]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slub.c
slub: Fallback to minimal order during slab page allocation
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 #if PAGE_SHIFT <= 12
153
154 /*
155 * Small page size. Make sure that we do not fragment memory
156 */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159
160 #else
161
162 /*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168
169 #endif
170
171 /*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175 #define MIN_PARTIAL 5
176
177 /*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182 #define MAX_PARTIAL 10
183
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187 /*
188 * Set of flags that will prevent slab merging
189 */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
209
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
214
215 static int kmem_size = sizeof(struct kmem_cache);
216
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
220
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
227
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
231
232 /*
233 * Tracking user of a slab.
234 */
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240 };
241
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
243
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
248
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
254 {
255 kfree(s);
256 }
257
258 #endif
259
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261 {
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
265 }
266
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271 int slab_is_available(void)
272 {
273 return slab_state >= UP;
274 }
275
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277 {
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
283 }
284
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286 {
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
292 }
293
294 /* Verify that a pointer has an address that is valid within a slab page */
295 static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297 {
298 void *base;
299
300 if (!object)
301 return 1;
302
303 base = page_address(page);
304 if (object < base || object >= base + page->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310 }
311
312 /*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319 static inline void *get_freepointer(struct kmem_cache *s, void *object)
320 {
321 return *(void **)(object + s->offset);
322 }
323
324 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325 {
326 *(void **)(object + s->offset) = fp;
327 }
328
329 /* Loop over all objects in a slab */
330 #define for_each_object(__p, __s, __addr, __objects) \
331 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
332 __p += (__s)->size)
333
334 /* Scan freelist */
335 #define for_each_free_object(__p, __s, __free) \
336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
337
338 /* Determine object index from a given position */
339 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340 {
341 return (p - addr) / s->size;
342 }
343
344 static inline struct kmem_cache_order_objects oo_make(int order,
345 unsigned long size)
346 {
347 struct kmem_cache_order_objects x = {
348 (order << 16) + (PAGE_SIZE << order) / size
349 };
350
351 return x;
352 }
353
354 static inline int oo_order(struct kmem_cache_order_objects x)
355 {
356 return x.x >> 16;
357 }
358
359 static inline int oo_objects(struct kmem_cache_order_objects x)
360 {
361 return x.x & ((1 << 16) - 1);
362 }
363
364 #ifdef CONFIG_SLUB_DEBUG
365 /*
366 * Debug settings:
367 */
368 #ifdef CONFIG_SLUB_DEBUG_ON
369 static int slub_debug = DEBUG_DEFAULT_FLAGS;
370 #else
371 static int slub_debug;
372 #endif
373
374 static char *slub_debug_slabs;
375
376 /*
377 * Object debugging
378 */
379 static void print_section(char *text, u8 *addr, unsigned int length)
380 {
381 int i, offset;
382 int newline = 1;
383 char ascii[17];
384
385 ascii[16] = 0;
386
387 for (i = 0; i < length; i++) {
388 if (newline) {
389 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
390 newline = 0;
391 }
392 printk(KERN_CONT " %02x", addr[i]);
393 offset = i % 16;
394 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
395 if (offset == 15) {
396 printk(KERN_CONT " %s\n", ascii);
397 newline = 1;
398 }
399 }
400 if (!newline) {
401 i %= 16;
402 while (i < 16) {
403 printk(KERN_CONT " ");
404 ascii[i] = ' ';
405 i++;
406 }
407 printk(KERN_CONT " %s\n", ascii);
408 }
409 }
410
411 static struct track *get_track(struct kmem_cache *s, void *object,
412 enum track_item alloc)
413 {
414 struct track *p;
415
416 if (s->offset)
417 p = object + s->offset + sizeof(void *);
418 else
419 p = object + s->inuse;
420
421 return p + alloc;
422 }
423
424 static void set_track(struct kmem_cache *s, void *object,
425 enum track_item alloc, void *addr)
426 {
427 struct track *p;
428
429 if (s->offset)
430 p = object + s->offset + sizeof(void *);
431 else
432 p = object + s->inuse;
433
434 p += alloc;
435 if (addr) {
436 p->addr = addr;
437 p->cpu = smp_processor_id();
438 p->pid = current ? current->pid : -1;
439 p->when = jiffies;
440 } else
441 memset(p, 0, sizeof(struct track));
442 }
443
444 static void init_tracking(struct kmem_cache *s, void *object)
445 {
446 if (!(s->flags & SLAB_STORE_USER))
447 return;
448
449 set_track(s, object, TRACK_FREE, NULL);
450 set_track(s, object, TRACK_ALLOC, NULL);
451 }
452
453 static void print_track(const char *s, struct track *t)
454 {
455 if (!t->addr)
456 return;
457
458 printk(KERN_ERR "INFO: %s in ", s);
459 __print_symbol("%s", (unsigned long)t->addr);
460 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
461 }
462
463 static void print_tracking(struct kmem_cache *s, void *object)
464 {
465 if (!(s->flags & SLAB_STORE_USER))
466 return;
467
468 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
469 print_track("Freed", get_track(s, object, TRACK_FREE));
470 }
471
472 static void print_page_info(struct page *page)
473 {
474 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
475 page, page->objects, page->inuse, page->freelist, page->flags);
476
477 }
478
479 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
480 {
481 va_list args;
482 char buf[100];
483
484 va_start(args, fmt);
485 vsnprintf(buf, sizeof(buf), fmt, args);
486 va_end(args);
487 printk(KERN_ERR "========================================"
488 "=====================================\n");
489 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
490 printk(KERN_ERR "----------------------------------------"
491 "-------------------------------------\n\n");
492 }
493
494 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
495 {
496 va_list args;
497 char buf[100];
498
499 va_start(args, fmt);
500 vsnprintf(buf, sizeof(buf), fmt, args);
501 va_end(args);
502 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
503 }
504
505 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
506 {
507 unsigned int off; /* Offset of last byte */
508 u8 *addr = page_address(page);
509
510 print_tracking(s, p);
511
512 print_page_info(page);
513
514 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
515 p, p - addr, get_freepointer(s, p));
516
517 if (p > addr + 16)
518 print_section("Bytes b4", p - 16, 16);
519
520 print_section("Object", p, min(s->objsize, 128));
521
522 if (s->flags & SLAB_RED_ZONE)
523 print_section("Redzone", p + s->objsize,
524 s->inuse - s->objsize);
525
526 if (s->offset)
527 off = s->offset + sizeof(void *);
528 else
529 off = s->inuse;
530
531 if (s->flags & SLAB_STORE_USER)
532 off += 2 * sizeof(struct track);
533
534 if (off != s->size)
535 /* Beginning of the filler is the free pointer */
536 print_section("Padding", p + off, s->size - off);
537
538 dump_stack();
539 }
540
541 static void object_err(struct kmem_cache *s, struct page *page,
542 u8 *object, char *reason)
543 {
544 slab_bug(s, "%s", reason);
545 print_trailer(s, page, object);
546 }
547
548 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
549 {
550 va_list args;
551 char buf[100];
552
553 va_start(args, fmt);
554 vsnprintf(buf, sizeof(buf), fmt, args);
555 va_end(args);
556 slab_bug(s, "%s", buf);
557 print_page_info(page);
558 dump_stack();
559 }
560
561 static void init_object(struct kmem_cache *s, void *object, int active)
562 {
563 u8 *p = object;
564
565 if (s->flags & __OBJECT_POISON) {
566 memset(p, POISON_FREE, s->objsize - 1);
567 p[s->objsize - 1] = POISON_END;
568 }
569
570 if (s->flags & SLAB_RED_ZONE)
571 memset(p + s->objsize,
572 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
573 s->inuse - s->objsize);
574 }
575
576 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
577 {
578 while (bytes) {
579 if (*start != (u8)value)
580 return start;
581 start++;
582 bytes--;
583 }
584 return NULL;
585 }
586
587 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
588 void *from, void *to)
589 {
590 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
591 memset(from, data, to - from);
592 }
593
594 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
595 u8 *object, char *what,
596 u8 *start, unsigned int value, unsigned int bytes)
597 {
598 u8 *fault;
599 u8 *end;
600
601 fault = check_bytes(start, value, bytes);
602 if (!fault)
603 return 1;
604
605 end = start + bytes;
606 while (end > fault && end[-1] == value)
607 end--;
608
609 slab_bug(s, "%s overwritten", what);
610 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
611 fault, end - 1, fault[0], value);
612 print_trailer(s, page, object);
613
614 restore_bytes(s, what, value, fault, end);
615 return 0;
616 }
617
618 /*
619 * Object layout:
620 *
621 * object address
622 * Bytes of the object to be managed.
623 * If the freepointer may overlay the object then the free
624 * pointer is the first word of the object.
625 *
626 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
627 * 0xa5 (POISON_END)
628 *
629 * object + s->objsize
630 * Padding to reach word boundary. This is also used for Redzoning.
631 * Padding is extended by another word if Redzoning is enabled and
632 * objsize == inuse.
633 *
634 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
635 * 0xcc (RED_ACTIVE) for objects in use.
636 *
637 * object + s->inuse
638 * Meta data starts here.
639 *
640 * A. Free pointer (if we cannot overwrite object on free)
641 * B. Tracking data for SLAB_STORE_USER
642 * C. Padding to reach required alignment boundary or at mininum
643 * one word if debugging is on to be able to detect writes
644 * before the word boundary.
645 *
646 * Padding is done using 0x5a (POISON_INUSE)
647 *
648 * object + s->size
649 * Nothing is used beyond s->size.
650 *
651 * If slabcaches are merged then the objsize and inuse boundaries are mostly
652 * ignored. And therefore no slab options that rely on these boundaries
653 * may be used with merged slabcaches.
654 */
655
656 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
657 {
658 unsigned long off = s->inuse; /* The end of info */
659
660 if (s->offset)
661 /* Freepointer is placed after the object. */
662 off += sizeof(void *);
663
664 if (s->flags & SLAB_STORE_USER)
665 /* We also have user information there */
666 off += 2 * sizeof(struct track);
667
668 if (s->size == off)
669 return 1;
670
671 return check_bytes_and_report(s, page, p, "Object padding",
672 p + off, POISON_INUSE, s->size - off);
673 }
674
675 /* Check the pad bytes at the end of a slab page */
676 static int slab_pad_check(struct kmem_cache *s, struct page *page)
677 {
678 u8 *start;
679 u8 *fault;
680 u8 *end;
681 int length;
682 int remainder;
683
684 if (!(s->flags & SLAB_POISON))
685 return 1;
686
687 start = page_address(page);
688 length = (PAGE_SIZE << compound_order(page));
689 end = start + length;
690 remainder = length % s->size;
691 if (!remainder)
692 return 1;
693
694 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
695 if (!fault)
696 return 1;
697 while (end > fault && end[-1] == POISON_INUSE)
698 end--;
699
700 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
701 print_section("Padding", end - remainder, remainder);
702
703 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
704 return 0;
705 }
706
707 static int check_object(struct kmem_cache *s, struct page *page,
708 void *object, int active)
709 {
710 u8 *p = object;
711 u8 *endobject = object + s->objsize;
712
713 if (s->flags & SLAB_RED_ZONE) {
714 unsigned int red =
715 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
716
717 if (!check_bytes_and_report(s, page, object, "Redzone",
718 endobject, red, s->inuse - s->objsize))
719 return 0;
720 } else {
721 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
722 check_bytes_and_report(s, page, p, "Alignment padding",
723 endobject, POISON_INUSE, s->inuse - s->objsize);
724 }
725 }
726
727 if (s->flags & SLAB_POISON) {
728 if (!active && (s->flags & __OBJECT_POISON) &&
729 (!check_bytes_and_report(s, page, p, "Poison", p,
730 POISON_FREE, s->objsize - 1) ||
731 !check_bytes_and_report(s, page, p, "Poison",
732 p + s->objsize - 1, POISON_END, 1)))
733 return 0;
734 /*
735 * check_pad_bytes cleans up on its own.
736 */
737 check_pad_bytes(s, page, p);
738 }
739
740 if (!s->offset && active)
741 /*
742 * Object and freepointer overlap. Cannot check
743 * freepointer while object is allocated.
744 */
745 return 1;
746
747 /* Check free pointer validity */
748 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
749 object_err(s, page, p, "Freepointer corrupt");
750 /*
751 * No choice but to zap it and thus loose the remainder
752 * of the free objects in this slab. May cause
753 * another error because the object count is now wrong.
754 */
755 set_freepointer(s, p, NULL);
756 return 0;
757 }
758 return 1;
759 }
760
761 static int check_slab(struct kmem_cache *s, struct page *page)
762 {
763 int maxobj;
764
765 VM_BUG_ON(!irqs_disabled());
766
767 if (!PageSlab(page)) {
768 slab_err(s, page, "Not a valid slab page");
769 return 0;
770 }
771
772 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
773 if (page->objects > maxobj) {
774 slab_err(s, page, "objects %u > max %u",
775 s->name, page->objects, maxobj);
776 return 0;
777 }
778 if (page->inuse > page->objects) {
779 slab_err(s, page, "inuse %u > max %u",
780 s->name, page->inuse, page->objects);
781 return 0;
782 }
783 /* Slab_pad_check fixes things up after itself */
784 slab_pad_check(s, page);
785 return 1;
786 }
787
788 /*
789 * Determine if a certain object on a page is on the freelist. Must hold the
790 * slab lock to guarantee that the chains are in a consistent state.
791 */
792 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
793 {
794 int nr = 0;
795 void *fp = page->freelist;
796 void *object = NULL;
797 unsigned long max_objects;
798
799 while (fp && nr <= page->objects) {
800 if (fp == search)
801 return 1;
802 if (!check_valid_pointer(s, page, fp)) {
803 if (object) {
804 object_err(s, page, object,
805 "Freechain corrupt");
806 set_freepointer(s, object, NULL);
807 break;
808 } else {
809 slab_err(s, page, "Freepointer corrupt");
810 page->freelist = NULL;
811 page->inuse = page->objects;
812 slab_fix(s, "Freelist cleared");
813 return 0;
814 }
815 break;
816 }
817 object = fp;
818 fp = get_freepointer(s, object);
819 nr++;
820 }
821
822 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
823 if (max_objects > 65535)
824 max_objects = 65535;
825
826 if (page->objects != max_objects) {
827 slab_err(s, page, "Wrong number of objects. Found %d but "
828 "should be %d", page->objects, max_objects);
829 page->objects = max_objects;
830 slab_fix(s, "Number of objects adjusted.");
831 }
832 if (page->inuse != page->objects - nr) {
833 slab_err(s, page, "Wrong object count. Counter is %d but "
834 "counted were %d", page->inuse, page->objects - nr);
835 page->inuse = page->objects - nr;
836 slab_fix(s, "Object count adjusted.");
837 }
838 return search == NULL;
839 }
840
841 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
842 {
843 if (s->flags & SLAB_TRACE) {
844 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
845 s->name,
846 alloc ? "alloc" : "free",
847 object, page->inuse,
848 page->freelist);
849
850 if (!alloc)
851 print_section("Object", (void *)object, s->objsize);
852
853 dump_stack();
854 }
855 }
856
857 /*
858 * Tracking of fully allocated slabs for debugging purposes.
