]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/slub.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh64-2.6
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23
24 /*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
100 */
101
102 #define FROZEN (1 << PG_active)
103
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109
110 static inline int SlabFrozen(struct page *page)
111 {
112 return page->flags & FROZEN;
113 }
114
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 page->flags |= FROZEN;
118 }
119
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 page->flags &= ~FROZEN;
123 }
124
125 static inline int SlabDebug(struct page *page)
126 {
127 return page->flags & SLABDEBUG;
128 }
129
130 static inline void SetSlabDebug(struct page *page)
131 {
132 page->flags |= SLABDEBUG;
133 }
134
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 page->flags &= ~SLABDEBUG;
138 }
139
140 /*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 #if PAGE_SHIFT <= 12
157
158 /*
159 * Small page size. Make sure that we do not fragment memory
160 */
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
163
164 #else
165
166 /*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
172
173 #endif
174
175 /*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
179 #define MIN_PARTIAL 2
180
181 /*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186 #define MAX_PARTIAL 10
187
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
190
191 /*
192 * Set of flags that will prevent slab merging
193 */
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
207
208 /*
209 * The page->inuse field is 16 bit thus we have this limitation
210 */
211 #define MAX_OBJECTS_PER_SLAB 65535
212
213 /* Internal SLUB flags */
214 #define __OBJECT_POISON 0x80000000 /* Poison object */
215
216 /* Not all arches define cache_line_size */
217 #ifndef cache_line_size
218 #define cache_line_size() L1_CACHE_BYTES
219 #endif
220
221 static int kmem_size = sizeof(struct kmem_cache);
222
223 #ifdef CONFIG_SMP
224 static struct notifier_block slab_notifier;
225 #endif
226
227 static enum {
228 DOWN, /* No slab functionality available */
229 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
230 UP, /* Everything works but does not show up in sysfs */
231 SYSFS /* Sysfs up */
232 } slab_state = DOWN;
233
234 /* A list of all slab caches on the system */
235 static DECLARE_RWSEM(slub_lock);
236 static LIST_HEAD(slab_caches);
237
238 /*
239 * Tracking user of a slab.
240 */
241 struct track {
242 void *addr; /* Called from address */
243 int cpu; /* Was running on cpu */
244 int pid; /* Pid context */
245 unsigned long when; /* When did the operation occur */
246 };
247
248 enum track_item { TRACK_ALLOC, TRACK_FREE };
249
250 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
251 static int sysfs_slab_add(struct kmem_cache *);
252 static int sysfs_slab_alias(struct kmem_cache *, const char *);
253 static void sysfs_slab_remove(struct kmem_cache *);
254 #else
255 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257 { return 0; }
258 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
259 #endif
260
261 /********************************************************************
262 * Core slab cache functions
263 *******************************************************************/
264
265 int slab_is_available(void)
266 {
267 return slab_state >= UP;
268 }
269
270 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
271 {
272 #ifdef CONFIG_NUMA
273 return s->node[node];
274 #else
275 return &s->local_node;
276 #endif
277 }
278
279 static inline int check_valid_pointer(struct kmem_cache *s,
280 struct page *page, const void *object)
281 {
282 void *base;
283
284 if (!object)
285 return 1;
286
287 base = page_address(page);
288 if (object < base || object >= base + s->objects * s->size ||
289 (object - base) % s->size) {
290 return 0;
291 }
292
293 return 1;
294 }
295
296 /*
297 * Slow version of get and set free pointer.
298 *
299 * This version requires touching the cache lines of kmem_cache which
300 * we avoid to do in the fast alloc free paths. There we obtain the offset
301 * from the page struct.
302 */
303 static inline void *get_freepointer(struct kmem_cache *s, void *object)
304 {
305 return *(void **)(object + s->offset);
306 }
307
308 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309 {
310 *(void **)(object + s->offset) = fp;
311 }
312
313 /* Loop over all objects in a slab */
314 #define for_each_object(__p, __s, __addr) \
315 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
316 __p += (__s)->size)
317
318 /* Scan freelist */
319 #define for_each_free_object(__p, __s, __free) \
320 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
321
322 /* Determine object index from a given position */
323 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
324 {
325 return (p - addr) / s->size;
326 }
327
328 #ifdef CONFIG_SLUB_DEBUG
329 /*
330 * Debug settings:
331 */
332 #ifdef CONFIG_SLUB_DEBUG_ON
333 static int slub_debug = DEBUG_DEFAULT_FLAGS;
334 #else
335 static int slub_debug;
336 #endif
337
338 static char *slub_debug_slabs;
339
340 /*
341 * Object debugging
342 */
343 static void print_section(char *text, u8 *addr, unsigned int length)
344 {
345 int i, offset;
346 int newline = 1;
347 char ascii[17];
348
349 ascii[16] = 0;
350
351 for (i = 0; i < length; i++) {
352 if (newline) {
353 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
354 newline = 0;
355 }
356 printk(" %02x", addr[i]);
357 offset = i % 16;
358 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
359 if (offset == 15) {
360 printk(" %s\n",ascii);
361 newline = 1;
362 }
363 }
364 if (!newline) {
365 i %= 16;
366 while (i < 16) {
367 printk(" ");
368 ascii[i] = ' ';
369 i++;
370 }
371 printk(" %s\n", ascii);
372 }
373 }
374
375 static struct track *get_track(struct kmem_cache *s, void *object,
376 enum track_item alloc)
377 {
378 struct track *p;
379
380 if (s->offset)
381 p = object + s->offset + sizeof(void *);
382 else
383 p = object + s->inuse;
384
385 return p + alloc;
386 }
387
388 static void set_track(struct kmem_cache *s, void *object,
389 enum track_item alloc, void *addr)
390 {
391 struct track *p;
392
393 if (s->offset)
394 p = object + s->offset + sizeof(void *);
395 else
396 p = object + s->inuse;
397
398 p += alloc;
399 if (addr) {
400 p->addr = addr;
401 p->cpu = smp_processor_id();
402 p->pid = current ? current->pid : -1;
403 p->when = jiffies;
404 } else
405 memset(p, 0, sizeof(struct track));
406 }
407
408 static void init_tracking(struct kmem_cache *s, void *object)
409 {
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 set_track(s, object, TRACK_FREE, NULL);
414 set_track(s, object, TRACK_ALLOC, NULL);
415 }
416
417 static void print_track(const char *s, struct track *t)
418 {
419 if (!t->addr)
420 return;
421
422 printk(KERN_ERR "INFO: %s in ", s);
423 __print_symbol("%s", (unsigned long)t->addr);
424 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
425 }
426
427 static void print_tracking(struct kmem_cache *s, void *object)
428 {
429 if (!(s->flags & SLAB_STORE_USER))
430 return;
431
432 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
433 print_track("Freed", get_track(s, object, TRACK_FREE));
434 }
435
436 static void print_page_info(struct page *page)
437 {
438 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439 page, page->inuse, page->freelist, page->flags);
440
441 }
442
443 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
444 {
445 va_list args;
446 char buf[100];
447
448 va_start(args, fmt);
449 vsnprintf(buf, sizeof(buf), fmt, args);
450 va_end(args);
451 printk(KERN_ERR "========================================"
452 "=====================================\n");
453 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
454 printk(KERN_ERR "----------------------------------------"
455 "-------------------------------------\n\n");
456 }
457
458 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
459 {
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
467 }
468
469 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
470 {
471 unsigned int off; /* Offset of last byte */
472 u8 *addr = page_address(page);
473
474 print_tracking(s, p);
475
476 print_page_info(page);
477
478 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479 p, p - addr, get_freepointer(s, p));
480
481 if (p > addr + 16)
482 print_section("Bytes b4", p - 16, 16);
483
484 print_section("Object", p, min(s->objsize, 128));
485
486 if (s->flags & SLAB_RED_ZONE)
487 print_section("Redzone", p + s->objsize,
488 s->inuse - s->objsize);
489
490 if (s->offset)
491 off = s->offset + sizeof(void *);
492 else
493 off = s->inuse;
494
495 if (s->flags & SLAB_STORE_USER)
496 off += 2 * sizeof(struct track);
497
498 if (off != s->size)
499 /* Beginning of the filler is the free pointer */
500 print_section("Padding", p + off, s->size - off);
501
502 dump_stack();
503 }
504
505 static void object_err(struct kmem_cache *s, struct page *page,
506 u8 *object, char *reason)
507 {
508 slab_bug(s, reason);
509 print_trailer(s, page, object);
510 }
511
512 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
513 {
514 va_list args;
515 char buf[100];
516
517 va_start(args, fmt);
518 vsnprintf(buf, sizeof(buf), fmt, args);
519 va_end(args);
520 slab_bug(s, fmt);
521 print_page_info(page);
522 dump_stack();
523 }
524
525 static void init_object(struct kmem_cache *s, void *object, int active)
526 {
527 u8 *p = object;
528
529 if (s->flags & __OBJECT_POISON) {
530 memset(p, POISON_FREE, s->objsize - 1);
531 p[s->objsize -1] = POISON_END;
532 }
533
534 if (s->flags & SLAB_RED_ZONE)
535 memset(p + s->objsize,
536 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
537 s->inuse - s->objsize);
538 }
539
540 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
541 {
542 while (bytes) {
543 if (*start != (u8)value)
544 return start;
545 start++;
546 bytes--;
547 }
548 return NULL;
549 }
550
551 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
552 void *from, void *to)
553 {
554 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
555 memset(from, data, to - from);
556 }
557
558 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
559 u8 *object, char *what,
560 u8* start, unsigned int value, unsigned int bytes)
561 {
562 u8 *fault;
563 u8 *end;
564
565 fault = check_bytes(start, value, bytes);
566 if (!fault)
567 return 1;
568
569 end = start + bytes;
570 while (end > fault && end[-1] == value)
571 end--;
572
573 slab_bug(s, "%s overwritten", what);
574 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575 fault, end - 1, fault[0], value);
576 print_trailer(s, page, object);
577
578 restore_bytes(s, what, value, fault, end);
579 return 0;
580 }
581
582 /*
583 * Object layout:
584 *
585 * object address
586 * Bytes of the object to be managed.
587 * If the freepointer may overlay the object then the free
588 * pointer is the first word of the object.
589 *
590 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
591 * 0xa5 (POISON_END)
592 *
593 * object + s->objsize
594 * Padding to reach word boundary. This is also used for Redzoning.
595 * Padding is extended by another word if Redzoning is enabled and
596 * objsize == inuse.
597 *
598 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599 * 0xcc (RED_ACTIVE) for objects in use.
600 *
601 * object + s->inuse
602 * Meta data starts here.
603 *
604 * A. Free pointer (if we cannot overwrite object on free)
605 * B. Tracking data for SLAB_STORE_USER
606 * C. Padding to reach required alignment boundary or at mininum
607 * one word if debuggin is on to be able to detect writes
608 * before the word boundary.
609 *
610 * Padding is done using 0x5a (POISON_INUSE)
611 *
612 * object + s->size
613 * Nothing is used beyond s->size.
614 *
615 * If slabcaches are merged then the objsize and inuse boundaries are mostly
616 * ignored. And therefore no slab options that rely on these boundaries
617 * may be used with merged slabcaches.
618 */
619
620 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
621 {
622 unsigned long off = s->inuse; /* The end of info */
623
624 if (s->offset)
625 /* Freepointer is placed after the object. */
626 off += sizeof(void *);
627
628 if (s->flags & SLAB_STORE_USER)
629 /* We also have user information there */
630 off += 2 * sizeof(struct track);
631
632 if (s->size == off)
633 return 1;
634
635 return check_bytes_and_report(s, page, p, "Object padding",
636 p + off, POISON_INUSE, s->size - off);
637 }
638
639 static int slab_pad_check(struct kmem_cache *s, struct page *page)
640 {
641 u8 *start;
642 u8 *fault;
643 u8 *end;
644 int length;
645 int remainder;
646
647 if (!(s->flags & SLAB_POISON))
648 return 1;
649
650 start = page_address(page);
651 end = start + (PAGE_SIZE << s->order);
652 length = s->objects * s->size;
653 remainder = end - (start + length);
654 if (!remainder)
655 return 1;
656
657 fault = check_bytes(start + length, POISON_INUSE, remainder);
658 if (!fault)
659 return 1;
660 while (end > fault && end[-1] == POISON_INUSE)
661 end--;
662
663 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
664 print_section("Padding", start, length);
665
666 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
667 return 0;
668 }
669
670 static int check_object(struct kmem_cache *s, struct page *page,
671 void *object, int active)
672 {
673 u8 *p = object;
674 u8 *endobject = object + s->objsize;
675
676 if (s->flags & SLAB_RED_ZONE) {
677 unsigned int red =
678 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
679
680 if (!check_bytes_and_report(s, page, object, "Redzone",
681 endobject, red, s->inuse - s->objsize))
682 return 0;
683 } else {
684 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
685 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
686 POISON_INUSE, s->inuse - s->objsize);
687 }
688
689 if (s->flags & SLAB_POISON) {
690 if (!active && (s->flags & __OBJECT_POISON) &&
691 (!check_bytes_and_report(s, page, p, "Poison", p,
692 POISON_FREE, s->objsize - 1) ||
693 !check_bytes_and_report(s, page, p, "Poison",
694 p + s->objsize -1, POISON_END, 1)))
695 return 0;
696 /*
697 * check_pad_bytes cleans up on its own.
