]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
slub: move kmem_cache_node into it's own cacheline
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
156
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
159
160 #define OO_SHIFT 16
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167
168 static int kmem_size = sizeof(struct kmem_cache);
169
170 #ifdef CONFIG_SMP
171 static struct notifier_block slab_notifier;
172 #endif
173
174 static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works but does not show up in sysfs */
178 SYSFS /* Sysfs up */
179 } slab_state = DOWN;
180
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock);
183 static LIST_HEAD(slab_caches);
184
185 /*
186 * Tracking user of a slab.
187 */
188 struct track {
189 unsigned long addr; /* Called from address */
190 int cpu; /* Was running on cpu */
191 int pid; /* Pid context */
192 unsigned long when; /* When did the operation occur */
193 };
194
195 enum track_item { TRACK_ALLOC, TRACK_FREE };
196
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache *);
199 static int sysfs_slab_alias(struct kmem_cache *, const char *);
200 static void sysfs_slab_remove(struct kmem_cache *);
201
202 #else
203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
205 { return 0; }
206 static inline void sysfs_slab_remove(struct kmem_cache *s)
207 {
208 kfree(s);
209 }
210
211 #endif
212
213 static inline void stat(struct kmem_cache *s, enum stat_item si)
214 {
215 #ifdef CONFIG_SLUB_STATS
216 __this_cpu_inc(s->cpu_slab->stat[si]);
217 #endif
218 }
219
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
224 int slab_is_available(void)
225 {
226 return slab_state >= UP;
227 }
228
229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230 {
231 #ifdef CONFIG_NUMA
232 return s->node[node];
233 #else
234 return &s->local_node;
235 #endif
236 }
237
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
241 {
242 void *base;
243
244 if (!object)
245 return 1;
246
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
250 return 0;
251 }
252
253 return 1;
254 }
255
256 static inline void *get_freepointer(struct kmem_cache *s, void *object)
257 {
258 return *(void **)(object + s->offset);
259 }
260
261 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 {
263 *(void **)(object + s->offset) = fp;
264 }
265
266 /* Loop over all objects in a slab */
267 #define for_each_object(__p, __s, __addr, __objects) \
268 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
269 __p += (__s)->size)
270
271 /* Scan freelist */
272 #define for_each_free_object(__p, __s, __free) \
273 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
274
275 /* Determine object index from a given position */
276 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
277 {
278 return (p - addr) / s->size;
279 }
280
281 static inline struct kmem_cache_order_objects oo_make(int order,
282 unsigned long size)
283 {
284 struct kmem_cache_order_objects x = {
285 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
286 };
287
288 return x;
289 }
290
291 static inline int oo_order(struct kmem_cache_order_objects x)
292 {
293 return x.x >> OO_SHIFT;
294 }
295
296 static inline int oo_objects(struct kmem_cache_order_objects x)
297 {
298 return x.x & OO_MASK;
299 }
300
301 #ifdef CONFIG_SLUB_DEBUG
302 /*
303 * Debug settings:
304 */
305 #ifdef CONFIG_SLUB_DEBUG_ON
306 static int slub_debug = DEBUG_DEFAULT_FLAGS;
307 #else
308 static int slub_debug;
309 #endif
310
311 static char *slub_debug_slabs;
312 static int disable_higher_order_debug;
313
314 /*
315 * Object debugging
316 */
317 static void print_section(char *text, u8 *addr, unsigned int length)
318 {
319 int i, offset;
320 int newline = 1;
321 char ascii[17];
322
323 ascii[16] = 0;
324
325 for (i = 0; i < length; i++) {
326 if (newline) {
327 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
328 newline = 0;
329 }
330 printk(KERN_CONT " %02x", addr[i]);
331 offset = i % 16;
332 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
333 if (offset == 15) {
334 printk(KERN_CONT " %s\n", ascii);
335 newline = 1;
336 }
337 }
338 if (!newline) {
339 i %= 16;
340 while (i < 16) {
341 printk(KERN_CONT " ");
342 ascii[i] = ' ';
343 i++;
344 }
345 printk(KERN_CONT " %s\n", ascii);
346 }
347 }
348
349 static struct track *get_track(struct kmem_cache *s, void *object,
350 enum track_item alloc)
351 {
352 struct track *p;
353
354 if (s->offset)
355 p = object + s->offset + sizeof(void *);
356 else
357 p = object + s->inuse;
358
359 return p + alloc;
360 }
361
362 static void set_track(struct kmem_cache *s, void *object,
363 enum track_item alloc, unsigned long addr)
364 {
365 struct track *p = get_track(s, object, alloc);
366
367 if (addr) {
368 p->addr = addr;
369 p->cpu = smp_processor_id();
370 p->pid = current->pid;
371 p->when = jiffies;
372 } else
373 memset(p, 0, sizeof(struct track));
374 }
375
376 static void init_tracking(struct kmem_cache *s, void *object)
377 {
378 if (!(s->flags & SLAB_STORE_USER))
379 return;
380
381 set_track(s, object, TRACK_FREE, 0UL);
382 set_track(s, object, TRACK_ALLOC, 0UL);
383 }
384
385 static void print_track(const char *s, struct track *t)
386 {
387 if (!t->addr)
388 return;
389
390 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
391 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
392 }
393
394 static void print_tracking(struct kmem_cache *s, void *object)
395 {
396 if (!(s->flags & SLAB_STORE_USER))
397 return;
398
399 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
400 print_track("Freed", get_track(s, object, TRACK_FREE));
401 }
402
403 static void print_page_info(struct page *page)
404 {
405 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
406 page, page->objects, page->inuse, page->freelist, page->flags);
407
408 }
409
410 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
411 {
412 va_list args;
413 char buf[100];
414
415 va_start(args, fmt);
416 vsnprintf(buf, sizeof(buf), fmt, args);
417 va_end(args);
418 printk(KERN_ERR "========================================"
419 "=====================================\n");
420 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
421 printk(KERN_ERR "----------------------------------------"
422 "-------------------------------------\n\n");
423 }
424
425 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
426 {
427 va_list args;
428 char buf[100];
429
430 va_start(args, fmt);
431 vsnprintf(buf, sizeof(buf), fmt, args);
432 va_end(args);
433 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
434 }
435
436 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
437 {
438 unsigned int off; /* Offset of last byte */
439 u8 *addr = page_address(page);
440
441 print_tracking(s, p);
442
443 print_page_info(page);
444
445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
446 p, p - addr, get_freepointer(s, p));
447
448 if (p > addr + 16)
449 print_section("Bytes b4", p - 16, 16);
450
451 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
452
453 if (s->flags & SLAB_RED_ZONE)
454 print_section("Redzone", p + s->objsize,
455 s->inuse - s->objsize);
456
457 if (s->offset)
458 off = s->offset + sizeof(void *);
459 else
460 off = s->inuse;
461
462 if (s->flags & SLAB_STORE_USER)
463 off += 2 * sizeof(struct track);
464
465 if (off != s->size)
466 /* Beginning of the filler is the free pointer */
467 print_section("Padding", p + off, s->size - off);
468
469 dump_stack();
470 }
471
472 static void object_err(struct kmem_cache *s, struct page *page,
473 u8 *object, char *reason)
474 {
475 slab_bug(s, "%s", reason);
476 print_trailer(s, page, object);
477 }
478
479 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
480 {
481 va_list args;
482 char buf[100];
483
484 va_start(args, fmt);
485 vsnprintf(buf, sizeof(buf), fmt, args);
486 va_end(args);
487 slab_bug(s, "%s", buf);
488 print_page_info(page);
489 dump_stack();
490 }
491
492 static void init_object(struct kmem_cache *s, void *object, int active)
493 {
494 u8 *p = object;
495
496 if (s->flags & __OBJECT_POISON) {
497 memset(p, POISON_FREE, s->objsize - 1);
498 p[s->objsize - 1] = POISON_END;
499 }
500
501 if (s->flags & SLAB_RED_ZONE)
502 memset(p + s->objsize,
503 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
504 s->inuse - s->objsize);
505 }
506
507 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
508 {
509 while (bytes) {
510 if (*start != (u8)value)
511 return start;
512 start++;
513 bytes--;
514 }
515 return NULL;
516 }
517
518 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
519 void *from, void *to)
520 {
521 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
522 memset(from, data, to - from);
523 }
524
525 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
526 u8 *object, char *what,
527 u8 *start, unsigned int value, unsigned int bytes)
528 {
529 u8 *fault;
530 u8 *end;
531
532 fault = check_bytes(start, value, bytes);
533 if (!fault)
534 return 1;
535
536 end = start + bytes;
537 while (end > fault && end[-1] == value)
538 end--;
539
540 slab_bug(s, "%s overwritten", what);
541 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
542 fault, end - 1, fault[0], value);
543 print_trailer(s, page, object);
544
545 restore_bytes(s, what, value, fault, end);
546 return 0;
547 }
548
549 /*
550 * Object layout:
551 *
552 * object address
553 * Bytes of the object to be managed.
554 * If the freepointer may overlay the object then the free
555 * pointer is the first word of the object.
556 *
557 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
558 * 0xa5 (POISON_END)
559 *
560 * object + s->objsize
561 * Padding to reach word boundary. This is also used for Redzoning.
562 * Padding is extended by another word if Redzoning is enabled and
563 * objsize == inuse.
564 *
565 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
566 * 0xcc (RED_ACTIVE) for objects in use.
567 *
568 * object + s->inuse
569 * Meta data starts here.
570 *
571 * A. Free pointer (if we cannot overwrite object on free)
572 * B. Tracking data for SLAB_STORE_USER
573 * C. Padding to reach required alignment boundary or at mininum
574 * one word if debugging is on to be able to detect writes
575 * before the word boundary.
576 *
577 * Padding is done using 0x5a (POISON_INUSE)
578 *
579 * object + s->size
580 * Nothing is used beyond s->size.
581 *
582 * If slabcaches are merged then the objsize and inuse boundaries are mostly
583 * ignored. And therefore no slab options that rely on these boundaries
584 * may be used with merged slabcaches.
585 */
586
587 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
588 {
589 unsigned long off = s->inuse; /* The end of info */
590
591 if (s->offset)
592 /* Freepointer is placed after the object. */
593 off += sizeof(void *);
594
595 if (s->flags & SLAB_STORE_USER)
596 /* We also have user information there */
597 off += 2 * sizeof(struct track);
598
599 if (s->size == off)
600 return 1;
601
602 return check_bytes_and_report(s, page, p, "Object padding",
603 p + off, POISON_INUSE, s->size - off);
604 }
605
606 /* Check the pad bytes at the end of a slab page */
607 static int slab_pad_check(struct kmem_cache *s, struct page *page)
608 {
609 u8 *start;
610 u8 *fault;
611 u8 *end;
612 int length;
613 int remainder;
614
615 if (!(s->flags & SLAB_POISON))
616 return 1;
617
618 start = page_address(page);
619 length = (PAGE_SIZE << compound_order(page));
620 end = start + length;
621 remainder = length % s->size;
622 if (!remainder)
623 return 1;
624
625 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
626 if (!fault)
627 return 1;
628 while (end > fault && end[-1] == POISON_INUSE)
629 end--;
630
631 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
632 print_section("Padding", end - remainder, remainder);
633
634 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
635 return 0;
636 }
637
638 static int check_object(struct kmem_cache *s, struct page *page,
639 void *object, int active)
640 {
641 u8 *p = object;
642 u8 *endobject = object + s->objsize;
643
644 if (s->flags & SLAB_RED_ZONE) {
645 unsigned int red =
646 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
647
648 if (!check_bytes_and_report(s, page, object, "Redzone",
649 endobject, red, s->inuse - s->objsize))
650 return 0;
651 } else {
652 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
653 check_bytes_and_report(s, page, p, "Alignment padding",
654 endobject, POISON_INUSE, s->inuse - s->objsize);
655 }
656 }
657
658 if (s->flags & SLAB_POISON) {
659 if (!active && (s->flags & __OBJECT_POISON) &&
660 (!check_bytes_and_report(s, page, p, "Poison", p,
661 POISON_FREE, s->objsize - 1) ||
662 !check_bytes_and_report(s, page, p, "Poison",
663 p + s->objsize - 1, POISON_END, 1)))
664 return 0;
665 /*
666 * check_pad_bytes cleans up on its own.
667 */
668 check_pad_bytes(s, page, p);
669 }
670
671 if (!s->offset && active)
672 /*
673 * Object and freepointer overlap. Cannot check
674 * freepointer while object is allocated.
675 */
676 return 1;
677
678 /* Check free pointer validity */
679 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
680 object_err(s, page, p, "Freepointer corrupt");
681 /*
682 * No choice but to zap it and thus lose the remainder
683 * of the free objects in this slab. May cause
684 * another error because the object count is now wrong.
685 */
686 set_freepointer(s, p, NULL);
687 return 0;
688 }
689 return 1;
690 }
691
692 static int check_slab(struct kmem_cache *s, struct page *page)
693 {
694 int maxobj;
695
696 VM_BUG_ON(!irqs_disabled());
697
698 if (!PageSlab(page)) {
699 slab_err(s, page, "Not a valid slab page");
700 return 0;
701 }
702
703 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
704 if (page->objects > maxobj) {
705 slab_err(s, page, "objects %u > max %u",
706 s->name, page->objects, maxobj);
707 return 0;
708 }
709 if (page->inuse > page->objects) {
710 slab_err(s, page, "inuse %u > max %u",
711 s->name, page->inuse, page->objects);
712 return 0;
713 }
714 /* Slab_pad_check fixes things up after itself */
715 slab_pad_check(s, page);
716 return 1;
717 }
718
719 /*
720 * Determine if a certain object on a page is on the freelist. Must hold the
721 * slab lock to guarantee that the chains are in a consistent state.
722 */
723 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
724 {
725 int nr = 0;
726 void *fp = page->freelist;
727 void *object = NULL;
728 unsigned long max_objects;
729
730 while (fp && nr <= page->objects) {
731 if (fp == search)
732 return 1;
733 if (!check_valid_pointer(s, page, fp)) {
734 if (object) {
735 object_err(s, page, object,
736 "Freechain corrupt");
737 set_freepointer(s, object, NULL);
738 break;
739 } else {
740 slab_err(s, page, "Freepointer corrupt");
741 page->freelist = NULL;
742 page->inuse = page->objects;
743 slab_fix(s, "Freelist cleared");
744 return 0;
745 }
746 break;
747 }
748 object = fp;
749 fp = get_freepointer(s, object);
750 nr++;
751 }
752
753 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
754 if (max_objects > MAX_OBJS_PER_PAGE)
755 max_objects = MAX_OBJS_PER_PAGE;
756
757 if (page->objects != max_objects) {
758 slab_err(s, page, "Wrong number of objects. Found %d but "
759 "should be %d", page->objects, max_objects);
760 page->objects = max_objects;
761 slab_fix(s, "Number of objects adjusted.");
762 }
763 if (page->inuse != page->objects - nr) {
764 slab_err(s, page, "Wrong object count. Counter is %d but "
765 "counted were %d", page->inuse, page->objects - nr);
766 page->inuse = page->objects - nr;
767 slab_fix(s, "Object count adjusted.");
768 }
769 return search == NULL;
770 }
771
772 static void trace(struct kmem_cache *s, struct page *page, void *object,
773 int alloc)
774 {
775 if (s->flags & SLAB_TRACE) {
776 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
777 s->name,
778 alloc ? "alloc" : "free",
779 object, page->inuse,
780 page->freelist);
781
782 if (!alloc)
783 print_section("Object", (void *)object, s->objsize);
784
785 dump_stack();
786 }
787 }
788
789 /*
790 * Tracking of fully allocated slabs for debugging purposes.