859 */
860 static void add_full(struct kmem_cache_node *n, struct page *page)
861 {
862 spin_lock(&n->list_lock);
863 list_add(&page->lru, &n->full);
864 spin_unlock(&n->list_lock);
865 }
866
867 static void remove_full(struct kmem_cache *s, struct page *page)
868 {
869 struct kmem_cache_node *n;
870
871 if (!(s->flags & SLAB_STORE_USER))
872 return;
873
874 n = get_node(s, page_to_nid(page));
875
876 spin_lock(&n->list_lock);
877 list_del(&page->lru);
878 spin_unlock(&n->list_lock);
879 }
880
881 /* Tracking of the number of slabs for debugging purposes */
882 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
883 {
884 struct kmem_cache_node *n = get_node(s, node);
885
886 return atomic_long_read(&n->nr_slabs);
887 }
888
889 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
890 {
891 struct kmem_cache_node *n = get_node(s, node);
892
893 /*
894 * May be called early in order to allocate a slab for the
895 * kmem_cache_node structure. Solve the chicken-egg
896 * dilemma by deferring the increment of the count during
897 * bootstrap (see early_kmem_cache_node_alloc).
898 */
899 if (!NUMA_BUILD || n) {
900 atomic_long_inc(&n->nr_slabs);
901 atomic_long_add(objects, &n->total_objects);
902 }
903 }
904 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
905 {
906 struct kmem_cache_node *n = get_node(s, node);
907
908 atomic_long_dec(&n->nr_slabs);
909 atomic_long_sub(objects, &n->total_objects);
910 }
911
912 /* Object debug checks for alloc/free paths */
913 static void setup_object_debug(struct kmem_cache *s, struct page *page,
914 void *object)
915 {
916 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
917 return;
918
919 init_object(s, object, 0);
920 init_tracking(s, object);
921 }
922
923 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
924 void *object, void *addr)
925 {
926 if (!check_slab(s, page))
927 goto bad;
928
929 if (!on_freelist(s, page, object)) {
930 object_err(s, page, object, "Object already allocated");
931 goto bad;
932 }
933
934 if (!check_valid_pointer(s, page, object)) {
935 object_err(s, page, object, "Freelist Pointer check fails");
936 goto bad;
937 }
938
939 if (!check_object(s, page, object, 0))
940 goto bad;
941
942 /* Success perform special debug activities for allocs */
943 if (s->flags & SLAB_STORE_USER)
944 set_track(s, object, TRACK_ALLOC, addr);
945 trace(s, page, object, 1);
946 init_object(s, object, 1);
947 return 1;
948
949 bad:
950 if (PageSlab(page)) {
951 /*
952 * If this is a slab page then lets do the best we can
953 * to avoid issues in the future. Marking all objects
954 * as used avoids touching the remaining objects.
955 */
956 slab_fix(s, "Marking all objects used");
957 page->inuse = page->objects;
958 page->freelist = NULL;
959 }
960 return 0;
961 }
962
963 static int free_debug_processing(struct kmem_cache *s, struct page *page,
964 void *object, void *addr)
965 {
966 if (!check_slab(s, page))
967 goto fail;
968
969 if (!check_valid_pointer(s, page, object)) {
970 slab_err(s, page, "Invalid object pointer 0x%p", object);
971 goto fail;
972 }
973
974 if (on_freelist(s, page, object)) {
975 object_err(s, page, object, "Object already free");
976 goto fail;
977 }
978
979 if (!check_object(s, page, object, 1))
980 return 0;
981
982 if (unlikely(s != page->slab)) {
983 if (!PageSlab(page)) {
984 slab_err(s, page, "Attempt to free object(0x%p) "
985 "outside of slab", object);
986 } else if (!page->slab) {
987 printk(KERN_ERR
988 "SLUB <none>: no slab for object 0x%p.\n",
989 object);
990 dump_stack();
991 } else
992 object_err(s, page, object,
993 "page slab pointer corrupt.");
994 goto fail;
995 }
996
997 /* Special debug activities for freeing objects */
998 if (!SlabFrozen(page) && !page->freelist)
999 remove_full(s, page);
1000 if (s->flags & SLAB_STORE_USER)
1001 set_track(s, object, TRACK_FREE, addr);
1002 trace(s, page, object, 0);
1003 init_object(s, object, 0);
1004 return 1;
1005
1006 fail:
1007 slab_fix(s, "Object at 0x%p not freed", object);
1008 return 0;
1009 }
1010
1011 static int __init setup_slub_debug(char *str)
1012 {
1013 slub_debug = DEBUG_DEFAULT_FLAGS;
1014 if (*str++ != '=' || !*str)
1015 /*
1016 * No options specified. Switch on full debugging.
1017 */
1018 goto out;
1019
1020 if (*str == ',')
1021 /*
1022 * No options but restriction on slabs. This means full
1023 * debugging for slabs matching a pattern.
1024 */
1025 goto check_slabs;
1026
1027 slub_debug = 0;
1028 if (*str == '-')
1029 /*
1030 * Switch off all debugging measures.
1031 */
1032 goto out;
1033
1034 /*
1035 * Determine which debug features should be switched on
1036 */
1037 for (; *str && *str != ','; str++) {
1038 switch (tolower(*str)) {
1039 case 'f':
1040 slub_debug |= SLAB_DEBUG_FREE;
1041 break;
1042 case 'z':
1043 slub_debug |= SLAB_RED_ZONE;
1044 break;
1045 case 'p':
1046 slub_debug |= SLAB_POISON;
1047 break;
1048 case 'u':
1049 slub_debug |= SLAB_STORE_USER;
1050 break;
1051 case 't':
1052 slub_debug |= SLAB_TRACE;
1053 break;
1054 default:
1055 printk(KERN_ERR "slub_debug option '%c' "
1056 "unknown. skipped\n", *str);
1057 }
1058 }
1059
1060 check_slabs:
1061 if (*str == ',')
1062 slub_debug_slabs = str + 1;
1063 out:
1064 return 1;
1065 }
1066
1067 __setup("slub_debug", setup_slub_debug);
1068
1069 static unsigned long kmem_cache_flags(unsigned long objsize,
1070 unsigned long flags, const char *name,
1071 void (*ctor)(struct kmem_cache *, void *))
1072 {
1073 /*
1074 * Enable debugging if selected on the kernel commandline.
1075 */
1076 if (slub_debug && (!slub_debug_slabs ||
1077 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1078 flags |= slub_debug;
1079
1080 return flags;
1081 }
1082 #else
1083 static inline void setup_object_debug(struct kmem_cache *s,
1084 struct page *page, void *object) {}
1085
1086 static inline int alloc_debug_processing(struct kmem_cache *s,
1087 struct page *page, void *object, void *addr) { return 0; }
1088
1089 static inline int free_debug_processing(struct kmem_cache *s,
1090 struct page *page, void *object, void *addr) { return 0; }
1091
1092 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1093 { return 1; }
1094 static inline int check_object(struct kmem_cache *s, struct page *page,
1095 void *object, int active) { return 1; }
1096 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1097 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1098 unsigned long flags, const char *name,
1099 void (*ctor)(struct kmem_cache *, void *))
1100 {
1101 return flags;
1102 }
1103 #define slub_debug 0
1104
1105 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1106 { return 0; }
1107 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1108 int objects) {}
1109 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1110 int objects) {}
1111 #endif
1112
1113 /*
1114 * Slab allocation and freeing
1115 */
1116 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1117 struct kmem_cache_order_objects oo)
1118 {
1119 int order = oo_order(oo);
1120
1121 if (node == -1)
1122 return alloc_pages(flags, order);
1123 else
1124 return alloc_pages_node(node, flags, order);
1125 }
1126
1127 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1128 {
1129 struct page *page;
1130 struct kmem_cache_order_objects oo = s->oo;
1131
1132 flags |= s->allocflags;
1133
1134 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1135 oo);
1136 if (unlikely(!page)) {
1137 oo = s->min;
1138 /*
1139 * Allocation may have failed due to fragmentation.
1140 * Try a lower order alloc if possible
1141 */
1142 page = alloc_slab_page(flags, node, oo);
1143 if (!page)
1144 return NULL;
1145
1146 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1147 }
1148 page->objects = oo_objects(oo);
1149 mod_zone_page_state(page_zone(page),
1150 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1151 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1152 1 << oo_order(oo));
1153
1154 return page;
1155 }
1156
1157 static void setup_object(struct kmem_cache *s, struct page *page,
1158 void *object)
1159 {
1160 setup_object_debug(s, page, object);
1161 if (unlikely(s->ctor))
1162 s->ctor(s, object);
1163 }
1164
1165 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1166 {
1167 struct page *page;
1168 void *start;
1169 void *last;
1170 void *p;
1171
1172 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1173
1174 page = allocate_slab(s,
1175 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1176 if (!page)
1177 goto out;
1178
1179 inc_slabs_node(s, page_to_nid(page), page->objects);
1180 page->slab = s;
1181 page->flags |= 1 << PG_slab;
1182 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1183 SLAB_STORE_USER | SLAB_TRACE))
1184 SetSlabDebug(page);
1185
1186 start = page_address(page);
1187
1188 if (unlikely(s->flags & SLAB_POISON))
1189 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1190
1191 last = start;
1192 for_each_object(p, s, start, page->objects) {
1193 setup_object(s, page, last);
1194 set_freepointer(s, last, p);
1195 last = p;
1196 }
1197 setup_object(s, page, last);
1198 set_freepointer(s, last, NULL);
1199
1200 page->freelist = start;
1201 page->inuse = 0;
1202 out:
1203 return page;
1204 }
1205
1206 static void __free_slab(struct kmem_cache *s, struct page *page)
1207 {
1208 int order = compound_order(page);
1209 int pages = 1 << order;
1210
1211 if (unlikely(SlabDebug(page))) {
1212 void *p;
1213
1214 slab_pad_check(s, page);
1215 for_each_object(p, s, page_address(page),
1216 page->objects)
1217 check_object(s, page, p, 0);
1218 ClearSlabDebug(page);
1219 }
1220
1221 mod_zone_page_state(page_zone(page),
1222 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1223 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1224 -pages);
1225
1226 __ClearPageSlab(page);
1227 reset_page_mapcount(page);
1228 __free_pages(page, order);
1229 }
1230
1231 static void rcu_free_slab(struct rcu_head *h)
1232 {
1233 struct page *page;
1234
1235 page = container_of((struct list_head *)h, struct page, lru);
1236 __free_slab(page->slab, page);
1237 }
1238
1239 static void free_slab(struct kmem_cache *s, struct page *page)
1240 {
1241 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1242 /*
1243 * RCU free overloads the RCU head over the LRU
1244 */
1245 struct rcu_head *head = (void *)&page->lru;
1246
1247 call_rcu(head, rcu_free_slab);
1248 } else
1249 __free_slab(s, page);
1250 }
1251
1252 static void discard_slab(struct kmem_cache *s, struct page *page)
1253 {
1254 dec_slabs_node(s, page_to_nid(page), page->objects);
1255 free_slab(s, page);
1256 }
1257
1258 /*
1259 * Per slab locking using the pagelock
1260 */
1261 static __always_inline void slab_lock(struct page *page)
1262 {
1263 bit_spin_lock(PG_locked, &page->flags);
1264 }
1265
1266 static __always_inline void slab_unlock(struct page *page)
1267 {
1268 __bit_spin_unlock(PG_locked, &page->flags);
1269 }
1270
1271 static __always_inline int slab_trylock(struct page *page)
1272 {
1273 int rc = 1;
1274
1275 rc = bit_spin_trylock(PG_locked, &page->flags);
1276 return rc;
1277 }
1278
1279 /*
1280 * Management of partially allocated slabs
1281 */
1282 static void add_partial(struct kmem_cache_node *n,
1283 struct page *page, int tail)
1284 {
1285 spin_lock(&n->list_lock);
1286 n->nr_partial++;
1287 if (tail)
1288 list_add_tail(&page->lru, &n->partial);
1289 else
1290 list_add(&page->lru, &n->partial);
1291 spin_unlock(&n->list_lock);
1292 }
1293
1294 static void remove_partial(struct kmem_cache *s,
1295 struct page *page)
1296 {
1297 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1298
1299 spin_lock(&n->list_lock);
1300 list_del(&page->lru);
1301 n->nr_partial--;
1302 spin_unlock(&n->list_lock);
1303 }
1304
1305 /*
1306 * Lock slab and remove from the partial list.
1307 *
1308 * Must hold list_lock.
1309 */
1310 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1311 {
1312 if (slab_trylock(page)) {
1313 list_del(&page->lru);
1314 n->nr_partial--;
1315 SetSlabFrozen(page);
1316 return 1;
1317 }
1318 return 0;
1319 }
1320
1321 /*
1322 * Try to allocate a partial slab from a specific node.
1323 */
1324 static struct page *get_partial_node(struct kmem_cache_node *n)
1325 {
1326 struct page *page;
1327
1328 /*
1329 * Racy check. If we mistakenly see no partial slabs then we
1330 * just allocate an empty slab. If we mistakenly try to get a
1331 * partial slab and there is none available then get_partials()
1332 * will return NULL.
1333 */
1334 if (!n || !n->nr_partial)
1335 return NULL;
1336
1337 spin_lock(&n->list_lock);
1338 list_for_each_entry(page, &n->partial, lru)
1339 if (lock_and_freeze_slab(n, page))
1340 goto out;
1341 page = NULL;
1342 out:
1343 spin_unlock(&n->list_lock);
1344 return page;
1345 }
1346
1347 /*
1348 * Get a page from somewhere. Search in increasing NUMA distances.
1349 */
1350 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1351 {
1352 #ifdef CONFIG_NUMA
1353 struct zonelist *zonelist;
1354 struct zone **z;
1355 struct page *page;
1356
1357 /*
1358 * The defrag ratio allows a configuration of the tradeoffs between
1359 * inter node defragmentation and node local allocations. A lower
1360 * defrag_ratio increases the tendency to do local allocations
1361 * instead of attempting to obtain partial slabs from other nodes.
1362 *
1363 * If the defrag_ratio is set to 0 then kmalloc() always
1364 * returns node local objects. If the ratio is higher then kmalloc()
1365 * may return off node objects because partial slabs are obtained
1366 * from other nodes and filled up.
1367 *
1368 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1369 * defrag_ratio = 1000) then every (well almost) allocation will
1370 * first attempt to defrag slab caches on other nodes. This means
1371 * scanning over all nodes to look for partial slabs which may be
1372 * expensive if we do it every time we are trying to find a slab
1373 * with available objects.
1374 */
1375 if (!s->remote_node_defrag_ratio ||
1376 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1377 return NULL;
1378
1379 zonelist = &NODE_DATA(
1380 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1381 for (z = zonelist->zones; *z; z++) {
1382 struct kmem_cache_node *n;
1383
1384 n = get_node(s, zone_to_nid(*z));
1385
1386 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1387 n->nr_partial > MIN_PARTIAL) {
1388 page = get_partial_node(n);
1389 if (page)
1390 return page;
1391 }
1392 }
1393 #endif
1394 return NULL;
1395 }
1396
1397 /*
1398 * Get a partial page, lock it and return it.