698 */
699 check_pad_bytes(s, page, p);
700 }
701
702 if (!s->offset && active)
703 /*
704 * Object and freepointer overlap. Cannot check
705 * freepointer while object is allocated.
706 */
707 return 1;
708
709 /* Check free pointer validity */
710 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
711 object_err(s, page, p, "Freepointer corrupt");
712 /*
713 * No choice but to zap it and thus loose the remainder
714 * of the free objects in this slab. May cause
715 * another error because the object count is now wrong.
716 */
717 set_freepointer(s, p, NULL);
718 return 0;
719 }
720 return 1;
721 }
722
723 static int check_slab(struct kmem_cache *s, struct page *page)
724 {
725 VM_BUG_ON(!irqs_disabled());
726
727 if (!PageSlab(page)) {
728 slab_err(s, page, "Not a valid slab page");
729 return 0;
730 }
731 if (page->offset * sizeof(void *) != s->offset) {
732 slab_err(s, page, "Corrupted offset %lu",
733 (unsigned long)(page->offset * sizeof(void *)));
734 return 0;
735 }
736 if (page->inuse > s->objects) {
737 slab_err(s, page, "inuse %u > max %u",
738 s->name, page->inuse, s->objects);
739 return 0;
740 }
741 /* Slab_pad_check fixes things up after itself */
742 slab_pad_check(s, page);
743 return 1;
744 }
745
746 /*
747 * Determine if a certain object on a page is on the freelist. Must hold the
748 * slab lock to guarantee that the chains are in a consistent state.
749 */
750 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751 {
752 int nr = 0;
753 void *fp = page->freelist;
754 void *object = NULL;
755
756 while (fp && nr <= s->objects) {
757 if (fp == search)
758 return 1;
759 if (!check_valid_pointer(s, page, fp)) {
760 if (object) {
761 object_err(s, page, object,
762 "Freechain corrupt");
763 set_freepointer(s, object, NULL);
764 break;
765 } else {
766 slab_err(s, page, "Freepointer corrupt");
767 page->freelist = NULL;
768 page->inuse = s->objects;
769 slab_fix(s, "Freelist cleared");
770 return 0;
771 }
772 break;
773 }
774 object = fp;
775 fp = get_freepointer(s, object);
776 nr++;
777 }
778
779 if (page->inuse != s->objects - nr) {
780 slab_err(s, page, "Wrong object count. Counter is %d but "
781 "counted were %d", page->inuse, s->objects - nr);
782 page->inuse = s->objects - nr;
783 slab_fix(s, "Object count adjusted.");
784 }
785 return search == NULL;
786 }
787
788 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
789 {
790 if (s->flags & SLAB_TRACE) {
791 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 s->name,
793 alloc ? "alloc" : "free",
794 object, page->inuse,
795 page->freelist);
796
797 if (!alloc)
798 print_section("Object", (void *)object, s->objsize);
799
800 dump_stack();
801 }
802 }
803
804 /*
805 * Tracking of fully allocated slabs for debugging purposes.
806 */
807 static void add_full(struct kmem_cache_node *n, struct page *page)
808 {
809 spin_lock(&n->list_lock);
810 list_add(&page->lru, &n->full);
811 spin_unlock(&n->list_lock);
812 }
813
814 static void remove_full(struct kmem_cache *s, struct page *page)
815 {
816 struct kmem_cache_node *n;
817
818 if (!(s->flags & SLAB_STORE_USER))
819 return;
820
821 n = get_node(s, page_to_nid(page));
822
823 spin_lock(&n->list_lock);
824 list_del(&page->lru);
825 spin_unlock(&n->list_lock);
826 }
827
828 static void setup_object_debug(struct kmem_cache *s, struct page *page,
829 void *object)
830 {
831 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
832 return;
833
834 init_object(s, object, 0);
835 init_tracking(s, object);
836 }
837
838 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
839 void *object, void *addr)
840 {
841 if (!check_slab(s, page))
842 goto bad;
843
844 if (object && !on_freelist(s, page, object)) {
845 object_err(s, page, object, "Object already allocated");
846 goto bad;
847 }
848
849 if (!check_valid_pointer(s, page, object)) {
850 object_err(s, page, object, "Freelist Pointer check fails");
851 goto bad;
852 }
853
854 if (object && !check_object(s, page, object, 0))
855 goto bad;
856
857 /* Success perform special debug activities for allocs */
858 if (s->flags & SLAB_STORE_USER)
859 set_track(s, object, TRACK_ALLOC, addr);
860 trace(s, page, object, 1);
861 init_object(s, object, 1);
862 return 1;
863
864 bad:
865 if (PageSlab(page)) {
866 /*
867 * If this is a slab page then lets do the best we can
868 * to avoid issues in the future. Marking all objects
869 * as used avoids touching the remaining objects.
870 */
871 slab_fix(s, "Marking all objects used");
872 page->inuse = s->objects;
873 page->freelist = NULL;
874 /* Fix up fields that may be corrupted */
875 page->offset = s->offset / sizeof(void *);
876 }
877 return 0;
878 }
879
880 static int free_debug_processing(struct kmem_cache *s, struct page *page,
881 void *object, void *addr)
882 {
883 if (!check_slab(s, page))
884 goto fail;
885
886 if (!check_valid_pointer(s, page, object)) {
887 slab_err(s, page, "Invalid object pointer 0x%p", object);
888 goto fail;
889 }
890
891 if (on_freelist(s, page, object)) {
892 object_err(s, page, object, "Object already free");
893 goto fail;
894 }
895
896 if (!check_object(s, page, object, 1))
897 return 0;
898
899 if (unlikely(s != page->slab)) {
900 if (!PageSlab(page))
901 slab_err(s, page, "Attempt to free object(0x%p) "
902 "outside of slab", object);
903 else
904 if (!page->slab) {
905 printk(KERN_ERR
906 "SLUB <none>: no slab for object 0x%p.\n",
907 object);
908 dump_stack();
909 }
910 else
911 object_err(s, page, object,
912 "page slab pointer corrupt.");
913 goto fail;
914 }
915
916 /* Special debug activities for freeing objects */
917 if (!SlabFrozen(page) && !page->freelist)
918 remove_full(s, page);
919 if (s->flags & SLAB_STORE_USER)
920 set_track(s, object, TRACK_FREE, addr);
921 trace(s, page, object, 0);
922 init_object(s, object, 0);
923 return 1;
924
925 fail:
926 slab_fix(s, "Object at 0x%p not freed", object);
927 return 0;
928 }
929
930 static int __init setup_slub_debug(char *str)
931 {
932 slub_debug = DEBUG_DEFAULT_FLAGS;
933 if (*str++ != '=' || !*str)
934 /*
935 * No options specified. Switch on full debugging.
936 */
937 goto out;
938
939 if (*str == ',')
940 /*
941 * No options but restriction on slabs. This means full
942 * debugging for slabs matching a pattern.
943 */
944 goto check_slabs;
945
946 slub_debug = 0;
947 if (*str == '-')
948 /*
949 * Switch off all debugging measures.
950 */
951 goto out;
952
953 /*
954 * Determine which debug features should be switched on
955 */
956 for ( ;*str && *str != ','; str++) {
957 switch (tolower(*str)) {
958 case 'f':
959 slub_debug |= SLAB_DEBUG_FREE;
960 break;
961 case 'z':
962 slub_debug |= SLAB_RED_ZONE;
963 break;
964 case 'p':
965 slub_debug |= SLAB_POISON;
966 break;
967 case 'u':
968 slub_debug |= SLAB_STORE_USER;
969 break;
970 case 't':
971 slub_debug |= SLAB_TRACE;
972 break;
973 default:
974 printk(KERN_ERR "slub_debug option '%c' "
975 "unknown. skipped\n",*str);
976 }
977 }
978
979 check_slabs:
980 if (*str == ',')
981 slub_debug_slabs = str + 1;
982 out:
983 return 1;
984 }
985
986 __setup("slub_debug", setup_slub_debug);
987
988 static void kmem_cache_open_debug_check(struct kmem_cache *s)
989 {
990 /*
991 * The page->offset field is only 16 bit wide. This is an offset
992 * in units of words from the beginning of an object. If the slab
993 * size is bigger then we cannot move the free pointer behind the
994 * object anymore.
995 *
996 * On 32 bit platforms the limit is 256k. On 64bit platforms
997 * the limit is 512k.
998 *
999 * Debugging or ctor may create a need to move the free
1000 * pointer. Fail if this happens.
1001 */
1002 if (s->objsize >= 65535 * sizeof(void *)) {
1003 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
1004 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1005 BUG_ON(s->ctor);
1006 }
1007 else
1008 /*
1009 * Enable debugging if selected on the kernel commandline.
1010 */
1011 if (slub_debug && (!slub_debug_slabs ||
1012 strncmp(slub_debug_slabs, s->name,
1013 strlen(slub_debug_slabs)) == 0))
1014 s->flags |= slub_debug;
1015 }
1016 #else
1017 static inline void setup_object_debug(struct kmem_cache *s,
1018 struct page *page, void *object) {}
1019
1020 static inline int alloc_debug_processing(struct kmem_cache *s,
1021 struct page *page, void *object, void *addr) { return 0; }
1022
1023 static inline int free_debug_processing(struct kmem_cache *s,
1024 struct page *page, void *object, void *addr) { return 0; }
1025
1026 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1027 { return 1; }
1028 static inline int check_object(struct kmem_cache *s, struct page *page,
1029 void *object, int active) { return 1; }
1030 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1031 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
1032 #define slub_debug 0
1033 #endif
1034 /*
1035 * Slab allocation and freeing
1036 */
1037 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1038 {
1039 struct page * page;
1040 int pages = 1 << s->order;
1041
1042 if (s->order)
1043 flags |= __GFP_COMP;
1044
1045 if (s->flags & SLAB_CACHE_DMA)
1046 flags |= SLUB_DMA;
1047
1048 if (node == -1)
1049 page = alloc_pages(flags, s->order);
1050 else
1051 page = alloc_pages_node(node, flags, s->order);
1052
1053 if (!page)
1054 return NULL;
1055
1056 mod_zone_page_state(page_zone(page),
1057 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1058 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1059 pages);
1060
1061 return page;
1062 }
1063
1064 static void setup_object(struct kmem_cache *s, struct page *page,
1065 void *object)
1066 {
1067 setup_object_debug(s, page, object);
1068 if (unlikely(s->ctor))
1069 s->ctor(object, s, 0);
1070 }
1071
1072 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 {
1074 struct page *page;
1075 struct kmem_cache_node *n;
1076 void *start;
1077 void *end;
1078 void *last;
1079 void *p;
1080
1081 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
1082
1083 if (flags & __GFP_WAIT)
1084 local_irq_enable();
1085
1086 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1087 if (!page)
1088 goto out;
1089
1090 n = get_node(s, page_to_nid(page));
1091 if (n)
1092 atomic_long_inc(&n->nr_slabs);
1093 page->offset = s->offset / sizeof(void *);
1094 page->slab = s;
1095 page->flags |= 1 << PG_slab;
1096 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1097 SLAB_STORE_USER | SLAB_TRACE))
1098 SetSlabDebug(page);
1099
1100 start = page_address(page);
1101 end = start + s->objects * s->size;
1102
1103 if (unlikely(s->flags & SLAB_POISON))
1104 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1105
1106 last = start;
1107 for_each_object(p, s, start) {
1108 setup_object(s, page, last);
1109 set_freepointer(s, last, p);
1110 last = p;
1111 }
1112 setup_object(s, page, last);
1113 set_freepointer(s, last, NULL);
1114
1115 page->freelist = start;
1116 page->lockless_freelist = NULL;
1117 page->inuse = 0;
1118 out:
1119 if (flags & __GFP_WAIT)
1120 local_irq_disable();
1121 return page;
1122 }
1123
1124 static void __free_slab(struct kmem_cache *s, struct page *page)
1125 {
1126 int pages = 1 << s->order;
1127
1128 if (unlikely(SlabDebug(page))) {
1129 void *p;
1130
1131 slab_pad_check(s, page);
1132 for_each_object(p, s, page_address(page))
1133 check_object(s, page, p, 0);
1134 ClearSlabDebug(page);
1135 }
1136
1137 mod_zone_page_state(page_zone(page),
1138 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1139 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1140 - pages);
1141
1142 page->mapping = NULL;
1143 __free_pages(page, s->order);
1144 }
1145
1146 static void rcu_free_slab(struct rcu_head *h)
1147 {
1148 struct page *page;
1149
1150 page = container_of((struct list_head *)h, struct page, lru);
1151 __free_slab(page->slab, page);
1152 }
1153
1154 static void free_slab(struct kmem_cache *s, struct page *page)
1155 {
1156 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1157 /*
1158 * RCU free overloads the RCU head over the LRU
1159 */
1160 struct rcu_head *head = (void *)&page->lru;
1161
1162 call_rcu(head, rcu_free_slab);
1163 } else
1164 __free_slab(s, page);
1165 }
1166
1167 static void discard_slab(struct kmem_cache *s, struct page *page)
1168 {
1169 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1170
1171 atomic_long_dec(&n->nr_slabs);
1172 reset_page_mapcount(page);
1173 __ClearPageSlab(page);
1174 free_slab(s, page);
1175 }
1176
1177 /*
1178 * Per slab locking using the pagelock
1179 */
1180 static __always_inline void slab_lock(struct page *page)
1181 {
1182 bit_spin_lock(PG_locked, &page->flags);
1183 }
1184
1185 static __always_inline void slab_unlock(struct page *page)
1186 {
1187 bit_spin_unlock(PG_locked, &page->flags);
1188 }
1189
1190 static __always_inline int slab_trylock(struct page *page)
1191 {
1192 int rc = 1;
1193
1194 rc = bit_spin_trylock(PG_locked, &page->flags);
1195 return rc;
1196 }
1197
1198 /*
1199 * Management of partially allocated slabs
1200 */
1201 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1202 {
1203 spin_lock(&n->list_lock);
1204 n->nr_partial++;
1205 list_add_tail(&page->lru, &n->partial);
1206 spin_unlock(&n->list_lock);
1207 }
1208
1209 static void add_partial(struct kmem_cache_node *n, struct page *page)
1210 {
1211 spin_lock(&n->list_lock);
1212 n->nr_partial++;
1213 list_add(&page->lru, &n->partial);
1214 spin_unlock(&n->list_lock);
1215 }
1216
1217 static void remove_partial(struct kmem_cache *s,
1218 struct page *page)
1219 {
1220 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1221
1222 spin_lock(&n->list_lock);
1223 list_del(&page->lru);
1224 n->nr_partial--;
1225 spin_unlock(&n->list_lock);
1226 }
1227
1228 /*
1229 * Lock slab and remove from the partial list.
