]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slub.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
156
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
159
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
162 #endif
163
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
166 #endif
167
168 #define OO_SHIFT 16
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
175
176 static int kmem_size = sizeof(struct kmem_cache);
177
178 #ifdef CONFIG_SMP
179 static struct notifier_block slab_notifier;
180 #endif
181
182 static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
185 UP, /* Everything works but does not show up in sysfs */
186 SYSFS /* Sysfs up */
187 } slab_state = DOWN;
188
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock);
191 static LIST_HEAD(slab_caches);
192
193 /*
194 * Tracking user of a slab.
195 */
196 struct track {
197 unsigned long addr; /* Called from address */
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
201 };
202
203 enum track_item { TRACK_ALLOC, TRACK_FREE };
204
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache *);
207 static int sysfs_slab_alias(struct kmem_cache *, const char *);
208 static void sysfs_slab_remove(struct kmem_cache *);
209
210 #else
211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
214 static inline void sysfs_slab_remove(struct kmem_cache *s)
215 {
216 kfree(s);
217 }
218
219 #endif
220
221 static inline void stat(struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232 int slab_is_available(void)
233 {
234 return slab_state >= UP;
235 }
236
237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 {
239 #ifdef CONFIG_NUMA
240 return s->node[node];
241 #else
242 return &s->local_node;
243 #endif
244 }
245
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249 {
250 void *base;
251
252 if (!object)
253 return 1;
254
255 base = page_address(page);
256 if (object < base || object >= base + page->objects * s->size ||
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262 }
263
264 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 {
266 return *(void **)(object + s->offset);
267 }
268
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 {
271 *(void **)(object + s->offset) = fp;
272 }
273
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 __p += (__s)->size)
278
279 /* Scan freelist */
280 #define for_each_free_object(__p, __s, __free) \
281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 {
286 return (p - addr) / s->size;
287 }
288
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size)
291 {
292 struct kmem_cache_order_objects x = {
293 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
294 };
295
296 return x;
297 }
298
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 return x.x >> OO_SHIFT;
302 }
303
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 return x.x & OO_MASK;
307 }
308
309 #ifdef CONFIG_SLUB_DEBUG
310 /*
311 * Debug settings:
312 */
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 #else
316 static int slub_debug;
317 #endif
318
319 static char *slub_debug_slabs;
320 static int disable_higher_order_debug;
321
322 /*
323 * Object debugging
324 */
325 static void print_section(char *text, u8 *addr, unsigned int length)
326 {
327 int i, offset;
328 int newline = 1;
329 char ascii[17];
330
331 ascii[16] = 0;
332
333 for (i = 0; i < length; i++) {
334 if (newline) {
335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336 newline = 0;
337 }
338 printk(KERN_CONT " %02x", addr[i]);
339 offset = i % 16;
340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341 if (offset == 15) {
342 printk(KERN_CONT " %s\n", ascii);
343 newline = 1;
344 }
345 }
346 if (!newline) {
347 i %= 16;
348 while (i < 16) {
349 printk(KERN_CONT " ");
350 ascii[i] = ' ';
351 i++;
352 }
353 printk(KERN_CONT " %s\n", ascii);
354 }
355 }
356
357 static struct track *get_track(struct kmem_cache *s, void *object,
358 enum track_item alloc)
359 {
360 struct track *p;
361
362 if (s->offset)
363 p = object + s->offset + sizeof(void *);
364 else
365 p = object + s->inuse;
366
367 return p + alloc;
368 }
369
370 static void set_track(struct kmem_cache *s, void *object,
371 enum track_item alloc, unsigned long addr)
372 {
373 struct track *p = get_track(s, object, alloc);
374
375 if (addr) {
376 p->addr = addr;
377 p->cpu = smp_processor_id();
378 p->pid = current->pid;
379 p->when = jiffies;
380 } else
381 memset(p, 0, sizeof(struct track));
382 }
383
384 static void init_tracking(struct kmem_cache *s, void *object)
385 {
386 if (!(s->flags & SLAB_STORE_USER))
387 return;
388
389 set_track(s, object, TRACK_FREE, 0UL);
390 set_track(s, object, TRACK_ALLOC, 0UL);
391 }
392
393 static void print_track(const char *s, struct track *t)
394 {
395 if (!t->addr)
396 return;
397
398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
400 }
401
402 static void print_tracking(struct kmem_cache *s, void *object)
403 {
404 if (!(s->flags & SLAB_STORE_USER))
405 return;
406
407 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408 print_track("Freed", get_track(s, object, TRACK_FREE));
409 }
410
411 static void print_page_info(struct page *page)
412 {
413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 page, page->objects, page->inuse, page->freelist, page->flags);
415
416 }
417
418 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
419 {
420 va_list args;
421 char buf[100];
422
423 va_start(args, fmt);
424 vsnprintf(buf, sizeof(buf), fmt, args);
425 va_end(args);
426 printk(KERN_ERR "========================================"
427 "=====================================\n");
428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429 printk(KERN_ERR "----------------------------------------"
430 "-------------------------------------\n\n");
431 }
432
433 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
434 {
435 va_list args;
436 char buf[100];
437
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
442 }
443
444 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
445 {
446 unsigned int off; /* Offset of last byte */
447 u8 *addr = page_address(page);
448
449 print_tracking(s, p);
450
451 print_page_info(page);
452
453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 p, p - addr, get_freepointer(s, p));
455
456 if (p > addr + 16)
457 print_section("Bytes b4", p - 16, 16);
458
459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
460
461 if (s->flags & SLAB_RED_ZONE)
462 print_section("Redzone", p + s->objsize,
463 s->inuse - s->objsize);
464
465 if (s->offset)
466 off = s->offset + sizeof(void *);
467 else
468 off = s->inuse;
469
470 if (s->flags & SLAB_STORE_USER)
471 off += 2 * sizeof(struct track);
472
473 if (off != s->size)
474 /* Beginning of the filler is the free pointer */
475 print_section("Padding", p + off, s->size - off);
476
477 dump_stack();
478 }
479
480 static void object_err(struct kmem_cache *s, struct page *page,
481 u8 *object, char *reason)
482 {
483 slab_bug(s, "%s", reason);
484 print_trailer(s, page, object);
485 }
486
487 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
488 {
489 va_list args;
490 char buf[100];
491
492 va_start(args, fmt);
493 vsnprintf(buf, sizeof(buf), fmt, args);
494 va_end(args);
495 slab_bug(s, "%s", buf);
496 print_page_info(page);
497 dump_stack();
498 }
499
500 static void init_object(struct kmem_cache *s, void *object, int active)
501 {
502 u8 *p = object;
503
504 if (s->flags & __OBJECT_POISON) {
505 memset(p, POISON_FREE, s->objsize - 1);
506 p[s->objsize - 1] = POISON_END;
507 }
508
509 if (s->flags & SLAB_RED_ZONE)
510 memset(p + s->objsize,
511 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
512 s->inuse - s->objsize);
513 }
514
515 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
516 {
517 while (bytes) {
518 if (*start != (u8)value)
519 return start;
520 start++;
521 bytes--;
522 }
523 return NULL;
524 }
525
526 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
527 void *from, void *to)
528 {
529 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
530 memset(from, data, to - from);
531 }
532
533 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
534 u8 *object, char *what,
535 u8 *start, unsigned int value, unsigned int bytes)
536 {
537 u8 *fault;
538 u8 *end;
539
540 fault = check_bytes(start, value, bytes);
541 if (!fault)
542 return 1;
543
544 end = start + bytes;
545 while (end > fault && end[-1] == value)
546 end--;
547
548 slab_bug(s, "%s overwritten", what);
549 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
550 fault, end - 1, fault[0], value);
551 print_trailer(s, page, object);
552
553 restore_bytes(s, what, value, fault, end);
554 return 0;
555 }
556
557 /*
558 * Object layout:
559 *
560 * object address
561 * Bytes of the object to be managed.
562 * If the freepointer may overlay the object then the free
563 * pointer is the first word of the object.
564 *
565 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
566 * 0xa5 (POISON_END)
567 *
568 * object + s->objsize
569 * Padding to reach word boundary. This is also used for Redzoning.
570 * Padding is extended by another word if Redzoning is enabled and
571 * objsize == inuse.
572 *
573 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
574 * 0xcc (RED_ACTIVE) for objects in use.
575 *
576 * object + s->inuse
577 * Meta data starts here.
578 *
579 * A. Free pointer (if we cannot overwrite object on free)
580 * B. Tracking data for SLAB_STORE_USER
581 * C. Padding to reach required alignment boundary or at mininum
582 * one word if debugging is on to be able to detect writes
583 * before the word boundary.
584 *
585 * Padding is done using 0x5a (POISON_INUSE)
586 *
587 * object + s->size
588 * Nothing is used beyond s->size.
589 *
590 * If slabcaches are merged then the objsize and inuse boundaries are mostly
591 * ignored. And therefore no slab options that rely on these boundaries
592 * may be used with merged slabcaches.
593 */
594
595 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
596 {
597 unsigned long off = s->inuse; /* The end of info */
598
599 if (s->offset)
600 /* Freepointer is placed after the object. */
601 off += sizeof(void *);
602
603 if (s->flags & SLAB_STORE_USER)
604 /* We also have user information there */
605 off += 2 * sizeof(struct track);
606
607 if (s->size == off)
608 return 1;
609
610 return check_bytes_and_report(s, page, p, "Object padding",
611 p + off, POISON_INUSE, s->size - off);
612 }
613
614 /* Check the pad bytes at the end of a slab page */
615 static int slab_pad_check(struct kmem_cache *s, struct page *page)
616 {
617 u8 *start;
618 u8 *fault;
619 u8 *end;
620 int length;
621 int remainder;
622
623 if (!(s->flags & SLAB_POISON))
624 return 1;
625
626 start = page_address(page);
627 length = (PAGE_SIZE << compound_order(page));
628 end = start + length;
629 remainder = length % s->size;
630 if (!remainder)
631 return 1;
632
633 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
634 if (!fault)
635 return 1;
636 while (end > fault && end[-1] == POISON_INUSE)
637 end--;
638
639 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
640 print_section("Padding", end - remainder, remainder);
641
642 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
643 return 0;
644 }
645
646 static int check_object(struct kmem_cache *s, struct page *page,
647 void *object, int active)
648 {
649 u8 *p = object;
650 u8 *endobject = object + s->objsize;
651
652 if (s->flags & SLAB_RED_ZONE) {
653 unsigned int red =
654 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
655
656 if (!check_bytes_and_report(s, page, object, "Redzone",
657 endobject, red, s->inuse - s->objsize))
658 return 0;
659 } else {
660 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
661 check_bytes_and_report(s, page, p, "Alignment padding",
662 endobject, POISON_INUSE, s->inuse - s->objsize);
663 }
664 }
665
666 if (s->flags & SLAB_POISON) {
667 if (!active && (s->flags & __OBJECT_POISON) &&
668 (!check_bytes_and_report(s, page, p, "Poison", p,
669 POISON_FREE, s->objsize - 1) ||
670 !check_bytes_and_report(s, page, p, "Poison",
671 p + s->objsize - 1, POISON_END, 1)))
672 return 0;
673 /*
674 * check_pad_bytes cleans up on its own.
675 */
676 check_pad_bytes(s, page, p);
677 }
678
679 if (!s->offset && active)
680 /*
681 * Object and freepointer overlap. Cannot check
682 * freepointer while object is allocated.
683 */
684 return 1;
685
686 /* Check free pointer validity */
687 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
688 object_err(s, page, p, "Freepointer corrupt");
689 /*
690 * No choice but to zap it and thus lose the remainder
691 * of the free objects in this slab. May cause
692 * another error because the object count is now wrong.
693 */
694 set_freepointer(s, p, NULL);
695 return 0;
696 }
697 return 1;
698 }
699
700 static int check_slab(struct kmem_cache *s, struct page *page)
701 {
702 int maxobj;
703
704 VM_BUG_ON(!irqs_disabled());
705
706 if (!PageSlab(page)) {
707 slab_err(s, page, "Not a valid slab page");
708 return 0;
709 }
710
711 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
712 if (page->objects > maxobj) {
713 slab_err(s, page, "objects %u > max %u",
714 s->name, page->objects, maxobj);
715 return 0;
716 }
717 if (page->inuse > page->objects) {
718 slab_err(s, page, "inuse %u > max %u",
719 s->name, page->inuse, page->objects);
720 return 0;
721 }
722 /* Slab_pad_check fixes things up after itself */
723 slab_pad_check(s, page);
724 return 1;
725 }
726
727 /*
728 * Determine if a certain object on a page is on the freelist. Must hold the
729 * slab lock to guarantee that the chains are in a consistent state.
730 */
731 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
732 {
733 int nr = 0;
734 void *fp = page->freelist;
735 void *object = NULL;
736 unsigned long max_objects;
737
738 while (fp && nr <= page->objects) {
739 if (fp == search)
740 return 1;
741 if (!check_valid_pointer(s, page, fp)) {
742 if (object) {
743 object_err(s, page, object,
744 "Freechain corrupt");
745 set_freepointer(s, object, NULL);
746 break;
747 } else {
748 slab_err(s, page, "Freepointer corrupt");
749 page->freelist = NULL;
750 page->inuse = page->objects;
751 slab_fix(s, "Freelist cleared");
752 return 0;
753 }
754 break;
755 }
756 object = fp;
757 fp = get_freepointer(s, object);
758 nr++;
759 }
760
761 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
762 if (max_objects > MAX_OBJS_PER_PAGE)
763 max_objects = MAX_OBJS_PER_PAGE;
764
765 if (page->objects != max_objects) {
766 slab_err(s, page, "Wrong number of objects. Found %d but "
767 "should be %d", page->objects, max_objects);
768 page->objects = max_objects;
769 slab_fix(s, "Number of objects adjusted.");
770 }
771 if (page->inuse != page->objects - nr) {
772 slab_err(s, page, "Wrong object count. Counter is %d but "
773 "counted were %d", page->inuse, page->objects - nr);
774 page->inuse = page->objects - nr;
775 slab_fix(s, "Object count adjusted.");
776 }
777 return search == NULL;
778 }
779
780 static void trace(struct kmem_cache *s, struct page *page, void *object,
781 int alloc)
782 {
783 if (s->flags & SLAB_TRACE) {
784 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
785 s->name,
786 alloc ? "alloc" : "free",
787 object, page->inuse,
788 page->freelist);
789
790 if (!alloc)
791 print_section("Object", (void *)object, s->objsize);
792
793 dump_stack();
794 }
795 }
796
797 /*
798 * Tracking of fully allocated slabs for debugging purposes.
