2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 static inline void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 static struct notifier_block slab_notifier
;
202 * Tracking user of a slab.
204 #define TRACK_ADDRS_COUNT 16
206 unsigned long addr
; /* Called from address */
207 #ifdef CONFIG_STACKTRACE
208 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
210 int cpu
; /* Was running on cpu */
211 int pid
; /* Pid context */
212 unsigned long when
; /* When did the operation occur */
215 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
218 static int sysfs_slab_add(struct kmem_cache
*);
219 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
220 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
222 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
235 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
243 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
245 return *(void **)(object
+ s
->offset
);
248 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
250 prefetch(object
+ s
->offset
);
253 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s
, object
);
260 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
264 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
266 *(void **)(object
+ s
->offset
) = fp
;
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
275 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
283 return (p
- addr
) / s
->size
;
286 static inline int order_objects(int order
, unsigned long size
, int reserved
)
288 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
291 static inline struct kmem_cache_order_objects
oo_make(int order
,
292 unsigned long size
, int reserved
)
294 struct kmem_cache_order_objects x
= {
295 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
301 static inline int oo_order(struct kmem_cache_order_objects x
)
303 return x
.x
>> OO_SHIFT
;
306 static inline int oo_objects(struct kmem_cache_order_objects x
)
308 return x
.x
& OO_MASK
;
312 * Per slab locking using the pagelock
314 static __always_inline
void slab_lock(struct page
*page
)
316 VM_BUG_ON_PAGE(PageTail(page
), page
);
317 bit_spin_lock(PG_locked
, &page
->flags
);
320 static __always_inline
void slab_unlock(struct page
*page
)
322 VM_BUG_ON_PAGE(PageTail(page
), page
);
323 __bit_spin_unlock(PG_locked
, &page
->flags
);
326 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
329 tmp
.counters
= counters_new
;
331 * page->counters can cover frozen/inuse/objects as well
332 * as page->_refcount. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_refcount, so
334 * be careful and only assign to the fields we need.
336 page
->frozen
= tmp
.frozen
;
337 page
->inuse
= tmp
.inuse
;
338 page
->objects
= tmp
.objects
;
341 /* Interrupts must be disabled (for the fallback code to work right) */
342 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
343 void *freelist_old
, unsigned long counters_old
,
344 void *freelist_new
, unsigned long counters_new
,
347 VM_BUG_ON(!irqs_disabled());
348 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
350 if (s
->flags
& __CMPXCHG_DOUBLE
) {
351 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
352 freelist_old
, counters_old
,
353 freelist_new
, counters_new
))
359 if (page
->freelist
== freelist_old
&&
360 page
->counters
== counters_old
) {
361 page
->freelist
= freelist_new
;
362 set_page_slub_counters(page
, counters_new
);
370 stat(s
, CMPXCHG_DOUBLE_FAIL
);
372 #ifdef SLUB_DEBUG_CMPXCHG
373 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
379 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
380 void *freelist_old
, unsigned long counters_old
,
381 void *freelist_new
, unsigned long counters_new
,
384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
386 if (s
->flags
& __CMPXCHG_DOUBLE
) {
387 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
388 freelist_old
, counters_old
,
389 freelist_new
, counters_new
))
396 local_irq_save(flags
);
398 if (page
->freelist
== freelist_old
&&
399 page
->counters
== counters_old
) {
400 page
->freelist
= freelist_new
;
401 set_page_slub_counters(page
, counters_new
);
403 local_irq_restore(flags
);
407 local_irq_restore(flags
);
411 stat(s
, CMPXCHG_DOUBLE_FAIL
);
413 #ifdef SLUB_DEBUG_CMPXCHG
414 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
420 #ifdef CONFIG_SLUB_DEBUG
422 * Determine a map of object in use on a page.
424 * Node listlock must be held to guarantee that the page does
425 * not vanish from under us.
427 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
430 void *addr
= page_address(page
);
432 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
433 set_bit(slab_index(p
, s
, addr
), map
);
436 static inline int size_from_object(struct kmem_cache
*s
)
438 if (s
->flags
& SLAB_RED_ZONE
)
439 return s
->size
- s
->red_left_pad
;
444 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
446 if (s
->flags
& SLAB_RED_ZONE
)
447 p
-= s
->red_left_pad
;
455 #if defined(CONFIG_SLUB_DEBUG_ON)
456 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
457 #elif defined(CONFIG_KASAN)
458 static int slub_debug
= SLAB_STORE_USER
;
460 static int slub_debug
;
463 static char *slub_debug_slabs
;
464 static int disable_higher_order_debug
;
467 * slub is about to manipulate internal object metadata. This memory lies
468 * outside the range of the allocated object, so accessing it would normally
469 * be reported by kasan as a bounds error. metadata_access_enable() is used
470 * to tell kasan that these accesses are OK.
472 static inline void metadata_access_enable(void)
474 kasan_disable_current();
477 static inline void metadata_access_disable(void)
479 kasan_enable_current();
486 /* Verify that a pointer has an address that is valid within a slab page */
487 static inline int check_valid_pointer(struct kmem_cache
*s
,
488 struct page
*page
, void *object
)
495 base
= page_address(page
);
496 object
= restore_red_left(s
, object
);
497 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
498 (object
- base
) % s
->size
) {
505 static void print_section(char *text
, u8
*addr
, unsigned int length
)
507 metadata_access_enable();
508 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
510 metadata_access_disable();
513 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
514 enum track_item alloc
)
519 p
= object
+ s
->offset
+ sizeof(void *);
521 p
= object
+ s
->inuse
;
526 static void set_track(struct kmem_cache
*s
, void *object
,
527 enum track_item alloc
, unsigned long addr
)
529 struct track
*p
= get_track(s
, object
, alloc
);
532 #ifdef CONFIG_STACKTRACE
533 struct stack_trace trace
;
536 trace
.nr_entries
= 0;
537 trace
.max_entries
= TRACK_ADDRS_COUNT
;
538 trace
.entries
= p
->addrs
;
540 metadata_access_enable();
541 save_stack_trace(&trace
);
542 metadata_access_disable();
544 /* See rant in lockdep.c */
545 if (trace
.nr_entries
!= 0 &&
546 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
549 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
553 p
->cpu
= smp_processor_id();
554 p
->pid
= current
->pid
;
557 memset(p
, 0, sizeof(struct track
));
560 static void init_tracking(struct kmem_cache
*s
, void *object
)
562 if (!(s
->flags
& SLAB_STORE_USER
))
565 set_track(s
, object
, TRACK_FREE
, 0UL);
566 set_track(s
, object
, TRACK_ALLOC
, 0UL);
569 static void print_track(const char *s
, struct track
*t
)
574 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
575 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
576 #ifdef CONFIG_STACKTRACE
579 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
581 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
588 static void print_tracking(struct kmem_cache
*s
, void *object
)
590 if (!(s
->flags
& SLAB_STORE_USER
))
593 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
594 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
597 static void print_page_info(struct page
*page
)
599 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
600 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
604 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
606 struct va_format vaf
;
612 pr_err("=============================================================================\n");
613 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
614 pr_err("-----------------------------------------------------------------------------\n\n");
616 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
620 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
622 struct va_format vaf
;
628 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
632 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
634 unsigned int off
; /* Offset of last byte */
635 u8
*addr
= page_address(page
);
637 print_tracking(s
, p
);
639 print_page_info(page
);
641 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
642 p
, p
- addr
, get_freepointer(s
, p
));
644 if (s
->flags
& SLAB_RED_ZONE
)
645 print_section("Redzone ", p
- s
->red_left_pad
, s
->red_left_pad
);
646 else if (p
> addr
+ 16)
647 print_section("Bytes b4 ", p
- 16, 16);
649 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
651 if (s
->flags
& SLAB_RED_ZONE
)
652 print_section("Redzone ", p
+ s
->object_size
,
653 s
->inuse
- s
->object_size
);
656 off
= s
->offset
+ sizeof(void *);
660 if (s
->flags
& SLAB_STORE_USER
)
661 off
+= 2 * sizeof(struct track
);
663 if (off
!= size_from_object(s
))
664 /* Beginning of the filler is the free pointer */
665 print_section("Padding ", p
+ off
, size_from_object(s
) - off
);
670 void object_err(struct kmem_cache
*s
, struct page
*page
,
671 u8
*object
, char *reason
)
673 slab_bug(s
, "%s", reason
);
674 print_trailer(s
, page
, object
);
677 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
678 const char *fmt
, ...)
684 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
686 slab_bug(s
, "%s", buf
);
687 print_page_info(page
);
691 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
695 if (s
->flags
& SLAB_RED_ZONE
)
696 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
698 if (s
->flags
& __OBJECT_POISON
) {
699 memset(p
, POISON_FREE
, s
->object_size
- 1);
700 p
[s
->object_size
- 1] = POISON_END
;
703 if (s
->flags
& SLAB_RED_ZONE
)
704 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
707 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
708 void *from
, void *to
)
710 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
711 memset(from
, data
, to
- from
);
714 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
715 u8
*object
, char *what
,
716 u8
*start
, unsigned int value
, unsigned int bytes
)
721 metadata_access_enable();
722 fault
= memchr_inv(start
, value
, bytes
);
723 metadata_access_disable();
728 while (end
> fault
&& end
[-1] == value
)
731 slab_bug(s
, "%s overwritten", what
);
732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
733 fault
, end
- 1, fault
[0], value
);
734 print_trailer(s
, page
, object
);
736 restore_bytes(s
, what
, value
, fault
, end
);
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
751 * object + s->object_size
752 * Padding to reach word boundary. This is also used for Redzoning.
753 * Padding is extended by another word if Redzoning is enabled and
754 * object_size == inuse.
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
760 * Meta data starts here.
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
764 * C. Padding to reach required alignment boundary or at mininum
765 * one word if debugging is on to be able to detect writes
766 * before the word boundary.
768 * Padding is done using 0x5a (POISON_INUSE)
771 * Nothing is used beyond s->size.
773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
774 * ignored. And therefore no slab options that rely on these boundaries
775 * may be used with merged slabcaches.
778 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
780 unsigned long off
= s
->inuse
; /* The end of info */
783 /* Freepointer is placed after the object. */
784 off
+= sizeof(void *);
786 if (s
->flags
& SLAB_STORE_USER
)
787 /* We also have user information there */
788 off
+= 2 * sizeof(struct track
);
790 if (size_from_object(s
) == off
)
793 return check_bytes_and_report(s
, page
, p
, "Object padding",
794 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
797 /* Check the pad bytes at the end of a slab page */
798 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
806 if (!(s
->flags
& SLAB_POISON
))
809 start
= page_address(page
);
810 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
811 end
= start
+ length
;
812 remainder
= length
% s
->size
;
816 metadata_access_enable();
817 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
818 metadata_access_disable();
821 while (end
> fault
&& end
[-1] == POISON_INUSE
)
824 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
825 print_section("Padding ", end
- remainder
, remainder
);
827 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
831 static int check_object(struct kmem_cache
*s
, struct page
*page
,
832 void *object
, u8 val
)
835 u8
*endobject
= object
+ s
->object_size
;
837 if (s
->flags
& SLAB_RED_ZONE
) {
838 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
839 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
842 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
843 endobject
, val
, s
->inuse
- s
->object_size
))
846 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
847 check_bytes_and_report(s
, page
, p
, "Alignment padding",
848 endobject
, POISON_INUSE
,
849 s
->inuse
- s
->object_size
);
853 if (s
->flags
& SLAB_POISON
) {
854 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
855 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
856 POISON_FREE
, s
->object_size
- 1) ||
857 !check_bytes_and_report(s
, page
, p
, "Poison",
858 p
+ s
->object_size
- 1, POISON_END
, 1)))
861 * check_pad_bytes cleans up on its own.
863 check_pad_bytes(s
, page
, p
);
866 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
868 * Object and freepointer overlap. Cannot check
869 * freepointer while object is allocated.
873 /* Check free pointer validity */
874 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
875 object_err(s
, page
, p
, "Freepointer corrupt");
877 * No choice but to zap it and thus lose the remainder
878 * of the free objects in this slab. May cause
879 * another error because the object count is now wrong.
881 set_freepointer(s
, p
, NULL
);
887 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
891 VM_BUG_ON(!irqs_disabled());
893 if (!PageSlab(page
)) {
894 slab_err(s
, page
, "Not a valid slab page");
898 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
899 if (page
->objects
> maxobj
) {
900 slab_err(s
, page
, "objects %u > max %u",
901 page
->objects
, maxobj
);
904 if (page
->inuse
> page
->objects
) {
905 slab_err(s
, page
, "inuse %u > max %u",
906 page
->inuse
, page
->objects
);
909 /* Slab_pad_check fixes things up after itself */
910 slab_pad_check(s
, page
);
915 * Determine if a certain object on a page is on the freelist. Must hold the
916 * slab lock to guarantee that the chains are in a consistent state.