791 */
792 static void add_full(struct kmem_cache_node *n, struct page *page)
793 {
794 spin_lock(&n->list_lock);
795 list_add(&page->lru, &n->full);
796 spin_unlock(&n->list_lock);
797 }
798
799 static void remove_full(struct kmem_cache *s, struct page *page)
800 {
801 struct kmem_cache_node *n;
802
803 if (!(s->flags & SLAB_STORE_USER))
804 return;
805
806 n = get_node(s, page_to_nid(page));
807
808 spin_lock(&n->list_lock);
809 list_del(&page->lru);
810 spin_unlock(&n->list_lock);
811 }
812
813 /* Tracking of the number of slabs for debugging purposes */
814 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
815 {
816 struct kmem_cache_node *n = get_node(s, node);
817
818 return atomic_long_read(&n->nr_slabs);
819 }
820
821 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
822 {
823 return atomic_long_read(&n->nr_slabs);
824 }
825
826 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
827 {
828 struct kmem_cache_node *n = get_node(s, node);
829
830 /*
831 * May be called early in order to allocate a slab for the
832 * kmem_cache_node structure. Solve the chicken-egg
833 * dilemma by deferring the increment of the count during
834 * bootstrap (see early_kmem_cache_node_alloc).
835 */
836 if (!NUMA_BUILD || n) {
837 atomic_long_inc(&n->nr_slabs);
838 atomic_long_add(objects, &n->total_objects);
839 }
840 }
841 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
842 {
843 struct kmem_cache_node *n = get_node(s, node);
844
845 atomic_long_dec(&n->nr_slabs);
846 atomic_long_sub(objects, &n->total_objects);
847 }
848
849 /* Object debug checks for alloc/free paths */
850 static void setup_object_debug(struct kmem_cache *s, struct page *page,
851 void *object)
852 {
853 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
854 return;
855
856 init_object(s, object, 0);
857 init_tracking(s, object);
858 }
859
860 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
861 void *object, unsigned long addr)
862 {
863 if (!check_slab(s, page))
864 goto bad;
865
866 if (!on_freelist(s, page, object)) {
867 object_err(s, page, object, "Object already allocated");
868 goto bad;
869 }
870
871 if (!check_valid_pointer(s, page, object)) {
872 object_err(s, page, object, "Freelist Pointer check fails");
873 goto bad;
874 }
875
876 if (!check_object(s, page, object, 0))
877 goto bad;
878
879 /* Success perform special debug activities for allocs */
880 if (s->flags & SLAB_STORE_USER)
881 set_track(s, object, TRACK_ALLOC, addr);
882 trace(s, page, object, 1);
883 init_object(s, object, 1);
884 return 1;
885
886 bad:
887 if (PageSlab(page)) {
888 /*
889 * If this is a slab page then lets do the best we can
890 * to avoid issues in the future. Marking all objects
891 * as used avoids touching the remaining objects.
892 */
893 slab_fix(s, "Marking all objects used");
894 page->inuse = page->objects;
895 page->freelist = NULL;
896 }
897 return 0;
898 }
899
900 static int free_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, unsigned long addr)
902 {
903 if (!check_slab(s, page))
904 goto fail;
905
906 if (!check_valid_pointer(s, page, object)) {
907 slab_err(s, page, "Invalid object pointer 0x%p", object);
908 goto fail;
909 }
910
911 if (on_freelist(s, page, object)) {
912 object_err(s, page, object, "Object already free");
913 goto fail;
914 }
915
916 if (!check_object(s, page, object, 1))
917 return 0;
918
919 if (unlikely(s != page->slab)) {
920 if (!PageSlab(page)) {
921 slab_err(s, page, "Attempt to free object(0x%p) "
922 "outside of slab", object);
923 } else if (!page->slab) {
924 printk(KERN_ERR
925 "SLUB <none>: no slab for object 0x%p.\n",
926 object);
927 dump_stack();
928 } else
929 object_err(s, page, object,
930 "page slab pointer corrupt.");
931 goto fail;
932 }
933
934 /* Special debug activities for freeing objects */
935 if (!PageSlubFrozen(page) && !page->freelist)
936 remove_full(s, page);
937 if (s->flags & SLAB_STORE_USER)
938 set_track(s, object, TRACK_FREE, addr);
939 trace(s, page, object, 0);
940 init_object(s, object, 0);
941 return 1;
942
943 fail:
944 slab_fix(s, "Object at 0x%p not freed", object);
945 return 0;
946 }
947
948 static int __init setup_slub_debug(char *str)
949 {
950 slub_debug = DEBUG_DEFAULT_FLAGS;
951 if (*str++ != '=' || !*str)
952 /*
953 * No options specified. Switch on full debugging.
954 */
955 goto out;
956
957 if (*str == ',')
958 /*
959 * No options but restriction on slabs. This means full
960 * debugging for slabs matching a pattern.
961 */
962 goto check_slabs;
963
964 if (tolower(*str) == 'o') {
965 /*
966 * Avoid enabling debugging on caches if its minimum order
967 * would increase as a result.
968 */
969 disable_higher_order_debug = 1;
970 goto out;
971 }
972
973 slub_debug = 0;
974 if (*str == '-')
975 /*
976 * Switch off all debugging measures.
977 */
978 goto out;
979
980 /*
981 * Determine which debug features should be switched on
982 */
983 for (; *str && *str != ','; str++) {
984 switch (tolower(*str)) {
985 case 'f':
986 slub_debug |= SLAB_DEBUG_FREE;
987 break;
988 case 'z':
989 slub_debug |= SLAB_RED_ZONE;
990 break;
991 case 'p':
992 slub_debug |= SLAB_POISON;
993 break;
994 case 'u':
995 slub_debug |= SLAB_STORE_USER;
996 break;
997 case 't':
998 slub_debug |= SLAB_TRACE;
999 break;
1000 case 'a':
1001 slub_debug |= SLAB_FAILSLAB;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1006 }
1007 }
1008
1009 check_slabs:
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
1012 out:
1013 return 1;
1014 }
1015
1016 __setup("slub_debug", setup_slub_debug);
1017
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1021 {
1022 /*
1023 * Enable debugging if selected on the kernel commandline.
1024 */
1025 if (slub_debug && (!slub_debug_slabs ||
1026 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1027 flags |= slub_debug;
1028
1029 return flags;
1030 }
1031 #else
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1034
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1037
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1040
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1042 { return 1; }
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1049 {
1050 return flags;
1051 }
1052 #define slub_debug 0
1053
1054 #define disable_higher_order_debug 0
1055
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 { return 0; }
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 #endif
1065
1066 /*
1067 * Slab allocation and freeing
1068 */
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071 {
1072 int order = oo_order(oo);
1073
1074 flags |= __GFP_NOTRACK;
1075
1076 if (node == -1)
1077 return alloc_pages(flags, order);
1078 else
1079 return alloc_pages_exact_node(node, flags, order);
1080 }
1081
1082 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1083 {
1084 struct page *page;
1085 struct kmem_cache_order_objects oo = s->oo;
1086 gfp_t alloc_gfp;
1087
1088 flags |= s->allocflags;
1089
1090 /*
1091 * Let the initial higher-order allocation fail under memory pressure
1092 * so we fall-back to the minimum order allocation.
1093 */
1094 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1095
1096 page = alloc_slab_page(alloc_gfp, node, oo);
1097 if (unlikely(!page)) {
1098 oo = s->min;
1099 /*
1100 * Allocation may have failed due to fragmentation.
1101 * Try a lower order alloc if possible
1102 */
1103 page = alloc_slab_page(flags, node, oo);
1104 if (!page)
1105 return NULL;
1106
1107 stat(s, ORDER_FALLBACK);
1108 }
1109
1110 if (kmemcheck_enabled
1111 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1112 int pages = 1 << oo_order(oo);
1113
1114 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1115
1116 /*
1117 * Objects from caches that have a constructor don't get
1118 * cleared when they're allocated, so we need to do it here.
1119 */
1120 if (s->ctor)
1121 kmemcheck_mark_uninitialized_pages(page, pages);
1122 else
1123 kmemcheck_mark_unallocated_pages(page, pages);
1124 }
1125
1126 page->objects = oo_objects(oo);
1127 mod_zone_page_state(page_zone(page),
1128 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1129 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1130 1 << oo_order(oo));
1131
1132 return page;
1133 }
1134
1135 static void setup_object(struct kmem_cache *s, struct page *page,
1136 void *object)
1137 {
1138 setup_object_debug(s, page, object);
1139 if (unlikely(s->ctor))
1140 s->ctor(object);
1141 }
1142
1143 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1144 {
1145 struct page *page;
1146 void *start;
1147 void *last;
1148 void *p;
1149
1150 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1151
1152 page = allocate_slab(s,
1153 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1154 if (!page)
1155 goto out;
1156
1157 inc_slabs_node(s, page_to_nid(page), page->objects);
1158 page->slab = s;
1159 page->flags |= 1 << PG_slab;
1160 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1161 SLAB_STORE_USER | SLAB_TRACE))
1162 __SetPageSlubDebug(page);
1163
1164 start = page_address(page);
1165
1166 if (unlikely(s->flags & SLAB_POISON))
1167 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1168
1169 last = start;
1170 for_each_object(p, s, start, page->objects) {
1171 setup_object(s, page, last);
1172 set_freepointer(s, last, p);
1173 last = p;
1174 }
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, NULL);
1177
1178 page->freelist = start;
1179 page->inuse = 0;
1180 out:
1181 return page;
1182 }
1183
1184 static void __free_slab(struct kmem_cache *s, struct page *page)
1185 {
1186 int order = compound_order(page);
1187 int pages = 1 << order;
1188
1189 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1190 void *p;
1191
1192 slab_pad_check(s, page);
1193 for_each_object(p, s, page_address(page),
1194 page->objects)
1195 check_object(s, page, p, 0);
1196 __ClearPageSlubDebug(page);
1197 }
1198
1199 kmemcheck_free_shadow(page, compound_order(page));
1200
1201 mod_zone_page_state(page_zone(page),
1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1204 -pages);
1205
1206 __ClearPageSlab(page);
1207 reset_page_mapcount(page);
1208 if (current->reclaim_state)
1209 current->reclaim_state->reclaimed_slab += pages;
1210 __free_pages(page, order);
1211 }
1212
1213 static void rcu_free_slab(struct rcu_head *h)
1214 {
1215 struct page *page;
1216
1217 page = container_of((struct list_head *)h, struct page, lru);
1218 __free_slab(page->slab, page);
1219 }
1220
1221 static void free_slab(struct kmem_cache *s, struct page *page)
1222 {
1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1224 /*
1225 * RCU free overloads the RCU head over the LRU
1226 */
1227 struct rcu_head *head = (void *)&page->lru;
1228
1229 call_rcu(head, rcu_free_slab);
1230 } else
1231 __free_slab(s, page);
1232 }
1233
1234 static void discard_slab(struct kmem_cache *s, struct page *page)
1235 {
1236 dec_slabs_node(s, page_to_nid(page), page->objects);
1237 free_slab(s, page);
1238 }
1239
1240 /*
1241 * Per slab locking using the pagelock
1242 */
1243 static __always_inline void slab_lock(struct page *page)
1244 {
1245 bit_spin_lock(PG_locked, &page->flags);
1246 }
1247
1248 static __always_inline void slab_unlock(struct page *page)
1249 {
1250 __bit_spin_unlock(PG_locked, &page->flags);
1251 }
1252
1253 static __always_inline int slab_trylock(struct page *page)
1254 {
1255 int rc = 1;
1256
1257 rc = bit_spin_trylock(PG_locked, &page->flags);
1258 return rc;
1259 }
1260
1261 /*
1262 * Management of partially allocated slabs
1263 */
1264 static void add_partial(struct kmem_cache_node *n,
1265 struct page *page, int tail)
1266 {
1267 spin_lock(&n->list_lock);
1268 n->nr_partial++;
1269 if (tail)
1270 list_add_tail(&page->lru, &n->partial);
1271 else
1272 list_add(&page->lru, &n->partial);
1273 spin_unlock(&n->list_lock);
1274 }
1275
1276 static void remove_partial(struct kmem_cache *s, struct page *page)
1277 {
1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1279
1280 spin_lock(&n->list_lock);
1281 list_del(&page->lru);
1282 n->nr_partial--;
1283 spin_unlock(&n->list_lock);
1284 }
1285
1286 /*
1287 * Lock slab and remove from the partial list.
1288 *
1289 * Must hold list_lock.
1290 */
1291 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1292 struct page *page)
1293 {
1294 if (slab_trylock(page)) {
1295 list_del(&page->lru);
1296 n->nr_partial--;
1297 __SetPageSlubFrozen(page);
1298 return 1;
1299 }
1300 return 0;
1301 }
1302
1303 /*
1304 * Try to allocate a partial slab from a specific node.
1305 */
1306 static struct page *get_partial_node(struct kmem_cache_node *n)
1307 {
1308 struct page *page;
1309
1310 /*
1311 * Racy check. If we mistakenly see no partial slabs then we
1312 * just allocate an empty slab. If we mistakenly try to get a
1313 * partial slab and there is none available then get_partials()
1314 * will return NULL.
1315 */
1316 if (!n || !n->nr_partial)
1317 return NULL;
1318
1319 spin_lock(&n->list_lock);
1320 list_for_each_entry(page, &n->partial, lru)
1321 if (lock_and_freeze_slab(n, page))
1322 goto out;
1323 page = NULL;
1324 out:
1325 spin_unlock(&n->list_lock);
1326 return page;
1327 }
1328
1329 /*
1330 * Get a page from somewhere. Search in increasing NUMA distances.
1331 */
1332 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1333 {
1334 #ifdef CONFIG_NUMA
1335 struct zonelist *zonelist;
1336 struct zoneref *z;
1337 struct zone *zone;
1338 enum zone_type high_zoneidx = gfp_zone(flags);
1339 struct page *page;
1340
1341 /*
1342 * The defrag ratio allows a configuration of the tradeoffs between
1343 * inter node defragmentation and node local allocations. A lower
1344 * defrag_ratio increases the tendency to do local allocations
1345 * instead of attempting to obtain partial slabs from other nodes.
1346 *
1347 * If the defrag_ratio is set to 0 then kmalloc() always
1348 * returns node local objects. If the ratio is higher then kmalloc()
1349 * may return off node objects because partial slabs are obtained
1350 * from other nodes and filled up.
1351 *
1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1353 * defrag_ratio = 1000) then every (well almost) allocation will
1354 * first attempt to defrag slab caches on other nodes. This means
1355 * scanning over all nodes to look for partial slabs which may be
1356 * expensive if we do it every time we are trying to find a slab
1357 * with available objects.
1358 */
1359 if (!s->remote_node_defrag_ratio ||
1360 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1361 return NULL;
1362
1363 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1364 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1365 struct kmem_cache_node *n;
1366
1367 n = get_node(s, zone_to_nid(zone));
1368
1369 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1370 n->nr_partial > s->min_partial) {
1371 page = get_partial_node(n);
1372 if (page)
1373 return page;
1374 }
1375 }
1376 #endif
1377 return NULL;
1378 }
1379
1380 /*
1381 * Get a partial page, lock it and return it.
1382 */
1383 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1384 {
1385 struct page *page;
1386 int searchnode = (node == -1) ? numa_node_id() : node;
1387
1388 page = get_partial_node(get_node(s, searchnode));
1389 if (page || (flags & __GFP_THISNODE))
1390 return page;
1391
1392 return get_any_partial(s, flags);
1393 }
1394
1395 /*
1396 * Move a page back to the lists.
1397 *
1398 * Must be called with the slab lock held.
1399 *
1400 * On exit the slab lock will have been dropped.
