is used as the base of the freelist */
1732 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1733 freelist_count);
1734 cur = setup_object(s, page, cur);
1735 page->freelist = cur;
1736
1737 for (idx = 1; idx < page->objects; idx++) {
1738 next = next_freelist_entry(s, page, &pos, start, page_limit,
1739 freelist_count);
1740 next = setup_object(s, page, next);
1741 set_freepointer(s, cur, next);
1742 cur = next;
1743 }
1744 set_freepointer(s, cur, NULL);
1745
1746 return true;
1747 }
1748 #else
1749 static inline int init_cache_random_seq(struct kmem_cache *s)
1750 {
1751 return 0;
1752 }
1753 static inline void init_freelist_randomization(void) { }
1754 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1755 {
1756 return false;
1757 }
1758 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1759
1760 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1761 {
1762 struct page *page;
1763 struct kmem_cache_order_objects oo = s->oo;
1764 gfp_t alloc_gfp;
1765 void *start, *p, *next;
1766 int idx;
1767 bool shuffle;
1768
1769 flags &= gfp_allowed_mask;
1770
1771 if (gfpflags_allow_blocking(flags))
1772 local_irq_enable();
1773
1774 flags |= s->allocflags;
1775
1776 /*
1777 * Let the initial higher-order allocation fail under memory pressure
1778 * so we fall-back to the minimum order allocation.
1779 */
1780 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1781 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1782 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1783
1784 page = alloc_slab_page(s, alloc_gfp, node, oo);
1785 if (unlikely(!page)) {
1786 oo = s->min;
1787 alloc_gfp = flags;
1788 /*
1789 * Allocation may have failed due to fragmentation.
1790 * Try a lower order alloc if possible
1791 */
1792 page = alloc_slab_page(s, alloc_gfp, node, oo);
1793 if (unlikely(!page))
1794 goto out;
1795 stat(s, ORDER_FALLBACK);
1796 }
1797
1798 page->objects = oo_objects(oo);
1799
1800 account_slab_page(page, oo_order(oo), s, flags);
1801
1802 page->slab_cache = s;
1803 __SetPageSlab(page);
1804 if (page_is_pfmemalloc(page))
1805 SetPageSlabPfmemalloc(page);
1806
1807 kasan_poison_slab(page);
1808
1809 start = page_address(page);
1810
1811 setup_page_debug(s, page, start);
1812
1813 shuffle = shuffle_freelist(s, page);
1814
1815 if (!shuffle) {
1816 start = fixup_red_left(s, start);
1817 start = setup_object(s, page, start);
1818 page->freelist = start;
1819 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1820 next = p + s->size;
1821 next = setup_object(s, page, next);
1822 set_freepointer(s, p, next);
1823 p = next;
1824 }
1825 set_freepointer(s, p, NULL);
1826 }
1827
1828 page->inuse = page->objects;
1829 page->frozen = 1;
1830
1831 out:
1832 if (gfpflags_allow_blocking(flags))
1833 local_irq_disable();
1834 if (!page)
1835 return NULL;
1836
1837 inc_slabs_node(s, page_to_nid(page), page->objects);
1838
1839 return page;
1840 }
1841
1842 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1843 {
1844 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1845 flags = kmalloc_fix_flags(flags);
1846
1847 return allocate_slab(s,
1848 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1849 }
1850
1851 static void __free_slab(struct kmem_cache *s, struct page *page)
1852 {
1853 int order = compound_order(page);
1854 int pages = 1 << order;
1855
1856 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1857 void *p;
1858
1859 slab_pad_check(s, page);
1860 for_each_object(p, s, page_address(page),
1861 page->objects)
1862 check_object(s, page, p, SLUB_RED_INACTIVE);
1863 }
1864
1865 __ClearPageSlabPfmemalloc(page);
1866 __ClearPageSlab(page);
1867 /* In union with page->mapping where page allocator expects NULL */
1868 page->slab_cache = NULL;
1869 if (current->reclaim_state)
1870 current->reclaim_state->reclaimed_slab += pages;
1871 unaccount_slab_page(page, order, s);
1872 __free_pages(page, order);
1873 }
1874
1875 static void rcu_free_slab(struct rcu_head *h)
1876 {
1877 struct page *page = container_of(h, struct page, rcu_head);
1878
1879 __free_slab(page->slab_cache, page);
1880 }
1881
1882 static void free_slab(struct kmem_cache *s, struct page *page)
1883 {
1884 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1885 call_rcu(&page->rcu_head, rcu_free_slab);
1886 } else
1887 __free_slab(s, page);
1888 }
1889
1890 static void discard_slab(struct kmem_cache *s, struct page *page)
1891 {
1892 dec_slabs_node(s, page_to_nid(page), page->objects);
1893 free_slab(s, page);
1894 }
1895
1896 /*
1897 * Management of partially allocated slabs.
1898 */
1899 static inline void
1900 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1901 {
1902 n->nr_partial++;
1903 if (tail == DEACTIVATE_TO_TAIL)
1904 list_add_tail(&page->slab_list, &n->partial);
1905 else
1906 list_add(&page->slab_list, &n->partial);
1907 }
1908
1909 static inline void add_partial(struct kmem_cache_node *n,
1910 struct page *page, int tail)
1911 {
1912 lockdep_assert_held(&n->list_lock);
1913 __add_partial(n, page, tail);
1914 }
1915
1916 static inline void remove_partial(struct kmem_cache_node *n,
1917 struct page *page)
1918 {
1919 lockdep_assert_held(&n->list_lock);
1920 list_del(&page->slab_list);
1921 n->nr_partial--;
1922 }
1923
1924 /*
1925 * Remove slab from the partial list, freeze it and
1926 * return the pointer to the freelist.
1927 *
1928 * Returns a list of objects or NULL if it fails.
1929 */
1930 static inline void *acquire_slab(struct kmem_cache *s,
1931 struct kmem_cache_node *n, struct page *page,
1932 int mode, int *objects)
1933 {
1934 void *freelist;
1935 unsigned long counters;
1936 struct page new;
1937
1938 lockdep_assert_held(&n->list_lock);
1939
1940 /*
1941 * Zap the freelist and set the frozen bit.
1942 * The old freelist is the list of objects for the
1943 * per cpu allocation list.
1944 */
1945 freelist = page->freelist;
1946 counters = page->counters;
1947 new.counters = counters;
1948 *objects = new.objects - new.inuse;
1949 if (mode) {
1950 new.inuse = page->objects;
1951 new.freelist = NULL;
1952 } else {
1953 new.freelist = freelist;
1954 }
1955
1956 VM_BUG_ON(new.frozen);
1957 new.frozen = 1;
1958
1959 if (!__cmpxchg_double_slab(s, page,
1960 freelist, counters,
1961 new.freelist, new.counters,
1962 "acquire_slab"))
1963 return NULL;
1964
1965 remove_partial(n, page);
1966 WARN_ON(!freelist);
1967 return freelist;
1968 }
1969
1970 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1971 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1972
1973 /*
1974 * Try to allocate a partial slab from a specific node.
1975 */
1976 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1977 struct kmem_cache_cpu *c, gfp_t flags)
1978 {
1979 struct page *page, *page2;
1980 void *object = NULL;
1981 unsigned int available = 0;
1982 int objects;
1983
1984 /*
1985 * Racy check. If we mistakenly see no partial slabs then we
1986 * just allocate an empty slab. If we mistakenly try to get a
1987 * partial slab and there is none available then get_partial()
1988 * will return NULL.
1989 */
1990 if (!n || !n->nr_partial)
1991 return NULL;
1992
1993 spin_lock(&n->list_lock);
1994 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1995 void *t;
1996
1997 if (!pfmemalloc_match(page, flags))
1998 continue;
1999
2000 t = acquire_slab(s, n, page, object == NULL, &objects);
2001 if (!t)
2002 break;
2003
2004 available += objects;
2005 if (!object) {
2006 c->page = page;
2007 stat(s, ALLOC_FROM_PARTIAL);
2008 object = t;
2009 } else {
2010 put_cpu_partial(s, page, 0);
2011 stat(s, CPU_PARTIAL_NODE);
2012 }
2013 if (!kmem_cache_has_cpu_partial(s)
2014 || available > slub_cpu_partial(s) / 2)
2015 break;
2016
2017 }
2018 spin_unlock(&n->list_lock);
2019 return object;
2020 }
2021
2022 /*
2023 * Get a page from somewhere. Search in increasing NUMA distances.
2024 */
2025 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2026 struct kmem_cache_cpu *c)
2027 {
2028 #ifdef CONFIG_NUMA
2029 struct zonelist *zonelist;
2030 struct zoneref *z;
2031 struct zone *zone;
2032 enum zone_type highest_zoneidx = gfp_zone(flags);
2033 void *object;
2034 unsigned int cpuset_mems_cookie;
2035
2036 /*
2037 * The defrag ratio allows a configuration of the tradeoffs between
2038 * inter node defragmentation and node local allocations. A lower
2039 * defrag_ratio increases the tendency to do local allocations
2040 * instead of attempting to obtain partial slabs from other nodes.
2041 *
2042 * If the defrag_ratio is set to 0 then kmalloc() always
2043 * returns node local objects. If the ratio is higher then kmalloc()
2044 * may return off node objects because partial slabs are obtained
2045 * from other nodes and filled up.
2046 *
2047 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2048 * (which makes defrag_ratio = 1000) then every (well almost)
2049 * allocation will first attempt to defrag slab caches on other nodes.
2050 * This means scanning over all nodes to look for partial slabs which
2051 * may be expensive if we do it every time we are trying to find a slab
2052 * with available objects.
2053 */
2054 if (!s->remote_node_defrag_ratio ||
2055 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2056 return NULL;
2057
2058 do {
2059 cpuset_mems_cookie = read_mems_allowed_begin();
2060 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2061 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2062 struct kmem_cache_node *n;
2063
2064 n = get_node(s, zone_to_nid(zone));
2065
2066 if (n && cpuset_zone_allowed(zone, flags) &&
2067 n->nr_partial > s->min_partial) {
2068 object = get_partial_node(s, n, c, flags);
2069 if (object) {
2070 /*
2071 * Don't check read_mems_allowed_retry()
2072 * here - if mems_allowed was updated in
2073 * parallel, that was a harmless race
2074 * between allocation and the cpuset
2075 * update
2076 */
2077 return object;
2078 }
2079 }
2080 }
2081 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2082 #endif /* CONFIG_NUMA */
2083 return NULL;
2084 }
2085
2086 /*
2087 * Get a partial page, lock it and return it.
2088 */
2089 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2090 struct kmem_cache_cpu *c)
2091 {
2092 void *object;
2093 int searchnode = node;
2094
2095 if (node == NUMA_NO_NODE)
2096 searchnode = numa_mem_id();
2097
2098 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2099 if (object || node != NUMA_NO_NODE)
2100 return object;
2101
2102 return get_any_partial(s, flags, c);
2103 }
2104
2105 #ifdef CONFIG_PREEMPTION
2106 /*
2107 * Calculate the next globally unique transaction for disambiguation
2108 * during cmpxchg. The transactions start with the cpu number and are then
2109 * incremented by CONFIG_NR_CPUS.
2110 */
2111 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2112 #else
2113 /*
2114 * No preemption supported therefore also no need to check for
2115 * different cpus.
2116 */
2117 #define TID_STEP 1
2118 #endif
2119
2120 static inline unsigned long next_tid(unsigned long tid)
2121 {
2122 return tid + TID_STEP;
2123 }
2124
2125 #ifdef SLUB_DEBUG_CMPXCHG
2126 static inline unsigned int tid_to_cpu(unsigned long tid)
2127 {
2128 return tid % TID_STEP;
2129 }
2130
2131 static inline unsigned long tid_to_event(unsigned long tid)
2132 {
2133 return tid / TID_STEP;
2134 }
2135 #endif
2136
2137 static inline unsigned int init_tid(int cpu)
2138 {
2139 return cpu;
2140 }
2141
2142 static inline void note_cmpxchg_failure(const char *n,
2143 const struct kmem_cache *s, unsigned long tid)
2144 {
2145 #ifdef SLUB_DEBUG_CMPXCHG
2146 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2147
2148 pr_info("%s %s: cmpxchg redo ", n, s->name);
2149
2150 #ifdef CONFIG_PREEMPTION
2151 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2152 pr_warn("due to cpu change %d -> %d\n",
2153 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2154 else
2155 #endif
2156 if (tid_to_event(tid) != tid_to_event(actual_tid))
2157 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2158 tid_to_event(tid), tid_to_event(actual_tid));
2159 else
2160 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2161 actual_tid, tid, next_tid(tid));
2162 #endif
2163 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2164 }
2165
2166 static void init_kmem_cache_cpus(struct kmem_cache *s)
2167 {
2168 int cpu;
2169
2170 for_each_possible_cpu(cpu)
2171 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2172 }
2173
2174 /*
2175 * Remove the cpu slab
2176 */
2177 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2178 void *freelist, struct kmem_cache_cpu *c)
2179 {
2180 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2182 int lock = 0, free_delta = 0;
2183 enum slab_modes l = M_NONE, m = M_NONE;
2184 void *nextfree, *freelist_iter, *freelist_tail;
2185 int tail = DEACTIVATE_TO_HEAD;
2186 struct page new;
2187 struct page old;
2188
2189 if (page->freelist) {
2190 stat(s, DEACTIVATE_REMOTE_FREES);
2191 tail = DEACTIVATE_TO_TAIL;
2192 }
2193
2194 /*
2195 * Stage one: Count the objects on cpu's freelist as free_delta and
2196 * remember the last object in freelist_tail for later splicing.
2197 */
2198 freelist_tail = NULL;
2199 freelist_iter = freelist;
2200 while (freelist_iter) {
2201 nextfree = get_freepointer(s, freelist_iter);
2202
2203 /*
2204 * If 'nextfree' is invalid, it is possible that the object at
2205 * 'freelist_iter' is already corrupted. So isolate all objects
2206 * starting at 'freelist_iter' by skipping them.
2207 */
2208 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2209 break;
2210
2211 freelist_tail = freelist_iter;
2212 free_delta++;
2213
2214 freelist_iter = nextfree;
2215 }
2216
2217 /*
2218 * Stage two: Unfreeze the page while splicing the per-cpu
2219 * freelist to the head of page's freelist.
2220 *
2221 * Ensure that the page is unfrozen while the list presence
2222 * reflects the actual number of objects during unfreeze.
2223 *
2224 * We setup the list membership and then perform a cmpxchg
2225 * with the count. If there is a mismatch then the page
2226 * is not unfrozen but the page is on the wrong list.
2227 *
2228 * Then we restart the process which may have to remove
2229 * the page from the list that we just put it on again
2230 * because the number of objects in the slab may have
2231 * changed.