918 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
926 while (fp
&& nr
<= page
->objects
) {
929 if (!check_valid_pointer(s
, page
, fp
)) {
931 object_err(s
, page
, object
,
932 "Freechain corrupt");
933 set_freepointer(s
, object
, NULL
);
935 slab_err(s
, page
, "Freepointer corrupt");
936 page
->freelist
= NULL
;
937 page
->inuse
= page
->objects
;
938 slab_fix(s
, "Freelist cleared");
944 fp
= get_freepointer(s
, object
);
948 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
949 if (max_objects
> MAX_OBJS_PER_PAGE
)
950 max_objects
= MAX_OBJS_PER_PAGE
;
952 if (page
->objects
!= max_objects
) {
953 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
954 page
->objects
, max_objects
);
955 page
->objects
= max_objects
;
956 slab_fix(s
, "Number of objects adjusted.");
958 if (page
->inuse
!= page
->objects
- nr
) {
959 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
960 page
->inuse
, page
->objects
- nr
);
961 page
->inuse
= page
->objects
- nr
;
962 slab_fix(s
, "Object count adjusted.");
964 return search
== NULL
;
967 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
970 if (s
->flags
& SLAB_TRACE
) {
971 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
973 alloc
? "alloc" : "free",
978 print_section("Object ", (void *)object
,
986 * Tracking of fully allocated slabs for debugging purposes.
988 static void add_full(struct kmem_cache
*s
,
989 struct kmem_cache_node
*n
, struct page
*page
)
991 if (!(s
->flags
& SLAB_STORE_USER
))
994 lockdep_assert_held(&n
->list_lock
);
995 list_add(&page
->lru
, &n
->full
);
998 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1000 if (!(s
->flags
& SLAB_STORE_USER
))
1003 lockdep_assert_held(&n
->list_lock
);
1004 list_del(&page
->lru
);
1007 /* Tracking of the number of slabs for debugging purposes */
1008 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1010 struct kmem_cache_node
*n
= get_node(s
, node
);
1012 return atomic_long_read(&n
->nr_slabs
);
1015 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1017 return atomic_long_read(&n
->nr_slabs
);
1020 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1022 struct kmem_cache_node
*n
= get_node(s
, node
);
1025 * May be called early in order to allocate a slab for the
1026 * kmem_cache_node structure. Solve the chicken-egg
1027 * dilemma by deferring the increment of the count during
1028 * bootstrap (see early_kmem_cache_node_alloc).
1031 atomic_long_inc(&n
->nr_slabs
);
1032 atomic_long_add(objects
, &n
->total_objects
);
1035 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1037 struct kmem_cache_node
*n
= get_node(s
, node
);
1039 atomic_long_dec(&n
->nr_slabs
);
1040 atomic_long_sub(objects
, &n
->total_objects
);
1043 /* Object debug checks for alloc/free paths */
1044 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1047 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1050 init_object(s
, object
, SLUB_RED_INACTIVE
);
1051 init_tracking(s
, object
);
1054 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1056 void *object
, unsigned long addr
)
1058 if (!check_slab(s
, page
))
1061 if (!check_valid_pointer(s
, page
, object
)) {
1062 object_err(s
, page
, object
, "Freelist Pointer check fails");
1066 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1072 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1074 void *object
, unsigned long addr
)
1076 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1077 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1081 /* Success perform special debug activities for allocs */
1082 if (s
->flags
& SLAB_STORE_USER
)
1083 set_track(s
, object
, TRACK_ALLOC
, addr
);
1084 trace(s
, page
, object
, 1);
1085 init_object(s
, object
, SLUB_RED_ACTIVE
);
1089 if (PageSlab(page
)) {
1091 * If this is a slab page then lets do the best we can
1092 * to avoid issues in the future. Marking all objects
1093 * as used avoids touching the remaining objects.
1095 slab_fix(s
, "Marking all objects used");
1096 page
->inuse
= page
->objects
;
1097 page
->freelist
= NULL
;
1102 static inline int free_consistency_checks(struct kmem_cache
*s
,
1103 struct page
*page
, void *object
, unsigned long addr
)
1105 if (!check_valid_pointer(s
, page
, object
)) {
1106 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1110 if (on_freelist(s
, page
, object
)) {
1111 object_err(s
, page
, object
, "Object already free");
1115 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1118 if (unlikely(s
!= page
->slab_cache
)) {
1119 if (!PageSlab(page
)) {
1120 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1122 } else if (!page
->slab_cache
) {
1123 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object_err(s
, page
, object
,
1128 "page slab pointer corrupt.");
1134 /* Supports checking bulk free of a constructed freelist */
1135 static noinline
int free_debug_processing(
1136 struct kmem_cache
*s
, struct page
*page
,
1137 void *head
, void *tail
, int bulk_cnt
,
1140 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1141 void *object
= head
;
1143 unsigned long uninitialized_var(flags
);
1146 spin_lock_irqsave(&n
->list_lock
, flags
);
1149 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1150 if (!check_slab(s
, page
))
1157 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1158 if (!free_consistency_checks(s
, page
, object
, addr
))
1162 if (s
->flags
& SLAB_STORE_USER
)
1163 set_track(s
, object
, TRACK_FREE
, addr
);
1164 trace(s
, page
, object
, 0);
1165 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1166 init_object(s
, object
, SLUB_RED_INACTIVE
);
1168 /* Reached end of constructed freelist yet? */
1169 if (object
!= tail
) {
1170 object
= get_freepointer(s
, object
);
1176 if (cnt
!= bulk_cnt
)
1177 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1181 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1183 slab_fix(s
, "Object at 0x%p not freed", object
);
1187 static int __init
setup_slub_debug(char *str
)
1189 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1190 if (*str
++ != '=' || !*str
)
1192 * No options specified. Switch on full debugging.
1198 * No options but restriction on slabs. This means full
1199 * debugging for slabs matching a pattern.
1206 * Switch off all debugging measures.
1211 * Determine which debug features should be switched on
1213 for (; *str
&& *str
!= ','; str
++) {
1214 switch (tolower(*str
)) {
1216 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1219 slub_debug
|= SLAB_RED_ZONE
;
1222 slub_debug
|= SLAB_POISON
;
1225 slub_debug
|= SLAB_STORE_USER
;
1228 slub_debug
|= SLAB_TRACE
;
1231 slub_debug
|= SLAB_FAILSLAB
;
1235 * Avoid enabling debugging on caches if its minimum
1236 * order would increase as a result.
1238 disable_higher_order_debug
= 1;
1241 pr_err("slub_debug option '%c' unknown. skipped\n",
1248 slub_debug_slabs
= str
+ 1;
1253 __setup("slub_debug", setup_slub_debug
);
1255 unsigned long kmem_cache_flags(unsigned long object_size
,
1256 unsigned long flags
, const char *name
,
1257 void (*ctor
)(void *))
1260 * Enable debugging if selected on the kernel commandline.
1262 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1263 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1264 flags
|= slub_debug
;
1268 #else /* !CONFIG_SLUB_DEBUG */
1269 static inline void setup_object_debug(struct kmem_cache
*s
,
1270 struct page
*page
, void *object
) {}
1272 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1273 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1275 static inline int free_debug_processing(
1276 struct kmem_cache
*s
, struct page
*page
,
1277 void *head
, void *tail
, int bulk_cnt
,
1278 unsigned long addr
) { return 0; }
1280 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1282 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1283 void *object
, u8 val
) { return 1; }
1284 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1285 struct page
*page
) {}
1286 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1287 struct page
*page
) {}
1288 unsigned long kmem_cache_flags(unsigned long object_size
,
1289 unsigned long flags
, const char *name
,
1290 void (*ctor
)(void *))
1294 #define slub_debug 0
1296 #define disable_higher_order_debug 0
1298 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1300 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1302 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1304 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1307 #endif /* CONFIG_SLUB_DEBUG */
1310 * Hooks for other subsystems that check memory allocations. In a typical
1311 * production configuration these hooks all should produce no code at all.
1313 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1315 kmemleak_alloc(ptr
, size
, 1, flags
);
1316 kasan_kmalloc_large(ptr
, size
, flags
);
1319 static inline void kfree_hook(const void *x
)
1322 kasan_kfree_large(x
);
1325 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1327 kmemleak_free_recursive(x
, s
->flags
);
1330 * Trouble is that we may no longer disable interrupts in the fast path
1331 * So in order to make the debug calls that expect irqs to be
1332 * disabled we need to disable interrupts temporarily.
1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1336 unsigned long flags
;
1338 local_irq_save(flags
);
1339 kmemcheck_slab_free(s
, x
, s
->object_size
);
1340 debug_check_no_locks_freed(x
, s
->object_size
);
1341 local_irq_restore(flags
);
1344 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1345 debug_check_no_obj_freed(x
, s
->object_size
);
1347 kasan_slab_free(s
, x
);
1350 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1351 void *head
, void *tail
)
1354 * Compiler cannot detect this function can be removed if slab_free_hook()
1355 * evaluates to nothing. Thus, catch all relevant config debug options here.
1357 #if defined(CONFIG_KMEMCHECK) || \
1358 defined(CONFIG_LOCKDEP) || \
1359 defined(CONFIG_DEBUG_KMEMLEAK) || \
1360 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1361 defined(CONFIG_KASAN)
1363 void *object
= head
;
1364 void *tail_obj
= tail
? : head
;
1367 slab_free_hook(s
, object
);
1368 } while ((object
!= tail_obj
) &&
1369 (object
= get_freepointer(s
, object
)));
1373 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1376 setup_object_debug(s
, page
, object
);
1377 if (unlikely(s
->ctor
)) {
1378 kasan_unpoison_object_data(s
, object
);
1380 kasan_poison_object_data(s
, object
);
1385 * Slab allocation and freeing
1387 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1388 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1391 int order
= oo_order(oo
);
1393 flags
|= __GFP_NOTRACK
;
1395 if (node
== NUMA_NO_NODE
)
1396 page
= alloc_pages(flags
, order
);
1398 page
= __alloc_pages_node(node
, flags
, order
);
1400 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1401 __free_pages(page
, order
);
1408 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1411 struct kmem_cache_order_objects oo
= s
->oo
;
1416 flags
&= gfp_allowed_mask
;
1418 if (gfpflags_allow_blocking(flags
))
1421 flags
|= s
->allocflags
;
1424 * Let the initial higher-order allocation fail under memory pressure
1425 * so we fall-back to the minimum order allocation.
1427 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1428 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1429 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1431 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1432 if (unlikely(!page
)) {
1436 * Allocation may have failed due to fragmentation.
1437 * Try a lower order alloc if possible
1439 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1440 if (unlikely(!page
))
1442 stat(s
, ORDER_FALLBACK
);
1445 if (kmemcheck_enabled
&&
1446 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1447 int pages
= 1 << oo_order(oo
);
1449 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1452 * Objects from caches that have a constructor don't get
1453 * cleared when they're allocated, so we need to do it here.
1456 kmemcheck_mark_uninitialized_pages(page
, pages
);
1458 kmemcheck_mark_unallocated_pages(page
, pages
);
1461 page
->objects
= oo_objects(oo
);
1463 order
= compound_order(page
);
1464 page
->slab_cache
= s
;
1465 __SetPageSlab(page
);
1466 if (page_is_pfmemalloc(page
))
1467 SetPageSlabPfmemalloc(page
);
1469 start
= page_address(page
);
1471 if (unlikely(s
->flags
& SLAB_POISON
))
1472 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1474 kasan_poison_slab(page
);
1476 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1477 setup_object(s
, page
, p
);
1478 if (likely(idx
< page
->objects
))
1479 set_freepointer(s
, p
, p
+ s
->size
);
1481 set_freepointer(s
, p
, NULL
);
1484 page
->freelist
= fixup_red_left(s
, start
);
1485 page
->inuse
= page
->objects
;
1489 if (gfpflags_allow_blocking(flags
))
1490 local_irq_disable();
1494 mod_zone_page_state(page_zone(page
),
1495 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1496 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1499 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1504 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1506 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1507 pr_emerg("gfp: %u\n", flags
& GFP_SLAB_BUG_MASK
);
1511 return allocate_slab(s
,
1512 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1515 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1517 int order
= compound_order(page
);
1518 int pages
= 1 << order
;
1520 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1523 slab_pad_check(s
, page
);
1524 for_each_object(p
, s
, page_address(page
),
1526 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1529 kmemcheck_free_shadow(page
, compound_order(page
));
1531 mod_zone_page_state(page_zone(page
),
1532 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1533 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1536 __ClearPageSlabPfmemalloc(page
);
1537 __ClearPageSlab(page
);
1539 page_mapcount_reset(page
);
1540 if (current
->reclaim_state
)
1541 current
->reclaim_state
->reclaimed_slab
+= pages
;
1542 memcg_uncharge_slab(page
, order
, s
);
1543 __free_pages(page
, order
);
1546 #define need_reserve_slab_rcu \
1547 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1549 static void rcu_free_slab(struct rcu_head
*h
)
1553 if (need_reserve_slab_rcu
)
1554 page
= virt_to_head_page(h
);
1556 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1558 __free_slab(page
->slab_cache
, page
);
1561 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1563 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1564 struct rcu_head
*head
;
1566 if (need_reserve_slab_rcu
) {
1567 int order
= compound_order(page
);
1568 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1570 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1571 head
= page_address(page
) + offset
;
1573 head
= &page
->rcu_head
;
1576 call_rcu(head
, rcu_free_slab
);
1578 __free_slab(s
, page
);
1581 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1583 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1588 * Management of partially allocated slabs.
1591 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1594 if (tail
== DEACTIVATE_TO_TAIL
)
1595 list_add_tail(&page
->lru
, &n
->partial
);
1597 list_add(&page
->lru
, &n
->partial
);
1600 static inline void add_partial(struct kmem_cache_node
*n
,
1601 struct page
*page
, int tail
)
1603 lockdep_assert_held(&n
->list_lock
);
1604 __add_partial(n
, page
, tail
);
1607 static inline void remove_partial(struct kmem_cache_node
*n
,
1610 lockdep_assert_held(&n
->list_lock
);
1611 list_del(&page
->lru
);
1616 * Remove slab from the partial list, freeze it and
1617 * return the pointer to the freelist.