1401 */
1402 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1403 {
1404 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1405
1406 __ClearPageSlubFrozen(page);
1407 if (page->inuse) {
1408
1409 if (page->freelist) {
1410 add_partial(n, page, tail);
1411 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1412 } else {
1413 stat(s, DEACTIVATE_FULL);
1414 if (SLABDEBUG && PageSlubDebug(page) &&
1415 (s->flags & SLAB_STORE_USER))
1416 add_full(n, page);
1417 }
1418 slab_unlock(page);
1419 } else {
1420 stat(s, DEACTIVATE_EMPTY);
1421 if (n->nr_partial < s->min_partial) {
1422 /*
1423 * Adding an empty slab to the partial slabs in order
1424 * to avoid page allocator overhead. This slab needs
1425 * to come after the other slabs with objects in
1426 * so that the others get filled first. That way the
1427 * size of the partial list stays small.
1428 *
1429 * kmem_cache_shrink can reclaim any empty slabs from
1430 * the partial list.
1431 */
1432 add_partial(n, page, 1);
1433 slab_unlock(page);
1434 } else {
1435 slab_unlock(page);
1436 stat(s, FREE_SLAB);
1437 discard_slab(s, page);
1438 }
1439 }
1440 }
1441
1442 /*
1443 * Remove the cpu slab
1444 */
1445 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1446 {
1447 struct page *page = c->page;
1448 int tail = 1;
1449
1450 if (page->freelist)
1451 stat(s, DEACTIVATE_REMOTE_FREES);
1452 /*
1453 * Merge cpu freelist into slab freelist. Typically we get here
1454 * because both freelists are empty. So this is unlikely
1455 * to occur.
1456 */
1457 while (unlikely(c->freelist)) {
1458 void **object;
1459
1460 tail = 0; /* Hot objects. Put the slab first */
1461
1462 /* Retrieve object from cpu_freelist */
1463 object = c->freelist;
1464 c->freelist = get_freepointer(s, c->freelist);
1465
1466 /* And put onto the regular freelist */
1467 set_freepointer(s, object, page->freelist);
1468 page->freelist = object;
1469 page->inuse--;
1470 }
1471 c->page = NULL;
1472 unfreeze_slab(s, page, tail);
1473 }
1474
1475 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1476 {
1477 stat(s, CPUSLAB_FLUSH);
1478 slab_lock(c->page);
1479 deactivate_slab(s, c);
1480 }
1481
1482 /*
1483 * Flush cpu slab.
1484 *
1485 * Called from IPI handler with interrupts disabled.
1486 */
1487 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1488 {
1489 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1490
1491 if (likely(c && c->page))
1492 flush_slab(s, c);
1493 }
1494
1495 static void flush_cpu_slab(void *d)
1496 {
1497 struct kmem_cache *s = d;
1498
1499 __flush_cpu_slab(s, smp_processor_id());
1500 }
1501
1502 static void flush_all(struct kmem_cache *s)
1503 {
1504 on_each_cpu(flush_cpu_slab, s, 1);
1505 }
1506
1507 /*
1508 * Check if the objects in a per cpu structure fit numa
1509 * locality expectations.
1510 */
1511 static inline int node_match(struct kmem_cache_cpu *c, int node)
1512 {
1513 #ifdef CONFIG_NUMA
1514 if (node != -1 && c->node != node)
1515 return 0;
1516 #endif
1517 return 1;
1518 }
1519
1520 static int count_free(struct page *page)
1521 {
1522 return page->objects - page->inuse;
1523 }
1524
1525 static unsigned long count_partial(struct kmem_cache_node *n,
1526 int (*get_count)(struct page *))
1527 {
1528 unsigned long flags;
1529 unsigned long x = 0;
1530 struct page *page;
1531
1532 spin_lock_irqsave(&n->list_lock, flags);
1533 list_for_each_entry(page, &n->partial, lru)
1534 x += get_count(page);
1535 spin_unlock_irqrestore(&n->list_lock, flags);
1536 return x;
1537 }
1538
1539 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1540 {
1541 #ifdef CONFIG_SLUB_DEBUG
1542 return atomic_long_read(&n->total_objects);
1543 #else
1544 return 0;
1545 #endif
1546 }
1547
1548 static noinline void
1549 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1550 {
1551 int node;
1552
1553 printk(KERN_WARNING
1554 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1555 nid, gfpflags);
1556 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1557 "default order: %d, min order: %d\n", s->name, s->objsize,
1558 s->size, oo_order(s->oo), oo_order(s->min));
1559
1560 if (oo_order(s->min) > get_order(s->objsize))
1561 printk(KERN_WARNING " %s debugging increased min order, use "
1562 "slub_debug=O to disable.\n", s->name);
1563
1564 for_each_online_node(node) {
1565 struct kmem_cache_node *n = get_node(s, node);
1566 unsigned long nr_slabs;
1567 unsigned long nr_objs;
1568 unsigned long nr_free;
1569
1570 if (!n)
1571 continue;
1572
1573 nr_free = count_partial(n, count_free);
1574 nr_slabs = node_nr_slabs(n);
1575 nr_objs = node_nr_objs(n);
1576
1577 printk(KERN_WARNING
1578 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1579 node, nr_slabs, nr_objs, nr_free);
1580 }
1581 }
1582
1583 /*
1584 * Slow path. The lockless freelist is empty or we need to perform
1585 * debugging duties.
1586 *
1587 * Interrupts are disabled.
1588 *
1589 * Processing is still very fast if new objects have been freed to the
1590 * regular freelist. In that case we simply take over the regular freelist
1591 * as the lockless freelist and zap the regular freelist.
1592 *
1593 * If that is not working then we fall back to the partial lists. We take the
1594 * first element of the freelist as the object to allocate now and move the
1595 * rest of the freelist to the lockless freelist.
1596 *
1597 * And if we were unable to get a new slab from the partial slab lists then
1598 * we need to allocate a new slab. This is the slowest path since it involves
1599 * a call to the page allocator and the setup of a new slab.
1600 */
1601 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1602 unsigned long addr, struct kmem_cache_cpu *c)
1603 {
1604 void **object;
1605 struct page *new;
1606
1607 /* We handle __GFP_ZERO in the caller */
1608 gfpflags &= ~__GFP_ZERO;
1609
1610 if (!c->page)
1611 goto new_slab;
1612
1613 slab_lock(c->page);
1614 if (unlikely(!node_match(c, node)))
1615 goto another_slab;
1616
1617 stat(s, ALLOC_REFILL);
1618
1619 load_freelist:
1620 object = c->page->freelist;
1621 if (unlikely(!object))
1622 goto another_slab;
1623 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1624 goto debug;
1625
1626 c->freelist = get_freepointer(s, object);
1627 c->page->inuse = c->page->objects;
1628 c->page->freelist = NULL;
1629 c->node = page_to_nid(c->page);
1630 unlock_out:
1631 slab_unlock(c->page);
1632 stat(s, ALLOC_SLOWPATH);
1633 return object;
1634
1635 another_slab:
1636 deactivate_slab(s, c);
1637
1638 new_slab:
1639 new = get_partial(s, gfpflags, node);
1640 if (new) {
1641 c->page = new;
1642 stat(s, ALLOC_FROM_PARTIAL);
1643 goto load_freelist;
1644 }
1645
1646 if (gfpflags & __GFP_WAIT)
1647 local_irq_enable();
1648
1649 new = new_slab(s, gfpflags, node);
1650
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_disable();
1653
1654 if (new) {
1655 c = __this_cpu_ptr(s->cpu_slab);
1656 stat(s, ALLOC_SLAB);
1657 if (c->page)
1658 flush_slab(s, c);
1659 slab_lock(new);
1660 __SetPageSlubFrozen(new);
1661 c->page = new;
1662 goto load_freelist;
1663 }
1664 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1665 slab_out_of_memory(s, gfpflags, node);
1666 return NULL;
1667 debug:
1668 if (!alloc_debug_processing(s, c->page, object, addr))
1669 goto another_slab;
1670
1671 c->page->inuse++;
1672 c->page->freelist = get_freepointer(s, object);
1673 c->node = -1;
1674 goto unlock_out;
1675 }
1676
1677 /*
1678 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1679 * have the fastpath folded into their functions. So no function call
1680 * overhead for requests that can be satisfied on the fastpath.
1681 *
1682 * The fastpath works by first checking if the lockless freelist can be used.
1683 * If not then __slab_alloc is called for slow processing.
1684 *
1685 * Otherwise we can simply pick the next object from the lockless free list.
1686 */
1687 static __always_inline void *slab_alloc(struct kmem_cache *s,
1688 gfp_t gfpflags, int node, unsigned long addr)
1689 {
1690 void **object;
1691 struct kmem_cache_cpu *c;
1692 unsigned long flags;
1693
1694 gfpflags &= gfp_allowed_mask;
1695
1696 lockdep_trace_alloc(gfpflags);
1697 might_sleep_if(gfpflags & __GFP_WAIT);
1698
1699 if (should_failslab(s->objsize, gfpflags, s->flags))
1700 return NULL;
1701
1702 local_irq_save(flags);
1703 c = __this_cpu_ptr(s->cpu_slab);
1704 object = c->freelist;
1705 if (unlikely(!object || !node_match(c, node)))
1706
1707 object = __slab_alloc(s, gfpflags, node, addr, c);
1708
1709 else {
1710 c->freelist = get_freepointer(s, object);
1711 stat(s, ALLOC_FASTPATH);
1712 }
1713 local_irq_restore(flags);
1714
1715 if (unlikely(gfpflags & __GFP_ZERO) && object)
1716 memset(object, 0, s->objsize);
1717
1718 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1719 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1720
1721 return object;
1722 }
1723
1724 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1725 {
1726 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1727
1728 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1729
1730 return ret;
1731 }
1732 EXPORT_SYMBOL(kmem_cache_alloc);
1733
1734 #ifdef CONFIG_TRACING
1735 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1736 {
1737 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1738 }
1739 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1740 #endif
1741
1742 #ifdef CONFIG_NUMA
1743 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1744 {
1745 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1746
1747 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1748 s->objsize, s->size, gfpflags, node);
1749
1750 return ret;
1751 }
1752 EXPORT_SYMBOL(kmem_cache_alloc_node);
1753 #endif
1754
1755 #ifdef CONFIG_TRACING
1756 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1757 gfp_t gfpflags,
1758 int node)
1759 {
1760 return slab_alloc(s, gfpflags, node, _RET_IP_);
1761 }
1762 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1763 #endif
1764
1765 /*
1766 * Slow patch handling. This may still be called frequently since objects
1767 * have a longer lifetime than the cpu slabs in most processing loads.
1768 *
1769 * So we still attempt to reduce cache line usage. Just take the slab
1770 * lock and free the item. If there is no additional partial page
1771 * handling required then we can return immediately.
1772 */
1773 static void __slab_free(struct kmem_cache *s, struct page *page,
1774 void *x, unsigned long addr)
1775 {
1776 void *prior;
1777 void **object = (void *)x;
1778
1779 stat(s, FREE_SLOWPATH);
1780 slab_lock(page);
1781
1782 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1783 goto debug;
1784
1785 checks_ok:
1786 prior = page->freelist;
1787 set_freepointer(s, object, prior);
1788 page->freelist = object;
1789 page->inuse--;
1790
1791 if (unlikely(PageSlubFrozen(page))) {
1792 stat(s, FREE_FROZEN);
1793 goto out_unlock;
1794 }
1795
1796 if (unlikely(!page->inuse))
1797 goto slab_empty;
1798
1799 /*
1800 * Objects left in the slab. If it was not on the partial list before
1801 * then add it.
1802 */
1803 if (unlikely(!prior)) {
1804 add_partial(get_node(s, page_to_nid(page)), page, 1);
1805 stat(s, FREE_ADD_PARTIAL);
1806 }
1807
1808 out_unlock:
1809 slab_unlock(page);
1810 return;
1811
1812 slab_empty:
1813 if (prior) {
1814 /*
1815 * Slab still on the partial list.
1816 */
1817 remove_partial(s, page);
1818 stat(s, FREE_REMOVE_PARTIAL);
1819 }
1820 slab_unlock(page);
1821 stat(s, FREE_SLAB);
1822 discard_slab(s, page);
1823 return;
1824
1825 debug:
1826 if (!free_debug_processing(s, page, x, addr))
1827 goto out_unlock;
1828 goto checks_ok;
1829 }
1830
1831 /*
1832 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1833 * can perform fastpath freeing without additional function calls.
1834 *
1835 * The fastpath is only possible if we are freeing to the current cpu slab
1836 * of this processor. This typically the case if we have just allocated
1837 * the item before.
1838 *
1839 * If fastpath is not possible then fall back to __slab_free where we deal
1840 * with all sorts of special processing.
1841 */
1842 static __always_inline void slab_free(struct kmem_cache *s,
1843 struct page *page, void *x, unsigned long addr)
1844 {
1845 void **object = (void *)x;
1846 struct kmem_cache_cpu *c;
1847 unsigned long flags;
1848
1849 kmemleak_free_recursive(x, s->flags);
1850 local_irq_save(flags);
1851 c = __this_cpu_ptr(s->cpu_slab);
1852 kmemcheck_slab_free(s, object, s->objsize);
1853 debug_check_no_locks_freed(object, s->objsize);
1854 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1855 debug_check_no_obj_freed(object, s->objsize);
1856 if (likely(page == c->page && c->node >= 0)) {
1857 set_freepointer(s, object, c->freelist);
1858 c->freelist = object;
1859 stat(s, FREE_FASTPATH);
1860 } else
1861 __slab_free(s, page, x, addr);
1862
1863 local_irq_restore(flags);
1864 }
1865
1866 void kmem_cache_free(struct kmem_cache *s, void *x)
1867 {
1868 struct page *page;
1869
1870 page = virt_to_head_page(x);
1871
1872 slab_free(s, page, x, _RET_IP_);
1873
1874 trace_kmem_cache_free(_RET_IP_, x);
1875 }
1876 EXPORT_SYMBOL(kmem_cache_free);
1877
1878 /* Figure out on which slab page the object resides */
1879 static struct page *get_object_page(const void *x)
1880 {
1881 struct page *page = virt_to_head_page(x);
1882
1883 if (!PageSlab(page))
1884 return NULL;
1885
1886 return page;
1887 }
1888
1889 /*
1890 * Object placement in a slab is made very easy because we always start at
1891 * offset 0. If we tune the size of the object to the alignment then we can
1892 * get the required alignment by putting one properly sized object after
1893 * another.
1894 *
1895 * Notice that the allocation order determines the sizes of the per cpu
1896 * caches. Each processor has always one slab available for allocations.
1897 * Increasing the allocation order reduces the number of times that slabs
1898 * must be moved on and off the partial lists and is therefore a factor in
1899 * locking overhead.
1900 */
1901
1902 /*
1903 * Mininum / Maximum order of slab pages. This influences locking overhead
1904 * and slab fragmentation. A higher order reduces the number of partial slabs
1905 * and increases the number of allocations possible without having to
1906 * take the list_lock.
1907 */
1908 static int slub_min_order;
1909 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1910 static int slub_min_objects;
1911
1912 /*
1913 * Merge control. If this is set then no merging of slab caches will occur.
1914 * (Could be removed. This was introduced to pacify the merge skeptics.)
1915 */
1916 static int slub_nomerge;
1917
1918 /*
1919 * Calculate the order of allocation given an slab object size.
1920 *
1921 * The order of allocation has significant impact on performance and other
1922 * system components. Generally order 0 allocations should be preferred since
1923 * order 0 does not cause fragmentation in the page allocator. Larger objects
1924 * be problematic to put into order 0 slabs because there may be too much
1925 * unused space left. We go to a higher order if more than 1/16th of the slab
1926 * would be wasted.
1927 *
1928 * In order to reach satisfactory performance we must ensure that a minimum
1929 * number of objects is in one slab. Otherwise we may generate too much
1930 * activity on the partial lists which requires taking the list_lock. This is
1931 * less a concern for large slabs though which are rarely used.