2232 */
2233 redo:
2234
2235 old.freelist = READ_ONCE(page->freelist);
2236 old.counters = READ_ONCE(page->counters);
2237 VM_BUG_ON(!old.frozen);
2238
2239 /* Determine target state of the slab */
2240 new.counters = old.counters;
2241 if (freelist_tail) {
2242 new.inuse -= free_delta;
2243 set_freepointer(s, freelist_tail, old.freelist);
2244 new.freelist = freelist;
2245 } else
2246 new.freelist = old.freelist;
2247
2248 new.frozen = 0;
2249
2250 if (!new.inuse && n->nr_partial >= s->min_partial)
2251 m = M_FREE;
2252 else if (new.freelist) {
2253 m = M_PARTIAL;
2254 if (!lock) {
2255 lock = 1;
2256 /*
2257 * Taking the spinlock removes the possibility
2258 * that acquire_slab() will see a slab page that
2259 * is frozen
2260 */
2261 spin_lock(&n->list_lock);
2262 }
2263 } else {
2264 m = M_FULL;
2265 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2266 lock = 1;
2267 /*
2268 * This also ensures that the scanning of full
2269 * slabs from diagnostic functions will not see
2270 * any frozen slabs.
2271 */
2272 spin_lock(&n->list_lock);
2273 }
2274 }
2275
2276 if (l != m) {
2277 if (l == M_PARTIAL)
2278 remove_partial(n, page);
2279 else if (l == M_FULL)
2280 remove_full(s, n, page);
2281
2282 if (m == M_PARTIAL)
2283 add_partial(n, page, tail);
2284 else if (m == M_FULL)
2285 add_full(s, n, page);
2286 }
2287
2288 l = m;
2289 if (!__cmpxchg_double_slab(s, page,
2290 old.freelist, old.counters,
2291 new.freelist, new.counters,
2292 "unfreezing slab"))
2293 goto redo;
2294
2295 if (lock)
2296 spin_unlock(&n->list_lock);
2297
2298 if (m == M_PARTIAL)
2299 stat(s, tail);
2300 else if (m == M_FULL)
2301 stat(s, DEACTIVATE_FULL);
2302 else if (m == M_FREE) {
2303 stat(s, DEACTIVATE_EMPTY);
2304 discard_slab(s, page);
2305 stat(s, FREE_SLAB);
2306 }
2307
2308 c->page = NULL;
2309 c->freelist = NULL;
2310 }
2311
2312 /*
2313 * Unfreeze all the cpu partial slabs.
2314 *
2315 * This function must be called with interrupts disabled
2316 * for the cpu using c (or some other guarantee must be there
2317 * to guarantee no concurrent accesses).
2318 */
2319 static void unfreeze_partials(struct kmem_cache *s,
2320 struct kmem_cache_cpu *c)
2321 {
2322 #ifdef CONFIG_SLUB_CPU_PARTIAL
2323 struct kmem_cache_node *n = NULL, *n2 = NULL;
2324 struct page *page, *discard_page = NULL;
2325
2326 while ((page = slub_percpu_partial(c))) {
2327 struct page new;
2328 struct page old;
2329
2330 slub_set_percpu_partial(c, page);
2331
2332 n2 = get_node(s, page_to_nid(page));
2333 if (n != n2) {
2334 if (n)
2335 spin_unlock(&n->list_lock);
2336
2337 n = n2;
2338 spin_lock(&n->list_lock);
2339 }
2340
2341 do {
2342
2343 old.freelist = page->freelist;
2344 old.counters = page->counters;
2345 VM_BUG_ON(!old.frozen);
2346
2347 new.counters = old.counters;
2348 new.freelist = old.freelist;
2349
2350 new.frozen = 0;
2351
2352 } while (!__cmpxchg_double_slab(s, page,
2353 old.freelist, old.counters,
2354 new.freelist, new.counters,
2355 "unfreezing slab"));
2356
2357 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2358 page->next = discard_page;
2359 discard_page = page;
2360 } else {
2361 add_partial(n, page, DEACTIVATE_TO_TAIL);
2362 stat(s, FREE_ADD_PARTIAL);
2363 }
2364 }
2365
2366 if (n)
2367 spin_unlock(&n->list_lock);
2368
2369 while (discard_page) {
2370 page = discard_page;
2371 discard_page = discard_page->next;
2372
2373 stat(s, DEACTIVATE_EMPTY);
2374 discard_slab(s, page);
2375 stat(s, FREE_SLAB);
2376 }
2377 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2378 }
2379
2380 /*
2381 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2382 * partial page slot if available.
2383 *
2384 * If we did not find a slot then simply move all the partials to the
2385 * per node partial list.
2386 */
2387 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2388 {
2389 #ifdef CONFIG_SLUB_CPU_PARTIAL
2390 struct page *oldpage;
2391 int pages;
2392 int pobjects;
2393
2394 preempt_disable();
2395 do {
2396 pages = 0;
2397 pobjects = 0;
2398 oldpage = this_cpu_read(s->cpu_slab->partial);
2399
2400 if (oldpage) {
2401 pobjects = oldpage->pobjects;
2402 pages = oldpage->pages;
2403 if (drain && pobjects > slub_cpu_partial(s)) {
2404 unsigned long flags;
2405 /*
2406 * partial array is full. Move the existing
2407 * set to the per node partial list.
2408 */
2409 local_irq_save(flags);
2410 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2411 local_irq_restore(flags);
2412 oldpage = NULL;
2413 pobjects = 0;
2414 pages = 0;
2415 stat(s, CPU_PARTIAL_DRAIN);
2416 }
2417 }
2418
2419 pages++;
2420 pobjects += page->objects - page->inuse;
2421
2422 page->pages = pages;
2423 page->pobjects = pobjects;
2424 page->next = oldpage;
2425
2426 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2427 != oldpage);
2428 if (unlikely(!slub_cpu_partial(s))) {
2429 unsigned long flags;
2430
2431 local_irq_save(flags);
2432 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2433 local_irq_restore(flags);
2434 }
2435 preempt_enable();
2436 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2437 }
2438
2439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2440 {
2441 stat(s, CPUSLAB_FLUSH);
2442 deactivate_slab(s, c->page, c->freelist, c);
2443
2444 c->tid = next_tid(c->tid);
2445 }
2446
2447 /*
2448 * Flush cpu slab.
2449 *
2450 * Called from IPI handler with interrupts disabled.
2451 */
2452 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2453 {
2454 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2455
2456 if (c->page)
2457 flush_slab(s, c);
2458
2459 unfreeze_partials(s, c);
2460 }
2461
2462 static void flush_cpu_slab(void *d)
2463 {
2464 struct kmem_cache *s = d;
2465
2466 __flush_cpu_slab(s, smp_processor_id());
2467 }
2468
2469 static bool has_cpu_slab(int cpu, void *info)
2470 {
2471 struct kmem_cache *s = info;
2472 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2473
2474 return c->page || slub_percpu_partial(c);
2475 }
2476
2477 static void flush_all(struct kmem_cache *s)
2478 {
2479 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2480 }
2481
2482 /*
2483 * Use the cpu notifier to insure that the cpu slabs are flushed when
2484 * necessary.
2485 */
2486 static int slub_cpu_dead(unsigned int cpu)
2487 {
2488 struct kmem_cache *s;
2489 unsigned long flags;
2490
2491 mutex_lock(&slab_mutex);
2492 list_for_each_entry(s, &slab_caches, list) {
2493 local_irq_save(flags);
2494 __flush_cpu_slab(s, cpu);
2495 local_irq_restore(flags);
2496 }
2497 mutex_unlock(&slab_mutex);
2498 return 0;
2499 }
2500
2501 /*
2502 * Check if the objects in a per cpu structure fit numa
2503 * locality expectations.
2504 */
2505 static inline int node_match(struct page *page, int node)
2506 {
2507 #ifdef CONFIG_NUMA
2508 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2509 return 0;
2510 #endif
2511 return 1;
2512 }
2513
2514 #ifdef CONFIG_SLUB_DEBUG
2515 static int count_free(struct page *page)
2516 {
2517 return page->objects - page->inuse;
2518 }
2519
2520 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2521 {
2522 return atomic_long_read(&n->total_objects);
2523 }
2524 #endif /* CONFIG_SLUB_DEBUG */
2525
2526 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2527 static unsigned long count_partial(struct kmem_cache_node *n,
2528 int (*get_count)(struct page *))
2529 {
2530 unsigned long flags;
2531 unsigned long x = 0;
2532 struct page *page;
2533
2534 spin_lock_irqsave(&n->list_lock, flags);
2535 list_for_each_entry(page, &n->partial, slab_list)
2536 x += get_count(page);
2537 spin_unlock_irqrestore(&n->list_lock, flags);
2538 return x;
2539 }
2540 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2541
2542 static noinline void
2543 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2544 {
2545 #ifdef CONFIG_SLUB_DEBUG
2546 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2547 DEFAULT_RATELIMIT_BURST);
2548 int node;
2549 struct kmem_cache_node *n;
2550
2551 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2552 return;
2553
2554 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2555 nid, gfpflags, &gfpflags);
2556 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2557 s->name, s->object_size, s->size, oo_order(s->oo),
2558 oo_order(s->min));
2559
2560 if (oo_order(s->min) > get_order(s->object_size))
2561 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2562 s->name);
2563
2564 for_each_kmem_cache_node(s, node, n) {
2565 unsigned long nr_slabs;
2566 unsigned long nr_objs;
2567 unsigned long nr_free;
2568
2569 nr_free = count_partial(n, count_free);
2570 nr_slabs = node_nr_slabs(n);
2571 nr_objs = node_nr_objs(n);
2572
2573 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2574 node, nr_slabs, nr_objs, nr_free);
2575 }
2576 #endif
2577 }
2578
2579 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2580 int node, struct kmem_cache_cpu **pc)
2581 {
2582 void *freelist;
2583 struct kmem_cache_cpu *c = *pc;
2584 struct page *page;
2585
2586 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2587
2588 freelist = get_partial(s, flags, node, c);
2589
2590 if (freelist)
2591 return freelist;
2592
2593 page = new_slab(s, flags, node);
2594 if (page) {
2595 c = raw_cpu_ptr(s->cpu_slab);
2596 if (c->page)
2597 flush_slab(s, c);
2598
2599 /*
2600 * No other reference to the page yet so we can
2601 * muck around with it freely without cmpxchg
2602 */
2603 freelist = page->freelist;
2604 page->freelist = NULL;
2605
2606 stat(s, ALLOC_SLAB);
2607 c->page = page;
2608 *pc = c;
2609 }
2610
2611 return freelist;
2612 }
2613
2614 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2615 {
2616 if (unlikely(PageSlabPfmemalloc(page)))
2617 return gfp_pfmemalloc_allowed(gfpflags);
2618
2619 return true;
2620 }
2621
2622 /*
2623 * Check the page->freelist of a page and either transfer the freelist to the
2624 * per cpu freelist or deactivate the page.
2625 *
2626 * The page is still frozen if the return value is not NULL.
2627 *
2628 * If this function returns NULL then the page has been unfrozen.
2629 *
2630 * This function must be called with interrupt disabled.
2631 */
2632 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2633 {
2634 struct page new;
2635 unsigned long counters;
2636 void *freelist;
2637
2638 do {
2639 freelist = page->freelist;
2640 counters = page->counters;
2641
2642 new.counters = counters;
2643 VM_BUG_ON(!new.frozen);
2644
2645 new.inuse = page->objects;
2646 new.frozen = freelist != NULL;
2647
2648 } while (!__cmpxchg_double_slab(s, page,
2649 freelist, counters,
2650 NULL, new.counters,
2651 "get_freelist"));
2652
2653 return freelist;
2654 }
2655
2656 /*
2657 * Slow path. The lockless freelist is empty or we need to perform
2658 * debugging duties.
2659 *
2660 * Processing is still very fast if new objects have been freed to the
2661 * regular freelist. In that case we simply take over the regular freelist
2662 * as the lockless freelist and zap the regular freelist.
2663 *
2664 * If that is not working then we fall back to the partial lists. We take the
2665 * first element of the freelist as the object to allocate now and move the
2666 * rest of the freelist to the lockless freelist.
2667 *
2668 * And if we were unable to get a new slab from the partial slab lists then
2669 * we need to allocate a new slab. This is the slowest path since it involves
2670 * a call to the page allocator and the setup of a new slab.
2671 *
2672 * Version of __slab_alloc to use when we know that interrupts are
2673 * already disabled (which is the case for bulk allocation).
2674 */
2675 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2676 unsigned long addr, struct kmem_cache_cpu *c)
2677 {
2678 void *freelist;
2679 struct page *page;
2680
2681 stat(s, ALLOC_SLOWPATH);
2682
2683 page = c->page;
2684 if (!page) {
2685 /*
2686 * if the node is not online or has no normal memory, just
2687 * ignore the node constraint
2688 */
2689 if (unlikely(node != NUMA_NO_NODE &&
2690 !node_isset(node, slab_nodes)))
2691 node = NUMA_NO_NODE;
2692 goto new_slab;
2693 }
2694 redo:
2695
2696 if (unlikely(!node_match(page, node))) {
2697 /*
2698 * same as above but node_match() being false already
2699 * implies node != NUMA_NO_NODE
2700 */
2701 if (!node_isset(node, slab_nodes)) {
2702 node = NUMA_NO_NODE;
2703 goto redo;
2704 } else {
2705 stat(s, ALLOC_NODE_MISMATCH);
2706 deactivate_slab(s, page, c->freelist, c);
2707 goto new_slab;
2708 }
2709 }
2710
2711 /*
2712 * By rights, we should be searching for a slab page that was
2713 * PFMEMALLOC but right now, we are losing the pfmemalloc
2714 * information when the page leaves the per-cpu allocator
2715 */
2716 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2717 deactivate_slab(s, page, c->freelist, c);
2718 goto new_slab;
2719 }
2720
2721 /* must check again c->freelist in case of cpu migration or IRQ */
2722 freelist = c->freelist;
2723 if (freelist)
2724 goto load_freelist;
2725
2726 freelist = get_freelist(s, page);
2727
2728 if (!freelist) {
2729 c->page = NULL;
2730 stat(s, DEACTIVATE_BYPASS);
2731 goto new_slab;
2732 }
2733
2734 stat(s, ALLOC_REFILL);
2735
2736 load_freelist:
2737 /*
2738 * freelist is pointing to the list of objects to be used.
2739 * page is pointing to the page from which the objects are obtained.
2740 * That page must be frozen for per cpu allocations to work.
2741 */
2742 VM_BUG_ON(!c->page->frozen);
2743 c->freelist = get_freepointer(s, freelist);
2744 c->tid = next_tid(c->tid);
2745 return freelist;
2746
2747 new_slab:
2748
2749 if (slub_percpu_partial(c)) {
2750 page = c->page = slub_percpu_partial(c);
2751 slub_set_percpu_partial(c, page);
2752 stat(s, CPU_PARTIAL_ALLOC);
2753 goto redo;
2754 }
2755
2756 freelist = new_slab_objects(s, gfpflags, node, &c);
2757
2758 if (unlikely(!freelist)) {
2759 slab_out_of_memory(s, gfpflags, node);
2760 return NULL;
2761 }
2762
2763 page = c->page;
2764 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2765 goto load_freelist;
2766
2767 /* Only entered in the debug case */
2768 if (kmem_cache_debug(s) &&
2769 !alloc_debug_processing(s, page, freelist, addr))
2770 goto new_slab; /* Slab failed checks. Next slab needed */
2771
2772 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2773 return freelist;
2774 }
2775
2776 /*
2777 * Another one that disabled interrupt and compensates for possible
2778 * cpu changes by refetching the per cpu area pointer.