1619 * Returns a list of objects or NULL if it fails.
1621 static inline void *acquire_slab(struct kmem_cache
*s
,
1622 struct kmem_cache_node
*n
, struct page
*page
,
1623 int mode
, int *objects
)
1626 unsigned long counters
;
1629 lockdep_assert_held(&n
->list_lock
);
1632 * Zap the freelist and set the frozen bit.
1633 * The old freelist is the list of objects for the
1634 * per cpu allocation list.
1636 freelist
= page
->freelist
;
1637 counters
= page
->counters
;
1638 new.counters
= counters
;
1639 *objects
= new.objects
- new.inuse
;
1641 new.inuse
= page
->objects
;
1642 new.freelist
= NULL
;
1644 new.freelist
= freelist
;
1647 VM_BUG_ON(new.frozen
);
1650 if (!__cmpxchg_double_slab(s
, page
,
1652 new.freelist
, new.counters
,
1656 remove_partial(n
, page
);
1661 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1662 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1665 * Try to allocate a partial slab from a specific node.
1667 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1668 struct kmem_cache_cpu
*c
, gfp_t flags
)
1670 struct page
*page
, *page2
;
1671 void *object
= NULL
;
1676 * Racy check. If we mistakenly see no partial slabs then we
1677 * just allocate an empty slab. If we mistakenly try to get a
1678 * partial slab and there is none available then get_partials()
1681 if (!n
|| !n
->nr_partial
)
1684 spin_lock(&n
->list_lock
);
1685 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1688 if (!pfmemalloc_match(page
, flags
))
1691 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1695 available
+= objects
;
1698 stat(s
, ALLOC_FROM_PARTIAL
);
1701 put_cpu_partial(s
, page
, 0);
1702 stat(s
, CPU_PARTIAL_NODE
);
1704 if (!kmem_cache_has_cpu_partial(s
)
1705 || available
> s
->cpu_partial
/ 2)
1709 spin_unlock(&n
->list_lock
);
1714 * Get a page from somewhere. Search in increasing NUMA distances.
1716 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1717 struct kmem_cache_cpu
*c
)
1720 struct zonelist
*zonelist
;
1723 enum zone_type high_zoneidx
= gfp_zone(flags
);
1725 unsigned int cpuset_mems_cookie
;
1728 * The defrag ratio allows a configuration of the tradeoffs between
1729 * inter node defragmentation and node local allocations. A lower
1730 * defrag_ratio increases the tendency to do local allocations
1731 * instead of attempting to obtain partial slabs from other nodes.
1733 * If the defrag_ratio is set to 0 then kmalloc() always
1734 * returns node local objects. If the ratio is higher then kmalloc()
1735 * may return off node objects because partial slabs are obtained
1736 * from other nodes and filled up.
1738 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1739 * (which makes defrag_ratio = 1000) then every (well almost)
1740 * allocation will first attempt to defrag slab caches on other nodes.
1741 * This means scanning over all nodes to look for partial slabs which
1742 * may be expensive if we do it every time we are trying to find a slab
1743 * with available objects.
1745 if (!s
->remote_node_defrag_ratio
||
1746 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1750 cpuset_mems_cookie
= read_mems_allowed_begin();
1751 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1752 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1753 struct kmem_cache_node
*n
;
1755 n
= get_node(s
, zone_to_nid(zone
));
1757 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1758 n
->nr_partial
> s
->min_partial
) {
1759 object
= get_partial_node(s
, n
, c
, flags
);
1762 * Don't check read_mems_allowed_retry()
1763 * here - if mems_allowed was updated in
1764 * parallel, that was a harmless race
1765 * between allocation and the cpuset
1772 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1778 * Get a partial page, lock it and return it.
1780 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1781 struct kmem_cache_cpu
*c
)
1784 int searchnode
= node
;
1786 if (node
== NUMA_NO_NODE
)
1787 searchnode
= numa_mem_id();
1788 else if (!node_present_pages(node
))
1789 searchnode
= node_to_mem_node(node
);
1791 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1792 if (object
|| node
!= NUMA_NO_NODE
)
1795 return get_any_partial(s
, flags
, c
);
1798 #ifdef CONFIG_PREEMPT
1800 * Calculate the next globally unique transaction for disambiguiation
1801 * during cmpxchg. The transactions start with the cpu number and are then
1802 * incremented by CONFIG_NR_CPUS.
1804 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1807 * No preemption supported therefore also no need to check for
1813 static inline unsigned long next_tid(unsigned long tid
)
1815 return tid
+ TID_STEP
;
1818 static inline unsigned int tid_to_cpu(unsigned long tid
)
1820 return tid
% TID_STEP
;
1823 static inline unsigned long tid_to_event(unsigned long tid
)
1825 return tid
/ TID_STEP
;
1828 static inline unsigned int init_tid(int cpu
)
1833 static inline void note_cmpxchg_failure(const char *n
,
1834 const struct kmem_cache
*s
, unsigned long tid
)
1836 #ifdef SLUB_DEBUG_CMPXCHG
1837 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1839 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1841 #ifdef CONFIG_PREEMPT
1842 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1843 pr_warn("due to cpu change %d -> %d\n",
1844 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1847 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1848 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1849 tid_to_event(tid
), tid_to_event(actual_tid
));
1851 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1852 actual_tid
, tid
, next_tid(tid
));
1854 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1857 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1861 for_each_possible_cpu(cpu
)
1862 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1866 * Remove the cpu slab
1868 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1871 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1872 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1874 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1876 int tail
= DEACTIVATE_TO_HEAD
;
1880 if (page
->freelist
) {
1881 stat(s
, DEACTIVATE_REMOTE_FREES
);
1882 tail
= DEACTIVATE_TO_TAIL
;
1886 * Stage one: Free all available per cpu objects back
1887 * to the page freelist while it is still frozen. Leave the
1890 * There is no need to take the list->lock because the page
1893 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1895 unsigned long counters
;
1898 prior
= page
->freelist
;
1899 counters
= page
->counters
;
1900 set_freepointer(s
, freelist
, prior
);
1901 new.counters
= counters
;
1903 VM_BUG_ON(!new.frozen
);
1905 } while (!__cmpxchg_double_slab(s
, page
,
1907 freelist
, new.counters
,
1908 "drain percpu freelist"));
1910 freelist
= nextfree
;
1914 * Stage two: Ensure that the page is unfrozen while the
1915 * list presence reflects the actual number of objects
1918 * We setup the list membership and then perform a cmpxchg
1919 * with the count. If there is a mismatch then the page
1920 * is not unfrozen but the page is on the wrong list.
1922 * Then we restart the process which may have to remove
1923 * the page from the list that we just put it on again
1924 * because the number of objects in the slab may have
1929 old
.freelist
= page
->freelist
;
1930 old
.counters
= page
->counters
;
1931 VM_BUG_ON(!old
.frozen
);
1933 /* Determine target state of the slab */
1934 new.counters
= old
.counters
;
1937 set_freepointer(s
, freelist
, old
.freelist
);
1938 new.freelist
= freelist
;
1940 new.freelist
= old
.freelist
;
1944 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
1946 else if (new.freelist
) {
1951 * Taking the spinlock removes the possiblity
1952 * that acquire_slab() will see a slab page that
1955 spin_lock(&n
->list_lock
);
1959 if (kmem_cache_debug(s
) && !lock
) {
1962 * This also ensures that the scanning of full
1963 * slabs from diagnostic functions will not see
1966 spin_lock(&n
->list_lock
);
1974 remove_partial(n
, page
);
1976 else if (l
== M_FULL
)
1978 remove_full(s
, n
, page
);
1980 if (m
== M_PARTIAL
) {
1982 add_partial(n
, page
, tail
);
1985 } else if (m
== M_FULL
) {
1987 stat(s
, DEACTIVATE_FULL
);
1988 add_full(s
, n
, page
);
1994 if (!__cmpxchg_double_slab(s
, page
,
1995 old
.freelist
, old
.counters
,
1996 new.freelist
, new.counters
,
2001 spin_unlock(&n
->list_lock
);
2004 stat(s
, DEACTIVATE_EMPTY
);
2005 discard_slab(s
, page
);
2011 * Unfreeze all the cpu partial slabs.
2013 * This function must be called with interrupts disabled
2014 * for the cpu using c (or some other guarantee must be there
2015 * to guarantee no concurrent accesses).
2017 static void unfreeze_partials(struct kmem_cache
*s
,
2018 struct kmem_cache_cpu
*c
)
2020 #ifdef CONFIG_SLUB_CPU_PARTIAL
2021 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2022 struct page
*page
, *discard_page
= NULL
;
2024 while ((page
= c
->partial
)) {
2028 c
->partial
= page
->next
;
2030 n2
= get_node(s
, page_to_nid(page
));
2033 spin_unlock(&n
->list_lock
);
2036 spin_lock(&n
->list_lock
);
2041 old
.freelist
= page
->freelist
;
2042 old
.counters
= page
->counters
;
2043 VM_BUG_ON(!old
.frozen
);
2045 new.counters
= old
.counters
;
2046 new.freelist
= old
.freelist
;
2050 } while (!__cmpxchg_double_slab(s
, page
,
2051 old
.freelist
, old
.counters
,
2052 new.freelist
, new.counters
,
2053 "unfreezing slab"));
2055 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2056 page
->next
= discard_page
;
2057 discard_page
= page
;
2059 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2060 stat(s
, FREE_ADD_PARTIAL
);
2065 spin_unlock(&n
->list_lock
);
2067 while (discard_page
) {
2068 page
= discard_page
;
2069 discard_page
= discard_page
->next
;
2071 stat(s
, DEACTIVATE_EMPTY
);
2072 discard_slab(s
, page
);
2079 * Put a page that was just frozen (in __slab_free) into a partial page
2080 * slot if available. This is done without interrupts disabled and without
2081 * preemption disabled. The cmpxchg is racy and may put the partial page
2082 * onto a random cpus partial slot.
2084 * If we did not find a slot then simply move all the partials to the
2085 * per node partial list.
2087 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2089 #ifdef CONFIG_SLUB_CPU_PARTIAL
2090 struct page
*oldpage
;
2098 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2101 pobjects
= oldpage
->pobjects
;
2102 pages
= oldpage
->pages
;
2103 if (drain
&& pobjects
> s
->cpu_partial
) {
2104 unsigned long flags
;
2106 * partial array is full. Move the existing
2107 * set to the per node partial list.
2109 local_irq_save(flags
);
2110 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2111 local_irq_restore(flags
);
2115 stat(s
, CPU_PARTIAL_DRAIN
);
2120 pobjects
+= page
->objects
- page
->inuse
;
2122 page
->pages
= pages
;
2123 page
->pobjects
= pobjects
;
2124 page
->next
= oldpage
;
2126 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2128 if (unlikely(!s
->cpu_partial
)) {
2129 unsigned long flags
;
2131 local_irq_save(flags
);
2132 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2133 local_irq_restore(flags
);
2139 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2141 stat(s
, CPUSLAB_FLUSH
);
2142 deactivate_slab(s
, c
->page
, c
->freelist
);
2144 c
->tid
= next_tid(c
->tid
);
2152 * Called from IPI handler with interrupts disabled.
2154 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2156 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2162 unfreeze_partials(s
, c
);
2166 static void flush_cpu_slab(void *d
)
2168 struct kmem_cache
*s
= d
;
2170 __flush_cpu_slab(s
, smp_processor_id());
2173 static bool has_cpu_slab(int cpu
, void *info
)
2175 struct kmem_cache
*s
= info
;
2176 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2178 return c
->page
|| c
->partial
;
2181 static void flush_all(struct kmem_cache
*s
)
2183 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2187 * Check if the objects in a per cpu structure fit numa
2188 * locality expectations.
2190 static inline int node_match(struct page
*page
, int node
)
2193 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2199 #ifdef CONFIG_SLUB_DEBUG
2200 static int count_free(struct page
*page
)
2202 return page
->objects
- page
->inuse
;
2205 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2207 return atomic_long_read(&n
->total_objects
);
2209 #endif /* CONFIG_SLUB_DEBUG */
2211 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2212 static unsigned long count_partial(struct kmem_cache_node
*n
,
2213 int (*get_count
)(struct page
*))
2215 unsigned long flags
;
2216 unsigned long x
= 0;
2219 spin_lock_irqsave(&n
->list_lock
, flags
);
2220 list_for_each_entry(page
, &n
->partial
, lru
)
2221 x
+= get_count(page
);
2222 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2225 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2227 static noinline
void
2228 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2230 #ifdef CONFIG_SLUB_DEBUG
2231 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2232 DEFAULT_RATELIMIT_BURST
);
2234 struct kmem_cache_node
*n
;
2236 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2239 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2240 nid
, gfpflags
, &gfpflags
);
2241 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2242 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2245 if (oo_order(s
->min
) > get_order(s
->object_size
))
2246 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2249 for_each_kmem_cache_node(s
, node
, n
) {
2250 unsigned long nr_slabs
;
2251 unsigned long nr_objs
;
2252 unsigned long nr_free
;
2254 nr_free
= count_partial(n
, count_free
);
2255 nr_slabs
= node_nr_slabs(n
);
2256 nr_objs
= node_nr_objs(n
);
2258 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2259 node
, nr_slabs
, nr_objs
, nr_free
);
2264 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2265 int node
, struct kmem_cache_cpu
**pc
)
2268 struct kmem_cache_cpu
*c
= *pc
;
2271 freelist
= get_partial(s
, flags
, node
, c
);
2276 page
= new_slab(s
, flags
, node
);
2278 c
= raw_cpu_ptr(s
->cpu_slab
);
2283 * No other reference to the page yet so we can
2284 * muck around with it freely without cmpxchg
2286 freelist
= page
->freelist
;
2287 page
->freelist
= NULL
;
2289 stat(s
, ALLOC_SLAB
);
2298 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2300 if (unlikely(PageSlabPfmemalloc(page
)))
2301 return gfp_pfmemalloc_allowed(gfpflags
);
2307 * Check the page->freelist of a page and either transfer the freelist to the
2308 * per cpu freelist or deactivate the page.