1230 *
1231 * Must hold list_lock.
1232 */
1233 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1234 {
1235 if (slab_trylock(page)) {
1236 list_del(&page->lru);
1237 n->nr_partial--;
1238 SetSlabFrozen(page);
1239 return 1;
1240 }
1241 return 0;
1242 }
1243
1244 /*
1245 * Try to allocate a partial slab from a specific node.
1246 */
1247 static struct page *get_partial_node(struct kmem_cache_node *n)
1248 {
1249 struct page *page;
1250
1251 /*
1252 * Racy check. If we mistakenly see no partial slabs then we
1253 * just allocate an empty slab. If we mistakenly try to get a
1254 * partial slab and there is none available then get_partials()
1255 * will return NULL.
1256 */
1257 if (!n || !n->nr_partial)
1258 return NULL;
1259
1260 spin_lock(&n->list_lock);
1261 list_for_each_entry(page, &n->partial, lru)
1262 if (lock_and_freeze_slab(n, page))
1263 goto out;
1264 page = NULL;
1265 out:
1266 spin_unlock(&n->list_lock);
1267 return page;
1268 }
1269
1270 /*
1271 * Get a page from somewhere. Search in increasing NUMA distances.
1272 */
1273 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1274 {
1275 #ifdef CONFIG_NUMA
1276 struct zonelist *zonelist;
1277 struct zone **z;
1278 struct page *page;
1279
1280 /*
1281 * The defrag ratio allows a configuration of the tradeoffs between
1282 * inter node defragmentation and node local allocations. A lower
1283 * defrag_ratio increases the tendency to do local allocations
1284 * instead of attempting to obtain partial slabs from other nodes.
1285 *
1286 * If the defrag_ratio is set to 0 then kmalloc() always
1287 * returns node local objects. If the ratio is higher then kmalloc()
1288 * may return off node objects because partial slabs are obtained
1289 * from other nodes and filled up.
1290 *
1291 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1292 * defrag_ratio = 1000) then every (well almost) allocation will
1293 * first attempt to defrag slab caches on other nodes. This means
1294 * scanning over all nodes to look for partial slabs which may be
1295 * expensive if we do it every time we are trying to find a slab
1296 * with available objects.
1297 */
1298 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1299 return NULL;
1300
1301 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1302 ->node_zonelists[gfp_zone(flags)];
1303 for (z = zonelist->zones; *z; z++) {
1304 struct kmem_cache_node *n;
1305
1306 n = get_node(s, zone_to_nid(*z));
1307
1308 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1309 n->nr_partial > MIN_PARTIAL) {
1310 page = get_partial_node(n);
1311 if (page)
1312 return page;
1313 }
1314 }
1315 #endif
1316 return NULL;
1317 }
1318
1319 /*
1320 * Get a partial page, lock it and return it.
1321 */
1322 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1323 {
1324 struct page *page;
1325 int searchnode = (node == -1) ? numa_node_id() : node;
1326
1327 page = get_partial_node(get_node(s, searchnode));
1328 if (page || (flags & __GFP_THISNODE))
1329 return page;
1330
1331 return get_any_partial(s, flags);
1332 }
1333
1334 /*
1335 * Move a page back to the lists.
1336 *
1337 * Must be called with the slab lock held.
1338 *
1339 * On exit the slab lock will have been dropped.
1340 */
1341 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1342 {
1343 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1344
1345 ClearSlabFrozen(page);
1346 if (page->inuse) {
1347
1348 if (page->freelist)
1349 add_partial(n, page);
1350 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1351 add_full(n, page);
1352 slab_unlock(page);
1353
1354 } else {
1355 if (n->nr_partial < MIN_PARTIAL) {
1356 /*
1357 * Adding an empty slab to the partial slabs in order
1358 * to avoid page allocator overhead. This slab needs
1359 * to come after the other slabs with objects in
1360 * order to fill them up. That way the size of the
1361 * partial list stays small. kmem_cache_shrink can
1362 * reclaim empty slabs from the partial list.
1363 */
1364 add_partial_tail(n, page);
1365 slab_unlock(page);
1366 } else {
1367 slab_unlock(page);
1368 discard_slab(s, page);
1369 }
1370 }
1371 }
1372
1373 /*
1374 * Remove the cpu slab
1375 */
1376 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1377 {
1378 /*
1379 * Merge cpu freelist into freelist. Typically we get here
1380 * because both freelists are empty. So this is unlikely
1381 * to occur.
1382 */
1383 while (unlikely(page->lockless_freelist)) {
1384 void **object;
1385
1386 /* Retrieve object from cpu_freelist */
1387 object = page->lockless_freelist;
1388 page->lockless_freelist = page->lockless_freelist[page->offset];
1389
1390 /* And put onto the regular freelist */
1391 object[page->offset] = page->freelist;
1392 page->freelist = object;
1393 page->inuse--;
1394 }
1395 s->cpu_slab[cpu] = NULL;
1396 unfreeze_slab(s, page);
1397 }
1398
1399 static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1400 {
1401 slab_lock(page);
1402 deactivate_slab(s, page, cpu);
1403 }
1404
1405 /*
1406 * Flush cpu slab.
1407 * Called from IPI handler with interrupts disabled.
1408 */
1409 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1410 {
1411 struct page *page = s->cpu_slab[cpu];
1412
1413 if (likely(page))
1414 flush_slab(s, page, cpu);
1415 }
1416
1417 static void flush_cpu_slab(void *d)
1418 {
1419 struct kmem_cache *s = d;
1420 int cpu = smp_processor_id();
1421
1422 __flush_cpu_slab(s, cpu);
1423 }
1424
1425 static void flush_all(struct kmem_cache *s)
1426 {
1427 #ifdef CONFIG_SMP
1428 on_each_cpu(flush_cpu_slab, s, 1, 1);
1429 #else
1430 unsigned long flags;
1431
1432 local_irq_save(flags);
1433 flush_cpu_slab(s);
1434 local_irq_restore(flags);
1435 #endif
1436 }
1437
1438 /*
1439 * Slow path. The lockless freelist is empty or we need to perform
1440 * debugging duties.
1441 *
1442 * Interrupts are disabled.
1443 *
1444 * Processing is still very fast if new objects have been freed to the
1445 * regular freelist. In that case we simply take over the regular freelist
1446 * as the lockless freelist and zap the regular freelist.
1447 *
1448 * If that is not working then we fall back to the partial lists. We take the
1449 * first element of the freelist as the object to allocate now and move the
1450 * rest of the freelist to the lockless freelist.
1451 *
1452 * And if we were unable to get a new slab from the partial slab lists then
1453 * we need to allocate a new slab. This is slowest path since we may sleep.
1454 */
1455 static void *__slab_alloc(struct kmem_cache *s,
1456 gfp_t gfpflags, int node, void *addr, struct page *page)
1457 {
1458 void **object;
1459 int cpu = smp_processor_id();
1460
1461 if (!page)
1462 goto new_slab;
1463
1464 slab_lock(page);
1465 if (unlikely(node != -1 && page_to_nid(page) != node))
1466 goto another_slab;
1467 load_freelist:
1468 object = page->freelist;
1469 if (unlikely(!object))
1470 goto another_slab;
1471 if (unlikely(SlabDebug(page)))
1472 goto debug;
1473
1474 object = page->freelist;
1475 page->lockless_freelist = object[page->offset];
1476 page->inuse = s->objects;
1477 page->freelist = NULL;
1478 slab_unlock(page);
1479 return object;
1480
1481 another_slab:
1482 deactivate_slab(s, page, cpu);
1483
1484 new_slab:
1485 page = get_partial(s, gfpflags, node);
1486 if (page) {
1487 s->cpu_slab[cpu] = page;
1488 goto load_freelist;
1489 }
1490
1491 page = new_slab(s, gfpflags, node);
1492 if (page) {
1493 cpu = smp_processor_id();
1494 if (s->cpu_slab[cpu]) {
1495 /*
1496 * Someone else populated the cpu_slab while we
1497 * enabled interrupts, or we have gotten scheduled
1498 * on another cpu. The page may not be on the
1499 * requested node even if __GFP_THISNODE was
1500 * specified. So we need to recheck.
1501 */
1502 if (node == -1 ||
1503 page_to_nid(s->cpu_slab[cpu]) == node) {
1504 /*
1505 * Current cpuslab is acceptable and we
1506 * want the current one since its cache hot
1507 */
1508 discard_slab(s, page);
1509 page = s->cpu_slab[cpu];
1510 slab_lock(page);
1511 goto load_freelist;
1512 }
1513 /* New slab does not fit our expectations */
1514 flush_slab(s, s->cpu_slab[cpu], cpu);
1515 }
1516 slab_lock(page);
1517 SetSlabFrozen(page);
1518 s->cpu_slab[cpu] = page;
1519 goto load_freelist;
1520 }
1521 return NULL;
1522 debug:
1523 object = page->freelist;
1524 if (!alloc_debug_processing(s, page, object, addr))
1525 goto another_slab;
1526
1527 page->inuse++;
1528 page->freelist = object[page->offset];
1529 slab_unlock(page);
1530 return object;
1531 }
1532
1533 /*
1534 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1535 * have the fastpath folded into their functions. So no function call
1536 * overhead for requests that can be satisfied on the fastpath.
1537 *
1538 * The fastpath works by first checking if the lockless freelist can be used.
1539 * If not then __slab_alloc is called for slow processing.
1540 *
1541 * Otherwise we can simply pick the next object from the lockless free list.
1542 */
1543 static void __always_inline *slab_alloc(struct kmem_cache *s,
1544 gfp_t gfpflags, int node, void *addr)
1545 {
1546 struct page *page;
1547 void **object;
1548 unsigned long flags;
1549
1550 local_irq_save(flags);
1551 page = s->cpu_slab[smp_processor_id()];
1552 if (unlikely(!page || !page->lockless_freelist ||
1553 (node != -1 && page_to_nid(page) != node)))
1554
1555 object = __slab_alloc(s, gfpflags, node, addr, page);
1556
1557 else {
1558 object = page->lockless_freelist;
1559 page->lockless_freelist = object[page->offset];
1560 }
1561 local_irq_restore(flags);
1562
1563 if (unlikely((gfpflags & __GFP_ZERO) && object))
1564 memset(object, 0, s->objsize);
1565
1566 return object;
1567 }
1568
1569 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1570 {
1571 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1572 }
1573 EXPORT_SYMBOL(kmem_cache_alloc);
1574
1575 #ifdef CONFIG_NUMA
1576 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1577 {
1578 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1579 }
1580 EXPORT_SYMBOL(kmem_cache_alloc_node);
1581 #endif
1582
1583 /*
1584 * Slow patch handling. This may still be called frequently since objects
1585 * have a longer lifetime than the cpu slabs in most processing loads.