2779 */
2780 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2781 unsigned long addr, struct kmem_cache_cpu *c)
2782 {
2783 void *p;
2784 unsigned long flags;
2785
2786 local_irq_save(flags);
2787 #ifdef CONFIG_PREEMPTION
2788 /*
2789 * We may have been preempted and rescheduled on a different
2790 * cpu before disabling interrupts. Need to reload cpu area
2791 * pointer.
2792 */
2793 c = this_cpu_ptr(s->cpu_slab);
2794 #endif
2795
2796 p = ___slab_alloc(s, gfpflags, node, addr, c);
2797 local_irq_restore(flags);
2798 return p;
2799 }
2800
2801 /*
2802 * If the object has been wiped upon free, make sure it's fully initialized by
2803 * zeroing out freelist pointer.
2804 */
2805 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2806 void *obj)
2807 {
2808 if (unlikely(slab_want_init_on_free(s)) && obj)
2809 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2810 0, sizeof(void *));
2811 }
2812
2813 /*
2814 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2815 * have the fastpath folded into their functions. So no function call
2816 * overhead for requests that can be satisfied on the fastpath.
2817 *
2818 * The fastpath works by first checking if the lockless freelist can be used.
2819 * If not then __slab_alloc is called for slow processing.
2820 *
2821 * Otherwise we can simply pick the next object from the lockless free list.
2822 */
2823 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2824 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2825 {
2826 void *object;
2827 struct kmem_cache_cpu *c;
2828 struct page *page;
2829 unsigned long tid;
2830 struct obj_cgroup *objcg = NULL;
2831 bool init = false;
2832
2833 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2834 if (!s)
2835 return NULL;
2836
2837 object = kfence_alloc(s, orig_size, gfpflags);
2838 if (unlikely(object))
2839 goto out;
2840
2841 redo:
2842 /*
2843 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2844 * enabled. We may switch back and forth between cpus while
2845 * reading from one cpu area. That does not matter as long
2846 * as we end up on the original cpu again when doing the cmpxchg.
2847 *
2848 * We should guarantee that tid and kmem_cache are retrieved on
2849 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2850 * to check if it is matched or not.
2851 */
2852 do {
2853 tid = this_cpu_read(s->cpu_slab->tid);
2854 c = raw_cpu_ptr(s->cpu_slab);
2855 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2856 unlikely(tid != READ_ONCE(c->tid)));
2857
2858 /*
2859 * Irqless object alloc/free algorithm used here depends on sequence
2860 * of fetching cpu_slab's data. tid should be fetched before anything
2861 * on c to guarantee that object and page associated with previous tid
2862 * won't be used with current tid. If we fetch tid first, object and
2863 * page could be one associated with next tid and our alloc/free
2864 * request will be failed. In this case, we will retry. So, no problem.
2865 */
2866 barrier();
2867
2868 /*
2869 * The transaction ids are globally unique per cpu and per operation on
2870 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2871 * occurs on the right processor and that there was no operation on the
2872 * linked list in between.
2873 */
2874
2875 object = c->freelist;
2876 page = c->page;
2877 if (unlikely(!object || !page || !node_match(page, node))) {
2878 object = __slab_alloc(s, gfpflags, node, addr, c);
2879 } else {
2880 void *next_object = get_freepointer_safe(s, object);
2881
2882 /*
2883 * The cmpxchg will only match if there was no additional
2884 * operation and if we are on the right processor.
2885 *
2886 * The cmpxchg does the following atomically (without lock
2887 * semantics!)
2888 * 1. Relocate first pointer to the current per cpu area.
2889 * 2. Verify that tid and freelist have not been changed
2890 * 3. If they were not changed replace tid and freelist
2891 *
2892 * Since this is without lock semantics the protection is only
2893 * against code executing on this cpu *not* from access by
2894 * other cpus.
2895 */
2896 if (unlikely(!this_cpu_cmpxchg_double(
2897 s->cpu_slab->freelist, s->cpu_slab->tid,
2898 object, tid,
2899 next_object, next_tid(tid)))) {
2900
2901 note_cmpxchg_failure("slab_alloc", s, tid);
2902 goto redo;
2903 }
2904 prefetch_freepointer(s, next_object);
2905 stat(s, ALLOC_FASTPATH);
2906 }
2907
2908 maybe_wipe_obj_freeptr(s, object);
2909 init = slab_want_init_on_alloc(gfpflags, s);
2910
2911 out:
2912 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2913
2914 return object;
2915 }
2916
2917 static __always_inline void *slab_alloc(struct kmem_cache *s,
2918 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2919 {
2920 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2921 }
2922
2923 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2924 {
2925 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2926
2927 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2928 s->size, gfpflags);
2929
2930 return ret;
2931 }
2932 EXPORT_SYMBOL(kmem_cache_alloc);
2933
2934 #ifdef CONFIG_TRACING
2935 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2936 {
2937 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2938 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2939 ret = kasan_kmalloc(s, ret, size, gfpflags);
2940 return ret;
2941 }
2942 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2943 #endif
2944
2945 #ifdef CONFIG_NUMA
2946 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2947 {
2948 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2949
2950 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2951 s->object_size, s->size, gfpflags, node);
2952
2953 return ret;
2954 }
2955 EXPORT_SYMBOL(kmem_cache_alloc_node);
2956
2957 #ifdef CONFIG_TRACING
2958 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2959 gfp_t gfpflags,
2960 int node, size_t size)
2961 {
2962 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
2963
2964 trace_kmalloc_node(_RET_IP_, ret,
2965 size, s->size, gfpflags, node);
2966
2967 ret = kasan_kmalloc(s, ret, size, gfpflags);
2968 return ret;
2969 }
2970 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2971 #endif
2972 #endif /* CONFIG_NUMA */
2973
2974 /*
2975 * Slow path handling. This may still be called frequently since objects
2976 * have a longer lifetime than the cpu slabs in most processing loads.
2977 *
2978 * So we still attempt to reduce cache line usage. Just take the slab
2979 * lock and free the item. If there is no additional partial page
2980 * handling required then we can return immediately.
2981 */
2982 static void __slab_free(struct kmem_cache *s, struct page *page,
2983 void *head, void *tail, int cnt,
2984 unsigned long addr)
2985
2986 {
2987 void *prior;
2988 int was_frozen;
2989 struct page new;
2990 unsigned long counters;
2991 struct kmem_cache_node *n = NULL;
2992 unsigned long flags;
2993
2994 stat(s, FREE_SLOWPATH);
2995
2996 if (kfence_free(head))
2997 return;
2998
2999 if (kmem_cache_debug(s) &&
3000 !free_debug_processing(s, page, head, tail, cnt, addr))
3001 return;
3002
3003 do {
3004 if (unlikely(n)) {
3005 spin_unlock_irqrestore(&n->list_lock, flags);
3006 n = NULL;
3007 }
3008 prior = page->freelist;
3009 counters = page->counters;
3010 set_freepointer(s, tail, prior);
3011 new.counters = counters;
3012 was_frozen = new.frozen;
3013 new.inuse -= cnt;
3014 if ((!new.inuse || !prior) && !was_frozen) {
3015
3016 if (kmem_cache_has_cpu_partial(s) && !prior) {
3017
3018 /*
3019 * Slab was on no list before and will be
3020 * partially empty
3021 * We can defer the list move and instead
3022 * freeze it.
3023 */
3024 new.frozen = 1;
3025
3026 } else { /* Needs to be taken off a list */
3027
3028 n = get_node(s, page_to_nid(page));
3029 /*
3030 * Speculatively acquire the list_lock.
3031 * If the cmpxchg does not succeed then we may
3032 * drop the list_lock without any processing.
3033 *
3034 * Otherwise the list_lock will synchronize with
3035 * other processors updating the list of slabs.
3036 */
3037 spin_lock_irqsave(&n->list_lock, flags);
3038
3039 }
3040 }
3041
3042 } while (!cmpxchg_double_slab(s, page,
3043 prior, counters,
3044 head, new.counters,
3045 "__slab_free"));
3046
3047 if (likely(!n)) {
3048
3049 if (likely(was_frozen)) {
3050 /*
3051 * The list lock was not taken therefore no list
3052 * activity can be necessary.
3053 */
3054 stat(s, FREE_FROZEN);
3055 } else if (new.frozen) {
3056 /*
3057 * If we just froze the page then put it onto the
3058 * per cpu partial list.
3059 */
3060 put_cpu_partial(s, page, 1);
3061 stat(s, CPU_PARTIAL_FREE);
3062 }
3063
3064 return;
3065 }
3066
3067 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3068 goto slab_empty;
3069
3070 /*
3071 * Objects left in the slab. If it was not on the partial list before
3072 * then add it.
3073 */
3074 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3075 remove_full(s, n, page);
3076 add_partial(n, page, DEACTIVATE_TO_TAIL);
3077 stat(s, FREE_ADD_PARTIAL);
3078 }
3079 spin_unlock_irqrestore(&n->list_lock, flags);
3080 return;
3081
3082 slab_empty:
3083 if (prior) {
3084 /*
3085 * Slab on the partial list.
3086 */
3087 remove_partial(n, page);
3088 stat(s, FREE_REMOVE_PARTIAL);
3089 } else {
3090 /* Slab must be on the full list */
3091 remove_full(s, n, page);
3092 }
3093
3094 spin_unlock_irqrestore(&n->list_lock, flags);
3095 stat(s, FREE_SLAB);
3096 discard_slab(s, page);
3097 }
3098
3099 /*
3100 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3101 * can perform fastpath freeing without additional function calls.
3102 *
3103 * The fastpath is only possible if we are freeing to the current cpu slab
3104 * of this processor. This typically the case if we have just allocated
3105 * the item before.
3106 *
3107 * If fastpath is not possible then fall back to __slab_free where we deal
3108 * with all sorts of special processing.
3109 *
3110 * Bulk free of a freelist with several objects (all pointing to the
3111 * same page) possible by specifying head and tail ptr, plus objects
3112 * count (cnt). Bulk free indicated by tail pointer being set.
3113 */
3114 static __always_inline void do_slab_free(struct kmem_cache *s,
3115 struct page *page, void *head, void *tail,
3116 int cnt, unsigned long addr)
3117 {
3118 void *tail_obj = tail ? : head;
3119 struct kmem_cache_cpu *c;
3120 unsigned long tid;
3121
3122 memcg_slab_free_hook(s, &head, 1);
3123 redo:
3124 /*
3125 * Determine the currently cpus per cpu slab.
3126 * The cpu may change afterward. However that does not matter since
3127 * data is retrieved via this pointer. If we are on the same cpu
3128 * during the cmpxchg then the free will succeed.
3129 */
3130 do {
3131 tid = this_cpu_read(s->cpu_slab->tid);
3132 c = raw_cpu_ptr(s->cpu_slab);
3133 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3134 unlikely(tid != READ_ONCE(c->tid)));
3135
3136 /* Same with comment on barrier() in slab_alloc_node() */
3137 barrier();
3138
3139 if (likely(page == c->page)) {
3140 void **freelist = READ_ONCE(c->freelist);
3141
3142 set_freepointer(s, tail_obj, freelist);
3143
3144 if (unlikely(!this_cpu_cmpxchg_double(
3145 s->cpu_slab->freelist, s->cpu_slab->tid,
3146 freelist, tid,
3147 head, next_tid(tid)))) {
3148
3149 note_cmpxchg_failure("slab_free", s, tid);
3150 goto redo;
3151 }
3152 stat(s, FREE_FASTPATH);
3153 } else
3154 __slab_free(s, page, head, tail_obj, cnt, addr);
3155
3156 }
3157
3158 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3159 void *head, void *tail, int cnt,
3160 unsigned long addr)
3161 {
3162 /*
3163 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3164 * to remove objects, whose reuse must be delayed.
3165 */
3166 if (slab_free_freelist_hook(s, &head, &tail))
3167 do_slab_free(s, page, head, tail, cnt, addr);
3168 }
3169
3170 #ifdef CONFIG_KASAN_GENERIC
3171 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3172 {
3173 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3174 }
3175 #endif
3176
3177 void kmem_cache_free(struct kmem_cache *s, void *x)
3178 {
3179 s = cache_from_obj(s, x);
3180 if (!s)
3181 return;
3182 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3183 trace_kmem_cache_free(_RET_IP_, x, s->name);
3184 }
3185 EXPORT_SYMBOL(kmem_cache_free);
3186
3187 struct detached_freelist {
3188 struct page *page;
3189 void *tail;
3190 void *freelist;
3191 int cnt;
3192 struct kmem_cache *s;
3193 };
3194
3195 /*
3196 * This function progressively scans the array with free objects (with
3197 * a limited look ahead) and extract objects belonging to the same
3198 * page. It builds a detached freelist directly within the given
3199 * page/objects. This can happen without any need for
3200 * synchronization, because the objects are owned by running process.
3201 * The freelist is build up as a single linked list in the objects.
3202 * The idea is, that this detached freelist can then be bulk
3203 * transferred to the real freelist(s), but only requiring a single
3204 * synchronization primitive. Look ahead in the array is limited due
3205 * to performance reasons.