799 */
800 static void add_full(struct kmem_cache_node *n, struct page *page)
801 {
802 spin_lock(&n->list_lock);
803 list_add(&page->lru, &n->full);
804 spin_unlock(&n->list_lock);
805 }
806
807 static void remove_full(struct kmem_cache *s, struct page *page)
808 {
809 struct kmem_cache_node *n;
810
811 if (!(s->flags & SLAB_STORE_USER))
812 return;
813
814 n = get_node(s, page_to_nid(page));
815
816 spin_lock(&n->list_lock);
817 list_del(&page->lru);
818 spin_unlock(&n->list_lock);
819 }
820
821 /* Tracking of the number of slabs for debugging purposes */
822 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
823 {
824 struct kmem_cache_node *n = get_node(s, node);
825
826 return atomic_long_read(&n->nr_slabs);
827 }
828
829 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
830 {
831 return atomic_long_read(&n->nr_slabs);
832 }
833
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 {
836 struct kmem_cache_node *n = get_node(s, node);
837
838 /*
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
843 */
844 if (!NUMA_BUILD || n) {
845 atomic_long_inc(&n->nr_slabs);
846 atomic_long_add(objects, &n->total_objects);
847 }
848 }
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 struct kmem_cache_node *n = get_node(s, node);
852
853 atomic_long_dec(&n->nr_slabs);
854 atomic_long_sub(objects, &n->total_objects);
855 }
856
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 void *object)
860 {
861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 return;
863
864 init_object(s, object, 0);
865 init_tracking(s, object);
866 }
867
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 void *object, unsigned long addr)
870 {
871 if (!check_slab(s, page))
872 goto bad;
873
874 if (!on_freelist(s, page, object)) {
875 object_err(s, page, object, "Object already allocated");
876 goto bad;
877 }
878
879 if (!check_valid_pointer(s, page, object)) {
880 object_err(s, page, object, "Freelist Pointer check fails");
881 goto bad;
882 }
883
884 if (!check_object(s, page, object, 0))
885 goto bad;
886
887 /* Success perform special debug activities for allocs */
888 if (s->flags & SLAB_STORE_USER)
889 set_track(s, object, TRACK_ALLOC, addr);
890 trace(s, page, object, 1);
891 init_object(s, object, 1);
892 return 1;
893
894 bad:
895 if (PageSlab(page)) {
896 /*
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
899 * as used avoids touching the remaining objects.
900 */
901 slab_fix(s, "Marking all objects used");
902 page->inuse = page->objects;
903 page->freelist = NULL;
904 }
905 return 0;
906 }
907
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 void *object, unsigned long addr)
910 {
911 if (!check_slab(s, page))
912 goto fail;
913
914 if (!check_valid_pointer(s, page, object)) {
915 slab_err(s, page, "Invalid object pointer 0x%p", object);
916 goto fail;
917 }
918
919 if (on_freelist(s, page, object)) {
920 object_err(s, page, object, "Object already free");
921 goto fail;
922 }
923
924 if (!check_object(s, page, object, 1))
925 return 0;
926
927 if (unlikely(s != page->slab)) {
928 if (!PageSlab(page)) {
929 slab_err(s, page, "Attempt to free object(0x%p) "
930 "outside of slab", object);
931 } else if (!page->slab) {
932 printk(KERN_ERR
933 "SLUB <none>: no slab for object 0x%p.\n",
934 object);
935 dump_stack();
936 } else
937 object_err(s, page, object,
938 "page slab pointer corrupt.");
939 goto fail;
940 }
941
942 /* Special debug activities for freeing objects */
943 if (!PageSlubFrozen(page) && !page->freelist)
944 remove_full(s, page);
945 if (s->flags & SLAB_STORE_USER)
946 set_track(s, object, TRACK_FREE, addr);
947 trace(s, page, object, 0);
948 init_object(s, object, 0);
949 return 1;
950
951 fail:
952 slab_fix(s, "Object at 0x%p not freed", object);
953 return 0;
954 }
955
956 static int __init setup_slub_debug(char *str)
957 {
958 slub_debug = DEBUG_DEFAULT_FLAGS;
959 if (*str++ != '=' || !*str)
960 /*
961 * No options specified. Switch on full debugging.
962 */
963 goto out;
964
965 if (*str == ',')
966 /*
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
969 */
970 goto check_slabs;
971
972 if (tolower(*str) == 'o') {
973 /*
974 * Avoid enabling debugging on caches if its minimum order
975 * would increase as a result.
976 */
977 disable_higher_order_debug = 1;
978 goto out;
979 }
980
981 slub_debug = 0;
982 if (*str == '-')
983 /*
984 * Switch off all debugging measures.
985 */
986 goto out;
987
988 /*
989 * Determine which debug features should be switched on
990 */
991 for (; *str && *str != ','; str++) {
992 switch (tolower(*str)) {
993 case 'f':
994 slub_debug |= SLAB_DEBUG_FREE;
995 break;
996 case 'z':
997 slub_debug |= SLAB_RED_ZONE;
998 break;
999 case 'p':
1000 slub_debug |= SLAB_POISON;
1001 break;
1002 case 'u':
1003 slub_debug |= SLAB_STORE_USER;
1004 break;
1005 case 't':
1006 slub_debug |= SLAB_TRACE;
1007 break;
1008 case 'a':
1009 slub_debug |= SLAB_FAILSLAB;
1010 break;
1011 default:
1012 printk(KERN_ERR "slub_debug option '%c' "
1013 "unknown. skipped\n", *str);
1014 }
1015 }
1016
1017 check_slabs:
1018 if (*str == ',')
1019 slub_debug_slabs = str + 1;
1020 out:
1021 return 1;
1022 }
1023
1024 __setup("slub_debug", setup_slub_debug);
1025
1026 static unsigned long kmem_cache_flags(unsigned long objsize,
1027 unsigned long flags, const char *name,
1028 void (*ctor)(void *))
1029 {
1030 /*
1031 * Enable debugging if selected on the kernel commandline.
1032 */
1033 if (slub_debug && (!slub_debug_slabs ||
1034 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1035 flags |= slub_debug;
1036
1037 return flags;
1038 }
1039 #else
1040 static inline void setup_object_debug(struct kmem_cache *s,
1041 struct page *page, void *object) {}
1042
1043 static inline int alloc_debug_processing(struct kmem_cache *s,
1044 struct page *page, void *object, unsigned long addr) { return 0; }
1045
1046 static inline int free_debug_processing(struct kmem_cache *s,
1047 struct page *page, void *object, unsigned long addr) { return 0; }
1048
1049 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1050 { return 1; }
1051 static inline int check_object(struct kmem_cache *s, struct page *page,
1052 void *object, int active) { return 1; }
1053 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1054 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1055 unsigned long flags, const char *name,
1056 void (*ctor)(void *))
1057 {
1058 return flags;
1059 }
1060 #define slub_debug 0
1061
1062 #define disable_higher_order_debug 0
1063
1064 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1065 { return 0; }
1066 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1067 { return 0; }
1068 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1069 int objects) {}
1070 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1071 int objects) {}
1072 #endif
1073
1074 /*
1075 * Slab allocation and freeing
1076 */
1077 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1078 struct kmem_cache_order_objects oo)
1079 {
1080 int order = oo_order(oo);
1081
1082 flags |= __GFP_NOTRACK;
1083
1084 if (node == -1)
1085 return alloc_pages(flags, order);
1086 else
1087 return alloc_pages_node(node, flags, order);
1088 }
1089
1090 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1091 {
1092 struct page *page;
1093 struct kmem_cache_order_objects oo = s->oo;
1094 gfp_t alloc_gfp;
1095
1096 flags |= s->allocflags;
1097
1098 /*
1099 * Let the initial higher-order allocation fail under memory pressure
1100 * so we fall-back to the minimum order allocation.
1101 */
1102 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1103
1104 page = alloc_slab_page(alloc_gfp, node, oo);
1105 if (unlikely(!page)) {
1106 oo = s->min;
1107 /*
1108 * Allocation may have failed due to fragmentation.
1109 * Try a lower order alloc if possible
1110 */
1111 page = alloc_slab_page(flags, node, oo);
1112 if (!page)
1113 return NULL;
1114
1115 stat(s, ORDER_FALLBACK);
1116 }
1117
1118 if (kmemcheck_enabled
1119 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1120 int pages = 1 << oo_order(oo);
1121
1122 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1123
1124 /*
1125 * Objects from caches that have a constructor don't get
1126 * cleared when they're allocated, so we need to do it here.
1127 */
1128 if (s->ctor)
1129 kmemcheck_mark_uninitialized_pages(page, pages);
1130 else
1131 kmemcheck_mark_unallocated_pages(page, pages);
1132 }
1133
1134 page->objects = oo_objects(oo);
1135 mod_zone_page_state(page_zone(page),
1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138 1 << oo_order(oo));
1139
1140 return page;
1141 }
1142
1143 static void setup_object(struct kmem_cache *s, struct page *page,
1144 void *object)
1145 {
1146 setup_object_debug(s, page, object);
1147 if (unlikely(s->ctor))
1148 s->ctor(object);
1149 }
1150
1151 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1152 {
1153 struct page *page;
1154 void *start;
1155 void *last;
1156 void *p;
1157
1158 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1159
1160 page = allocate_slab(s,
1161 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1162 if (!page)
1163 goto out;
1164
1165 inc_slabs_node(s, page_to_nid(page), page->objects);
1166 page->slab = s;
1167 page->flags |= 1 << PG_slab;
1168 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1169 SLAB_STORE_USER | SLAB_TRACE))
1170 __SetPageSlubDebug(page);
1171
1172 start = page_address(page);
1173
1174 if (unlikely(s->flags & SLAB_POISON))
1175 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1176
1177 last = start;
1178 for_each_object(p, s, start, page->objects) {
1179 setup_object(s, page, last);
1180 set_freepointer(s, last, p);
1181 last = p;
1182 }
1183 setup_object(s, page, last);
1184 set_freepointer(s, last, NULL);
1185
1186 page->freelist = start;
1187 page->inuse = 0;
1188 out:
1189 return page;
1190 }
1191
1192 static void __free_slab(struct kmem_cache *s, struct page *page)
1193 {
1194 int order = compound_order(page);
1195 int pages = 1 << order;
1196
1197 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1198 void *p;
1199
1200 slab_pad_check(s, page);
1201 for_each_object(p, s, page_address(page),
1202 page->objects)
1203 check_object(s, page, p, 0);
1204 __ClearPageSlubDebug(page);
1205 }
1206
1207 kmemcheck_free_shadow(page, compound_order(page));
1208
1209 mod_zone_page_state(page_zone(page),
1210 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1212 -pages);
1213
1214 __ClearPageSlab(page);
1215 reset_page_mapcount(page);
1216 if (current->reclaim_state)
1217 current->reclaim_state->reclaimed_slab += pages;
1218 __free_pages(page, order);
1219 }
1220
1221 static void rcu_free_slab(struct rcu_head *h)
1222 {
1223 struct page *page;
1224
1225 page = container_of((struct list_head *)h, struct page, lru);
1226 __free_slab(page->slab, page);
1227 }
1228
1229 static void free_slab(struct kmem_cache *s, struct page *page)
1230 {
1231 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1232 /*
1233 * RCU free overloads the RCU head over the LRU
1234 */
1235 struct rcu_head *head = (void *)&page->lru;
1236
1237 call_rcu(head, rcu_free_slab);
1238 } else
1239 __free_slab(s, page);
1240 }
1241
1242 static void discard_slab(struct kmem_cache *s, struct page *page)
1243 {
1244 dec_slabs_node(s, page_to_nid(page), page->objects);
1245 free_slab(s, page);
1246 }
1247
1248 /*
1249 * Per slab locking using the pagelock
1250 */
1251 static __always_inline void slab_lock(struct page *page)
1252 {
1253 bit_spin_lock(PG_locked, &page->flags);
1254 }
1255
1256 static __always_inline void slab_unlock(struct page *page)
1257 {
1258 __bit_spin_unlock(PG_locked, &page->flags);
1259 }
1260
1261 static __always_inline int slab_trylock(struct page *page)
1262 {
1263 int rc = 1;
1264
1265 rc = bit_spin_trylock(PG_locked, &page->flags);
1266 return rc;
1267 }
1268
1269 /*
1270 * Management of partially allocated slabs
1271 */
1272 static void add_partial(struct kmem_cache_node *n,
1273 struct page *page, int tail)
1274 {
1275 spin_lock(&n->list_lock);
1276 n->nr_partial++;
1277 if (tail)
1278 list_add_tail(&page->lru, &n->partial);
1279 else
1280 list_add(&page->lru, &n->partial);
1281 spin_unlock(&n->list_lock);
1282 }
1283
1284 static void remove_partial(struct kmem_cache *s, struct page *page)
1285 {
1286 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1287
1288 spin_lock(&n->list_lock);
1289 list_del(&page->lru);
1290 n->nr_partial--;
1291 spin_unlock(&n->list_lock);
1292 }
1293
1294 /*
1295 * Lock slab and remove from the partial list.
1296 *
1297 * Must hold list_lock.
1298 */
1299 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1300 struct page *page)
1301 {
1302 if (slab_trylock(page)) {
1303 list_del(&page->lru);
1304 n->nr_partial--;
1305 __SetPageSlubFrozen(page);
1306 return 1;
1307 }
1308 return 0;
1309 }
1310
1311 /*
1312 * Try to allocate a partial slab from a specific node.
1313 */
1314 static struct page *get_partial_node(struct kmem_cache_node *n)
1315 {
1316 struct page *page;
1317
1318 /*
1319 * Racy check. If we mistakenly see no partial slabs then we
1320 * just allocate an empty slab. If we mistakenly try to get a
1321 * partial slab and there is none available then get_partials()
1322 * will return NULL.
1323 */
1324 if (!n || !n->nr_partial)
1325 return NULL;
1326
1327 spin_lock(&n->list_lock);
1328 list_for_each_entry(page, &n->partial, lru)
1329 if (lock_and_freeze_slab(n, page))
1330 goto out;
1331 page = NULL;
1332 out:
1333 spin_unlock(&n->list_lock);
1334 return page;
1335 }
1336
1337 /*
1338 * Get a page from somewhere. Search in increasing NUMA distances.
1339 */
1340 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1341 {
1342 #ifdef CONFIG_NUMA
1343 struct zonelist *zonelist;
1344 struct zoneref *z;
1345 struct zone *zone;
1346 enum zone_type high_zoneidx = gfp_zone(flags);
1347 struct page *page;
1348
1349 /*
1350 * The defrag ratio allows a configuration of the tradeoffs between
1351 * inter node defragmentation and node local allocations. A lower
1352 * defrag_ratio increases the tendency to do local allocations
1353 * instead of attempting to obtain partial slabs from other nodes.
1354 *
1355 * If the defrag_ratio is set to 0 then kmalloc() always
1356 * returns node local objects. If the ratio is higher then kmalloc()
1357 * may return off node objects because partial slabs are obtained
1358 * from other nodes and filled up.
1359 *
1360 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1361 * defrag_ratio = 1000) then every (well almost) allocation will
1362 * first attempt to defrag slab caches on other nodes. This means
1363 * scanning over all nodes to look for partial slabs which may be
1364 * expensive if we do it every time we are trying to find a slab
1365 * with available objects.
1366 */
1367 if (!s->remote_node_defrag_ratio ||
1368 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1369 return NULL;
1370
1371 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1372 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1373 struct kmem_cache_node *n;
1374
1375 n = get_node(s, zone_to_nid(zone));
1376
1377 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1378 n->nr_partial > s->min_partial) {
1379 page = get_partial_node(n);
1380 if (page)
1381 return page;
1382 }
1383 }
1384 #endif
1385 return NULL;
1386 }
1387
1388 /*
1389 * Get a partial page, lock it and return it.