2310 * The page is still frozen if the return value is not NULL.
2312 * If this function returns NULL then the page has been unfrozen.
2314 * This function must be called with interrupt disabled.
2316 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2319 unsigned long counters
;
2323 freelist
= page
->freelist
;
2324 counters
= page
->counters
;
2326 new.counters
= counters
;
2327 VM_BUG_ON(!new.frozen
);
2329 new.inuse
= page
->objects
;
2330 new.frozen
= freelist
!= NULL
;
2332 } while (!__cmpxchg_double_slab(s
, page
,
2341 * Slow path. The lockless freelist is empty or we need to perform
2344 * Processing is still very fast if new objects have been freed to the
2345 * regular freelist. In that case we simply take over the regular freelist
2346 * as the lockless freelist and zap the regular freelist.
2348 * If that is not working then we fall back to the partial lists. We take the
2349 * first element of the freelist as the object to allocate now and move the
2350 * rest of the freelist to the lockless freelist.
2352 * And if we were unable to get a new slab from the partial slab lists then
2353 * we need to allocate a new slab. This is the slowest path since it involves
2354 * a call to the page allocator and the setup of a new slab.
2356 * Version of __slab_alloc to use when we know that interrupts are
2357 * already disabled (which is the case for bulk allocation).
2359 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2360 unsigned long addr
, struct kmem_cache_cpu
*c
)
2370 if (unlikely(!node_match(page
, node
))) {
2371 int searchnode
= node
;
2373 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2374 searchnode
= node_to_mem_node(node
);
2376 if (unlikely(!node_match(page
, searchnode
))) {
2377 stat(s
, ALLOC_NODE_MISMATCH
);
2378 deactivate_slab(s
, page
, c
->freelist
);
2386 * By rights, we should be searching for a slab page that was
2387 * PFMEMALLOC but right now, we are losing the pfmemalloc
2388 * information when the page leaves the per-cpu allocator
2390 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2391 deactivate_slab(s
, page
, c
->freelist
);
2397 /* must check again c->freelist in case of cpu migration or IRQ */
2398 freelist
= c
->freelist
;
2402 freelist
= get_freelist(s
, page
);
2406 stat(s
, DEACTIVATE_BYPASS
);
2410 stat(s
, ALLOC_REFILL
);
2414 * freelist is pointing to the list of objects to be used.
2415 * page is pointing to the page from which the objects are obtained.
2416 * That page must be frozen for per cpu allocations to work.
2418 VM_BUG_ON(!c
->page
->frozen
);
2419 c
->freelist
= get_freepointer(s
, freelist
);
2420 c
->tid
= next_tid(c
->tid
);
2426 page
= c
->page
= c
->partial
;
2427 c
->partial
= page
->next
;
2428 stat(s
, CPU_PARTIAL_ALLOC
);
2433 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2435 if (unlikely(!freelist
)) {
2436 slab_out_of_memory(s
, gfpflags
, node
);
2441 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2444 /* Only entered in the debug case */
2445 if (kmem_cache_debug(s
) &&
2446 !alloc_debug_processing(s
, page
, freelist
, addr
))
2447 goto new_slab
; /* Slab failed checks. Next slab needed */
2449 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2456 * Another one that disabled interrupt and compensates for possible
2457 * cpu changes by refetching the per cpu area pointer.
2459 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2460 unsigned long addr
, struct kmem_cache_cpu
*c
)
2463 unsigned long flags
;
2465 local_irq_save(flags
);
2466 #ifdef CONFIG_PREEMPT
2468 * We may have been preempted and rescheduled on a different
2469 * cpu before disabling interrupts. Need to reload cpu area
2472 c
= this_cpu_ptr(s
->cpu_slab
);
2475 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2476 local_irq_restore(flags
);
2481 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2482 * have the fastpath folded into their functions. So no function call
2483 * overhead for requests that can be satisfied on the fastpath.
2485 * The fastpath works by first checking if the lockless freelist can be used.
2486 * If not then __slab_alloc is called for slow processing.
2488 * Otherwise we can simply pick the next object from the lockless free list.
2490 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2491 gfp_t gfpflags
, int node
, unsigned long addr
)
2494 struct kmem_cache_cpu
*c
;
2498 s
= slab_pre_alloc_hook(s
, gfpflags
);
2503 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2504 * enabled. We may switch back and forth between cpus while
2505 * reading from one cpu area. That does not matter as long
2506 * as we end up on the original cpu again when doing the cmpxchg.
2508 * We should guarantee that tid and kmem_cache are retrieved on
2509 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2510 * to check if it is matched or not.
2513 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2514 c
= raw_cpu_ptr(s
->cpu_slab
);
2515 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2516 unlikely(tid
!= READ_ONCE(c
->tid
)));
2519 * Irqless object alloc/free algorithm used here depends on sequence
2520 * of fetching cpu_slab's data. tid should be fetched before anything
2521 * on c to guarantee that object and page associated with previous tid
2522 * won't be used with current tid. If we fetch tid first, object and
2523 * page could be one associated with next tid and our alloc/free
2524 * request will be failed. In this case, we will retry. So, no problem.
2529 * The transaction ids are globally unique per cpu and per operation on
2530 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2531 * occurs on the right processor and that there was no operation on the
2532 * linked list in between.
2535 object
= c
->freelist
;
2537 if (unlikely(!object
|| !node_match(page
, node
))) {
2538 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2539 stat(s
, ALLOC_SLOWPATH
);
2541 void *next_object
= get_freepointer_safe(s
, object
);
2544 * The cmpxchg will only match if there was no additional
2545 * operation and if we are on the right processor.
2547 * The cmpxchg does the following atomically (without lock
2549 * 1. Relocate first pointer to the current per cpu area.
2550 * 2. Verify that tid and freelist have not been changed
2551 * 3. If they were not changed replace tid and freelist
2553 * Since this is without lock semantics the protection is only
2554 * against code executing on this cpu *not* from access by
2557 if (unlikely(!this_cpu_cmpxchg_double(
2558 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2560 next_object
, next_tid(tid
)))) {
2562 note_cmpxchg_failure("slab_alloc", s
, tid
);
2565 prefetch_freepointer(s
, next_object
);
2566 stat(s
, ALLOC_FASTPATH
);
2569 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2570 memset(object
, 0, s
->object_size
);
2572 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2577 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2578 gfp_t gfpflags
, unsigned long addr
)
2580 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2583 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2585 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2587 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2592 EXPORT_SYMBOL(kmem_cache_alloc
);
2594 #ifdef CONFIG_TRACING
2595 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2597 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2598 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2599 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2602 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2606 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2608 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2610 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2611 s
->object_size
, s
->size
, gfpflags
, node
);
2615 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2617 #ifdef CONFIG_TRACING
2618 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2620 int node
, size_t size
)
2622 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2624 trace_kmalloc_node(_RET_IP_
, ret
,
2625 size
, s
->size
, gfpflags
, node
);
2627 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2630 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2635 * Slow path handling. This may still be called frequently since objects
2636 * have a longer lifetime than the cpu slabs in most processing loads.
2638 * So we still attempt to reduce cache line usage. Just take the slab
2639 * lock and free the item. If there is no additional partial page
2640 * handling required then we can return immediately.
2642 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2643 void *head
, void *tail
, int cnt
,
2650 unsigned long counters
;
2651 struct kmem_cache_node
*n
= NULL
;
2652 unsigned long uninitialized_var(flags
);
2654 stat(s
, FREE_SLOWPATH
);
2656 if (kmem_cache_debug(s
) &&
2657 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2662 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2665 prior
= page
->freelist
;
2666 counters
= page
->counters
;
2667 set_freepointer(s
, tail
, prior
);
2668 new.counters
= counters
;
2669 was_frozen
= new.frozen
;
2671 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2673 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2676 * Slab was on no list before and will be
2678 * We can defer the list move and instead
2683 } else { /* Needs to be taken off a list */
2685 n
= get_node(s
, page_to_nid(page
));
2687 * Speculatively acquire the list_lock.
2688 * If the cmpxchg does not succeed then we may
2689 * drop the list_lock without any processing.
2691 * Otherwise the list_lock will synchronize with
2692 * other processors updating the list of slabs.
2694 spin_lock_irqsave(&n
->list_lock
, flags
);
2699 } while (!cmpxchg_double_slab(s
, page
,
2707 * If we just froze the page then put it onto the
2708 * per cpu partial list.
2710 if (new.frozen
&& !was_frozen
) {
2711 put_cpu_partial(s
, page
, 1);
2712 stat(s
, CPU_PARTIAL_FREE
);
2715 * The list lock was not taken therefore no list
2716 * activity can be necessary.
2719 stat(s
, FREE_FROZEN
);
2723 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2727 * Objects left in the slab. If it was not on the partial list before
2730 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2731 if (kmem_cache_debug(s
))
2732 remove_full(s
, n
, page
);
2733 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2734 stat(s
, FREE_ADD_PARTIAL
);
2736 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2742 * Slab on the partial list.
2744 remove_partial(n
, page
);
2745 stat(s
, FREE_REMOVE_PARTIAL
);
2747 /* Slab must be on the full list */
2748 remove_full(s
, n
, page
);
2751 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2753 discard_slab(s
, page
);
2757 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2758 * can perform fastpath freeing without additional function calls.
2760 * The fastpath is only possible if we are freeing to the current cpu slab
2761 * of this processor. This typically the case if we have just allocated
2764 * If fastpath is not possible then fall back to __slab_free where we deal
2765 * with all sorts of special processing.
2767 * Bulk free of a freelist with several objects (all pointing to the
2768 * same page) possible by specifying head and tail ptr, plus objects
2769 * count (cnt). Bulk free indicated by tail pointer being set.
2771 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2772 void *head
, void *tail
, int cnt
,
2775 void *tail_obj
= tail
? : head
;
2776 struct kmem_cache_cpu
*c
;
2779 slab_free_freelist_hook(s
, head
, tail
);
2783 * Determine the currently cpus per cpu slab.
2784 * The cpu may change afterward. However that does not matter since
2785 * data is retrieved via this pointer. If we are on the same cpu
2786 * during the cmpxchg then the free will succeed.
2789 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2790 c
= raw_cpu_ptr(s
->cpu_slab
);
2791 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2792 unlikely(tid
!= READ_ONCE(c
->tid
)));
2794 /* Same with comment on barrier() in slab_alloc_node() */
2797 if (likely(page
== c
->page
)) {
2798 set_freepointer(s
, tail_obj
, c
->freelist
);
2800 if (unlikely(!this_cpu_cmpxchg_double(
2801 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2803 head
, next_tid(tid
)))) {
2805 note_cmpxchg_failure("slab_free", s
, tid
);
2808 stat(s
, FREE_FASTPATH
);
2810 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2814 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2816 s
= cache_from_obj(s
, x
);
2819 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2820 trace_kmem_cache_free(_RET_IP_
, x
);
2822 EXPORT_SYMBOL(kmem_cache_free
);
2824 struct detached_freelist
{
2829 struct kmem_cache
*s
;
2833 * This function progressively scans the array with free objects (with
2834 * a limited look ahead) and extract objects belonging to the same
2835 * page. It builds a detached freelist directly within the given
2836 * page/objects. This can happen without any need for
2837 * synchronization, because the objects are owned by running process.
2838 * The freelist is build up as a single linked list in the objects.
2839 * The idea is, that this detached freelist can then be bulk
2840 * transferred to the real freelist(s), but only requiring a single
2841 * synchronization primitive. Look ahead in the array is limited due
2842 * to performance reasons.
2845 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
2846 void **p
, struct detached_freelist
*df
)
2848 size_t first_skipped_index
= 0;
2853 /* Always re-init detached_freelist */
2858 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2859 } while (!object
&& size
);
2864 page
= virt_to_head_page(object
);
2866 /* Handle kalloc'ed objects */
2867 if (unlikely(!PageSlab(page
))) {
2868 BUG_ON(!PageCompound(page
));
2870 __free_kmem_pages(page
, compound_order(page
));
2871 p
[size
] = NULL
; /* mark object processed */
2874 /* Derive kmem_cache from object */
2875 df
->s
= page
->slab_cache
;
2877 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
2880 /* Start new detached freelist */
2882 set_freepointer(df
->s
, object
, NULL
);
2884 df
->freelist
= object
;
2885 p
[size
] = NULL
; /* mark object processed */
2891 continue; /* Skip processed objects */
2893 /* df->page is always set at this point */
2894 if (df
->page
== virt_to_head_page(object
)) {
2895 /* Opportunity build freelist */
2896 set_freepointer(df
->s
, object
, df
->freelist
);
2897 df
->freelist
= object
;
2899 p
[size
] = NULL
; /* mark object processed */
2904 /* Limit look ahead search */
2908 if (!first_skipped_index
)
2909 first_skipped_index
= size
+ 1;
2912 return first_skipped_index
;
2915 /* Note that interrupts must be enabled when calling this function. */
2916 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
2922 struct detached_freelist df
;
2924 size
= build_detached_freelist(s
, size
, p
, &df
);
2925 if (unlikely(!df
.page
))
2928 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
2929 } while (likely(size
));
2931 EXPORT_SYMBOL(kmem_cache_free_bulk
);
2933 /* Note that interrupts must be enabled when calling this function. */
2934 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
2937 struct kmem_cache_cpu
*c
;
2940 /* memcg and kmem_cache debug support */
2941 s
= slab_pre_alloc_hook(s
, flags
);
2945 * Drain objects in the per cpu slab, while disabling local
2946 * IRQs, which protects against PREEMPT and interrupts
2947 * handlers invoking normal fastpath.