3206 */
3207 static inline
3208 int build_detached_freelist(struct kmem_cache *s, size_t size,
3209 void **p, struct detached_freelist *df)
3210 {
3211 size_t first_skipped_index = 0;
3212 int lookahead = 3;
3213 void *object;
3214 struct page *page;
3215
3216 /* Always re-init detached_freelist */
3217 df->page = NULL;
3218
3219 do {
3220 object = p[--size];
3221 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3222 } while (!object && size);
3223
3224 if (!object)
3225 return 0;
3226
3227 page = virt_to_head_page(object);
3228 if (!s) {
3229 /* Handle kalloc'ed objects */
3230 if (unlikely(!PageSlab(page))) {
3231 BUG_ON(!PageCompound(page));
3232 kfree_hook(object);
3233 __free_pages(page, compound_order(page));
3234 p[size] = NULL; /* mark object processed */
3235 return size;
3236 }
3237 /* Derive kmem_cache from object */
3238 df->s = page->slab_cache;
3239 } else {
3240 df->s = cache_from_obj(s, object); /* Support for memcg */
3241 }
3242
3243 if (is_kfence_address(object)) {
3244 slab_free_hook(df->s, object, false);
3245 __kfence_free(object);
3246 p[size] = NULL; /* mark object processed */
3247 return size;
3248 }
3249
3250 /* Start new detached freelist */
3251 df->page = page;
3252 set_freepointer(df->s, object, NULL);
3253 df->tail = object;
3254 df->freelist = object;
3255 p[size] = NULL; /* mark object processed */
3256 df->cnt = 1;
3257
3258 while (size) {
3259 object = p[--size];
3260 if (!object)
3261 continue; /* Skip processed objects */
3262
3263 /* df->page is always set at this point */
3264 if (df->page == virt_to_head_page(object)) {
3265 /* Opportunity build freelist */
3266 set_freepointer(df->s, object, df->freelist);
3267 df->freelist = object;
3268 df->cnt++;
3269 p[size] = NULL; /* mark object processed */
3270
3271 continue;
3272 }
3273
3274 /* Limit look ahead search */
3275 if (!--lookahead)
3276 break;
3277
3278 if (!first_skipped_index)
3279 first_skipped_index = size + 1;
3280 }
3281
3282 return first_skipped_index;
3283 }
3284
3285 /* Note that interrupts must be enabled when calling this function. */
3286 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3287 {
3288 if (WARN_ON(!size))
3289 return;
3290
3291 memcg_slab_free_hook(s, p, size);
3292 do {
3293 struct detached_freelist df;
3294
3295 size = build_detached_freelist(s, size, p, &df);
3296 if (!df.page)
3297 continue;
3298
3299 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3300 } while (likely(size));
3301 }
3302 EXPORT_SYMBOL(kmem_cache_free_bulk);
3303
3304 /* Note that interrupts must be enabled when calling this function. */
3305 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3306 void **p)
3307 {
3308 struct kmem_cache_cpu *c;
3309 int i;
3310 struct obj_cgroup *objcg = NULL;
3311
3312 /* memcg and kmem_cache debug support */
3313 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3314 if (unlikely(!s))
3315 return false;
3316 /*
3317 * Drain objects in the per cpu slab, while disabling local
3318 * IRQs, which protects against PREEMPT and interrupts
3319 * handlers invoking normal fastpath.
3320 */
3321 local_irq_disable();
3322 c = this_cpu_ptr(s->cpu_slab);
3323
3324 for (i = 0; i < size; i++) {
3325 void *object = kfence_alloc(s, s->object_size, flags);
3326
3327 if (unlikely(object)) {
3328 p[i] = object;
3329 continue;
3330 }
3331
3332 object = c->freelist;
3333 if (unlikely(!object)) {
3334 /*
3335 * We may have removed an object from c->freelist using
3336 * the fastpath in the previous iteration; in that case,
3337 * c->tid has not been bumped yet.
3338 * Since ___slab_alloc() may reenable interrupts while
3339 * allocating memory, we should bump c->tid now.
3340 */
3341 c->tid = next_tid(c->tid);
3342
3343 /*
3344 * Invoking slow path likely have side-effect
3345 * of re-populating per CPU c->freelist
3346 */
3347 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3348 _RET_IP_, c);
3349 if (unlikely(!p[i]))
3350 goto error;
3351
3352 c = this_cpu_ptr(s->cpu_slab);
3353 maybe_wipe_obj_freeptr(s, p[i]);
3354
3355 continue; /* goto for-loop */
3356 }
3357 c->freelist = get_freepointer(s, object);
3358 p[i] = object;
3359 maybe_wipe_obj_freeptr(s, p[i]);
3360 }
3361 c->tid = next_tid(c->tid);
3362 local_irq_enable();
3363
3364 /*
3365 * memcg and kmem_cache debug support and memory initialization.
3366 * Done outside of the IRQ disabled fastpath loop.
3367 */
3368 slab_post_alloc_hook(s, objcg, flags, size, p,
3369 slab_want_init_on_alloc(flags, s));
3370 return i;
3371 error:
3372 local_irq_enable();
3373 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3374 __kmem_cache_free_bulk(s, i, p);
3375 return 0;
3376 }
3377 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3378
3379
3380 /*
3381 * Object placement in a slab is made very easy because we always start at
3382 * offset 0. If we tune the size of the object to the alignment then we can
3383 * get the required alignment by putting one properly sized object after
3384 * another.
3385 *
3386 * Notice that the allocation order determines the sizes of the per cpu
3387 * caches. Each processor has always one slab available for allocations.
3388 * Increasing the allocation order reduces the number of times that slabs
3389 * must be moved on and off the partial lists and is therefore a factor in
3390 * locking overhead.
3391 */
3392
3393 /*
3394 * Mininum / Maximum order of slab pages. This influences locking overhead
3395 * and slab fragmentation. A higher order reduces the number of partial slabs
3396 * and increases the number of allocations possible without having to
3397 * take the list_lock.
3398 */
3399 static unsigned int slub_min_order;
3400 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3401 static unsigned int slub_min_objects;
3402
3403 /*
3404 * Calculate the order of allocation given an slab object size.
3405 *
3406 * The order of allocation has significant impact on performance and other
3407 * system components. Generally order 0 allocations should be preferred since
3408 * order 0 does not cause fragmentation in the page allocator. Larger objects
3409 * be problematic to put into order 0 slabs because there may be too much
3410 * unused space left. We go to a higher order if more than 1/16th of the slab
3411 * would be wasted.
3412 *
3413 * In order to reach satisfactory performance we must ensure that a minimum
3414 * number of objects is in one slab. Otherwise we may generate too much
3415 * activity on the partial lists which requires taking the list_lock. This is
3416 * less a concern for large slabs though which are rarely used.
3417 *
3418 * slub_max_order specifies the order where we begin to stop considering the
3419 * number of objects in a slab as critical. If we reach slub_max_order then
3420 * we try to keep the page order as low as possible. So we accept more waste
3421 * of space in favor of a small page order.
3422 *
3423 * Higher order allocations also allow the placement of more objects in a
3424 * slab and thereby reduce object handling overhead. If the user has
3425 * requested a higher minimum order then we start with that one instead of
3426 * the smallest order which will fit the object.
3427 */
3428 static inline unsigned int slab_order(unsigned int size,
3429 unsigned int min_objects, unsigned int max_order,
3430 unsigned int fract_leftover)
3431 {
3432 unsigned int min_order = slub_min_order;
3433 unsigned int order;
3434
3435 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3436 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3437
3438 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3439 order <= max_order; order++) {
3440
3441 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3442 unsigned int rem;
3443
3444 rem = slab_size % size;
3445
3446 if (rem <= slab_size / fract_leftover)
3447 break;
3448 }
3449
3450 return order;
3451 }
3452
3453 static inline int calculate_order(unsigned int size)
3454 {
3455 unsigned int order;
3456 unsigned int min_objects;
3457 unsigned int max_objects;
3458 unsigned int nr_cpus;
3459
3460 /*
3461 * Attempt to find best configuration for a slab. This
3462 * works by first attempting to generate a layout with
3463 * the best configuration and backing off gradually.
3464 *
3465 * First we increase the acceptable waste in a slab. Then
3466 * we reduce the minimum objects required in a slab.
3467 */
3468 min_objects = slub_min_objects;
3469 if (!min_objects) {
3470 /*
3471 * Some architectures will only update present cpus when
3472 * onlining them, so don't trust the number if it's just 1. But
3473 * we also don't want to use nr_cpu_ids always, as on some other
3474 * architectures, there can be many possible cpus, but never
3475 * onlined. Here we compromise between trying to avoid too high
3476 * order on systems that appear larger than they are, and too
3477 * low order on systems that appear smaller than they are.
3478 */
3479 nr_cpus = num_present_cpus();
3480 if (nr_cpus <= 1)
3481 nr_cpus = nr_cpu_ids;
3482 min_objects = 4 * (fls(nr_cpus) + 1);
3483 }
3484 max_objects = order_objects(slub_max_order, size);
3485 min_objects = min(min_objects, max_objects);
3486
3487 while (min_objects > 1) {
3488 unsigned int fraction;
3489
3490 fraction = 16;
3491 while (fraction >= 4) {
3492 order = slab_order(size, min_objects,
3493 slub_max_order, fraction);
3494 if (order <= slub_max_order)
3495 return order;
3496 fraction /= 2;
3497 }
3498 min_objects--;
3499 }
3500
3501 /*
3502 * We were unable to place multiple objects in a slab. Now
3503 * lets see if we can place a single object there.
3504 */
3505 order = slab_order(size, 1, slub_max_order, 1);
3506 if (order <= slub_max_order)
3507 return order;
3508
3509 /*
3510 * Doh this slab cannot be placed using slub_max_order.
3511 */
3512 order = slab_order(size, 1, MAX_ORDER, 1);
3513 if (order < MAX_ORDER)
3514 return order;
3515 return -ENOSYS;
3516 }
3517
3518 static void
3519 init_kmem_cache_node(struct kmem_cache_node *n)
3520 {
3521 n->nr_partial = 0;
3522 spin_lock_init(&n->list_lock);
3523 INIT_LIST_HEAD(&n->partial);
3524 #ifdef CONFIG_SLUB_DEBUG
3525 atomic_long_set(&n->nr_slabs, 0);
3526 atomic_long_set(&n->total_objects, 0);
3527 INIT_LIST_HEAD(&n->full);
3528 #endif
3529 }
3530
3531 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3532 {
3533 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3534 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3535
3536 /*
3537 * Must align to double word boundary for the double cmpxchg
3538 * instructions to work; see __pcpu_double_call_return_bool().
3539 */
3540 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3541 2 * sizeof(void *));
3542
3543 if (!s->cpu_slab)
3544 return 0;
3545
3546 init_kmem_cache_cpus(s);
3547
3548 return 1;
3549 }
3550
3551 static struct kmem_cache *kmem_cache_node;
3552
3553 /*
3554 * No kmalloc_node yet so do it by hand. We know that this is the first
3555 * slab on the node for this slabcache. There are no concurrent accesses
3556 * possible.
3557 *
3558 * Note that this function only works on the kmem_cache_node
3559 * when allocating for the kmem_cache_node. This is used for bootstrapping
3560 * memory on a fresh node that has no slab structures yet.
3561 */
3562 static void early_kmem_cache_node_alloc(int node)
3563 {
3564 struct page *page;
3565 struct kmem_cache_node *n;
3566
3567 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3568
3569 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3570
3571 BUG_ON(!page);
3572 if (page_to_nid(page) != node) {
3573 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3574 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3575 }
3576
3577 n = page->freelist;
3578 BUG_ON(!n);
3579 #ifdef CONFIG_SLUB_DEBUG
3580 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3581 init_tracking(kmem_cache_node, n);
3582 #endif
3583 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3584 page->freelist = get_freepointer(kmem_cache_node, n);
3585 page->inuse = 1;
3586 page->frozen = 0;
3587 kmem_cache_node->node[node] = n;
3588 init_kmem_cache_node(n);
3589 inc_slabs_node(kmem_cache_node, node, page->objects);
3590
3591 /*
3592 * No locks need to be taken here as it has just been
3593 * initialized and there is no concurrent access.
3594 */
3595 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3596 }
3597
3598 static void free_kmem_cache_nodes(struct kmem_cache *s)
3599 {
3600 int node;
3601 struct kmem_cache_node *n;
3602
3603 for_each_kmem_cache_node(s, node, n) {
3604 s->node[node] = NULL;
3605 kmem_cache_free(kmem_cache_node, n);
3606 }
3607 }
3608
3609 void __kmem_cache_release(struct kmem_cache *s)
3610 {
3611 cache_random_seq_destroy(s);
3612 free_percpu(s->cpu_slab);
3613 free_kmem_cache_nodes(s);
3614 }
3615
3616 static int init_kmem_cache_nodes(struct kmem_cache *s)
3617 {
3618 int node;
3619
3620 for_each_node_mask(node, slab_nodes) {
3621 struct kmem_cache_node *n;
3622
3623 if (slab_state == DOWN) {
3624 early_kmem_cache_node_alloc(node);
3625 continue;
3626 }
3627 n = kmem_cache_alloc_node(kmem_cache_node,
3628 GFP_KERNEL, node);
3629
3630 if (!n) {
3631 free_kmem_cache_nodes(s);
3632 return 0;
3633 }
3634
3635 init_kmem_cache_node(n);
3636 s->node[node] = n;
3637 }
3638 return 1;
3639 }
3640
3641 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3642 {
3643 if (min < MIN_PARTIAL)
3644 min = MIN_PARTIAL;
3645 else if (min > MAX_PARTIAL)
3646 min = MAX_PARTIAL;
3647 s->min_partial = min;
3648 }
3649
3650 static void set_cpu_partial(struct kmem_cache *s)
3651 {
3652 #ifdef CONFIG_SLUB_CPU_PARTIAL
3653 /*
3654 * cpu_partial determined the maximum number of objects kept in the
3655 * per cpu partial lists of a processor.
3656 *
3657 * Per cpu partial lists mainly contain slabs that just have one
3658 * object freed. If they are used for allocation then they can be
3659 * filled up again with minimal effort. The slab will never hit the
3660 * per node partial lists and therefore no locking will be required.
3661 *
3662 * This setting also determines
3663 *
3664 * A) The number of objects from per cpu partial slabs dumped to the
3665 * per node list when we reach the limit.
3666 * B) The number of objects in cpu partial slabs to extract from the
3667 * per node list when we run out of per cpu objects. We only fetch
3668 * 50% to keep some capacity around for frees.
3669 */
3670 if (!kmem_cache_has_cpu_partial(s))
3671 slub_set_cpu_partial(s, 0);
3672 else if (s->size >= PAGE_SIZE)
3673 slub_set_cpu_partial(s, 2);
3674 else if (s->size >= 1024)
3675 slub_set_cpu_partial(s, 6);
3676 else if (s->size >= 256)
3677 slub_set_cpu_partial(s, 13);
3678 else
3679 slub_set_cpu_partial(s, 30);
3680 #endif
3681 }
3682
3683 /*
3684 * calculate_sizes() determines the order and the distribution of data within
3685 * a slab object.
3686 */
3687 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3688 {
3689 slab_flags_t flags = s->flags;
3690 unsigned int size = s->object_size;
3691 unsigned int freepointer_area;
3692 unsigned int order;
3693
3694 /*
3695 * Round up object size to the next word boundary. We can only
3696 * place the free pointer at word boundaries and this determines
3697 * the possible location of the free pointer.
3698 */
3699 size = ALIGN(size, sizeof(void *));
3700 /*
3701 * This is the area of the object where a freepointer can be
3702 * safely written. If redzoning adds more to the inuse size, we
3703 * can't use that portion for writing the freepointer, so
3704 * s->offset must be limited within this for the general case.
3705 */
3706 freepointer_area = size;
3707
3708 #ifdef CONFIG_SLUB_DEBUG
3709 /*
3710 * Determine if we can poison the object itself. If the user of
3711 * the slab may touch the object after free or before allocation
3712 * then we should never poison the object itself.
3713 */
3714 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3715 !s->ctor)
3716 s->flags |= __OBJECT_POISON;
3717 else
3718 s->flags &= ~__OBJECT_POISON;
3719
3720
3721 /*
3722 * If we are Redzoning then check if there is some space between the
3723 * end of the object and the free pointer. If not then add an
3724 * additional word to have some bytes to store Redzone information.
3725 */
3726 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3727 size += sizeof(void *);
3728 #endif
3729
3730 /*
3731 * With that we have determined the number of bytes in actual use
3732 * by the object. This is the potential offset to the free pointer.