1390 */
1391 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1392 {
1393 struct page *page;
1394 int searchnode = (node == -1) ? numa_node_id() : node;
1395
1396 page = get_partial_node(get_node(s, searchnode));
1397 if (page || (flags & __GFP_THISNODE))
1398 return page;
1399
1400 return get_any_partial(s, flags);
1401 }
1402
1403 /*
1404 * Move a page back to the lists.
1405 *
1406 * Must be called with the slab lock held.
1407 *
1408 * On exit the slab lock will have been dropped.
1409 */
1410 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1411 {
1412 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1413
1414 __ClearPageSlubFrozen(page);
1415 if (page->inuse) {
1416
1417 if (page->freelist) {
1418 add_partial(n, page, tail);
1419 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1420 } else {
1421 stat(s, DEACTIVATE_FULL);
1422 if (SLABDEBUG && PageSlubDebug(page) &&
1423 (s->flags & SLAB_STORE_USER))
1424 add_full(n, page);
1425 }
1426 slab_unlock(page);
1427 } else {
1428 stat(s, DEACTIVATE_EMPTY);
1429 if (n->nr_partial < s->min_partial) {
1430 /*
1431 * Adding an empty slab to the partial slabs in order
1432 * to avoid page allocator overhead. This slab needs
1433 * to come after the other slabs with objects in
1434 * so that the others get filled first. That way the
1435 * size of the partial list stays small.
1436 *
1437 * kmem_cache_shrink can reclaim any empty slabs from
1438 * the partial list.
1439 */
1440 add_partial(n, page, 1);
1441 slab_unlock(page);
1442 } else {
1443 slab_unlock(page);
1444 stat(s, FREE_SLAB);
1445 discard_slab(s, page);
1446 }
1447 }
1448 }
1449
1450 /*
1451 * Remove the cpu slab
1452 */
1453 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1454 {
1455 struct page *page = c->page;
1456 int tail = 1;
1457
1458 if (page->freelist)
1459 stat(s, DEACTIVATE_REMOTE_FREES);
1460 /*
1461 * Merge cpu freelist into slab freelist. Typically we get here
1462 * because both freelists are empty. So this is unlikely
1463 * to occur.
1464 */
1465 while (unlikely(c->freelist)) {
1466 void **object;
1467
1468 tail = 0; /* Hot objects. Put the slab first */
1469
1470 /* Retrieve object from cpu_freelist */
1471 object = c->freelist;
1472 c->freelist = get_freepointer(s, c->freelist);
1473
1474 /* And put onto the regular freelist */
1475 set_freepointer(s, object, page->freelist);
1476 page->freelist = object;
1477 page->inuse--;
1478 }
1479 c->page = NULL;
1480 unfreeze_slab(s, page, tail);
1481 }
1482
1483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1484 {
1485 stat(s, CPUSLAB_FLUSH);
1486 slab_lock(c->page);
1487 deactivate_slab(s, c);
1488 }
1489
1490 /*
1491 * Flush cpu slab.
1492 *
1493 * Called from IPI handler with interrupts disabled.
1494 */
1495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1496 {
1497 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1498
1499 if (likely(c && c->page))
1500 flush_slab(s, c);
1501 }
1502
1503 static void flush_cpu_slab(void *d)
1504 {
1505 struct kmem_cache *s = d;
1506
1507 __flush_cpu_slab(s, smp_processor_id());
1508 }
1509
1510 static void flush_all(struct kmem_cache *s)
1511 {
1512 on_each_cpu(flush_cpu_slab, s, 1);
1513 }
1514
1515 /*
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1518 */
1519 static inline int node_match(struct kmem_cache_cpu *c, int node)
1520 {
1521 #ifdef CONFIG_NUMA
1522 if (node != -1 && c->node != node)
1523 return 0;
1524 #endif
1525 return 1;
1526 }
1527
1528 static int count_free(struct page *page)
1529 {
1530 return page->objects - page->inuse;
1531 }
1532
1533 static unsigned long count_partial(struct kmem_cache_node *n,
1534 int (*get_count)(struct page *))
1535 {
1536 unsigned long flags;
1537 unsigned long x = 0;
1538 struct page *page;
1539
1540 spin_lock_irqsave(&n->list_lock, flags);
1541 list_for_each_entry(page, &n->partial, lru)
1542 x += get_count(page);
1543 spin_unlock_irqrestore(&n->list_lock, flags);
1544 return x;
1545 }
1546
1547 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1548 {
1549 #ifdef CONFIG_SLUB_DEBUG
1550 return atomic_long_read(&n->total_objects);
1551 #else
1552 return 0;
1553 #endif
1554 }
1555
1556 static noinline void
1557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558 {
1559 int node;
1560
1561 printk(KERN_WARNING
1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563 nid, gfpflags);
1564 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1565 "default order: %d, min order: %d\n", s->name, s->objsize,
1566 s->size, oo_order(s->oo), oo_order(s->min));
1567
1568 if (oo_order(s->min) > get_order(s->objsize))
1569 printk(KERN_WARNING " %s debugging increased min order, use "
1570 "slub_debug=O to disable.\n", s->name);
1571
1572 for_each_online_node(node) {
1573 struct kmem_cache_node *n = get_node(s, node);
1574 unsigned long nr_slabs;
1575 unsigned long nr_objs;
1576 unsigned long nr_free;
1577
1578 if (!n)
1579 continue;
1580
1581 nr_free = count_partial(n, count_free);
1582 nr_slabs = node_nr_slabs(n);
1583 nr_objs = node_nr_objs(n);
1584
1585 printk(KERN_WARNING
1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587 node, nr_slabs, nr_objs, nr_free);
1588 }
1589 }
1590
1591 /*
1592 * Slow path. The lockless freelist is empty or we need to perform
1593 * debugging duties.
1594 *
1595 * Interrupts are disabled.
1596 *
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
1600 *
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
1604 *
1605 * And if we were unable to get a new slab from the partial slab lists then
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
1608 */
1609 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610 unsigned long addr, struct kmem_cache_cpu *c)
1611 {
1612 void **object;
1613 struct page *new;
1614
1615 /* We handle __GFP_ZERO in the caller */
1616 gfpflags &= ~__GFP_ZERO;
1617
1618 if (!c->page)
1619 goto new_slab;
1620
1621 slab_lock(c->page);
1622 if (unlikely(!node_match(c, node)))
1623 goto another_slab;
1624
1625 stat(s, ALLOC_REFILL);
1626
1627 load_freelist:
1628 object = c->page->freelist;
1629 if (unlikely(!object))
1630 goto another_slab;
1631 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1632 goto debug;
1633
1634 c->freelist = get_freepointer(s, object);
1635 c->page->inuse = c->page->objects;
1636 c->page->freelist = NULL;
1637 c->node = page_to_nid(c->page);
1638 unlock_out:
1639 slab_unlock(c->page);
1640 stat(s, ALLOC_SLOWPATH);
1641 return object;
1642
1643 another_slab:
1644 deactivate_slab(s, c);
1645
1646 new_slab:
1647 new = get_partial(s, gfpflags, node);
1648 if (new) {
1649 c->page = new;
1650 stat(s, ALLOC_FROM_PARTIAL);
1651 goto load_freelist;
1652 }
1653
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_enable();
1656
1657 new = new_slab(s, gfpflags, node);
1658
1659 if (gfpflags & __GFP_WAIT)
1660 local_irq_disable();
1661
1662 if (new) {
1663 c = __this_cpu_ptr(s->cpu_slab);
1664 stat(s, ALLOC_SLAB);
1665 if (c->page)
1666 flush_slab(s, c);
1667 slab_lock(new);
1668 __SetPageSlubFrozen(new);
1669 c->page = new;
1670 goto load_freelist;
1671 }
1672 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673 slab_out_of_memory(s, gfpflags, node);
1674 return NULL;
1675 debug:
1676 if (!alloc_debug_processing(s, c->page, object, addr))
1677 goto another_slab;
1678
1679 c->page->inuse++;
1680 c->page->freelist = get_freepointer(s, object);
1681 c->node = -1;
1682 goto unlock_out;
1683 }
1684
1685 /*
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1689 *
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1692 *
1693 * Otherwise we can simply pick the next object from the lockless free list.
1694 */
1695 static __always_inline void *slab_alloc(struct kmem_cache *s,
1696 gfp_t gfpflags, int node, unsigned long addr)
1697 {
1698 void **object;
1699 struct kmem_cache_cpu *c;
1700 unsigned long flags;
1701
1702 gfpflags &= gfp_allowed_mask;
1703
1704 lockdep_trace_alloc(gfpflags);
1705 might_sleep_if(gfpflags & __GFP_WAIT);
1706
1707 if (should_failslab(s->objsize, gfpflags, s->flags))
1708 return NULL;
1709
1710 local_irq_save(flags);
1711 c = __this_cpu_ptr(s->cpu_slab);
1712 object = c->freelist;
1713 if (unlikely(!object || !node_match(c, node)))
1714
1715 object = __slab_alloc(s, gfpflags, node, addr, c);
1716
1717 else {
1718 c->freelist = get_freepointer(s, object);
1719 stat(s, ALLOC_FASTPATH);
1720 }
1721 local_irq_restore(flags);
1722
1723 if (unlikely(gfpflags & __GFP_ZERO) && object)
1724 memset(object, 0, s->objsize);
1725
1726 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1728
1729 return object;
1730 }
1731
1732 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1733 {
1734 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1735
1736 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1737
1738 return ret;
1739 }
1740 EXPORT_SYMBOL(kmem_cache_alloc);
1741
1742 #ifdef CONFIG_TRACING
1743 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1744 {
1745 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1746 }
1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748 #endif
1749
1750 #ifdef CONFIG_NUMA
1751 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1752 {
1753 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1754
1755 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756 s->objsize, s->size, gfpflags, node);
1757
1758 return ret;
1759 }
1760 EXPORT_SYMBOL(kmem_cache_alloc_node);
1761 #endif
1762
1763 #ifdef CONFIG_TRACING
1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765 gfp_t gfpflags,
1766 int node)
1767 {
1768 return slab_alloc(s, gfpflags, node, _RET_IP_);
1769 }
1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771 #endif
1772
1773 /*
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
1776 *
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
1780 */
1781 static void __slab_free(struct kmem_cache *s, struct page *page,
1782 void *x, unsigned long addr)
1783 {
1784 void *prior;
1785 void **object = (void *)x;
1786
1787 stat(s, FREE_SLOWPATH);
1788 slab_lock(page);
1789
1790 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1791 goto debug;
1792
1793 checks_ok:
1794 prior = page->freelist;
1795 set_freepointer(s, object, prior);
1796 page->freelist = object;
1797 page->inuse--;
1798
1799 if (unlikely(PageSlubFrozen(page))) {
1800 stat(s, FREE_FROZEN);
1801 goto out_unlock;
1802 }
1803
1804 if (unlikely(!page->inuse))
1805 goto slab_empty;
1806
1807 /*
1808 * Objects left in the slab. If it was not on the partial list before
1809 * then add it.
1810 */
1811 if (unlikely(!prior)) {
1812 add_partial(get_node(s, page_to_nid(page)), page, 1);
1813 stat(s, FREE_ADD_PARTIAL);
1814 }
1815
1816 out_unlock:
1817 slab_unlock(page);
1818 return;
1819
1820 slab_empty:
1821 if (prior) {
1822 /*
1823 * Slab still on the partial list.
1824 */
1825 remove_partial(s, page);
1826 stat(s, FREE_REMOVE_PARTIAL);
1827 }
1828 slab_unlock(page);
1829 stat(s, FREE_SLAB);
1830 discard_slab(s, page);
1831 return;
1832
1833 debug:
1834 if (!free_debug_processing(s, page, x, addr))
1835 goto out_unlock;
1836 goto checks_ok;
1837 }
1838
1839 /*
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1842 *
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1845 * the item before.
1846 *
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1849 */
1850 static __always_inline void slab_free(struct kmem_cache *s,
1851 struct page *page, void *x, unsigned long addr)
1852 {
1853 void **object = (void *)x;
1854 struct kmem_cache_cpu *c;
1855 unsigned long flags;
1856
1857 kmemleak_free_recursive(x, s->flags);
1858 local_irq_save(flags);
1859 c = __this_cpu_ptr(s->cpu_slab);
1860 kmemcheck_slab_free(s, object, s->objsize);
1861 debug_check_no_locks_freed(object, s->objsize);
1862 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1863 debug_check_no_obj_freed(object, s->objsize);
1864 if (likely(page == c->page && c->node >= 0)) {
1865 set_freepointer(s, object, c->freelist);
1866 c->freelist = object;
1867 stat(s, FREE_FASTPATH);
1868 } else
1869 __slab_free(s, page, x, addr);
1870
1871 local_irq_restore(flags);
1872 }
1873
1874 void kmem_cache_free(struct kmem_cache *s, void *x)
1875 {
1876 struct page *page;
1877
1878 page = virt_to_head_page(x);
1879
1880 slab_free(s, page, x, _RET_IP_);
1881
1882 trace_kmem_cache_free(_RET_IP_, x);
1883 }
1884 EXPORT_SYMBOL(kmem_cache_free);
1885
1886 /* Figure out on which slab page the object resides */
1887 static struct page *get_object_page(const void *x)
1888 {
1889 struct page *page = virt_to_head_page(x);
1890
1891 if (!PageSlab(page))
1892 return NULL;
1893
1894 return page;
1895 }
1896
1897 /*
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1901 * another.
1902 *
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
1906 * must be moved on and off the partial lists and is therefore a factor in
1907 * locking overhead.
1908 */
1909
1910 /*
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1915 */
1916 static int slub_min_order;
1917 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1918 static int slub_min_objects;
1919
1920 /*
1921 * Merge control. If this is set then no merging of slab caches will occur.
1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
1923 */
1924 static int slub_nomerge;
1925
1926 /*
1927 * Calculate the order of allocation given an slab object size.
1928 *
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
1933 * unused space left. We go to a higher order if more than 1/16th of the slab
1934 * would be wasted.
1935 *
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
1940 *
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
1945 *
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
1950 */
1951 static inline int slab_order(int size, int min_objects,
1952 int max_order, int fract_leftover)
1953 {
1954 int order;
1955 int rem;
1956 int min_order = slub_min_order;
1957
1958 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1960
1961 for (order = max(min_order,
1962 fls(min_objects * size - 1) - PAGE_SHIFT);
1963 order <= max_order; order++) {
1964
1965 unsigned long slab_size = PAGE_SIZE << order;
1966
1967 if (slab_size < min_objects * size)
1968 continue;
1969
1970 rem = slab_size % size;
1971
1972 if (rem <= slab_size / fract_leftover)
1973 break;
1974
1975 }
1976
1977 return order;
1978 }
1979
1980 static inline int calculate_order(int size)
1981 {
1982 int order;
1983 int min_objects;
1984 int fraction;
1985 int max_objects;
1986
1987 /*
1988 * Attempt to find best configuration for a slab. This
1989 * works by first attempting to generate a layout with
1990 * the best configuration and backing off gradually.
1991 *
1992 * First we reduce the acceptable waste in a slab. Then
1993 * we reduce the minimum objects required in a slab.