1932 *
1933 * slub_max_order specifies the order where we begin to stop considering the
1934 * number of objects in a slab as critical. If we reach slub_max_order then
1935 * we try to keep the page order as low as possible. So we accept more waste
1936 * of space in favor of a small page order.
1937 *
1938 * Higher order allocations also allow the placement of more objects in a
1939 * slab and thereby reduce object handling overhead. If the user has
1940 * requested a higher mininum order then we start with that one instead of
1941 * the smallest order which will fit the object.
1942 */
1943 static inline int slab_order(int size, int min_objects,
1944 int max_order, int fract_leftover)
1945 {
1946 int order;
1947 int rem;
1948 int min_order = slub_min_order;
1949
1950 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1951 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1952
1953 for (order = max(min_order,
1954 fls(min_objects * size - 1) - PAGE_SHIFT);
1955 order <= max_order; order++) {
1956
1957 unsigned long slab_size = PAGE_SIZE << order;
1958
1959 if (slab_size < min_objects * size)
1960 continue;
1961
1962 rem = slab_size % size;
1963
1964 if (rem <= slab_size / fract_leftover)
1965 break;
1966
1967 }
1968
1969 return order;
1970 }
1971
1972 static inline int calculate_order(int size)
1973 {
1974 int order;
1975 int min_objects;
1976 int fraction;
1977 int max_objects;
1978
1979 /*
1980 * Attempt to find best configuration for a slab. This
1981 * works by first attempting to generate a layout with
1982 * the best configuration and backing off gradually.
1983 *
1984 * First we reduce the acceptable waste in a slab. Then
1985 * we reduce the minimum objects required in a slab.
1986 */
1987 min_objects = slub_min_objects;
1988 if (!min_objects)
1989 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1990 max_objects = (PAGE_SIZE << slub_max_order)/size;
1991 min_objects = min(min_objects, max_objects);
1992
1993 while (min_objects > 1) {
1994 fraction = 16;
1995 while (fraction >= 4) {
1996 order = slab_order(size, min_objects,
1997 slub_max_order, fraction);
1998 if (order <= slub_max_order)
1999 return order;
2000 fraction /= 2;
2001 }
2002 min_objects--;
2003 }
2004
2005 /*
2006 * We were unable to place multiple objects in a slab. Now
2007 * lets see if we can place a single object there.
2008 */
2009 order = slab_order(size, 1, slub_max_order, 1);
2010 if (order <= slub_max_order)
2011 return order;
2012
2013 /*
2014 * Doh this slab cannot be placed using slub_max_order.
2015 */
2016 order = slab_order(size, 1, MAX_ORDER, 1);
2017 if (order < MAX_ORDER)
2018 return order;
2019 return -ENOSYS;
2020 }
2021
2022 /*
2023 * Figure out what the alignment of the objects will be.
2024 */
2025 static unsigned long calculate_alignment(unsigned long flags,
2026 unsigned long align, unsigned long size)
2027 {
2028 /*
2029 * If the user wants hardware cache aligned objects then follow that
2030 * suggestion if the object is sufficiently large.
2031 *
2032 * The hardware cache alignment cannot override the specified
2033 * alignment though. If that is greater then use it.
2034 */
2035 if (flags & SLAB_HWCACHE_ALIGN) {
2036 unsigned long ralign = cache_line_size();
2037 while (size <= ralign / 2)
2038 ralign /= 2;
2039 align = max(align, ralign);
2040 }
2041
2042 if (align < ARCH_SLAB_MINALIGN)
2043 align = ARCH_SLAB_MINALIGN;
2044
2045 return ALIGN(align, sizeof(void *));
2046 }
2047
2048 static void
2049 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2050 {
2051 n->nr_partial = 0;
2052 spin_lock_init(&n->list_lock);
2053 INIT_LIST_HEAD(&n->partial);
2054 #ifdef CONFIG_SLUB_DEBUG
2055 atomic_long_set(&n->nr_slabs, 0);
2056 atomic_long_set(&n->total_objects, 0);
2057 INIT_LIST_HEAD(&n->full);
2058 #endif
2059 }
2060
2061 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2062
2063 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2064 {
2065 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2066 /*
2067 * Boot time creation of the kmalloc array. Use static per cpu data
2068 * since the per cpu allocator is not available yet.
2069 */
2070 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2071 else
2072 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2073
2074 if (!s->cpu_slab)
2075 return 0;
2076
2077 return 1;
2078 }
2079
2080 #ifdef CONFIG_NUMA
2081 /*
2082 * No kmalloc_node yet so do it by hand. We know that this is the first
2083 * slab on the node for this slabcache. There are no concurrent accesses
2084 * possible.
2085 *
2086 * Note that this function only works on the kmalloc_node_cache
2087 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2088 * memory on a fresh node that has no slab structures yet.
2089 */
2090 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2091 {
2092 struct page *page;
2093 struct kmem_cache_node *n;
2094 unsigned long flags;
2095
2096 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2097
2098 page = new_slab(kmalloc_caches, gfpflags, node);
2099
2100 BUG_ON(!page);
2101 if (page_to_nid(page) != node) {
2102 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2103 "node %d\n", node);
2104 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2105 "in order to be able to continue\n");
2106 }
2107
2108 n = page->freelist;
2109 BUG_ON(!n);
2110 page->freelist = get_freepointer(kmalloc_caches, n);
2111 page->inuse++;
2112 kmalloc_caches->node[node] = n;
2113 #ifdef CONFIG_SLUB_DEBUG
2114 init_object(kmalloc_caches, n, 1);
2115 init_tracking(kmalloc_caches, n);
2116 #endif
2117 init_kmem_cache_node(n, kmalloc_caches);
2118 inc_slabs_node(kmalloc_caches, node, page->objects);
2119
2120 /*
2121 * lockdep requires consistent irq usage for each lock
2122 * so even though there cannot be a race this early in
2123 * the boot sequence, we still disable irqs.
2124 */
2125 local_irq_save(flags);
2126 add_partial(n, page, 0);
2127 local_irq_restore(flags);
2128 }
2129
2130 static void free_kmem_cache_nodes(struct kmem_cache *s)
2131 {
2132 int node;
2133
2134 for_each_node_state(node, N_NORMAL_MEMORY) {
2135 struct kmem_cache_node *n = s->node[node];
2136 if (n)
2137 kmem_cache_free(kmalloc_caches, n);
2138 s->node[node] = NULL;
2139 }
2140 }
2141
2142 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2143 {
2144 int node;
2145
2146 for_each_node_state(node, N_NORMAL_MEMORY) {
2147 struct kmem_cache_node *n;
2148
2149 if (slab_state == DOWN) {
2150 early_kmem_cache_node_alloc(gfpflags, node);
2151 continue;
2152 }
2153 n = kmem_cache_alloc_node(kmalloc_caches,
2154 gfpflags, node);
2155
2156 if (!n) {
2157 free_kmem_cache_nodes(s);
2158 return 0;
2159 }
2160
2161 s->node[node] = n;
2162 init_kmem_cache_node(n, s);
2163 }
2164 return 1;
2165 }
2166 #else
2167 static void free_kmem_cache_nodes(struct kmem_cache *s)
2168 {
2169 }
2170
2171 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2172 {
2173 init_kmem_cache_node(&s->local_node, s);
2174 return 1;
2175 }
2176 #endif
2177
2178 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2179 {
2180 if (min < MIN_PARTIAL)
2181 min = MIN_PARTIAL;
2182 else if (min > MAX_PARTIAL)
2183 min = MAX_PARTIAL;
2184 s->min_partial = min;
2185 }
2186
2187 /*
2188 * calculate_sizes() determines the order and the distribution of data within
2189 * a slab object.
2190 */
2191 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2192 {
2193 unsigned long flags = s->flags;
2194 unsigned long size = s->objsize;
2195 unsigned long align = s->align;
2196 int order;
2197
2198 /*
2199 * Round up object size to the next word boundary. We can only
2200 * place the free pointer at word boundaries and this determines
2201 * the possible location of the free pointer.
2202 */
2203 size = ALIGN(size, sizeof(void *));
2204
2205 #ifdef CONFIG_SLUB_DEBUG
2206 /*
2207 * Determine if we can poison the object itself. If the user of
2208 * the slab may touch the object after free or before allocation
2209 * then we should never poison the object itself.
2210 */
2211 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2212 !s->ctor)
2213 s->flags |= __OBJECT_POISON;
2214 else
2215 s->flags &= ~__OBJECT_POISON;
2216
2217
2218 /*
2219 * If we are Redzoning then check if there is some space between the
2220 * end of the object and the free pointer. If not then add an
2221 * additional word to have some bytes to store Redzone information.
2222 */
2223 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2224 size += sizeof(void *);
2225 #endif
2226
2227 /*
2228 * With that we have determined the number of bytes in actual use
2229 * by the object. This is the potential offset to the free pointer.
2230 */
2231 s->inuse = size;
2232
2233 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2234 s->ctor)) {
2235 /*
2236 * Relocate free pointer after the object if it is not
2237 * permitted to overwrite the first word of the object on
2238 * kmem_cache_free.
2239 *
2240 * This is the case if we do RCU, have a constructor or
2241 * destructor or are poisoning the objects.
2242 */
2243 s->offset = size;
2244 size += sizeof(void *);
2245 }
2246
2247 #ifdef CONFIG_SLUB_DEBUG
2248 if (flags & SLAB_STORE_USER)
2249 /*
2250 * Need to store information about allocs and frees after
2251 * the object.
2252 */
2253 size += 2 * sizeof(struct track);
2254
2255 if (flags & SLAB_RED_ZONE)
2256 /*
2257 * Add some empty padding so that we can catch
2258 * overwrites from earlier objects rather than let
2259 * tracking information or the free pointer be
2260 * corrupted if a user writes before the start
2261 * of the object.
2262 */
2263 size += sizeof(void *);
2264 #endif
2265
2266 /*
2267 * Determine the alignment based on various parameters that the
2268 * user specified and the dynamic determination of cache line size
2269 * on bootup.
2270 */
2271 align = calculate_alignment(flags, align, s->objsize);
2272 s->align = align;
2273
2274 /*
2275 * SLUB stores one object immediately after another beginning from
2276 * offset 0. In order to align the objects we have to simply size
2277 * each object to conform to the alignment.
2278 */
2279 size = ALIGN(size, align);
2280 s->size = size;
2281 if (forced_order >= 0)
2282 order = forced_order;
2283 else
2284 order = calculate_order(size);
2285
2286 if (order < 0)
2287 return 0;
2288
2289 s->allocflags = 0;
2290 if (order)
2291 s->allocflags |= __GFP_COMP;
2292
2293 if (s->flags & SLAB_CACHE_DMA)
2294 s->allocflags |= SLUB_DMA;
2295
2296 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2297 s->allocflags |= __GFP_RECLAIMABLE;
2298
2299 /*
2300 * Determine the number of objects per slab
2301 */
2302 s->oo = oo_make(order, size);
2303 s->min = oo_make(get_order(size), size);
2304 if (oo_objects(s->oo) > oo_objects(s->max))
2305 s->max = s->oo;
2306
2307 return !!oo_objects(s->oo);
2308
2309 }
2310
2311 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2312 const char *name, size_t size,
2313 size_t align, unsigned long flags,
2314 void (*ctor)(void *))
2315 {
2316 memset(s, 0, kmem_size);
2317 s->name = name;
2318 s->ctor = ctor;
2319 s->objsize = size;
2320 s->align = align;
2321 s->flags = kmem_cache_flags(size, flags, name, ctor);
2322
2323 if (!calculate_sizes(s, -1))
2324 goto error;
2325 if (disable_higher_order_debug) {
2326 /*
2327 * Disable debugging flags that store metadata if the min slab
2328 * order increased.
2329 */
2330 if (get_order(s->size) > get_order(s->objsize)) {
2331 s->flags &= ~DEBUG_METADATA_FLAGS;
2332 s->offset = 0;
2333 if (!calculate_sizes(s, -1))
2334 goto error;
2335 }
2336 }
2337
2338 /*
2339 * The larger the object size is, the more pages we want on the partial
2340 * list to avoid pounding the page allocator excessively.
2341 */
2342 set_min_partial(s, ilog2(s->size));
2343 s->refcount = 1;
2344 #ifdef CONFIG_NUMA
2345 s->remote_node_defrag_ratio = 1000;
2346 #endif
2347 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2348 goto error;
2349
2350 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2351 return 1;
2352
2353 free_kmem_cache_nodes(s);
2354 error:
2355 if (flags & SLAB_PANIC)
2356 panic("Cannot create slab %s size=%lu realsize=%u "
2357 "order=%u offset=%u flags=%lx\n",
2358 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2359 s->offset, flags);
2360 return 0;
2361 }
2362
2363 /*
2364 * Check if a given pointer is valid
2365 */
2366 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2367 {
2368 struct page *page;
2369
2370 if (!kern_ptr_validate(object, s->size))
2371 return 0;
2372
2373 page = get_object_page(object);
2374
2375 if (!page || s != page->slab)
2376 /* No slab or wrong slab */
2377 return 0;
2378
2379 if (!check_valid_pointer(s, page, object))
2380 return 0;
2381
2382 /*
2383 * We could also check if the object is on the slabs freelist.
2384 * But this would be too expensive and it seems that the main
2385 * purpose of kmem_ptr_valid() is to check if the object belongs
2386 * to a certain slab.
2387 */
2388 return 1;
2389 }
2390 EXPORT_SYMBOL(kmem_ptr_validate);
2391
2392 /*
2393 * Determine the size of a slab object
2394 */
2395 unsigned int kmem_cache_size(struct kmem_cache *s)
2396 {
2397 return s->objsize;
2398 }
2399 EXPORT_SYMBOL(kmem_cache_size);
2400
2401 const char *kmem_cache_name(struct kmem_cache *s)
2402 {
2403 return s->name;
2404 }
2405 EXPORT_SYMBOL(kmem_cache_name);
2406
2407 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2408 const char *text)
2409 {
2410 #ifdef CONFIG_SLUB_DEBUG
2411 void *addr = page_address(page);
2412 void *p;
2413 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2414 GFP_ATOMIC);
2415
2416 if (!map)
2417 return;
2418 slab_err(s, page, "%s", text);
2419 slab_lock(page);
2420 for_each_free_object(p, s, page->freelist)
2421 set_bit(slab_index(p, s, addr), map);
2422
2423 for_each_object(p, s, addr, page->objects) {
2424
2425 if (!test_bit(slab_index(p, s, addr), map)) {
2426 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2427 p, p - addr);
2428 print_tracking(s, p);
2429 }
2430 }
2431 slab_unlock(page);
2432 kfree(map);
2433 #endif
2434 }
2435
2436 /*
2437 * Attempt to free all partial slabs on a node.
2438 */
2439 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2440 {
2441 unsigned long flags;
2442 struct page *page, *h;
2443
2444 spin_lock_irqsave(&n->list_lock, flags);
2445 list_for_each_entry_safe(page, h, &n->partial, lru) {
2446 if (!page->inuse) {
2447 list_del(&page->lru);
2448 discard_slab(s, page);
2449 n->nr_partial--;
2450 } else {
2451 list_slab_objects(s, page,
2452 "Objects remaining on kmem_cache_close()");
2453 }
2454 }
2455 spin_unlock_irqrestore(&n->list_lock, flags);
2456 }
2457
2458 /*
2459 * Release all resources used by a slab cache.