2949 local_irq_disable();
2950 c
= this_cpu_ptr(s
->cpu_slab
);
2952 for (i
= 0; i
< size
; i
++) {
2953 void *object
= c
->freelist
;
2955 if (unlikely(!object
)) {
2957 * Invoking slow path likely have side-effect
2958 * of re-populating per CPU c->freelist
2960 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
2962 if (unlikely(!p
[i
]))
2965 c
= this_cpu_ptr(s
->cpu_slab
);
2966 continue; /* goto for-loop */
2968 c
->freelist
= get_freepointer(s
, object
);
2971 c
->tid
= next_tid(c
->tid
);
2974 /* Clear memory outside IRQ disabled fastpath loop */
2975 if (unlikely(flags
& __GFP_ZERO
)) {
2978 for (j
= 0; j
< i
; j
++)
2979 memset(p
[j
], 0, s
->object_size
);
2982 /* memcg and kmem_cache debug support */
2983 slab_post_alloc_hook(s
, flags
, size
, p
);
2987 slab_post_alloc_hook(s
, flags
, i
, p
);
2988 __kmem_cache_free_bulk(s
, i
, p
);
2991 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
2995 * Object placement in a slab is made very easy because we always start at
2996 * offset 0. If we tune the size of the object to the alignment then we can
2997 * get the required alignment by putting one properly sized object after
3000 * Notice that the allocation order determines the sizes of the per cpu
3001 * caches. Each processor has always one slab available for allocations.
3002 * Increasing the allocation order reduces the number of times that slabs
3003 * must be moved on and off the partial lists and is therefore a factor in
3008 * Mininum / Maximum order of slab pages. This influences locking overhead
3009 * and slab fragmentation. A higher order reduces the number of partial slabs
3010 * and increases the number of allocations possible without having to
3011 * take the list_lock.
3013 static int slub_min_order
;
3014 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3015 static int slub_min_objects
;
3018 * Calculate the order of allocation given an slab object size.
3020 * The order of allocation has significant impact on performance and other
3021 * system components. Generally order 0 allocations should be preferred since
3022 * order 0 does not cause fragmentation in the page allocator. Larger objects
3023 * be problematic to put into order 0 slabs because there may be too much
3024 * unused space left. We go to a higher order if more than 1/16th of the slab
3027 * In order to reach satisfactory performance we must ensure that a minimum
3028 * number of objects is in one slab. Otherwise we may generate too much
3029 * activity on the partial lists which requires taking the list_lock. This is
3030 * less a concern for large slabs though which are rarely used.
3032 * slub_max_order specifies the order where we begin to stop considering the
3033 * number of objects in a slab as critical. If we reach slub_max_order then
3034 * we try to keep the page order as low as possible. So we accept more waste
3035 * of space in favor of a small page order.
3037 * Higher order allocations also allow the placement of more objects in a
3038 * slab and thereby reduce object handling overhead. If the user has
3039 * requested a higher mininum order then we start with that one instead of
3040 * the smallest order which will fit the object.
3042 static inline int slab_order(int size
, int min_objects
,
3043 int max_order
, int fract_leftover
, int reserved
)
3047 int min_order
= slub_min_order
;
3049 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3050 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3052 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3053 order
<= max_order
; order
++) {
3055 unsigned long slab_size
= PAGE_SIZE
<< order
;
3057 rem
= (slab_size
- reserved
) % size
;
3059 if (rem
<= slab_size
/ fract_leftover
)
3066 static inline int calculate_order(int size
, int reserved
)
3074 * Attempt to find best configuration for a slab. This
3075 * works by first attempting to generate a layout with
3076 * the best configuration and backing off gradually.
3078 * First we increase the acceptable waste in a slab. Then
3079 * we reduce the minimum objects required in a slab.
3081 min_objects
= slub_min_objects
;
3083 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3084 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3085 min_objects
= min(min_objects
, max_objects
);
3087 while (min_objects
> 1) {
3089 while (fraction
>= 4) {
3090 order
= slab_order(size
, min_objects
,
3091 slub_max_order
, fraction
, reserved
);
3092 if (order
<= slub_max_order
)
3100 * We were unable to place multiple objects in a slab. Now
3101 * lets see if we can place a single object there.
3103 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3104 if (order
<= slub_max_order
)
3108 * Doh this slab cannot be placed using slub_max_order.
3110 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3111 if (order
< MAX_ORDER
)
3117 init_kmem_cache_node(struct kmem_cache_node
*n
)
3120 spin_lock_init(&n
->list_lock
);
3121 INIT_LIST_HEAD(&n
->partial
);
3122 #ifdef CONFIG_SLUB_DEBUG
3123 atomic_long_set(&n
->nr_slabs
, 0);
3124 atomic_long_set(&n
->total_objects
, 0);
3125 INIT_LIST_HEAD(&n
->full
);
3129 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3131 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3132 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3135 * Must align to double word boundary for the double cmpxchg
3136 * instructions to work; see __pcpu_double_call_return_bool().
3138 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3139 2 * sizeof(void *));
3144 init_kmem_cache_cpus(s
);
3149 static struct kmem_cache
*kmem_cache_node
;
3152 * No kmalloc_node yet so do it by hand. We know that this is the first
3153 * slab on the node for this slabcache. There are no concurrent accesses
3156 * Note that this function only works on the kmem_cache_node
3157 * when allocating for the kmem_cache_node. This is used for bootstrapping
3158 * memory on a fresh node that has no slab structures yet.
3160 static void early_kmem_cache_node_alloc(int node
)
3163 struct kmem_cache_node
*n
;
3165 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3167 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3170 if (page_to_nid(page
) != node
) {
3171 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3172 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3177 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3180 kmem_cache_node
->node
[node
] = n
;
3181 #ifdef CONFIG_SLUB_DEBUG
3182 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3183 init_tracking(kmem_cache_node
, n
);
3185 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3187 init_kmem_cache_node(n
);
3188 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3191 * No locks need to be taken here as it has just been
3192 * initialized and there is no concurrent access.
3194 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3197 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3200 struct kmem_cache_node
*n
;
3202 for_each_kmem_cache_node(s
, node
, n
) {
3203 kmem_cache_free(kmem_cache_node
, n
);
3204 s
->node
[node
] = NULL
;
3208 void __kmem_cache_release(struct kmem_cache
*s
)
3210 free_percpu(s
->cpu_slab
);
3211 free_kmem_cache_nodes(s
);
3214 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3218 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3219 struct kmem_cache_node
*n
;
3221 if (slab_state
== DOWN
) {
3222 early_kmem_cache_node_alloc(node
);
3225 n
= kmem_cache_alloc_node(kmem_cache_node
,
3229 free_kmem_cache_nodes(s
);
3234 init_kmem_cache_node(n
);
3239 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3241 if (min
< MIN_PARTIAL
)
3243 else if (min
> MAX_PARTIAL
)
3245 s
->min_partial
= min
;
3249 * calculate_sizes() determines the order and the distribution of data within
3252 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3254 unsigned long flags
= s
->flags
;
3255 unsigned long size
= s
->object_size
;
3259 * Round up object size to the next word boundary. We can only
3260 * place the free pointer at word boundaries and this determines
3261 * the possible location of the free pointer.
3263 size
= ALIGN(size
, sizeof(void *));
3265 #ifdef CONFIG_SLUB_DEBUG
3267 * Determine if we can poison the object itself. If the user of
3268 * the slab may touch the object after free or before allocation
3269 * then we should never poison the object itself.
3271 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3273 s
->flags
|= __OBJECT_POISON
;
3275 s
->flags
&= ~__OBJECT_POISON
;
3279 * If we are Redzoning then check if there is some space between the
3280 * end of the object and the free pointer. If not then add an
3281 * additional word to have some bytes to store Redzone information.
3283 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3284 size
+= sizeof(void *);
3288 * With that we have determined the number of bytes in actual use
3289 * by the object. This is the potential offset to the free pointer.
3293 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3296 * Relocate free pointer after the object if it is not
3297 * permitted to overwrite the first word of the object on
3300 * This is the case if we do RCU, have a constructor or
3301 * destructor or are poisoning the objects.
3304 size
+= sizeof(void *);
3307 #ifdef CONFIG_SLUB_DEBUG
3308 if (flags
& SLAB_STORE_USER
)
3310 * Need to store information about allocs and frees after
3313 size
+= 2 * sizeof(struct track
);
3315 if (flags
& SLAB_RED_ZONE
) {
3317 * Add some empty padding so that we can catch
3318 * overwrites from earlier objects rather than let
3319 * tracking information or the free pointer be
3320 * corrupted if a user writes before the start
3323 size
+= sizeof(void *);
3325 s
->red_left_pad
= sizeof(void *);
3326 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3327 size
+= s
->red_left_pad
;
3332 * SLUB stores one object immediately after another beginning from
3333 * offset 0. In order to align the objects we have to simply size
3334 * each object to conform to the alignment.
3336 size
= ALIGN(size
, s
->align
);
3338 if (forced_order
>= 0)
3339 order
= forced_order
;
3341 order
= calculate_order(size
, s
->reserved
);
3348 s
->allocflags
|= __GFP_COMP
;
3350 if (s
->flags
& SLAB_CACHE_DMA
)
3351 s
->allocflags
|= GFP_DMA
;
3353 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3354 s
->allocflags
|= __GFP_RECLAIMABLE
;
3357 * Determine the number of objects per slab
3359 s
->oo
= oo_make(order
, size
, s
->reserved
);
3360 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3361 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3364 return !!oo_objects(s
->oo
);
3367 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3369 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3372 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3373 s
->reserved
= sizeof(struct rcu_head
);
3375 if (!calculate_sizes(s
, -1))
3377 if (disable_higher_order_debug
) {
3379 * Disable debugging flags that store metadata if the min slab
3382 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3383 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3385 if (!calculate_sizes(s
, -1))
3390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3392 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3393 /* Enable fast mode */
3394 s
->flags
|= __CMPXCHG_DOUBLE
;
3398 * The larger the object size is, the more pages we want on the partial
3399 * list to avoid pounding the page allocator excessively.
3401 set_min_partial(s
, ilog2(s
->size
) / 2);
3404 * cpu_partial determined the maximum number of objects kept in the
3405 * per cpu partial lists of a processor.
3407 * Per cpu partial lists mainly contain slabs that just have one
3408 * object freed. If they are used for allocation then they can be
3409 * filled up again with minimal effort. The slab will never hit the
3410 * per node partial lists and therefore no locking will be required.
3412 * This setting also determines
3414 * A) The number of objects from per cpu partial slabs dumped to the
3415 * per node list when we reach the limit.
3416 * B) The number of objects in cpu partial slabs to extract from the
3417 * per node list when we run out of per cpu objects. We only fetch
3418 * 50% to keep some capacity around for frees.
3420 if (!kmem_cache_has_cpu_partial(s
))
3422 else if (s
->size
>= PAGE_SIZE
)
3424 else if (s
->size
>= 1024)
3426 else if (s
->size
>= 256)
3427 s
->cpu_partial
= 13;
3429 s
->cpu_partial
= 30;
3432 s
->remote_node_defrag_ratio
= 1000;
3434 if (!init_kmem_cache_nodes(s
))
3437 if (alloc_kmem_cache_cpus(s
))
3440 free_kmem_cache_nodes(s
);
3442 if (flags
& SLAB_PANIC
)
3443 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3444 s
->name
, (unsigned long)s
->size
, s
->size
,
3445 oo_order(s
->oo
), s
->offset
, flags
);
3449 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3452 #ifdef CONFIG_SLUB_DEBUG
3453 void *addr
= page_address(page
);
3455 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3456 sizeof(long), GFP_ATOMIC
);
3459 slab_err(s
, page
, text
, s
->name
);
3462 get_map(s
, page
, map
);
3463 for_each_object(p
, s
, addr
, page
->objects
) {
3465 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3466 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3467 print_tracking(s
, p
);
3476 * Attempt to free all partial slabs on a node.
3477 * This is called from __kmem_cache_shutdown(). We must take list_lock
3478 * because sysfs file might still access partial list after the shutdowning.
3480 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3482 struct page
*page
, *h
;
3484 BUG_ON(irqs_disabled());
3485 spin_lock_irq(&n
->list_lock
);
3486 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3488 remove_partial(n
, page
);
3489 discard_slab(s
, page
);
3491 list_slab_objects(s
, page
,
3492 "Objects remaining in %s on __kmem_cache_shutdown()");
3495 spin_unlock_irq(&n
->list_lock
);
3499 * Release all resources used by a slab cache.