3733 */
3734 s->inuse = size;
3735
3736 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3737 s->ctor)) {
3738 /*
3739 * Relocate free pointer after the object if it is not
3740 * permitted to overwrite the first word of the object on
3741 * kmem_cache_free.
3742 *
3743 * This is the case if we do RCU, have a constructor or
3744 * destructor or are poisoning the objects.
3745 *
3746 * The assumption that s->offset >= s->inuse means free
3747 * pointer is outside of the object is used in the
3748 * freeptr_outside_object() function. If that is no
3749 * longer true, the function needs to be modified.
3750 */
3751 s->offset = size;
3752 size += sizeof(void *);
3753 } else if (freepointer_area > sizeof(void *)) {
3754 /*
3755 * Store freelist pointer near middle of object to keep
3756 * it away from the edges of the object to avoid small
3757 * sized over/underflows from neighboring allocations.
3758 */
3759 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3760 }
3761
3762 #ifdef CONFIG_SLUB_DEBUG
3763 if (flags & SLAB_STORE_USER)
3764 /*
3765 * Need to store information about allocs and frees after
3766 * the object.
3767 */
3768 size += 2 * sizeof(struct track);
3769 #endif
3770
3771 kasan_cache_create(s, &size, &s->flags);
3772 #ifdef CONFIG_SLUB_DEBUG
3773 if (flags & SLAB_RED_ZONE) {
3774 /*
3775 * Add some empty padding so that we can catch
3776 * overwrites from earlier objects rather than let
3777 * tracking information or the free pointer be
3778 * corrupted if a user writes before the start
3779 * of the object.
3780 */
3781 size += sizeof(void *);
3782
3783 s->red_left_pad = sizeof(void *);
3784 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3785 size += s->red_left_pad;
3786 }
3787 #endif
3788
3789 /*
3790 * SLUB stores one object immediately after another beginning from
3791 * offset 0. In order to align the objects we have to simply size
3792 * each object to conform to the alignment.
3793 */
3794 size = ALIGN(size, s->align);
3795 s->size = size;
3796 s->reciprocal_size = reciprocal_value(size);
3797 if (forced_order >= 0)
3798 order = forced_order;
3799 else
3800 order = calculate_order(size);
3801
3802 if ((int)order < 0)
3803 return 0;
3804
3805 s->allocflags = 0;
3806 if (order)
3807 s->allocflags |= __GFP_COMP;
3808
3809 if (s->flags & SLAB_CACHE_DMA)
3810 s->allocflags |= GFP_DMA;
3811
3812 if (s->flags & SLAB_CACHE_DMA32)
3813 s->allocflags |= GFP_DMA32;
3814
3815 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3816 s->allocflags |= __GFP_RECLAIMABLE;
3817
3818 /*
3819 * Determine the number of objects per slab
3820 */
3821 s->oo = oo_make(order, size);
3822 s->min = oo_make(get_order(size), size);
3823 if (oo_objects(s->oo) > oo_objects(s->max))
3824 s->max = s->oo;
3825
3826 return !!oo_objects(s->oo);
3827 }
3828
3829 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3830 {
3831 #ifdef CONFIG_SLUB_DEBUG
3832 /*
3833 * If no slub_debug was enabled globally, the static key is not yet
3834 * enabled by setup_slub_debug(). Enable it if the cache is being
3835 * created with any of the debugging flags passed explicitly.
3836 */
3837 if (flags & SLAB_DEBUG_FLAGS)
3838 static_branch_enable(&slub_debug_enabled);
3839 #endif
3840 s->flags = kmem_cache_flags(s->size, flags, s->name);
3841 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3842 s->random = get_random_long();
3843 #endif
3844
3845 if (!calculate_sizes(s, -1))
3846 goto error;
3847 if (disable_higher_order_debug) {
3848 /*
3849 * Disable debugging flags that store metadata if the min slab
3850 * order increased.
3851 */
3852 if (get_order(s->size) > get_order(s->object_size)) {
3853 s->flags &= ~DEBUG_METADATA_FLAGS;
3854 s->offset = 0;
3855 if (!calculate_sizes(s, -1))
3856 goto error;
3857 }
3858 }
3859
3860 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3861 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3862 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3863 /* Enable fast mode */
3864 s->flags |= __CMPXCHG_DOUBLE;
3865 #endif
3866
3867 /*
3868 * The larger the object size is, the more pages we want on the partial
3869 * list to avoid pounding the page allocator excessively.
3870 */
3871 set_min_partial(s, ilog2(s->size) / 2);
3872
3873 set_cpu_partial(s);
3874
3875 #ifdef CONFIG_NUMA
3876 s->remote_node_defrag_ratio = 1000;
3877 #endif
3878
3879 /* Initialize the pre-computed randomized freelist if slab is up */
3880 if (slab_state >= UP) {
3881 if (init_cache_random_seq(s))
3882 goto error;
3883 }
3884
3885 if (!init_kmem_cache_nodes(s))
3886 goto error;
3887
3888 if (alloc_kmem_cache_cpus(s))
3889 return 0;
3890
3891 free_kmem_cache_nodes(s);
3892 error:
3893 return -EINVAL;
3894 }
3895
3896 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3897 const char *text)
3898 {
3899 #ifdef CONFIG_SLUB_DEBUG
3900 void *addr = page_address(page);
3901 unsigned long *map;
3902 void *p;
3903
3904 slab_err(s, page, text, s->name);
3905 slab_lock(page);
3906
3907 map = get_map(s, page);
3908 for_each_object(p, s, addr, page->objects) {
3909
3910 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3911 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3912 print_tracking(s, p);
3913 }
3914 }
3915 put_map(map);
3916 slab_unlock(page);
3917 #endif
3918 }
3919
3920 /*
3921 * Attempt to free all partial slabs on a node.
3922 * This is called from __kmem_cache_shutdown(). We must take list_lock
3923 * because sysfs file might still access partial list after the shutdowning.
3924 */
3925 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3926 {
3927 LIST_HEAD(discard);
3928 struct page *page, *h;
3929
3930 BUG_ON(irqs_disabled());
3931 spin_lock_irq(&n->list_lock);
3932 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3933 if (!page->inuse) {
3934 remove_partial(n, page);
3935 list_add(&page->slab_list, &discard);
3936 } else {
3937 list_slab_objects(s, page,
3938 "Objects remaining in %s on __kmem_cache_shutdown()");
3939 }
3940 }
3941 spin_unlock_irq(&n->list_lock);
3942
3943 list_for_each_entry_safe(page, h, &discard, slab_list)
3944 discard_slab(s, page);
3945 }
3946
3947 bool __kmem_cache_empty(struct kmem_cache *s)
3948 {
3949 int node;
3950 struct kmem_cache_node *n;
3951
3952 for_each_kmem_cache_node(s, node, n)
3953 if (n->nr_partial || slabs_node(s, node))
3954 return false;
3955 return true;
3956 }
3957
3958 /*
3959 * Release all resources used by a slab cache.
3960 */
3961 int __kmem_cache_shutdown(struct kmem_cache *s)
3962 {
3963 int node;
3964 struct kmem_cache_node *n;
3965
3966 flush_all(s);
3967 /* Attempt to free all objects */
3968 for_each_kmem_cache_node(s, node, n) {
3969 free_partial(s, n);
3970 if (n->nr_partial || slabs_node(s, node))
3971 return 1;
3972 }
3973 return 0;
3974 }
3975
3976 #ifdef CONFIG_PRINTK
3977 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3978 {
3979 void *base;
3980 int __maybe_unused i;
3981 unsigned int objnr;
3982 void *objp;
3983 void *objp0;
3984 struct kmem_cache *s = page->slab_cache;
3985 struct track __maybe_unused *trackp;
3986
3987 kpp->kp_ptr = object;
3988 kpp->kp_page = page;
3989 kpp->kp_slab_cache = s;
3990 base = page_address(page);
3991 objp0 = kasan_reset_tag(object);
3992 #ifdef CONFIG_SLUB_DEBUG
3993 objp = restore_red_left(s, objp0);
3994 #else
3995 objp = objp0;
3996 #endif
3997 objnr = obj_to_index(s, page, objp);
3998 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3999 objp = base + s->size * objnr;
4000 kpp->kp_objp = objp;
4001 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4002 !(s->flags & SLAB_STORE_USER))
4003 return;
4004 #ifdef CONFIG_SLUB_DEBUG
4005 trackp = get_track(s, objp, TRACK_ALLOC);
4006 kpp->kp_ret = (void *)trackp->addr;
4007 #ifdef CONFIG_STACKTRACE
4008 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4009 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4010 if (!kpp->kp_stack[i])
4011 break;
4012 }
4013 #endif
4014 #endif
4015 }
4016 #endif
4017
4018 /********************************************************************
4019 * Kmalloc subsystem
4020 *******************************************************************/
4021
4022 static int __init setup_slub_min_order(char *str)
4023 {
4024 get_option(&str, (int *)&slub_min_order);
4025
4026 return 1;
4027 }
4028
4029 __setup("slub_min_order=", setup_slub_min_order);
4030
4031 static int __init setup_slub_max_order(char *str)
4032 {
4033 get_option(&str, (int *)&slub_max_order);
4034 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4035
4036 return 1;
4037 }
4038
4039 __setup("slub_max_order=", setup_slub_max_order);
4040
4041 static int __init setup_slub_min_objects(char *str)
4042 {
4043 get_option(&str, (int *)&slub_min_objects);
4044
4045 return 1;
4046 }
4047
4048 __setup("slub_min_objects=", setup_slub_min_objects);
4049
4050 void *__kmalloc(size_t size, gfp_t flags)
4051 {
4052 struct kmem_cache *s;
4053 void *ret;
4054
4055 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4056 return kmalloc_large(size, flags);
4057
4058 s = kmalloc_slab(size, flags);
4059
4060 if (unlikely(ZERO_OR_NULL_PTR(s)))
4061 return s;
4062
4063 ret = slab_alloc(s, flags, _RET_IP_, size);
4064
4065 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4066
4067 ret = kasan_kmalloc(s, ret, size, flags);
4068
4069 return ret;
4070 }
4071 EXPORT_SYMBOL(__kmalloc);
4072
4073 #ifdef CONFIG_NUMA
4074 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4075 {
4076 struct page *page;
4077 void *ptr = NULL;
4078 unsigned int order = get_order(size);
4079
4080 flags |= __GFP_COMP;
4081 page = alloc_pages_node(node, flags, order);
4082 if (page) {
4083 ptr = page_address(page);
4084 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4085 PAGE_SIZE << order);
4086 }
4087
4088 return kmalloc_large_node_hook(ptr, size, flags);
4089 }
4090
4091 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4092 {
4093 struct kmem_cache *s;
4094 void *ret;
4095
4096 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4097 ret = kmalloc_large_node(size, flags, node);
4098
4099 trace_kmalloc_node(_RET_IP_, ret,
4100 size, PAGE_SIZE << get_order(size),
4101 flags, node);
4102
4103 return ret;
4104 }
4105
4106 s = kmalloc_slab(size, flags);
4107
4108 if (unlikely(ZERO_OR_NULL_PTR(s)))
4109 return s;
4110
4111 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4112
4113 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4114
4115 ret = kasan_kmalloc(s, ret, size, flags);
4116
4117 return ret;
4118 }
4119 EXPORT_SYMBOL(__kmalloc_node);
4120 #endif /* CONFIG_NUMA */
4121
4122 #ifdef CONFIG_HARDENED_USERCOPY
4123 /*
4124 * Rejects incorrectly sized objects and objects that are to be copied
4125 * to/from userspace but do not fall entirely within the containing slab
4126 * cache's usercopy region.
4127 *
4128 * Returns NULL if check passes, otherwise const char * to name of cache
4129 * to indicate an error.
4130 */
4131 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4132 bool to_user)
4133 {
4134 struct kmem_cache *s;
4135 unsigned int offset;
4136 size_t object_size;
4137 bool is_kfence = is_kfence_address(ptr);
4138
4139 ptr = kasan_reset_tag(ptr);
4140
4141 /* Find object and usable object size. */
4142 s = page->slab_cache;
4143
4144 /* Reject impossible pointers. */
4145 if (ptr < page_address(page))
4146 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4147 to_user, 0, n);
4148
4149 /* Find offset within object. */
4150 if (is_kfence)
4151 offset = ptr - kfence_object_start(ptr);
4152 else
4153 offset = (ptr - page_address(page)) % s->size;
4154
4155 /* Adjust for redzone and reject if within the redzone. */
4156 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4157 if (offset < s->red_left_pad)
4158 usercopy_abort("SLUB object in left red zone",
4159 s->name, to_user, offset, n);
4160 offset -= s->red_left_pad;
4161 }
4162
4163 /* Allow address range falling entirely within usercopy region. */
4164 if (offset >= s->useroffset &&
4165 offset - s->useroffset <= s->usersize &&
4166 n <= s->useroffset - offset + s->usersize)
4167 return;
4168
4169 /*
4170 * If the copy is still within the allocated object, produce
4171 * a warning instead of rejecting the copy. This is intended
4172 * to be a temporary method to find any missing usercopy
4173 * whitelists.
4174 */
4175 object_size = slab_ksize(s);
4176 if (usercopy_fallback &&
4177 offset <= object_size && n <= object_size - offset) {
4178 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4179 return;
4180 }
4181
4182 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4183 }
4184 #endif /* CONFIG_HARDENED_USERCOPY */
4185
4186 size_t __ksize(const void *object)
4187 {
4188 struct page *page;
4189
4190 if (unlikely(object == ZERO_SIZE_PTR))
4191 return 0;
4192
4193 page = virt_to_head_page(object);
4194
4195 if (unlikely(!PageSlab(page))) {
4196 WARN_ON(!PageCompound(page));
4197 return page_size(page);
4198 }
4199
4200 return slab_ksize(page->slab_cache);
4201 }
4202 EXPORT_SYMBOL(__ksize);
4203
4204 void kfree(const void *x)
4205 {
4206 struct page *page;
4207 void *object = (void *)x;
4208
4209 trace_kfree(_RET_IP_, x);
4210
4211 if (unlikely(ZERO_OR_NULL_PTR(x)))
4212 return;
4213
4214 page = virt_to_head_page(x);
4215 if (unlikely(!PageSlab(page))) {
4216 unsigned int order = compound_order(page);
4217
4218 BUG_ON(!PageCompound(page));
4219 kfree_hook(object);
4220 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4221 -(PAGE_SIZE << order));
4222 __free_pages(page, order);
4223 return;
4224 }
4225 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4226 }
4227 EXPORT_SYMBOL(kfree);
4228
4229 #define SHRINK_PROMOTE_MAX 32
4230
4231 /*
4232 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4233 * up most to the head of the partial lists. New allocations will then
4234 * fill those up and thus they can be removed from the partial lists.
4235 *
4236 * The slabs with the least items are placed last. This results in them
4237 * being allocated from last increasing the chance that the last objects
4238 * are freed in them.