2460 */
2461 static inline int kmem_cache_close(struct kmem_cache *s)
2462 {
2463 int node;
2464
2465 flush_all(s);
2466 free_percpu(s->cpu_slab);
2467 /* Attempt to free all objects */
2468 for_each_node_state(node, N_NORMAL_MEMORY) {
2469 struct kmem_cache_node *n = get_node(s, node);
2470
2471 free_partial(s, n);
2472 if (n->nr_partial || slabs_node(s, node))
2473 return 1;
2474 }
2475 free_kmem_cache_nodes(s);
2476 return 0;
2477 }
2478
2479 /*
2480 * Close a cache and release the kmem_cache structure
2481 * (must be used for caches created using kmem_cache_create)
2482 */
2483 void kmem_cache_destroy(struct kmem_cache *s)
2484 {
2485 down_write(&slub_lock);
2486 s->refcount--;
2487 if (!s->refcount) {
2488 list_del(&s->list);
2489 up_write(&slub_lock);
2490 if (kmem_cache_close(s)) {
2491 printk(KERN_ERR "SLUB %s: %s called for cache that "
2492 "still has objects.\n", s->name, __func__);
2493 dump_stack();
2494 }
2495 if (s->flags & SLAB_DESTROY_BY_RCU)
2496 rcu_barrier();
2497 sysfs_slab_remove(s);
2498 } else
2499 up_write(&slub_lock);
2500 }
2501 EXPORT_SYMBOL(kmem_cache_destroy);
2502
2503 /********************************************************************
2504 * Kmalloc subsystem
2505 *******************************************************************/
2506
2507 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2508 EXPORT_SYMBOL(kmalloc_caches);
2509
2510 static int __init setup_slub_min_order(char *str)
2511 {
2512 get_option(&str, &slub_min_order);
2513
2514 return 1;
2515 }
2516
2517 __setup("slub_min_order=", setup_slub_min_order);
2518
2519 static int __init setup_slub_max_order(char *str)
2520 {
2521 get_option(&str, &slub_max_order);
2522 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2523
2524 return 1;
2525 }
2526
2527 __setup("slub_max_order=", setup_slub_max_order);
2528
2529 static int __init setup_slub_min_objects(char *str)
2530 {
2531 get_option(&str, &slub_min_objects);
2532
2533 return 1;
2534 }
2535
2536 __setup("slub_min_objects=", setup_slub_min_objects);
2537
2538 static int __init setup_slub_nomerge(char *str)
2539 {
2540 slub_nomerge = 1;
2541 return 1;
2542 }
2543
2544 __setup("slub_nomerge", setup_slub_nomerge);
2545
2546 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2547 const char *name, int size, gfp_t gfp_flags)
2548 {
2549 unsigned int flags = 0;
2550
2551 if (gfp_flags & SLUB_DMA)
2552 flags = SLAB_CACHE_DMA;
2553
2554 /*
2555 * This function is called with IRQs disabled during early-boot on
2556 * single CPU so there's no need to take slub_lock here.
2557 */
2558 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2559 flags, NULL))
2560 goto panic;
2561
2562 list_add(&s->list, &slab_caches);
2563
2564 if (sysfs_slab_add(s))
2565 goto panic;
2566 return s;
2567
2568 panic:
2569 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2570 }
2571
2572 #ifdef CONFIG_ZONE_DMA
2573 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2574
2575 static void sysfs_add_func(struct work_struct *w)
2576 {
2577 struct kmem_cache *s;
2578
2579 down_write(&slub_lock);
2580 list_for_each_entry(s, &slab_caches, list) {
2581 if (s->flags & __SYSFS_ADD_DEFERRED) {
2582 s->flags &= ~__SYSFS_ADD_DEFERRED;
2583 sysfs_slab_add(s);
2584 }
2585 }
2586 up_write(&slub_lock);
2587 }
2588
2589 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2590
2591 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2592 {
2593 struct kmem_cache *s;
2594 char *text;
2595 size_t realsize;
2596 unsigned long slabflags;
2597 int i;
2598
2599 s = kmalloc_caches_dma[index];
2600 if (s)
2601 return s;
2602
2603 /* Dynamically create dma cache */
2604 if (flags & __GFP_WAIT)
2605 down_write(&slub_lock);
2606 else {
2607 if (!down_write_trylock(&slub_lock))
2608 goto out;
2609 }
2610
2611 if (kmalloc_caches_dma[index])
2612 goto unlock_out;
2613
2614 realsize = kmalloc_caches[index].objsize;
2615 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2616 (unsigned int)realsize);
2617
2618 s = NULL;
2619 for (i = 0; i < KMALLOC_CACHES; i++)
2620 if (!kmalloc_caches[i].size)
2621 break;
2622
2623 BUG_ON(i >= KMALLOC_CACHES);
2624 s = kmalloc_caches + i;
2625
2626 /*
2627 * Must defer sysfs creation to a workqueue because we don't know
2628 * what context we are called from. Before sysfs comes up, we don't
2629 * need to do anything because our sysfs initcall will start by
2630 * adding all existing slabs to sysfs.
2631 */
2632 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2633 if (slab_state >= SYSFS)
2634 slabflags |= __SYSFS_ADD_DEFERRED;
2635
2636 if (!text || !kmem_cache_open(s, flags, text,
2637 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2638 s->size = 0;
2639 kfree(text);
2640 goto unlock_out;
2641 }
2642
2643 list_add(&s->list, &slab_caches);
2644 kmalloc_caches_dma[index] = s;
2645
2646 if (slab_state >= SYSFS)
2647 schedule_work(&sysfs_add_work);
2648
2649 unlock_out:
2650 up_write(&slub_lock);
2651 out:
2652 return kmalloc_caches_dma[index];
2653 }
2654 #endif
2655
2656 /*
2657 * Conversion table for small slabs sizes / 8 to the index in the
2658 * kmalloc array. This is necessary for slabs < 192 since we have non power
2659 * of two cache sizes there. The size of larger slabs can be determined using
2660 * fls.
2661 */
2662 static s8 size_index[24] = {
2663 3, /* 8 */
2664 4, /* 16 */
2665 5, /* 24 */
2666 5, /* 32 */
2667 6, /* 40 */
2668 6, /* 48 */
2669 6, /* 56 */
2670 6, /* 64 */
2671 1, /* 72 */
2672 1, /* 80 */
2673 1, /* 88 */
2674 1, /* 96 */
2675 7, /* 104 */
2676 7, /* 112 */
2677 7, /* 120 */
2678 7, /* 128 */
2679 2, /* 136 */
2680 2, /* 144 */
2681 2, /* 152 */
2682 2, /* 160 */
2683 2, /* 168 */
2684 2, /* 176 */
2685 2, /* 184 */
2686 2 /* 192 */
2687 };
2688
2689 static inline int size_index_elem(size_t bytes)
2690 {
2691 return (bytes - 1) / 8;
2692 }
2693
2694 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2695 {
2696 int index;
2697
2698 if (size <= 192) {
2699 if (!size)
2700 return ZERO_SIZE_PTR;
2701
2702 index = size_index[size_index_elem(size)];
2703 } else
2704 index = fls(size - 1);
2705
2706 #ifdef CONFIG_ZONE_DMA
2707 if (unlikely((flags & SLUB_DMA)))
2708 return dma_kmalloc_cache(index, flags);
2709
2710 #endif
2711 return &kmalloc_caches[index];
2712 }
2713
2714 void *__kmalloc(size_t size, gfp_t flags)
2715 {
2716 struct kmem_cache *s;
2717 void *ret;
2718
2719 if (unlikely(size > SLUB_MAX_SIZE))
2720 return kmalloc_large(size, flags);
2721
2722 s = get_slab(size, flags);
2723
2724 if (unlikely(ZERO_OR_NULL_PTR(s)))
2725 return s;
2726
2727 ret = slab_alloc(s, flags, -1, _RET_IP_);
2728
2729 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2730
2731 return ret;
2732 }
2733 EXPORT_SYMBOL(__kmalloc);
2734
2735 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2736 {
2737 struct page *page;
2738 void *ptr = NULL;
2739
2740 flags |= __GFP_COMP | __GFP_NOTRACK;
2741 page = alloc_pages_node(node, flags, get_order(size));
2742 if (page)
2743 ptr = page_address(page);
2744
2745 kmemleak_alloc(ptr, size, 1, flags);
2746 return ptr;
2747 }
2748
2749 #ifdef CONFIG_NUMA
2750 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2751 {
2752 struct kmem_cache *s;
2753 void *ret;
2754
2755 if (unlikely(size > SLUB_MAX_SIZE)) {
2756 ret = kmalloc_large_node(size, flags, node);
2757
2758 trace_kmalloc_node(_RET_IP_, ret,
2759 size, PAGE_SIZE << get_order(size),
2760 flags, node);
2761
2762 return ret;
2763 }
2764
2765 s = get_slab(size, flags);
2766
2767 if (unlikely(ZERO_OR_NULL_PTR(s)))
2768 return s;
2769
2770 ret = slab_alloc(s, flags, node, _RET_IP_);
2771
2772 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2773
2774 return ret;
2775 }
2776 EXPORT_SYMBOL(__kmalloc_node);
2777 #endif
2778
2779 size_t ksize(const void *object)
2780 {
2781 struct page *page;
2782 struct kmem_cache *s;
2783
2784 if (unlikely(object == ZERO_SIZE_PTR))
2785 return 0;
2786
2787 page = virt_to_head_page(object);
2788
2789 if (unlikely(!PageSlab(page))) {
2790 WARN_ON(!PageCompound(page));
2791 return PAGE_SIZE << compound_order(page);
2792 }
2793 s = page->slab;
2794
2795 #ifdef CONFIG_SLUB_DEBUG
2796 /*
2797 * Debugging requires use of the padding between object
2798 * and whatever may come after it.
2799 */
2800 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2801 return s->objsize;
2802
2803 #endif
2804 /*
2805 * If we have the need to store the freelist pointer
2806 * back there or track user information then we can
2807 * only use the space before that information.
2808 */
2809 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2810 return s->inuse;
2811 /*
2812 * Else we can use all the padding etc for the allocation
2813 */
2814 return s->size;
2815 }
2816 EXPORT_SYMBOL(ksize);
2817
2818 void kfree(const void *x)
2819 {
2820 struct page *page;
2821 void *object = (void *)x;
2822
2823 trace_kfree(_RET_IP_, x);
2824
2825 if (unlikely(ZERO_OR_NULL_PTR(x)))
2826 return;
2827
2828 page = virt_to_head_page(x);
2829 if (unlikely(!PageSlab(page))) {
2830 BUG_ON(!PageCompound(page));
2831 kmemleak_free(x);
2832 put_page(page);
2833 return;
2834 }
2835 slab_free(page->slab, page, object, _RET_IP_);
2836 }
2837 EXPORT_SYMBOL(kfree);
2838
2839 /*
2840 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2841 * the remaining slabs by the number of items in use. The slabs with the
2842 * most items in use come first. New allocations will then fill those up
2843 * and thus they can be removed from the partial lists.
2844 *
2845 * The slabs with the least items are placed last. This results in them
2846 * being allocated from last increasing the chance that the last objects
2847 * are freed in them.
2848 */
2849 int kmem_cache_shrink(struct kmem_cache *s)
2850 {
2851 int node;
2852 int i;
2853 struct kmem_cache_node *n;
2854 struct page *page;
2855 struct page *t;
2856 int objects = oo_objects(s->max);
2857 struct list_head *slabs_by_inuse =
2858 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2859 unsigned long flags;
2860
2861 if (!slabs_by_inuse)
2862 return -ENOMEM;
2863
2864 flush_all(s);
2865 for_each_node_state(node, N_NORMAL_MEMORY) {
2866 n = get_node(s, node);
2867
2868 if (!n->nr_partial)
2869 continue;
2870
2871 for (i = 0; i < objects; i++)
2872 INIT_LIST_HEAD(slabs_by_inuse + i);
2873
2874 spin_lock_irqsave(&n->list_lock, flags);
2875
2876 /*
2877 * Build lists indexed by the items in use in each slab.
2878 *
2879 * Note that concurrent frees may occur while we hold the
2880 * list_lock. page->inuse here is the upper limit.
2881 */
2882 list_for_each_entry_safe(page, t, &n->partial, lru) {
2883 if (!page->inuse && slab_trylock(page)) {
2884 /*
2885 * Must hold slab lock here because slab_free
2886 * may have freed the last object and be
2887 * waiting to release the slab.
2888 */
2889 list_del(&page->lru);
2890 n->nr_partial--;
2891 slab_unlock(page);
2892 discard_slab(s, page);
2893 } else {
2894 list_move(&page->lru,
2895 slabs_by_inuse + page->inuse);
2896 }
2897 }
2898
2899 /*
2900 * Rebuild the partial list with the slabs filled up most
2901 * first and the least used slabs at the end.
2902 */
2903 for (i = objects - 1; i >= 0; i--)
2904 list_splice(slabs_by_inuse + i, n->partial.prev);
2905
2906 spin_unlock_irqrestore(&n->list_lock, flags);
2907 }
2908
2909 kfree(slabs_by_inuse);
2910 return 0;
2911 }
2912 EXPORT_SYMBOL(kmem_cache_shrink);
2913
2914 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2915 static int slab_mem_going_offline_callback(void *arg)
2916 {
2917 struct kmem_cache *s;
2918
2919 down_read(&slub_lock);
2920 list_for_each_entry(s, &slab_caches, list)
2921 kmem_cache_shrink(s);
2922 up_read(&slub_lock);
2923
2924 return 0;
2925 }
2926
2927 static void slab_mem_offline_callback(void *arg)
2928 {
2929 struct kmem_cache_node *n;
2930 struct kmem_cache *s;
2931 struct memory_notify *marg = arg;
2932 int offline_node;
2933
2934 offline_node = marg->status_change_nid;
2935
2936 /*
2937 * If the node still has available memory. we need kmem_cache_node
2938 * for it yet.
2939 */
2940 if (offline_node < 0)
2941 return;
2942
2943 down_read(&slub_lock);
2944 list_for_each_entry(s, &slab_caches, list) {
2945 n = get_node(s, offline_node);
2946 if (n) {
2947 /*
2948 * if n->nr_slabs > 0, slabs still exist on the node
2949 * that is going down. We were unable to free them,
2950 * and offline_pages() function shouldn't call this
2951 * callback. So, we must fail.
2952 */
2953 BUG_ON(slabs_node(s, offline_node));
2954
2955 s->node[offline_node] = NULL;
2956 kmem_cache_free(kmalloc_caches, n);
2957 }
2958 }
2959 up_read(&slub_lock);
2960 }
2961
2962 static int slab_mem_going_online_callback(void *arg)
2963 {
2964 struct kmem_cache_node *n;
2965 struct kmem_cache *s;
2966 struct memory_notify *marg = arg;
2967 int nid = marg->status_change_nid;
2968 int ret = 0;
2969
2970 /*
2971 * If the node's memory is already available, then kmem_cache_node is
2972 * already created. Nothing to do.
2973 */
2974 if (nid < 0)
2975 return 0;
2976
2977 /*
2978 * We are bringing a node online. No memory is available yet. We must
2979 * allocate a kmem_cache_node structure in order to bring the node
2980 * online.
2981 */
2982 down_read(&slub_lock);
2983 list_for_each_entry(s, &slab_caches, list) {
2984 /*
2985 * XXX: kmem_cache_alloc_node will fallback to other nodes
2986 * since memory is not yet available from the node that
2987 * is brought up.