1586 *
1587 * So we still attempt to reduce cache line usage. Just take the slab
1588 * lock and free the item. If there is no additional partial page
1589 * handling required then we can return immediately.
1590 */
1591 static void __slab_free(struct kmem_cache *s, struct page *page,
1592 void *x, void *addr)
1593 {
1594 void *prior;
1595 void **object = (void *)x;
1596
1597 slab_lock(page);
1598
1599 if (unlikely(SlabDebug(page)))
1600 goto debug;
1601 checks_ok:
1602 prior = object[page->offset] = page->freelist;
1603 page->freelist = object;
1604 page->inuse--;
1605
1606 if (unlikely(SlabFrozen(page)))
1607 goto out_unlock;
1608
1609 if (unlikely(!page->inuse))
1610 goto slab_empty;
1611
1612 /*
1613 * Objects left in the slab. If it
1614 * was not on the partial list before
1615 * then add it.
1616 */
1617 if (unlikely(!prior))
1618 add_partial(get_node(s, page_to_nid(page)), page);
1619
1620 out_unlock:
1621 slab_unlock(page);
1622 return;
1623
1624 slab_empty:
1625 if (prior)
1626 /*
1627 * Slab still on the partial list.
1628 */
1629 remove_partial(s, page);
1630
1631 slab_unlock(page);
1632 discard_slab(s, page);
1633 return;
1634
1635 debug:
1636 if (!free_debug_processing(s, page, x, addr))
1637 goto out_unlock;
1638 goto checks_ok;
1639 }
1640
1641 /*
1642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643 * can perform fastpath freeing without additional function calls.
1644 *
1645 * The fastpath is only possible if we are freeing to the current cpu slab
1646 * of this processor. This typically the case if we have just allocated
1647 * the item before.
1648 *
1649 * If fastpath is not possible then fall back to __slab_free where we deal
1650 * with all sorts of special processing.
1651 */
1652 static void __always_inline slab_free(struct kmem_cache *s,
1653 struct page *page, void *x, void *addr)
1654 {
1655 void **object = (void *)x;
1656 unsigned long flags;
1657
1658 local_irq_save(flags);
1659 debug_check_no_locks_freed(object, s->objsize);
1660 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1661 !SlabDebug(page))) {
1662 object[page->offset] = page->lockless_freelist;
1663 page->lockless_freelist = object;
1664 } else
1665 __slab_free(s, page, x, addr);
1666
1667 local_irq_restore(flags);
1668 }
1669
1670 void kmem_cache_free(struct kmem_cache *s, void *x)
1671 {
1672 struct page *page;
1673
1674 page = virt_to_head_page(x);
1675
1676 slab_free(s, page, x, __builtin_return_address(0));
1677 }
1678 EXPORT_SYMBOL(kmem_cache_free);
1679
1680 /* Figure out on which slab object the object resides */
1681 static struct page *get_object_page(const void *x)
1682 {
1683 struct page *page = virt_to_head_page(x);
1684
1685 if (!PageSlab(page))
1686 return NULL;
1687
1688 return page;
1689 }
1690
1691 /*
1692 * Object placement in a slab is made very easy because we always start at
1693 * offset 0. If we tune the size of the object to the alignment then we can
1694 * get the required alignment by putting one properly sized object after
1695 * another.
1696 *
1697 * Notice that the allocation order determines the sizes of the per cpu
1698 * caches. Each processor has always one slab available for allocations.
1699 * Increasing the allocation order reduces the number of times that slabs
1700 * must be moved on and off the partial lists and is therefore a factor in
1701 * locking overhead.
1702 */
1703
1704 /*
1705 * Mininum / Maximum order of slab pages. This influences locking overhead
1706 * and slab fragmentation. A higher order reduces the number of partial slabs
1707 * and increases the number of allocations possible without having to
1708 * take the list_lock.
1709 */
1710 static int slub_min_order;
1711 static int slub_max_order = DEFAULT_MAX_ORDER;
1712 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1713
1714 /*
1715 * Merge control. If this is set then no merging of slab caches will occur.
1716 * (Could be removed. This was introduced to pacify the merge skeptics.)
1717 */
1718 static int slub_nomerge;
1719
1720 /*
1721 * Calculate the order of allocation given an slab object size.
1722 *
1723 * The order of allocation has significant impact on performance and other
1724 * system components. Generally order 0 allocations should be preferred since
1725 * order 0 does not cause fragmentation in the page allocator. Larger objects
1726 * be problematic to put into order 0 slabs because there may be too much
1727 * unused space left. We go to a higher order if more than 1/8th of the slab
1728 * would be wasted.
1729 *
1730 * In order to reach satisfactory performance we must ensure that a minimum
1731 * number of objects is in one slab. Otherwise we may generate too much
1732 * activity on the partial lists which requires taking the list_lock. This is
1733 * less a concern for large slabs though which are rarely used.
1734 *
1735 * slub_max_order specifies the order where we begin to stop considering the
1736 * number of objects in a slab as critical. If we reach slub_max_order then
1737 * we try to keep the page order as low as possible. So we accept more waste
1738 * of space in favor of a small page order.
1739 *
1740 * Higher order allocations also allow the placement of more objects in a
1741 * slab and thereby reduce object handling overhead. If the user has
1742 * requested a higher mininum order then we start with that one instead of
1743 * the smallest order which will fit the object.
1744 */
1745 static inline int slab_order(int size, int min_objects,
1746 int max_order, int fract_leftover)
1747 {
1748 int order;
1749 int rem;
1750 int min_order = slub_min_order;
1751
1752 /*
1753 * If we would create too many object per slab then reduce
1754 * the slab order even if it goes below slub_min_order.
1755 */
1756 while (min_order > 0 &&
1757 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1758 min_order--;
1759
1760 for (order = max(min_order,
1761 fls(min_objects * size - 1) - PAGE_SHIFT);
1762 order <= max_order; order++) {
1763
1764 unsigned long slab_size = PAGE_SIZE << order;
1765
1766 if (slab_size < min_objects * size)
1767 continue;
1768
1769 rem = slab_size % size;
1770
1771 if (rem <= slab_size / fract_leftover)
1772 break;
1773
1774 /* If the next size is too high then exit now */
1775 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1776 break;
1777 }
1778
1779 return order;
1780 }
1781
1782 static inline int calculate_order(int size)
1783 {
1784 int order;
1785 int min_objects;
1786 int fraction;
1787
1788 /*
1789 * Attempt to find best configuration for a slab. This
1790 * works by first attempting to generate a layout with
1791 * the best configuration and backing off gradually.
1792 *
1793 * First we reduce the acceptable waste in a slab. Then
1794 * we reduce the minimum objects required in a slab.
1795 */
1796 min_objects = slub_min_objects;
1797 while (min_objects > 1) {
1798 fraction = 8;
1799 while (fraction >= 4) {
1800 order = slab_order(size, min_objects,
1801 slub_max_order, fraction);
1802 if (order <= slub_max_order)
1803 return order;
1804 fraction /= 2;
1805 }
1806 min_objects /= 2;
1807 }
1808
1809 /*
1810 * We were unable to place multiple objects in a slab. Now
1811 * lets see if we can place a single object there.
1812 */
1813 order = slab_order(size, 1, slub_max_order, 1);
1814 if (order <= slub_max_order)
1815 return order;
1816
1817 /*
1818 * Doh this slab cannot be placed using slub_max_order.
1819 */
1820 order = slab_order(size, 1, MAX_ORDER, 1);
1821 if (order <= MAX_ORDER)
1822 return order;
1823 return -ENOSYS;
1824 }
1825
1826 /*
1827 * Figure out what the alignment of the objects will be.
1828 */
1829 static unsigned long calculate_alignment(unsigned long flags,
1830 unsigned long align, unsigned long size)
1831 {
1832 /*
1833 * If the user wants hardware cache aligned objects then
1834 * follow that suggestion if the object is sufficiently
1835 * large.
1836 *
1837 * The hardware cache alignment cannot override the
1838 * specified alignment though. If that is greater
1839 * then use it.
1840 */
1841 if ((flags & SLAB_HWCACHE_ALIGN) &&
1842 size > cache_line_size() / 2)
1843 return max_t(unsigned long, align, cache_line_size());
1844
1845 if (align < ARCH_SLAB_MINALIGN)
1846 return ARCH_SLAB_MINALIGN;
1847
1848 return ALIGN(align, sizeof(void *));
1849 }
1850
1851 static void init_kmem_cache_node(struct kmem_cache_node *n)
1852 {
1853 n->nr_partial = 0;
1854 atomic_long_set(&n->nr_slabs, 0);
1855 spin_lock_init(&n->list_lock);
1856 INIT_LIST_HEAD(&n->partial);
1857 #ifdef CONFIG_SLUB_DEBUG
1858 INIT_LIST_HEAD(&n->full);
1859 #endif
1860 }
1861
1862 #ifdef CONFIG_NUMA
1863 /*
1864 * No kmalloc_node yet so do it by hand. We know that this is the first
1865 * slab on the node for this slabcache. There are no concurrent accesses
1866 * possible.
1867 *
1868 * Note that this function only works on the kmalloc_node_cache
1869 * when allocating for the kmalloc_node_cache.
1870 */
1871 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1872 int node)
1873 {
1874 struct page *page;
1875 struct kmem_cache_node *n;
1876
1877 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1878
1879 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1880
1881 BUG_ON(!page);
1882 n = page->freelist;
1883 BUG_ON(!n);
1884 page->freelist = get_freepointer(kmalloc_caches, n);
1885 page->inuse++;
1886 kmalloc_caches->node[node] = n;
1887 #ifdef CONFIG_SLUB_DEBUG
1888 init_object(kmalloc_caches, n, 1);
1889 init_tracking(kmalloc_caches, n);
1890 #endif
1891 init_kmem_cache_node(n);
1892 atomic_long_inc(&n->nr_slabs);
1893 add_partial(n, page);
1894
1895 /*
1896 * new_slab() disables interupts. If we do not reenable interrupts here
1897 * then bootup would continue with interrupts disabled.
1898 */
1899 local_irq_enable();
1900 return n;
1901 }
1902
1903 static void free_kmem_cache_nodes(struct kmem_cache *s)
1904 {
1905 int node;
1906
1907 for_each_online_node(node) {
1908 struct kmem_cache_node *n = s->node[node];
1909 if (n && n != &s->local_node)
1910 kmem_cache_free(kmalloc_caches, n);
1911 s->node[node] = NULL;
1912 }
1913 }
1914
1915 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1916 {
1917 int node;
1918 int local_node;
1919
1920 if (slab_state >= UP)
1921 local_node = page_to_nid(virt_to_page(s));
1922 else
1923 local_node = 0;
1924
1925 for_each_online_node(node) {
1926 struct kmem_cache_node *n;
1927
1928 if (local_node == node)
1929 n = &s->local_node;
1930 else {
1931 if (slab_state == DOWN) {
1932 n = early_kmem_cache_node_alloc(gfpflags,
1933 node);
1934 continue;
1935 }
1936 n = kmem_cache_alloc_node(kmalloc_caches,
1937 gfpflags, node);
1938
1939 if (!n) {
1940 free_kmem_cache_nodes(s);
1941 return 0;
1942 }
1943
1944 }
1945 s->node[node] = n;
1946 init_kmem_cache_node(n);
1947 }
1948 return 1;
1949 }
1950 #else
1951 static void free_kmem_cache_nodes(struct kmem_cache *s)
1952 {
1953 }
1954
1955 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1956 {
1957 init_kmem_cache_node(&s->local_node);
1958 return 1;
1959 }
1960 #endif
1961
1962 /*
1963 * calculate_sizes() determines the order and the distribution of data within
1964 * a slab object.
1965 */
1966 static int calculate_sizes(struct kmem_cache *s)
1967 {
1968 unsigned long flags = s->flags;
1969 unsigned long size = s->objsize;
1970 unsigned long align = s->align;
1971
1972 /*
1973 * Determine if we can poison the object itself. If the user of
1974 * the slab may touch the object after free or before allocation
1975 * then we should never poison the object itself.
1976 */
1977 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1978 !s->ctor)
1979 s->flags |= __OBJECT_POISON;
1980 else
1981 s->flags &= ~__OBJECT_POISON;
1982
1983 /*
1984 * Round up object size to the next word boundary. We can only
1985 * place the free pointer at word boundaries and this determines
1986 * the possible location of the free pointer.