1994 */
1995 min_objects = slub_min_objects;
1996 if (!min_objects)
1997 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1998 max_objects = (PAGE_SIZE << slub_max_order)/size;
1999 min_objects = min(min_objects, max_objects);
2000
2001 while (min_objects > 1) {
2002 fraction = 16;
2003 while (fraction >= 4) {
2004 order = slab_order(size, min_objects,
2005 slub_max_order, fraction);
2006 if (order <= slub_max_order)
2007 return order;
2008 fraction /= 2;
2009 }
2010 min_objects--;
2011 }
2012
2013 /*
2014 * We were unable to place multiple objects in a slab. Now
2015 * lets see if we can place a single object there.
2016 */
2017 order = slab_order(size, 1, slub_max_order, 1);
2018 if (order <= slub_max_order)
2019 return order;
2020
2021 /*
2022 * Doh this slab cannot be placed using slub_max_order.
2023 */
2024 order = slab_order(size, 1, MAX_ORDER, 1);
2025 if (order < MAX_ORDER)
2026 return order;
2027 return -ENOSYS;
2028 }
2029
2030 /*
2031 * Figure out what the alignment of the objects will be.
2032 */
2033 static unsigned long calculate_alignment(unsigned long flags,
2034 unsigned long align, unsigned long size)
2035 {
2036 /*
2037 * If the user wants hardware cache aligned objects then follow that
2038 * suggestion if the object is sufficiently large.
2039 *
2040 * The hardware cache alignment cannot override the specified
2041 * alignment though. If that is greater then use it.
2042 */
2043 if (flags & SLAB_HWCACHE_ALIGN) {
2044 unsigned long ralign = cache_line_size();
2045 while (size <= ralign / 2)
2046 ralign /= 2;
2047 align = max(align, ralign);
2048 }
2049
2050 if (align < ARCH_SLAB_MINALIGN)
2051 align = ARCH_SLAB_MINALIGN;
2052
2053 return ALIGN(align, sizeof(void *));
2054 }
2055
2056 static void
2057 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2058 {
2059 n->nr_partial = 0;
2060 spin_lock_init(&n->list_lock);
2061 INIT_LIST_HEAD(&n->partial);
2062 #ifdef CONFIG_SLUB_DEBUG
2063 atomic_long_set(&n->nr_slabs, 0);
2064 atomic_long_set(&n->total_objects, 0);
2065 INIT_LIST_HEAD(&n->full);
2066 #endif
2067 }
2068
2069 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2070
2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2072 {
2073 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2074 /*
2075 * Boot time creation of the kmalloc array. Use static per cpu data
2076 * since the per cpu allocator is not available yet.
2077 */
2078 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2079 else
2080 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2081
2082 if (!s->cpu_slab)
2083 return 0;
2084
2085 return 1;
2086 }
2087
2088 #ifdef CONFIG_NUMA
2089 /*
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2092 * possible.
2093 *
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2097 */
2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2099 {
2100 struct page *page;
2101 struct kmem_cache_node *n;
2102 unsigned long flags;
2103
2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105
2106 page = new_slab(kmalloc_caches, gfpflags, node);
2107
2108 BUG_ON(!page);
2109 if (page_to_nid(page) != node) {
2110 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111 "node %d\n", node);
2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113 "in order to be able to continue\n");
2114 }
2115
2116 n = page->freelist;
2117 BUG_ON(!n);
2118 page->freelist = get_freepointer(kmalloc_caches, n);
2119 page->inuse++;
2120 kmalloc_caches->node[node] = n;
2121 #ifdef CONFIG_SLUB_DEBUG
2122 init_object(kmalloc_caches, n, 1);
2123 init_tracking(kmalloc_caches, n);
2124 #endif
2125 init_kmem_cache_node(n, kmalloc_caches);
2126 inc_slabs_node(kmalloc_caches, node, page->objects);
2127
2128 /*
2129 * lockdep requires consistent irq usage for each lock
2130 * so even though there cannot be a race this early in
2131 * the boot sequence, we still disable irqs.
2132 */
2133 local_irq_save(flags);
2134 add_partial(n, page, 0);
2135 local_irq_restore(flags);
2136 }
2137
2138 static void free_kmem_cache_nodes(struct kmem_cache *s)
2139 {
2140 int node;
2141
2142 for_each_node_state(node, N_NORMAL_MEMORY) {
2143 struct kmem_cache_node *n = s->node[node];
2144 if (n && n != &s->local_node)
2145 kmem_cache_free(kmalloc_caches, n);
2146 s->node[node] = NULL;
2147 }
2148 }
2149
2150 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2151 {
2152 int node;
2153 int local_node;
2154
2155 if (slab_state >= UP && (s < kmalloc_caches ||
2156 s >= kmalloc_caches + KMALLOC_CACHES))
2157 local_node = page_to_nid(virt_to_page(s));
2158 else
2159 local_node = 0;
2160
2161 for_each_node_state(node, N_NORMAL_MEMORY) {
2162 struct kmem_cache_node *n;
2163
2164 if (local_node == node)
2165 n = &s->local_node;
2166 else {
2167 if (slab_state == DOWN) {
2168 early_kmem_cache_node_alloc(gfpflags, node);
2169 continue;
2170 }
2171 n = kmem_cache_alloc_node(kmalloc_caches,
2172 gfpflags, node);
2173
2174 if (!n) {
2175 free_kmem_cache_nodes(s);
2176 return 0;
2177 }
2178
2179 }
2180 s->node[node] = n;
2181 init_kmem_cache_node(n, s);
2182 }
2183 return 1;
2184 }
2185 #else
2186 static void free_kmem_cache_nodes(struct kmem_cache *s)
2187 {
2188 }
2189
2190 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2191 {
2192 init_kmem_cache_node(&s->local_node, s);
2193 return 1;
2194 }
2195 #endif
2196
2197 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2198 {
2199 if (min < MIN_PARTIAL)
2200 min = MIN_PARTIAL;
2201 else if (min > MAX_PARTIAL)
2202 min = MAX_PARTIAL;
2203 s->min_partial = min;
2204 }
2205
2206 /*
2207 * calculate_sizes() determines the order and the distribution of data within
2208 * a slab object.
2209 */
2210 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2211 {
2212 unsigned long flags = s->flags;
2213 unsigned long size = s->objsize;
2214 unsigned long align = s->align;
2215 int order;
2216
2217 /*
2218 * Round up object size to the next word boundary. We can only
2219 * place the free pointer at word boundaries and this determines
2220 * the possible location of the free pointer.
2221 */
2222 size = ALIGN(size, sizeof(void *));
2223
2224 #ifdef CONFIG_SLUB_DEBUG
2225 /*
2226 * Determine if we can poison the object itself. If the user of
2227 * the slab may touch the object after free or before allocation
2228 * then we should never poison the object itself.
2229 */
2230 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2231 !s->ctor)
2232 s->flags |= __OBJECT_POISON;
2233 else
2234 s->flags &= ~__OBJECT_POISON;
2235
2236
2237 /*
2238 * If we are Redzoning then check if there is some space between the
2239 * end of the object and the free pointer. If not then add an
2240 * additional word to have some bytes to store Redzone information.
2241 */
2242 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2243 size += sizeof(void *);
2244 #endif
2245
2246 /*
2247 * With that we have determined the number of bytes in actual use
2248 * by the object. This is the potential offset to the free pointer.
2249 */
2250 s->inuse = size;
2251
2252 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2253 s->ctor)) {
2254 /*
2255 * Relocate free pointer after the object if it is not
2256 * permitted to overwrite the first word of the object on
2257 * kmem_cache_free.
2258 *
2259 * This is the case if we do RCU, have a constructor or
2260 * destructor or are poisoning the objects.
2261 */
2262 s->offset = size;
2263 size += sizeof(void *);
2264 }
2265
2266 #ifdef CONFIG_SLUB_DEBUG
2267 if (flags & SLAB_STORE_USER)
2268 /*
2269 * Need to store information about allocs and frees after
2270 * the object.
2271 */
2272 size += 2 * sizeof(struct track);
2273
2274 if (flags & SLAB_RED_ZONE)
2275 /*
2276 * Add some empty padding so that we can catch
2277 * overwrites from earlier objects rather than let
2278 * tracking information or the free pointer be
2279 * corrupted if a user writes before the start
2280 * of the object.
2281 */
2282 size += sizeof(void *);
2283 #endif
2284
2285 /*
2286 * Determine the alignment based on various parameters that the
2287 * user specified and the dynamic determination of cache line size
2288 * on bootup.
2289 */
2290 align = calculate_alignment(flags, align, s->objsize);
2291 s->align = align;
2292
2293 /*
2294 * SLUB stores one object immediately after another beginning from
2295 * offset 0. In order to align the objects we have to simply size
2296 * each object to conform to the alignment.
2297 */
2298 size = ALIGN(size, align);
2299 s->size = size;
2300 if (forced_order >= 0)
2301 order = forced_order;
2302 else
2303 order = calculate_order(size);
2304
2305 if (order < 0)
2306 return 0;
2307
2308 s->allocflags = 0;
2309 if (order)
2310 s->allocflags |= __GFP_COMP;
2311
2312 if (s->flags & SLAB_CACHE_DMA)
2313 s->allocflags |= SLUB_DMA;
2314
2315 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2316 s->allocflags |= __GFP_RECLAIMABLE;
2317
2318 /*
2319 * Determine the number of objects per slab
2320 */
2321 s->oo = oo_make(order, size);
2322 s->min = oo_make(get_order(size), size);
2323 if (oo_objects(s->oo) > oo_objects(s->max))
2324 s->max = s->oo;
2325
2326 return !!oo_objects(s->oo);
2327
2328 }
2329
2330 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2331 const char *name, size_t size,
2332 size_t align, unsigned long flags,
2333 void (*ctor)(void *))
2334 {
2335 memset(s, 0, kmem_size);
2336 s->name = name;
2337 s->ctor = ctor;
2338 s->objsize = size;
2339 s->align = align;
2340 s->flags = kmem_cache_flags(size, flags, name, ctor);
2341
2342 if (!calculate_sizes(s, -1))
2343 goto error;
2344 if (disable_higher_order_debug) {
2345 /*
2346 * Disable debugging flags that store metadata if the min slab
2347 * order increased.
2348 */
2349 if (get_order(s->size) > get_order(s->objsize)) {
2350 s->flags &= ~DEBUG_METADATA_FLAGS;
2351 s->offset = 0;
2352 if (!calculate_sizes(s, -1))
2353 goto error;
2354 }
2355 }
2356
2357 /*
2358 * The larger the object size is, the more pages we want on the partial
2359 * list to avoid pounding the page allocator excessively.
2360 */
2361 set_min_partial(s, ilog2(s->size));
2362 s->refcount = 1;
2363 #ifdef CONFIG_NUMA
2364 s->remote_node_defrag_ratio = 1000;
2365 #endif
2366 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2367 goto error;
2368
2369 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2370 return 1;
2371
2372 free_kmem_cache_nodes(s);
2373 error:
2374 if (flags & SLAB_PANIC)
2375 panic("Cannot create slab %s size=%lu realsize=%u "
2376 "order=%u offset=%u flags=%lx\n",
2377 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2378 s->offset, flags);
2379 return 0;
2380 }
2381
2382 /*
2383 * Check if a given pointer is valid
2384 */
2385 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2386 {
2387 struct page *page;
2388
2389 if (!kern_ptr_validate(object, s->size))
2390 return 0;
2391
2392 page = get_object_page(object);
2393
2394 if (!page || s != page->slab)
2395 /* No slab or wrong slab */
2396 return 0;
2397
2398 if (!check_valid_pointer(s, page, object))
2399 return 0;
2400
2401 /*
2402 * We could also check if the object is on the slabs freelist.
2403 * But this would be too expensive and it seems that the main
2404 * purpose of kmem_ptr_valid() is to check if the object belongs
2405 * to a certain slab.
2406 */
2407 return 1;
2408 }
2409 EXPORT_SYMBOL(kmem_ptr_validate);
2410
2411 /*
2412 * Determine the size of a slab object
2413 */
2414 unsigned int kmem_cache_size(struct kmem_cache *s)
2415 {
2416 return s->objsize;
2417 }
2418 EXPORT_SYMBOL(kmem_cache_size);
2419
2420 const char *kmem_cache_name(struct kmem_cache *s)
2421 {
2422 return s->name;
2423 }
2424 EXPORT_SYMBOL(kmem_cache_name);
2425
2426 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2427 const char *text)
2428 {
2429 #ifdef CONFIG_SLUB_DEBUG
2430 void *addr = page_address(page);
2431 void *p;
2432 DECLARE_BITMAP(map, page->objects);
2433
2434 bitmap_zero(map, page->objects);
2435 slab_err(s, page, "%s", text);
2436 slab_lock(page);
2437 for_each_free_object(p, s, page->freelist)
2438 set_bit(slab_index(p, s, addr), map);
2439
2440 for_each_object(p, s, addr, page->objects) {
2441
2442 if (!test_bit(slab_index(p, s, addr), map)) {
2443 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2444 p, p - addr);
2445 print_tracking(s, p);
2446 }
2447 }
2448 slab_unlock(page);
2449 #endif
2450 }
2451
2452 /*
2453 * Attempt to free all partial slabs on a node.
2454 */
2455 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2456 {
2457 unsigned long flags;
2458 struct page *page, *h;
2459
2460 spin_lock_irqsave(&n->list_lock, flags);
2461 list_for_each_entry_safe(page, h, &n->partial, lru) {
2462 if (!page->inuse) {
2463 list_del(&page->lru);
2464 discard_slab(s, page);
2465 n->nr_partial--;
2466 } else {
2467 list_slab_objects(s, page,
2468 "Objects remaining on kmem_cache_close()");
2469 }
2470 }
2471 spin_unlock_irqrestore(&n->list_lock, flags);
2472 }
2473
2474 /*
2475 * Release all resources used by a slab cache.
2476 */
2477 static inline int kmem_cache_close(struct kmem_cache *s)
2478 {
2479 int node;
2480
2481 flush_all(s);
2482 free_percpu(s->cpu_slab);
2483 /* Attempt to free all objects */
2484 for_each_node_state(node, N_NORMAL_MEMORY) {
2485 struct kmem_cache_node *n = get_node(s, node);
2486
2487 free_partial(s, n);
2488 if (n->nr_partial || slabs_node(s, node))
2489 return 1;
2490 }
2491 free_kmem_cache_nodes(s);
2492 return 0;
2493 }
2494
2495 /*
2496 * Close a cache and release the kmem_cache structure
2497 * (must be used for caches created using kmem_cache_create)
2498 */
2499 void kmem_cache_destroy(struct kmem_cache *s)
2500 {
2501 down_write(&slub_lock);
2502 s->refcount--;
2503 if (!s->refcount) {
2504 list_del(&s->list);
2505 up_write(&slub_lock);
2506 if (kmem_cache_close(s)) {
2507 printk(KERN_ERR "SLUB %s: %s called for cache that "
2508 "still has objects.\n", s->name, __func__);
2509 dump_stack();
2510 }
2511 if (s->flags & SLAB_DESTROY_BY_RCU)
2512 rcu_barrier();
2513 sysfs_slab_remove(s);
2514 } else
2515 up_write(&slub_lock);
2516 }
2517 EXPORT_SYMBOL(kmem_cache_destroy);
2518
2519 /********************************************************************
2520 * Kmalloc subsystem
2521 *******************************************************************/
2522
2523 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2524 EXPORT_SYMBOL(kmalloc_caches);
2525
2526 static int __init setup_slub_min_order(char *str)
2527 {
2528 get_option(&str, &slub_min_order);
2529
2530 return 1;
2531 }
2532
2533 __setup("slub_min_order=", setup_slub_min_order);
2534
2535 static int __init setup_slub_max_order(char *str)
2536 {
2537 get_option(&str, &slub_max_order);
2538 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2539
2540 return 1;
2541 }
2542
2543 __setup("slub_max_order=", setup_slub_max_order);
2544
2545 static int __init setup_slub_min_objects(char *str)
2546 {
2547 get_option(&str, &slub_min_objects);
2548
2549 return 1;
2550 }
2551
2552 __setup("slub_min_objects=", setup_slub_min_objects);
2553
2554 static int __init setup_slub_nomerge(char *str)
2555 {
2556 slub_nomerge = 1;
2557 return 1;
2558 }
2559
2560 __setup("slub_nomerge", setup_slub_nomerge);
2561
2562 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2563 const char *name, int size, gfp_t gfp_flags)
2564 {
2565 unsigned int flags = 0;
2566
2567 if (gfp_flags & SLUB_DMA)
2568 flags = SLAB_CACHE_DMA;
2569
2570 /*
2571 * This function is called with IRQs disabled during early-boot on
2572 * single CPU so there's no need to take slub_lock here.