2988 */
2989 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2990 if (!n) {
2991 ret = -ENOMEM;
2992 goto out;
2993 }
2994 init_kmem_cache_node(n, s);
2995 s->node[nid] = n;
2996 }
2997 out:
2998 up_read(&slub_lock);
2999 return ret;
3000 }
3001
3002 static int slab_memory_callback(struct notifier_block *self,
3003 unsigned long action, void *arg)
3004 {
3005 int ret = 0;
3006
3007 switch (action) {
3008 case MEM_GOING_ONLINE:
3009 ret = slab_mem_going_online_callback(arg);
3010 break;
3011 case MEM_GOING_OFFLINE:
3012 ret = slab_mem_going_offline_callback(arg);
3013 break;
3014 case MEM_OFFLINE:
3015 case MEM_CANCEL_ONLINE:
3016 slab_mem_offline_callback(arg);
3017 break;
3018 case MEM_ONLINE:
3019 case MEM_CANCEL_OFFLINE:
3020 break;
3021 }
3022 if (ret)
3023 ret = notifier_from_errno(ret);
3024 else
3025 ret = NOTIFY_OK;
3026 return ret;
3027 }
3028
3029 #endif /* CONFIG_MEMORY_HOTPLUG */
3030
3031 /********************************************************************
3032 * Basic setup of slabs
3033 *******************************************************************/
3034
3035 void __init kmem_cache_init(void)
3036 {
3037 int i;
3038 int caches = 0;
3039
3040 #ifdef CONFIG_NUMA
3041 /*
3042 * Must first have the slab cache available for the allocations of the
3043 * struct kmem_cache_node's. There is special bootstrap code in
3044 * kmem_cache_open for slab_state == DOWN.
3045 */
3046 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3047 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3048 kmalloc_caches[0].refcount = -1;
3049 caches++;
3050
3051 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3052 #endif
3053
3054 /* Able to allocate the per node structures */
3055 slab_state = PARTIAL;
3056
3057 /* Caches that are not of the two-to-the-power-of size */
3058 if (KMALLOC_MIN_SIZE <= 32) {
3059 create_kmalloc_cache(&kmalloc_caches[1],
3060 "kmalloc-96", 96, GFP_NOWAIT);
3061 caches++;
3062 }
3063 if (KMALLOC_MIN_SIZE <= 64) {
3064 create_kmalloc_cache(&kmalloc_caches[2],
3065 "kmalloc-192", 192, GFP_NOWAIT);
3066 caches++;
3067 }
3068
3069 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3070 create_kmalloc_cache(&kmalloc_caches[i],
3071 "kmalloc", 1 << i, GFP_NOWAIT);
3072 caches++;
3073 }
3074
3075
3076 /*
3077 * Patch up the size_index table if we have strange large alignment
3078 * requirements for the kmalloc array. This is only the case for
3079 * MIPS it seems. The standard arches will not generate any code here.
3080 *
3081 * Largest permitted alignment is 256 bytes due to the way we
3082 * handle the index determination for the smaller caches.
3083 *
3084 * Make sure that nothing crazy happens if someone starts tinkering
3085 * around with ARCH_KMALLOC_MINALIGN
3086 */
3087 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3088 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3089
3090 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3091 int elem = size_index_elem(i);
3092 if (elem >= ARRAY_SIZE(size_index))
3093 break;
3094 size_index[elem] = KMALLOC_SHIFT_LOW;
3095 }
3096
3097 if (KMALLOC_MIN_SIZE == 64) {
3098 /*
3099 * The 96 byte size cache is not used if the alignment
3100 * is 64 byte.
3101 */
3102 for (i = 64 + 8; i <= 96; i += 8)
3103 size_index[size_index_elem(i)] = 7;
3104 } else if (KMALLOC_MIN_SIZE == 128) {
3105 /*
3106 * The 192 byte sized cache is not used if the alignment
3107 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3108 * instead.
3109 */
3110 for (i = 128 + 8; i <= 192; i += 8)
3111 size_index[size_index_elem(i)] = 8;
3112 }
3113
3114 slab_state = UP;
3115
3116 /* Provide the correct kmalloc names now that the caches are up */
3117 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3118 kmalloc_caches[i]. name =
3119 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3120
3121 #ifdef CONFIG_SMP
3122 register_cpu_notifier(&slab_notifier);
3123 #endif
3124 #ifdef CONFIG_NUMA
3125 kmem_size = offsetof(struct kmem_cache, node) +
3126 nr_node_ids * sizeof(struct kmem_cache_node *);
3127 #else
3128 kmem_size = sizeof(struct kmem_cache);
3129 #endif
3130
3131 printk(KERN_INFO
3132 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3133 " CPUs=%d, Nodes=%d\n",
3134 caches, cache_line_size(),
3135 slub_min_order, slub_max_order, slub_min_objects,
3136 nr_cpu_ids, nr_node_ids);
3137 }
3138
3139 void __init kmem_cache_init_late(void)
3140 {
3141 }
3142
3143 /*
3144 * Find a mergeable slab cache
3145 */
3146 static int slab_unmergeable(struct kmem_cache *s)
3147 {
3148 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3149 return 1;
3150
3151 if (s->ctor)
3152 return 1;
3153
3154 /*
3155 * We may have set a slab to be unmergeable during bootstrap.
3156 */
3157 if (s->refcount < 0)
3158 return 1;
3159
3160 return 0;
3161 }
3162
3163 static struct kmem_cache *find_mergeable(size_t size,
3164 size_t align, unsigned long flags, const char *name,
3165 void (*ctor)(void *))
3166 {
3167 struct kmem_cache *s;
3168
3169 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3170 return NULL;
3171
3172 if (ctor)
3173 return NULL;
3174
3175 size = ALIGN(size, sizeof(void *));
3176 align = calculate_alignment(flags, align, size);
3177 size = ALIGN(size, align);
3178 flags = kmem_cache_flags(size, flags, name, NULL);
3179
3180 list_for_each_entry(s, &slab_caches, list) {
3181 if (slab_unmergeable(s))
3182 continue;
3183
3184 if (size > s->size)
3185 continue;
3186
3187 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3188 continue;
3189 /*
3190 * Check if alignment is compatible.
3191 * Courtesy of Adrian Drzewiecki
3192 */
3193 if ((s->size & ~(align - 1)) != s->size)
3194 continue;
3195
3196 if (s->size - size >= sizeof(void *))
3197 continue;
3198
3199 return s;
3200 }
3201 return NULL;
3202 }
3203
3204 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3205 size_t align, unsigned long flags, void (*ctor)(void *))
3206 {
3207 struct kmem_cache *s;
3208
3209 if (WARN_ON(!name))
3210 return NULL;
3211
3212 down_write(&slub_lock);
3213 s = find_mergeable(size, align, flags, name, ctor);
3214 if (s) {
3215 s->refcount++;
3216 /*
3217 * Adjust the object sizes so that we clear
3218 * the complete object on kzalloc.
3219 */
3220 s->objsize = max(s->objsize, (int)size);
3221 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3222 up_write(&slub_lock);
3223
3224 if (sysfs_slab_alias(s, name)) {
3225 down_write(&slub_lock);
3226 s->refcount--;
3227 up_write(&slub_lock);
3228 goto err;
3229 }
3230 return s;
3231 }
3232
3233 s = kmalloc(kmem_size, GFP_KERNEL);
3234 if (s) {
3235 if (kmem_cache_open(s, GFP_KERNEL, name,
3236 size, align, flags, ctor)) {
3237 list_add(&s->list, &slab_caches);
3238 up_write(&slub_lock);
3239 if (sysfs_slab_add(s)) {
3240 down_write(&slub_lock);
3241 list_del(&s->list);
3242 up_write(&slub_lock);
3243 kfree(s);
3244 goto err;
3245 }
3246 return s;
3247 }
3248 kfree(s);
3249 }
3250 up_write(&slub_lock);
3251
3252 err:
3253 if (flags & SLAB_PANIC)
3254 panic("Cannot create slabcache %s\n", name);
3255 else
3256 s = NULL;
3257 return s;
3258 }
3259 EXPORT_SYMBOL(kmem_cache_create);
3260
3261 #ifdef CONFIG_SMP
3262 /*
3263 * Use the cpu notifier to insure that the cpu slabs are flushed when
3264 * necessary.
3265 */
3266 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3267 unsigned long action, void *hcpu)
3268 {
3269 long cpu = (long)hcpu;
3270 struct kmem_cache *s;
3271 unsigned long flags;
3272
3273 switch (action) {
3274 case CPU_UP_CANCELED:
3275 case CPU_UP_CANCELED_FROZEN:
3276 case CPU_DEAD:
3277 case CPU_DEAD_FROZEN:
3278 down_read(&slub_lock);
3279 list_for_each_entry(s, &slab_caches, list) {
3280 local_irq_save(flags);
3281 __flush_cpu_slab(s, cpu);
3282 local_irq_restore(flags);
3283 }
3284 up_read(&slub_lock);
3285 break;
3286 default:
3287 break;
3288 }
3289 return NOTIFY_OK;
3290 }
3291
3292 static struct notifier_block __cpuinitdata slab_notifier = {
3293 .notifier_call = slab_cpuup_callback
3294 };
3295
3296 #endif
3297
3298 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3299 {
3300 struct kmem_cache *s;
3301 void *ret;
3302
3303 if (unlikely(size > SLUB_MAX_SIZE))
3304 return kmalloc_large(size, gfpflags);
3305
3306 s = get_slab(size, gfpflags);
3307
3308 if (unlikely(ZERO_OR_NULL_PTR(s)))
3309 return s;
3310
3311 ret = slab_alloc(s, gfpflags, -1, caller);
3312
3313 /* Honor the call site pointer we recieved. */
3314 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3315
3316 return ret;
3317 }
3318
3319 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3320 int node, unsigned long caller)
3321 {
3322 struct kmem_cache *s;
3323 void *ret;
3324
3325 if (unlikely(size > SLUB_MAX_SIZE)) {
3326 ret = kmalloc_large_node(size, gfpflags, node);
3327
3328 trace_kmalloc_node(caller, ret,
3329 size, PAGE_SIZE << get_order(size),
3330 gfpflags, node);
3331
3332 return ret;
3333 }
3334
3335 s = get_slab(size, gfpflags);
3336
3337 if (unlikely(ZERO_OR_NULL_PTR(s)))
3338 return s;
3339
3340 ret = slab_alloc(s, gfpflags, node, caller);
3341
3342 /* Honor the call site pointer we recieved. */
3343 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3344
3345 return ret;
3346 }
3347
3348 #ifdef CONFIG_SLUB_DEBUG
3349 static int count_inuse(struct page *page)
3350 {
3351 return page->inuse;
3352 }
3353
3354 static int count_total(struct page *page)
3355 {
3356 return page->objects;
3357 }
3358
3359 static int validate_slab(struct kmem_cache *s, struct page *page,
3360 unsigned long *map)
3361 {
3362 void *p;
3363 void *addr = page_address(page);
3364
3365 if (!check_slab(s, page) ||
3366 !on_freelist(s, page, NULL))
3367 return 0;
3368
3369 /* Now we know that a valid freelist exists */
3370 bitmap_zero(map, page->objects);
3371
3372 for_each_free_object(p, s, page->freelist) {
3373 set_bit(slab_index(p, s, addr), map);
3374 if (!check_object(s, page, p, 0))
3375 return 0;
3376 }
3377
3378 for_each_object(p, s, addr, page->objects)
3379 if (!test_bit(slab_index(p, s, addr), map))
3380 if (!check_object(s, page, p, 1))
3381 return 0;
3382 return 1;
3383 }
3384
3385 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3386 unsigned long *map)
3387 {
3388 if (slab_trylock(page)) {
3389 validate_slab(s, page, map);
3390 slab_unlock(page);
3391 } else
3392 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3393 s->name, page);
3394
3395 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3396 if (!PageSlubDebug(page))
3397 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3398 "on slab 0x%p\n", s->name, page);
3399 } else {
3400 if (PageSlubDebug(page))
3401 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3402 "slab 0x%p\n", s->name, page);
3403 }
3404 }
3405
3406 static int validate_slab_node(struct kmem_cache *s,
3407 struct kmem_cache_node *n, unsigned long *map)
3408 {
3409 unsigned long count = 0;
3410 struct page *page;
3411 unsigned long flags;
3412
3413 spin_lock_irqsave(&n->list_lock, flags);
3414
3415 list_for_each_entry(page, &n->partial, lru) {
3416 validate_slab_slab(s, page, map);
3417 count++;
3418 }
3419 if (count != n->nr_partial)
3420 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3421 "counter=%ld\n", s->name, count, n->nr_partial);
3422
3423 if (!(s->flags & SLAB_STORE_USER))
3424 goto out;
3425
3426 list_for_each_entry(page, &n->full, lru) {
3427 validate_slab_slab(s, page, map);
3428 count++;
3429 }
3430 if (count != atomic_long_read(&n->nr_slabs))
3431 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3432 "counter=%ld\n", s->name, count,
3433 atomic_long_read(&n->nr_slabs));
3434
3435 out:
3436 spin_unlock_irqrestore(&n->list_lock, flags);
3437 return count;
3438 }
3439
3440 static long validate_slab_cache(struct kmem_cache *s)
3441 {
3442 int node;
3443 unsigned long count = 0;
3444 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3445 sizeof(unsigned long), GFP_KERNEL);
3446
3447 if (!map)
3448 return -ENOMEM;
3449
3450 flush_all(s);
3451 for_each_node_state(node, N_NORMAL_MEMORY) {
3452 struct kmem_cache_node *n = get_node(s, node);
3453
3454 count += validate_slab_node(s, n, map);
3455 }
3456 kfree(map);
3457 return count;
3458 }
3459
3460 #ifdef SLUB_RESILIENCY_TEST
3461 static void resiliency_test(void)
3462 {
3463 u8 *p;
3464
3465 printk(KERN_ERR "SLUB resiliency testing\n");
3466 printk(KERN_ERR "-----------------------\n");
3467 printk(KERN_ERR "A. Corruption after allocation\n");
3468
3469 p = kzalloc(16, GFP_KERNEL);
3470 p[16] = 0x12;
3471 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3472 " 0x12->0x%p\n\n", p + 16);
3473
3474 validate_slab_cache(kmalloc_caches + 4);
3475
3476 /* Hmmm... The next two are dangerous */
3477 p = kzalloc(32, GFP_KERNEL);
3478 p[32 + sizeof(void *)] = 0x34;
3479 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3480 " 0x34 -> -0x%p\n", p);
3481 printk(KERN_ERR
3482 "If allocated object is overwritten then not detectable\n\n");
3483
3484 validate_slab_cache(kmalloc_caches + 5);
3485 p = kzalloc(64, GFP_KERNEL);
3486 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3487 *p = 0x56;
3488 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3489 p);
3490 printk(KERN_ERR
3491 "If allocated object is overwritten then not detectable\n\n");
3492 validate_slab_cache(kmalloc_caches + 6);
3493
3494 printk(KERN_ERR "\nB. Corruption after free\n");
3495 p = kzalloc(128, GFP_KERNEL);
3496 kfree(p);
3497 *p = 0x78;
3498 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3499 validate_slab_cache(kmalloc_caches + 7);
3500
3501 p = kzalloc(256, GFP_KERNEL);
3502 kfree(p);
3503 p[50] = 0x9a;
3504 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3505 p);
3506 validate_slab_cache(kmalloc_caches + 8);
3507
3508 p = kzalloc(512, GFP_KERNEL);
3509 kfree(p);
3510 p[512] = 0xab;
3511 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3512 validate_slab_cache(kmalloc_caches + 9);
3513 }
3514 #else
3515 static void resiliency_test(void) {};
3516 #endif
3517
3518 /*
3519 * Generate lists of code addresses where slabcache objects are allocated
3520 * and freed.