1399 */
1400 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1401 {
1402 struct page *page;
1403 int searchnode = (node == -1) ? numa_node_id() : node;
1404
1405 page = get_partial_node(get_node(s, searchnode));
1406 if (page || (flags & __GFP_THISNODE))
1407 return page;
1408
1409 return get_any_partial(s, flags);
1410 }
1411
1412 /*
1413 * Move a page back to the lists.
1414 *
1415 * Must be called with the slab lock held.
1416 *
1417 * On exit the slab lock will have been dropped.
1418 */
1419 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1420 {
1421 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1422 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1423
1424 ClearSlabFrozen(page);
1425 if (page->inuse) {
1426
1427 if (page->freelist) {
1428 add_partial(n, page, tail);
1429 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1430 } else {
1431 stat(c, DEACTIVATE_FULL);
1432 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1433 add_full(n, page);
1434 }
1435 slab_unlock(page);
1436 } else {
1437 stat(c, DEACTIVATE_EMPTY);
1438 if (n->nr_partial < MIN_PARTIAL) {
1439 /*
1440 * Adding an empty slab to the partial slabs in order
1441 * to avoid page allocator overhead. This slab needs
1442 * to come after the other slabs with objects in
1443 * so that the others get filled first. That way the
1444 * size of the partial list stays small.
1445 *
1446 * kmem_cache_shrink can reclaim any empty slabs from the
1447 * partial list.
1448 */
1449 add_partial(n, page, 1);
1450 slab_unlock(page);
1451 } else {
1452 slab_unlock(page);
1453 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1454 discard_slab(s, page);
1455 }
1456 }
1457 }
1458
1459 /*
1460 * Remove the cpu slab
1461 */
1462 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1463 {
1464 struct page *page = c->page;
1465 int tail = 1;
1466
1467 if (page->freelist)
1468 stat(c, DEACTIVATE_REMOTE_FREES);
1469 /*
1470 * Merge cpu freelist into slab freelist. Typically we get here
1471 * because both freelists are empty. So this is unlikely
1472 * to occur.
1473 */
1474 while (unlikely(c->freelist)) {
1475 void **object;
1476
1477 tail = 0; /* Hot objects. Put the slab first */
1478
1479 /* Retrieve object from cpu_freelist */
1480 object = c->freelist;
1481 c->freelist = c->freelist[c->offset];
1482
1483 /* And put onto the regular freelist */
1484 object[c->offset] = page->freelist;
1485 page->freelist = object;
1486 page->inuse--;
1487 }
1488 c->page = NULL;
1489 unfreeze_slab(s, page, tail);
1490 }
1491
1492 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1493 {
1494 stat(c, CPUSLAB_FLUSH);
1495 slab_lock(c->page);
1496 deactivate_slab(s, c);
1497 }
1498
1499 /*
1500 * Flush cpu slab.
1501 *
1502 * Called from IPI handler with interrupts disabled.
1503 */
1504 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1505 {
1506 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1507
1508 if (likely(c && c->page))
1509 flush_slab(s, c);
1510 }
1511
1512 static void flush_cpu_slab(void *d)
1513 {
1514 struct kmem_cache *s = d;
1515
1516 __flush_cpu_slab(s, smp_processor_id());
1517 }
1518
1519 static void flush_all(struct kmem_cache *s)
1520 {
1521 #ifdef CONFIG_SMP
1522 on_each_cpu(flush_cpu_slab, s, 1, 1);
1523 #else
1524 unsigned long flags;
1525
1526 local_irq_save(flags);
1527 flush_cpu_slab(s);
1528 local_irq_restore(flags);
1529 #endif
1530 }
1531
1532 /*
1533 * Check if the objects in a per cpu structure fit numa
1534 * locality expectations.
1535 */
1536 static inline int node_match(struct kmem_cache_cpu *c, int node)
1537 {
1538 #ifdef CONFIG_NUMA
1539 if (node != -1 && c->node != node)
1540 return 0;
1541 #endif
1542 return 1;
1543 }
1544
1545 /*
1546 * Slow path. The lockless freelist is empty or we need to perform
1547 * debugging duties.
1548 *
1549 * Interrupts are disabled.
1550 *
1551 * Processing is still very fast if new objects have been freed to the
1552 * regular freelist. In that case we simply take over the regular freelist
1553 * as the lockless freelist and zap the regular freelist.
1554 *
1555 * If that is not working then we fall back to the partial lists. We take the
1556 * first element of the freelist as the object to allocate now and move the
1557 * rest of the freelist to the lockless freelist.
1558 *
1559 * And if we were unable to get a new slab from the partial slab lists then
1560 * we need to allocate a new slab. This is the slowest path since it involves
1561 * a call to the page allocator and the setup of a new slab.
1562 */
1563 static void *__slab_alloc(struct kmem_cache *s,
1564 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1565 {
1566 void **object;
1567 struct page *new;
1568
1569 /* We handle __GFP_ZERO in the caller */
1570 gfpflags &= ~__GFP_ZERO;
1571
1572 if (!c->page)
1573 goto new_slab;
1574
1575 slab_lock(c->page);
1576 if (unlikely(!node_match(c, node)))
1577 goto another_slab;
1578
1579 stat(c, ALLOC_REFILL);
1580
1581 load_freelist:
1582 object = c->page->freelist;
1583 if (unlikely(!object))
1584 goto another_slab;
1585 if (unlikely(SlabDebug(c->page)))
1586 goto debug;
1587
1588 c->freelist = object[c->offset];
1589 c->page->inuse = c->page->objects;
1590 c->page->freelist = NULL;
1591 c->node = page_to_nid(c->page);
1592 unlock_out:
1593 slab_unlock(c->page);
1594 stat(c, ALLOC_SLOWPATH);
1595 return object;
1596
1597 another_slab:
1598 deactivate_slab(s, c);
1599
1600 new_slab:
1601 new = get_partial(s, gfpflags, node);
1602 if (new) {
1603 c->page = new;
1604 stat(c, ALLOC_FROM_PARTIAL);
1605 goto load_freelist;
1606 }
1607
1608 if (gfpflags & __GFP_WAIT)
1609 local_irq_enable();
1610
1611 new = new_slab(s, gfpflags, node);
1612
1613 if (gfpflags & __GFP_WAIT)
1614 local_irq_disable();
1615
1616 if (new) {
1617 c = get_cpu_slab(s, smp_processor_id());
1618 stat(c, ALLOC_SLAB);
1619 if (c->page)
1620 flush_slab(s, c);
1621 slab_lock(new);
1622 SetSlabFrozen(new);
1623 c->page = new;
1624 goto load_freelist;
1625 }
1626
1627 /*
1628 * No memory available.
1629 *
1630 * If the slab uses higher order allocs but the object is
1631 * smaller than a page size then we can fallback in emergencies
1632 * to the page allocator via kmalloc_large. The page allocator may
1633 * have failed to obtain a higher order page and we can try to
1634 * allocate a single page if the object fits into a single page.
1635 * That is only possible if certain conditions are met that are being
1636 * checked when a slab is created.
1637 */
1638 if (!(gfpflags & __GFP_NORETRY) &&
1639 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1640 if (gfpflags & __GFP_WAIT)
1641 local_irq_enable();
1642 object = kmalloc_large(s->objsize, gfpflags);
1643 if (gfpflags & __GFP_WAIT)
1644 local_irq_disable();
1645 return object;
1646 }
1647 return NULL;
1648 debug:
1649 if (!alloc_debug_processing(s, c->page, object, addr))
1650 goto another_slab;
1651
1652 c->page->inuse++;
1653 c->page->freelist = object[c->offset];
1654 c->node = -1;
1655 goto unlock_out;
1656 }
1657
1658 /*
1659 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1660 * have the fastpath folded into their functions. So no function call
1661 * overhead for requests that can be satisfied on the fastpath.
1662 *
1663 * The fastpath works by first checking if the lockless freelist can be used.
1664 * If not then __slab_alloc is called for slow processing.
1665 *
1666 * Otherwise we can simply pick the next object from the lockless free list.
1667 */
1668 static __always_inline void *slab_alloc(struct kmem_cache *s,
1669 gfp_t gfpflags, int node, void *addr)
1670 {
1671 void **object;
1672 struct kmem_cache_cpu *c;
1673 unsigned long flags;
1674
1675 local_irq_save(flags);
1676 c = get_cpu_slab(s, smp_processor_id());
1677 if (unlikely(!c->freelist || !node_match(c, node)))
1678
1679 object = __slab_alloc(s, gfpflags, node, addr, c);
1680
1681 else {
1682 object = c->freelist;
1683 c->freelist = object[c->offset];
1684 stat(c, ALLOC_FASTPATH);
1685 }
1686 local_irq_restore(flags);
1687
1688 if (unlikely((gfpflags & __GFP_ZERO) && object))
1689 memset(object, 0, c->objsize);
1690
1691 return object;
1692 }
1693
1694 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1695 {
1696 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1697 }
1698 EXPORT_SYMBOL(kmem_cache_alloc);
1699
1700 #ifdef CONFIG_NUMA
1701 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1702 {
1703 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1704 }
1705 EXPORT_SYMBOL(kmem_cache_alloc_node);
1706 #endif
1707
1708 /*
1709 * Slow patch handling. This may still be called frequently since objects
1710 * have a longer lifetime than the cpu slabs in most processing loads.
1711 *
1712 * So we still attempt to reduce cache line usage. Just take the slab
1713 * lock and free the item. If there is no additional partial page
1714 * handling required then we can return immediately.
1715 */
1716 static void __slab_free(struct kmem_cache *s, struct page *page,
1717 void *x, void *addr, unsigned int offset)
1718 {
1719 void *prior;
1720 void **object = (void *)x;
1721 struct kmem_cache_cpu *c;
1722
1723 c = get_cpu_slab(s, raw_smp_processor_id());
1724 stat(c, FREE_SLOWPATH);
1725 slab_lock(page);
1726
1727 if (unlikely(SlabDebug(page)))
1728 goto debug;
1729
1730 checks_ok:
1731 prior = object[offset] = page->freelist;
1732 page->freelist = object;
1733 page->inuse--;
1734
1735 if (unlikely(SlabFrozen(page))) {
1736 stat(c, FREE_FROZEN);
1737 goto out_unlock;
1738 }
1739
1740 if (unlikely(!page->inuse))
1741 goto slab_empty;
1742
1743 /*
1744 * Objects left in the slab. If it was not on the partial list before
1745 * then add it.
1746 */
1747 if (unlikely(!prior)) {
1748 add_partial(get_node(s, page_to_nid(page)), page, 1);
1749 stat(c, FREE_ADD_PARTIAL);
1750 }
1751
1752 out_unlock:
1753 slab_unlock(page);
1754 return;
1755
1756 slab_empty:
1757 if (prior) {
1758 /*
1759 * Slab still on the partial list.
1760 */
1761 remove_partial(s, page);
1762 stat(c, FREE_REMOVE_PARTIAL);
1763 }
1764 slab_unlock(page);
1765 stat(c, FREE_SLAB);
1766 discard_slab(s, page);
1767 return;
1768
1769 debug:
1770 if (!free_debug_processing(s, page, x, addr))
1771 goto out_unlock;
1772 goto checks_ok;
1773 }
1774
1775 /*
1776 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1777 * can perform fastpath freeing without additional function calls.
1778 *
1779 * The fastpath is only possible if we are freeing to the current cpu slab
1780 * of this processor. This typically the case if we have just allocated
1781 * the item before.
1782 *
1783 * If fastpath is not possible then fall back to __slab_free where we deal
1784 * with all sorts of special processing.
1785 */
1786 static __always_inline void slab_free(struct kmem_cache *s,
1787 struct page *page, void *x, void *addr)
1788 {
1789 void **object = (void *)x;
1790 struct kmem_cache_cpu *c;
1791 unsigned long flags;
1792
1793 local_irq_save(flags);
1794 c = get_cpu_slab(s, smp_processor_id());
1795 debug_check_no_locks_freed(object, c->objsize);
1796 if (likely(page == c->page && c->node >= 0)) {
1797 object[c->offset] = c->freelist;
1798 c->freelist = object;
1799 stat(c, FREE_FASTPATH);
1800 } else
1801 __slab_free(s, page, x, addr, c->offset);
1802
1803 local_irq_restore(flags);
1804 }
1805
1806 void kmem_cache_free(struct kmem_cache *s, void *x)
1807 {
1808 struct page *page;
1809
1810 page = virt_to_head_page(x);
1811
1812 slab_free(s, page, x, __builtin_return_address(0));
1813 }
1814 EXPORT_SYMBOL(kmem_cache_free);
1815
1816 /* Figure out on which slab object the object resides */
1817 static struct page *get_object_page(const void *x)
1818 {
1819 struct page *page = virt_to_head_page(x);
1820
1821 if (!PageSlab(page))
1822 return NULL;
1823
1824 return page;
1825 }
1826
1827 /*
1828 * Object placement in a slab is made very easy because we always start at
1829 * offset 0. If we tune the size of the object to the alignment then we can
1830 * get the required alignment by putting one properly sized object after
1831 * another.
1832 *
1833 * Notice that the allocation order determines the sizes of the per cpu
1834 * caches. Each processor has always one slab available for allocations.
1835 * Increasing the allocation order reduces the number of times that slabs
1836 * must be moved on and off the partial lists and is therefore a factor in
1837 * locking overhead.
1838 */
1839
1840 /*
1841 * Mininum / Maximum order of slab pages. This influences locking overhead
1842 * and slab fragmentation. A higher order reduces the number of partial slabs
1843 * and increases the number of allocations possible without having to
1844 * take the list_lock.
1845 */
1846 static int slub_min_order;
1847 static int slub_max_order = DEFAULT_MAX_ORDER;
1848 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1849
1850 /*
1851 * Merge control. If this is set then no merging of slab caches will occur.
1852 * (Could be removed. This was introduced to pacify the merge skeptics.)
1853 */
1854 static int slub_nomerge;
1855
1856 /*
1857 * Calculate the order of allocation given an slab object size.
1858 *
1859 * The order of allocation has significant impact on performance and other
1860 * system components. Generally order 0 allocations should be preferred since
1861 * order 0 does not cause fragmentation in the page allocator. Larger objects
1862 * be problematic to put into order 0 slabs because there may be too much
1863 * unused space left. We go to a higher order if more than 1/8th of the slab
1864 * would be wasted.
1865 *
1866 * In order to reach satisfactory performance we must ensure that a minimum
1867 * number of objects is in one slab. Otherwise we may generate too much
1868 * activity on the partial lists which requires taking the list_lock. This is
1869 * less a concern for large slabs though which are rarely used.
1870 *
1871 * slub_max_order specifies the order where we begin to stop considering the
1872 * number of objects in a slab as critical. If we reach slub_max_order then
1873 * we try to keep the page order as low as possible. So we accept more waste
1874 * of space in favor of a small page order.
1875 *
1876 * Higher order allocations also allow the placement of more objects in a
1877 * slab and thereby reduce object handling overhead. If the user has
1878 * requested a higher mininum order then we start with that one instead of
1879 * the smallest order which will fit the object.