2573 */
2574 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2575 flags, NULL))
2576 goto panic;
2577
2578 list_add(&s->list, &slab_caches);
2579
2580 if (sysfs_slab_add(s))
2581 goto panic;
2582 return s;
2583
2584 panic:
2585 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2586 }
2587
2588 #ifdef CONFIG_ZONE_DMA
2589 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2590
2591 static void sysfs_add_func(struct work_struct *w)
2592 {
2593 struct kmem_cache *s;
2594
2595 down_write(&slub_lock);
2596 list_for_each_entry(s, &slab_caches, list) {
2597 if (s->flags & __SYSFS_ADD_DEFERRED) {
2598 s->flags &= ~__SYSFS_ADD_DEFERRED;
2599 sysfs_slab_add(s);
2600 }
2601 }
2602 up_write(&slub_lock);
2603 }
2604
2605 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2606
2607 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2608 {
2609 struct kmem_cache *s;
2610 char *text;
2611 size_t realsize;
2612 unsigned long slabflags;
2613 int i;
2614
2615 s = kmalloc_caches_dma[index];
2616 if (s)
2617 return s;
2618
2619 /* Dynamically create dma cache */
2620 if (flags & __GFP_WAIT)
2621 down_write(&slub_lock);
2622 else {
2623 if (!down_write_trylock(&slub_lock))
2624 goto out;
2625 }
2626
2627 if (kmalloc_caches_dma[index])
2628 goto unlock_out;
2629
2630 realsize = kmalloc_caches[index].objsize;
2631 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2632 (unsigned int)realsize);
2633
2634 s = NULL;
2635 for (i = 0; i < KMALLOC_CACHES; i++)
2636 if (!kmalloc_caches[i].size)
2637 break;
2638
2639 BUG_ON(i >= KMALLOC_CACHES);
2640 s = kmalloc_caches + i;
2641
2642 /*
2643 * Must defer sysfs creation to a workqueue because we don't know
2644 * what context we are called from. Before sysfs comes up, we don't
2645 * need to do anything because our sysfs initcall will start by
2646 * adding all existing slabs to sysfs.
2647 */
2648 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2649 if (slab_state >= SYSFS)
2650 slabflags |= __SYSFS_ADD_DEFERRED;
2651
2652 if (!text || !kmem_cache_open(s, flags, text,
2653 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2654 s->size = 0;
2655 kfree(text);
2656 goto unlock_out;
2657 }
2658
2659 list_add(&s->list, &slab_caches);
2660 kmalloc_caches_dma[index] = s;
2661
2662 if (slab_state >= SYSFS)
2663 schedule_work(&sysfs_add_work);
2664
2665 unlock_out:
2666 up_write(&slub_lock);
2667 out:
2668 return kmalloc_caches_dma[index];
2669 }
2670 #endif
2671
2672 /*
2673 * Conversion table for small slabs sizes / 8 to the index in the
2674 * kmalloc array. This is necessary for slabs < 192 since we have non power
2675 * of two cache sizes there. The size of larger slabs can be determined using
2676 * fls.
2677 */
2678 static s8 size_index[24] = {
2679 3, /* 8 */
2680 4, /* 16 */
2681 5, /* 24 */
2682 5, /* 32 */
2683 6, /* 40 */
2684 6, /* 48 */
2685 6, /* 56 */
2686 6, /* 64 */
2687 1, /* 72 */
2688 1, /* 80 */
2689 1, /* 88 */
2690 1, /* 96 */
2691 7, /* 104 */
2692 7, /* 112 */
2693 7, /* 120 */
2694 7, /* 128 */
2695 2, /* 136 */
2696 2, /* 144 */
2697 2, /* 152 */
2698 2, /* 160 */
2699 2, /* 168 */
2700 2, /* 176 */
2701 2, /* 184 */
2702 2 /* 192 */
2703 };
2704
2705 static inline int size_index_elem(size_t bytes)
2706 {
2707 return (bytes - 1) / 8;
2708 }
2709
2710 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2711 {
2712 int index;
2713
2714 if (size <= 192) {
2715 if (!size)
2716 return ZERO_SIZE_PTR;
2717
2718 index = size_index[size_index_elem(size)];
2719 } else
2720 index = fls(size - 1);
2721
2722 #ifdef CONFIG_ZONE_DMA
2723 if (unlikely((flags & SLUB_DMA)))
2724 return dma_kmalloc_cache(index, flags);
2725
2726 #endif
2727 return &kmalloc_caches[index];
2728 }
2729
2730 void *__kmalloc(size_t size, gfp_t flags)
2731 {
2732 struct kmem_cache *s;
2733 void *ret;
2734
2735 if (unlikely(size > SLUB_MAX_SIZE))
2736 return kmalloc_large(size, flags);
2737
2738 s = get_slab(size, flags);
2739
2740 if (unlikely(ZERO_OR_NULL_PTR(s)))
2741 return s;
2742
2743 ret = slab_alloc(s, flags, -1, _RET_IP_);
2744
2745 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2746
2747 return ret;
2748 }
2749 EXPORT_SYMBOL(__kmalloc);
2750
2751 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2752 {
2753 struct page *page;
2754 void *ptr = NULL;
2755
2756 flags |= __GFP_COMP | __GFP_NOTRACK;
2757 page = alloc_pages_node(node, flags, get_order(size));
2758 if (page)
2759 ptr = page_address(page);
2760
2761 kmemleak_alloc(ptr, size, 1, flags);
2762 return ptr;
2763 }
2764
2765 #ifdef CONFIG_NUMA
2766 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2767 {
2768 struct kmem_cache *s;
2769 void *ret;
2770
2771 if (unlikely(size > SLUB_MAX_SIZE)) {
2772 ret = kmalloc_large_node(size, flags, node);
2773
2774 trace_kmalloc_node(_RET_IP_, ret,
2775 size, PAGE_SIZE << get_order(size),
2776 flags, node);
2777
2778 return ret;
2779 }
2780
2781 s = get_slab(size, flags);
2782
2783 if (unlikely(ZERO_OR_NULL_PTR(s)))
2784 return s;
2785
2786 ret = slab_alloc(s, flags, node, _RET_IP_);
2787
2788 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2789
2790 return ret;
2791 }
2792 EXPORT_SYMBOL(__kmalloc_node);
2793 #endif
2794
2795 size_t ksize(const void *object)
2796 {
2797 struct page *page;
2798 struct kmem_cache *s;
2799
2800 if (unlikely(object == ZERO_SIZE_PTR))
2801 return 0;
2802
2803 page = virt_to_head_page(object);
2804
2805 if (unlikely(!PageSlab(page))) {
2806 WARN_ON(!PageCompound(page));
2807 return PAGE_SIZE << compound_order(page);
2808 }
2809 s = page->slab;
2810
2811 #ifdef CONFIG_SLUB_DEBUG
2812 /*
2813 * Debugging requires use of the padding between object
2814 * and whatever may come after it.
2815 */
2816 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2817 return s->objsize;
2818
2819 #endif
2820 /*
2821 * If we have the need to store the freelist pointer
2822 * back there or track user information then we can
2823 * only use the space before that information.
2824 */
2825 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2826 return s->inuse;
2827 /*
2828 * Else we can use all the padding etc for the allocation
2829 */
2830 return s->size;
2831 }
2832 EXPORT_SYMBOL(ksize);
2833
2834 void kfree(const void *x)
2835 {
2836 struct page *page;
2837 void *object = (void *)x;
2838
2839 trace_kfree(_RET_IP_, x);
2840
2841 if (unlikely(ZERO_OR_NULL_PTR(x)))
2842 return;
2843
2844 page = virt_to_head_page(x);
2845 if (unlikely(!PageSlab(page))) {
2846 BUG_ON(!PageCompound(page));
2847 kmemleak_free(x);
2848 put_page(page);
2849 return;
2850 }
2851 slab_free(page->slab, page, object, _RET_IP_);
2852 }
2853 EXPORT_SYMBOL(kfree);
2854
2855 /*
2856 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2857 * the remaining slabs by the number of items in use. The slabs with the
2858 * most items in use come first. New allocations will then fill those up
2859 * and thus they can be removed from the partial lists.
2860 *
2861 * The slabs with the least items are placed last. This results in them
2862 * being allocated from last increasing the chance that the last objects
2863 * are freed in them.
2864 */
2865 int kmem_cache_shrink(struct kmem_cache *s)
2866 {
2867 int node;
2868 int i;
2869 struct kmem_cache_node *n;
2870 struct page *page;
2871 struct page *t;
2872 int objects = oo_objects(s->max);
2873 struct list_head *slabs_by_inuse =
2874 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2875 unsigned long flags;
2876
2877 if (!slabs_by_inuse)
2878 return -ENOMEM;
2879
2880 flush_all(s);
2881 for_each_node_state(node, N_NORMAL_MEMORY) {
2882 n = get_node(s, node);
2883
2884 if (!n->nr_partial)
2885 continue;
2886
2887 for (i = 0; i < objects; i++)
2888 INIT_LIST_HEAD(slabs_by_inuse + i);
2889
2890 spin_lock_irqsave(&n->list_lock, flags);
2891
2892 /*
2893 * Build lists indexed by the items in use in each slab.
2894 *
2895 * Note that concurrent frees may occur while we hold the
2896 * list_lock. page->inuse here is the upper limit.
2897 */
2898 list_for_each_entry_safe(page, t, &n->partial, lru) {
2899 if (!page->inuse && slab_trylock(page)) {
2900 /*
2901 * Must hold slab lock here because slab_free
2902 * may have freed the last object and be
2903 * waiting to release the slab.
2904 */
2905 list_del(&page->lru);
2906 n->nr_partial--;
2907 slab_unlock(page);
2908 discard_slab(s, page);
2909 } else {
2910 list_move(&page->lru,
2911 slabs_by_inuse + page->inuse);
2912 }
2913 }
2914
2915 /*
2916 * Rebuild the partial list with the slabs filled up most
2917 * first and the least used slabs at the end.
2918 */
2919 for (i = objects - 1; i >= 0; i--)
2920 list_splice(slabs_by_inuse + i, n->partial.prev);
2921
2922 spin_unlock_irqrestore(&n->list_lock, flags);
2923 }
2924
2925 kfree(slabs_by_inuse);
2926 return 0;
2927 }
2928 EXPORT_SYMBOL(kmem_cache_shrink);
2929
2930 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2931 static int slab_mem_going_offline_callback(void *arg)
2932 {
2933 struct kmem_cache *s;
2934
2935 down_read(&slub_lock);
2936 list_for_each_entry(s, &slab_caches, list)
2937 kmem_cache_shrink(s);
2938 up_read(&slub_lock);
2939
2940 return 0;
2941 }
2942
2943 static void slab_mem_offline_callback(void *arg)
2944 {
2945 struct kmem_cache_node *n;
2946 struct kmem_cache *s;
2947 struct memory_notify *marg = arg;
2948 int offline_node;
2949
2950 offline_node = marg->status_change_nid;
2951
2952 /*
2953 * If the node still has available memory. we need kmem_cache_node
2954 * for it yet.
2955 */
2956 if (offline_node < 0)
2957 return;
2958
2959 down_read(&slub_lock);
2960 list_for_each_entry(s, &slab_caches, list) {
2961 n = get_node(s, offline_node);
2962 if (n) {
2963 /*
2964 * if n->nr_slabs > 0, slabs still exist on the node
2965 * that is going down. We were unable to free them,
2966 * and offline_pages() function shouldn't call this
2967 * callback. So, we must fail.
2968 */
2969 BUG_ON(slabs_node(s, offline_node));
2970
2971 s->node[offline_node] = NULL;
2972 kmem_cache_free(kmalloc_caches, n);
2973 }
2974 }
2975 up_read(&slub_lock);
2976 }
2977
2978 static int slab_mem_going_online_callback(void *arg)
2979 {
2980 struct kmem_cache_node *n;
2981 struct kmem_cache *s;
2982 struct memory_notify *marg = arg;
2983 int nid = marg->status_change_nid;
2984 int ret = 0;
2985
2986 /*
2987 * If the node's memory is already available, then kmem_cache_node is
2988 * already created. Nothing to do.
2989 */
2990 if (nid < 0)
2991 return 0;
2992
2993 /*
2994 * We are bringing a node online. No memory is available yet. We must
2995 * allocate a kmem_cache_node structure in order to bring the node
2996 * online.
2997 */
2998 down_read(&slub_lock);
2999 list_for_each_entry(s, &slab_caches, list) {
3000 /*
3001 * XXX: kmem_cache_alloc_node will fallback to other nodes
3002 * since memory is not yet available from the node that
3003 * is brought up.
3004 */
3005 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3006 if (!n) {
3007 ret = -ENOMEM;
3008 goto out;
3009 }
3010 init_kmem_cache_node(n, s);
3011 s->node[nid] = n;
3012 }
3013 out:
3014 up_read(&slub_lock);
3015 return ret;
3016 }
3017
3018 static int slab_memory_callback(struct notifier_block *self,
3019 unsigned long action, void *arg)
3020 {
3021 int ret = 0;
3022
3023 switch (action) {
3024 case MEM_GOING_ONLINE:
3025 ret = slab_mem_going_online_callback(arg);
3026 break;
3027 case MEM_GOING_OFFLINE:
3028 ret = slab_mem_going_offline_callback(arg);
3029 break;
3030 case MEM_OFFLINE:
3031 case MEM_CANCEL_ONLINE:
3032 slab_mem_offline_callback(arg);
3033 break;
3034 case MEM_ONLINE:
3035 case MEM_CANCEL_OFFLINE:
3036 break;
3037 }
3038 if (ret)
3039 ret = notifier_from_errno(ret);
3040 else
3041 ret = NOTIFY_OK;
3042 return ret;
3043 }
3044
3045 #endif /* CONFIG_MEMORY_HOTPLUG */
3046
3047 /********************************************************************
3048 * Basic setup of slabs
3049 *******************************************************************/
3050
3051 void __init kmem_cache_init(void)
3052 {
3053 int i;
3054 int caches = 0;
3055
3056 #ifdef CONFIG_NUMA
3057 /*
3058 * Must first have the slab cache available for the allocations of the
3059 * struct kmem_cache_node's. There is special bootstrap code in
3060 * kmem_cache_open for slab_state == DOWN.