1987 */
1988 size = ALIGN(size, sizeof(void *));
1989
1990 #ifdef CONFIG_SLUB_DEBUG
1991 /*
1992 * If we are Redzoning then check if there is some space between the
1993 * end of the object and the free pointer. If not then add an
1994 * additional word to have some bytes to store Redzone information.
1995 */
1996 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1997 size += sizeof(void *);
1998 #endif
1999
2000 /*
2001 * With that we have determined the number of bytes in actual use
2002 * by the object. This is the potential offset to the free pointer.
2003 */
2004 s->inuse = size;
2005
2006 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2007 s->ctor)) {
2008 /*
2009 * Relocate free pointer after the object if it is not
2010 * permitted to overwrite the first word of the object on
2011 * kmem_cache_free.
2012 *
2013 * This is the case if we do RCU, have a constructor or
2014 * destructor or are poisoning the objects.
2015 */
2016 s->offset = size;
2017 size += sizeof(void *);
2018 }
2019
2020 #ifdef CONFIG_SLUB_DEBUG
2021 if (flags & SLAB_STORE_USER)
2022 /*
2023 * Need to store information about allocs and frees after
2024 * the object.
2025 */
2026 size += 2 * sizeof(struct track);
2027
2028 if (flags & SLAB_RED_ZONE)
2029 /*
2030 * Add some empty padding so that we can catch
2031 * overwrites from earlier objects rather than let
2032 * tracking information or the free pointer be
2033 * corrupted if an user writes before the start
2034 * of the object.
2035 */
2036 size += sizeof(void *);
2037 #endif
2038
2039 /*
2040 * Determine the alignment based on various parameters that the
2041 * user specified and the dynamic determination of cache line size
2042 * on bootup.
2043 */
2044 align = calculate_alignment(flags, align, s->objsize);
2045
2046 /*
2047 * SLUB stores one object immediately after another beginning from
2048 * offset 0. In order to align the objects we have to simply size
2049 * each object to conform to the alignment.
2050 */
2051 size = ALIGN(size, align);
2052 s->size = size;
2053
2054 s->order = calculate_order(size);
2055 if (s->order < 0)
2056 return 0;
2057
2058 /*
2059 * Determine the number of objects per slab
2060 */
2061 s->objects = (PAGE_SIZE << s->order) / size;
2062
2063 /*
2064 * Verify that the number of objects is within permitted limits.
2065 * The page->inuse field is only 16 bit wide! So we cannot have
2066 * more than 64k objects per slab.
2067 */
2068 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2069 return 0;
2070 return 1;
2071
2072 }
2073
2074 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2075 const char *name, size_t size,
2076 size_t align, unsigned long flags,
2077 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2078 {
2079 memset(s, 0, kmem_size);
2080 s->name = name;
2081 s->ctor = ctor;
2082 s->objsize = size;
2083 s->flags = flags;
2084 s->align = align;
2085 kmem_cache_open_debug_check(s);
2086
2087 if (!calculate_sizes(s))
2088 goto error;
2089
2090 s->refcount = 1;
2091 #ifdef CONFIG_NUMA
2092 s->defrag_ratio = 100;
2093 #endif
2094
2095 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2096 return 1;
2097 error:
2098 if (flags & SLAB_PANIC)
2099 panic("Cannot create slab %s size=%lu realsize=%u "
2100 "order=%u offset=%u flags=%lx\n",
2101 s->name, (unsigned long)size, s->size, s->order,
2102 s->offset, flags);
2103 return 0;
2104 }
2105
2106 /*
2107 * Check if a given pointer is valid
2108 */
2109 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2110 {
2111 struct page * page;
2112
2113 page = get_object_page(object);
2114
2115 if (!page || s != page->slab)
2116 /* No slab or wrong slab */
2117 return 0;
2118
2119 if (!check_valid_pointer(s, page, object))
2120 return 0;
2121
2122 /*
2123 * We could also check if the object is on the slabs freelist.
2124 * But this would be too expensive and it seems that the main
2125 * purpose of kmem_ptr_valid is to check if the object belongs
2126 * to a certain slab.
2127 */
2128 return 1;
2129 }
2130 EXPORT_SYMBOL(kmem_ptr_validate);
2131
2132 /*
2133 * Determine the size of a slab object
2134 */
2135 unsigned int kmem_cache_size(struct kmem_cache *s)
2136 {
2137 return s->objsize;
2138 }
2139 EXPORT_SYMBOL(kmem_cache_size);
2140
2141 const char *kmem_cache_name(struct kmem_cache *s)
2142 {
2143 return s->name;
2144 }
2145 EXPORT_SYMBOL(kmem_cache_name);
2146
2147 /*
2148 * Attempt to free all slabs on a node. Return the number of slabs we
2149 * were unable to free.
2150 */
2151 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2152 struct list_head *list)
2153 {
2154 int slabs_inuse = 0;
2155 unsigned long flags;
2156 struct page *page, *h;
2157
2158 spin_lock_irqsave(&n->list_lock, flags);
2159 list_for_each_entry_safe(page, h, list, lru)
2160 if (!page->inuse) {
2161 list_del(&page->lru);
2162 discard_slab(s, page);
2163 } else
2164 slabs_inuse++;
2165 spin_unlock_irqrestore(&n->list_lock, flags);
2166 return slabs_inuse;
2167 }
2168
2169 /*
2170 * Release all resources used by a slab cache.
2171 */
2172 static inline int kmem_cache_close(struct kmem_cache *s)
2173 {
2174 int node;
2175
2176 flush_all(s);
2177
2178 /* Attempt to free all objects */
2179 for_each_online_node(node) {
2180 struct kmem_cache_node *n = get_node(s, node);
2181
2182 n->nr_partial -= free_list(s, n, &n->partial);
2183 if (atomic_long_read(&n->nr_slabs))
2184 return 1;
2185 }
2186 free_kmem_cache_nodes(s);
2187 return 0;
2188 }
2189
2190 /*
2191 * Close a cache and release the kmem_cache structure
2192 * (must be used for caches created using kmem_cache_create)
2193 */
2194 void kmem_cache_destroy(struct kmem_cache *s)
2195 {
2196 down_write(&slub_lock);
2197 s->refcount--;
2198 if (!s->refcount) {
2199 list_del(&s->list);
2200 up_write(&slub_lock);
2201 if (kmem_cache_close(s))
2202 WARN_ON(1);
2203 sysfs_slab_remove(s);
2204 kfree(s);
2205 } else
2206 up_write(&slub_lock);
2207 }
2208 EXPORT_SYMBOL(kmem_cache_destroy);
2209
2210 /********************************************************************
2211 * Kmalloc subsystem
2212 *******************************************************************/
2213
2214 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2215 EXPORT_SYMBOL(kmalloc_caches);
2216
2217 #ifdef CONFIG_ZONE_DMA
2218 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2219 #endif
2220
2221 static int __init setup_slub_min_order(char *str)
2222 {
2223 get_option (&str, &slub_min_order);
2224
2225 return 1;
2226 }
2227
2228 __setup("slub_min_order=", setup_slub_min_order);
2229
2230 static int __init setup_slub_max_order(char *str)
2231 {
2232 get_option (&str, &slub_max_order);
2233
2234 return 1;
2235 }
2236
2237 __setup("slub_max_order=", setup_slub_max_order);
2238
2239 static int __init setup_slub_min_objects(char *str)
2240 {
2241 get_option (&str, &slub_min_objects);
2242
2243 return 1;
2244 }
2245
2246 __setup("slub_min_objects=", setup_slub_min_objects);
2247
2248 static int __init setup_slub_nomerge(char *str)
2249 {
2250 slub_nomerge = 1;
2251 return 1;
2252 }
2253
2254 __setup("slub_nomerge", setup_slub_nomerge);
2255
2256 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2257 const char *name, int size, gfp_t gfp_flags)
2258 {
2259 unsigned int flags = 0;
2260
2261 if (gfp_flags & SLUB_DMA)
2262 flags = SLAB_CACHE_DMA;
2263
2264 down_write(&slub_lock);
2265 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2266 flags, NULL))
2267 goto panic;
2268
2269 list_add(&s->list, &slab_caches);
2270 up_write(&slub_lock);
2271 if (sysfs_slab_add(s))
2272 goto panic;
2273 return s;
2274
2275 panic:
2276 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2277 }
2278
2279 #ifdef CONFIG_ZONE_DMA
2280 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2281 {
2282 struct kmem_cache *s;
2283 struct kmem_cache *x;
2284 char *text;
2285 size_t realsize;
2286
2287 s = kmalloc_caches_dma[index];
2288 if (s)
2289 return s;
2290
2291 /* Dynamically create dma cache */
2292 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2293 if (!x)
2294 panic("Unable to allocate memory for dma cache\n");
2295
2296 realsize = kmalloc_caches[index].objsize;
2297 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2298 (unsigned int)realsize);
2299 s = create_kmalloc_cache(x, text, realsize, flags);
2300 down_write(&slub_lock);
2301 if (!kmalloc_caches_dma[index]) {
2302 kmalloc_caches_dma[index] = s;
2303 up_write(&slub_lock);
2304 return s;
2305 }
2306 up_write(&slub_lock);
2307 kmem_cache_destroy(s);
2308 return kmalloc_caches_dma[index];
2309 }
2310 #endif
2311
2312 /*
2313 * Conversion table for small slabs sizes / 8 to the index in the
2314 * kmalloc array. This is necessary for slabs < 192 since we have non power
2315 * of two cache sizes there. The size of larger slabs can be determined using
2316 * fls.
2317 */
2318 static s8 size_index[24] = {
2319 3, /* 8 */
2320 4, /* 16 */
2321 5, /* 24 */
2322 5, /* 32 */
2323 6, /* 40 */
2324 6, /* 48 */
2325 6, /* 56 */
2326 6, /* 64 */
2327 1, /* 72 */
2328 1, /* 80 */
2329 1, /* 88 */
2330 1, /* 96 */
2331 7, /* 104 */
2332 7, /* 112 */
2333 7, /* 120 */
2334 7, /* 128 */
2335 2, /* 136 */
2336 2, /* 144 */
2337 2, /* 152 */
2338 2, /* 160 */
2339 2, /* 168 */
2340 2, /* 176 */
2341 2, /* 184 */
2342 2 /* 192 */
2343 };
2344
2345 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2346 {
2347 int index;
2348
2349 if (size <= 192) {
2350 if (!size)
2351 return ZERO_SIZE_PTR;
2352
2353 index = size_index[(size - 1) / 8];
2354 } else {
2355 if (size > KMALLOC_MAX_SIZE)
2356 return NULL;
2357
2358 index = fls(size - 1);
2359 }
2360
2361 #ifdef CONFIG_ZONE_DMA
2362 if (unlikely((flags & SLUB_DMA)))
2363 return dma_kmalloc_cache(index, flags);
2364
2365 #endif
2366 return &kmalloc_caches[index];
2367 }
2368
2369 void *__kmalloc(size_t size, gfp_t flags)
2370 {
2371 struct kmem_cache *s = get_slab(size, flags);
2372
2373 if (ZERO_OR_NULL_PTR(s))
2374 return s;
2375
2376 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2377 }
2378 EXPORT_SYMBOL(__kmalloc);
2379
2380 #ifdef CONFIG_NUMA
2381 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2382 {
2383 struct kmem_cache *s = get_slab(size, flags);
2384
2385 if (ZERO_OR_NULL_PTR(s))
2386 return s;
2387
2388 return slab_alloc(s, flags, node, __builtin_return_address(0));
2389 }
2390 EXPORT_SYMBOL(__kmalloc_node);
2391 #endif
2392
2393 size_t ksize(const void *object)
2394 {
2395 struct page *page;
2396 struct kmem_cache *s;
2397
2398 if (ZERO_OR_NULL_PTR(object))
2399 return 0;
2400
2401 page = get_object_page(object);
2402 BUG_ON(!page);
2403 s = page->slab;
2404 BUG_ON(!s);
2405
2406 /*
2407 * Debugging requires use of the padding between object
2408 * and whatever may come after it.
2409 */
2410 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2411 return s->objsize;
2412
2413 /*
2414 * If we have the need to store the freelist pointer
2415 * back there or track user information then we can
2416 * only use the space before that information.
2417 */
2418 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2419 return s->inuse;
2420
2421 /*
2422 * Else we can use all the padding etc for the allocation
2423 */
2424 return s->size;
2425 }
2426 EXPORT_SYMBOL(ksize);
2427
2428 void kfree(const void *x)
2429 {
2430 struct kmem_cache *s;
2431 struct page *page;
2432
2433 /*
2434 * This has to be an unsigned comparison. According to Linus
2435 * some gcc version treat a pointer as a signed entity. Then
2436 * this comparison would be true for all "negative" pointers
2437 * (which would cover the whole upper half of the address space).