1880 */
1881 static inline int slab_order(int size, int min_objects,
1882 int max_order, int fract_leftover)
1883 {
1884 int order;
1885 int rem;
1886 int min_order = slub_min_order;
1887
1888 if ((PAGE_SIZE << min_order) / size > 65535)
1889 return get_order(size * 65535) - 1;
1890
1891 for (order = max(min_order,
1892 fls(min_objects * size - 1) - PAGE_SHIFT);
1893 order <= max_order; order++) {
1894
1895 unsigned long slab_size = PAGE_SIZE << order;
1896
1897 if (slab_size < min_objects * size)
1898 continue;
1899
1900 rem = slab_size % size;
1901
1902 if (rem <= slab_size / fract_leftover)
1903 break;
1904
1905 }
1906
1907 return order;
1908 }
1909
1910 static inline int calculate_order(int size)
1911 {
1912 int order;
1913 int min_objects;
1914 int fraction;
1915
1916 /*
1917 * Attempt to find best configuration for a slab. This
1918 * works by first attempting to generate a layout with
1919 * the best configuration and backing off gradually.
1920 *
1921 * First we reduce the acceptable waste in a slab. Then
1922 * we reduce the minimum objects required in a slab.
1923 */
1924 min_objects = slub_min_objects;
1925 while (min_objects > 1) {
1926 fraction = 8;
1927 while (fraction >= 4) {
1928 order = slab_order(size, min_objects,
1929 slub_max_order, fraction);
1930 if (order <= slub_max_order)
1931 return order;
1932 fraction /= 2;
1933 }
1934 min_objects /= 2;
1935 }
1936
1937 /*
1938 * We were unable to place multiple objects in a slab. Now
1939 * lets see if we can place a single object there.
1940 */
1941 order = slab_order(size, 1, slub_max_order, 1);
1942 if (order <= slub_max_order)
1943 return order;
1944
1945 /*
1946 * Doh this slab cannot be placed using slub_max_order.
1947 */
1948 order = slab_order(size, 1, MAX_ORDER, 1);
1949 if (order <= MAX_ORDER)
1950 return order;
1951 return -ENOSYS;
1952 }
1953
1954 /*
1955 * Figure out what the alignment of the objects will be.
1956 */
1957 static unsigned long calculate_alignment(unsigned long flags,
1958 unsigned long align, unsigned long size)
1959 {
1960 /*
1961 * If the user wants hardware cache aligned objects then follow that
1962 * suggestion if the object is sufficiently large.
1963 *
1964 * The hardware cache alignment cannot override the specified
1965 * alignment though. If that is greater then use it.
1966 */
1967 if (flags & SLAB_HWCACHE_ALIGN) {
1968 unsigned long ralign = cache_line_size();
1969 while (size <= ralign / 2)
1970 ralign /= 2;
1971 align = max(align, ralign);
1972 }
1973
1974 if (align < ARCH_SLAB_MINALIGN)
1975 align = ARCH_SLAB_MINALIGN;
1976
1977 return ALIGN(align, sizeof(void *));
1978 }
1979
1980 static void init_kmem_cache_cpu(struct kmem_cache *s,
1981 struct kmem_cache_cpu *c)
1982 {
1983 c->page = NULL;
1984 c->freelist = NULL;
1985 c->node = 0;
1986 c->offset = s->offset / sizeof(void *);
1987 c->objsize = s->objsize;
1988 #ifdef CONFIG_SLUB_STATS
1989 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1990 #endif
1991 }
1992
1993 static void init_kmem_cache_node(struct kmem_cache_node *n)
1994 {
1995 n->nr_partial = 0;
1996 spin_lock_init(&n->list_lock);
1997 INIT_LIST_HEAD(&n->partial);
1998 #ifdef CONFIG_SLUB_DEBUG
1999 atomic_long_set(&n->nr_slabs, 0);
2000 INIT_LIST_HEAD(&n->full);
2001 #endif
2002 }
2003
2004 #ifdef CONFIG_SMP
2005 /*
2006 * Per cpu array for per cpu structures.
2007 *
2008 * The per cpu array places all kmem_cache_cpu structures from one processor
2009 * close together meaning that it becomes possible that multiple per cpu
2010 * structures are contained in one cacheline. This may be particularly
2011 * beneficial for the kmalloc caches.
2012 *
2013 * A desktop system typically has around 60-80 slabs. With 100 here we are
2014 * likely able to get per cpu structures for all caches from the array defined
2015 * here. We must be able to cover all kmalloc caches during bootstrap.
2016 *
2017 * If the per cpu array is exhausted then fall back to kmalloc
2018 * of individual cachelines. No sharing is possible then.
2019 */
2020 #define NR_KMEM_CACHE_CPU 100
2021
2022 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2023 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2024
2025 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2026 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2027
2028 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2029 int cpu, gfp_t flags)
2030 {
2031 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2032
2033 if (c)
2034 per_cpu(kmem_cache_cpu_free, cpu) =
2035 (void *)c->freelist;
2036 else {
2037 /* Table overflow: So allocate ourselves */
2038 c = kmalloc_node(
2039 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2040 flags, cpu_to_node(cpu));
2041 if (!c)
2042 return NULL;
2043 }
2044
2045 init_kmem_cache_cpu(s, c);
2046 return c;
2047 }
2048
2049 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2050 {
2051 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2052 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2053 kfree(c);
2054 return;
2055 }
2056 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2057 per_cpu(kmem_cache_cpu_free, cpu) = c;
2058 }
2059
2060 static void free_kmem_cache_cpus(struct kmem_cache *s)
2061 {
2062 int cpu;
2063
2064 for_each_online_cpu(cpu) {
2065 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2066
2067 if (c) {
2068 s->cpu_slab[cpu] = NULL;
2069 free_kmem_cache_cpu(c, cpu);
2070 }
2071 }
2072 }
2073
2074 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2075 {
2076 int cpu;
2077
2078 for_each_online_cpu(cpu) {
2079 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2080
2081 if (c)
2082 continue;
2083
2084 c = alloc_kmem_cache_cpu(s, cpu, flags);
2085 if (!c) {
2086 free_kmem_cache_cpus(s);
2087 return 0;
2088 }
2089 s->cpu_slab[cpu] = c;
2090 }
2091 return 1;
2092 }
2093
2094 /*
2095 * Initialize the per cpu array.
2096 */
2097 static void init_alloc_cpu_cpu(int cpu)
2098 {
2099 int i;
2100
2101 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2102 return;
2103
2104 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2105 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2106
2107 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2108 }
2109
2110 static void __init init_alloc_cpu(void)
2111 {
2112 int cpu;
2113
2114 for_each_online_cpu(cpu)
2115 init_alloc_cpu_cpu(cpu);
2116 }
2117
2118 #else
2119 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2120 static inline void init_alloc_cpu(void) {}
2121
2122 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2123 {
2124 init_kmem_cache_cpu(s, &s->cpu_slab);
2125 return 1;
2126 }
2127 #endif
2128
2129 #ifdef CONFIG_NUMA
2130 /*
2131 * No kmalloc_node yet so do it by hand. We know that this is the first
2132 * slab on the node for this slabcache. There are no concurrent accesses
2133 * possible.
2134 *
2135 * Note that this function only works on the kmalloc_node_cache
2136 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2137 * memory on a fresh node that has no slab structures yet.
2138 */
2139 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2140 int node)
2141 {
2142 struct page *page;
2143 struct kmem_cache_node *n;
2144 unsigned long flags;
2145
2146 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2147
2148 page = new_slab(kmalloc_caches, gfpflags, node);
2149
2150 BUG_ON(!page);
2151 if (page_to_nid(page) != node) {
2152 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2153 "node %d\n", node);
2154 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2155 "in order to be able to continue\n");
2156 }
2157
2158 n = page->freelist;
2159 BUG_ON(!n);
2160 page->freelist = get_freepointer(kmalloc_caches, n);
2161 page->inuse++;
2162 kmalloc_caches->node[node] = n;
2163 #ifdef CONFIG_SLUB_DEBUG
2164 init_object(kmalloc_caches, n, 1);
2165 init_tracking(kmalloc_caches, n);
2166 #endif
2167 init_kmem_cache_node(n);
2168 inc_slabs_node(kmalloc_caches, node, page->objects);
2169
2170 /*
2171 * lockdep requires consistent irq usage for each lock
2172 * so even though there cannot be a race this early in
2173 * the boot sequence, we still disable irqs.
2174 */
2175 local_irq_save(flags);
2176 add_partial(n, page, 0);
2177 local_irq_restore(flags);
2178 return n;
2179 }
2180
2181 static void free_kmem_cache_nodes(struct kmem_cache *s)
2182 {
2183 int node;
2184
2185 for_each_node_state(node, N_NORMAL_MEMORY) {
2186 struct kmem_cache_node *n = s->node[node];
2187 if (n && n != &s->local_node)
2188 kmem_cache_free(kmalloc_caches, n);
2189 s->node[node] = NULL;
2190 }
2191 }
2192
2193 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2194 {
2195 int node;
2196 int local_node;
2197
2198 if (slab_state >= UP)
2199 local_node = page_to_nid(virt_to_page(s));
2200 else
2201 local_node = 0;
2202
2203 for_each_node_state(node, N_NORMAL_MEMORY) {
2204 struct kmem_cache_node *n;
2205
2206 if (local_node == node)
2207 n = &s->local_node;
2208 else {
2209 if (slab_state == DOWN) {
2210 n = early_kmem_cache_node_alloc(gfpflags,
2211 node);
2212 continue;
2213 }
2214 n = kmem_cache_alloc_node(kmalloc_caches,
2215 gfpflags, node);
2216
2217 if (!n) {
2218 free_kmem_cache_nodes(s);
2219 return 0;
2220 }
2221
2222 }
2223 s->node[node] = n;
2224 init_kmem_cache_node(n);
2225 }
2226 return 1;
2227 }
2228 #else
2229 static void free_kmem_cache_nodes(struct kmem_cache *s)
2230 {
2231 }
2232
2233 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2234 {
2235 init_kmem_cache_node(&s->local_node);
2236 return 1;
2237 }
2238 #endif
2239
2240 /*
2241 * calculate_sizes() determines the order and the distribution of data within
2242 * a slab object.
2243 */
2244 static int calculate_sizes(struct kmem_cache *s)
2245 {
2246 unsigned long flags = s->flags;
2247 unsigned long size = s->objsize;
2248 unsigned long align = s->align;
2249 int order;
2250
2251 /*
2252 * Round up object size to the next word boundary. We can only
2253 * place the free pointer at word boundaries and this determines
2254 * the possible location of the free pointer.
2255 */
2256 size = ALIGN(size, sizeof(void *));
2257
2258 #ifdef CONFIG_SLUB_DEBUG
2259 /*
2260 * Determine if we can poison the object itself. If the user of
2261 * the slab may touch the object after free or before allocation
2262 * then we should never poison the object itself.
2263 */
2264 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2265 !s->ctor)
2266 s->flags |= __OBJECT_POISON;
2267 else
2268 s->flags &= ~__OBJECT_POISON;
2269
2270
2271 /*
2272 * If we are Redzoning then check if there is some space between the
2273 * end of the object and the free pointer. If not then add an
2274 * additional word to have some bytes to store Redzone information.
2275 */
2276 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2277 size += sizeof(void *);
2278 #endif
2279
2280 /*
2281 * With that we have determined the number of bytes in actual use
2282 * by the object. This is the potential offset to the free pointer.
2283 */
2284 s->inuse = size;
2285
2286 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2287 s->ctor)) {
2288 /*
2289 * Relocate free pointer after the object if it is not
2290 * permitted to overwrite the first word of the object on
2291 * kmem_cache_free.
2292 *
2293 * This is the case if we do RCU, have a constructor or
2294 * destructor or are poisoning the objects.
2295 */
2296 s->offset = size;
2297 size += sizeof(void *);
2298 }
2299
2300 #ifdef CONFIG_SLUB_DEBUG
2301 if (flags & SLAB_STORE_USER)
2302 /*
2303 * Need to store information about allocs and frees after
2304 * the object.
2305 */
2306 size += 2 * sizeof(struct track);
2307
2308 if (flags & SLAB_RED_ZONE)
2309 /*
2310 * Add some empty padding so that we can catch
2311 * overwrites from earlier objects rather than let
2312 * tracking information or the free pointer be
2313 * corrupted if an user writes before the start
2314 * of the object.
2315 */
2316 size += sizeof(void *);
2317 #endif
2318
2319 /*
2320 * Determine the alignment based on various parameters that the
2321 * user specified and the dynamic determination of cache line size
2322 * on bootup.
2323 */
2324 align = calculate_alignment(flags, align, s->objsize);
2325
2326 /*
2327 * SLUB stores one object immediately after another beginning from
2328 * offset 0. In order to align the objects we have to simply size
2329 * each object to conform to the alignment.
2330 */
2331 size = ALIGN(size, align);
2332 s->size = size;
2333
2334 if ((flags & __KMALLOC_CACHE) &&
2335 PAGE_SIZE / size < slub_min_objects) {
2336 /*
2337 * Kmalloc cache that would not have enough objects in
2338 * an order 0 page. Kmalloc slabs can fallback to
2339 * page allocator order 0 allocs so take a reasonably large
2340 * order that will allows us a good number of objects.
2341 */
2342 order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2343 s->flags |= __PAGE_ALLOC_FALLBACK;
2344 s->allocflags |= __GFP_NOWARN;
2345 } else
2346 order = calculate_order(size);
2347
2348 if (order < 0)
2349 return 0;
2350
2351 s->allocflags = 0;
2352 if (order)
2353 s->allocflags |= __GFP_COMP;
2354
2355 if (s->flags & SLAB_CACHE_DMA)
2356 s->allocflags |= SLUB_DMA;
2357
2358 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2359 s->allocflags |= __GFP_RECLAIMABLE;
2360
2361 /*
2362 * Determine the number of objects per slab
2363 */
2364 s->oo = oo_make(order, size);
2365 s->min = oo_make(get_order(size), size);
2366 if (oo_objects(s->oo) > oo_objects(s->max))
2367 s->max = s->oo;
2368
2369 return !!oo_objects(s->oo);
2370
2371 }
2372
2373 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2374 const char *name, size_t size,
2375 size_t align, unsigned long flags,
2376 void (*ctor)(struct kmem_cache *, void *))
2377 {
2378 memset(s, 0, kmem_size);
2379 s->name = name;
2380 s->ctor = ctor;
2381 s->objsize = size;
2382 s->align = align;
2383 s->flags = kmem_cache_flags(size, flags, name, ctor);
2384
2385 if (!calculate_sizes(s))
2386 goto error;
2387
2388 s->refcount = 1;
2389 #ifdef CONFIG_NUMA
2390 s->remote_node_defrag_ratio = 100;
2391 #endif
2392 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2393 goto error;
2394
2395 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2396 return 1;
2397 free_kmem_cache_nodes(s);
2398 error:
2399 if (flags & SLAB_PANIC)
2400 panic("Cannot create slab %s size=%lu realsize=%u "
2401 "order=%u offset=%u flags=%lx\n",
2402 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2403 s->offset, flags);
2404 return 0;
2405 }
2406
2407 /*
2408 * Check if a given pointer is valid
2409 */
2410 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2411 {
2412 struct page *page;
2413
2414 page = get_object_page(object);
2415
2416 if (!page || s != page->slab)
2417 /* No slab or wrong slab */
2418 return 0;
2419
2420 if (!check_valid_pointer(s, page, object))
2421 return 0;
2422
2423 /*
2424 * We could also check if the object is on the slabs freelist.