4239 */
4240 int __kmem_cache_shrink(struct kmem_cache *s)
4241 {
4242 int node;
4243 int i;
4244 struct kmem_cache_node *n;
4245 struct page *page;
4246 struct page *t;
4247 struct list_head discard;
4248 struct list_head promote[SHRINK_PROMOTE_MAX];
4249 unsigned long flags;
4250 int ret = 0;
4251
4252 flush_all(s);
4253 for_each_kmem_cache_node(s, node, n) {
4254 INIT_LIST_HEAD(&discard);
4255 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4256 INIT_LIST_HEAD(promote + i);
4257
4258 spin_lock_irqsave(&n->list_lock, flags);
4259
4260 /*
4261 * Build lists of slabs to discard or promote.
4262 *
4263 * Note that concurrent frees may occur while we hold the
4264 * list_lock. page->inuse here is the upper limit.
4265 */
4266 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4267 int free = page->objects - page->inuse;
4268
4269 /* Do not reread page->inuse */
4270 barrier();
4271
4272 /* We do not keep full slabs on the list */
4273 BUG_ON(free <= 0);
4274
4275 if (free == page->objects) {
4276 list_move(&page->slab_list, &discard);
4277 n->nr_partial--;
4278 } else if (free <= SHRINK_PROMOTE_MAX)
4279 list_move(&page->slab_list, promote + free - 1);
4280 }
4281
4282 /*
4283 * Promote the slabs filled up most to the head of the
4284 * partial list.
4285 */
4286 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4287 list_splice(promote + i, &n->partial);
4288
4289 spin_unlock_irqrestore(&n->list_lock, flags);
4290
4291 /* Release empty slabs */
4292 list_for_each_entry_safe(page, t, &discard, slab_list)
4293 discard_slab(s, page);
4294
4295 if (slabs_node(s, node))
4296 ret = 1;
4297 }
4298
4299 return ret;
4300 }
4301
4302 static int slab_mem_going_offline_callback(void *arg)
4303 {
4304 struct kmem_cache *s;
4305
4306 mutex_lock(&slab_mutex);
4307 list_for_each_entry(s, &slab_caches, list)
4308 __kmem_cache_shrink(s);
4309 mutex_unlock(&slab_mutex);
4310
4311 return 0;
4312 }
4313
4314 static void slab_mem_offline_callback(void *arg)
4315 {
4316 struct memory_notify *marg = arg;
4317 int offline_node;
4318
4319 offline_node = marg->status_change_nid_normal;
4320
4321 /*
4322 * If the node still has available memory. we need kmem_cache_node
4323 * for it yet.
4324 */
4325 if (offline_node < 0)
4326 return;
4327
4328 mutex_lock(&slab_mutex);
4329 node_clear(offline_node, slab_nodes);
4330 /*
4331 * We no longer free kmem_cache_node structures here, as it would be
4332 * racy with all get_node() users, and infeasible to protect them with
4333 * slab_mutex.
4334 */
4335 mutex_unlock(&slab_mutex);
4336 }
4337
4338 static int slab_mem_going_online_callback(void *arg)
4339 {
4340 struct kmem_cache_node *n;
4341 struct kmem_cache *s;
4342 struct memory_notify *marg = arg;
4343 int nid = marg->status_change_nid_normal;
4344 int ret = 0;
4345
4346 /*
4347 * If the node's memory is already available, then kmem_cache_node is
4348 * already created. Nothing to do.
4349 */
4350 if (nid < 0)
4351 return 0;
4352
4353 /*
4354 * We are bringing a node online. No memory is available yet. We must
4355 * allocate a kmem_cache_node structure in order to bring the node
4356 * online.
4357 */
4358 mutex_lock(&slab_mutex);
4359 list_for_each_entry(s, &slab_caches, list) {
4360 /*
4361 * The structure may already exist if the node was previously
4362 * onlined and offlined.
4363 */
4364 if (get_node(s, nid))
4365 continue;
4366 /*
4367 * XXX: kmem_cache_alloc_node will fallback to other nodes
4368 * since memory is not yet available from the node that
4369 * is brought up.
4370 */
4371 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4372 if (!n) {
4373 ret = -ENOMEM;
4374 goto out;
4375 }
4376 init_kmem_cache_node(n);
4377 s->node[nid] = n;
4378 }
4379 /*
4380 * Any cache created after this point will also have kmem_cache_node
4381 * initialized for the new node.
4382 */
4383 node_set(nid, slab_nodes);
4384 out:
4385 mutex_unlock(&slab_mutex);
4386 return ret;
4387 }
4388
4389 static int slab_memory_callback(struct notifier_block *self,
4390 unsigned long action, void *arg)
4391 {
4392 int ret = 0;
4393
4394 switch (action) {
4395 case MEM_GOING_ONLINE:
4396 ret = slab_mem_going_online_callback(arg);
4397 break;
4398 case MEM_GOING_OFFLINE:
4399 ret = slab_mem_going_offline_callback(arg);
4400 break;
4401 case MEM_OFFLINE:
4402 case MEM_CANCEL_ONLINE:
4403 slab_mem_offline_callback(arg);
4404 break;
4405 case MEM_ONLINE:
4406 case MEM_CANCEL_OFFLINE:
4407 break;
4408 }
4409 if (ret)
4410 ret = notifier_from_errno(ret);
4411 else
4412 ret = NOTIFY_OK;
4413 return ret;
4414 }
4415
4416 static struct notifier_block slab_memory_callback_nb = {
4417 .notifier_call = slab_memory_callback,
4418 .priority = SLAB_CALLBACK_PRI,
4419 };
4420
4421 /********************************************************************
4422 * Basic setup of slabs
4423 *******************************************************************/
4424
4425 /*
4426 * Used for early kmem_cache structures that were allocated using
4427 * the page allocator. Allocate them properly then fix up the pointers
4428 * that may be pointing to the wrong kmem_cache structure.
4429 */
4430
4431 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4432 {
4433 int node;
4434 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4435 struct kmem_cache_node *n;
4436
4437 memcpy(s, static_cache, kmem_cache->object_size);
4438
4439 /*
4440 * This runs very early, and only the boot processor is supposed to be
4441 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4442 * IPIs around.
4443 */
4444 __flush_cpu_slab(s, smp_processor_id());
4445 for_each_kmem_cache_node(s, node, n) {
4446 struct page *p;
4447
4448 list_for_each_entry(p, &n->partial, slab_list)
4449 p->slab_cache = s;
4450
4451 #ifdef CONFIG_SLUB_DEBUG
4452 list_for_each_entry(p, &n->full, slab_list)
4453 p->slab_cache = s;
4454 #endif
4455 }
4456 list_add(&s->list, &slab_caches);
4457 return s;
4458 }
4459
4460 void __init kmem_cache_init(void)
4461 {
4462 static __initdata struct kmem_cache boot_kmem_cache,
4463 boot_kmem_cache_node;
4464 int node;
4465
4466 if (debug_guardpage_minorder())
4467 slub_max_order = 0;
4468
4469 kmem_cache_node = &boot_kmem_cache_node;
4470 kmem_cache = &boot_kmem_cache;
4471
4472 /*
4473 * Initialize the nodemask for which we will allocate per node
4474 * structures. Here we don't need taking slab_mutex yet.
4475 */
4476 for_each_node_state(node, N_NORMAL_MEMORY)
4477 node_set(node, slab_nodes);
4478
4479 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4480 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4481
4482 register_hotmemory_notifier(&slab_memory_callback_nb);
4483
4484 /* Able to allocate the per node structures */
4485 slab_state = PARTIAL;
4486
4487 create_boot_cache(kmem_cache, "kmem_cache",
4488 offsetof(struct kmem_cache, node) +
4489 nr_node_ids * sizeof(struct kmem_cache_node *),
4490 SLAB_HWCACHE_ALIGN, 0, 0);
4491
4492 kmem_cache = bootstrap(&boot_kmem_cache);
4493 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4494
4495 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4496 setup_kmalloc_cache_index_table();
4497 create_kmalloc_caches(0);
4498
4499 /* Setup random freelists for each cache */
4500 init_freelist_randomization();
4501
4502 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4503 slub_cpu_dead);
4504
4505 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4506 cache_line_size(),
4507 slub_min_order, slub_max_order, slub_min_objects,
4508 nr_cpu_ids, nr_node_ids);
4509 }
4510
4511 void __init kmem_cache_init_late(void)
4512 {
4513 }
4514
4515 struct kmem_cache *
4516 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4517 slab_flags_t flags, void (*ctor)(void *))
4518 {
4519 struct kmem_cache *s;
4520
4521 s = find_mergeable(size, align, flags, name, ctor);
4522 if (s) {
4523 s->refcount++;
4524
4525 /*
4526 * Adjust the object sizes so that we clear
4527 * the complete object on kzalloc.
4528 */
4529 s->object_size = max(s->object_size, size);
4530 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4531
4532 if (sysfs_slab_alias(s, name)) {
4533 s->refcount--;
4534 s = NULL;
4535 }
4536 }
4537
4538 return s;
4539 }
4540
4541 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4542 {
4543 int err;
4544
4545 err = kmem_cache_open(s, flags);
4546 if (err)
4547 return err;
4548
4549 /* Mutex is not taken during early boot */
4550 if (slab_state <= UP)
4551 return 0;
4552
4553 err = sysfs_slab_add(s);
4554 if (err)
4555 __kmem_cache_release(s);
4556
4557 return err;
4558 }
4559
4560 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4561 {
4562 struct kmem_cache *s;
4563 void *ret;
4564
4565 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4566 return kmalloc_large(size, gfpflags);
4567
4568 s = kmalloc_slab(size, gfpflags);
4569
4570 if (unlikely(ZERO_OR_NULL_PTR(s)))
4571 return s;
4572
4573 ret = slab_alloc(s, gfpflags, caller, size);
4574
4575 /* Honor the call site pointer we received. */
4576 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4577
4578 return ret;
4579 }
4580 EXPORT_SYMBOL(__kmalloc_track_caller);
4581
4582 #ifdef CONFIG_NUMA
4583 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4584 int node, unsigned long caller)
4585 {
4586 struct kmem_cache *s;
4587 void *ret;
4588
4589 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4590 ret = kmalloc_large_node(size, gfpflags, node);
4591
4592 trace_kmalloc_node(caller, ret,
4593 size, PAGE_SIZE << get_order(size),
4594 gfpflags, node);
4595
4596 return ret;
4597 }
4598
4599 s = kmalloc_slab(size, gfpflags);
4600
4601 if (unlikely(ZERO_OR_NULL_PTR(s)))
4602 return s;
4603
4604 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4605
4606 /* Honor the call site pointer we received. */
4607 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4608
4609 return ret;
4610 }
4611 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4612 #endif
4613
4614 #ifdef CONFIG_SYSFS
4615 static int count_inuse(struct page *page)
4616 {
4617 return page->inuse;
4618 }
4619
4620 static int count_total(struct page *page)
4621 {
4622 return page->objects;
4623 }
4624 #endif
4625
4626 #ifdef CONFIG_SLUB_DEBUG
4627 static void validate_slab(struct kmem_cache *s, struct page *page)
4628 {
4629 void *p;
4630 void *addr = page_address(page);
4631 unsigned long *map;
4632
4633 slab_lock(page);
4634
4635 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4636 goto unlock;
4637
4638 /* Now we know that a valid freelist exists */
4639 map = get_map(s, page);
4640 for_each_object(p, s, addr, page->objects) {
4641 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4642 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4643
4644 if (!check_object(s, page, p, val))
4645 break;
4646 }
4647 put_map(map);
4648 unlock:
4649 slab_unlock(page);
4650 }
4651
4652 static int validate_slab_node(struct kmem_cache *s,
4653 struct kmem_cache_node *n)
4654 {
4655 unsigned long count = 0;
4656 struct page *page;
4657 unsigned long flags;
4658
4659 spin_lock_irqsave(&n->list_lock, flags);
4660
4661 list_for_each_entry(page, &n->partial, slab_list) {
4662 validate_slab(s, page);
4663 count++;
4664 }
4665 if (count != n->nr_partial)
4666 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4667 s->name, count, n->nr_partial);
4668
4669 if (!(s->flags & SLAB_STORE_USER))
4670 goto out;
4671
4672 list_for_each_entry(page, &n->full, slab_list) {
4673 validate_slab(s, page);
4674 count++;
4675 }
4676 if (count != atomic_long_read(&n->nr_slabs))
4677 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4678 s->name, count, atomic_long_read(&n->nr_slabs));
4679
4680 out:
4681 spin_unlock_irqrestore(&n->list_lock, flags);
4682 return count;
4683 }
4684
4685 static long validate_slab_cache(struct kmem_cache *s)
4686 {
4687 int node;
4688 unsigned long count = 0;
4689 struct kmem_cache_node *n;
4690
4691 flush_all(s);
4692 for_each_kmem_cache_node(s, node, n)
4693 count += validate_slab_node(s, n);
4694
4695 return count;
4696 }
4697 /*
4698 * Generate lists of code addresses where slabcache objects are allocated
4699 * and freed.
4700 */
4701
4702 struct location {
4703 unsigned long count;
4704 unsigned long addr;
4705 long long sum_time;
4706 long min_time;
4707 long max_time;
4708 long min_pid;
4709 long max_pid;
4710 DECLARE_BITMAP(cpus, NR_CPUS);
4711 nodemask_t nodes;
4712 };
4713
4714 struct loc_track {
4715 unsigned long max;
4716 unsigned long count;
4717 struct location *loc;
4718 };
4719
4720 static void free_loc_track(struct loc_track *t)
4721 {
4722 if (t->max)
4723 free_pages((unsigned long)t->loc,
4724 get_order(sizeof(struct location) * t->max));
4725 }
4726
4727 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4728 {
4729 struct location *l;
4730 int order;
4731
4732 order = get_order(sizeof(struct location) * max);
4733
4734 l = (void *)__get_free_pages(flags, order);
4735 if (!l)
4736 return 0;
4737
4738 if (t->count) {
4739 memcpy(l, t->loc, sizeof(struct location) * t->count);
4740 free_loc_track(t);
4741 }
4742 t->max = max;
4743 t->loc = l;
4744 return 1;
4745 }
4746
4747 static int add_location(struct loc_track *t, struct kmem_cache *s,
4748 const struct track *track)
4749 {
4750 long start, end, pos;
4751 struct location *l;
4752 unsigned long caddr;
4753 unsigned long age = jiffies - track->when;
4754
4755 start = -1;
4756 end = t->count;
4757
4758 for ( ; ; ) {
4759 pos = start + (end - start + 1) / 2;
4760
4761 /*
4762 * There is nothing at "end". If we end up there
4763 * we need to add something to before end.
4764 */
4765 if (pos == end)
4766 break;
4767
4768 caddr = t->loc[pos].addr;
4769 if (track->addr == caddr) {
4770
4771 l = &t->loc[pos];
4772 l->count++;
4773 if (track->when) {
4774 l->sum_time += age;
4775 if (age < l->min_time)
4776 l->min_time = age;
4777 if (age > l->max_time)
4778 l->max_time = age;
4779
4780 if (track->pid < l->min_pid)
4781 l->min_pid = track->pid;
4782 if (track->pid > l->max_pid)
4783 l->max_pid = track->pid;
4784
4785 cpumask_set_cpu(track->cpu,
4786 to_cpumask(l->cpus));
4787 }
4788 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4789 return 1;
4790 }
4791
4792 if (track->addr < caddr)
4793 end = pos;
4794 else
4795 start = pos;
4796 }
4797
4798 /*
4799 * Not found. Insert new tracking element.