3061 */
3062 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3063 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3064 kmalloc_caches[0].refcount = -1;
3065 caches++;
3066
3067 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3068 #endif
3069
3070 /* Able to allocate the per node structures */
3071 slab_state = PARTIAL;
3072
3073 /* Caches that are not of the two-to-the-power-of size */
3074 if (KMALLOC_MIN_SIZE <= 32) {
3075 create_kmalloc_cache(&kmalloc_caches[1],
3076 "kmalloc-96", 96, GFP_NOWAIT);
3077 caches++;
3078 }
3079 if (KMALLOC_MIN_SIZE <= 64) {
3080 create_kmalloc_cache(&kmalloc_caches[2],
3081 "kmalloc-192", 192, GFP_NOWAIT);
3082 caches++;
3083 }
3084
3085 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3086 create_kmalloc_cache(&kmalloc_caches[i],
3087 "kmalloc", 1 << i, GFP_NOWAIT);
3088 caches++;
3089 }
3090
3091
3092 /*
3093 * Patch up the size_index table if we have strange large alignment
3094 * requirements for the kmalloc array. This is only the case for
3095 * MIPS it seems. The standard arches will not generate any code here.
3096 *
3097 * Largest permitted alignment is 256 bytes due to the way we
3098 * handle the index determination for the smaller caches.
3099 *
3100 * Make sure that nothing crazy happens if someone starts tinkering
3101 * around with ARCH_KMALLOC_MINALIGN
3102 */
3103 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3104 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3105
3106 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3107 int elem = size_index_elem(i);
3108 if (elem >= ARRAY_SIZE(size_index))
3109 break;
3110 size_index[elem] = KMALLOC_SHIFT_LOW;
3111 }
3112
3113 if (KMALLOC_MIN_SIZE == 64) {
3114 /*
3115 * The 96 byte size cache is not used if the alignment
3116 * is 64 byte.
3117 */
3118 for (i = 64 + 8; i <= 96; i += 8)
3119 size_index[size_index_elem(i)] = 7;
3120 } else if (KMALLOC_MIN_SIZE == 128) {
3121 /*
3122 * The 192 byte sized cache is not used if the alignment
3123 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3124 * instead.
3125 */
3126 for (i = 128 + 8; i <= 192; i += 8)
3127 size_index[size_index_elem(i)] = 8;
3128 }
3129
3130 slab_state = UP;
3131
3132 /* Provide the correct kmalloc names now that the caches are up */
3133 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3134 kmalloc_caches[i]. name =
3135 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3136
3137 #ifdef CONFIG_SMP
3138 register_cpu_notifier(&slab_notifier);
3139 #endif
3140 #ifdef CONFIG_NUMA
3141 kmem_size = offsetof(struct kmem_cache, node) +
3142 nr_node_ids * sizeof(struct kmem_cache_node *);
3143 #else
3144 kmem_size = sizeof(struct kmem_cache);
3145 #endif
3146
3147 printk(KERN_INFO
3148 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3149 " CPUs=%d, Nodes=%d\n",
3150 caches, cache_line_size(),
3151 slub_min_order, slub_max_order, slub_min_objects,
3152 nr_cpu_ids, nr_node_ids);
3153 }
3154
3155 void __init kmem_cache_init_late(void)
3156 {
3157 }
3158
3159 /*
3160 * Find a mergeable slab cache
3161 */
3162 static int slab_unmergeable(struct kmem_cache *s)
3163 {
3164 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3165 return 1;
3166
3167 if (s->ctor)
3168 return 1;
3169
3170 /*
3171 * We may have set a slab to be unmergeable during bootstrap.
3172 */
3173 if (s->refcount < 0)
3174 return 1;
3175
3176 return 0;
3177 }
3178
3179 static struct kmem_cache *find_mergeable(size_t size,
3180 size_t align, unsigned long flags, const char *name,
3181 void (*ctor)(void *))
3182 {
3183 struct kmem_cache *s;
3184
3185 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3186 return NULL;
3187
3188 if (ctor)
3189 return NULL;
3190
3191 size = ALIGN(size, sizeof(void *));
3192 align = calculate_alignment(flags, align, size);
3193 size = ALIGN(size, align);
3194 flags = kmem_cache_flags(size, flags, name, NULL);
3195
3196 list_for_each_entry(s, &slab_caches, list) {
3197 if (slab_unmergeable(s))
3198 continue;
3199
3200 if (size > s->size)
3201 continue;
3202
3203 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3204 continue;
3205 /*
3206 * Check if alignment is compatible.
3207 * Courtesy of Adrian Drzewiecki
3208 */
3209 if ((s->size & ~(align - 1)) != s->size)
3210 continue;
3211
3212 if (s->size - size >= sizeof(void *))
3213 continue;
3214
3215 return s;
3216 }
3217 return NULL;
3218 }
3219
3220 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3221 size_t align, unsigned long flags, void (*ctor)(void *))
3222 {
3223 struct kmem_cache *s;
3224
3225 if (WARN_ON(!name))
3226 return NULL;
3227
3228 down_write(&slub_lock);
3229 s = find_mergeable(size, align, flags, name, ctor);
3230 if (s) {
3231 s->refcount++;
3232 /*
3233 * Adjust the object sizes so that we clear
3234 * the complete object on kzalloc.
3235 */
3236 s->objsize = max(s->objsize, (int)size);
3237 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3238 up_write(&slub_lock);
3239
3240 if (sysfs_slab_alias(s, name)) {
3241 down_write(&slub_lock);
3242 s->refcount--;
3243 up_write(&slub_lock);
3244 goto err;
3245 }
3246 return s;
3247 }
3248
3249 s = kmalloc(kmem_size, GFP_KERNEL);
3250 if (s) {
3251 if (kmem_cache_open(s, GFP_KERNEL, name,
3252 size, align, flags, ctor)) {
3253 list_add(&s->list, &slab_caches);
3254 up_write(&slub_lock);
3255 if (sysfs_slab_add(s)) {
3256 down_write(&slub_lock);
3257 list_del(&s->list);
3258 up_write(&slub_lock);
3259 kfree(s);
3260 goto err;
3261 }
3262 return s;
3263 }
3264 kfree(s);
3265 }
3266 up_write(&slub_lock);
3267
3268 err:
3269 if (flags & SLAB_PANIC)
3270 panic("Cannot create slabcache %s\n", name);
3271 else
3272 s = NULL;
3273 return s;
3274 }
3275 EXPORT_SYMBOL(kmem_cache_create);
3276
3277 #ifdef CONFIG_SMP
3278 /*
3279 * Use the cpu notifier to insure that the cpu slabs are flushed when
3280 * necessary.
3281 */
3282 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3283 unsigned long action, void *hcpu)
3284 {
3285 long cpu = (long)hcpu;
3286 struct kmem_cache *s;
3287 unsigned long flags;
3288
3289 switch (action) {
3290 case CPU_UP_CANCELED:
3291 case CPU_UP_CANCELED_FROZEN:
3292 case CPU_DEAD:
3293 case CPU_DEAD_FROZEN:
3294 down_read(&slub_lock);
3295 list_for_each_entry(s, &slab_caches, list) {
3296 local_irq_save(flags);
3297 __flush_cpu_slab(s, cpu);
3298 local_irq_restore(flags);
3299 }
3300 up_read(&slub_lock);
3301 break;
3302 default:
3303 break;
3304 }
3305 return NOTIFY_OK;
3306 }
3307
3308 static struct notifier_block __cpuinitdata slab_notifier = {
3309 .notifier_call = slab_cpuup_callback
3310 };
3311
3312 #endif
3313
3314 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3315 {
3316 struct kmem_cache *s;
3317 void *ret;
3318
3319 if (unlikely(size > SLUB_MAX_SIZE))
3320 return kmalloc_large(size, gfpflags);
3321
3322 s = get_slab(size, gfpflags);
3323
3324 if (unlikely(ZERO_OR_NULL_PTR(s)))
3325 return s;
3326
3327 ret = slab_alloc(s, gfpflags, -1, caller);
3328
3329 /* Honor the call site pointer we recieved. */
3330 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3331
3332 return ret;
3333 }
3334
3335 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3336 int node, unsigned long caller)
3337 {
3338 struct kmem_cache *s;
3339 void *ret;
3340
3341 if (unlikely(size > SLUB_MAX_SIZE))
3342 return kmalloc_large_node(size, gfpflags, node);
3343
3344 s = get_slab(size, gfpflags);
3345
3346 if (unlikely(ZERO_OR_NULL_PTR(s)))
3347 return s;
3348
3349 ret = slab_alloc(s, gfpflags, node, caller);
3350
3351 /* Honor the call site pointer we recieved. */
3352 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3353
3354 return ret;
3355 }
3356
3357 #ifdef CONFIG_SLUB_DEBUG
3358 static int count_inuse(struct page *page)
3359 {
3360 return page->inuse;
3361 }
3362
3363 static int count_total(struct page *page)
3364 {
3365 return page->objects;
3366 }
3367
3368 static int validate_slab(struct kmem_cache *s, struct page *page,
3369 unsigned long *map)
3370 {
3371 void *p;
3372 void *addr = page_address(page);
3373
3374 if (!check_slab(s, page) ||
3375 !on_freelist(s, page, NULL))
3376 return 0;
3377
3378 /* Now we know that a valid freelist exists */
3379 bitmap_zero(map, page->objects);
3380
3381 for_each_free_object(p, s, page->freelist) {
3382 set_bit(slab_index(p, s, addr), map);
3383 if (!check_object(s, page, p, 0))
3384 return 0;
3385 }
3386
3387 for_each_object(p, s, addr, page->objects)
3388 if (!test_bit(slab_index(p, s, addr), map))
3389 if (!check_object(s, page, p, 1))
3390 return 0;
3391 return 1;
3392 }
3393
3394 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3395 unsigned long *map)
3396 {
3397 if (slab_trylock(page)) {
3398 validate_slab(s, page, map);
3399 slab_unlock(page);
3400 } else
3401 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3402 s->name, page);
3403
3404 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3405 if (!PageSlubDebug(page))
3406 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3407 "on slab 0x%p\n", s->name, page);
3408 } else {
3409 if (PageSlubDebug(page))
3410 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3411 "slab 0x%p\n", s->name, page);
3412 }
3413 }
3414
3415 static int validate_slab_node(struct kmem_cache *s,
3416 struct kmem_cache_node *n, unsigned long *map)
3417 {
3418 unsigned long count = 0;
3419 struct page *page;
3420 unsigned long flags;
3421
3422 spin_lock_irqsave(&n->list_lock, flags);
3423
3424 list_for_each_entry(page, &n->partial, lru) {
3425 validate_slab_slab(s, page, map);
3426 count++;
3427 }
3428 if (count != n->nr_partial)
3429 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3430 "counter=%ld\n", s->name, count, n->nr_partial);
3431
3432 if (!(s->flags & SLAB_STORE_USER))
3433 goto out;
3434
3435 list_for_each_entry(page, &n->full, lru) {
3436 validate_slab_slab(s, page, map);
3437 count++;
3438 }
3439 if (count != atomic_long_read(&n->nr_slabs))
3440 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3441 "counter=%ld\n", s->name, count,
3442 atomic_long_read(&n->nr_slabs));
3443
3444 out:
3445 spin_unlock_irqrestore(&n->list_lock, flags);
3446 return count;
3447 }
3448
3449 static long validate_slab_cache(struct kmem_cache *s)
3450 {
3451 int node;
3452 unsigned long count = 0;
3453 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3454 sizeof(unsigned long), GFP_KERNEL);
3455
3456 if (!map)
3457 return -ENOMEM;
3458
3459 flush_all(s);
3460 for_each_node_state(node, N_NORMAL_MEMORY) {
3461 struct kmem_cache_node *n = get_node(s, node);
3462
3463 count += validate_slab_node(s, n, map);
3464 }
3465 kfree(map);
3466 return count;
3467 }
3468
3469 #ifdef SLUB_RESILIENCY_TEST
3470 static void resiliency_test(void)
3471 {
3472 u8 *p;
3473
3474 printk(KERN_ERR "SLUB resiliency testing\n");
3475 printk(KERN_ERR "-----------------------\n");
3476 printk(KERN_ERR "A. Corruption after allocation\n");
3477
3478 p = kzalloc(16, GFP_KERNEL);
3479 p[16] = 0x12;
3480 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3481 " 0x12->0x%p\n\n", p + 16);
3482
3483 validate_slab_cache(kmalloc_caches + 4);
3484
3485 /* Hmmm... The next two are dangerous */
3486 p = kzalloc(32, GFP_KERNEL);
3487 p[32 + sizeof(void *)] = 0x34;
3488 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3489 " 0x34 -> -0x%p\n", p);
3490 printk(KERN_ERR
3491 "If allocated object is overwritten then not detectable\n\n");
3492
3493 validate_slab_cache(kmalloc_caches + 5);
3494 p = kzalloc(64, GFP_KERNEL);
3495 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3496 *p = 0x56;
3497 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3498 p);
3499 printk(KERN_ERR
3500 "If allocated object is overwritten then not detectable\n\n");
3501 validate_slab_cache(kmalloc_caches + 6);
3502
3503 printk(KERN_ERR "\nB. Corruption after free\n");
3504 p = kzalloc(128, GFP_KERNEL);
3505 kfree(p);
3506 *p = 0x78;
3507 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3508 validate_slab_cache(kmalloc_caches + 7);
3509
3510 p = kzalloc(256, GFP_KERNEL);
3511 kfree(p);
3512 p[50] = 0x9a;
3513 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3514 p);
3515 validate_slab_cache(kmalloc_caches + 8);
3516
3517 p = kzalloc(512, GFP_KERNEL);
3518 kfree(p);
3519 p[512] = 0xab;
3520 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3521 validate_slab_cache(kmalloc_caches + 9);
3522 }
3523 #else
3524 static void resiliency_test(void) {};
3525 #endif
3526
3527 /*
3528 * Generate lists of code addresses where slabcache objects are allocated
3529 * and freed.
3530 */
3531
3532 struct location {
3533 unsigned long count;
3534 unsigned long addr;
3535 long long sum_time;
3536 long min_time;
3537 long max_time;
3538 long min_pid;
3539 long max_pid;
3540 DECLARE_BITMAP(cpus, NR_CPUS);
3541 nodemask_t nodes;
3542 };
3543
3544 struct loc_track {
3545 unsigned long max;
3546 unsigned long count;
3547 struct location *loc;
3548 };
3549
3550 static void free_loc_track(struct loc_track *t)
3551 {
3552 if (t->max)
3553 free_pages((unsigned long)t->loc,
3554 get_order(sizeof(struct location) * t->max));
3555 }
3556
3557 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3558 {
3559 struct location *l;
3560 int order;
3561
3562 order = get_order(sizeof(struct location) * max);
3563
3564 l = (void *)__get_free_pages(flags, order);
3565 if (!l)
3566 return 0;
3567
3568 if (t->count) {
3569 memcpy(l, t->loc, sizeof(struct location) * t->count);
3570 free_loc_track(t);
3571 }
3572 t->max = max;
3573 t->loc = l;
3574 return 1;
3575 }
3576
3577 static int add_location(struct loc_track *t, struct kmem_cache *s,
3578 const struct track *track)
3579 {
3580 long start, end, pos;
3581 struct location *l;
3582 unsigned long caddr;
3583 unsigned long age = jiffies - track->when;
3584
3585 start = -1;
3586 end = t->count;
3587
3588 for ( ; ; ) {
3589 pos = start + (end - start + 1) / 2;
3590
3591 /*
3592 * There is nothing at "end". If we end up there
3593 * we need to add something to before end.