2425 * But this would be too expensive and it seems that the main
2426 * purpose of kmem_ptr_valid() is to check if the object belongs
2427 * to a certain slab.
2428 */
2429 return 1;
2430 }
2431 EXPORT_SYMBOL(kmem_ptr_validate);
2432
2433 /*
2434 * Determine the size of a slab object
2435 */
2436 unsigned int kmem_cache_size(struct kmem_cache *s)
2437 {
2438 return s->objsize;
2439 }
2440 EXPORT_SYMBOL(kmem_cache_size);
2441
2442 const char *kmem_cache_name(struct kmem_cache *s)
2443 {
2444 return s->name;
2445 }
2446 EXPORT_SYMBOL(kmem_cache_name);
2447
2448 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2449 const char *text)
2450 {
2451 #ifdef CONFIG_SLUB_DEBUG
2452 void *addr = page_address(page);
2453 void *p;
2454 DECLARE_BITMAP(map, page->objects);
2455
2456 bitmap_zero(map, page->objects);
2457 slab_err(s, page, "%s", text);
2458 slab_lock(page);
2459 for_each_free_object(p, s, page->freelist)
2460 set_bit(slab_index(p, s, addr), map);
2461
2462 for_each_object(p, s, addr, page->objects) {
2463
2464 if (!test_bit(slab_index(p, s, addr), map)) {
2465 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2466 p, p - addr);
2467 print_tracking(s, p);
2468 }
2469 }
2470 slab_unlock(page);
2471 #endif
2472 }
2473
2474 /*
2475 * Attempt to free all partial slabs on a node.
2476 */
2477 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2478 {
2479 unsigned long flags;
2480 struct page *page, *h;
2481
2482 spin_lock_irqsave(&n->list_lock, flags);
2483 list_for_each_entry_safe(page, h, &n->partial, lru) {
2484 if (!page->inuse) {
2485 list_del(&page->lru);
2486 discard_slab(s, page);
2487 n->nr_partial--;
2488 } else {
2489 list_slab_objects(s, page,
2490 "Objects remaining on kmem_cache_close()");
2491 }
2492 }
2493 spin_unlock_irqrestore(&n->list_lock, flags);
2494 }
2495
2496 /*
2497 * Release all resources used by a slab cache.
2498 */
2499 static inline int kmem_cache_close(struct kmem_cache *s)
2500 {
2501 int node;
2502
2503 flush_all(s);
2504
2505 /* Attempt to free all objects */
2506 free_kmem_cache_cpus(s);
2507 for_each_node_state(node, N_NORMAL_MEMORY) {
2508 struct kmem_cache_node *n = get_node(s, node);
2509
2510 free_partial(s, n);
2511 if (n->nr_partial || slabs_node(s, node))
2512 return 1;
2513 }
2514 free_kmem_cache_nodes(s);
2515 return 0;
2516 }
2517
2518 /*
2519 * Close a cache and release the kmem_cache structure
2520 * (must be used for caches created using kmem_cache_create)
2521 */
2522 void kmem_cache_destroy(struct kmem_cache *s)
2523 {
2524 down_write(&slub_lock);
2525 s->refcount--;
2526 if (!s->refcount) {
2527 list_del(&s->list);
2528 up_write(&slub_lock);
2529 if (kmem_cache_close(s)) {
2530 printk(KERN_ERR "SLUB %s: %s called for cache that "
2531 "still has objects.\n", s->name, __func__);
2532 dump_stack();
2533 }
2534 sysfs_slab_remove(s);
2535 } else
2536 up_write(&slub_lock);
2537 }
2538 EXPORT_SYMBOL(kmem_cache_destroy);
2539
2540 /********************************************************************
2541 * Kmalloc subsystem
2542 *******************************************************************/
2543
2544 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2545 EXPORT_SYMBOL(kmalloc_caches);
2546
2547 static int __init setup_slub_min_order(char *str)
2548 {
2549 get_option(&str, &slub_min_order);
2550
2551 return 1;
2552 }
2553
2554 __setup("slub_min_order=", setup_slub_min_order);
2555
2556 static int __init setup_slub_max_order(char *str)
2557 {
2558 get_option(&str, &slub_max_order);
2559
2560 return 1;
2561 }
2562
2563 __setup("slub_max_order=", setup_slub_max_order);
2564
2565 static int __init setup_slub_min_objects(char *str)
2566 {
2567 get_option(&str, &slub_min_objects);
2568
2569 return 1;
2570 }
2571
2572 __setup("slub_min_objects=", setup_slub_min_objects);
2573
2574 static int __init setup_slub_nomerge(char *str)
2575 {
2576 slub_nomerge = 1;
2577 return 1;
2578 }
2579
2580 __setup("slub_nomerge", setup_slub_nomerge);
2581
2582 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2583 const char *name, int size, gfp_t gfp_flags)
2584 {
2585 unsigned int flags = 0;
2586
2587 if (gfp_flags & SLUB_DMA)
2588 flags = SLAB_CACHE_DMA;
2589
2590 down_write(&slub_lock);
2591 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2592 flags | __KMALLOC_CACHE, NULL))
2593 goto panic;
2594
2595 list_add(&s->list, &slab_caches);
2596 up_write(&slub_lock);
2597 if (sysfs_slab_add(s))
2598 goto panic;
2599 return s;
2600
2601 panic:
2602 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2603 }
2604
2605 #ifdef CONFIG_ZONE_DMA
2606 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2607
2608 static void sysfs_add_func(struct work_struct *w)
2609 {
2610 struct kmem_cache *s;
2611
2612 down_write(&slub_lock);
2613 list_for_each_entry(s, &slab_caches, list) {
2614 if (s->flags & __SYSFS_ADD_DEFERRED) {
2615 s->flags &= ~__SYSFS_ADD_DEFERRED;
2616 sysfs_slab_add(s);
2617 }
2618 }
2619 up_write(&slub_lock);
2620 }
2621
2622 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2623
2624 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2625 {
2626 struct kmem_cache *s;
2627 char *text;
2628 size_t realsize;
2629
2630 s = kmalloc_caches_dma[index];
2631 if (s)
2632 return s;
2633
2634 /* Dynamically create dma cache */
2635 if (flags & __GFP_WAIT)
2636 down_write(&slub_lock);
2637 else {
2638 if (!down_write_trylock(&slub_lock))
2639 goto out;
2640 }
2641
2642 if (kmalloc_caches_dma[index])
2643 goto unlock_out;
2644
2645 realsize = kmalloc_caches[index].objsize;
2646 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2647 (unsigned int)realsize);
2648 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2649
2650 if (!s || !text || !kmem_cache_open(s, flags, text,
2651 realsize, ARCH_KMALLOC_MINALIGN,
2652 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2653 kfree(s);
2654 kfree(text);
2655 goto unlock_out;
2656 }
2657
2658 list_add(&s->list, &slab_caches);
2659 kmalloc_caches_dma[index] = s;
2660
2661 schedule_work(&sysfs_add_work);
2662
2663 unlock_out:
2664 up_write(&slub_lock);
2665 out:
2666 return kmalloc_caches_dma[index];
2667 }
2668 #endif
2669
2670 /*
2671 * Conversion table for small slabs sizes / 8 to the index in the
2672 * kmalloc array. This is necessary for slabs < 192 since we have non power
2673 * of two cache sizes there. The size of larger slabs can be determined using
2674 * fls.
2675 */
2676 static s8 size_index[24] = {
2677 3, /* 8 */
2678 4, /* 16 */
2679 5, /* 24 */
2680 5, /* 32 */
2681 6, /* 40 */
2682 6, /* 48 */
2683 6, /* 56 */
2684 6, /* 64 */
2685 1, /* 72 */
2686 1, /* 80 */
2687 1, /* 88 */
2688 1, /* 96 */
2689 7, /* 104 */
2690 7, /* 112 */
2691 7, /* 120 */
2692 7, /* 128 */
2693 2, /* 136 */
2694 2, /* 144 */
2695 2, /* 152 */
2696 2, /* 160 */
2697 2, /* 168 */
2698 2, /* 176 */
2699 2, /* 184 */
2700 2 /* 192 */
2701 };
2702
2703 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2704 {
2705 int index;
2706
2707 if (size <= 192) {
2708 if (!size)
2709 return ZERO_SIZE_PTR;
2710
2711 index = size_index[(size - 1) / 8];
2712 } else
2713 index = fls(size - 1);
2714
2715 #ifdef CONFIG_ZONE_DMA
2716 if (unlikely((flags & SLUB_DMA)))
2717 return dma_kmalloc_cache(index, flags);
2718
2719 #endif
2720 return &kmalloc_caches[index];
2721 }
2722
2723 void *__kmalloc(size_t size, gfp_t flags)
2724 {
2725 struct kmem_cache *s;
2726
2727 if (unlikely(size > PAGE_SIZE))
2728 return kmalloc_large(size, flags);
2729
2730 s = get_slab(size, flags);
2731
2732 if (unlikely(ZERO_OR_NULL_PTR(s)))
2733 return s;
2734
2735 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2736 }
2737 EXPORT_SYMBOL(__kmalloc);
2738
2739 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2740 {
2741 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2742 get_order(size));
2743
2744 if (page)
2745 return page_address(page);
2746 else
2747 return NULL;
2748 }
2749
2750 #ifdef CONFIG_NUMA
2751 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2752 {
2753 struct kmem_cache *s;
2754
2755 if (unlikely(size > PAGE_SIZE))
2756 return kmalloc_large_node(size, flags, node);
2757
2758 s = get_slab(size, flags);
2759
2760 if (unlikely(ZERO_OR_NULL_PTR(s)))
2761 return s;
2762
2763 return slab_alloc(s, flags, node, __builtin_return_address(0));
2764 }
2765 EXPORT_SYMBOL(__kmalloc_node);
2766 #endif
2767
2768 size_t ksize(const void *object)
2769 {
2770 struct page *page;
2771 struct kmem_cache *s;
2772
2773 if (unlikely(object == ZERO_SIZE_PTR))
2774 return 0;
2775
2776 page = virt_to_head_page(object);
2777
2778 if (unlikely(!PageSlab(page)))
2779 return PAGE_SIZE << compound_order(page);
2780
2781 s = page->slab;
2782
2783 #ifdef CONFIG_SLUB_DEBUG
2784 /*
2785 * Debugging requires use of the padding between object
2786 * and whatever may come after it.
2787 */
2788 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2789 return s->objsize;
2790
2791 #endif
2792 /*
2793 * If we have the need to store the freelist pointer
2794 * back there or track user information then we can
2795 * only use the space before that information.
2796 */
2797 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2798 return s->inuse;
2799 /*
2800 * Else we can use all the padding etc for the allocation
2801 */
2802 return s->size;
2803 }
2804 EXPORT_SYMBOL(ksize);
2805
2806 void kfree(const void *x)
2807 {
2808 struct page *page;
2809 void *object = (void *)x;
2810
2811 if (unlikely(ZERO_OR_NULL_PTR(x)))
2812 return;
2813
2814 page = virt_to_head_page(x);
2815 if (unlikely(!PageSlab(page))) {
2816 put_page(page);
2817 return;
2818 }
2819 slab_free(page->slab, page, object, __builtin_return_address(0));
2820 }
2821 EXPORT_SYMBOL(kfree);
2822
2823 /*
2824 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2825 * the remaining slabs by the number of items in use. The slabs with the
2826 * most items in use come first. New allocations will then fill those up
2827 * and thus they can be removed from the partial lists.
2828 *
2829 * The slabs with the least items are placed last. This results in them
2830 * being allocated from last increasing the chance that the last objects
2831 * are freed in them.
2832 */
2833 int kmem_cache_shrink(struct kmem_cache *s)
2834 {
2835 int node;
2836 int i;
2837 struct kmem_cache_node *n;
2838 struct page *page;
2839 struct page *t;
2840 int objects = oo_objects(s->max);
2841 struct list_head *slabs_by_inuse =
2842 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2843 unsigned long flags;
2844
2845 if (!slabs_by_inuse)
2846 return -ENOMEM;
2847
2848 flush_all(s);
2849 for_each_node_state(node, N_NORMAL_MEMORY) {
2850 n = get_node(s, node);
2851
2852 if (!n->nr_partial)
2853 continue;
2854
2855 for (i = 0; i < objects; i++)
2856 INIT_LIST_HEAD(slabs_by_inuse + i);
2857
2858 spin_lock_irqsave(&n->list_lock, flags);
2859
2860 /*
2861 * Build lists indexed by the items in use in each slab.
2862 *
2863 * Note that concurrent frees may occur while we hold the
2864 * list_lock. page->inuse here is the upper limit.
2865 */
2866 list_for_each_entry_safe(page, t, &n->partial, lru) {
2867 if (!page->inuse && slab_trylock(page)) {
2868 /*
2869 * Must hold slab lock here because slab_free
2870 * may have freed the last object and be
2871 * waiting to release the slab.
2872 */
2873 list_del(&page->lru);
2874 n->nr_partial--;
2875 slab_unlock(page);
2876 discard_slab(s, page);
2877 } else {
2878 list_move(&page->lru,
2879 slabs_by_inuse + page->inuse);
2880 }
2881 }
2882
2883 /*
2884 * Rebuild the partial list with the slabs filled up most
2885 * first and the least used slabs at the end.
2886 */
2887 for (i = objects - 1; i >= 0; i--)
2888 list_splice(slabs_by_inuse + i, n->partial.prev);
2889
2890 spin_unlock_irqrestore(&n->list_lock, flags);
2891 }
2892
2893 kfree(slabs_by_inuse);
2894 return 0;
2895 }
2896 EXPORT_SYMBOL(kmem_cache_shrink);
2897
2898 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2899 static int slab_mem_going_offline_callback(void *arg)
2900 {
2901 struct kmem_cache *s;
2902
2903 down_read(&slub_lock);
2904 list_for_each_entry(s, &slab_caches, list)
2905 kmem_cache_shrink(s);
2906 up_read(&slub_lock);
2907
2908 return 0;
2909 }
2910
2911 static void slab_mem_offline_callback(void *arg)
2912 {
2913 struct kmem_cache_node *n;
2914 struct kmem_cache *s;
2915 struct memory_notify *marg = arg;
2916 int offline_node;
2917
2918 offline_node = marg->status_change_nid;
2919
2920 /*
2921 * If the node still has available memory. we need kmem_cache_node
2922 * for it yet.
2923 */
2924 if (offline_node < 0)
2925 return;
2926
2927 down_read(&slub_lock);
2928 list_for_each_entry(s, &slab_caches, list) {
2929 n = get_node(s, offline_node);
2930 if (n) {
2931 /*
2932 * if n->nr_slabs > 0, slabs still exist on the node
2933 * that is going down. We were unable to free them,
2934 * and offline_pages() function shoudn't call this
2935 * callback. So, we must fail.