2438 */
2439 if (ZERO_OR_NULL_PTR(x))
2440 return;
2441
2442 page = virt_to_head_page(x);
2443 s = page->slab;
2444
2445 slab_free(s, page, (void *)x, __builtin_return_address(0));
2446 }
2447 EXPORT_SYMBOL(kfree);
2448
2449 /*
2450 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2451 * the remaining slabs by the number of items in use. The slabs with the
2452 * most items in use come first. New allocations will then fill those up
2453 * and thus they can be removed from the partial lists.
2454 *
2455 * The slabs with the least items are placed last. This results in them
2456 * being allocated from last increasing the chance that the last objects
2457 * are freed in them.
2458 */
2459 int kmem_cache_shrink(struct kmem_cache *s)
2460 {
2461 int node;
2462 int i;
2463 struct kmem_cache_node *n;
2464 struct page *page;
2465 struct page *t;
2466 struct list_head *slabs_by_inuse =
2467 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2468 unsigned long flags;
2469
2470 if (!slabs_by_inuse)
2471 return -ENOMEM;
2472
2473 flush_all(s);
2474 for_each_online_node(node) {
2475 n = get_node(s, node);
2476
2477 if (!n->nr_partial)
2478 continue;
2479
2480 for (i = 0; i < s->objects; i++)
2481 INIT_LIST_HEAD(slabs_by_inuse + i);
2482
2483 spin_lock_irqsave(&n->list_lock, flags);
2484
2485 /*
2486 * Build lists indexed by the items in use in each slab.
2487 *
2488 * Note that concurrent frees may occur while we hold the
2489 * list_lock. page->inuse here is the upper limit.
2490 */
2491 list_for_each_entry_safe(page, t, &n->partial, lru) {
2492 if (!page->inuse && slab_trylock(page)) {
2493 /*
2494 * Must hold slab lock here because slab_free
2495 * may have freed the last object and be
2496 * waiting to release the slab.
2497 */
2498 list_del(&page->lru);
2499 n->nr_partial--;
2500 slab_unlock(page);
2501 discard_slab(s, page);
2502 } else {
2503 if (n->nr_partial > MAX_PARTIAL)
2504 list_move(&page->lru,
2505 slabs_by_inuse + page->inuse);
2506 }
2507 }
2508
2509 if (n->nr_partial <= MAX_PARTIAL)
2510 goto out;
2511
2512 /*
2513 * Rebuild the partial list with the slabs filled up most
2514 * first and the least used slabs at the end.
2515 */
2516 for (i = s->objects - 1; i >= 0; i--)
2517 list_splice(slabs_by_inuse + i, n->partial.prev);
2518
2519 out:
2520 spin_unlock_irqrestore(&n->list_lock, flags);
2521 }
2522
2523 kfree(slabs_by_inuse);
2524 return 0;
2525 }
2526 EXPORT_SYMBOL(kmem_cache_shrink);
2527
2528 /********************************************************************
2529 * Basic setup of slabs
2530 *******************************************************************/
2531
2532 void __init kmem_cache_init(void)
2533 {
2534 int i;
2535 int caches = 0;
2536
2537 #ifdef CONFIG_NUMA
2538 /*
2539 * Must first have the slab cache available for the allocations of the
2540 * struct kmem_cache_node's. There is special bootstrap code in
2541 * kmem_cache_open for slab_state == DOWN.
2542 */
2543 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2544 sizeof(struct kmem_cache_node), GFP_KERNEL);
2545 kmalloc_caches[0].refcount = -1;
2546 caches++;
2547 #endif
2548
2549 /* Able to allocate the per node structures */
2550 slab_state = PARTIAL;
2551
2552 /* Caches that are not of the two-to-the-power-of size */
2553 if (KMALLOC_MIN_SIZE <= 64) {
2554 create_kmalloc_cache(&kmalloc_caches[1],
2555 "kmalloc-96", 96, GFP_KERNEL);
2556 caches++;
2557 }
2558 if (KMALLOC_MIN_SIZE <= 128) {
2559 create_kmalloc_cache(&kmalloc_caches[2],
2560 "kmalloc-192", 192, GFP_KERNEL);
2561 caches++;
2562 }
2563
2564 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
2565 create_kmalloc_cache(&kmalloc_caches[i],
2566 "kmalloc", 1 << i, GFP_KERNEL);
2567 caches++;
2568 }
2569
2570
2571 /*
2572 * Patch up the size_index table if we have strange large alignment
2573 * requirements for the kmalloc array. This is only the case for
2574 * mips it seems. The standard arches will not generate any code here.
2575 *
2576 * Largest permitted alignment is 256 bytes due to the way we
2577 * handle the index determination for the smaller caches.
2578 *
2579 * Make sure that nothing crazy happens if someone starts tinkering
2580 * around with ARCH_KMALLOC_MINALIGN
2581 */
2582 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2583 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2584
2585 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2586 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2587
2588 slab_state = UP;
2589
2590 /* Provide the correct kmalloc names now that the caches are up */
2591 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2592 kmalloc_caches[i]. name =
2593 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2594
2595 #ifdef CONFIG_SMP
2596 register_cpu_notifier(&slab_notifier);
2597 #endif
2598
2599 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2600 nr_cpu_ids * sizeof(struct page *);
2601
2602 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2603 " CPUs=%d, Nodes=%d\n",
2604 caches, cache_line_size(),
2605 slub_min_order, slub_max_order, slub_min_objects,
2606 nr_cpu_ids, nr_node_ids);
2607 }
2608
2609 /*
2610 * Find a mergeable slab cache
2611 */
2612 static int slab_unmergeable(struct kmem_cache *s)
2613 {
2614 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2615 return 1;
2616
2617 if (s->ctor)
2618 return 1;
2619
2620 /*
2621 * We may have set a slab to be unmergeable during bootstrap.
2622 */
2623 if (s->refcount < 0)
2624 return 1;
2625
2626 return 0;
2627 }
2628
2629 static struct kmem_cache *find_mergeable(size_t size,
2630 size_t align, unsigned long flags,
2631 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2632 {
2633 struct kmem_cache *s;
2634
2635 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2636 return NULL;
2637
2638 if (ctor)
2639 return NULL;
2640
2641 size = ALIGN(size, sizeof(void *));
2642 align = calculate_alignment(flags, align, size);
2643 size = ALIGN(size, align);
2644
2645 list_for_each_entry(s, &slab_caches, list) {
2646 if (slab_unmergeable(s))
2647 continue;
2648
2649 if (size > s->size)
2650 continue;
2651
2652 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2653 (s->flags & SLUB_MERGE_SAME))
2654 continue;
2655 /*
2656 * Check if alignment is compatible.
2657 * Courtesy of Adrian Drzewiecki
2658 */
2659 if ((s->size & ~(align -1)) != s->size)
2660 continue;
2661
2662 if (s->size - size >= sizeof(void *))
2663 continue;
2664
2665 return s;
2666 }
2667 return NULL;
2668 }
2669
2670 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2671 size_t align, unsigned long flags,
2672 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2673 {
2674 struct kmem_cache *s;
2675
2676 down_write(&slub_lock);
2677 s = find_mergeable(size, align, flags, ctor);
2678 if (s) {
2679 s->refcount++;
2680 /*
2681 * Adjust the object sizes so that we clear
2682 * the complete object on kzalloc.
2683 */
2684 s->objsize = max(s->objsize, (int)size);
2685 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2686 up_write(&slub_lock);
2687 if (sysfs_slab_alias(s, name))
2688 goto err;
2689 return s;
2690 }
2691 s = kmalloc(kmem_size, GFP_KERNEL);
2692 if (s) {
2693 if (kmem_cache_open(s, GFP_KERNEL, name,
2694 size, align, flags, ctor)) {
2695 list_add(&s->list, &slab_caches);
2696 up_write(&slub_lock);
2697 if (sysfs_slab_add(s))
2698 goto err;
2699 return s;
2700 }
2701 kfree(s);
2702 }
2703 up_write(&slub_lock);
2704
2705 err:
2706 if (flags & SLAB_PANIC)
2707 panic("Cannot create slabcache %s\n", name);
2708 else
2709 s = NULL;
2710 return s;
2711 }
2712 EXPORT_SYMBOL(kmem_cache_create);
2713
2714 #ifdef CONFIG_SMP
2715 /*
2716 * Use the cpu notifier to insure that the cpu slabs are flushed when
2717 * necessary.
2718 */
2719 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2720 unsigned long action, void *hcpu)
2721 {
2722 long cpu = (long)hcpu;
2723 struct kmem_cache *s;
2724 unsigned long flags;
2725
2726 switch (action) {
2727 case CPU_UP_CANCELED:
2728 case CPU_UP_CANCELED_FROZEN:
2729 case CPU_DEAD:
2730 case CPU_DEAD_FROZEN:
2731 down_read(&slub_lock);
2732 list_for_each_entry(s, &slab_caches, list) {
2733 local_irq_save(flags);
2734 __flush_cpu_slab(s, cpu);
2735 local_irq_restore(flags);
2736 }
2737 up_read(&slub_lock);
2738 break;
2739 default:
2740 break;
2741 }
2742 return NOTIFY_OK;
2743 }
2744
2745 static struct notifier_block __cpuinitdata slab_notifier =
2746 { &slab_cpuup_callback, NULL, 0 };
2747
2748 #endif
2749
2750 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2751 {
2752 struct kmem_cache *s = get_slab(size, gfpflags);
2753
2754 if (ZERO_OR_NULL_PTR(s))
2755 return s;
2756
2757 return slab_alloc(s, gfpflags, -1, caller);
2758 }
2759
2760 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2761 int node, void *caller)
2762 {
2763 struct kmem_cache *s = get_slab(size, gfpflags);
2764
2765 if (ZERO_OR_NULL_PTR(s))
2766 return s;
2767
2768 return slab_alloc(s, gfpflags, node, caller);
2769 }
2770
2771 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2772 static int validate_slab(struct kmem_cache *s, struct page *page,
2773 unsigned long *map)
2774 {
2775 void *p;
2776 void *addr = page_address(page);
2777
2778 if (!check_slab(s, page) ||
2779 !on_freelist(s, page, NULL))
2780 return 0;
2781
2782 /* Now we know that a valid freelist exists */
2783 bitmap_zero(map, s->objects);
2784
2785 for_each_free_object(p, s, page->freelist) {
2786 set_bit(slab_index(p, s, addr), map);
2787 if (!check_object(s, page, p, 0))
2788 return 0;
2789 }
2790
2791 for_each_object(p, s, addr)
2792 if (!test_bit(slab_index(p, s, addr), map))
2793 if (!check_object(s, page, p, 1))
2794 return 0;
2795 return 1;
2796 }
2797
2798 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2799 unsigned long *map)
2800 {
2801 if (slab_trylock(page)) {
2802 validate_slab(s, page, map);
2803 slab_unlock(page);
2804 } else
2805 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2806 s->name, page);
2807
2808 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2809 if (!SlabDebug(page))
2810 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2811 "on slab 0x%p\n", s->name, page);
2812 } else {
2813 if (SlabDebug(page))
2814 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2815 "slab 0x%p\n", s->name, page);
2816 }
2817 }
2818
2819 static int validate_slab_node(struct kmem_cache *s,
2820 struct kmem_cache_node *n, unsigned long *map)
2821 {
2822 unsigned long count = 0;
2823 struct page *page;
2824 unsigned long flags;
2825
2826 spin_lock_irqsave(&n->list_lock, flags);
2827
2828 list_for_each_entry(page, &n->partial, lru) {
2829 validate_slab_slab(s, page, map);
2830 count++;
2831 }
2832 if (count != n->nr_partial)
2833 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2834 "counter=%ld\n", s->name, count, n->nr_partial);
2835
2836 if (!(s->flags & SLAB_STORE_USER))
2837 goto out;
2838
2839 list_for_each_entry(page, &n->full, lru) {
2840 validate_slab_slab(s, page, map);
2841 count++;
2842 }
2843 if (count != atomic_long_read(&n->nr_slabs))
2844 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2845 "counter=%ld\n", s->name, count,
2846 atomic_long_read(&n->nr_slabs));
2847
2848 out:
2849 spin_unlock_irqrestore(&n->list_lock, flags);
2850 return count;
2851 }
2852
2853 static long validate_slab_cache(struct kmem_cache *s)
2854 {
2855 int node;
2856 unsigned long count = 0;
2857 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2858 sizeof(unsigned long), GFP_KERNEL);
2859
2860 if (!map)
2861 return -ENOMEM;
2862
2863 flush_all(s);
2864 for_each_online_node(node) {
2865 struct kmem_cache_node *n = get_node(s, node);
2866
2867 count += validate_slab_node(s, n, map);
2868 }
2869 kfree(map);
2870 return count;
2871 }
2872
2873 #ifdef SLUB_RESILIENCY_TEST
2874 static void resiliency_test(void)
2875 {
2876 u8 *p;
2877
2878 printk(KERN_ERR "SLUB resiliency testing\n");
2879 printk(KERN_ERR "-----------------------\n");
2880 printk(KERN_ERR "A. Corruption after allocation\n");
2881
2882 p = kzalloc(16, GFP_KERNEL);
2883 p[16] = 0x12;
2884 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2885 " 0x12->0x%p\n\n", p + 16);
2886
2887 validate_slab_cache(kmalloc_caches + 4);
2888
2889 /* Hmmm... The next two are dangerous */
2890 p = kzalloc(32, GFP_KERNEL);
2891 p[32 + sizeof(void *)] = 0x34;
2892 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2893 " 0x34 -> -0x%p\n", p);
2894 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2895
2896 validate_slab_cache(kmalloc_caches + 5);
2897 p = kzalloc(64, GFP_KERNEL);
2898 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2899 *p = 0x56;
2900 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2901 p);
2902 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2903 validate_slab_cache(kmalloc_caches + 6);
2904
2905 printk(KERN_ERR "\nB. Corruption after free\n");
2906 p = kzalloc(128, GFP_KERNEL);
2907 kfree(p);
2908 *p = 0x78;
2909 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2910 validate_slab_cache(kmalloc_caches + 7);
2911
2912 p = kzalloc(256, GFP_KERNEL);
2913 kfree(p);
2914 p[50] = 0x9a;
2915 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2916 validate_slab_cache(kmalloc_caches + 8);
2917
2918 p = kzalloc(512, GFP_KERNEL);
2919 kfree(p);
2920 p[512] = 0xab;
2921 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2922 validate_slab_cache(kmalloc_caches + 9);
2923 }
2924 #else
2925 static void resiliency_test(void) {};
2926 #endif
2927
2928 /*
2929 * Generate lists of code addresses where slabcache objects are allocated
2930 * and freed.