3594 */
3595 if (pos == end)
3596 break;
3597
3598 caddr = t->loc[pos].addr;
3599 if (track->addr == caddr) {
3600
3601 l = &t->loc[pos];
3602 l->count++;
3603 if (track->when) {
3604 l->sum_time += age;
3605 if (age < l->min_time)
3606 l->min_time = age;
3607 if (age > l->max_time)
3608 l->max_time = age;
3609
3610 if (track->pid < l->min_pid)
3611 l->min_pid = track->pid;
3612 if (track->pid > l->max_pid)
3613 l->max_pid = track->pid;
3614
3615 cpumask_set_cpu(track->cpu,
3616 to_cpumask(l->cpus));
3617 }
3618 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3619 return 1;
3620 }
3621
3622 if (track->addr < caddr)
3623 end = pos;
3624 else
3625 start = pos;
3626 }
3627
3628 /*
3629 * Not found. Insert new tracking element.
3630 */
3631 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3632 return 0;
3633
3634 l = t->loc + pos;
3635 if (pos < t->count)
3636 memmove(l + 1, l,
3637 (t->count - pos) * sizeof(struct location));
3638 t->count++;
3639 l->count = 1;
3640 l->addr = track->addr;
3641 l->sum_time = age;
3642 l->min_time = age;
3643 l->max_time = age;
3644 l->min_pid = track->pid;
3645 l->max_pid = track->pid;
3646 cpumask_clear(to_cpumask(l->cpus));
3647 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3648 nodes_clear(l->nodes);
3649 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3650 return 1;
3651 }
3652
3653 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3654 struct page *page, enum track_item alloc)
3655 {
3656 void *addr = page_address(page);
3657 DECLARE_BITMAP(map, page->objects);
3658 void *p;
3659
3660 bitmap_zero(map, page->objects);
3661 for_each_free_object(p, s, page->freelist)
3662 set_bit(slab_index(p, s, addr), map);
3663
3664 for_each_object(p, s, addr, page->objects)
3665 if (!test_bit(slab_index(p, s, addr), map))
3666 add_location(t, s, get_track(s, p, alloc));
3667 }
3668
3669 static int list_locations(struct kmem_cache *s, char *buf,
3670 enum track_item alloc)
3671 {
3672 int len = 0;
3673 unsigned long i;
3674 struct loc_track t = { 0, 0, NULL };
3675 int node;
3676
3677 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3678 GFP_TEMPORARY))
3679 return sprintf(buf, "Out of memory\n");
3680
3681 /* Push back cpu slabs */
3682 flush_all(s);
3683
3684 for_each_node_state(node, N_NORMAL_MEMORY) {
3685 struct kmem_cache_node *n = get_node(s, node);
3686 unsigned long flags;
3687 struct page *page;
3688
3689 if (!atomic_long_read(&n->nr_slabs))
3690 continue;
3691
3692 spin_lock_irqsave(&n->list_lock, flags);
3693 list_for_each_entry(page, &n->partial, lru)
3694 process_slab(&t, s, page, alloc);
3695 list_for_each_entry(page, &n->full, lru)
3696 process_slab(&t, s, page, alloc);
3697 spin_unlock_irqrestore(&n->list_lock, flags);
3698 }
3699
3700 for (i = 0; i < t.count; i++) {
3701 struct location *l = &t.loc[i];
3702
3703 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3704 break;
3705 len += sprintf(buf + len, "%7ld ", l->count);
3706
3707 if (l->addr)
3708 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3709 else
3710 len += sprintf(buf + len, "<not-available>");
3711
3712 if (l->sum_time != l->min_time) {
3713 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3714 l->min_time,
3715 (long)div_u64(l->sum_time, l->count),
3716 l->max_time);
3717 } else
3718 len += sprintf(buf + len, " age=%ld",
3719 l->min_time);
3720
3721 if (l->min_pid != l->max_pid)
3722 len += sprintf(buf + len, " pid=%ld-%ld",
3723 l->min_pid, l->max_pid);
3724 else
3725 len += sprintf(buf + len, " pid=%ld",
3726 l->min_pid);
3727
3728 if (num_online_cpus() > 1 &&
3729 !cpumask_empty(to_cpumask(l->cpus)) &&
3730 len < PAGE_SIZE - 60) {
3731 len += sprintf(buf + len, " cpus=");
3732 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3733 to_cpumask(l->cpus));
3734 }
3735
3736 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3737 len < PAGE_SIZE - 60) {
3738 len += sprintf(buf + len, " nodes=");
3739 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3740 l->nodes);
3741 }
3742
3743 len += sprintf(buf + len, "\n");
3744 }
3745
3746 free_loc_track(&t);
3747 if (!t.count)
3748 len += sprintf(buf, "No data\n");
3749 return len;
3750 }
3751
3752 enum slab_stat_type {
3753 SL_ALL, /* All slabs */
3754 SL_PARTIAL, /* Only partially allocated slabs */
3755 SL_CPU, /* Only slabs used for cpu caches */
3756 SL_OBJECTS, /* Determine allocated objects not slabs */
3757 SL_TOTAL /* Determine object capacity not slabs */
3758 };
3759
3760 #define SO_ALL (1 << SL_ALL)
3761 #define SO_PARTIAL (1 << SL_PARTIAL)
3762 #define SO_CPU (1 << SL_CPU)
3763 #define SO_OBJECTS (1 << SL_OBJECTS)
3764 #define SO_TOTAL (1 << SL_TOTAL)
3765
3766 static ssize_t show_slab_objects(struct kmem_cache *s,
3767 char *buf, unsigned long flags)
3768 {
3769 unsigned long total = 0;
3770 int node;
3771 int x;
3772 unsigned long *nodes;
3773 unsigned long *per_cpu;
3774
3775 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3776 if (!nodes)
3777 return -ENOMEM;
3778 per_cpu = nodes + nr_node_ids;
3779
3780 if (flags & SO_CPU) {
3781 int cpu;
3782
3783 for_each_possible_cpu(cpu) {
3784 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3785
3786 if (!c || c->node < 0)
3787 continue;
3788
3789 if (c->page) {
3790 if (flags & SO_TOTAL)
3791 x = c->page->objects;
3792 else if (flags & SO_OBJECTS)
3793 x = c->page->inuse;
3794 else
3795 x = 1;
3796
3797 total += x;
3798 nodes[c->node] += x;
3799 }
3800 per_cpu[c->node]++;
3801 }
3802 }
3803
3804 if (flags & SO_ALL) {
3805 for_each_node_state(node, N_NORMAL_MEMORY) {
3806 struct kmem_cache_node *n = get_node(s, node);
3807
3808 if (flags & SO_TOTAL)
3809 x = atomic_long_read(&n->total_objects);
3810 else if (flags & SO_OBJECTS)
3811 x = atomic_long_read(&n->total_objects) -
3812 count_partial(n, count_free);
3813
3814 else
3815 x = atomic_long_read(&n->nr_slabs);
3816 total += x;
3817 nodes[node] += x;
3818 }
3819
3820 } else if (flags & SO_PARTIAL) {
3821 for_each_node_state(node, N_NORMAL_MEMORY) {
3822 struct kmem_cache_node *n = get_node(s, node);
3823
3824 if (flags & SO_TOTAL)
3825 x = count_partial(n, count_total);
3826 else if (flags & SO_OBJECTS)
3827 x = count_partial(n, count_inuse);
3828 else
3829 x = n->nr_partial;
3830 total += x;
3831 nodes[node] += x;
3832 }
3833 }
3834 x = sprintf(buf, "%lu", total);
3835 #ifdef CONFIG_NUMA
3836 for_each_node_state(node, N_NORMAL_MEMORY)
3837 if (nodes[node])
3838 x += sprintf(buf + x, " N%d=%lu",
3839 node, nodes[node]);
3840 #endif
3841 kfree(nodes);
3842 return x + sprintf(buf + x, "\n");
3843 }
3844
3845 static int any_slab_objects(struct kmem_cache *s)
3846 {
3847 int node;
3848
3849 for_each_online_node(node) {
3850 struct kmem_cache_node *n = get_node(s, node);
3851
3852 if (!n)
3853 continue;
3854
3855 if (atomic_long_read(&n->total_objects))
3856 return 1;
3857 }
3858 return 0;
3859 }
3860
3861 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3862 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3863
3864 struct slab_attribute {
3865 struct attribute attr;
3866 ssize_t (*show)(struct kmem_cache *s, char *buf);
3867 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3868 };
3869
3870 #define SLAB_ATTR_RO(_name) \
3871 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3872
3873 #define SLAB_ATTR(_name) \
3874 static struct slab_attribute _name##_attr = \
3875 __ATTR(_name, 0644, _name##_show, _name##_store)
3876
3877 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3878 {
3879 return sprintf(buf, "%d\n", s->size);
3880 }
3881 SLAB_ATTR_RO(slab_size);
3882
3883 static ssize_t align_show(struct kmem_cache *s, char *buf)
3884 {
3885 return sprintf(buf, "%d\n", s->align);
3886 }
3887 SLAB_ATTR_RO(align);
3888
3889 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3890 {
3891 return sprintf(buf, "%d\n", s->objsize);
3892 }
3893 SLAB_ATTR_RO(object_size);
3894
3895 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3896 {
3897 return sprintf(buf, "%d\n", oo_objects(s->oo));
3898 }
3899 SLAB_ATTR_RO(objs_per_slab);
3900
3901 static ssize_t order_store(struct kmem_cache *s,
3902 const char *buf, size_t length)
3903 {
3904 unsigned long order;
3905 int err;
3906
3907 err = strict_strtoul(buf, 10, &order);
3908 if (err)
3909 return err;
3910
3911 if (order > slub_max_order || order < slub_min_order)
3912 return -EINVAL;
3913
3914 calculate_sizes(s, order);
3915 return length;
3916 }
3917
3918 static ssize_t order_show(struct kmem_cache *s, char *buf)
3919 {
3920 return sprintf(buf, "%d\n", oo_order(s->oo));
3921 }
3922 SLAB_ATTR(order);
3923
3924 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3925 {
3926 return sprintf(buf, "%lu\n", s->min_partial);
3927 }
3928
3929 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3930 size_t length)
3931 {
3932 unsigned long min;
3933 int err;
3934
3935 err = strict_strtoul(buf, 10, &min);
3936 if (err)
3937 return err;
3938
3939 set_min_partial(s, min);
3940 return length;
3941 }
3942 SLAB_ATTR(min_partial);
3943
3944 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3945 {
3946 if (s->ctor) {
3947 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3948
3949 return n + sprintf(buf + n, "\n");
3950 }
3951 return 0;
3952 }
3953 SLAB_ATTR_RO(ctor);
3954
3955 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3956 {
3957 return sprintf(buf, "%d\n", s->refcount - 1);
3958 }
3959 SLAB_ATTR_RO(aliases);
3960
3961 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3962 {
3963 return show_slab_objects(s, buf, SO_ALL);
3964 }
3965 SLAB_ATTR_RO(slabs);
3966
3967 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3968 {
3969 return show_slab_objects(s, buf, SO_PARTIAL);
3970 }
3971 SLAB_ATTR_RO(partial);
3972
3973 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3974 {
3975 return show_slab_objects(s, buf, SO_CPU);
3976 }
3977 SLAB_ATTR_RO(cpu_slabs);
3978
3979 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3980 {
3981 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3982 }
3983 SLAB_ATTR_RO(objects);
3984
3985 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3986 {
3987 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3988 }
3989 SLAB_ATTR_RO(objects_partial);
3990
3991 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3992 {
3993 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3994 }
3995 SLAB_ATTR_RO(total_objects);
3996
3997 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3998 {
3999 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4000 }
4001
4002 static ssize_t sanity_checks_store(struct kmem_cache *s,
4003 const char *buf, size_t length)
4004 {
4005 s->flags &= ~SLAB_DEBUG_FREE;
4006 if (buf[0] == '1')
4007 s->flags |= SLAB_DEBUG_FREE;
4008 return length;
4009 }
4010 SLAB_ATTR(sanity_checks);
4011
4012 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4013 {
4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4015 }
4016
4017 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4018 size_t length)
4019 {
4020 s->flags &= ~SLAB_TRACE;
4021 if (buf[0] == '1')
4022 s->flags |= SLAB_TRACE;
4023 return length;
4024 }
4025 SLAB_ATTR(trace);
4026
4027 #ifdef CONFIG_FAILSLAB
4028 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4029 {
4030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4031 }
4032
4033 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4034 size_t length)
4035 {
4036 s->flags &= ~SLAB_FAILSLAB;
4037 if (buf[0] == '1')
4038 s->flags |= SLAB_FAILSLAB;
4039 return length;
4040 }
4041 SLAB_ATTR(failslab);
4042 #endif
4043
4044 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4045 {
4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4047 }
4048
4049 static ssize_t reclaim_account_store(struct kmem_cache *s,
4050 const char *buf, size_t length)
4051 {
4052 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4053 if (buf[0] == '1')
4054 s->flags |= SLAB_RECLAIM_ACCOUNT;
4055 return length;
4056 }
4057 SLAB_ATTR(reclaim_account);
4058
4059 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4060 {
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4062 }
4063 SLAB_ATTR_RO(hwcache_align);
4064
4065 #ifdef CONFIG_ZONE_DMA
4066 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4067 {
4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4069 }
4070 SLAB_ATTR_RO(cache_dma);
4071 #endif
4072
4073 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4074 {
4075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4076 }
4077 SLAB_ATTR_RO(destroy_by_rcu);
4078
4079 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4080 {
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4082 }
4083
4084 static ssize_t red_zone_store(struct kmem_cache *s,
4085 const char *buf, size_t length)
4086 {
4087 if (any_slab_objects(s))
4088 return -EBUSY;
4089
4090 s->flags &= ~SLAB_RED_ZONE;
4091 if (buf[0] == '1')
4092 s->flags |= SLAB_RED_ZONE;
4093 calculate_sizes(s, -1);
4094 return length;
4095 }
4096 SLAB_ATTR(red_zone);
4097
4098 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4099 {
4100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4101 }
4102
4103 static ssize_t poison_store(struct kmem_cache *s,
4104 const char *buf, size_t length)
4105 {
4106 if (any_slab_objects(s))
4107 return -EBUSY;
4108
4109 s->flags &= ~SLAB_POISON;
4110 if (buf[0] == '1')
4111 s->flags |= SLAB_POISON;
4112 calculate_sizes(s, -1);
4113 return length;
4114 }
4115 SLAB_ATTR(poison);
4116
4117 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4118 {
4119 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4120 }
4121
4122 static ssize_t store_user_store(struct kmem_cache *s,
4123 const char *buf, size_t length)
4124 {
4125 if (any_slab_objects(s))
4126 return -EBUSY;
4127
4128 s->flags &= ~SLAB_STORE_USER;
4129 if (buf[0] == '1')
4130 s->flags |= SLAB_STORE_USER;
4131 calculate_sizes(s, -1);
4132 return length;
4133 }
4134 SLAB_ATTR(store_user);
4135
4136 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4137 {