2936 */
2937 BUG_ON(slabs_node(s, offline_node));
2938
2939 s->node[offline_node] = NULL;
2940 kmem_cache_free(kmalloc_caches, n);
2941 }
2942 }
2943 up_read(&slub_lock);
2944 }
2945
2946 static int slab_mem_going_online_callback(void *arg)
2947 {
2948 struct kmem_cache_node *n;
2949 struct kmem_cache *s;
2950 struct memory_notify *marg = arg;
2951 int nid = marg->status_change_nid;
2952 int ret = 0;
2953
2954 /*
2955 * If the node's memory is already available, then kmem_cache_node is
2956 * already created. Nothing to do.
2957 */
2958 if (nid < 0)
2959 return 0;
2960
2961 /*
2962 * We are bringing a node online. No memory is availabe yet. We must
2963 * allocate a kmem_cache_node structure in order to bring the node
2964 * online.
2965 */
2966 down_read(&slub_lock);
2967 list_for_each_entry(s, &slab_caches, list) {
2968 /*
2969 * XXX: kmem_cache_alloc_node will fallback to other nodes
2970 * since memory is not yet available from the node that
2971 * is brought up.
2972 */
2973 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2974 if (!n) {
2975 ret = -ENOMEM;
2976 goto out;
2977 }
2978 init_kmem_cache_node(n);
2979 s->node[nid] = n;
2980 }
2981 out:
2982 up_read(&slub_lock);
2983 return ret;
2984 }
2985
2986 static int slab_memory_callback(struct notifier_block *self,
2987 unsigned long action, void *arg)
2988 {
2989 int ret = 0;
2990
2991 switch (action) {
2992 case MEM_GOING_ONLINE:
2993 ret = slab_mem_going_online_callback(arg);
2994 break;
2995 case MEM_GOING_OFFLINE:
2996 ret = slab_mem_going_offline_callback(arg);
2997 break;
2998 case MEM_OFFLINE:
2999 case MEM_CANCEL_ONLINE:
3000 slab_mem_offline_callback(arg);
3001 break;
3002 case MEM_ONLINE:
3003 case MEM_CANCEL_OFFLINE:
3004 break;
3005 }
3006
3007 ret = notifier_from_errno(ret);
3008 return ret;
3009 }
3010
3011 #endif /* CONFIG_MEMORY_HOTPLUG */
3012
3013 /********************************************************************
3014 * Basic setup of slabs
3015 *******************************************************************/
3016
3017 void __init kmem_cache_init(void)
3018 {
3019 int i;
3020 int caches = 0;
3021
3022 init_alloc_cpu();
3023
3024 #ifdef CONFIG_NUMA
3025 /*
3026 * Must first have the slab cache available for the allocations of the
3027 * struct kmem_cache_node's. There is special bootstrap code in
3028 * kmem_cache_open for slab_state == DOWN.
3029 */
3030 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3031 sizeof(struct kmem_cache_node), GFP_KERNEL);
3032 kmalloc_caches[0].refcount = -1;
3033 caches++;
3034
3035 hotplug_memory_notifier(slab_memory_callback, 1);
3036 #endif
3037
3038 /* Able to allocate the per node structures */
3039 slab_state = PARTIAL;
3040
3041 /* Caches that are not of the two-to-the-power-of size */
3042 if (KMALLOC_MIN_SIZE <= 64) {
3043 create_kmalloc_cache(&kmalloc_caches[1],
3044 "kmalloc-96", 96, GFP_KERNEL);
3045 caches++;
3046 }
3047 if (KMALLOC_MIN_SIZE <= 128) {
3048 create_kmalloc_cache(&kmalloc_caches[2],
3049 "kmalloc-192", 192, GFP_KERNEL);
3050 caches++;
3051 }
3052
3053 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3054 create_kmalloc_cache(&kmalloc_caches[i],
3055 "kmalloc", 1 << i, GFP_KERNEL);
3056 caches++;
3057 }
3058
3059
3060 /*
3061 * Patch up the size_index table if we have strange large alignment
3062 * requirements for the kmalloc array. This is only the case for
3063 * MIPS it seems. The standard arches will not generate any code here.
3064 *
3065 * Largest permitted alignment is 256 bytes due to the way we
3066 * handle the index determination for the smaller caches.
3067 *
3068 * Make sure that nothing crazy happens if someone starts tinkering
3069 * around with ARCH_KMALLOC_MINALIGN
3070 */
3071 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3072 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3073
3074 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3075 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3076
3077 slab_state = UP;
3078
3079 /* Provide the correct kmalloc names now that the caches are up */
3080 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3081 kmalloc_caches[i]. name =
3082 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3083
3084 #ifdef CONFIG_SMP
3085 register_cpu_notifier(&slab_notifier);
3086 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3087 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3088 #else
3089 kmem_size = sizeof(struct kmem_cache);
3090 #endif
3091
3092 printk(KERN_INFO
3093 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3094 " CPUs=%d, Nodes=%d\n",
3095 caches, cache_line_size(),
3096 slub_min_order, slub_max_order, slub_min_objects,
3097 nr_cpu_ids, nr_node_ids);
3098 }
3099
3100 /*
3101 * Find a mergeable slab cache
3102 */
3103 static int slab_unmergeable(struct kmem_cache *s)
3104 {
3105 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3106 return 1;
3107
3108 if ((s->flags & __PAGE_ALLOC_FALLBACK))
3109 return 1;
3110
3111 if (s->ctor)
3112 return 1;
3113
3114 /*
3115 * We may have set a slab to be unmergeable during bootstrap.
3116 */
3117 if (s->refcount < 0)
3118 return 1;
3119
3120 return 0;
3121 }
3122
3123 static struct kmem_cache *find_mergeable(size_t size,
3124 size_t align, unsigned long flags, const char *name,
3125 void (*ctor)(struct kmem_cache *, void *))
3126 {
3127 struct kmem_cache *s;
3128
3129 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3130 return NULL;
3131
3132 if (ctor)
3133 return NULL;
3134
3135 size = ALIGN(size, sizeof(void *));
3136 align = calculate_alignment(flags, align, size);
3137 size = ALIGN(size, align);
3138 flags = kmem_cache_flags(size, flags, name, NULL);
3139
3140 list_for_each_entry(s, &slab_caches, list) {
3141 if (slab_unmergeable(s))
3142 continue;
3143
3144 if (size > s->size)
3145 continue;
3146
3147 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3148 continue;
3149 /*
3150 * Check if alignment is compatible.
3151 * Courtesy of Adrian Drzewiecki
3152 */
3153 if ((s->size & ~(align - 1)) != s->size)
3154 continue;
3155
3156 if (s->size - size >= sizeof(void *))
3157 continue;
3158
3159 return s;
3160 }
3161 return NULL;
3162 }
3163
3164 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3165 size_t align, unsigned long flags,
3166 void (*ctor)(struct kmem_cache *, void *))
3167 {
3168 struct kmem_cache *s;
3169
3170 down_write(&slub_lock);
3171 s = find_mergeable(size, align, flags, name, ctor);
3172 if (s) {
3173 int cpu;
3174
3175 s->refcount++;
3176 /*
3177 * Adjust the object sizes so that we clear
3178 * the complete object on kzalloc.
3179 */
3180 s->objsize = max(s->objsize, (int)size);
3181
3182 /*
3183 * And then we need to update the object size in the
3184 * per cpu structures
3185 */
3186 for_each_online_cpu(cpu)
3187 get_cpu_slab(s, cpu)->objsize = s->objsize;
3188
3189 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3190 up_write(&slub_lock);
3191
3192 if (sysfs_slab_alias(s, name))
3193 goto err;
3194 return s;
3195 }
3196
3197 s = kmalloc(kmem_size, GFP_KERNEL);
3198 if (s) {
3199 if (kmem_cache_open(s, GFP_KERNEL, name,
3200 size, align, flags, ctor)) {
3201 list_add(&s->list, &slab_caches);
3202 up_write(&slub_lock);
3203 if (sysfs_slab_add(s))
3204 goto err;
3205 return s;
3206 }
3207 kfree(s);
3208 }
3209 up_write(&slub_lock);
3210
3211 err:
3212 if (flags & SLAB_PANIC)
3213 panic("Cannot create slabcache %s\n", name);
3214 else
3215 s = NULL;
3216 return s;
3217 }
3218 EXPORT_SYMBOL(kmem_cache_create);
3219
3220 #ifdef CONFIG_SMP
3221 /*
3222 * Use the cpu notifier to insure that the cpu slabs are flushed when
3223 * necessary.
3224 */
3225 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3226 unsigned long action, void *hcpu)
3227 {
3228 long cpu = (long)hcpu;
3229 struct kmem_cache *s;
3230 unsigned long flags;
3231
3232 switch (action) {
3233 case CPU_UP_PREPARE:
3234 case CPU_UP_PREPARE_FROZEN:
3235 init_alloc_cpu_cpu(cpu);
3236 down_read(&slub_lock);
3237 list_for_each_entry(s, &slab_caches, list)
3238 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3239 GFP_KERNEL);
3240 up_read(&slub_lock);
3241 break;
3242
3243 case CPU_UP_CANCELED:
3244 case CPU_UP_CANCELED_FROZEN:
3245 case CPU_DEAD:
3246 case CPU_DEAD_FROZEN:
3247 down_read(&slub_lock);
3248 list_for_each_entry(s, &slab_caches, list) {
3249 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3250
3251 local_irq_save(flags);
3252 __flush_cpu_slab(s, cpu);
3253 local_irq_restore(flags);
3254 free_kmem_cache_cpu(c, cpu);
3255 s->cpu_slab[cpu] = NULL;
3256 }
3257 up_read(&slub_lock);
3258 break;
3259 default:
3260 break;
3261 }
3262 return NOTIFY_OK;
3263 }
3264
3265 static struct notifier_block __cpuinitdata slab_notifier = {
3266 .notifier_call = slab_cpuup_callback
3267 };
3268
3269 #endif
3270
3271 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3272 {
3273 struct kmem_cache *s;
3274
3275 if (unlikely(size > PAGE_SIZE))
3276 return kmalloc_large(size, gfpflags);
3277
3278 s = get_slab(size, gfpflags);
3279
3280 if (unlikely(ZERO_OR_NULL_PTR(s)))
3281 return s;
3282
3283 return slab_alloc(s, gfpflags, -1, caller);
3284 }
3285
3286 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3287 int node, void *caller)
3288 {
3289 struct kmem_cache *s;
3290
3291 if (unlikely(size > PAGE_SIZE))
3292 return kmalloc_large_node(size, gfpflags, node);
3293
3294 s = get_slab(size, gfpflags);
3295
3296 if (unlikely(ZERO_OR_NULL_PTR(s)))
3297 return s;
3298
3299 return slab_alloc(s, gfpflags, node, caller);
3300 }
3301
3302 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3303 static unsigned long count_partial(struct kmem_cache_node *n,
3304 int (*get_count)(struct page *))
3305 {
3306 unsigned long flags;
3307 unsigned long x = 0;
3308 struct page *page;
3309
3310 spin_lock_irqsave(&n->list_lock, flags);
3311 list_for_each_entry(page, &n->partial, lru)
3312 x += get_count(page);
3313 spin_unlock_irqrestore(&n->list_lock, flags);
3314 return x;
3315 }
3316
3317 static int count_inuse(struct page *page)
3318 {
3319 return page->inuse;
3320 }
3321
3322 static int count_total(struct page *page)
3323 {
3324 return page->objects;
3325 }
3326
3327 static int count_free(struct page *page)
3328 {
3329 return page->objects - page->inuse;
3330 }
3331 #endif
3332
3333 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3334 static int validate_slab(struct kmem_cache *s, struct page *page,
3335 unsigned long *map)
3336 {
3337 void *p;
3338 void *addr = page_address(page);
3339
3340 if (!check_slab(s, page) ||
3341 !on_freelist(s, page, NULL))
3342 return 0;
3343
3344 /* Now we know that a valid freelist exists */
3345 bitmap_zero(map, page->objects);
3346
3347 for_each_free_object(p, s, page->freelist) {
3348 set_bit(slab_index(p, s, addr), map);
3349 if (!check_object(s, page, p, 0))
3350 return 0;
3351 }
3352
3353 for_each_object(p, s, addr, page->objects)
3354 if (!test_bit(slab_index(p, s, addr), map))
3355 if (!check_object(s, page, p, 1))
3356 return 0;
3357 return 1;
3358 }
3359
3360 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3361 unsigned long *map)
3362 {
3363 if (slab_trylock(page)) {
3364 validate_slab(s, page, map);
3365 slab_unlock(page);
3366 } else
3367 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3368 s->name, page);
3369
3370 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3371 if (!SlabDebug(page))
3372 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3373 "on slab 0x%p\n", s->name, page);
3374 } else {
3375 if (SlabDebug(page))
3376 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3377 "slab 0x%p\n", s->name, page);
3378 }
3379 }
3380
3381 static int validate_slab_node(struct kmem_cache *s,
3382 struct kmem_cache_node *n, unsigned long *map)
3383 {
3384 unsigned long count = 0;
3385 struct page *page;
3386 unsigned long flags;
3387
3388 spin_lock_irqsave(&n->list_lock, flags);
3389
3390 list_for_each_entry(page, &n->partial, lru) {
3391 validate_slab_slab(s, page, map);
3392 count++;
3393 }
3394 if (count != n->nr_partial)
3395 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3396 "counter=%ld\n", s->name, count, n->nr_partial);
3397
3398 if (!(s->flags & SLAB_STORE_USER))
3399 goto out;
3400
3401 list_for_each_entry(page, &n->full, lru) {
3402 validate_slab_slab(s, page, map);
3403 count++;
3404 }
3405 if (count != atomic_long_read(&n->nr_slabs))
3406 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3407 "counter=%ld\n", s->name, count,
3408 atomic_long_read(&n->nr_slabs));
3409
3410 out:
3411 spin_unlock_irqrestore(&n->list_lock, flags);
3412 return count;
3413 }
3414
3415 static long validate_slab_cache(struct kmem_cache *s)
3416 {
3417 int node;
3418 unsigned long count = 0;
3419 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3420 sizeof(unsigned long), GFP_KERNEL);
3421
3422 if (!map)
3423 return -ENOMEM;
3424
3425 flush_all(s);
3426 for_each_node_state(node, N_NORMAL_MEMORY) {
3427 struct kmem_cache_node *n = get_node(s, node);
3428
3429 count += validate_slab_node(s, n, map);
3430 }
3431 kfree(map);
3432 return count;
3433 }
3434
3435 #ifdef SLUB_RESILIENCY_TEST
3436 static void resiliency_test(void)
3437 {
3438 u8 *p;
3439
3440 printk(KERN_ERR "SLUB resiliency testing\n");
3441 printk(KERN_ERR "-----------------------\n");
3442 printk(KERN_ERR "A. Corruption after allocation\n");
3443
3444 p = kzalloc(16, GFP_KERNEL);
3445 p[16] = 0x12;
3446 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3447 " 0x12->0x%p\n\n", p + 16);
3448
3449 validate_slab_cache(kmalloc_caches + 4);
3450
3451 /* Hmmm... The next two are dangerous */
3452 p = kzalloc(32, GFP_KERNEL);
3453 p[32 + sizeof(void *)] = 0x34;
3454 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3455 " 0x34 -> -0x%p\n", p);
3456 printk(KERN_ERR
3457 "If allocated object is overwritten then not detectable\n\n");
3458
3459 validate_slab_cache(kmalloc_caches + 5);
3460 p = kzalloc(64, GFP_KERNEL);
3461 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3462 *p = 0x56;
3463 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3464 p);
3465 printk(KERN_ERR
3466 "If allocated object is overwritten then not detectable\n\n");
3467 validate_slab_cache(kmalloc_caches + 6);
3468
3469 printk(KERN_ERR "\nB. Corruption after free\n");
3470 p = kzalloc(128, GFP_KERNEL);
3471 kfree(p);
3472 *p = 0x78;
3473 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3474 validate_slab_cache(kmalloc_caches + 7);
3475
3476 p = kzalloc(256, GFP_KERNEL);
3477 kfree(p);
3478 p[50] = 0x9a;
3479 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3480 p);
3481 validate_slab_cache(kmalloc_caches + 8);
3482
3483 p = kzalloc(512, GFP_KERNEL);
3484 kfree(p);
3485 p[512] = 0xab;
3486 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3487 validate_slab_cache(kmalloc_caches + 9);
3488 }
3489 #else
3490 static void resiliency_test(void) {};
3491 #endif
3492
3493 /*
3494 * Generate lists of code addresses where slabcache objects are allocated
3495 * and freed.