2931 */
2932
2933 struct location {
2934 unsigned long count;
2935 void *addr;
2936 long long sum_time;
2937 long min_time;
2938 long max_time;
2939 long min_pid;
2940 long max_pid;
2941 cpumask_t cpus;
2942 nodemask_t nodes;
2943 };
2944
2945 struct loc_track {
2946 unsigned long max;
2947 unsigned long count;
2948 struct location *loc;
2949 };
2950
2951 static void free_loc_track(struct loc_track *t)
2952 {
2953 if (t->max)
2954 free_pages((unsigned long)t->loc,
2955 get_order(sizeof(struct location) * t->max));
2956 }
2957
2958 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
2959 {
2960 struct location *l;
2961 int order;
2962
2963 order = get_order(sizeof(struct location) * max);
2964
2965 l = (void *)__get_free_pages(flags, order);
2966 if (!l)
2967 return 0;
2968
2969 if (t->count) {
2970 memcpy(l, t->loc, sizeof(struct location) * t->count);
2971 free_loc_track(t);
2972 }
2973 t->max = max;
2974 t->loc = l;
2975 return 1;
2976 }
2977
2978 static int add_location(struct loc_track *t, struct kmem_cache *s,
2979 const struct track *track)
2980 {
2981 long start, end, pos;
2982 struct location *l;
2983 void *caddr;
2984 unsigned long age = jiffies - track->when;
2985
2986 start = -1;
2987 end = t->count;
2988
2989 for ( ; ; ) {
2990 pos = start + (end - start + 1) / 2;
2991
2992 /*
2993 * There is nothing at "end". If we end up there
2994 * we need to add something to before end.
2995 */
2996 if (pos == end)
2997 break;
2998
2999 caddr = t->loc[pos].addr;
3000 if (track->addr == caddr) {
3001
3002 l = &t->loc[pos];
3003 l->count++;
3004 if (track->when) {
3005 l->sum_time += age;
3006 if (age < l->min_time)
3007 l->min_time = age;
3008 if (age > l->max_time)
3009 l->max_time = age;
3010
3011 if (track->pid < l->min_pid)
3012 l->min_pid = track->pid;
3013 if (track->pid > l->max_pid)
3014 l->max_pid = track->pid;
3015
3016 cpu_set(track->cpu, l->cpus);
3017 }
3018 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3019 return 1;
3020 }
3021
3022 if (track->addr < caddr)
3023 end = pos;
3024 else
3025 start = pos;
3026 }
3027
3028 /*
3029 * Not found. Insert new tracking element.
3030 */
3031 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3032 return 0;
3033
3034 l = t->loc + pos;
3035 if (pos < t->count)
3036 memmove(l + 1, l,
3037 (t->count - pos) * sizeof(struct location));
3038 t->count++;
3039 l->count = 1;
3040 l->addr = track->addr;
3041 l->sum_time = age;
3042 l->min_time = age;
3043 l->max_time = age;
3044 l->min_pid = track->pid;
3045 l->max_pid = track->pid;
3046 cpus_clear(l->cpus);
3047 cpu_set(track->cpu, l->cpus);
3048 nodes_clear(l->nodes);
3049 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3050 return 1;
3051 }
3052
3053 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3054 struct page *page, enum track_item alloc)
3055 {
3056 void *addr = page_address(page);
3057 DECLARE_BITMAP(map, s->objects);
3058 void *p;
3059
3060 bitmap_zero(map, s->objects);
3061 for_each_free_object(p, s, page->freelist)
3062 set_bit(slab_index(p, s, addr), map);
3063
3064 for_each_object(p, s, addr)
3065 if (!test_bit(slab_index(p, s, addr), map))
3066 add_location(t, s, get_track(s, p, alloc));
3067 }
3068
3069 static int list_locations(struct kmem_cache *s, char *buf,
3070 enum track_item alloc)
3071 {
3072 int n = 0;
3073 unsigned long i;
3074 struct loc_track t = { 0, 0, NULL };
3075 int node;
3076
3077 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3078 GFP_KERNEL))
3079 return sprintf(buf, "Out of memory\n");
3080
3081 /* Push back cpu slabs */
3082 flush_all(s);
3083
3084 for_each_online_node(node) {
3085 struct kmem_cache_node *n = get_node(s, node);
3086 unsigned long flags;
3087 struct page *page;
3088
3089 if (!atomic_read(&n->nr_slabs))
3090 continue;
3091
3092 spin_lock_irqsave(&n->list_lock, flags);
3093 list_for_each_entry(page, &n->partial, lru)
3094 process_slab(&t, s, page, alloc);
3095 list_for_each_entry(page, &n->full, lru)
3096 process_slab(&t, s, page, alloc);
3097 spin_unlock_irqrestore(&n->list_lock, flags);
3098 }
3099
3100 for (i = 0; i < t.count; i++) {
3101 struct location *l = &t.loc[i];
3102
3103 if (n > PAGE_SIZE - 100)
3104 break;
3105 n += sprintf(buf + n, "%7ld ", l->count);
3106
3107 if (l->addr)
3108 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3109 else
3110 n += sprintf(buf + n, "<not-available>");
3111
3112 if (l->sum_time != l->min_time) {
3113 unsigned long remainder;
3114
3115 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3116 l->min_time,
3117 div_long_long_rem(l->sum_time, l->count, &remainder),
3118 l->max_time);
3119 } else
3120 n += sprintf(buf + n, " age=%ld",
3121 l->min_time);
3122
3123 if (l->min_pid != l->max_pid)
3124 n += sprintf(buf + n, " pid=%ld-%ld",
3125 l->min_pid, l->max_pid);
3126 else
3127 n += sprintf(buf + n, " pid=%ld",
3128 l->min_pid);
3129
3130 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3131 n < PAGE_SIZE - 60) {
3132 n += sprintf(buf + n, " cpus=");
3133 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3134 l->cpus);
3135 }
3136
3137 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3138 n < PAGE_SIZE - 60) {
3139 n += sprintf(buf + n, " nodes=");
3140 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3141 l->nodes);
3142 }
3143
3144 n += sprintf(buf + n, "\n");
3145 }
3146
3147 free_loc_track(&t);
3148 if (!t.count)
3149 n += sprintf(buf, "No data\n");
3150 return n;
3151 }
3152
3153 static unsigned long count_partial(struct kmem_cache_node *n)
3154 {
3155 unsigned long flags;
3156 unsigned long x = 0;
3157 struct page *page;
3158
3159 spin_lock_irqsave(&n->list_lock, flags);
3160 list_for_each_entry(page, &n->partial, lru)
3161 x += page->inuse;
3162 spin_unlock_irqrestore(&n->list_lock, flags);
3163 return x;
3164 }
3165
3166 enum slab_stat_type {
3167 SL_FULL,
3168 SL_PARTIAL,
3169 SL_CPU,
3170 SL_OBJECTS
3171 };
3172
3173 #define SO_FULL (1 << SL_FULL)
3174 #define SO_PARTIAL (1 << SL_PARTIAL)
3175 #define SO_CPU (1 << SL_CPU)
3176 #define SO_OBJECTS (1 << SL_OBJECTS)
3177
3178 static unsigned long slab_objects(struct kmem_cache *s,
3179 char *buf, unsigned long flags)
3180 {
3181 unsigned long total = 0;
3182 int cpu;
3183 int node;
3184 int x;
3185 unsigned long *nodes;
3186 unsigned long *per_cpu;
3187
3188 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3189 per_cpu = nodes + nr_node_ids;
3190
3191 for_each_possible_cpu(cpu) {
3192 struct page *page = s->cpu_slab[cpu];
3193 int node;
3194
3195 if (page) {
3196 node = page_to_nid(page);
3197 if (flags & SO_CPU) {
3198 int x = 0;
3199
3200 if (flags & SO_OBJECTS)
3201 x = page->inuse;
3202 else
3203 x = 1;
3204 total += x;
3205 nodes[node] += x;
3206 }
3207 per_cpu[node]++;
3208 }
3209 }
3210
3211 for_each_online_node(node) {
3212 struct kmem_cache_node *n = get_node(s, node);
3213
3214 if (flags & SO_PARTIAL) {
3215 if (flags & SO_OBJECTS)
3216 x = count_partial(n);
3217 else
3218 x = n->nr_partial;
3219 total += x;
3220 nodes[node] += x;
3221 }
3222
3223 if (flags & SO_FULL) {
3224 int full_slabs = atomic_read(&n->nr_slabs)
3225 - per_cpu[node]
3226 - n->nr_partial;
3227
3228 if (flags & SO_OBJECTS)
3229 x = full_slabs * s->objects;
3230 else
3231 x = full_slabs;
3232 total += x;
3233 nodes[node] += x;
3234 }
3235 }
3236
3237 x = sprintf(buf, "%lu", total);
3238 #ifdef CONFIG_NUMA
3239 for_each_online_node(node)
3240 if (nodes[node])
3241 x += sprintf(buf + x, " N%d=%lu",
3242 node, nodes[node]);
3243 #endif
3244 kfree(nodes);
3245 return x + sprintf(buf + x, "\n");
3246 }
3247
3248 static int any_slab_objects(struct kmem_cache *s)
3249 {
3250 int node;
3251 int cpu;
3252
3253 for_each_possible_cpu(cpu)
3254 if (s->cpu_slab[cpu])
3255 return 1;
3256
3257 for_each_node(node) {
3258 struct kmem_cache_node *n = get_node(s, node);
3259
3260 if (n->nr_partial || atomic_read(&n->nr_slabs))
3261 return 1;
3262 }
3263 return 0;
3264 }
3265
3266 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3267 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3268
3269 struct slab_attribute {
3270 struct attribute attr;
3271 ssize_t (*show)(struct kmem_cache *s, char *buf);
3272 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3273 };
3274
3275 #define SLAB_ATTR_RO(_name) \
3276 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3277
3278 #define SLAB_ATTR(_name) \
3279 static struct slab_attribute _name##_attr = \
3280 __ATTR(_name, 0644, _name##_show, _name##_store)
3281
3282 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3283 {
3284 return sprintf(buf, "%d\n", s->size);
3285 }
3286 SLAB_ATTR_RO(slab_size);
3287
3288 static ssize_t align_show(struct kmem_cache *s, char *buf)
3289 {
3290 return sprintf(buf, "%d\n", s->align);
3291 }
3292 SLAB_ATTR_RO(align);
3293
3294 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3295 {
3296 return sprintf(buf, "%d\n", s->objsize);
3297 }
3298 SLAB_ATTR_RO(object_size);
3299
3300 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3301 {
3302 return sprintf(buf, "%d\n", s->objects);
3303 }
3304 SLAB_ATTR_RO(objs_per_slab);
3305
3306 static ssize_t order_show(struct kmem_cache *s, char *buf)
3307 {
3308 return sprintf(buf, "%d\n", s->order);
3309 }
3310 SLAB_ATTR_RO(order);
3311
3312 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3313 {
3314 if (s->ctor) {
3315 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3316
3317 return n + sprintf(buf + n, "\n");
3318 }
3319 return 0;
3320 }
3321 SLAB_ATTR_RO(ctor);
3322
3323 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3324 {
3325 return sprintf(buf, "%d\n", s->refcount - 1);
3326 }
3327 SLAB_ATTR_RO(aliases);
3328
3329 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3330 {
3331 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3332 }
3333 SLAB_ATTR_RO(slabs);
3334
3335 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3336 {
3337 return slab_objects(s, buf, SO_PARTIAL);
3338 }
3339 SLAB_ATTR_RO(partial);
3340
3341 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3342 {
3343 return slab_objects(s, buf, SO_CPU);
3344 }
3345 SLAB_ATTR_RO(cpu_slabs);
3346
3347 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3348 {
3349 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3350 }
3351 SLAB_ATTR_RO(objects);
3352
3353 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3354 {
3355 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3356 }
3357
3358 static ssize_t sanity_checks_store(struct kmem_cache *s,
3359 const char *buf, size_t length)
3360 {
3361 s->flags &= ~SLAB_DEBUG_FREE;
3362 if (buf[0] == '1')