3501 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3504 struct kmem_cache_node
*n
;
3507 /* Attempt to free all objects */
3508 for_each_kmem_cache_node(s
, node
, n
) {
3510 if (n
->nr_partial
|| slabs_node(s
, node
))
3516 /********************************************************************
3518 *******************************************************************/
3520 static int __init
setup_slub_min_order(char *str
)
3522 get_option(&str
, &slub_min_order
);
3527 __setup("slub_min_order=", setup_slub_min_order
);
3529 static int __init
setup_slub_max_order(char *str
)
3531 get_option(&str
, &slub_max_order
);
3532 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3537 __setup("slub_max_order=", setup_slub_max_order
);
3539 static int __init
setup_slub_min_objects(char *str
)
3541 get_option(&str
, &slub_min_objects
);
3546 __setup("slub_min_objects=", setup_slub_min_objects
);
3548 void *__kmalloc(size_t size
, gfp_t flags
)
3550 struct kmem_cache
*s
;
3553 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3554 return kmalloc_large(size
, flags
);
3556 s
= kmalloc_slab(size
, flags
);
3558 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3561 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3563 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3565 kasan_kmalloc(s
, ret
, size
, flags
);
3569 EXPORT_SYMBOL(__kmalloc
);
3572 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3577 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3578 page
= alloc_kmem_pages_node(node
, flags
, get_order(size
));
3580 ptr
= page_address(page
);
3582 kmalloc_large_node_hook(ptr
, size
, flags
);
3586 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3588 struct kmem_cache
*s
;
3591 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3592 ret
= kmalloc_large_node(size
, flags
, node
);
3594 trace_kmalloc_node(_RET_IP_
, ret
,
3595 size
, PAGE_SIZE
<< get_order(size
),
3601 s
= kmalloc_slab(size
, flags
);
3603 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3606 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3608 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3610 kasan_kmalloc(s
, ret
, size
, flags
);
3614 EXPORT_SYMBOL(__kmalloc_node
);
3617 static size_t __ksize(const void *object
)
3621 if (unlikely(object
== ZERO_SIZE_PTR
))
3624 page
= virt_to_head_page(object
);
3626 if (unlikely(!PageSlab(page
))) {
3627 WARN_ON(!PageCompound(page
));
3628 return PAGE_SIZE
<< compound_order(page
);
3631 return slab_ksize(page
->slab_cache
);
3634 size_t ksize(const void *object
)
3636 size_t size
= __ksize(object
);
3637 /* We assume that ksize callers could use whole allocated area,
3638 * so we need to unpoison this area.
3640 kasan_unpoison_shadow(object
, size
);
3643 EXPORT_SYMBOL(ksize
);
3645 void kfree(const void *x
)
3648 void *object
= (void *)x
;
3650 trace_kfree(_RET_IP_
, x
);
3652 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3655 page
= virt_to_head_page(x
);
3656 if (unlikely(!PageSlab(page
))) {
3657 BUG_ON(!PageCompound(page
));
3659 __free_kmem_pages(page
, compound_order(page
));
3662 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3664 EXPORT_SYMBOL(kfree
);
3666 #define SHRINK_PROMOTE_MAX 32
3669 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3670 * up most to the head of the partial lists. New allocations will then
3671 * fill those up and thus they can be removed from the partial lists.
3673 * The slabs with the least items are placed last. This results in them
3674 * being allocated from last increasing the chance that the last objects
3675 * are freed in them.
3677 int __kmem_cache_shrink(struct kmem_cache
*s
, bool deactivate
)
3681 struct kmem_cache_node
*n
;
3684 struct list_head discard
;
3685 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3686 unsigned long flags
;
3691 * Disable empty slabs caching. Used to avoid pinning offline
3692 * memory cgroups by kmem pages that can be freed.
3698 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3699 * so we have to make sure the change is visible.
3701 synchronize_sched();
3705 for_each_kmem_cache_node(s
, node
, n
) {
3706 INIT_LIST_HEAD(&discard
);
3707 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3708 INIT_LIST_HEAD(promote
+ i
);
3710 spin_lock_irqsave(&n
->list_lock
, flags
);
3713 * Build lists of slabs to discard or promote.
3715 * Note that concurrent frees may occur while we hold the
3716 * list_lock. page->inuse here is the upper limit.
3718 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3719 int free
= page
->objects
- page
->inuse
;
3721 /* Do not reread page->inuse */
3724 /* We do not keep full slabs on the list */
3727 if (free
== page
->objects
) {
3728 list_move(&page
->lru
, &discard
);
3730 } else if (free
<= SHRINK_PROMOTE_MAX
)
3731 list_move(&page
->lru
, promote
+ free
- 1);
3735 * Promote the slabs filled up most to the head of the
3738 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3739 list_splice(promote
+ i
, &n
->partial
);
3741 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3743 /* Release empty slabs */
3744 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3745 discard_slab(s
, page
);
3747 if (slabs_node(s
, node
))
3754 static int slab_mem_going_offline_callback(void *arg
)
3756 struct kmem_cache
*s
;
3758 mutex_lock(&slab_mutex
);
3759 list_for_each_entry(s
, &slab_caches
, list
)
3760 __kmem_cache_shrink(s
, false);
3761 mutex_unlock(&slab_mutex
);
3766 static void slab_mem_offline_callback(void *arg
)
3768 struct kmem_cache_node
*n
;
3769 struct kmem_cache
*s
;
3770 struct memory_notify
*marg
= arg
;
3773 offline_node
= marg
->status_change_nid_normal
;
3776 * If the node still has available memory. we need kmem_cache_node
3779 if (offline_node
< 0)
3782 mutex_lock(&slab_mutex
);
3783 list_for_each_entry(s
, &slab_caches
, list
) {
3784 n
= get_node(s
, offline_node
);
3787 * if n->nr_slabs > 0, slabs still exist on the node
3788 * that is going down. We were unable to free them,
3789 * and offline_pages() function shouldn't call this
3790 * callback. So, we must fail.
3792 BUG_ON(slabs_node(s
, offline_node
));
3794 s
->node
[offline_node
] = NULL
;
3795 kmem_cache_free(kmem_cache_node
, n
);
3798 mutex_unlock(&slab_mutex
);
3801 static int slab_mem_going_online_callback(void *arg
)
3803 struct kmem_cache_node
*n
;
3804 struct kmem_cache
*s
;
3805 struct memory_notify
*marg
= arg
;
3806 int nid
= marg
->status_change_nid_normal
;
3810 * If the node's memory is already available, then kmem_cache_node is
3811 * already created. Nothing to do.
3817 * We are bringing a node online. No memory is available yet. We must
3818 * allocate a kmem_cache_node structure in order to bring the node
3821 mutex_lock(&slab_mutex
);
3822 list_for_each_entry(s
, &slab_caches
, list
) {
3824 * XXX: kmem_cache_alloc_node will fallback to other nodes
3825 * since memory is not yet available from the node that
3828 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3833 init_kmem_cache_node(n
);
3837 mutex_unlock(&slab_mutex
);
3841 static int slab_memory_callback(struct notifier_block
*self
,
3842 unsigned long action
, void *arg
)
3847 case MEM_GOING_ONLINE
:
3848 ret
= slab_mem_going_online_callback(arg
);
3850 case MEM_GOING_OFFLINE
:
3851 ret
= slab_mem_going_offline_callback(arg
);
3854 case MEM_CANCEL_ONLINE
:
3855 slab_mem_offline_callback(arg
);
3858 case MEM_CANCEL_OFFLINE
:
3862 ret
= notifier_from_errno(ret
);
3868 static struct notifier_block slab_memory_callback_nb
= {
3869 .notifier_call
= slab_memory_callback
,
3870 .priority
= SLAB_CALLBACK_PRI
,
3873 /********************************************************************
3874 * Basic setup of slabs
3875 *******************************************************************/
3878 * Used for early kmem_cache structures that were allocated using
3879 * the page allocator. Allocate them properly then fix up the pointers
3880 * that may be pointing to the wrong kmem_cache structure.
3883 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3886 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3887 struct kmem_cache_node
*n
;
3889 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3892 * This runs very early, and only the boot processor is supposed to be
3893 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3896 __flush_cpu_slab(s
, smp_processor_id());
3897 for_each_kmem_cache_node(s
, node
, n
) {
3900 list_for_each_entry(p
, &n
->partial
, lru
)
3903 #ifdef CONFIG_SLUB_DEBUG
3904 list_for_each_entry(p
, &n
->full
, lru
)
3908 slab_init_memcg_params(s
);
3909 list_add(&s
->list
, &slab_caches
);
3913 void __init
kmem_cache_init(void)
3915 static __initdata
struct kmem_cache boot_kmem_cache
,
3916 boot_kmem_cache_node
;
3918 if (debug_guardpage_minorder())
3921 kmem_cache_node
= &boot_kmem_cache_node
;
3922 kmem_cache
= &boot_kmem_cache
;
3924 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3925 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3927 register_hotmemory_notifier(&slab_memory_callback_nb
);
3929 /* Able to allocate the per node structures */
3930 slab_state
= PARTIAL
;
3932 create_boot_cache(kmem_cache
, "kmem_cache",
3933 offsetof(struct kmem_cache
, node
) +
3934 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3935 SLAB_HWCACHE_ALIGN
);
3937 kmem_cache
= bootstrap(&boot_kmem_cache
);
3940 * Allocate kmem_cache_node properly from the kmem_cache slab.
3941 * kmem_cache_node is separately allocated so no need to
3942 * update any list pointers.
3944 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3946 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3947 setup_kmalloc_cache_index_table();
3948 create_kmalloc_caches(0);
3951 register_cpu_notifier(&slab_notifier
);
3954 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3956 slub_min_order
, slub_max_order
, slub_min_objects
,
3957 nr_cpu_ids
, nr_node_ids
);
3960 void __init
kmem_cache_init_late(void)
3965 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
3966 unsigned long flags
, void (*ctor
)(void *))
3968 struct kmem_cache
*s
, *c
;
3970 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3975 * Adjust the object sizes so that we clear
3976 * the complete object on kzalloc.
3978 s
->object_size
= max(s
->object_size
, (int)size
);
3979 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3981 for_each_memcg_cache(c
, s
) {
3982 c
->object_size
= s
->object_size
;
3983 c
->inuse
= max_t(int, c
->inuse
,
3984 ALIGN(size
, sizeof(void *)));
3987 if (sysfs_slab_alias(s
, name
)) {
3996 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4000 err
= kmem_cache_open(s
, flags
);
4004 /* Mutex is not taken during early boot */
4005 if (slab_state
<= UP
)
4008 memcg_propagate_slab_attrs(s
);
4009 err
= sysfs_slab_add(s
);
4011 __kmem_cache_release(s
);
4018 * Use the cpu notifier to insure that the cpu slabs are flushed when
4021 static int slab_cpuup_callback(struct notifier_block
*nfb
,
4022 unsigned long action
, void *hcpu
)
4024 long cpu
= (long)hcpu
;
4025 struct kmem_cache
*s
;
4026 unsigned long flags
;
4029 case CPU_UP_CANCELED
:
4030 case CPU_UP_CANCELED_FROZEN
:
4032 case CPU_DEAD_FROZEN
:
4033 mutex_lock(&slab_mutex
);
4034 list_for_each_entry(s
, &slab_caches
, list
) {
4035 local_irq_save(flags
);
4036 __flush_cpu_slab(s
, cpu
);
4037 local_irq_restore(flags
);
4039 mutex_unlock(&slab_mutex
);
4047 static struct notifier_block slab_notifier
= {
4048 .notifier_call
= slab_cpuup_callback
4053 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4055 struct kmem_cache
*s
;
4058 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4059 return kmalloc_large(size
, gfpflags
);
4061 s
= kmalloc_slab(size
, gfpflags
);
4063 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4066 ret
= slab_alloc(s
, gfpflags
, caller
);
4068 /* Honor the call site pointer we received. */
4069 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4075 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4076 int node
, unsigned long caller
)
4078 struct kmem_cache
*s
;
4081 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4082 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4084 trace_kmalloc_node(caller
, ret
,
4085 size
, PAGE_SIZE
<< get_order(size
),
4091 s
= kmalloc_slab(size
, gfpflags
);
4093 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4096 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4098 /* Honor the call site pointer we received. */
4099 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4106 static int count_inuse(struct page
*page
)
4111 static int count_total(struct page
*page
)
4113 return page
->objects
;
4117 #ifdef CONFIG_SLUB_DEBUG
4118 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4122 void *addr
= page_address(page
);
4124 if (!check_slab(s
, page
) ||
4125 !on_freelist(s
, page
, NULL
))
4128 /* Now we know that a valid freelist exists */
4129 bitmap_zero(map
, page
->objects
);
4131 get_map(s
, page
, map
);
4132 for_each_object(p
, s
, addr
, page
->objects
) {
4133 if (test_bit(slab_index(p
, s
, addr
), map
))
4134 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4138 for_each_object(p
, s
, addr
, page
->objects
)
4139 if (!test_bit(slab_index(p
, s
, addr
), map
))
4140 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4145 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4149 validate_slab(s
, page
, map
);
4153 static int validate_slab_node(struct kmem_cache
*s
,
4154 struct kmem_cache_node
*n
, unsigned long *map
)
4156 unsigned long count
= 0;
4158 unsigned long flags
;
4160 spin_lock_irqsave(&n
->list_lock
, flags
);
4162 list_for_each_entry(page
, &n
->partial
, lru
) {
4163 validate_slab_slab(s
, page
, map
);
4166 if (count
!= n
->nr_partial
)
4167 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4168 s
->name
, count
, n
->nr_partial
);
4170 if (!(s
->flags
& SLAB_STORE_USER
))
4173 list_for_each_entry(page
, &n
->full
, lru
) {
4174 validate_slab_slab(s
, page
, map
);
4177 if (count
!= atomic_long_read(&n
->nr_slabs
))
4178 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4179 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4182 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4186 static long validate_slab_cache(struct kmem_cache
*s
)
4189 unsigned long count
= 0;
4190 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4191 sizeof(unsigned long), GFP_KERNEL
);
4192 struct kmem_cache_node
*n
;
4198 for_each_kmem_cache_node(s
, node
, n
)
4199 count
+= validate_slab_node(s
, n
, map
);
4204 * Generate lists of code addresses where slabcache objects are allocated
4209 unsigned long count
;
4216 DECLARE_BITMAP(cpus
, NR_CPUS
);
4222 unsigned long count
;
4223 struct location
*loc
;
4226 static void free_loc_track(struct loc_track
*t
)
4229 free_pages((unsigned long)t
->loc
,
4230 get_order(sizeof(struct location
) * t
->max
));
4233 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4238 order
= get_order(sizeof(struct location
) * max
);
4240 l
= (void *)__get_free_pages(flags
, order
);
4245 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4253 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4254 const struct track
*track
)
4256 long start
, end
, pos
;
4258 unsigned long caddr
;
4259 unsigned long age
= jiffies
- track
->when
;
4265 pos
= start
+ (end
- start
+ 1) / 2;
4268 * There is nothing at "end". If we end up there
4269 * we need to add something to before end.