3496 */
3497
3498 struct location {
3499 unsigned long count;
3500 void *addr;
3501 long long sum_time;
3502 long min_time;
3503 long max_time;
3504 long min_pid;
3505 long max_pid;
3506 cpumask_t cpus;
3507 nodemask_t nodes;
3508 };
3509
3510 struct loc_track {
3511 unsigned long max;
3512 unsigned long count;
3513 struct location *loc;
3514 };
3515
3516 static void free_loc_track(struct loc_track *t)
3517 {
3518 if (t->max)
3519 free_pages((unsigned long)t->loc,
3520 get_order(sizeof(struct location) * t->max));
3521 }
3522
3523 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3524 {
3525 struct location *l;
3526 int order;
3527
3528 order = get_order(sizeof(struct location) * max);
3529
3530 l = (void *)__get_free_pages(flags, order);
3531 if (!l)
3532 return 0;
3533
3534 if (t->count) {
3535 memcpy(l, t->loc, sizeof(struct location) * t->count);
3536 free_loc_track(t);
3537 }
3538 t->max = max;
3539 t->loc = l;
3540 return 1;
3541 }
3542
3543 static int add_location(struct loc_track *t, struct kmem_cache *s,
3544 const struct track *track)
3545 {
3546 long start, end, pos;
3547 struct location *l;
3548 void *caddr;
3549 unsigned long age = jiffies - track->when;
3550
3551 start = -1;
3552 end = t->count;
3553
3554 for ( ; ; ) {
3555 pos = start + (end - start + 1) / 2;
3556
3557 /*
3558 * There is nothing at "end". If we end up there
3559 * we need to add something to before end.
3560 */
3561 if (pos == end)
3562 break;
3563
3564 caddr = t->loc[pos].addr;
3565 if (track->addr == caddr) {
3566
3567 l = &t->loc[pos];
3568 l->count++;
3569 if (track->when) {
3570 l->sum_time += age;
3571 if (age < l->min_time)
3572 l->min_time = age;
3573 if (age > l->max_time)
3574 l->max_time = age;
3575
3576 if (track->pid < l->min_pid)
3577 l->min_pid = track->pid;
3578 if (track->pid > l->max_pid)
3579 l->max_pid = track->pid;
3580
3581 cpu_set(track->cpu, l->cpus);
3582 }
3583 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3584 return 1;
3585 }
3586
3587 if (track->addr < caddr)
3588 end = pos;
3589 else
3590 start = pos;
3591 }
3592
3593 /*
3594 * Not found. Insert new tracking element.
3595 */
3596 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3597 return 0;
3598
3599 l = t->loc + pos;
3600 if (pos < t->count)
3601 memmove(l + 1, l,
3602 (t->count - pos) * sizeof(struct location));
3603 t->count++;
3604 l->count = 1;
3605 l->addr = track->addr;
3606 l->sum_time = age;
3607 l->min_time = age;
3608 l->max_time = age;
3609 l->min_pid = track->pid;
3610 l->max_pid = track->pid;
3611 cpus_clear(l->cpus);
3612 cpu_set(track->cpu, l->cpus);
3613 nodes_clear(l->nodes);
3614 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3615 return 1;
3616 }
3617
3618 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3619 struct page *page, enum track_item alloc)
3620 {
3621 void *addr = page_address(page);
3622 DECLARE_BITMAP(map, page->objects);
3623 void *p;
3624
3625 bitmap_zero(map, page->objects);
3626 for_each_free_object(p, s, page->freelist)
3627 set_bit(slab_index(p, s, addr), map);
3628
3629 for_each_object(p, s, addr, page->objects)
3630 if (!test_bit(slab_index(p, s, addr), map))
3631 add_location(t, s, get_track(s, p, alloc));
3632 }
3633
3634 static int list_locations(struct kmem_cache *s, char *buf,
3635 enum track_item alloc)
3636 {
3637 int len = 0;
3638 unsigned long i;
3639 struct loc_track t = { 0, 0, NULL };
3640 int node;
3641
3642 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3643 GFP_TEMPORARY))
3644 return sprintf(buf, "Out of memory\n");
3645
3646 /* Push back cpu slabs */
3647 flush_all(s);
3648
3649 for_each_node_state(node, N_NORMAL_MEMORY) {
3650 struct kmem_cache_node *n = get_node(s, node);
3651 unsigned long flags;
3652 struct page *page;
3653
3654 if (!atomic_long_read(&n->nr_slabs))
3655 continue;
3656
3657 spin_lock_irqsave(&n->list_lock, flags);
3658 list_for_each_entry(page, &n->partial, lru)
3659 process_slab(&t, s, page, alloc);
3660 list_for_each_entry(page, &n->full, lru)
3661 process_slab(&t, s, page, alloc);
3662 spin_unlock_irqrestore(&n->list_lock, flags);
3663 }
3664
3665 for (i = 0; i < t.count; i++) {
3666 struct location *l = &t.loc[i];
3667
3668 if (len > PAGE_SIZE - 100)
3669 break;
3670 len += sprintf(buf + len, "%7ld ", l->count);
3671
3672 if (l->addr)
3673 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3674 else
3675 len += sprintf(buf + len, "<not-available>");
3676
3677 if (l->sum_time != l->min_time) {
3678 unsigned long remainder;
3679
3680 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3681 l->min_time,
3682 div_long_long_rem(l->sum_time, l->count, &remainder),
3683 l->max_time);
3684 } else
3685 len += sprintf(buf + len, " age=%ld",
3686 l->min_time);
3687
3688 if (l->min_pid != l->max_pid)
3689 len += sprintf(buf + len, " pid=%ld-%ld",
3690 l->min_pid, l->max_pid);
3691 else
3692 len += sprintf(buf + len, " pid=%ld",
3693 l->min_pid);
3694
3695 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3696 len < PAGE_SIZE - 60) {
3697 len += sprintf(buf + len, " cpus=");
3698 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3699 l->cpus);
3700 }
3701
3702 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3703 len < PAGE_SIZE - 60) {
3704 len += sprintf(buf + len, " nodes=");
3705 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3706 l->nodes);
3707 }
3708
3709 len += sprintf(buf + len, "\n");
3710 }
3711
3712 free_loc_track(&t);
3713 if (!t.count)
3714 len += sprintf(buf, "No data\n");
3715 return len;
3716 }
3717
3718 enum slab_stat_type {
3719 SL_ALL, /* All slabs */
3720 SL_PARTIAL, /* Only partially allocated slabs */
3721 SL_CPU, /* Only slabs used for cpu caches */
3722 SL_OBJECTS, /* Determine allocated objects not slabs */
3723 SL_TOTAL /* Determine object capacity not slabs */
3724 };
3725
3726 #define SO_ALL (1 << SL_ALL)
3727 #define SO_PARTIAL (1 << SL_PARTIAL)
3728 #define SO_CPU (1 << SL_CPU)
3729 #define SO_OBJECTS (1 << SL_OBJECTS)
3730 #define SO_TOTAL (1 << SL_TOTAL)
3731
3732 static ssize_t show_slab_objects(struct kmem_cache *s,
3733 char *buf, unsigned long flags)
3734 {
3735 unsigned long total = 0;
3736 int node;
3737 int x;
3738 unsigned long *nodes;
3739 unsigned long *per_cpu;
3740
3741 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3742 if (!nodes)
3743 return -ENOMEM;
3744 per_cpu = nodes + nr_node_ids;
3745
3746 if (flags & SO_CPU) {
3747 int cpu;
3748
3749 for_each_possible_cpu(cpu) {
3750 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3751
3752 if (!c || c->node < 0)
3753 continue;
3754
3755 if (c->page) {
3756 if (flags & SO_TOTAL)
3757 x = c->page->objects;
3758 else if (flags & SO_OBJECTS)
3759 x = c->page->inuse;
3760 else
3761 x = 1;
3762
3763 total += x;
3764 nodes[c->node] += x;
3765 }
3766 per_cpu[c->node]++;
3767 }
3768 }
3769
3770 if (flags & SO_ALL) {
3771 for_each_node_state(node, N_NORMAL_MEMORY) {
3772 struct kmem_cache_node *n = get_node(s, node);
3773
3774 if (flags & SO_TOTAL)
3775 x = atomic_long_read(&n->total_objects);
3776 else if (flags & SO_OBJECTS)
3777 x = atomic_long_read(&n->total_objects) -
3778 count_partial(n, count_free);
3779
3780 else
3781 x = atomic_long_read(&n->nr_slabs);
3782 total += x;
3783 nodes[node] += x;
3784 }
3785
3786 } else if (flags & SO_PARTIAL) {
3787 for_each_node_state(node, N_NORMAL_MEMORY) {
3788 struct kmem_cache_node *n = get_node(s, node);
3789
3790 if (flags & SO_TOTAL)
3791 x = count_partial(n, count_total);
3792 else if (flags & SO_OBJECTS)
3793 x = count_partial(n, count_inuse);
3794 else
3795 x = n->nr_partial;
3796 total += x;
3797 nodes[node] += x;
3798 }
3799 }
3800 x = sprintf(buf, "%lu", total);
3801 #ifdef CONFIG_NUMA
3802 for_each_node_state(node, N_NORMAL_MEMORY)
3803 if (nodes[node])
3804 x += sprintf(buf + x, " N%d=%lu",
3805 node, nodes[node]);
3806 #endif
3807 kfree(nodes);
3808 return x + sprintf(buf + x, "\n");
3809 }
3810
3811 static int any_slab_objects(struct kmem_cache *s)
3812 {
3813 int node;
3814 int cpu;
3815
3816 for_each_possible_cpu(cpu) {
3817 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3818
3819 if (c && c->page)
3820 return 1;
3821 }
3822
3823 for_each_online_node(node) {
3824 struct kmem_cache_node *n = get_node(s, node);
3825
3826 if (!n)
3827 continue;
3828
3829 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3830 return 1;
3831 }
3832 return 0;
3833 }
3834
3835 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3836 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3837
3838 struct slab_attribute {
3839 struct attribute attr;
3840 ssize_t (*show)(struct kmem_cache *s, char *buf);
3841 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3842 };
3843
3844 #define SLAB_ATTR_RO(_name) \
3845 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3846
3847 #define SLAB_ATTR(_name) \
3848 static struct slab_attribute _name##_attr = \
3849 __ATTR(_name, 0644, _name##_show, _name##_store)
3850
3851 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3852 {
3853 return sprintf(buf, "%d\n", s->size);
3854 }
3855 SLAB_ATTR_RO(slab_size);
3856
3857 static ssize_t align_show(struct kmem_cache *s, char *buf)
3858 {
3859 return sprintf(buf, "%d\n", s->align);
3860 }
3861 SLAB_ATTR_RO(align);
3862
3863 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3864 {
3865 return sprintf(buf, "%d\n", s->objsize);
3866 }
3867 SLAB_ATTR_RO(object_size);
3868
3869 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3870 {
3871 return sprintf(buf, "%d\n", oo_objects(s->oo));
3872 }
3873 SLAB_ATTR_RO(objs_per_slab);
3874
3875 static ssize_t order_show(struct kmem_cache *s, char *buf)
3876 {
3877 return sprintf(buf, "%d\n", oo_order(s->oo));
3878 }
3879 SLAB_ATTR_RO(order);
3880
3881 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3882 {
3883 if (s->ctor) {
3884 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3885
3886 return n + sprintf(buf + n, "\n");
3887 }
3888 return 0;
3889 }
3890 SLAB_ATTR_RO(ctor);
3891
3892 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3893 {
3894 return sprintf(buf, "%d\n", s->refcount - 1);
3895 }
3896 SLAB_ATTR_RO(aliases);
3897
3898 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3899 {
3900 return show_slab_objects(s, buf, SO_ALL);
3901 }
3902 SLAB_ATTR_RO(slabs);
3903
3904 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3905 {
3906 return show_slab_objects(s, buf, SO_PARTIAL);
3907 }
3908 SLAB_ATTR_RO(partial);
3909
3910 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3911 {
3912 return show_slab_objects(s, buf, SO_CPU);
3913 }
3914 SLAB_ATTR_RO(cpu_slabs);
3915
3916 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3917 {
3918 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3919 }
3920 SLAB_ATTR_RO(objects);
3921
3922 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3923 {
3924 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3925 }
3926 SLAB_ATTR_RO(objects_partial);
3927
3928 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3929 {
3930 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3931 }
3932 SLAB_ATTR_RO(total_objects);
3933
3934 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3935 {
3936 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3937 }
3938
3939 static ssize_t sanity_checks_store(struct kmem_cache *s,
3940 const char *buf, size_t length)
3941 {
3942 s->flags &= ~SLAB_DEBUG_FREE;
3943 if (buf[0] == '1')
3944 s->flags |= SLAB_DEBUG_FREE;
3945 return length;
3946 }
3947 SLAB_ATTR(sanity_checks);
3948
3949 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3950 {
3951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3952 }
3953
3954 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3955 size_t length)
3956 {
3957 s->flags &= ~SLAB_TRACE;
3958 if (buf[0] == '1')
3959 s->flags |= SLAB_TRACE;
3960 return length;
3961 }
3962 SLAB_ATTR(trace);
3963
3964 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3965 {
3966 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3967 }
3968
3969 static ssize_t reclaim_account_store(struct kmem_cache *s,
3970 const char *buf, size_t length)
3971 {
3972 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3973 if (buf[0] == '1')
3974 s->flags |= SLAB_RECLAIM_ACCOUNT;
3975 return length;
3976 }
3977 SLAB_ATTR(reclaim_account);
3978
3979 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3980 {
3981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3982 }
3983 SLAB_ATTR_RO(hwcache_align);
3984
3985 #ifdef CONFIG_ZONE_DMA
3986 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3987 {
3988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3989 }
3990 SLAB_ATTR_RO(cache_dma);
3991 #endif
3992
3993 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3994 {
3995 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3996 }
3997 SLAB_ATTR_RO(destroy_by_rcu);
3998
3999 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4000 {
4001 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4002 }
4003
4004 static ssize_t red_zone_store(struct kmem_cache *s,
4005 const char *buf, size_t length)
4006 {
4007 if (any_slab_objects(s))
4008 return -EBUSY;
4009
4010 s->flags &= ~SLAB_RED_ZONE;
4011 if (buf[0] == '1')
4012 s->flags |= SLAB_RED_ZONE;
4013 calculate_sizes(s);
4014 return length;
4015 }
4016 SLAB_ATTR(red_zone);
4017
4018 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4019 {
4020 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4021 }
4022
4023 static ssize_t poison_store(struct kmem_cache *s,
4024 const char *buf, size_t length)
4025 {
4026 if (any_slab_objects(s))