3521 */
3522
3523 struct location {
3524 unsigned long count;
3525 unsigned long addr;
3526 long long sum_time;
3527 long min_time;
3528 long max_time;
3529 long min_pid;
3530 long max_pid;
3531 DECLARE_BITMAP(cpus, NR_CPUS);
3532 nodemask_t nodes;
3533 };
3534
3535 struct loc_track {
3536 unsigned long max;
3537 unsigned long count;
3538 struct location *loc;
3539 };
3540
3541 static void free_loc_track(struct loc_track *t)
3542 {
3543 if (t->max)
3544 free_pages((unsigned long)t->loc,
3545 get_order(sizeof(struct location) * t->max));
3546 }
3547
3548 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3549 {
3550 struct location *l;
3551 int order;
3552
3553 order = get_order(sizeof(struct location) * max);
3554
3555 l = (void *)__get_free_pages(flags, order);
3556 if (!l)
3557 return 0;
3558
3559 if (t->count) {
3560 memcpy(l, t->loc, sizeof(struct location) * t->count);
3561 free_loc_track(t);
3562 }
3563 t->max = max;
3564 t->loc = l;
3565 return 1;
3566 }
3567
3568 static int add_location(struct loc_track *t, struct kmem_cache *s,
3569 const struct track *track)
3570 {
3571 long start, end, pos;
3572 struct location *l;
3573 unsigned long caddr;
3574 unsigned long age = jiffies - track->when;
3575
3576 start = -1;
3577 end = t->count;
3578
3579 for ( ; ; ) {
3580 pos = start + (end - start + 1) / 2;
3581
3582 /*
3583 * There is nothing at "end". If we end up there
3584 * we need to add something to before end.
3585 */
3586 if (pos == end)
3587 break;
3588
3589 caddr = t->loc[pos].addr;
3590 if (track->addr == caddr) {
3591
3592 l = &t->loc[pos];
3593 l->count++;
3594 if (track->when) {
3595 l->sum_time += age;
3596 if (age < l->min_time)
3597 l->min_time = age;
3598 if (age > l->max_time)
3599 l->max_time = age;
3600
3601 if (track->pid < l->min_pid)
3602 l->min_pid = track->pid;
3603 if (track->pid > l->max_pid)
3604 l->max_pid = track->pid;
3605
3606 cpumask_set_cpu(track->cpu,
3607 to_cpumask(l->cpus));
3608 }
3609 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3610 return 1;
3611 }
3612
3613 if (track->addr < caddr)
3614 end = pos;
3615 else
3616 start = pos;
3617 }
3618
3619 /*
3620 * Not found. Insert new tracking element.
3621 */
3622 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3623 return 0;
3624
3625 l = t->loc + pos;
3626 if (pos < t->count)
3627 memmove(l + 1, l,
3628 (t->count - pos) * sizeof(struct location));
3629 t->count++;
3630 l->count = 1;
3631 l->addr = track->addr;
3632 l->sum_time = age;
3633 l->min_time = age;
3634 l->max_time = age;
3635 l->min_pid = track->pid;
3636 l->max_pid = track->pid;
3637 cpumask_clear(to_cpumask(l->cpus));
3638 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3639 nodes_clear(l->nodes);
3640 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3641 return 1;
3642 }
3643
3644 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3645 struct page *page, enum track_item alloc,
3646 long *map)
3647 {
3648 void *addr = page_address(page);
3649 void *p;
3650
3651 bitmap_zero(map, page->objects);
3652 for_each_free_object(p, s, page->freelist)
3653 set_bit(slab_index(p, s, addr), map);
3654
3655 for_each_object(p, s, addr, page->objects)
3656 if (!test_bit(slab_index(p, s, addr), map))
3657 add_location(t, s, get_track(s, p, alloc));
3658 }
3659
3660 static int list_locations(struct kmem_cache *s, char *buf,
3661 enum track_item alloc)
3662 {
3663 int len = 0;
3664 unsigned long i;
3665 struct loc_track t = { 0, 0, NULL };
3666 int node;
3667 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3668 sizeof(unsigned long), GFP_KERNEL);
3669
3670 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3671 GFP_TEMPORARY)) {
3672 kfree(map);
3673 return sprintf(buf, "Out of memory\n");
3674 }
3675 /* Push back cpu slabs */
3676 flush_all(s);
3677
3678 for_each_node_state(node, N_NORMAL_MEMORY) {
3679 struct kmem_cache_node *n = get_node(s, node);
3680 unsigned long flags;
3681 struct page *page;
3682
3683 if (!atomic_long_read(&n->nr_slabs))
3684 continue;
3685
3686 spin_lock_irqsave(&n->list_lock, flags);
3687 list_for_each_entry(page, &n->partial, lru)
3688 process_slab(&t, s, page, alloc, map);
3689 list_for_each_entry(page, &n->full, lru)
3690 process_slab(&t, s, page, alloc, map);
3691 spin_unlock_irqrestore(&n->list_lock, flags);
3692 }
3693
3694 for (i = 0; i < t.count; i++) {
3695 struct location *l = &t.loc[i];
3696
3697 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3698 break;
3699 len += sprintf(buf + len, "%7ld ", l->count);
3700
3701 if (l->addr)
3702 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3703 else
3704 len += sprintf(buf + len, "<not-available>");
3705
3706 if (l->sum_time != l->min_time) {
3707 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3708 l->min_time,
3709 (long)div_u64(l->sum_time, l->count),
3710 l->max_time);
3711 } else
3712 len += sprintf(buf + len, " age=%ld",
3713 l->min_time);
3714
3715 if (l->min_pid != l->max_pid)
3716 len += sprintf(buf + len, " pid=%ld-%ld",
3717 l->min_pid, l->max_pid);
3718 else
3719 len += sprintf(buf + len, " pid=%ld",
3720 l->min_pid);
3721
3722 if (num_online_cpus() > 1 &&
3723 !cpumask_empty(to_cpumask(l->cpus)) &&
3724 len < PAGE_SIZE - 60) {
3725 len += sprintf(buf + len, " cpus=");
3726 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3727 to_cpumask(l->cpus));
3728 }
3729
3730 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3731 len < PAGE_SIZE - 60) {
3732 len += sprintf(buf + len, " nodes=");
3733 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3734 l->nodes);
3735 }
3736
3737 len += sprintf(buf + len, "\n");
3738 }
3739
3740 free_loc_track(&t);
3741 kfree(map);
3742 if (!t.count)
3743 len += sprintf(buf, "No data\n");
3744 return len;
3745 }
3746
3747 enum slab_stat_type {
3748 SL_ALL, /* All slabs */
3749 SL_PARTIAL, /* Only partially allocated slabs */
3750 SL_CPU, /* Only slabs used for cpu caches */
3751 SL_OBJECTS, /* Determine allocated objects not slabs */
3752 SL_TOTAL /* Determine object capacity not slabs */
3753 };
3754
3755 #define SO_ALL (1 << SL_ALL)
3756 #define SO_PARTIAL (1 << SL_PARTIAL)
3757 #define SO_CPU (1 << SL_CPU)
3758 #define SO_OBJECTS (1 << SL_OBJECTS)
3759 #define SO_TOTAL (1 << SL_TOTAL)
3760
3761 static ssize_t show_slab_objects(struct kmem_cache *s,
3762 char *buf, unsigned long flags)
3763 {
3764 unsigned long total = 0;
3765 int node;
3766 int x;
3767 unsigned long *nodes;
3768 unsigned long *per_cpu;
3769
3770 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3771 if (!nodes)
3772 return -ENOMEM;
3773 per_cpu = nodes + nr_node_ids;
3774
3775 if (flags & SO_CPU) {
3776 int cpu;
3777
3778 for_each_possible_cpu(cpu) {
3779 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3780
3781 if (!c || c->node < 0)
3782 continue;
3783
3784 if (c->page) {
3785 if (flags & SO_TOTAL)
3786 x = c->page->objects;
3787 else if (flags & SO_OBJECTS)
3788 x = c->page->inuse;
3789 else
3790 x = 1;
3791
3792 total += x;
3793 nodes[c->node] += x;
3794 }
3795 per_cpu[c->node]++;
3796 }
3797 }
3798
3799 if (flags & SO_ALL) {
3800 for_each_node_state(node, N_NORMAL_MEMORY) {
3801 struct kmem_cache_node *n = get_node(s, node);
3802
3803 if (flags & SO_TOTAL)
3804 x = atomic_long_read(&n->total_objects);
3805 else if (flags & SO_OBJECTS)
3806 x = atomic_long_read(&n->total_objects) -
3807 count_partial(n, count_free);
3808
3809 else
3810 x = atomic_long_read(&n->nr_slabs);
3811 total += x;
3812 nodes[node] += x;
3813 }
3814
3815 } else if (flags & SO_PARTIAL) {
3816 for_each_node_state(node, N_NORMAL_MEMORY) {
3817 struct kmem_cache_node *n = get_node(s, node);
3818
3819 if (flags & SO_TOTAL)
3820 x = count_partial(n, count_total);
3821 else if (flags & SO_OBJECTS)
3822 x = count_partial(n, count_inuse);
3823 else
3824 x = n->nr_partial;
3825 total += x;
3826 nodes[node] += x;
3827 }
3828 }
3829 x = sprintf(buf, "%lu", total);
3830 #ifdef CONFIG_NUMA
3831 for_each_node_state(node, N_NORMAL_MEMORY)
3832 if (nodes[node])
3833 x += sprintf(buf + x, " N%d=%lu",
3834 node, nodes[node]);
3835 #endif
3836 kfree(nodes);
3837 return x + sprintf(buf + x, "\n");
3838 }
3839
3840 static int any_slab_objects(struct kmem_cache *s)
3841 {
3842 int node;
3843
3844 for_each_online_node(node) {
3845 struct kmem_cache_node *n = get_node(s, node);
3846
3847 if (!n)
3848 continue;
3849
3850 if (atomic_long_read(&n->total_objects))
3851 return 1;
3852 }
3853 return 0;
3854 }
3855
3856 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3857 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3858
3859 struct slab_attribute {
3860 struct attribute attr;
3861 ssize_t (*show)(struct kmem_cache *s, char *buf);
3862 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3863 };
3864
3865 #define SLAB_ATTR_RO(_name) \
3866 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3867
3868 #define SLAB_ATTR(_name) \
3869 static struct slab_attribute _name##_attr = \
3870 __ATTR(_name, 0644, _name##_show, _name##_store)
3871
3872 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3873 {
3874 return sprintf(buf, "%d\n", s->size);
3875 }
3876 SLAB_ATTR_RO(slab_size);
3877
3878 static ssize_t align_show(struct kmem_cache *s, char *buf)
3879 {
3880 return sprintf(buf, "%d\n", s->align);
3881 }
3882 SLAB_ATTR_RO(align);
3883
3884 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3885 {
3886 return sprintf(buf, "%d\n", s->objsize);
3887 }
3888 SLAB_ATTR_RO(object_size);
3889
3890 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3891 {
3892 return sprintf(buf, "%d\n", oo_objects(s->oo));
3893 }
3894 SLAB_ATTR_RO(objs_per_slab);
3895
3896 static ssize_t order_store(struct kmem_cache *s,
3897 const char *buf, size_t length)
3898 {
3899 unsigned long order;
3900 int err;
3901
3902 err = strict_strtoul(buf, 10, &order);
3903 if (err)
3904 return err;
3905
3906 if (order > slub_max_order || order < slub_min_order)
3907 return -EINVAL;
3908
3909 calculate_sizes(s, order);
3910 return length;
3911 }
3912
3913 static ssize_t order_show(struct kmem_cache *s, char *buf)
3914 {
3915 return sprintf(buf, "%d\n", oo_order(s->oo));
3916 }
3917 SLAB_ATTR(order);
3918
3919 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3920 {
3921 return sprintf(buf, "%lu\n", s->min_partial);
3922 }
3923
3924 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3925 size_t length)
3926 {
3927 unsigned long min;
3928 int err;
3929
3930 err = strict_strtoul(buf, 10, &min);
3931 if (err)
3932 return err;
3933
3934 set_min_partial(s, min);
3935 return length;
3936 }
3937 SLAB_ATTR(min_partial);
3938
3939 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3940 {
3941 if (s->ctor) {
3942 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3943
3944 return n + sprintf(buf + n, "\n");
3945 }
3946 return 0;
3947 }
3948 SLAB_ATTR_RO(ctor);
3949
3950 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3951 {
3952 return sprintf(buf, "%d\n", s->refcount - 1);
3953 }
3954 SLAB_ATTR_RO(aliases);
3955
3956 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3957 {
3958 return show_slab_objects(s, buf, SO_ALL);
3959 }
3960 SLAB_ATTR_RO(slabs);
3961
3962 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3963 {
3964 return show_slab_objects(s, buf, SO_PARTIAL);
3965 }
3966 SLAB_ATTR_RO(partial);
3967
3968 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3969 {
3970 return show_slab_objects(s, buf, SO_CPU);
3971 }
3972 SLAB_ATTR_RO(cpu_slabs);
3973
3974 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3975 {
3976 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3977 }
3978 SLAB_ATTR_RO(objects);
3979
3980 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3981 {
3982 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3983 }
3984 SLAB_ATTR_RO(objects_partial);
3985
3986 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3987 {
3988 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3989 }
3990 SLAB_ATTR_RO(total_objects);
3991
3992 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3993 {
3994 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3995 }
3996
3997 static ssize_t sanity_checks_store(struct kmem_cache *s,
3998 const char *buf, size_t length)
3999 {
4000 s->flags &= ~SLAB_DEBUG_FREE;
4001 if (buf[0] == '1')
4002 s->flags |= SLAB_DEBUG_FREE;
4003 return length;
4004 }
4005 SLAB_ATTR(sanity_checks);
4006
4007 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4008 {
4009 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4010 }
4011
4012 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4013 size_t length)
4014 {
4015 s->flags &= ~SLAB_TRACE;
4016 if (buf[0] == '1')
4017 s->flags |= SLAB_TRACE;
4018 return length;
4019 }
4020 SLAB_ATTR(trace);
4021
4022 #ifdef CONFIG_FAILSLAB
4023 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4024 {
4025 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4026 }
4027
4028 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4029 size_t length)
4030 {
4031 s->flags &= ~SLAB_FAILSLAB;
4032 if (buf[0] == '1')
4033 s->flags |= SLAB_FAILSLAB;
4034 return length;
4035 }
4036 SLAB_ATTR(failslab);
4037 #endif
4038
4039 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4040 {
4041 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4042 }
4043
4044 static ssize_t reclaim_account_store(struct kmem_cache *s,
4045 const char *buf, size_t length)
4046 {
4047 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4048 if (buf[0] == '1')
4049 s->flags |= SLAB_RECLAIM_ACCOUNT;
4050 return length;
4051 }
4052 SLAB_ATTR(reclaim_account);
4053
4054 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4055 {
4056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4057 }
4058 SLAB_ATTR_RO(hwcache_align);
4059
4060 #ifdef CONFIG_ZONE_DMA
4061 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4062 {
4063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4064 }
4065 SLAB_ATTR_RO(cache_dma);
4066 #endif
4067
4068 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4069 {
4070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4071 }
4072 SLAB_ATTR_RO(destroy_by_rcu);
4073
4074 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4075 {
4076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4077 }
4078
4079 static ssize_t red_zone_store(struct kmem_cache *s,
4080 const char *buf, size_t length)
4081 {
4082 if (any_slab_objects(s))
4083 return -EBUSY;
4084
4085 s->flags &= ~SLAB_RED_ZONE;
4086 if (buf[0] == '1')
4087 s->flags |= SLAB_RED_ZONE;
4088 calculate_sizes(s, -1);
4089 return length;
4090 }
4091 SLAB_ATTR(red_zone);
4092
4093 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4094 {
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4096 }
4097
4098 static ssize_t poison_store(struct kmem_cache *s,