3363 s->flags |= SLAB_DEBUG_FREE;
3364 return length;
3365 }
3366 SLAB_ATTR(sanity_checks);
3367
3368 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3369 {
3370 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3371 }
3372
3373 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3374 size_t length)
3375 {
3376 s->flags &= ~SLAB_TRACE;
3377 if (buf[0] == '1')
3378 s->flags |= SLAB_TRACE;
3379 return length;
3380 }
3381 SLAB_ATTR(trace);
3382
3383 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3384 {
3385 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3386 }
3387
3388 static ssize_t reclaim_account_store(struct kmem_cache *s,
3389 const char *buf, size_t length)
3390 {
3391 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3392 if (buf[0] == '1')
3393 s->flags |= SLAB_RECLAIM_ACCOUNT;
3394 return length;
3395 }
3396 SLAB_ATTR(reclaim_account);
3397
3398 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3399 {
3400 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3401 }
3402 SLAB_ATTR_RO(hwcache_align);
3403
3404 #ifdef CONFIG_ZONE_DMA
3405 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3406 {
3407 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3408 }
3409 SLAB_ATTR_RO(cache_dma);
3410 #endif
3411
3412 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3413 {
3414 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3415 }
3416 SLAB_ATTR_RO(destroy_by_rcu);
3417
3418 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3419 {
3420 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3421 }
3422
3423 static ssize_t red_zone_store(struct kmem_cache *s,
3424 const char *buf, size_t length)
3425 {
3426 if (any_slab_objects(s))
3427 return -EBUSY;
3428
3429 s->flags &= ~SLAB_RED_ZONE;
3430 if (buf[0] == '1')
3431 s->flags |= SLAB_RED_ZONE;
3432 calculate_sizes(s);
3433 return length;
3434 }
3435 SLAB_ATTR(red_zone);
3436
3437 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3438 {
3439 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3440 }
3441
3442 static ssize_t poison_store(struct kmem_cache *s,
3443 const char *buf, size_t length)
3444 {
3445 if (any_slab_objects(s))
3446 return -EBUSY;
3447
3448 s->flags &= ~SLAB_POISON;
3449 if (buf[0] == '1')
3450 s->flags |= SLAB_POISON;
3451 calculate_sizes(s);
3452 return length;
3453 }
3454 SLAB_ATTR(poison);
3455
3456 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3457 {
3458 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3459 }
3460
3461 static ssize_t store_user_store(struct kmem_cache *s,
3462 const char *buf, size_t length)
3463 {
3464 if (any_slab_objects(s))
3465 return -EBUSY;
3466
3467 s->flags &= ~SLAB_STORE_USER;
3468 if (buf[0] == '1')
3469 s->flags |= SLAB_STORE_USER;
3470 calculate_sizes(s);
3471 return length;
3472 }
3473 SLAB_ATTR(store_user);
3474
3475 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3476 {
3477 return 0;
3478 }
3479
3480 static ssize_t validate_store(struct kmem_cache *s,
3481 const char *buf, size_t length)
3482 {
3483 int ret = -EINVAL;
3484
3485 if (buf[0] == '1') {
3486 ret = validate_slab_cache(s);
3487 if (ret >= 0)
3488 ret = length;
3489 }
3490 return ret;
3491 }
3492 SLAB_ATTR(validate);
3493
3494 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3495 {
3496 return 0;
3497 }
3498
3499 static ssize_t shrink_store(struct kmem_cache *s,
3500 const char *buf, size_t length)
3501 {
3502 if (buf[0] == '1') {
3503 int rc = kmem_cache_shrink(s);
3504
3505 if (rc)
3506 return rc;
3507 } else
3508 return -EINVAL;
3509 return length;
3510 }
3511 SLAB_ATTR(shrink);
3512
3513 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3514 {
3515 if (!(s->flags & SLAB_STORE_USER))
3516 return -ENOSYS;
3517 return list_locations(s, buf, TRACK_ALLOC);
3518 }
3519 SLAB_ATTR_RO(alloc_calls);
3520
3521 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3522 {
3523 if (!(s->flags & SLAB_STORE_USER))
3524 return -ENOSYS;
3525 return list_locations(s, buf, TRACK_FREE);
3526 }
3527 SLAB_ATTR_RO(free_calls);
3528
3529 #ifdef CONFIG_NUMA
3530 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3531 {
3532 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3533 }
3534
3535 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3536 const char *buf, size_t length)
3537 {
3538 int n = simple_strtoul(buf, NULL, 10);
3539
3540 if (n < 100)
3541 s->defrag_ratio = n * 10;
3542 return length;
3543 }
3544 SLAB_ATTR(defrag_ratio);
3545 #endif
3546
3547 static struct attribute * slab_attrs[] = {
3548 &slab_size_attr.attr,
3549 &object_size_attr.attr,
3550 &objs_per_slab_attr.attr,
3551 &order_attr.attr,
3552 &objects_attr.attr,
3553 &slabs_attr.attr,
3554 &partial_attr.attr,
3555 &cpu_slabs_attr.attr,
3556 &ctor_attr.attr,
3557 &aliases_attr.attr,
3558 &align_attr.attr,
3559 &sanity_checks_attr.attr,
3560 &trace_attr.attr,
3561 &hwcache_align_attr.attr,
3562 &reclaim_account_attr.attr,
3563 &destroy_by_rcu_attr.attr,
3564 &red_zone_attr.attr,
3565 &poison_attr.attr,
3566 &store_user_attr.attr,
3567 &validate_attr.attr,
3568 &shrink_attr.attr,
3569 &alloc_calls_attr.attr,
3570 &free_calls_attr.attr,
3571 #ifdef CONFIG_ZONE_DMA
3572 &cache_dma_attr.attr,
3573 #endif
3574 #ifdef CONFIG_NUMA
3575 &defrag_ratio_attr.attr,
3576 #endif
3577 NULL
3578 };
3579
3580 static struct attribute_group slab_attr_group = {
3581 .attrs = slab_attrs,
3582 };
3583
3584 static ssize_t slab_attr_show(struct kobject *kobj,
3585 struct attribute *attr,
3586 char *buf)
3587 {
3588 struct slab_attribute *attribute;
3589 struct kmem_cache *s;
3590 int err;
3591
3592 attribute = to_slab_attr(attr);
3593 s = to_slab(kobj);
3594
3595 if (!attribute->show)
3596 return -EIO;
3597
3598 err = attribute->show(s, buf);
3599
3600 return err;
3601 }
3602
3603 static ssize_t slab_attr_store(struct kobject *kobj,
3604 struct attribute *attr,
3605 const char *buf, size_t len)
3606 {
3607 struct slab_attribute *attribute;
3608 struct kmem_cache *s;
3609 int err;
3610
3611 attribute = to_slab_attr(attr);
3612 s = to_slab(kobj);
3613
3614 if (!attribute->store)
3615 return -EIO;
3616
3617 err = attribute->store(s, buf, len);
3618
3619 return err;
3620 }
3621
3622 static struct sysfs_ops slab_sysfs_ops = {
3623 .show = slab_attr_show,
3624 .store = slab_attr_store,
3625 };
3626
3627 static struct kobj_type slab_ktype = {
3628 .sysfs_ops = &slab_sysfs_ops,
3629 };
3630
3631 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3632 {
3633 struct kobj_type *ktype = get_ktype(kobj);
3634
3635 if (ktype == &slab_ktype)
3636 return 1;
3637 return 0;
3638 }
3639
3640 static struct kset_uevent_ops slab_uevent_ops = {
3641 .filter = uevent_filter,
3642 };
3643
3644 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3645
3646 #define ID_STR_LENGTH 64
3647
3648 /* Create a unique string id for a slab cache:
3649 * format
3650 * :[flags-]size:[memory address of kmemcache]
3651 */
3652 static char *create_unique_id(struct kmem_cache *s)
3653 {
3654 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3655 char *p = name;
3656
3657 BUG_ON(!name);
3658
3659 *p++ = ':';
3660 /*
3661 * First flags affecting slabcache operations. We will only
3662 * get here for aliasable slabs so we do not need to support
3663 * too many flags. The flags here must cover all flags that
3664 * are matched during merging to guarantee that the id is
3665 * unique.
3666 */
3667 if (s->flags & SLAB_CACHE_DMA)
3668 *p++ = 'd';
3669 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3670 *p++ = 'a';
3671 if (s->flags & SLAB_DEBUG_FREE)
3672 *p++ = 'F';
3673 if (p != name + 1)
3674 *p++ = '-';
3675 p += sprintf(p, "%07d", s->size);
3676 BUG_ON(p > name + ID_STR_LENGTH - 1);
3677 return name;
3678 }
3679
3680 static int sysfs_slab_add(struct kmem_cache *s)
3681 {
3682 int err;
3683 const char *name;
3684 int unmergeable;
3685
3686 if (slab_state < SYSFS)
3687 /* Defer until later */
3688 return 0;
3689
3690 unmergeable = slab_unmergeable(s);
3691 if (unmergeable) {
3692 /*
3693 * Slabcache can never be merged so we can use the name proper.
3694 * This is typically the case for debug situations. In that
3695 * case we can catch duplicate names easily.
3696 */
3697 sysfs_remove_link(&slab_subsys.kobj, s->name);
3698 name = s->name;
3699 } else {
3700 /*
3701 * Create a unique name for the slab as a target
3702 * for the symlinks.
3703 */
3704 name = create_unique_id(s);
3705 }
3706
3707 kobj_set_kset_s(s, slab_subsys);
3708 kobject_set_name(&s->kobj, name);
3709 kobject_init(&s->kobj);
3710 err = kobject_add(&s->kobj);
3711 if (err)
3712 return err;
3713
3714 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3715 if (err)
3716 return err;
3717 kobject_uevent(&s->kobj, KOBJ_ADD);
3718 if (!unmergeable) {
3719 /* Setup first alias */
3720 sysfs_slab_alias(s, s->name);
3721 kfree(name);
3722 }
3723 return 0;
3724 }
3725
3726 static void sysfs_slab_remove(struct kmem_cache *s)
3727 {
3728 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3729 kobject_del(&s->kobj);
3730 }
3731
3732 /*
3733 * Need to buffer aliases during bootup until sysfs becomes
3734 * available lest we loose that information.
3735 */
3736 struct saved_alias {
3737 struct kmem_cache *s;
3738 const char *name;
3739 struct saved_alias *next;
3740 };
3741
3742 static struct saved_alias *alias_list;
3743
3744 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3745 {
3746 struct saved_alias *al;
3747
3748 if (slab_state == SYSFS) {
3749 /*
3750 * If we have a leftover link then remove it.
3751 */
3752 sysfs_remove_link(&slab_subsys.kobj, name);
3753 return sysfs_create_link(&slab_subsys.kobj,
3754 &s->kobj, name);
3755 }
3756
3757 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3758 if (!al)
3759 return -ENOMEM;
3760
3761 al->s = s;
3762 al->name = name;
3763 al->next = alias_list;
3764 alias_list = al;
3765 return 0;
3766 }
3767
3768 static int __init slab_sysfs_init(void)
3769 {
3770 struct kmem_cache *s;
3771 int err;
3772
3773 err = subsystem_register(&slab_subsys);
3774 if (err) {
3775 printk(KERN_ERR "Cannot register slab subsystem.\n");
3776 return -ENOSYS;
3777 }
3778
3779 slab_state = SYSFS;
3780
3781 list_for_each_entry(s, &slab_caches, list) {
3782 err = sysfs_slab_add(s);
3783 BUG_ON(err);
3784 }
3785
3786 while (alias_list) {
3787 struct saved_alias *al = alias_list;
3788
3789 alias_list = alias_list->next;
3790 err = sysfs_slab_alias(al->s, al->name);
3791 BUG_ON(err);
3792 kfree(al);
3793 }
3794
3795 resiliency_test();
3796 return 0;
3797 }
3798
3799 __initcall(slab_sysfs_init);
3800 #endif