4800 */
4801 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4802 return 0;
4803
4804 l = t->loc + pos;
4805 if (pos < t->count)
4806 memmove(l + 1, l,
4807 (t->count - pos) * sizeof(struct location));
4808 t->count++;
4809 l->count = 1;
4810 l->addr = track->addr;
4811 l->sum_time = age;
4812 l->min_time = age;
4813 l->max_time = age;
4814 l->min_pid = track->pid;
4815 l->max_pid = track->pid;
4816 cpumask_clear(to_cpumask(l->cpus));
4817 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4818 nodes_clear(l->nodes);
4819 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4820 return 1;
4821 }
4822
4823 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4824 struct page *page, enum track_item alloc)
4825 {
4826 void *addr = page_address(page);
4827 void *p;
4828 unsigned long *map;
4829
4830 map = get_map(s, page);
4831 for_each_object(p, s, addr, page->objects)
4832 if (!test_bit(__obj_to_index(s, addr, p), map))
4833 add_location(t, s, get_track(s, p, alloc));
4834 put_map(map);
4835 }
4836
4837 static int list_locations(struct kmem_cache *s, char *buf,
4838 enum track_item alloc)
4839 {
4840 int len = 0;
4841 unsigned long i;
4842 struct loc_track t = { 0, 0, NULL };
4843 int node;
4844 struct kmem_cache_node *n;
4845
4846 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4847 GFP_KERNEL)) {
4848 return sysfs_emit(buf, "Out of memory\n");
4849 }
4850 /* Push back cpu slabs */
4851 flush_all(s);
4852
4853 for_each_kmem_cache_node(s, node, n) {
4854 unsigned long flags;
4855 struct page *page;
4856
4857 if (!atomic_long_read(&n->nr_slabs))
4858 continue;
4859
4860 spin_lock_irqsave(&n->list_lock, flags);
4861 list_for_each_entry(page, &n->partial, slab_list)
4862 process_slab(&t, s, page, alloc);
4863 list_for_each_entry(page, &n->full, slab_list)
4864 process_slab(&t, s, page, alloc);
4865 spin_unlock_irqrestore(&n->list_lock, flags);
4866 }
4867
4868 for (i = 0; i < t.count; i++) {
4869 struct location *l = &t.loc[i];
4870
4871 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4872
4873 if (l->addr)
4874 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4875 else
4876 len += sysfs_emit_at(buf, len, "<not-available>");
4877
4878 if (l->sum_time != l->min_time)
4879 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4880 l->min_time,
4881 (long)div_u64(l->sum_time,
4882 l->count),
4883 l->max_time);
4884 else
4885 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4886
4887 if (l->min_pid != l->max_pid)
4888 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4889 l->min_pid, l->max_pid);
4890 else
4891 len += sysfs_emit_at(buf, len, " pid=%ld",
4892 l->min_pid);
4893
4894 if (num_online_cpus() > 1 &&
4895 !cpumask_empty(to_cpumask(l->cpus)))
4896 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4897 cpumask_pr_args(to_cpumask(l->cpus)));
4898
4899 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4900 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4901 nodemask_pr_args(&l->nodes));
4902
4903 len += sysfs_emit_at(buf, len, "\n");
4904 }
4905
4906 free_loc_track(&t);
4907 if (!t.count)
4908 len += sysfs_emit_at(buf, len, "No data\n");
4909
4910 return len;
4911 }
4912 #endif /* CONFIG_SLUB_DEBUG */
4913
4914 #ifdef SLUB_RESILIENCY_TEST
4915 static void __init resiliency_test(void)
4916 {
4917 u8 *p;
4918 int type = KMALLOC_NORMAL;
4919
4920 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4921
4922 pr_err("SLUB resiliency testing\n");
4923 pr_err("-----------------------\n");
4924 pr_err("A. Corruption after allocation\n");
4925
4926 p = kzalloc(16, GFP_KERNEL);
4927 p[16] = 0x12;
4928 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4929 p + 16);
4930
4931 validate_slab_cache(kmalloc_caches[type][4]);
4932
4933 /* Hmmm... The next two are dangerous */
4934 p = kzalloc(32, GFP_KERNEL);
4935 p[32 + sizeof(void *)] = 0x34;
4936 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4937 p);
4938 pr_err("If allocated object is overwritten then not detectable\n\n");
4939
4940 validate_slab_cache(kmalloc_caches[type][5]);
4941 p = kzalloc(64, GFP_KERNEL);
4942 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4943 *p = 0x56;
4944 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4945 p);
4946 pr_err("If allocated object is overwritten then not detectable\n\n");
4947 validate_slab_cache(kmalloc_caches[type][6]);
4948
4949 pr_err("\nB. Corruption after free\n");
4950 p = kzalloc(128, GFP_KERNEL);
4951 kfree(p);
4952 *p = 0x78;
4953 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4954 validate_slab_cache(kmalloc_caches[type][7]);
4955
4956 p = kzalloc(256, GFP_KERNEL);
4957 kfree(p);
4958 p[50] = 0x9a;
4959 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4960 validate_slab_cache(kmalloc_caches[type][8]);
4961
4962 p = kzalloc(512, GFP_KERNEL);
4963 kfree(p);
4964 p[512] = 0xab;
4965 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4966 validate_slab_cache(kmalloc_caches[type][9]);
4967 }
4968 #else
4969 #ifdef CONFIG_SYSFS
4970 static void resiliency_test(void) {};
4971 #endif
4972 #endif /* SLUB_RESILIENCY_TEST */
4973
4974 #ifdef CONFIG_SYSFS
4975 enum slab_stat_type {
4976 SL_ALL, /* All slabs */
4977 SL_PARTIAL, /* Only partially allocated slabs */
4978 SL_CPU, /* Only slabs used for cpu caches */
4979 SL_OBJECTS, /* Determine allocated objects not slabs */
4980 SL_TOTAL /* Determine object capacity not slabs */
4981 };
4982
4983 #define SO_ALL (1 << SL_ALL)
4984 #define SO_PARTIAL (1 << SL_PARTIAL)
4985 #define SO_CPU (1 << SL_CPU)
4986 #define SO_OBJECTS (1 << SL_OBJECTS)
4987 #define SO_TOTAL (1 << SL_TOTAL)
4988
4989 static ssize_t show_slab_objects(struct kmem_cache *s,
4990 char *buf, unsigned long flags)
4991 {
4992 unsigned long total = 0;
4993 int node;
4994 int x;
4995 unsigned long *nodes;
4996 int len = 0;
4997
4998 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4999 if (!nodes)
5000 return -ENOMEM;
5001
5002 if (flags & SO_CPU) {
5003 int cpu;
5004
5005 for_each_possible_cpu(cpu) {
5006 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5007 cpu);
5008 int node;
5009 struct page *page;
5010
5011 page = READ_ONCE(c->page);
5012 if (!page)
5013 continue;
5014
5015 node = page_to_nid(page);
5016 if (flags & SO_TOTAL)
5017 x = page->objects;
5018 else if (flags & SO_OBJECTS)
5019 x = page->inuse;
5020 else
5021 x = 1;
5022
5023 total += x;
5024 nodes[node] += x;
5025
5026 page = slub_percpu_partial_read_once(c);
5027 if (page) {
5028 node = page_to_nid(page);
5029 if (flags & SO_TOTAL)
5030 WARN_ON_ONCE(1);
5031 else if (flags & SO_OBJECTS)
5032 WARN_ON_ONCE(1);
5033 else
5034 x = page->pages;
5035 total += x;
5036 nodes[node] += x;
5037 }
5038 }
5039 }
5040
5041 /*
5042 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5043 * already held which will conflict with an existing lock order:
5044 *
5045 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5046 *
5047 * We don't really need mem_hotplug_lock (to hold off
5048 * slab_mem_going_offline_callback) here because slab's memory hot
5049 * unplug code doesn't destroy the kmem_cache->node[] data.
5050 */
5051
5052 #ifdef CONFIG_SLUB_DEBUG
5053 if (flags & SO_ALL) {
5054 struct kmem_cache_node *n;
5055
5056 for_each_kmem_cache_node(s, node, n) {
5057
5058 if (flags & SO_TOTAL)
5059 x = atomic_long_read(&n->total_objects);
5060 else if (flags & SO_OBJECTS)
5061 x = atomic_long_read(&n->total_objects) -
5062 count_partial(n, count_free);
5063 else
5064 x = atomic_long_read(&n->nr_slabs);
5065 total += x;
5066 nodes[node] += x;
5067 }
5068
5069 } else
5070 #endif
5071 if (flags & SO_PARTIAL) {
5072 struct kmem_cache_node *n;
5073
5074 for_each_kmem_cache_node(s, node, n) {
5075 if (flags & SO_TOTAL)
5076 x = count_partial(n, count_total);
5077 else if (flags & SO_OBJECTS)
5078 x = count_partial(n, count_inuse);
5079 else
5080 x = n->nr_partial;
5081 total += x;
5082 nodes[node] += x;
5083 }
5084 }
5085
5086 len += sysfs_emit_at(buf, len, "%lu", total);
5087 #ifdef CONFIG_NUMA
5088 for (node = 0; node < nr_node_ids; node++) {
5089 if (nodes[node])
5090 len += sysfs_emit_at(buf, len, " N%d=%lu",
5091 node, nodes[node]);
5092 }
5093 #endif
5094 len += sysfs_emit_at(buf, len, "\n");
5095 kfree(nodes);
5096
5097 return len;
5098 }
5099
5100 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5101 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5102
5103 struct slab_attribute {
5104 struct attribute attr;
5105 ssize_t (*show)(struct kmem_cache *s, char *buf);
5106 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5107 };
5108
5109 #define SLAB_ATTR_RO(_name) \
5110 static struct slab_attribute _name##_attr = \
5111 __ATTR(_name, 0400, _name##_show, NULL)
5112
5113 #define SLAB_ATTR(_name) \
5114 static struct slab_attribute _name##_attr = \
5115 __ATTR(_name, 0600, _name##_show, _name##_store)
5116
5117 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5118 {
5119 return sysfs_emit(buf, "%u\n", s->size);
5120 }
5121 SLAB_ATTR_RO(slab_size);
5122
5123 static ssize_t align_show(struct kmem_cache *s, char *buf)
5124 {
5125 return sysfs_emit(buf, "%u\n", s->align);
5126 }
5127 SLAB_ATTR_RO(align);
5128
5129 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5130 {
5131 return sysfs_emit(buf, "%u\n", s->object_size);
5132 }
5133 SLAB_ATTR_RO(object_size);
5134
5135 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5136 {
5137 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5138 }
5139 SLAB_ATTR_RO(objs_per_slab);
5140
5141 static ssize_t order_show(struct kmem_cache *s, char *buf)
5142 {
5143 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5144 }
5145 SLAB_ATTR_RO(order);
5146
5147 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5148 {
5149 return sysfs_emit(buf, "%lu\n", s->min_partial);
5150 }
5151
5152 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5153 size_t length)
5154 {
5155 unsigned long min;
5156 int err;
5157
5158 err = kstrtoul(buf, 10, &min);
5159 if (err)
5160 return err;
5161
5162 set_min_partial(s, min);
5163 return length;
5164 }
5165 SLAB_ATTR(min_partial);
5166
5167 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5168 {
5169 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5170 }
5171
5172 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5173 size_t length)
5174 {
5175 unsigned int objects;
5176 int err;
5177
5178 err = kstrtouint(buf, 10, &objects);
5179 if (err)
5180 return err;
5181 if (objects && !kmem_cache_has_cpu_partial(s))
5182 return -EINVAL;
5183
5184 slub_set_cpu_partial(s, objects);
5185 flush_all(s);
5186 return length;
5187 }
5188 SLAB_ATTR(cpu_partial);
5189
5190 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5191 {
5192 if (!s->ctor)
5193 return 0;
5194 return sysfs_emit(buf, "%pS\n", s->ctor);
5195 }
5196 SLAB_ATTR_RO(ctor);
5197
5198 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5199 {
5200 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5201 }
5202 SLAB_ATTR_RO(aliases);
5203
5204 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5205 {
5206 return show_slab_objects(s, buf, SO_PARTIAL);
5207 }
5208 SLAB_ATTR_RO(partial);
5209
5210 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5211 {
5212 return show_slab_objects(s, buf, SO_CPU);
5213 }
5214 SLAB_ATTR_RO(cpu_slabs);
5215
5216 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5217 {
5218 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5219 }
5220 SLAB_ATTR_RO(objects);
5221
5222 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5223 {
5224 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5225 }
5226 SLAB_ATTR_RO(objects_partial);
5227
5228 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5229 {
5230 int objects = 0;
5231 int pages = 0;
5232 int cpu;
5233 int len = 0;
5234
5235 for_each_online_cpu(cpu) {
5236 struct page *page;
5237
5238 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5239
5240 if (page) {
5241 pages += page->pages;
5242 objects += page->pobjects;
5243 }
5244 }
5245
5246 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5247
5248 #ifdef CONFIG_SMP
5249 for_each_online_cpu(cpu) {
5250 struct page *page;
5251
5252 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5253 if (page)
5254 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5255 cpu, page->pobjects, page->pages);
5256 }
5257 #endif
5258 len += sysfs_emit_at(buf, len, "\n");
5259
5260 return len;
5261 }
5262 SLAB_ATTR_RO(slabs_cpu_partial);
5263
5264 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5265 {
5266 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5267 }
5268 SLAB_ATTR_RO(reclaim_account);
5269
5270 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5271 {
5272 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5273 }
5274 SLAB_ATTR_RO(hwcache_align);
5275
5276 #ifdef CONFIG_ZONE_DMA
5277 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5278 {
5279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5280 }
5281 SLAB_ATTR_RO(cache_dma);
5282 #endif
5283
5284 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5285 {
5286 return sysfs_emit(buf, "%u\n", s->usersize);
5287 }
5288 SLAB_ATTR_RO(usersize);
5289
5290 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5291 {
5292 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5293 }
5294 SLAB_ATTR_RO(destroy_by_rcu);
5295
5296 #ifdef CONFIG_SLUB_DEBUG
5297 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5298 {
5299 return show_slab_objects(s, buf, SO_ALL);
5300 }
5301 SLAB_ATTR_RO(slabs);
5302
5303 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5304 {
5305 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5306 }
5307 SLAB_ATTR_RO(total_objects);
5308
5309 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5310 {
5311 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5312 }
5313 SLAB_ATTR_RO(sanity_checks);
5314
5315 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5316 {
5317 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5318 }
5319 SLAB_ATTR_RO(trace);
5320
5321 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5322 {