4099 const char *buf, size_t length)
4100 {
4101 if (any_slab_objects(s))
4102 return -EBUSY;
4103
4104 s->flags &= ~SLAB_POISON;
4105 if (buf[0] == '1')
4106 s->flags |= SLAB_POISON;
4107 calculate_sizes(s, -1);
4108 return length;
4109 }
4110 SLAB_ATTR(poison);
4111
4112 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4113 {
4114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4115 }
4116
4117 static ssize_t store_user_store(struct kmem_cache *s,
4118 const char *buf, size_t length)
4119 {
4120 if (any_slab_objects(s))
4121 return -EBUSY;
4122
4123 s->flags &= ~SLAB_STORE_USER;
4124 if (buf[0] == '1')
4125 s->flags |= SLAB_STORE_USER;
4126 calculate_sizes(s, -1);
4127 return length;
4128 }
4129 SLAB_ATTR(store_user);
4130
4131 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4132 {
4133 return 0;
4134 }
4135
4136 static ssize_t validate_store(struct kmem_cache *s,
4137 const char *buf, size_t length)
4138 {
4139 int ret = -EINVAL;
4140
4141 if (buf[0] == '1') {
4142 ret = validate_slab_cache(s);
4143 if (ret >= 0)
4144 ret = length;
4145 }
4146 return ret;
4147 }
4148 SLAB_ATTR(validate);
4149
4150 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4151 {
4152 return 0;
4153 }
4154
4155 static ssize_t shrink_store(struct kmem_cache *s,
4156 const char *buf, size_t length)
4157 {
4158 if (buf[0] == '1') {
4159 int rc = kmem_cache_shrink(s);
4160
4161 if (rc)
4162 return rc;
4163 } else
4164 return -EINVAL;
4165 return length;
4166 }
4167 SLAB_ATTR(shrink);
4168
4169 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4170 {
4171 if (!(s->flags & SLAB_STORE_USER))
4172 return -ENOSYS;
4173 return list_locations(s, buf, TRACK_ALLOC);
4174 }
4175 SLAB_ATTR_RO(alloc_calls);
4176
4177 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4178 {
4179 if (!(s->flags & SLAB_STORE_USER))
4180 return -ENOSYS;
4181 return list_locations(s, buf, TRACK_FREE);
4182 }
4183 SLAB_ATTR_RO(free_calls);
4184
4185 #ifdef CONFIG_NUMA
4186 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4187 {
4188 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4189 }
4190
4191 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4192 const char *buf, size_t length)
4193 {
4194 unsigned long ratio;
4195 int err;
4196
4197 err = strict_strtoul(buf, 10, &ratio);
4198 if (err)
4199 return err;
4200
4201 if (ratio <= 100)
4202 s->remote_node_defrag_ratio = ratio * 10;
4203
4204 return length;
4205 }
4206 SLAB_ATTR(remote_node_defrag_ratio);
4207 #endif
4208
4209 #ifdef CONFIG_SLUB_STATS
4210 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4211 {
4212 unsigned long sum = 0;
4213 int cpu;
4214 int len;
4215 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4216
4217 if (!data)
4218 return -ENOMEM;
4219
4220 for_each_online_cpu(cpu) {
4221 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4222
4223 data[cpu] = x;
4224 sum += x;
4225 }
4226
4227 len = sprintf(buf, "%lu", sum);
4228
4229 #ifdef CONFIG_SMP
4230 for_each_online_cpu(cpu) {
4231 if (data[cpu] && len < PAGE_SIZE - 20)
4232 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4233 }
4234 #endif
4235 kfree(data);
4236 return len + sprintf(buf + len, "\n");
4237 }
4238
4239 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4240 {
4241 int cpu;
4242
4243 for_each_online_cpu(cpu)
4244 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4245 }
4246
4247 #define STAT_ATTR(si, text) \
4248 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4249 { \
4250 return show_stat(s, buf, si); \
4251 } \
4252 static ssize_t text##_store(struct kmem_cache *s, \
4253 const char *buf, size_t length) \
4254 { \
4255 if (buf[0] != '0') \
4256 return -EINVAL; \
4257 clear_stat(s, si); \
4258 return length; \
4259 } \
4260 SLAB_ATTR(text); \
4261
4262 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4263 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4264 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4265 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4266 STAT_ATTR(FREE_FROZEN, free_frozen);
4267 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4268 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4269 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4270 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4271 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4272 STAT_ATTR(FREE_SLAB, free_slab);
4273 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4274 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4275 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4276 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4277 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4278 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4279 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4280 #endif
4281
4282 static struct attribute *slab_attrs[] = {
4283 &slab_size_attr.attr,
4284 &object_size_attr.attr,
4285 &objs_per_slab_attr.attr,
4286 &order_attr.attr,
4287 &min_partial_attr.attr,
4288 &objects_attr.attr,
4289 &objects_partial_attr.attr,
4290 &total_objects_attr.attr,
4291 &slabs_attr.attr,
4292 &partial_attr.attr,
4293 &cpu_slabs_attr.attr,
4294 &ctor_attr.attr,
4295 &aliases_attr.attr,
4296 &align_attr.attr,
4297 &sanity_checks_attr.attr,
4298 &trace_attr.attr,
4299 &hwcache_align_attr.attr,
4300 &reclaim_account_attr.attr,
4301 &destroy_by_rcu_attr.attr,
4302 &red_zone_attr.attr,
4303 &poison_attr.attr,
4304 &store_user_attr.attr,
4305 &validate_attr.attr,
4306 &shrink_attr.attr,
4307 &alloc_calls_attr.attr,
4308 &free_calls_attr.attr,
4309 #ifdef CONFIG_ZONE_DMA
4310 &cache_dma_attr.attr,
4311 #endif
4312 #ifdef CONFIG_NUMA
4313 &remote_node_defrag_ratio_attr.attr,
4314 #endif
4315 #ifdef CONFIG_SLUB_STATS
4316 &alloc_fastpath_attr.attr,
4317 &alloc_slowpath_attr.attr,
4318 &free_fastpath_attr.attr,
4319 &free_slowpath_attr.attr,
4320 &free_frozen_attr.attr,
4321 &free_add_partial_attr.attr,
4322 &free_remove_partial_attr.attr,
4323 &alloc_from_partial_attr.attr,
4324 &alloc_slab_attr.attr,
4325 &alloc_refill_attr.attr,
4326 &free_slab_attr.attr,
4327 &cpuslab_flush_attr.attr,
4328 &deactivate_full_attr.attr,
4329 &deactivate_empty_attr.attr,
4330 &deactivate_to_head_attr.attr,
4331 &deactivate_to_tail_attr.attr,
4332 &deactivate_remote_frees_attr.attr,
4333 &order_fallback_attr.attr,
4334 #endif
4335 #ifdef CONFIG_FAILSLAB
4336 &failslab_attr.attr,
4337 #endif
4338
4339 NULL
4340 };
4341
4342 static struct attribute_group slab_attr_group = {
4343 .attrs = slab_attrs,
4344 };
4345
4346 static ssize_t slab_attr_show(struct kobject *kobj,
4347 struct attribute *attr,
4348 char *buf)
4349 {
4350 struct slab_attribute *attribute;
4351 struct kmem_cache *s;
4352 int err;
4353
4354 attribute = to_slab_attr(attr);
4355 s = to_slab(kobj);
4356
4357 if (!attribute->show)
4358 return -EIO;
4359
4360 err = attribute->show(s, buf);
4361
4362 return err;
4363 }
4364
4365 static ssize_t slab_attr_store(struct kobject *kobj,
4366 struct attribute *attr,
4367 const char *buf, size_t len)
4368 {
4369 struct slab_attribute *attribute;
4370 struct kmem_cache *s;
4371 int err;
4372
4373 attribute = to_slab_attr(attr);
4374 s = to_slab(kobj);
4375
4376 if (!attribute->store)
4377 return -EIO;
4378
4379 err = attribute->store(s, buf, len);
4380
4381 return err;
4382 }
4383
4384 static void kmem_cache_release(struct kobject *kobj)
4385 {
4386 struct kmem_cache *s = to_slab(kobj);
4387
4388 kfree(s);
4389 }
4390
4391 static const struct sysfs_ops slab_sysfs_ops = {
4392 .show = slab_attr_show,
4393 .store = slab_attr_store,
4394 };
4395
4396 static struct kobj_type slab_ktype = {
4397 .sysfs_ops = &slab_sysfs_ops,
4398 .release = kmem_cache_release
4399 };
4400
4401 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4402 {
4403 struct kobj_type *ktype = get_ktype(kobj);
4404
4405 if (ktype == &slab_ktype)
4406 return 1;
4407 return 0;
4408 }
4409
4410 static const struct kset_uevent_ops slab_uevent_ops = {
4411 .filter = uevent_filter,
4412 };
4413
4414 static struct kset *slab_kset;
4415
4416 #define ID_STR_LENGTH 64
4417
4418 /* Create a unique string id for a slab cache:
4419 *
4420 * Format :[flags-]size
4421 */
4422 static char *create_unique_id(struct kmem_cache *s)
4423 {
4424 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4425 char *p = name;
4426
4427 BUG_ON(!name);
4428
4429 *p++ = ':';
4430 /*
4431 * First flags affecting slabcache operations. We will only
4432 * get here for aliasable slabs so we do not need to support
4433 * too many flags. The flags here must cover all flags that
4434 * are matched during merging to guarantee that the id is
4435 * unique.
4436 */
4437 if (s->flags & SLAB_CACHE_DMA)
4438 *p++ = 'd';
4439 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4440 *p++ = 'a';
4441 if (s->flags & SLAB_DEBUG_FREE)
4442 *p++ = 'F';
4443 if (!(s->flags & SLAB_NOTRACK))
4444 *p++ = 't';
4445 if (p != name + 1)
4446 *p++ = '-';
4447 p += sprintf(p, "%07d", s->size);
4448 BUG_ON(p > name + ID_STR_LENGTH - 1);
4449 return name;
4450 }
4451
4452 static int sysfs_slab_add(struct kmem_cache *s)
4453 {
4454 int err;
4455 const char *name;
4456 int unmergeable;
4457
4458 if (slab_state < SYSFS)
4459 /* Defer until later */
4460 return 0;
4461
4462 unmergeable = slab_unmergeable(s);
4463 if (unmergeable) {
4464 /*
4465 * Slabcache can never be merged so we can use the name proper.
4466 * This is typically the case for debug situations. In that
4467 * case we can catch duplicate names easily.
4468 */
4469 sysfs_remove_link(&slab_kset->kobj, s->name);
4470 name = s->name;
4471 } else {
4472 /*
4473 * Create a unique name for the slab as a target
4474 * for the symlinks.
4475 */
4476 name = create_unique_id(s);
4477 }
4478
4479 s->kobj.kset = slab_kset;
4480 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4481 if (err) {
4482 kobject_put(&s->kobj);
4483 return err;
4484 }
4485
4486 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4487 if (err) {
4488 kobject_del(&s->kobj);
4489 kobject_put(&s->kobj);
4490 return err;
4491 }
4492 kobject_uevent(&s->kobj, KOBJ_ADD);
4493 if (!unmergeable) {
4494 /* Setup first alias */
4495 sysfs_slab_alias(s, s->name);
4496 kfree(name);
4497 }
4498 return 0;
4499 }
4500
4501 static void sysfs_slab_remove(struct kmem_cache *s)
4502 {
4503 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4504 kobject_del(&s->kobj);
4505 kobject_put(&s->kobj);
4506 }
4507
4508 /*
4509 * Need to buffer aliases during bootup until sysfs becomes
4510 * available lest we lose that information.
4511 */
4512 struct saved_alias {
4513 struct kmem_cache *s;
4514 const char *name;
4515 struct saved_alias *next;
4516 };
4517
4518 static struct saved_alias *alias_list;
4519
4520 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4521 {
4522 struct saved_alias *al;
4523
4524 if (slab_state == SYSFS) {
4525 /*
4526 * If we have a leftover link then remove it.
4527 */
4528 sysfs_remove_link(&slab_kset->kobj, name);
4529 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4530 }
4531
4532 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4533 if (!al)
4534 return -ENOMEM;
4535
4536 al->s = s;
4537 al->name = name;
4538 al->next = alias_list;
4539 alias_list = al;
4540 return 0;
4541 }
4542
4543 static int __init slab_sysfs_init(void)
4544 {
4545 struct kmem_cache *s;
4546 int err;
4547
4548 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4549 if (!slab_kset) {
4550 printk(KERN_ERR "Cannot register slab subsystem.\n");
4551 return -ENOSYS;
4552 }
4553
4554 slab_state = SYSFS;
4555
4556 list_for_each_entry(s, &slab_caches, list) {
4557 err = sysfs_slab_add(s);
4558 if (err)
4559 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4560 " to sysfs\n", s->name);
4561 }
4562
4563 while (alias_list) {
4564 struct saved_alias *al = alias_list;
4565
4566 alias_list = alias_list->next;
4567 err = sysfs_slab_alias(al->s, al->name);
4568 if (err)
4569 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4570 " %s to sysfs\n", s->name);
4571 kfree(al);
4572 }
4573
4574 resiliency_test();
4575 return 0;
4576 }
4577
4578 __initcall(slab_sysfs_init);
4579 #endif
4580
4581 /*
4582 * The /proc/slabinfo ABI
4583 */
4584 #ifdef CONFIG_SLABINFO
4585 static void print_slabinfo_header(struct seq_file *m)
4586 {
4587 seq_puts(m, "slabinfo - version: 2.1\n");
4588 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4589 "<objperslab> <pagesperslab>");
4590 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4591 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4592 seq_putc(m, '\n');
4593 }
4594
4595 static void *s_start(struct seq_file *m, loff_t *pos)
4596 {
4597 loff_t n = *pos;
4598
4599 down_read(&slub_lock);
4600 if (!n)
4601 print_slabinfo_header(m);
4602
4603 return seq_list_start(&slab_caches, *pos);
4604 }
4605
4606 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4607 {
4608 return seq_list_next(p, &slab_caches, pos);
4609 }
4610
4611 static void s_stop(struct seq_file *m, void *p)
4612 {
4613 up_read(&slub_lock);
4614 }
4615
4616 static int s_show(struct seq_file *m, void *p)
4617 {
4618 unsigned long nr_partials = 0;
4619 unsigned long nr_slabs = 0;
4620 unsigned long nr_inuse = 0;
4621 unsigned long nr_objs = 0;
4622 unsigned long nr_free = 0;
4623 struct kmem_cache *s;
4624 int node;
4625
4626 s = list_entry(p, struct kmem_cache, list);
4627
4628 for_each_online_node(node) {
4629 struct kmem_cache_node *n = get_node(s, node);
4630
4631 if (!n)
4632 continue;
4633
4634 nr_partials += n->nr_partial;
4635 nr_slabs += atomic_long_read(&n->nr_slabs);
4636 nr_objs += atomic_long_read(&n->total_objects);
4637 nr_free += count_partial(n, count_free);
4638 }
4639
4640 nr_inuse = nr_objs - nr_free;
4641
4642 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4643 nr_objs, s->size, oo_objects(s->oo),
4644 (1 << oo_order(s->oo)));
4645 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4646 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4647 0UL);
4648 seq_putc(m, '\n');
4649 return 0;
4650 }
4651
4652 static const struct seq_operations slabinfo_op = {
4653 .start = s_start,
4654 .next = s_next,
4655 .stop = s_stop,
4656 .show = s_show,
4657 };
4658
4659 static int slabinfo_open(struct inode *inode, struct file *file)
4660 {
4661 return seq_open(file, &slabinfo_op);
4662 }
4663
4664 static const struct file_operations proc_slabinfo_operations = {
4665 .open = slabinfo_open,
4666 .read = seq_read,
4667 .llseek = seq_lseek,
4668 .release = seq_release,
4669 };
4670
4671 static int __init slab_proc_init(void)
4672 {
4673 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4674 return 0;
4675 }
4676 module_init(slab_proc_init);
4677 #endif /* CONFIG_SLABINFO */