4274 caddr
= t
->loc
[pos
].addr
;
4275 if (track
->addr
== caddr
) {
4281 if (age
< l
->min_time
)
4283 if (age
> l
->max_time
)
4286 if (track
->pid
< l
->min_pid
)
4287 l
->min_pid
= track
->pid
;
4288 if (track
->pid
> l
->max_pid
)
4289 l
->max_pid
= track
->pid
;
4291 cpumask_set_cpu(track
->cpu
,
4292 to_cpumask(l
->cpus
));
4294 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4298 if (track
->addr
< caddr
)
4305 * Not found. Insert new tracking element.
4307 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4313 (t
->count
- pos
) * sizeof(struct location
));
4316 l
->addr
= track
->addr
;
4320 l
->min_pid
= track
->pid
;
4321 l
->max_pid
= track
->pid
;
4322 cpumask_clear(to_cpumask(l
->cpus
));
4323 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4324 nodes_clear(l
->nodes
);
4325 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4329 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4330 struct page
*page
, enum track_item alloc
,
4333 void *addr
= page_address(page
);
4336 bitmap_zero(map
, page
->objects
);
4337 get_map(s
, page
, map
);
4339 for_each_object(p
, s
, addr
, page
->objects
)
4340 if (!test_bit(slab_index(p
, s
, addr
), map
))
4341 add_location(t
, s
, get_track(s
, p
, alloc
));
4344 static int list_locations(struct kmem_cache
*s
, char *buf
,
4345 enum track_item alloc
)
4349 struct loc_track t
= { 0, 0, NULL
};
4351 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4352 sizeof(unsigned long), GFP_KERNEL
);
4353 struct kmem_cache_node
*n
;
4355 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4358 return sprintf(buf
, "Out of memory\n");
4360 /* Push back cpu slabs */
4363 for_each_kmem_cache_node(s
, node
, n
) {
4364 unsigned long flags
;
4367 if (!atomic_long_read(&n
->nr_slabs
))
4370 spin_lock_irqsave(&n
->list_lock
, flags
);
4371 list_for_each_entry(page
, &n
->partial
, lru
)
4372 process_slab(&t
, s
, page
, alloc
, map
);
4373 list_for_each_entry(page
, &n
->full
, lru
)
4374 process_slab(&t
, s
, page
, alloc
, map
);
4375 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4378 for (i
= 0; i
< t
.count
; i
++) {
4379 struct location
*l
= &t
.loc
[i
];
4381 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4383 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4386 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4388 len
+= sprintf(buf
+ len
, "<not-available>");
4390 if (l
->sum_time
!= l
->min_time
) {
4391 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4393 (long)div_u64(l
->sum_time
, l
->count
),
4396 len
+= sprintf(buf
+ len
, " age=%ld",
4399 if (l
->min_pid
!= l
->max_pid
)
4400 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4401 l
->min_pid
, l
->max_pid
);
4403 len
+= sprintf(buf
+ len
, " pid=%ld",
4406 if (num_online_cpus() > 1 &&
4407 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4408 len
< PAGE_SIZE
- 60)
4409 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4411 cpumask_pr_args(to_cpumask(l
->cpus
)));
4413 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4414 len
< PAGE_SIZE
- 60)
4415 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4417 nodemask_pr_args(&l
->nodes
));
4419 len
+= sprintf(buf
+ len
, "\n");
4425 len
+= sprintf(buf
, "No data\n");
4430 #ifdef SLUB_RESILIENCY_TEST
4431 static void __init
resiliency_test(void)
4435 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4437 pr_err("SLUB resiliency testing\n");
4438 pr_err("-----------------------\n");
4439 pr_err("A. Corruption after allocation\n");
4441 p
= kzalloc(16, GFP_KERNEL
);
4443 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4446 validate_slab_cache(kmalloc_caches
[4]);
4448 /* Hmmm... The next two are dangerous */
4449 p
= kzalloc(32, GFP_KERNEL
);
4450 p
[32 + sizeof(void *)] = 0x34;
4451 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4453 pr_err("If allocated object is overwritten then not detectable\n\n");
4455 validate_slab_cache(kmalloc_caches
[5]);
4456 p
= kzalloc(64, GFP_KERNEL
);
4457 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4459 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4461 pr_err("If allocated object is overwritten then not detectable\n\n");
4462 validate_slab_cache(kmalloc_caches
[6]);
4464 pr_err("\nB. Corruption after free\n");
4465 p
= kzalloc(128, GFP_KERNEL
);
4468 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4469 validate_slab_cache(kmalloc_caches
[7]);
4471 p
= kzalloc(256, GFP_KERNEL
);
4474 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4475 validate_slab_cache(kmalloc_caches
[8]);
4477 p
= kzalloc(512, GFP_KERNEL
);
4480 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4481 validate_slab_cache(kmalloc_caches
[9]);
4485 static void resiliency_test(void) {};
4490 enum slab_stat_type
{
4491 SL_ALL
, /* All slabs */
4492 SL_PARTIAL
, /* Only partially allocated slabs */
4493 SL_CPU
, /* Only slabs used for cpu caches */
4494 SL_OBJECTS
, /* Determine allocated objects not slabs */
4495 SL_TOTAL
/* Determine object capacity not slabs */
4498 #define SO_ALL (1 << SL_ALL)
4499 #define SO_PARTIAL (1 << SL_PARTIAL)
4500 #define SO_CPU (1 << SL_CPU)
4501 #define SO_OBJECTS (1 << SL_OBJECTS)
4502 #define SO_TOTAL (1 << SL_TOTAL)
4504 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4505 char *buf
, unsigned long flags
)
4507 unsigned long total
= 0;
4510 unsigned long *nodes
;
4512 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4516 if (flags
& SO_CPU
) {
4519 for_each_possible_cpu(cpu
) {
4520 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4525 page
= READ_ONCE(c
->page
);
4529 node
= page_to_nid(page
);
4530 if (flags
& SO_TOTAL
)
4532 else if (flags
& SO_OBJECTS
)
4540 page
= READ_ONCE(c
->partial
);
4542 node
= page_to_nid(page
);
4543 if (flags
& SO_TOTAL
)
4545 else if (flags
& SO_OBJECTS
)
4556 #ifdef CONFIG_SLUB_DEBUG
4557 if (flags
& SO_ALL
) {
4558 struct kmem_cache_node
*n
;
4560 for_each_kmem_cache_node(s
, node
, n
) {
4562 if (flags
& SO_TOTAL
)
4563 x
= atomic_long_read(&n
->total_objects
);
4564 else if (flags
& SO_OBJECTS
)
4565 x
= atomic_long_read(&n
->total_objects
) -
4566 count_partial(n
, count_free
);
4568 x
= atomic_long_read(&n
->nr_slabs
);
4575 if (flags
& SO_PARTIAL
) {
4576 struct kmem_cache_node
*n
;
4578 for_each_kmem_cache_node(s
, node
, n
) {
4579 if (flags
& SO_TOTAL
)
4580 x
= count_partial(n
, count_total
);
4581 else if (flags
& SO_OBJECTS
)
4582 x
= count_partial(n
, count_inuse
);
4589 x
= sprintf(buf
, "%lu", total
);
4591 for (node
= 0; node
< nr_node_ids
; node
++)
4593 x
+= sprintf(buf
+ x
, " N%d=%lu",
4598 return x
+ sprintf(buf
+ x
, "\n");
4601 #ifdef CONFIG_SLUB_DEBUG
4602 static int any_slab_objects(struct kmem_cache
*s
)
4605 struct kmem_cache_node
*n
;
4607 for_each_kmem_cache_node(s
, node
, n
)
4608 if (atomic_long_read(&n
->total_objects
))
4615 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4616 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4618 struct slab_attribute
{
4619 struct attribute attr
;
4620 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4621 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4624 #define SLAB_ATTR_RO(_name) \
4625 static struct slab_attribute _name##_attr = \
4626 __ATTR(_name, 0400, _name##_show, NULL)
4628 #define SLAB_ATTR(_name) \
4629 static struct slab_attribute _name##_attr = \
4630 __ATTR(_name, 0600, _name##_show, _name##_store)
4632 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4634 return sprintf(buf
, "%d\n", s
->size
);
4636 SLAB_ATTR_RO(slab_size
);
4638 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4640 return sprintf(buf
, "%d\n", s
->align
);
4642 SLAB_ATTR_RO(align
);
4644 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4646 return sprintf(buf
, "%d\n", s
->object_size
);
4648 SLAB_ATTR_RO(object_size
);
4650 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4652 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4654 SLAB_ATTR_RO(objs_per_slab
);
4656 static ssize_t
order_store(struct kmem_cache
*s
,
4657 const char *buf
, size_t length
)
4659 unsigned long order
;
4662 err
= kstrtoul(buf
, 10, &order
);
4666 if (order
> slub_max_order
|| order
< slub_min_order
)
4669 calculate_sizes(s
, order
);
4673 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4675 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4679 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4681 return sprintf(buf
, "%lu\n", s
->min_partial
);
4684 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4690 err
= kstrtoul(buf
, 10, &min
);
4694 set_min_partial(s
, min
);
4697 SLAB_ATTR(min_partial
);
4699 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4701 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4704 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4707 unsigned long objects
;
4710 err
= kstrtoul(buf
, 10, &objects
);
4713 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4716 s
->cpu_partial
= objects
;
4720 SLAB_ATTR(cpu_partial
);
4722 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4726 return sprintf(buf
, "%pS\n", s
->ctor
);
4730 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4732 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4734 SLAB_ATTR_RO(aliases
);
4736 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4738 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4740 SLAB_ATTR_RO(partial
);
4742 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4744 return show_slab_objects(s
, buf
, SO_CPU
);
4746 SLAB_ATTR_RO(cpu_slabs
);
4748 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4750 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4752 SLAB_ATTR_RO(objects
);
4754 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4756 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4758 SLAB_ATTR_RO(objects_partial
);
4760 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4767 for_each_online_cpu(cpu
) {
4768 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4771 pages
+= page
->pages
;
4772 objects
+= page
->pobjects
;
4776 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4779 for_each_online_cpu(cpu
) {
4780 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4782 if (page
&& len
< PAGE_SIZE
- 20)
4783 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4784 page
->pobjects
, page
->pages
);
4787 return len
+ sprintf(buf
+ len
, "\n");
4789 SLAB_ATTR_RO(slabs_cpu_partial
);
4791 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4793 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4796 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4797 const char *buf
, size_t length
)
4799 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4801 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4804 SLAB_ATTR(reclaim_account
);
4806 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4808 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4810 SLAB_ATTR_RO(hwcache_align
);
4812 #ifdef CONFIG_ZONE_DMA
4813 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4815 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4817 SLAB_ATTR_RO(cache_dma
);
4820 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4822 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4824 SLAB_ATTR_RO(destroy_by_rcu
);
4826 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4828 return sprintf(buf
, "%d\n", s
->reserved
);
4830 SLAB_ATTR_RO(reserved
);
4832 #ifdef CONFIG_SLUB_DEBUG
4833 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4835 return show_slab_objects(s
, buf
, SO_ALL
);
4837 SLAB_ATTR_RO(slabs
);
4839 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4841 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4843 SLAB_ATTR_RO(total_objects
);
4845 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4847 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
4850 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4851 const char *buf
, size_t length
)
4853 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
4854 if (buf
[0] == '1') {
4855 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4856 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
4860 SLAB_ATTR(sanity_checks
);
4862 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4864 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4867 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4871 * Tracing a merged cache is going to give confusing results
4872 * as well as cause other issues like converting a mergeable
4873 * cache into an umergeable one.