5323 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5324 }
5325
5326 SLAB_ATTR_RO(red_zone);
5327
5328 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5329 {
5330 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5331 }
5332
5333 SLAB_ATTR_RO(poison);
5334
5335 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5336 {
5337 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5338 }
5339
5340 SLAB_ATTR_RO(store_user);
5341
5342 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5343 {
5344 return 0;
5345 }
5346
5347 static ssize_t validate_store(struct kmem_cache *s,
5348 const char *buf, size_t length)
5349 {
5350 int ret = -EINVAL;
5351
5352 if (buf[0] == '1') {
5353 ret = validate_slab_cache(s);
5354 if (ret >= 0)
5355 ret = length;
5356 }
5357 return ret;
5358 }
5359 SLAB_ATTR(validate);
5360
5361 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5362 {
5363 if (!(s->flags & SLAB_STORE_USER))
5364 return -ENOSYS;
5365 return list_locations(s, buf, TRACK_ALLOC);
5366 }
5367 SLAB_ATTR_RO(alloc_calls);
5368
5369 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5370 {
5371 if (!(s->flags & SLAB_STORE_USER))
5372 return -ENOSYS;
5373 return list_locations(s, buf, TRACK_FREE);
5374 }
5375 SLAB_ATTR_RO(free_calls);
5376 #endif /* CONFIG_SLUB_DEBUG */
5377
5378 #ifdef CONFIG_FAILSLAB
5379 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5380 {
5381 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5382 }
5383 SLAB_ATTR_RO(failslab);
5384 #endif
5385
5386 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5387 {
5388 return 0;
5389 }
5390
5391 static ssize_t shrink_store(struct kmem_cache *s,
5392 const char *buf, size_t length)
5393 {
5394 if (buf[0] == '1')
5395 kmem_cache_shrink(s);
5396 else
5397 return -EINVAL;
5398 return length;
5399 }
5400 SLAB_ATTR(shrink);
5401
5402 #ifdef CONFIG_NUMA
5403 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5404 {
5405 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5406 }
5407
5408 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5409 const char *buf, size_t length)
5410 {
5411 unsigned int ratio;
5412 int err;
5413
5414 err = kstrtouint(buf, 10, &ratio);
5415 if (err)
5416 return err;
5417 if (ratio > 100)
5418 return -ERANGE;
5419
5420 s->remote_node_defrag_ratio = ratio * 10;
5421
5422 return length;
5423 }
5424 SLAB_ATTR(remote_node_defrag_ratio);
5425 #endif
5426
5427 #ifdef CONFIG_SLUB_STATS
5428 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5429 {
5430 unsigned long sum = 0;
5431 int cpu;
5432 int len = 0;
5433 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5434
5435 if (!data)
5436 return -ENOMEM;
5437
5438 for_each_online_cpu(cpu) {
5439 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5440
5441 data[cpu] = x;
5442 sum += x;
5443 }
5444
5445 len += sysfs_emit_at(buf, len, "%lu", sum);
5446
5447 #ifdef CONFIG_SMP
5448 for_each_online_cpu(cpu) {
5449 if (data[cpu])
5450 len += sysfs_emit_at(buf, len, " C%d=%u",
5451 cpu, data[cpu]);
5452 }
5453 #endif
5454 kfree(data);
5455 len += sysfs_emit_at(buf, len, "\n");
5456
5457 return len;
5458 }
5459
5460 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5461 {
5462 int cpu;
5463
5464 for_each_online_cpu(cpu)
5465 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5466 }
5467
5468 #define STAT_ATTR(si, text) \
5469 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5470 { \
5471 return show_stat(s, buf, si); \
5472 } \
5473 static ssize_t text##_store(struct kmem_cache *s, \
5474 const char *buf, size_t length) \
5475 { \
5476 if (buf[0] != '0') \
5477 return -EINVAL; \
5478 clear_stat(s, si); \
5479 return length; \
5480 } \
5481 SLAB_ATTR(text); \
5482
5483 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5484 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5485 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5486 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5487 STAT_ATTR(FREE_FROZEN, free_frozen);
5488 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5489 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5490 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5491 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5492 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5493 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5494 STAT_ATTR(FREE_SLAB, free_slab);
5495 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5496 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5497 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5498 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5499 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5500 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5501 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5502 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5503 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5504 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5505 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5506 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5507 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5508 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5509 #endif /* CONFIG_SLUB_STATS */
5510
5511 static struct attribute *slab_attrs[] = {
5512 &slab_size_attr.attr,
5513 &object_size_attr.attr,
5514 &objs_per_slab_attr.attr,
5515 &order_attr.attr,
5516 &min_partial_attr.attr,
5517 &cpu_partial_attr.attr,
5518 &objects_attr.attr,
5519 &objects_partial_attr.attr,
5520 &partial_attr.attr,
5521 &cpu_slabs_attr.attr,
5522 &ctor_attr.attr,
5523 &aliases_attr.attr,
5524 &align_attr.attr,
5525 &hwcache_align_attr.attr,
5526 &reclaim_account_attr.attr,
5527 &destroy_by_rcu_attr.attr,
5528 &shrink_attr.attr,
5529 &slabs_cpu_partial_attr.attr,
5530 #ifdef CONFIG_SLUB_DEBUG
5531 &total_objects_attr.attr,
5532 &slabs_attr.attr,
5533 &sanity_checks_attr.attr,
5534 &trace_attr.attr,
5535 &red_zone_attr.attr,
5536 &poison_attr.attr,
5537 &store_user_attr.attr,
5538 &validate_attr.attr,
5539 &alloc_calls_attr.attr,
5540 &free_calls_attr.attr,
5541 #endif
5542 #ifdef CONFIG_ZONE_DMA
5543 &cache_dma_attr.attr,
5544 #endif
5545 #ifdef CONFIG_NUMA
5546 &remote_node_defrag_ratio_attr.attr,
5547 #endif
5548 #ifdef CONFIG_SLUB_STATS
5549 &alloc_fastpath_attr.attr,
5550 &alloc_slowpath_attr.attr,
5551 &free_fastpath_attr.attr,
5552 &free_slowpath_attr.attr,
5553 &free_frozen_attr.attr,
5554 &free_add_partial_attr.attr,
5555 &free_remove_partial_attr.attr,
5556 &alloc_from_partial_attr.attr,
5557 &alloc_slab_attr.attr,
5558 &alloc_refill_attr.attr,
5559 &alloc_node_mismatch_attr.attr,
5560 &free_slab_attr.attr,
5561 &cpuslab_flush_attr.attr,
5562 &deactivate_full_attr.attr,
5563 &deactivate_empty_attr.attr,
5564 &deactivate_to_head_attr.attr,
5565 &deactivate_to_tail_attr.attr,
5566 &deactivate_remote_frees_attr.attr,
5567 &deactivate_bypass_attr.attr,
5568 &order_fallback_attr.attr,
5569 &cmpxchg_double_fail_attr.attr,
5570 &cmpxchg_double_cpu_fail_attr.attr,
5571 &cpu_partial_alloc_attr.attr,
5572 &cpu_partial_free_attr.attr,
5573 &cpu_partial_node_attr.attr,
5574 &cpu_partial_drain_attr.attr,
5575 #endif
5576 #ifdef CONFIG_FAILSLAB
5577 &failslab_attr.attr,
5578 #endif
5579 &usersize_attr.attr,
5580
5581 NULL
5582 };
5583
5584 static const struct attribute_group slab_attr_group = {
5585 .attrs = slab_attrs,
5586 };
5587
5588 static ssize_t slab_attr_show(struct kobject *kobj,
5589 struct attribute *attr,
5590 char *buf)
5591 {
5592 struct slab_attribute *attribute;
5593 struct kmem_cache *s;
5594 int err;
5595
5596 attribute = to_slab_attr(attr);
5597 s = to_slab(kobj);
5598
5599 if (!attribute->show)
5600 return -EIO;
5601
5602 err = attribute->show(s, buf);
5603
5604 return err;
5605 }
5606
5607 static ssize_t slab_attr_store(struct kobject *kobj,
5608 struct attribute *attr,
5609 const char *buf, size_t len)
5610 {
5611 struct slab_attribute *attribute;
5612 struct kmem_cache *s;
5613 int err;
5614
5615 attribute = to_slab_attr(attr);
5616 s = to_slab(kobj);
5617
5618 if (!attribute->store)
5619 return -EIO;
5620
5621 err = attribute->store(s, buf, len);
5622 return err;
5623 }
5624
5625 static void kmem_cache_release(struct kobject *k)
5626 {
5627 slab_kmem_cache_release(to_slab(k));
5628 }
5629
5630 static const struct sysfs_ops slab_sysfs_ops = {
5631 .show = slab_attr_show,
5632 .store = slab_attr_store,
5633 };
5634
5635 static struct kobj_type slab_ktype = {
5636 .sysfs_ops = &slab_sysfs_ops,
5637 .release = kmem_cache_release,
5638 };
5639
5640 static struct kset *slab_kset;
5641
5642 static inline struct kset *cache_kset(struct kmem_cache *s)
5643 {
5644 return slab_kset;
5645 }
5646
5647 #define ID_STR_LENGTH 64
5648
5649 /* Create a unique string id for a slab cache:
5650 *
5651 * Format :[flags-]size
5652 */
5653 static char *create_unique_id(struct kmem_cache *s)
5654 {
5655 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5656 char *p = name;
5657
5658 BUG_ON(!name);
5659
5660 *p++ = ':';
5661 /*
5662 * First flags affecting slabcache operations. We will only
5663 * get here for aliasable slabs so we do not need to support
5664 * too many flags. The flags here must cover all flags that
5665 * are matched during merging to guarantee that the id is
5666 * unique.
5667 */
5668 if (s->flags & SLAB_CACHE_DMA)
5669 *p++ = 'd';
5670 if (s->flags & SLAB_CACHE_DMA32)
5671 *p++ = 'D';
5672 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5673 *p++ = 'a';
5674 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5675 *p++ = 'F';
5676 if (s->flags & SLAB_ACCOUNT)
5677 *p++ = 'A';
5678 if (p != name + 1)
5679 *p++ = '-';
5680 p += sprintf(p, "%07u", s->size);
5681
5682 BUG_ON(p > name + ID_STR_LENGTH - 1);
5683 return name;
5684 }
5685
5686 static int sysfs_slab_add(struct kmem_cache *s)
5687 {
5688 int err;
5689 const char *name;
5690 struct kset *kset = cache_kset(s);
5691 int unmergeable = slab_unmergeable(s);
5692
5693 if (!kset) {
5694 kobject_init(&s->kobj, &slab_ktype);
5695 return 0;
5696 }
5697
5698 if (!unmergeable && disable_higher_order_debug &&
5699 (slub_debug & DEBUG_METADATA_FLAGS))
5700 unmergeable = 1;
5701
5702 if (unmergeable) {
5703 /*
5704 * Slabcache can never be merged so we can use the name proper.
5705 * This is typically the case for debug situations. In that
5706 * case we can catch duplicate names easily.
5707 */
5708 sysfs_remove_link(&slab_kset->kobj, s->name);
5709 name = s->name;
5710 } else {
5711 /*
5712 * Create a unique name for the slab as a target
5713 * for the symlinks.
5714 */
5715 name = create_unique_id(s);
5716 }
5717
5718 s->kobj.kset = kset;
5719 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5720 if (err)
5721 goto out;
5722
5723 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5724 if (err)
5725 goto out_del_kobj;
5726
5727 if (!unmergeable) {
5728 /* Setup first alias */
5729 sysfs_slab_alias(s, s->name);
5730 }
5731 out:
5732 if (!unmergeable)
5733 kfree(name);
5734 return err;
5735 out_del_kobj:
5736 kobject_del(&s->kobj);
5737 goto out;
5738 }
5739
5740 void sysfs_slab_unlink(struct kmem_cache *s)
5741 {
5742 if (slab_state >= FULL)
5743 kobject_del(&s->kobj);
5744 }
5745
5746 void sysfs_slab_release(struct kmem_cache *s)
5747 {
5748 if (slab_state >= FULL)
5749 kobject_put(&s->kobj);
5750 }
5751
5752 /*
5753 * Need to buffer aliases during bootup until sysfs becomes
5754 * available lest we lose that information.
5755 */
5756 struct saved_alias {
5757 struct kmem_cache *s;
5758 const char *name;
5759 struct saved_alias *next;
5760 };
5761
5762 static struct saved_alias *alias_list;
5763
5764 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5765 {
5766 struct saved_alias *al;
5767
5768 if (slab_state == FULL) {
5769 /*
5770 * If we have a leftover link then remove it.
5771 */
5772 sysfs_remove_link(&slab_kset->kobj, name);
5773 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5774 }
5775
5776 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5777 if (!al)
5778 return -ENOMEM;
5779
5780 al->s = s;
5781 al->name = name;
5782 al->next = alias_list;
5783 alias_list = al;
5784 return 0;
5785 }
5786
5787 static int __init slab_sysfs_init(void)
5788 {
5789 struct kmem_cache *s;
5790 int err;
5791
5792 mutex_lock(&slab_mutex);
5793
5794 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5795 if (!slab_kset) {
5796 mutex_unlock(&slab_mutex);
5797 pr_err("Cannot register slab subsystem.\n");
5798 return -ENOSYS;
5799 }
5800
5801 slab_state = FULL;
5802
5803 list_for_each_entry(s, &slab_caches, list) {
5804 err = sysfs_slab_add(s);
5805 if (err)
5806 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5807 s->name);
5808 }
5809
5810 while (alias_list) {
5811 struct saved_alias *al = alias_list;
5812
5813 alias_list = alias_list->next;
5814 err = sysfs_slab_alias(al->s, al->name);
5815 if (err)
5816 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5817 al->name);
5818 kfree(al);
5819 }
5820
5821 mutex_unlock(&slab_mutex);
5822 resiliency_test();
5823 return 0;
5824 }
5825
5826 __initcall(slab_sysfs_init);
5827 #endif /* CONFIG_SYSFS */
5828
5829 /*
5830 * The /proc/slabinfo ABI
5831 */
5832 #ifdef CONFIG_SLUB_DEBUG
5833 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5834 {
5835 unsigned long nr_slabs = 0;
5836 unsigned long nr_objs = 0;
5837 unsigned long nr_free = 0;
5838 int node;
5839 struct kmem_cache_node *n;
5840
5841 for_each_kmem_cache_node(s, node, n) {
5842 nr_slabs += node_nr_slabs(n);
5843 nr_objs += node_nr_objs(n);
5844 nr_free += count_partial(n, count_free);
5845 }
5846
5847 sinfo->active_objs = nr_objs - nr_free;
5848 sinfo->num_objs = nr_objs;
5849 sinfo->active_slabs = nr_slabs;
5850 sinfo->num_slabs = nr_slabs;
5851 sinfo->objects_per_slab = oo_objects(s->oo);
5852 sinfo->cache_order = oo_order(s->oo);
5853 }
5854
5855 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5856 {
5857 }
5858
5859 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5860 size_t count, loff_t *ppos)
5861 {
5862 return -EIO;
5863 }
5864 #endif /* CONFIG_SLUB_DEBUG */