4027 return -EBUSY;
4028
4029 s->flags &= ~SLAB_POISON;
4030 if (buf[0] == '1')
4031 s->flags |= SLAB_POISON;
4032 calculate_sizes(s);
4033 return length;
4034 }
4035 SLAB_ATTR(poison);
4036
4037 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4038 {
4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4040 }
4041
4042 static ssize_t store_user_store(struct kmem_cache *s,
4043 const char *buf, size_t length)
4044 {
4045 if (any_slab_objects(s))
4046 return -EBUSY;
4047
4048 s->flags &= ~SLAB_STORE_USER;
4049 if (buf[0] == '1')
4050 s->flags |= SLAB_STORE_USER;
4051 calculate_sizes(s);
4052 return length;
4053 }
4054 SLAB_ATTR(store_user);
4055
4056 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4057 {
4058 return 0;
4059 }
4060
4061 static ssize_t validate_store(struct kmem_cache *s,
4062 const char *buf, size_t length)
4063 {
4064 int ret = -EINVAL;
4065
4066 if (buf[0] == '1') {
4067 ret = validate_slab_cache(s);
4068 if (ret >= 0)
4069 ret = length;
4070 }
4071 return ret;
4072 }
4073 SLAB_ATTR(validate);
4074
4075 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4076 {
4077 return 0;
4078 }
4079
4080 static ssize_t shrink_store(struct kmem_cache *s,
4081 const char *buf, size_t length)
4082 {
4083 if (buf[0] == '1') {
4084 int rc = kmem_cache_shrink(s);
4085
4086 if (rc)
4087 return rc;
4088 } else
4089 return -EINVAL;
4090 return length;
4091 }
4092 SLAB_ATTR(shrink);
4093
4094 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4095 {
4096 if (!(s->flags & SLAB_STORE_USER))
4097 return -ENOSYS;
4098 return list_locations(s, buf, TRACK_ALLOC);
4099 }
4100 SLAB_ATTR_RO(alloc_calls);
4101
4102 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4103 {
4104 if (!(s->flags & SLAB_STORE_USER))
4105 return -ENOSYS;
4106 return list_locations(s, buf, TRACK_FREE);
4107 }
4108 SLAB_ATTR_RO(free_calls);
4109
4110 #ifdef CONFIG_NUMA
4111 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4112 {
4113 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4114 }
4115
4116 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4117 const char *buf, size_t length)
4118 {
4119 int n = simple_strtoul(buf, NULL, 10);
4120
4121 if (n < 100)
4122 s->remote_node_defrag_ratio = n * 10;
4123 return length;
4124 }
4125 SLAB_ATTR(remote_node_defrag_ratio);
4126 #endif
4127
4128 #ifdef CONFIG_SLUB_STATS
4129 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4130 {
4131 unsigned long sum = 0;
4132 int cpu;
4133 int len;
4134 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4135
4136 if (!data)
4137 return -ENOMEM;
4138
4139 for_each_online_cpu(cpu) {
4140 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4141
4142 data[cpu] = x;
4143 sum += x;
4144 }
4145
4146 len = sprintf(buf, "%lu", sum);
4147
4148 #ifdef CONFIG_SMP
4149 for_each_online_cpu(cpu) {
4150 if (data[cpu] && len < PAGE_SIZE - 20)
4151 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4152 }
4153 #endif
4154 kfree(data);
4155 return len + sprintf(buf + len, "\n");
4156 }
4157
4158 #define STAT_ATTR(si, text) \
4159 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4160 { \
4161 return show_stat(s, buf, si); \
4162 } \
4163 SLAB_ATTR_RO(text); \
4164
4165 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4166 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4167 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4168 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4169 STAT_ATTR(FREE_FROZEN, free_frozen);
4170 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4171 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4172 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4173 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4174 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4175 STAT_ATTR(FREE_SLAB, free_slab);
4176 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4177 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4178 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4179 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4180 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4181 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4182 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4183 #endif
4184
4185 static struct attribute *slab_attrs[] = {
4186 &slab_size_attr.attr,
4187 &object_size_attr.attr,
4188 &objs_per_slab_attr.attr,
4189 &order_attr.attr,
4190 &objects_attr.attr,
4191 &objects_partial_attr.attr,
4192 &total_objects_attr.attr,
4193 &slabs_attr.attr,
4194 &partial_attr.attr,
4195 &cpu_slabs_attr.attr,
4196 &ctor_attr.attr,
4197 &aliases_attr.attr,
4198 &align_attr.attr,
4199 &sanity_checks_attr.attr,
4200 &trace_attr.attr,
4201 &hwcache_align_attr.attr,
4202 &reclaim_account_attr.attr,
4203 &destroy_by_rcu_attr.attr,
4204 &red_zone_attr.attr,
4205 &poison_attr.attr,
4206 &store_user_attr.attr,
4207 &validate_attr.attr,
4208 &shrink_attr.attr,
4209 &alloc_calls_attr.attr,
4210 &free_calls_attr.attr,
4211 #ifdef CONFIG_ZONE_DMA
4212 &cache_dma_attr.attr,
4213 #endif
4214 #ifdef CONFIG_NUMA
4215 &remote_node_defrag_ratio_attr.attr,
4216 #endif
4217 #ifdef CONFIG_SLUB_STATS
4218 &alloc_fastpath_attr.attr,
4219 &alloc_slowpath_attr.attr,
4220 &free_fastpath_attr.attr,
4221 &free_slowpath_attr.attr,
4222 &free_frozen_attr.attr,
4223 &free_add_partial_attr.attr,
4224 &free_remove_partial_attr.attr,
4225 &alloc_from_partial_attr.attr,
4226 &alloc_slab_attr.attr,
4227 &alloc_refill_attr.attr,
4228 &free_slab_attr.attr,
4229 &cpuslab_flush_attr.attr,
4230 &deactivate_full_attr.attr,
4231 &deactivate_empty_attr.attr,
4232 &deactivate_to_head_attr.attr,
4233 &deactivate_to_tail_attr.attr,
4234 &deactivate_remote_frees_attr.attr,
4235 &order_fallback_attr.attr,
4236 #endif
4237 NULL
4238 };
4239
4240 static struct attribute_group slab_attr_group = {
4241 .attrs = slab_attrs,
4242 };
4243
4244 static ssize_t slab_attr_show(struct kobject *kobj,
4245 struct attribute *attr,
4246 char *buf)
4247 {
4248 struct slab_attribute *attribute;
4249 struct kmem_cache *s;
4250 int err;
4251
4252 attribute = to_slab_attr(attr);
4253 s = to_slab(kobj);
4254
4255 if (!attribute->show)
4256 return -EIO;
4257
4258 err = attribute->show(s, buf);
4259
4260 return err;
4261 }
4262
4263 static ssize_t slab_attr_store(struct kobject *kobj,
4264 struct attribute *attr,
4265 const char *buf, size_t len)
4266 {
4267 struct slab_attribute *attribute;
4268 struct kmem_cache *s;
4269 int err;
4270
4271 attribute = to_slab_attr(attr);
4272 s = to_slab(kobj);
4273
4274 if (!attribute->store)
4275 return -EIO;
4276
4277 err = attribute->store(s, buf, len);
4278
4279 return err;
4280 }
4281
4282 static void kmem_cache_release(struct kobject *kobj)
4283 {
4284 struct kmem_cache *s = to_slab(kobj);
4285
4286 kfree(s);
4287 }
4288
4289 static struct sysfs_ops slab_sysfs_ops = {
4290 .show = slab_attr_show,
4291 .store = slab_attr_store,
4292 };
4293
4294 static struct kobj_type slab_ktype = {
4295 .sysfs_ops = &slab_sysfs_ops,
4296 .release = kmem_cache_release
4297 };
4298
4299 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4300 {
4301 struct kobj_type *ktype = get_ktype(kobj);
4302
4303 if (ktype == &slab_ktype)
4304 return 1;
4305 return 0;
4306 }
4307
4308 static struct kset_uevent_ops slab_uevent_ops = {
4309 .filter = uevent_filter,
4310 };
4311
4312 static struct kset *slab_kset;
4313
4314 #define ID_STR_LENGTH 64
4315
4316 /* Create a unique string id for a slab cache:
4317 *
4318 * Format :[flags-]size
4319 */
4320 static char *create_unique_id(struct kmem_cache *s)
4321 {
4322 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4323 char *p = name;
4324
4325 BUG_ON(!name);
4326
4327 *p++ = ':';
4328 /*
4329 * First flags affecting slabcache operations. We will only
4330 * get here for aliasable slabs so we do not need to support
4331 * too many flags. The flags here must cover all flags that
4332 * are matched during merging to guarantee that the id is
4333 * unique.
4334 */
4335 if (s->flags & SLAB_CACHE_DMA)
4336 *p++ = 'd';
4337 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4338 *p++ = 'a';
4339 if (s->flags & SLAB_DEBUG_FREE)
4340 *p++ = 'F';
4341 if (p != name + 1)
4342 *p++ = '-';
4343 p += sprintf(p, "%07d", s->size);
4344 BUG_ON(p > name + ID_STR_LENGTH - 1);
4345 return name;
4346 }
4347
4348 static int sysfs_slab_add(struct kmem_cache *s)
4349 {
4350 int err;
4351 const char *name;
4352 int unmergeable;
4353
4354 if (slab_state < SYSFS)
4355 /* Defer until later */
4356 return 0;
4357
4358 unmergeable = slab_unmergeable(s);
4359 if (unmergeable) {
4360 /*
4361 * Slabcache can never be merged so we can use the name proper.
4362 * This is typically the case for debug situations. In that
4363 * case we can catch duplicate names easily.
4364 */
4365 sysfs_remove_link(&slab_kset->kobj, s->name);
4366 name = s->name;
4367 } else {
4368 /*
4369 * Create a unique name for the slab as a target
4370 * for the symlinks.
4371 */
4372 name = create_unique_id(s);
4373 }
4374
4375 s->kobj.kset = slab_kset;
4376 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4377 if (err) {
4378 kobject_put(&s->kobj);
4379 return err;
4380 }
4381
4382 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4383 if (err)
4384 return err;
4385 kobject_uevent(&s->kobj, KOBJ_ADD);
4386 if (!unmergeable) {
4387 /* Setup first alias */
4388 sysfs_slab_alias(s, s->name);
4389 kfree(name);
4390 }
4391 return 0;
4392 }
4393
4394 static void sysfs_slab_remove(struct kmem_cache *s)
4395 {
4396 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4397 kobject_del(&s->kobj);
4398 kobject_put(&s->kobj);
4399 }
4400
4401 /*
4402 * Need to buffer aliases during bootup until sysfs becomes
4403 * available lest we loose that information.
4404 */
4405 struct saved_alias {
4406 struct kmem_cache *s;
4407 const char *name;
4408 struct saved_alias *next;
4409 };
4410
4411 static struct saved_alias *alias_list;
4412
4413 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4414 {
4415 struct saved_alias *al;
4416
4417 if (slab_state == SYSFS) {
4418 /*
4419 * If we have a leftover link then remove it.
4420 */
4421 sysfs_remove_link(&slab_kset->kobj, name);
4422 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4423 }
4424
4425 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4426 if (!al)
4427 return -ENOMEM;
4428
4429 al->s = s;
4430 al->name = name;
4431 al->next = alias_list;
4432 alias_list = al;
4433 return 0;
4434 }
4435
4436 static int __init slab_sysfs_init(void)
4437 {
4438 struct kmem_cache *s;
4439 int err;
4440
4441 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4442 if (!slab_kset) {
4443 printk(KERN_ERR "Cannot register slab subsystem.\n");
4444 return -ENOSYS;
4445 }
4446
4447 slab_state = SYSFS;
4448
4449 list_for_each_entry(s, &slab_caches, list) {
4450 err = sysfs_slab_add(s);
4451 if (err)
4452 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4453 " to sysfs\n", s->name);
4454 }
4455
4456 while (alias_list) {
4457 struct saved_alias *al = alias_list;
4458
4459 alias_list = alias_list->next;
4460 err = sysfs_slab_alias(al->s, al->name);
4461 if (err)
4462 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4463 " %s to sysfs\n", s->name);
4464 kfree(al);
4465 }
4466
4467 resiliency_test();
4468 return 0;
4469 }
4470
4471 __initcall(slab_sysfs_init);
4472 #endif
4473
4474 /*
4475 * The /proc/slabinfo ABI
4476 */
4477 #ifdef CONFIG_SLABINFO
4478
4479 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4480 size_t count, loff_t *ppos)
4481 {
4482 return -EINVAL;
4483 }
4484
4485
4486 static void print_slabinfo_header(struct seq_file *m)
4487 {
4488 seq_puts(m, "slabinfo - version: 2.1\n");
4489 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4490 "<objperslab> <pagesperslab>");
4491 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4492 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4493 seq_putc(m, '\n');
4494 }
4495
4496 static void *s_start(struct seq_file *m, loff_t *pos)
4497 {
4498 loff_t n = *pos;
4499
4500 down_read(&slub_lock);
4501 if (!n)
4502 print_slabinfo_header(m);
4503
4504 return seq_list_start(&slab_caches, *pos);
4505 }
4506
4507 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4508 {
4509 return seq_list_next(p, &slab_caches, pos);
4510 }
4511
4512 static void s_stop(struct seq_file *m, void *p)
4513 {
4514 up_read(&slub_lock);
4515 }
4516
4517 static int s_show(struct seq_file *m, void *p)
4518 {
4519 unsigned long nr_partials = 0;
4520 unsigned long nr_slabs = 0;
4521 unsigned long nr_inuse = 0;
4522 unsigned long nr_objs = 0;
4523 unsigned long nr_free = 0;
4524 struct kmem_cache *s;
4525 int node;
4526
4527 s = list_entry(p, struct kmem_cache, list);
4528
4529 for_each_online_node(node) {
4530 struct kmem_cache_node *n = get_node(s, node);
4531
4532 if (!n)
4533 continue;
4534
4535 nr_partials += n->nr_partial;
4536 nr_slabs += atomic_long_read(&n->nr_slabs);
4537 nr_objs += atomic_long_read(&n->total_objects);
4538 nr_free += count_partial(n, count_free);
4539 }
4540
4541 nr_inuse = nr_objs - nr_free;
4542
4543 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4544 nr_objs, s->size, oo_objects(s->oo),
4545 (1 << oo_order(s->oo)));
4546 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4547 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4548 0UL);
4549 seq_putc(m, '\n');
4550 return 0;
4551 }
4552
4553 const struct seq_operations slabinfo_op = {
4554 .start = s_start,
4555 .next = s_next,
4556 .stop = s_stop,
4557 .show = s_show,
4558 };
4559
4560 #endif /* CONFIG_SLABINFO */