4875 if (s
->refcount
> 1)
4878 s
->flags
&= ~SLAB_TRACE
;
4879 if (buf
[0] == '1') {
4880 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4881 s
->flags
|= SLAB_TRACE
;
4887 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4889 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4892 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4893 const char *buf
, size_t length
)
4895 if (any_slab_objects(s
))
4898 s
->flags
&= ~SLAB_RED_ZONE
;
4899 if (buf
[0] == '1') {
4900 s
->flags
|= SLAB_RED_ZONE
;
4902 calculate_sizes(s
, -1);
4905 SLAB_ATTR(red_zone
);
4907 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4909 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4912 static ssize_t
poison_store(struct kmem_cache
*s
,
4913 const char *buf
, size_t length
)
4915 if (any_slab_objects(s
))
4918 s
->flags
&= ~SLAB_POISON
;
4919 if (buf
[0] == '1') {
4920 s
->flags
|= SLAB_POISON
;
4922 calculate_sizes(s
, -1);
4927 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4929 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4932 static ssize_t
store_user_store(struct kmem_cache
*s
,
4933 const char *buf
, size_t length
)
4935 if (any_slab_objects(s
))
4938 s
->flags
&= ~SLAB_STORE_USER
;
4939 if (buf
[0] == '1') {
4940 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4941 s
->flags
|= SLAB_STORE_USER
;
4943 calculate_sizes(s
, -1);
4946 SLAB_ATTR(store_user
);
4948 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4953 static ssize_t
validate_store(struct kmem_cache
*s
,
4954 const char *buf
, size_t length
)
4958 if (buf
[0] == '1') {
4959 ret
= validate_slab_cache(s
);
4965 SLAB_ATTR(validate
);
4967 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4969 if (!(s
->flags
& SLAB_STORE_USER
))
4971 return list_locations(s
, buf
, TRACK_ALLOC
);
4973 SLAB_ATTR_RO(alloc_calls
);
4975 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4977 if (!(s
->flags
& SLAB_STORE_USER
))
4979 return list_locations(s
, buf
, TRACK_FREE
);
4981 SLAB_ATTR_RO(free_calls
);
4982 #endif /* CONFIG_SLUB_DEBUG */
4984 #ifdef CONFIG_FAILSLAB
4985 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4987 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4990 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4993 if (s
->refcount
> 1)
4996 s
->flags
&= ~SLAB_FAILSLAB
;
4998 s
->flags
|= SLAB_FAILSLAB
;
5001 SLAB_ATTR(failslab
);
5004 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5009 static ssize_t
shrink_store(struct kmem_cache
*s
,
5010 const char *buf
, size_t length
)
5013 kmem_cache_shrink(s
);
5021 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5023 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5026 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5027 const char *buf
, size_t length
)
5029 unsigned long ratio
;
5032 err
= kstrtoul(buf
, 10, &ratio
);
5037 s
->remote_node_defrag_ratio
= ratio
* 10;
5041 SLAB_ATTR(remote_node_defrag_ratio
);
5044 #ifdef CONFIG_SLUB_STATS
5045 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5047 unsigned long sum
= 0;
5050 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5055 for_each_online_cpu(cpu
) {
5056 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5062 len
= sprintf(buf
, "%lu", sum
);
5065 for_each_online_cpu(cpu
) {
5066 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5067 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5071 return len
+ sprintf(buf
+ len
, "\n");
5074 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5078 for_each_online_cpu(cpu
)
5079 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5082 #define STAT_ATTR(si, text) \
5083 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5085 return show_stat(s, buf, si); \
5087 static ssize_t text##_store(struct kmem_cache *s, \
5088 const char *buf, size_t length) \
5090 if (buf[0] != '0') \
5092 clear_stat(s, si); \
5097 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5098 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5099 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5100 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5101 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5102 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5103 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5104 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5105 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5106 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5107 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5108 STAT_ATTR(FREE_SLAB
, free_slab
);
5109 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5110 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5111 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5112 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5113 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5114 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5115 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5116 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5117 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5118 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5119 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5120 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5121 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5122 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5125 static struct attribute
*slab_attrs
[] = {
5126 &slab_size_attr
.attr
,
5127 &object_size_attr
.attr
,
5128 &objs_per_slab_attr
.attr
,
5130 &min_partial_attr
.attr
,
5131 &cpu_partial_attr
.attr
,
5133 &objects_partial_attr
.attr
,
5135 &cpu_slabs_attr
.attr
,
5139 &hwcache_align_attr
.attr
,
5140 &reclaim_account_attr
.attr
,
5141 &destroy_by_rcu_attr
.attr
,
5143 &reserved_attr
.attr
,
5144 &slabs_cpu_partial_attr
.attr
,
5145 #ifdef CONFIG_SLUB_DEBUG
5146 &total_objects_attr
.attr
,
5148 &sanity_checks_attr
.attr
,
5150 &red_zone_attr
.attr
,
5152 &store_user_attr
.attr
,
5153 &validate_attr
.attr
,
5154 &alloc_calls_attr
.attr
,
5155 &free_calls_attr
.attr
,
5157 #ifdef CONFIG_ZONE_DMA
5158 &cache_dma_attr
.attr
,
5161 &remote_node_defrag_ratio_attr
.attr
,
5163 #ifdef CONFIG_SLUB_STATS
5164 &alloc_fastpath_attr
.attr
,
5165 &alloc_slowpath_attr
.attr
,
5166 &free_fastpath_attr
.attr
,
5167 &free_slowpath_attr
.attr
,
5168 &free_frozen_attr
.attr
,
5169 &free_add_partial_attr
.attr
,
5170 &free_remove_partial_attr
.attr
,
5171 &alloc_from_partial_attr
.attr
,
5172 &alloc_slab_attr
.attr
,
5173 &alloc_refill_attr
.attr
,
5174 &alloc_node_mismatch_attr
.attr
,
5175 &free_slab_attr
.attr
,
5176 &cpuslab_flush_attr
.attr
,
5177 &deactivate_full_attr
.attr
,
5178 &deactivate_empty_attr
.attr
,
5179 &deactivate_to_head_attr
.attr
,
5180 &deactivate_to_tail_attr
.attr
,
5181 &deactivate_remote_frees_attr
.attr
,
5182 &deactivate_bypass_attr
.attr
,
5183 &order_fallback_attr
.attr
,
5184 &cmpxchg_double_fail_attr
.attr
,
5185 &cmpxchg_double_cpu_fail_attr
.attr
,
5186 &cpu_partial_alloc_attr
.attr
,
5187 &cpu_partial_free_attr
.attr
,
5188 &cpu_partial_node_attr
.attr
,
5189 &cpu_partial_drain_attr
.attr
,
5191 #ifdef CONFIG_FAILSLAB
5192 &failslab_attr
.attr
,
5198 static struct attribute_group slab_attr_group
= {
5199 .attrs
= slab_attrs
,
5202 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5203 struct attribute
*attr
,
5206 struct slab_attribute
*attribute
;
5207 struct kmem_cache
*s
;
5210 attribute
= to_slab_attr(attr
);
5213 if (!attribute
->show
)
5216 err
= attribute
->show(s
, buf
);
5221 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5222 struct attribute
*attr
,
5223 const char *buf
, size_t len
)
5225 struct slab_attribute
*attribute
;
5226 struct kmem_cache
*s
;
5229 attribute
= to_slab_attr(attr
);
5232 if (!attribute
->store
)
5235 err
= attribute
->store(s
, buf
, len
);
5237 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5238 struct kmem_cache
*c
;
5240 mutex_lock(&slab_mutex
);
5241 if (s
->max_attr_size
< len
)
5242 s
->max_attr_size
= len
;
5245 * This is a best effort propagation, so this function's return
5246 * value will be determined by the parent cache only. This is
5247 * basically because not all attributes will have a well
5248 * defined semantics for rollbacks - most of the actions will
5249 * have permanent effects.
5251 * Returning the error value of any of the children that fail
5252 * is not 100 % defined, in the sense that users seeing the
5253 * error code won't be able to know anything about the state of
5256 * Only returning the error code for the parent cache at least
5257 * has well defined semantics. The cache being written to
5258 * directly either failed or succeeded, in which case we loop
5259 * through the descendants with best-effort propagation.
5261 for_each_memcg_cache(c
, s
)
5262 attribute
->store(c
, buf
, len
);
5263 mutex_unlock(&slab_mutex
);
5269 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5273 char *buffer
= NULL
;
5274 struct kmem_cache
*root_cache
;
5276 if (is_root_cache(s
))
5279 root_cache
= s
->memcg_params
.root_cache
;
5282 * This mean this cache had no attribute written. Therefore, no point
5283 * in copying default values around
5285 if (!root_cache
->max_attr_size
)
5288 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5291 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5293 if (!attr
|| !attr
->store
|| !attr
->show
)
5297 * It is really bad that we have to allocate here, so we will
5298 * do it only as a fallback. If we actually allocate, though,
5299 * we can just use the allocated buffer until the end.
5301 * Most of the slub attributes will tend to be very small in
5302 * size, but sysfs allows buffers up to a page, so they can
5303 * theoretically happen.
5307 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5310 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5311 if (WARN_ON(!buffer
))
5316 attr
->show(root_cache
, buf
);
5317 attr
->store(s
, buf
, strlen(buf
));
5321 free_page((unsigned long)buffer
);
5325 static void kmem_cache_release(struct kobject
*k
)
5327 slab_kmem_cache_release(to_slab(k
));
5330 static const struct sysfs_ops slab_sysfs_ops
= {
5331 .show
= slab_attr_show
,
5332 .store
= slab_attr_store
,
5335 static struct kobj_type slab_ktype
= {
5336 .sysfs_ops
= &slab_sysfs_ops
,
5337 .release
= kmem_cache_release
,
5340 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5342 struct kobj_type
*ktype
= get_ktype(kobj
);
5344 if (ktype
== &slab_ktype
)
5349 static const struct kset_uevent_ops slab_uevent_ops
= {
5350 .filter
= uevent_filter
,
5353 static struct kset
*slab_kset
;
5355 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5358 if (!is_root_cache(s
))
5359 return s
->memcg_params
.root_cache
->memcg_kset
;
5364 #define ID_STR_LENGTH 64
5366 /* Create a unique string id for a slab cache:
5368 * Format :[flags-]size
5370 static char *create_unique_id(struct kmem_cache
*s
)
5372 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5379 * First flags affecting slabcache operations. We will only
5380 * get here for aliasable slabs so we do not need to support
5381 * too many flags. The flags here must cover all flags that
5382 * are matched during merging to guarantee that the id is
5385 if (s
->flags
& SLAB_CACHE_DMA
)
5387 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5389 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5391 if (!(s
->flags
& SLAB_NOTRACK
))
5393 if (s
->flags
& SLAB_ACCOUNT
)
5397 p
+= sprintf(p
, "%07d", s
->size
);
5399 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5403 static int sysfs_slab_add(struct kmem_cache
*s
)
5407 int unmergeable
= slab_unmergeable(s
);
5411 * Slabcache can never be merged so we can use the name proper.
5412 * This is typically the case for debug situations. In that
5413 * case we can catch duplicate names easily.
5415 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5419 * Create a unique name for the slab as a target
5422 name
= create_unique_id(s
);
5425 s
->kobj
.kset
= cache_kset(s
);
5426 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5430 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5435 if (is_root_cache(s
)) {
5436 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5437 if (!s
->memcg_kset
) {
5444 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5446 /* Setup first alias */
5447 sysfs_slab_alias(s
, s
->name
);
5454 kobject_del(&s
->kobj
);
5458 void sysfs_slab_remove(struct kmem_cache
*s
)
5460 if (slab_state
< FULL
)
5462 * Sysfs has not been setup yet so no need to remove the
5468 kset_unregister(s
->memcg_kset
);
5470 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5471 kobject_del(&s
->kobj
);
5472 kobject_put(&s
->kobj
);
5476 * Need to buffer aliases during bootup until sysfs becomes
5477 * available lest we lose that information.
5479 struct saved_alias
{
5480 struct kmem_cache
*s
;
5482 struct saved_alias
*next
;
5485 static struct saved_alias
*alias_list
;
5487 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5489 struct saved_alias
*al
;
5491 if (slab_state
== FULL
) {
5493 * If we have a leftover link then remove it.
5495 sysfs_remove_link(&slab_kset
->kobj
, name
);
5496 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5499 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5505 al
->next
= alias_list
;
5510 static int __init
slab_sysfs_init(void)
5512 struct kmem_cache
*s
;
5515 mutex_lock(&slab_mutex
);
5517 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5519 mutex_unlock(&slab_mutex
);
5520 pr_err("Cannot register slab subsystem.\n");
5526 list_for_each_entry(s
, &slab_caches
, list
) {
5527 err
= sysfs_slab_add(s
);
5529 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5533 while (alias_list
) {
5534 struct saved_alias
*al
= alias_list
;
5536 alias_list
= alias_list
->next
;
5537 err
= sysfs_slab_alias(al
->s
, al
->name
);
5539 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5544 mutex_unlock(&slab_mutex
);
5549 __initcall(slab_sysfs_init
);
5550 #endif /* CONFIG_SYSFS */
5553 * The /proc/slabinfo ABI
5555 #ifdef CONFIG_SLABINFO
5556 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5558 unsigned long nr_slabs
= 0;
5559 unsigned long nr_objs
= 0;
5560 unsigned long nr_free
= 0;
5562 struct kmem_cache_node
*n
;
5564 for_each_kmem_cache_node(s
, node
, n
) {
5565 nr_slabs
+= node_nr_slabs(n
);
5566 nr_objs
+= node_nr_objs(n
);
5567 nr_free
+= count_partial(n
, count_free
);
5570 sinfo
->active_objs
= nr_objs
- nr_free
;
5571 sinfo
->num_objs
= nr_objs
;
5572 sinfo
->active_slabs
= nr_slabs
;
5573 sinfo
->num_slabs
= nr_slabs
;
5574 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5575 sinfo
->cache_order
= oo_order(s
->oo
);
5578 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5582 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5583 size_t count
, loff_t
*ppos
)
5587 #endif /* CONFIG_SLABINFO */