4138 return 0;
4139 }
4140
4141 static ssize_t validate_store(struct kmem_cache *s,
4142 const char *buf, size_t length)
4143 {
4144 int ret = -EINVAL;
4145
4146 if (buf[0] == '1') {
4147 ret = validate_slab_cache(s);
4148 if (ret >= 0)
4149 ret = length;
4150 }
4151 return ret;
4152 }
4153 SLAB_ATTR(validate);
4154
4155 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4156 {
4157 return 0;
4158 }
4159
4160 static ssize_t shrink_store(struct kmem_cache *s,
4161 const char *buf, size_t length)
4162 {
4163 if (buf[0] == '1') {
4164 int rc = kmem_cache_shrink(s);
4165
4166 if (rc)
4167 return rc;
4168 } else
4169 return -EINVAL;
4170 return length;
4171 }
4172 SLAB_ATTR(shrink);
4173
4174 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4175 {
4176 if (!(s->flags & SLAB_STORE_USER))
4177 return -ENOSYS;
4178 return list_locations(s, buf, TRACK_ALLOC);
4179 }
4180 SLAB_ATTR_RO(alloc_calls);
4181
4182 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4183 {
4184 if (!(s->flags & SLAB_STORE_USER))
4185 return -ENOSYS;
4186 return list_locations(s, buf, TRACK_FREE);
4187 }
4188 SLAB_ATTR_RO(free_calls);
4189
4190 #ifdef CONFIG_NUMA
4191 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4192 {
4193 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4194 }
4195
4196 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4197 const char *buf, size_t length)
4198 {
4199 unsigned long ratio;
4200 int err;
4201
4202 err = strict_strtoul(buf, 10, &ratio);
4203 if (err)
4204 return err;
4205
4206 if (ratio <= 100)
4207 s->remote_node_defrag_ratio = ratio * 10;
4208
4209 return length;
4210 }
4211 SLAB_ATTR(remote_node_defrag_ratio);
4212 #endif
4213
4214 #ifdef CONFIG_SLUB_STATS
4215 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4216 {
4217 unsigned long sum = 0;
4218 int cpu;
4219 int len;
4220 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4221
4222 if (!data)
4223 return -ENOMEM;
4224
4225 for_each_online_cpu(cpu) {
4226 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4227
4228 data[cpu] = x;
4229 sum += x;
4230 }
4231
4232 len = sprintf(buf, "%lu", sum);
4233
4234 #ifdef CONFIG_SMP
4235 for_each_online_cpu(cpu) {
4236 if (data[cpu] && len < PAGE_SIZE - 20)
4237 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4238 }
4239 #endif
4240 kfree(data);
4241 return len + sprintf(buf + len, "\n");
4242 }
4243
4244 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4245 {
4246 int cpu;
4247
4248 for_each_online_cpu(cpu)
4249 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4250 }
4251
4252 #define STAT_ATTR(si, text) \
4253 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4254 { \
4255 return show_stat(s, buf, si); \
4256 } \
4257 static ssize_t text##_store(struct kmem_cache *s, \
4258 const char *buf, size_t length) \
4259 { \
4260 if (buf[0] != '0') \
4261 return -EINVAL; \
4262 clear_stat(s, si); \
4263 return length; \
4264 } \
4265 SLAB_ATTR(text); \
4266
4267 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4268 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4269 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4270 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4271 STAT_ATTR(FREE_FROZEN, free_frozen);
4272 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4273 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4274 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4275 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4276 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4277 STAT_ATTR(FREE_SLAB, free_slab);
4278 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4279 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4280 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4281 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4282 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4283 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4284 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4285 #endif
4286
4287 static struct attribute *slab_attrs[] = {
4288 &slab_size_attr.attr,
4289 &object_size_attr.attr,
4290 &objs_per_slab_attr.attr,
4291 &order_attr.attr,
4292 &min_partial_attr.attr,
4293 &objects_attr.attr,
4294 &objects_partial_attr.attr,
4295 &total_objects_attr.attr,
4296 &slabs_attr.attr,
4297 &partial_attr.attr,
4298 &cpu_slabs_attr.attr,
4299 &ctor_attr.attr,
4300 &aliases_attr.attr,
4301 &align_attr.attr,
4302 &sanity_checks_attr.attr,
4303 &trace_attr.attr,
4304 &hwcache_align_attr.attr,
4305 &reclaim_account_attr.attr,
4306 &destroy_by_rcu_attr.attr,
4307 &red_zone_attr.attr,
4308 &poison_attr.attr,
4309 &store_user_attr.attr,
4310 &validate_attr.attr,
4311 &shrink_attr.attr,
4312 &alloc_calls_attr.attr,
4313 &free_calls_attr.attr,
4314 #ifdef CONFIG_ZONE_DMA
4315 &cache_dma_attr.attr,
4316 #endif
4317 #ifdef CONFIG_NUMA
4318 &remote_node_defrag_ratio_attr.attr,
4319 #endif
4320 #ifdef CONFIG_SLUB_STATS
4321 &alloc_fastpath_attr.attr,
4322 &alloc_slowpath_attr.attr,
4323 &free_fastpath_attr.attr,
4324 &free_slowpath_attr.attr,
4325 &free_frozen_attr.attr,
4326 &free_add_partial_attr.attr,
4327 &free_remove_partial_attr.attr,
4328 &alloc_from_partial_attr.attr,
4329 &alloc_slab_attr.attr,
4330 &alloc_refill_attr.attr,
4331 &free_slab_attr.attr,
4332 &cpuslab_flush_attr.attr,
4333 &deactivate_full_attr.attr,
4334 &deactivate_empty_attr.attr,
4335 &deactivate_to_head_attr.attr,
4336 &deactivate_to_tail_attr.attr,
4337 &deactivate_remote_frees_attr.attr,
4338 &order_fallback_attr.attr,
4339 #endif
4340 #ifdef CONFIG_FAILSLAB
4341 &failslab_attr.attr,
4342 #endif
4343
4344 NULL
4345 };
4346
4347 static struct attribute_group slab_attr_group = {
4348 .attrs = slab_attrs,
4349 };
4350
4351 static ssize_t slab_attr_show(struct kobject *kobj,
4352 struct attribute *attr,
4353 char *buf)
4354 {
4355 struct slab_attribute *attribute;
4356 struct kmem_cache *s;
4357 int err;
4358
4359 attribute = to_slab_attr(attr);
4360 s = to_slab(kobj);
4361
4362 if (!attribute->show)
4363 return -EIO;
4364
4365 err = attribute->show(s, buf);
4366
4367 return err;
4368 }
4369
4370 static ssize_t slab_attr_store(struct kobject *kobj,
4371 struct attribute *attr,
4372 const char *buf, size_t len)
4373 {
4374 struct slab_attribute *attribute;
4375 struct kmem_cache *s;
4376 int err;
4377
4378 attribute = to_slab_attr(attr);
4379 s = to_slab(kobj);
4380
4381 if (!attribute->store)
4382 return -EIO;
4383
4384 err = attribute->store(s, buf, len);
4385
4386 return err;
4387 }
4388
4389 static void kmem_cache_release(struct kobject *kobj)
4390 {
4391 struct kmem_cache *s = to_slab(kobj);
4392
4393 kfree(s);
4394 }
4395
4396 static const struct sysfs_ops slab_sysfs_ops = {
4397 .show = slab_attr_show,
4398 .store = slab_attr_store,
4399 };
4400
4401 static struct kobj_type slab_ktype = {
4402 .sysfs_ops = &slab_sysfs_ops,
4403 .release = kmem_cache_release
4404 };
4405
4406 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4407 {
4408 struct kobj_type *ktype = get_ktype(kobj);
4409
4410 if (ktype == &slab_ktype)
4411 return 1;
4412 return 0;
4413 }
4414
4415 static const struct kset_uevent_ops slab_uevent_ops = {
4416 .filter = uevent_filter,
4417 };
4418
4419 static struct kset *slab_kset;
4420
4421 #define ID_STR_LENGTH 64
4422
4423 /* Create a unique string id for a slab cache:
4424 *
4425 * Format :[flags-]size
4426 */
4427 static char *create_unique_id(struct kmem_cache *s)
4428 {
4429 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4430 char *p = name;
4431
4432 BUG_ON(!name);
4433
4434 *p++ = ':';
4435 /*
4436 * First flags affecting slabcache operations. We will only
4437 * get here for aliasable slabs so we do not need to support
4438 * too many flags. The flags here must cover all flags that
4439 * are matched during merging to guarantee that the id is
4440 * unique.
4441 */
4442 if (s->flags & SLAB_CACHE_DMA)
4443 *p++ = 'd';
4444 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4445 *p++ = 'a';
4446 if (s->flags & SLAB_DEBUG_FREE)
4447 *p++ = 'F';
4448 if (!(s->flags & SLAB_NOTRACK))
4449 *p++ = 't';
4450 if (p != name + 1)
4451 *p++ = '-';
4452 p += sprintf(p, "%07d", s->size);
4453 BUG_ON(p > name + ID_STR_LENGTH - 1);
4454 return name;
4455 }
4456
4457 static int sysfs_slab_add(struct kmem_cache *s)
4458 {
4459 int err;
4460 const char *name;
4461 int unmergeable;
4462
4463 if (slab_state < SYSFS)
4464 /* Defer until later */
4465 return 0;
4466
4467 unmergeable = slab_unmergeable(s);
4468 if (unmergeable) {
4469 /*
4470 * Slabcache can never be merged so we can use the name proper.
4471 * This is typically the case for debug situations. In that
4472 * case we can catch duplicate names easily.
4473 */
4474 sysfs_remove_link(&slab_kset->kobj, s->name);
4475 name = s->name;
4476 } else {
4477 /*
4478 * Create a unique name for the slab as a target
4479 * for the symlinks.
4480 */
4481 name = create_unique_id(s);
4482 }
4483
4484 s->kobj.kset = slab_kset;
4485 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4486 if (err) {
4487 kobject_put(&s->kobj);
4488 return err;
4489 }
4490
4491 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4492 if (err) {
4493 kobject_del(&s->kobj);
4494 kobject_put(&s->kobj);
4495 return err;
4496 }
4497 kobject_uevent(&s->kobj, KOBJ_ADD);
4498 if (!unmergeable) {
4499 /* Setup first alias */
4500 sysfs_slab_alias(s, s->name);
4501 kfree(name);
4502 }
4503 return 0;
4504 }
4505
4506 static void sysfs_slab_remove(struct kmem_cache *s)
4507 {
4508 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4509 kobject_del(&s->kobj);
4510 kobject_put(&s->kobj);
4511 }
4512
4513 /*
4514 * Need to buffer aliases during bootup until sysfs becomes
4515 * available lest we lose that information.
4516 */
4517 struct saved_alias {
4518 struct kmem_cache *s;
4519 const char *name;
4520 struct saved_alias *next;
4521 };
4522
4523 static struct saved_alias *alias_list;
4524
4525 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4526 {
4527 struct saved_alias *al;
4528
4529 if (slab_state == SYSFS) {
4530 /*
4531 * If we have a leftover link then remove it.
4532 */
4533 sysfs_remove_link(&slab_kset->kobj, name);
4534 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4535 }
4536
4537 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4538 if (!al)
4539 return -ENOMEM;
4540
4541 al->s = s;
4542 al->name = name;
4543 al->next = alias_list;
4544 alias_list = al;
4545 return 0;
4546 }
4547
4548 static int __init slab_sysfs_init(void)
4549 {
4550 struct kmem_cache *s;
4551 int err;
4552
4553 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4554 if (!slab_kset) {
4555 printk(KERN_ERR "Cannot register slab subsystem.\n");
4556 return -ENOSYS;
4557 }
4558
4559 slab_state = SYSFS;
4560
4561 list_for_each_entry(s, &slab_caches, list) {
4562 err = sysfs_slab_add(s);
4563 if (err)
4564 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4565 " to sysfs\n", s->name);
4566 }
4567
4568 while (alias_list) {
4569 struct saved_alias *al = alias_list;
4570
4571 alias_list = alias_list->next;
4572 err = sysfs_slab_alias(al->s, al->name);
4573 if (err)
4574 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4575 " %s to sysfs\n", s->name);
4576 kfree(al);
4577 }
4578
4579 resiliency_test();
4580 return 0;
4581 }
4582
4583 __initcall(slab_sysfs_init);
4584 #endif
4585
4586 /*
4587 * The /proc/slabinfo ABI
4588 */
4589 #ifdef CONFIG_SLABINFO
4590 static void print_slabinfo_header(struct seq_file *m)
4591 {
4592 seq_puts(m, "slabinfo - version: 2.1\n");
4593 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4594 "<objperslab> <pagesperslab>");
4595 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4596 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4597 seq_putc(m, '\n');
4598 }
4599
4600 static void *s_start(struct seq_file *m, loff_t *pos)
4601 {
4602 loff_t n = *pos;
4603
4604 down_read(&slub_lock);
4605 if (!n)
4606 print_slabinfo_header(m);
4607
4608 return seq_list_start(&slab_caches, *pos);
4609 }
4610
4611 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4612 {
4613 return seq_list_next(p, &slab_caches, pos);
4614 }
4615
4616 static void s_stop(struct seq_file *m, void *p)
4617 {
4618 up_read(&slub_lock);
4619 }
4620
4621 static int s_show(struct seq_file *m, void *p)
4622 {
4623 unsigned long nr_partials = 0;
4624 unsigned long nr_slabs = 0;
4625 unsigned long nr_inuse = 0;
4626 unsigned long nr_objs = 0;
4627 unsigned long nr_free = 0;
4628 struct kmem_cache *s;
4629 int node;
4630
4631 s = list_entry(p, struct kmem_cache, list);
4632
4633 for_each_online_node(node) {
4634 struct kmem_cache_node *n = get_node(s, node);
4635
4636 if (!n)
4637 continue;
4638
4639 nr_partials += n->nr_partial;
4640 nr_slabs += atomic_long_read(&n->nr_slabs);
4641 nr_objs += atomic_long_read(&n->total_objects);
4642 nr_free += count_partial(n, count_free);
4643 }
4644
4645 nr_inuse = nr_objs - nr_free;
4646
4647 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4648 nr_objs, s->size, oo_objects(s->oo),
4649 (1 << oo_order(s->oo)));
4650 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4651 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4652 0UL);
4653 seq_putc(m, '\n');
4654 return 0;
4655 }
4656
4657 static const struct seq_operations slabinfo_op = {
4658 .start = s_start,
4659 .next = s_next,
4660 .stop = s_stop,
4661 .show = s_show,
4662 };
4663
4664 static int slabinfo_open(struct inode *inode, struct file *file)
4665 {
4666 return seq_open(file, &slabinfo_op);
4667 }
4668
4669 static const struct file_operations proc_slabinfo_operations = {
4670 .open = slabinfo_open,
4671 .read = seq_read,
4672 .llseek = seq_lseek,
4673 .release = seq_release,
4674 };
4675
4676 static int __init slab_proc_init(void)
4677 {
4678 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4679 return 0;
4680 }
4681 module_init(slab_proc_init);
4682 #endif /* CONFIG_SLABINFO */